CX Programming
Language

Amaury Hernandez-Aguila

1.1
1.2
1.3
1.4
1.5

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

CContents

Getting Started with CX
What is CX?

Installing CX

Hello, world!

Introduction to the REPL
Strict Typing System

CX Programs Representation

Everything in a Function is an Expression

Elements Redefinition

Data Structures
Primitive Types
Variables

Arrays

Slices

Structures

Scope of a Variable

O O 0 NN

12
13

14
15
15
17
18
19

4.1
4.2
4.3

5.1
5.2
5.3
5.4

6.1

7.1

9.1

9.2

10.1

10.2

12.1
12.2

Functions

Lexical Scoping
Side Effects
Methods

Control Flow
jmp and goto
if and if/else
for Loop
return

Packages

CX Workspaces

Pointers

Memory Segments
OpenGL and GLFW with CX

Interpreted and Compiled

Interpreted CX Features
Compiled CX Features

Garbage Collector
What is Garbage Collection
CX’s Garbage Collector

Affordances

Serialization
Serialization

Deserialization
Genetic Programming

Understanding the CX Base Language

22
22
22

24
25
27
29

32

36

46

46

48

49

56
58

15.1
15.2

CX’s Read-Eval-Print Loop
Selectors
Stepping

Unit Testing in CX

68
69

1. Getting Started with CX

This Chapter works as an introduction to Skycoin’s programming language: CX. In the following
Sections you will learn about the objectives and philosophy of the language and about the features
that make CX unique.

In this first Chapter you can find instructions on how to install CX, and how to write and run
your first program using the language. We will check how CX programs are internally represented
in Chapter 2, so we can understand some debugging features and the CX REPL. We’ll then review
some basic programming concepts in Chapter 3, like what is a variable and the types of data these
variables can represent, how you can group different values in arrays and slices, how you can group
different types of values in structures, and how you can change the scope of a variable in a program.
In Chapter 4 you will learn how to use functions and methods, and we’ll talk a bit about side effects.
The different control flow mechanisms that CX currently offers are covered in Chapter 5, such as if
and the for loop. The last fundamental piece is packages, which help us modularize our programs,
and they are covered in Chapter 6.

After Chapter 6, we’ll start covering more complex subjects, such as pointers in Chapter 7 and
how to use CX with OpenGL and GLFW in Chapter 8. Chapter 9 covers how CX can work both
as an interpreted and as a compiled language, and what advantages bring each mode. Chapters 10
and 11 describe CX’s garbage collector and affordances.Chapter 12 describes CX’s serialization
capabilities, and we’ll learn how we can serialize a full, running program, store it in a file, and later
deserialize it to continue its execution.

CX uses its affordance system to create a genetic programming algorithm that can be used to
create programs that create programs, and this feature is explained in Chapter 13. Talking about
creating programs that create programs, are you interested on creating your very own CX? If you are,
we’ll cover that subject in Chapter 14. Lastly, we’ll cover some advanced techniques you can use
while using the REPL to create a program in Chapter 15, and Chapter 16 teaches us how to create
unit tests to make sure everything works as intended while your programs grow larger.

(O N O B N

1.1 What is CX? 7

What is CX?

CX is an interpreted and compiled, garbage collected, general purpose programming language,
which means that it can be used to create any type of program, such as web, desktop and command
line applications. However, at the time of writing this book, the current version of CX is best suited
to create command line applications and, surprisingly, video games! In a not so distant future, CX
will be capable of handling all sorts of platforms, for the development of many kind of applications.
But do not despair, as the current capabilities of the language are enough to try the fundamentals of
programming, video game programming and other very powerful and interesting features, such as
affordances, which are unique to CX.

You may be wondering about the objectives of CX — why create another language anyway? One
of the main objectives of the language is to lower the software development costs by increasing
the programmer’s productivity. CX achieves this by providing well-known programming tools,
such as a Read-Eval-Print Loop (REPL) for interactive programming and interactive debugging
mechanisms. But CX goes further by extending the common REPL’s capabilities. Those extensions
will be reviewed in Chapter 15.

Another objective of CX is to provide the developer with many high-level tools that are part
of the core language, i.e., the programmer won’t need to install any external packages and the
language will interact seamlessly with these features. Clear examples are CX’s interactivity with the
Skycoin ecosystem for creating decentralized applications and CX’s affordance system and genetic
programming functions that help the programmer create applications in a more interactive manner.

Installing CX

Eventually, we’ll have a bootstrapped version of CX, and you’ll be able to compile CX using CX, but
in the meantime, you need to have a working Go installation to compile CX, as CX is implemented
in this language. Although providing instructions on how to install Go is out of the scope of this
book, we can give you some guidelines:
e At the time of writing, you can find instructions on how to install Go here: https://golang.
org/doc/install
e Make sure you get a version of Go superior to 1.8
e Correctly setting a Go environment — particularly the GOPATH variable — usually decreases
the chances of getting errors with the installation of CX
After getting your Go installation ready, you will need to install some libraries or programs,
depending on your operating system.
In the case of Linux distributions, you might need to install some OpenGL libraries, if you
haven’t done already. CX has been tested in Ubuntu, and the commands to get the required libraries
for this distribution are shown in Listing 1.1.

sudo apt—get install libxi—dev

sudo apt—get install libgll —mesa—dev
sudo apt—get install libxrandr—dev
sudo apt—get install libxcursor—dev
sudo apt—get install libxinerama—dev

Listing 1.1: Installing Required OpenGL Libraries in Ubuntu

https://golang.org/doc/install
https://golang.org/doc/install

R N O R S

8 Chapter 1. Getting Started with CX

As there are dozens of Linux distributions, it’d be hard to give instructions on how to get the
correct libraries for each of them. Nevertheless, using your favorite search engine to find out the
names of those libraries for your distribution, and how to install them should be easy.

If you are using Windows, you might only need to install GCC. If you already installed GCC
through Cygwin, you might run into trouble, as Go apparently doesn’t get along with Cygwin. If you
haven’t installed GCC, you should install it either through tdm-gcc (http://tdm-gcc.tdragon.
net/) or Mingw (http://wuw.mingw.org/).

At the moment, most users of CX have installed it on MacOS systems, and in all of the cases the
installation of the language has been straightforward.

And finally, you’ll need Git installed, regardless of your operating system. If you find any
problems with the installation, we’ll be grateful if you can open an issue at CX’s GitHub repository
(https://github.com/skycoin/cx), so we can improve the installation process!

After going through the hassles of installing Go and the required libraries, you should be able to
install CX by running either the cx.sh (for *nix users) or the cx.bat (for Windows users) installation
scripts, which can be found in CX’s GitHub repository (https://github.com/skycoin/cx). If
you are running a *nix operating system, you can also try the command shown in Listing 1.2.

sh <(curl —s https://raw. githubusercontent.com/skycoin/cx/master/cx.sh)

Listing 1.2: One-liner CX Installation Script for *nix Systems

If everything went well, you should be able to see CX’s version printed in your terminal after
running cx -v.

Hello, world!

Now it is time to write your first program in CX! And as the tradition dictates, this first program has
to be printing Hello, world! to the terminal. You can find this program in Listing 1.3.

package main

func main () {
str.print("Hello, world!")

}
Listing 1.3: "Hello, world!" Example

We can see the essential parts of a CX program in the aforementioned program. Every CX
program has to be organized in packages (you can learn more about them in Chapter 6), and,
specifically, every CX program must declare a main package. Additionally, in this main package,
you must declare a main function, which will work as your program’s entry point. The entry point of
any program is the function, subroutine or instruction that will be run first, and which will tell the
operating system how to continue with the program’s execution.

After writing the program using your favorite text editor, save it to your computer using the
name hello-world.cx. You can then run it by using either cx hello-world.cx or cx hello-world.cx -i.
After executing either instruction, you should see the text Hello, world! printed to your terminal.

http://tdm-gcc.tdragon.net/
http://tdm-gcc.tdragon.net/
http://www.mingw.org/
https://github.com/skycoin/cx
https://github.com/skycoin/cx

0N N WN

e}

1.4 Introduction to the REPL 9

In case you’re curious about the -i flag, it instructs CX to interpret the program, instead of
compiling and then running it. You can learn more about this in Chapter 9. Also, there’s actually a
third way of running your program: c¢x hello-world.cx -r, but we’ll learn more about it in Chapter
15, and it’s related to the next Section.

Infroduction to the REPL

A Read-Eval-Print Loop (REPL) is a terminal tool for interactive programming. The programmer
can enter an expression, statement or declaration, and they will be evaluated instantaneously. REPLs
are usually found in dynamically typed languages and interpreted languages, but this is not a rule.
For example, Go is a statically typed language and there’s a REPL for it called gore. As another
exception, Common Lisp has a REPL, and Common Lisp is both an interpreted and compiled
language. You can have a look at a REPL session in Listing 1.4.

CX 0.5.2

More information about CX is available at http://cx.skycoin.net/ and https :// github.com/skycoin/c

:func main {...
* str.print("Hello, world!")

:func main {...
* :step 1
Hello, world!

:func main {...
*

Listing 1.4: REPL Session Example

We can see that this REPL session example is another way of creating a Hello, world! program
in CX. The first thing to explain in a REPL session is that the asterisk or multiplication sign (¥) is
telling the programmer that CX is awaiting for an instruction to be entered. This is called a REPL
prompt At line 5, we decide to enter an expression: str.print(''Hello, world!''). But where does
this expression go? How does CX know what is the entry point in a REPL session? To answer this
question, we need to look at line 4. This line is telling us that we’re currently inside function main,
and that any expression that we write is going to be added to that function. This means that the entry
point of a program written using the REPL is still the main function.

Now, if we want to run the program, we need to use the :step meta-command, which is explained
further in Chapter 15. At line 8 we are telling CX to advance the program by 1 instruction, which
results in executing the str.print(''Hello, world!'") expression and prints the message to the terminal.

Something that you might have noted is that we writing s¢r in front of print. This is explained in
the next Section.

Strict Typing System

One of the features of CX is its strict typing system. Although the language provides some type-
generalized functions, such as /en(), there is usually a type-specific function for achieving the task.
For example, in Listing 1.5, we can see that we can print a string either by using str.print or print.

0N N W=

10 Chapter 1. Getting Started with CX

package main

func main () {
str.print("type—specific function")
print("type—generalized function")
i32 . print(i32.add (10, 10))
i32.print (10 + 10)

Listing 1.5: Type-Specific Functions

Another kind of type-generalized functions are the infix arithmetic symbols, e.g., +, *, etc. The
parser will infer the type of its arguments and translate the arithmetic statement to an expression that
uses a type-specific function.

The objective of having a strict typing system like this is to promote safety. If the programmer
misinterprets data in a program and, for example, tries to send an i32 value to str.print(), this error
can be caught early at compile-time instead of being caught at run-time.

—_

— O 000NN AW~

2. CX Programs Representation

When you create a CX program and run it with the ¢x command, the first thing that happens is that
the code gets parsed. Every statement, declaration and expression in your code is translated to a
series of adders, removers, selectors, getters and makers (these are covered in Chapter 14). The
trans-compiled version of a CX program is a series of these instructions that generate a structure
that holds all the necessary information for the CX runtime to execute the program. It is worth to
note that both interpreted and compiled versions of CX can read the same structure, so CX can have
some parts of its programs compiled while other parts run in an interpreted way. The programmer
can decide to compile certain functions that need to be fast, while having other functions to be
interpreted, so they can be modified interactively by the user or the affordance system, for example.

The structure that represents a CX program is generated by a parser, which reads the code that
you, the programmer, has written using your favorite text editor. This structure can be considered
as the program’s Abstract Syntax Tree (AST). CX’s REPL (introduced in Section 1.4) has a meta-
command that prints the AST of a program. This meta-command can be called by writing :dp or
:debugProgram in the REPL, and will print something similar to Listing 2.2.

If you want to try it out, you can save the program in Listing 2.1 to a file called ast-example.cx,
and load it to a REPL by executing the command cx ast-example.cx -r. Then in the REPL prompt,
just enter the meta-command :dp, and it should print the AST shown in Listing 2.2.

package main
var global i32
func main () {
var foo 132
foo =5
str.print("Hello World!")

i32.print(55)
i32 . print (i32.add(global, 10))

12

0N N hWwWN -~

—_ =
= O o

12 Chapter 2. CX Programs Representation

Listing 2.1: Abstract Syntax Tree Example - Code

Program
0.— Package: main
Globals
0.— Global: glblVariable i32
Functions

0.— Function: main () ()
0.— Expression: foo = identity (5 i132)
1.— Expression: str.print("Hello World!" str)
2.— Expression: 132 .print(55 i32)
3.— Expression: Icl_0 = i32.add(global i32, 10 i32)
4.— Expression: i32.print(lcl_0 132)
1.— Function: *xinit () ()

Listing 2.2: Abstract Syntax Tree Example

Let’s go line by line of Listing 2.2. Line 1 is first telling us that we are showing the AST of a
program. Line 2 then tells us that what follows are the contents of a package, which is named main.
We can then see that all the global variables declared in the package are going to be printed after
Line 3, which in this case is only one. Then we are presented with the last part of the package: the
functions. The first function is our main function, which is declared to not have any input parameters
nor output parameters, as seen at Line 6.

Before continuing with the analysis of the main function, let’s briefly discuss that *init function
at Line 12. This function is actually the first function to be called in a CX program. Yeah, we lied to
you, main is not the one called first. This function initializes all the global variables in your program,
and in future versions of CX you’ll be able to put other expressions you wish to run first, before your
program starts (this behavior is present in languages like Go).

Now, we can see something strange happening on main’s list of expressions: there is a function
call that we never wrote in our original CX source code (identity), and we can see a variable that we
never declared (Ic/_0). The identity operator is used when we want to "make a copy" of a value to a
variable, and the variables called /cI_N, where N is an integer, are used as temporary variables that
hold intermediary calculations in nested function calls. There are other weird things that happen
when parsing a CX program, which we will see in later Chapters when dealing with programs’ ASTs,
but for now it’s enough for you to understand that there is not necessarily a one-to-one relationship
between your CX source code elements and the resulting AST. Actually, in more complex programs
the compiler will heavily modify the resulting AST in order to optimize your code. Nevertheless,
there is an important point that should be understood before continuing with the rest of the book,
and this is discussed in the next Section.

Everything in a Function is an Expression

Everything in a function is an expression! This is an approach adopted from functional languages.
For example, your if/else is transformed to a series of expressions, something that doesn’t happen
in imperative languages like C. Why is this important to notice? Well, you could have an iffelse

—

O 0 IO N B WN

2.2 Elements Redefinition 13

statement returning a value. In the CXGO implementation this doesn’t happen, as we try to mimic as
much as possible the behavior of Go. Nevertheless, it is important to take into account if you decide
to create your own CX implementation. You could, for example, implement a CX-based language
where the code in Listing 2.3 is valid, and it is allowed by the CX specification.

val = if 5 > 4 then 10 else 20
print val // This will print 10!

Listing 2.3: Example of if/else Statement as an Expression

In some Chapters 5 we will see how CX transforms all the control flow mechanisms to a series
of jmps, where jmp (from the word "jump") is just an operator that takes a number of lines of code
(expressions, actually) to skip.

The reason behind this design choice is convenience: it’s easier to build a program structure
using this approach, and implementing some of the CX features, such as affordances, is a breeze if
you only have to deal with expressions. Another example is using a genetic programming algorithm
(see Chapter 13 to change a CX program’s structure: you only have to add, remove, change and
move around the same type of component: expressions.

Elements Redefinition

Unlike some other programming languages, CX will always allow a declaration to be re-declared.
In future versions of CX, an option to print warnings if this happens will be included, but in the
meantime the language will not complain about this. If you want to see it by yourself, save the code
in Listing 2.4 to a file and execute it using cx.

package main

func main () {
str.print("Hello!")
}

func main () {
str.print("Bye!")
}

Listing 2.4: Example Function Redefinition

Re-declarations allow CX to be an interactive programming language. If you notice an error
in one of your functions, you can simply change that function in your source code, re-evaluate the
function, and the program structure will be changed accordingly. If you have thousands of objects of
certain struct type, and you’d like to change that object’s definition to include another field, you can
stop your CX program, redeclare the type, and every object of that type will be updated to include
that field.

3. Data Structures

Although you could use CX as a calculator and work with literal numbers all the time, it would be a
waste of power. In order to create more robust applications, you need to work with more complex
types of data, such as arrays and structures. Nevertheless, before learning about these complex data
structures, we need to review the different primitive types of data that CX offers at the moment.

Primitive Types

All data handled by a computer is stored as Os and 1s', which are called bits. Eight of these bits
comprise a byte, and a byte can represent up to 256 or 23 different values. Although 256 values are
enough to solve a wide variety of problems already, you can always use more bytes to hold more
values. For example, the traditional approach to represent an integer is to use 4 bytes, and this is why
they are sometimes called 32-bit integers. For many applications, using 32-bit integers are more than
enough, as these integers can hold up to 4,294,967,296 or 232 different values. But if you happen
to need more than that, another common type of integer is the one that uses 8 bytes to represent its
value, which can hold up to 2 different values (the actual number is so big that it’s not even going
to make sense to you if you see it printed in here).

You may or may not be wondering — depending on your curiosity and your professional back-
ground — how many bytes do you need to represent real numbers, e.g., 3.14159 or 2.41? In computer
science parlance, real numbers are called floating-point numbers, and similarly to integers, floating-
point numbers also require either 4 bytes or 8 bytes?, depending on the precision you want to work
with (the number of digits after the decimal point). We could discuss how we can make a computer
interpret these bytes as either an integer or a floating-point number, but that’s out of the scope of this
book. The true objective behind this explanation is to make you realize how a fype in a computer
program is just a bunch of bytes being interpreted in a particular way.

I There are actually computers that use ternary logic instead of binary logic, and instead of bits you have trits, but the
vast majority of the computers use binary logic.

2This is the common convention. There’s nothing stopping you from using an arbitrary number of bytes to represent a
floating-point number.

031N N kAW~

3.2 Variables 15

CX at the moment provides the following primitive types: byte, bool, str, i32, i64, 32, f64. All
of the integer and floating-point number types are signed, which means that half of the possible
values that they can represent are used to represent negative numbers. For example, a byfe type in
CXis able to represent any integer number from -128 to 127, for a total of 256 different values. In
the future other primitive types will be incorporated, such as 116 (16-bit integer) and ui64 (unsigned
64-bit integer).

But this doesn’t mean that you are limited to only those types. They are called primitive types
because other more complex types are derived from them. These complex types are reviewed in the
following Sections of this Chapter.

Variables

Variables have been used in code examples in previous Chapters already, but they have not been
formally introduced. As was mentioned at the beginning of this Chapter, you could create programs
where you only use literal numbers, but you’d be extremely limited on what you can create. Variables
are one of those features that are very easy to understand and use, and yet, they greatly expand your
development capabilities. You can see how you can declare variables of the different primitive types
in CX in Listing 3.1.

package main

func main () {
var optionCode byte
var isAlive bool
var name sStr
var number 132
var bigNumber 164
var area f32
var epsilon f64

name = "John Cole"
number = 14

Listing 3.1: Variable Declaration

As you can see, you can tell CX that you’re going to declare a variable by using the keyword
var, followed by the name of the variable, and finally the type that you desire that variable to have.
If you want to assign a value to that variable, you just write the name of the variable, then the equal
symbol (=) followed by the desired value.

It is interesting to note that variables are not actually needed in order to create a program,
but most — if not all — of the enterprise-level programming languages provide something similar
to the concept of variable. If you are curious about this, you can check some purely functional
programming languages like Haskell, and also learn about lambda calculus.

Arrays

If you have to create a program where you have to store three telephone numbers, you could just
create three different variables to hold each of them. But what if you had to store thousands of

S O 00NN A WN

—
O 09NN AW~

—

16 Chapter 3. Data Structures

telephone numbers? Using variables to accomplish that task would be inefficient. The answer to this
problem is to use arrays.

Arrays are fixed length collections of elements of the same type. To store or access an element
in an array, you just need the name of the array and an index where you want to store the value to.
To declare an array you have to put square brackets before the type in a variable declaration, and
the number of elements that you want the array to hold must be inside the brackets. You can see an
example of an array of three 32-bit integers shown in Listing 5.8.

package main

func main () () {
var foo [3]i32

foo[0] = 10
foo[l] = 20
foo[2] = 30

i32 . print(foo[2])

Listing 3.2: Array Example

At Line 4 we can see the array declaration, at Lines 5, 6 and 7 the array gets initialized, and
finally at Line 9 we print the last element of the array, as arrays are zero-indexed in CX.

If you are curious enough (if you're already a programmer, it doesn’t count), you could be
asking yourself: can you have arrays of arrays? The answer is: yes! You only need to put the extra
pair of brackets you need until you achieve the number of dimensions you want. An example of
multi-dimensional arrays is shown in Listing 3.3.

package main

func main () {
var foo [3][3]i32

foo[1][2] = 40

i32.print(foo[1][2])

Listing 3.3: Multi-dimensional Arrays

Before continuing to slices, it’s worth mentioning the existence of len. len is a type-generalized
function that accepts an array as its first and only input argument, and returns a 32-bit integer that
represents the number of elements that that array is capable of holding. This function is especially
useful when using arrays in combination with the for loop, which will be covered in Chapter 5. An
example of len’s usage can be seen in Listing 3.4. Please note that there are type-specific versions of
len for each of the primitive types.

package main

NN n AW

O 09NN AW~

3.4 Slices 17

func main () {
var foo [10]i32

i32.print(len(foo))

Listing 3.4: Printing Array Length

Please be careful with the sizes you choose for your arrays. If you create an array larger than 232,
you’ll get an error because 232 is the maximum array size or because you could exceed the maximum
memory allocated to CX by your operating system. Also, if you are working with very large arrays,
you’ll most likely want to create a pointer to it to send the array to the heap memory. CX passes
its arrays by value to other functions, which means that if you send a very big array to a function
as its argument, you’ll be creating a copy of it to be sent, which will be a very slow and memory
consuming operation. You’ll learn more about functions in Chapter 4 and about pointers in Chapter
7.

Slices

Under the hood, slices are just arrays. This means that a slice has the same performance in read/write
operations as an array. The advantage of using slices over arrays is that slices are incremented in
capacity automatically if it ever exceeds it. However, this can also be considered a disadvantage. A
slice in CX starts with a capacity of 32 elements. If this limit is reached, CX creates a copy of that
slice, but with an increased capacity of 2x its previous limit, which is 64 in its second iteration. As
you can see, most of the time a slice will be wasting memory, and time whenever CX creates a copy
of it in order to increase its limit.

It must be noted that capacity is not the same as size or length. Capacity represents the reserved
memory space for a slice, while size represents the actual number of slots in a slice that are being
used. You can understand better the difference if you run the code in Listing 3.5. Although any slice
will start with 32 slots reserved in memory, e.g., 32 x4 bytes for a []i32 slice, this doesn’t mean that
all of those slots have an actual value in there. Capacity is a concept related to performance rather
than to practicality.

package main
func main () {
var slice []i132
slice = append(slice, 1)

slice = append(slice, 2)

i32 . print(len(slice)) // prints 2, not 32

Listing 3.5: Difference Between Capacity and Size

There are three native functions that are specifically designed to work with slices: make creates
a slice of a type and size that you specify, initializing the elements to the specified type’s nil
representation, e.g., 0 for an i32 and "” or an empty string for an str; append takes a slice and an

[BN e Y T I

—
[SSIN SR e BNe)

0N N W~

18 Chapter 3. Data Structures

element of the type of that slice, and puts it at the end of the slice; and lastly, copy creates a copy of
each of the elements of a slice, and puts each of the elements, in order, to the second slice until every
element has been copied to it or until the capacity of the second slice runs out.

package main
func main () {
var slicel []i32

var slice2 []i32

slicel = make("[]i32", 32)
slicel append (slicel , 1)

slice2 = make("[]i32", 32)

copy(slice2 , slicel)

Listing 3.6: Slice-specific Native Functions

Listing 3.6 shows the declaration of two slices of type i32 at Lines 4 and 5. The first slice then
gets initialized using the make function, which creates a slice of size 32 in this case. This means
that slicel now has a size of 32 elements and a capacity of 32 elements too. At Line 8, we append
a 1 to slicel, which makes the slice have now a size of 33 and a capacity of 64. After initializing
slice2 at Line 10, we copy the contents of slicel to slice2. What do you think that are the elements
of slice2 now?

As a final note, slices are always allocated in the heap in CX due to their scalability nature. It
would be disastrous to have a slice grow in the stack, as it would make programs run very slow —
CX would need to juggle with the objects in the stack, making copies and moving them to different
positions. If slices are allocated in the heap, we can delegate all of these operations to CX’s garbage
collector, and keep the stack clean. This behavior will slightly change in the future, though. If CX’s
compiler can detect that a slice is never going to grow during a function call, we can then flag that
slice to be put in the stack for better performance. For more information about CX’s heap and stack,
you can read Chapters 7 and 10.

Structures

Structures allow the programmer to create more complex types. For example, you may want to
create a type Person where you can store a name and an age. This means that we want a mix of an
i32 and a str. A structure that solves this problem is presented in Listing 3.7

package main

type Person struct {
name Str
age 132

}

func main () {

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0N N W~

3.6 Scope of a Variable 19

var pl Person
var p2 Person

pl.name = "John"
pl.age = 22

p2 = Person{
name: " Gabrielle",
age: 21

str.print (pl.name)
i32.print(pl.age)

str.print (p2.name)
i32.print(p2.age)

Listing 3.7: Type Person using Structures

The syntax for declaring a new structure or type is shown at Line 3, and Lines 4 and S show the
structure’s fields. The fields of a structure are the components that shape the type being defined by a
structure. In order to use your new Person type, we first need to declare and initialize variables that
use this type. This can be seen at Lines 9-13. Lines 12 and 13 show that we can initialize the struct’s
fields one by one, by using a dot notation, while Lines 15-18 show a different way of initialization:
the struct literal. A struct literal is created by writing the name of the type we want to initialize,
followed by the name of the struct fields’ names and their values separated by a colon. Each of these
field-value pairs need to be separated by a comma.

Both of these initialization approaches has its advantages. The dot notation has the advantage
of versatility: you can initialize different fields at different points in a program. For example, you
can initialize one field before a loop, and another field after that loop. On the other hand, the
struct literal approach has the advantages of readability and that it can be used as a function call’s
argument directly. For example, you can send a Person struct instance to a function call this way:
PrintName(Person {name: "John"}).

Scope of a Variable

The type and name are two of the properties of a variable. There is one property that we haven’t
mentioned so far: scope. The scope of a variable dictates where a variable can be seen. A local
variable is only accessible in the function where it was declared, while a global variable can be
accessed by any function of a package.

package main
var global i32
func foo () {

i32 . print(global)
// i32.print(local) // this will raise an error if uncommented

10
11
12
13
14
15
16
17
18

20 Chapter 3. Data Structures

func main () {
var local i32

local = 10
global = 15

132 . print(global)
i32 . print(local)

Listing 3.8: Usage of Local and Global Variables

If you want to create a global variable, you only have to declare it outside any function declaration.
If you want a local variable, declare it inside the function you want it to have access to. Listing 3.8
shows an example that declares a global variable that is accessed to by two functions: main and foo,
and a local variable that is only accessible by the main function.

As a last note, global variables can also be accessed by other packages that import the package
containing said variable. You’ll learn more about packages in Chapter 6.

00NN AW~

—
DN B~ WD = O\

16

4. Functions

Unless you are learning an esoteric programming language, chances are that that language is going
to have some sort of subroutine mechanism. A subroutine is a named group of expressions and
statements that can be executed by using only its name. This allows a programmer to avoid writing
that group of expressions and statements again and again, every time they are needed. In CX,
subroutines are called functions, because they behave similarly to how mathematical functions
behave.

In CX, a function can receive a fixed number of input parameters, and like in Go, it can return a
fixed number of output parameters. These parameters must be of a specific type, either a primitive
type or a complex type. At the moment, both input and output parameters must have a name
associated to them, but this will change in the future and anonymous output parameters will be
possible. Parameters are a very powerful feature, because they allow us to have a function behave
differently depending on what data we send to it. Listing 4.1 shows how we can create a function
that calculates the area of a circle, and another function that calculates the perimeter of a circle.

package main
var PI f32 = 3.14159

func circleArea (radius f32) (area f32) {
area = f32.mul(f32.mul(radius, radius), PI)
}

func circlePerimeter (radius f32) (perimeter f32) {
perimeter = f32 . mul(f32.mul(2.0, radius), PI)
}

func main () () {
var area f32
area = circleArea (2.0)
f32.print(area)

1
1

—_

7
8

— O 000NNk W~

22 Chapter 4. Functions

f32 . print(circlePerimeter (5.0))

Listing 4.1: Determining Area and Perimeter of a Circle using Functions

If you needed to calculate the area of 20 circles, you’d only need to call circleArea 20 times,
instead of having to write f32.mul(f32.mul(radius, radius), PI) 20 times (although you’d probably be
using a for loop instead; see Chapter 5).

Lexical Scoping

Variables in CX are lexically scoped, which means that they are only accessible in the function where
they were declared. This was reviewed in Chapter 3, but there’s a situation that was not covered, and
that is more appropriated to be covered in this Chapter.

package main

func foo () {
i32 . print(x)
}

func main () {
var x 132
x = 15
foo ()

Listing 4.2: Lexical Scoping

If CX was dynamically scoped, the code shown in Listing 4.2 would print 15, because the call to
foo at Line 10 would capture the value of the variable x declared in main. Instead, it will raise an
error because Line 4 is trying to access a variable that has not been previously declared.

Side Effects

CX is an imperative language and not purely functional, unlike, for example, Haskell. This means
that functions can have side effects, i.e., they can change the state of objects outside of the function’s
scope. Side effects include actions like modifying the value of a global variable or, if you are a
purist, even printing text to a terminal. Functional programming has some advantages, like easier
debugging, but CX alleviates this by providing debugging tools like its REPL (see Chapter 15).

Methods

Methods are a special type of functions that can be associated to user-defined types. Although
methods are not strictly necessary, as their functionality can be replaced by normal functions,
they provide some useful advantages. The first advantage is that different methods can have the
same name as long as they are associated to different types. This can help the programmer start
thinking only about the action that needs to be performed, instead of thinking about a name for that

4.3 Methods 23

specific structure. For example, instead of having to call functions named printPlayerName() and
printRefereeName(), you can simply call the structure instance’s method name printName(). This

[BN e Y T I

[SSIN S IN ST (ST ST S RN S RN (ST S T S IS R e e e e e
SOV X IANUNPRAR WD, OOV WND — OO

situation is shown in Listing 4.3.

package main

type Player struct ({
name str

}

type Referee struct {
name str

}

func (p Player) printName () {
str.print("Player information")
str.print (p.name)

}

func (r Referee) printName () {
str.print("Referee information")
str.print (r.name)

}

func main () {
var p Player
p.name = "Michael"

var r Referee
r.name = "Edward"

p.printName ()
r.printName ()

Listing 4.3: Methods Example

Another advantage of methods is that they promote safety, as they are associated to a particular
user-defined type. If a method is not defined for a type, this error will be caught at compile-time.

5. Control Flow

A program in CX is executed from top to bottom, one expression at a time. If you want a group of
expressions to not be executed, or executed only if certain condition is true, or executed a number of
times, you’ll need control flow statements. In CX, you have access to these control flow statements:
if and if/else, for loop, goto, and return.

In the following Section you’ll review the jmp function, and you’ll see that in CX, every control
flow statement is transformed to a series of jmps.

jmp and goto

Although jmp exists in the CX native function repertoire, it can’t really be used. If you want to write
a function call to jmp, you’ll need to send it a boolean argument that represents a predicate. In case
of the predicate evaluating to frue, jmp will make the program skip or go back a certain number of
instructions. If the predicate evaluates to false, nothing will happen. The tricky part here is: how do
we specify how many instructions the program will move? You can’t. jmp is designed to be used
exclusively by the parser, or any program that is in charge of constructing a CX program structure.
As the default number of expressions to be moved by jmp in any case is 0, jmp will do nothing if
used directly by a programmer. In future versions of CX, the compiler will raise an error if you try
to use jmp directly, so, aside from being totally useless for a programmer, it’s a pretty bad idea to
include it in your programs at the moment, as it will make your programs incompatible with later
versions of CX.

You could now be arguing that it was bad idea that you learned about jmp, as you now will be
tempted to include meaningless function calls to it all around your code — we hope you don’t do this.
We want to accomplish two things by introducing jmp to you: 1) you’ll understand CX ASTs better,
and 2) in case you want to build your own CX (see Chapter 14), you need to know that jmp can be
used to create control-flow statements. In the following Sections, each of the examples that depict
the use of the different control-flow statements will be accompanied by their corresponding AST in
a different Listing, where it can be seen that all of them are translated to a series of jmps.

Nevertheless, if you want to have access to some simple instruction jumping mechanism, you

5.2

—_

O 0NN AW~

— O 0 001NN AW~

5.2 if and if/else 25

can use goto. goto will always perform an instruction jumping if encountered, and the number of
instructions that the program will be jumped to will be determined by a label. Listing 5.1 shows an
example where goto is used to jump directly to a print expression, and Listing ?? shows its AST.

package main

func main () {

goto label
labell :

str.print("this should never be reached")
label2:

str.print("this should be printed")
}

Listing 5.1: Using goto for Control Flow

It is important to note that labels are only used by goto statements and affordances (see Chapter
11). If a label is encountered by the CX runtime, it will be ignored. Actually, if you check the AST
of the program in Listing 5.1 you will see that labels don’t appear: the parser read the labels and
transformed them to the number of expressions required by a jmp to make the CX program arrive
at that expression. In the case of the code shown in Listing 5.1, the number of instructions to be
skipped by goto labell is +1 (it could be a negative number if it had to make a jump to an early
instruction).

if and if/else

There will be plenty of situations where you will need to execute a number of expressions or
statements only if certain condition is true. For example, you only want to allow a website user to
login using a username if the password that they provide is the one that matches the given username.
In order to handle this kind of situations, you can use the if statement.

Listing 5.2 shows some examples of how the if statement can be used. The first case, starting at
Line 6 takes false as a predicate. As false is not variable—it will always evaluate to the boolean false
value—the lines of code between the curly braces will never execute. Similarly, in the second case,
starting at Line 12, as the predicate is true the str.print expression will always be executed. In the
last case, we use the greater than relational operator i32.gt to decide if the enclosed expression will
be executed or not. In this case, as 5 is greater than 3, the str.print expression is executed. Listing
5.3 shows its AST.

package main

func main () {
if false {
var err 132
err = i32.div (50, 0)
str.print("This will never be printed")

if true {
str.print("This will always print")

12
13
14
15
16
17

03N N kAW~

el e e ey
[BN e SRV R U I S R e BN e)

0N N WN—

— =
— O O

12
13

26 Chapter 5. Control Flow

}

if i32.gt(5, 3) {
str.print("5 is greater than 3")

}

}
Listing 5.2: Using If for Control Flow

Program
0.— Package: main

Imports

0.— Import: main
Functions

0.— Function: main () ()
0.— Expression: jmp(false bool)

1.— Expression: err = i32.div(50 i32, 0 i32)
2.— Expression: str.print("This will never be printed" str)
3.— Expression: jmp(true bool)
4.— Expression: jmp(true bool)
5.— Expression: str.print("This will always print" str)
6.— Expression: jmp(true bool)
7.— Expression: lcl_0 = i32.gt(5 132, 3 i32)
8.— Expression: jmp(lcl_0 bool)
9.— Expression: str.print("5 is greater than 3" str)
10.— Expression: jmp(true bool)
1.— Function: xinit () ()

Listing 5.3: Listing 5.2’s Abstract Syntax Tree

If you want to execute certain block of code if the predicate is true, and a different block of code
if the predicate is false, you can extend the if statement to its if/else form. Listing 5.4 shows an
example of how to use if/else, and the AST for this example is shown in Listing 5.5.

package main

func main () {
var out 132

if i32.1teq (50, 5) {

out = 100
} else {
out = 200

}

i32 . print (out)

Listing 5.4: Using If/Else for Control Flow

0N N AW~

e}

5.3

NN kAW~

5.3 for Loop 27

Program
0.— Package: main
Imports
0.— Import: main
Functions

0.— Function: main () ()
0.— Expression: jmp(false bool)
1.— Expression: err = i32.div(50 132, 0 i32)

2.— Expression: str.print("This will never be printed" str)
3.— Expression: jmp(true bool)
4.— Expression: jmp(true bool)
5.— Expression: str.print("This will always print" str)
6.— Expression: jmp(true bool)
7.— Expression: lcl_0 = i132.gt(5 132, 3 i32)
8.— Expression: jmp(lcl_0 bool)
9.— Expression: str.print("5 is greater than 3" str)
10.— Expression: jmp(true bool)
1.— Function: *xinit () ()

Listing 5.5: Listing 5.4’s Abstract Syntax Tree

The syntax of if and if/else is similar to Go’s syntax: you don’t need to enclose the predicate
in parentheses, unlike other languages like C, and the curly braces need to start after the condition,
or the parser will complain. The reason behind this is that in order to not be required to write a
semicolon after each expression, some tweaks needed to be implemented (just like in Go). As a
consequence of these tweaks, you are required to start your curly braces after the predicate. This has
the disadvantage of losing a bit of flexibility in how you are allowed to write your code, but it’s also
an advantage because the code now looks cleaner and more standardized.

for Loop

Another very useful control-flow statement is the for loop. This statement allows us to repeat the
execution of a block of code until a predicate is false. In some languages the for loop is strict on its
syntax, and only allows the traditional

Most C-like languages only allow the traditional initialization, condition and increment syntax
for the for loop, but in CX you can use it similarly to how you would use a while loop in other
languages. Listing 5.6 reviews this syntax, and Listing 5.7 shows its AST.

package main
func main () () {
for true {

str.print("Infinite loop!")

}

Listing 5.6: Infinite Loop Example

Program

SO O 0 I ONWnNBA W

—_

[eBEN Be RV O R

e}

SO 001NN B WN

—_

28 Chapter 5. Control Flow

0.— Package: main

Imports
0.— Import: main
Functions
0.— Function: main () ()
0.— Expression: jmp(true bool)
1.— Expression: str.print("Infinite loop!" str)
2.— Expression: jmp(true bool)
1.— Function: *xinit () ()

Listing 5.7: Listing 5.6’s Abstract Syntax Tree

First of all, don’t run the code above, as it’s an infinite loop. Although it’s essential to know how
to create an infinite loop, this infinite loop is particularly useless—it only prints "Infinite loop!" to the
terminal. This example illustrates how you can use a single argument as the predicate of a for loop,
as long as it evaluates to a boolean value.

package main

func main () () {
var foo [5]i32

foo[0] = 10
foo[l] = 20
foo[2] = 30
foo[3] = 40
foo[4] = 50

var ¢ 132

for ¢ = 0; ¢ < 5; c++ {
i32 . print (foo[c])

}

}
Listing 5.8: Traditional Syntax of For Loop
Program
0.— Package: main
Imports
0.— Import: main
Functions
0.— Function: main () ()
0.— Expression: jmp(true bool)
1.— Expression: str.print("Infinite loop!" str)
2.— Expression: jmp(true bool)
1.— Function: xinit () ()

Listing 5.9: Listing 5.8’s Abstract Syntax Tree

The second example in Listing 5.8 shows the traditional syntax of a for loop, i.e., at Line 12 we
first initialize a variable, which is usually used as the counter, then we provide a predicate expression,
and finally an expression that is usually used to increment the counter. Listing 5.9 shows its AST.

5.4

[eBEN Be Y R R

e}

[cBEN Be Y O R

—_— e
B WO = O O

5.4 return 29

return

The last control-flow statement is return. The only purpose of return is to make a function stop its
execution as soon as it is encountered. As it was mentioned in Chapter 4, return can’t be used to
return anonymous outputs, as they are not implemented yet. This means that you can’t use return
like this: return 5, "five"; in a function that returns an i32 and a str, in that order. The correct way is
to first assign the desired values to the named outputs, and then call return whenever you want a
function to end prematurely.

package main

func foo () (outl i32, out2 str) {

outl =5

out2 = "five"
return

outl = 10
out2 = "ten"

}

func main () {
var num 132
var text str

num, text = foo ()

Listing 5.10: Usage of return

The code shown in Listing 5.10 demonstrates how return prevents the function foo from
reassigning values to the output parameters.

Program
0.— Package: main
Functions

0.— Function: foo () (outl 132, out2 str)
0.— Expression: outl = identity (5 i32)
1.— Expression: out2 = identity (str)
2.— Expression: jmp(bool)
3.— Expression: outl = identity (10 132)
4.— Expression: out2 = identity (str)
1.— Function: main () ()
0.— Expression: num, text = foo ()
1.— Expression: i32.print(num i32)
2.— Expression: str.print(text str)
2.— Function: xinit () ()

Listing 5.11: Usage of return

The AST shown in Listing 5.11 demonstrates how a jmp is used to skip all the remaining
expressions. The parser calculates the number of expressions that follow the return statement, and

30 Chapter 5. Control Flow

then makes the jmp expression always skip all of them.

O 001N WA WN R~

6. Packages

If your project grows too big, you’ll need a better way to organize your code. A solution to this
would be to separate your functions into different files, but this is not a good solution as you could
still encounter problems if you end up naming another function with the same name. To make things
worse, as it was mentioned in Chapter 2, CX won’t complain if you redefine a function or a global
variable somewhere else in your code. The solution to this problem is modularization.

Modularization is a technique where you isolate groups of declarations in your source code under
a common module name. This module name works as a "last name" for all the declarations grouped
in that module, and gives every declaration a unique "full name" across all the source code files.

Each programming language has its own way of calling these isolated units of declarations. For
example, in C# they are called namespaces and in Python they are called modules. In CX, we call
these modules packages.

In Listing 6.1 we can see a program that got organized into three different packages: foo, bar
and main. Package foo declares 3 definitions: a structure named Point, a global variable named
num, and a function named bar. Package bar imports package foo and declares a single definition:
a function named returnPoint. As you can see, importing a package is handled by the import
keyword, followed by the name of the package that you want to import. Something interesting in the
function returnPoint is that it is using definitions defined in package foo. As we can see, in order
to access something from an imported package, you first need to write that package’s name, then a
period followed by the name of the definition of interest.

package foo

type Point struct {
x 132
y 132

}

var num 132 = 15

10
11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

6.1

32 Chapter 6. Packages

func bar () {
str.print("From foo package")

}

package bar
import "foo"

func returnPoint () (resPoint foo.Point) {
var resPoint foo.Point
resPoint = foo.Point{x: 10, y: 20}

}

package main
import "foo"
import "bar"

func main () {
var aPoint foo.Point
aPoint.x = 30
aPoint.y = 70
aPoint = bar.returnPoint ()

var check i32
check = 10
i32.print(check)

i32 . print (aPoint.x)
i32 . print(aPoint.y)

var fool foo.Point
fool .x = 20
fool.y = 30
i32 . print (fool .x)
i32 . print (fool .y)

i32 . print (foo .num)
foo.bar ()
i32 . print (foo .num)

Listing 6.1: Importing Packages Example

The different packages and their definitions can be placed altogether in a single file (unlike in
other languages, where you have to use a file or a directory for a single package or module), but this
can become unpractical sooner than later, so it is advised that you use a single package per directory,
as in the programming language Go. Also, CX projects behave similarly to Go projects, where you
have to place your files in a directory in a CX workspace. CX workspaces are described in Section
6.1.

CX Workspaces

Dividing your code into different files is essential as your projects grow bigger. CX takes an approach
similar to Go for handling projects: a package in a directory can split into a number of files, but

wn W N =

O 001N WA~ WN R~

03N N kW=

6.1 CX Workspaces 33

you can’t use more than one package declaration in these files inside this directory. In other words,
a directory represents a package. An exception to this rule would be declaring several packages
in a single file. The purpose of this exception is to allow the programmer to test ideas quickly
without them being required to create packages in different directories and another directory for their
application (which will contain the main package).

Listings 6.2 and 6.3 show the code for two packages: math and main. The math code needs
to be in a file named whatever you want, inside a directory that you should name the same as your
package. It’s not mandatory to do so, but the consistency helps other programmers that are reading
your code.

package math

func double () (out i32) {
out = i32.add (5, 2)
}

Listing 6.2: Package to be Imported

package main
import "math"

func main () {
str.print("hi")
var foo 132
foo = math.double ()
i32 . print (foo)

}
Listing 6.3: Main Package
Program
0.— Package: math
Functions
0.— Function: double () (out i32)
0.— Expression: out = i32.add(5 i32, 2 i32)
1.— Package: main
Imports
0.— Import: math
Functions

0.— Function: main () ()
0.— Expression: str.print("hi" str)

1.— Expression: foo = double ()
2.— Expression: i132.print(foo i32)
1.— Function: *xinit () ()

Listing 6.4: Resulting Abstract Syntax Tree

The AST for the full program can be seen in Listing 6.4 . As you can see, each package lists

34 Chapter 6. Packages

the packages that were imported. The names of these packages are the names that were given to the
package declaration. In other words, if you name your package’s directory foo but you declare your
package in your code as bar, CX will handle all the calls to this package through the latter instead of
the former name.

But where exactly do you have to put all this code? CX, as mentioned before, follows the same
philosophy as Go: you work in workspaces. A workspace is a directory dedicated solely to manage
your projects, dependencies, executables and shared libraries. A workspace can be any directory in
your file system that contains these three directories: bin, src and pkg. bin is used to store the binary
files of your projects and/or libraries; src is used to store the source code of your projects and their
dependencies; and pkg stores object files that are used to create the executables stored in bin.

After installing CX for the first time, the installation script will create a default workspace for
you located at SHOME/cx or %USERPROFILE%\cx, depending on what operating system you are
using: unix-based systems or Windows, respectively. If you want to override this, you can set the
environment variable SCXPATH or %CXPATH% to a file system path where you want your CX
workspace to reside.

A way to get started quickly with a new CX project is to use the CX executable to create one for
you. You only have to write ¢x -n or ¢x —new and a series of questions about your new project will
be asked to you that will be used to initialize it.

Just like in Go, a project without main package or function is considered a library to be imported
by other packages or applications, while a project with a main package and function is considered
an application that is going to be calling the other projects in the sre¢/ directory of your workspace as
libraries.

If you’re working in a single file, you can just import your packages using the name you used in
the package declaration statement, like in Listing 6.1. If you are dealing with packages from different
directories in your workspace, then you need to make sure that you write the full path to the desired
package. For example, if the package you want to import is located in $CXPATH/src/math_stuff/ stats Or
%CXPATH%\src\math_stuffistats, you’d need to import the package like this: import "math_stuff/ stats ". As
you can see, you have to omit the src part because all of the libraries need to be there anyway.

0NN AW~

7. Pointers

Programming languages that use a stack to pass values to function calls can pass the actual value
or a reference to it. Passing by value means that all the bytes that represent that data structure are
copied to the function call. In the case of a simple integer or a floating-point number, this isn’t a big
problem, because you’re copying at most 8 bytes. The real problem arises when you try to pass a
really big data structure, like an array or a string (which is basically an array). Copying all these
bytes every time a function is called creates two problems: 1) it is slow; imagine that you have to
execute a for loop that iterates N times, where N is the size of your data structure, and you have to
do this every time you call that function; and 2) you are more prone to encounter a stack overflow
error, as you are filling your stack with all these copies of your data structure.

A solution to the pass-by-value problem is to use pass-by-reference. In pass-by-reference, instead
of copying the actual value, you send the address of the value that you want to use. A reference is
just a number that represents the index where you can find the actual value in memory, and as such,
a reference only needs 4 bytes, as it’s just a normal 32-bit integer. This also means that creating
a pointer to a 32-bit integer is useless if your purpose is to increase your program’s performance
(actually, using a pointer would make your program a tiny bit slower, because it needs to dereference
the pointer).

package main

type Cell struct {
id i32
drawable 132
alive bool
aliveNext bool
X 132
y 132

}

func main () {
var cells %[900]Cell

14
15
16
17
18
19

0N N bW~

36 Chapter 7. Pointers

cells = makeCells ()

for bool.not(glfw.ShouldClose ("window")) {
draw (cells , "window", program)

}

Listing 7.1: Pointer to a Structure Instance

The code in Listing 7.1 presents a situation where using a pointer drastically improves the
performance of a program. Line 13 shows the declaration of a variable of type pointer to an array
of structure instances. This variable is then used to hold the output of makeCells, and the for loop
draws all the cells to a window. If we weren’t using a pointer, we’d need to pass by value all the 900
cells, which sum a total of 16,200 bytes. In contrast, by using a pointer we’re only sending 4 bytes
that represent the other 16,200 bytes.

This Listing shows an excerpt of an OpenGL example present in the CX git repository (https://github.com/skycoin/cx).

The example is currently located at examples/opengl/conways—game—of—life—gc.cx, but this path could
change in the future. If you try to run this example using your local CX installation, you’ll find out
that it doesn’t run, so download the full example from the CX repository.

Memory Segments

You may be wondering where are those 16,200 bytes from the example in Listing 7.1. CX handles
four types of memory segments: code, data, heap and stack.

The code segment holds all the program’s elements, like functions, expressions, packages, etc.
In many programming languages this segment is "read only", i.e it can’t be modified. In CX this is
not the case, as the code segment can be changed through affordances and in the REPL.

The data segment is special because the data elements stored in there are never going to be
moved or destroyed; the only thing that can change are their values. For this reason, global variables
are stored in here, as they are never going to be destroyed and their addresses are constant.

In order to understand the heap, we first need to understand the stack. The stack holds all the
local variables that are declared in functions. The first function that is called in a program is the
main function, and this is why it’s also called the entry point. The first bytes in a stack are many
times going to be dedicated to the main function. Exceptions to this are having a main function
without any variable declarations and multi-threaded programs. The next bytes in the stack are going
to be used as the program runs, and other functions are called.

package main
var epsilon 132
func bar () (w i132) {

w =275

}

func foo (numl 132, num2 i32) (res i32) {
var weight 132

weight = bar ()

13
14
15
16
17
18
19
20

031N N kAW~

—_ =
o= O o

7.1 Memory Segments 37

res = (numl + num2) *x weight % epsilon

}

func main () {
epsilon
epsilon

5
foo (10, 10)

Listing 7.2: Pointer to a Structu

Listing 7.2 helps us to understand the different memory segments in CX. Line 3 declares a
global variable, which will be set in the data segment. In this particular program, the data segment is
only going to be 4 bytes long, as it only needs to store one 32-bit integer. Just after compiling the
program, these 4 bytes will be set to Os, but as soon as the program is run, the very first instruction to
be run at Line 18 is an assignment to epsilon, which will modify the data segment to hold 5 0 0 0.

As the main function does not declare any variables, the stack segment will not be used until we
call foo at Line 19. Before starting the execution of this function call, CX reserves a certain amount
of bytes for that call in the stack. This amount of bytes needs to be constant throughout a program’s
execution, i.e. CX knows how many bytes to allocate for any function call after compile time. In
this case, foo needs 16 bytes, because it has two i32 input parameters, one i32 output parameter
and one i32 local variable declaration. Before foo ends its execution, it makes a function call to
bar. This means that CX needs to keep foo’s bytes "alive," as the function call has not finished yet.
Instead, CX needs to reserve 4 more bytes for bar for its i32 output parameter. Once bar finishes its
execution, the 4 bytes reserved for it can now be discarded, and the program’s execution returns to
foo. After Line 14 finishes, foo’s execution will also finish, and the bytes reserved for it can now
be discarded. Some details about this process were not mentioned on purpose, but the general idea
should be clear now.

As you can see, the stack is always growing and shrinking, and it does this in a linear manner,
i.e. you’re never going to be discarding bytes in the middle or at the beginning, only the most
recent reserved bytes are the ones that get discarded. This behavior avoids fragmentation, which is a
problem when using the heap segment (we’ll review this topic in Chapter 10).

CX does not support multi-threading yet, but it is interesting to note that multiple stacks need
to be used for multi-threaded programs. Every time you create a new thread, a new stack must be
assigned to that thread.

package main

func greetings (name str) (g str) {
g = sprintf (" Greetings, %s", name)

}

func main () {
var name str
name = " William"
name = greetings (name)
str.print (name)

Listing 7.3: Pointer to a Structu

0NN N AW~

[N T NS T NG T N T N S e O = T e T e T
AP LD, OO INUN A~ WD~ OO

38 Chapter 7. Pointers

To begin understanding the heap segment, we can have a look at Listing 7.3. This program
creates a str variable, the string "William" is assigned to it, it is sent to greetings, and its result is
re-assigned to name to later be printed to the terminal. You may be wondering what this program
has to do with the heap, as no pointers are ever declared. Well, first you need to keep in mind that
the stack needs to grow/shrink in constant "chunks" of bytes and the data segment never grows or
shrinks. Now pay attention to Lines 9 and 10. First, name is holding the value "William" and then it
will hold the value "Greetings, William." Do you see the problem here? If these strings were handled
only by the stack, we would have a variable-sized function, which is not allowed.

Strings in CX basically behave as pointers. Whenever a string needs to be allocated, it is allocated
in the heap, not in the stack or data segments. After its allocation, a pointer to this string is assigned
in the stack. This way, functions that handle strings can be fixed-sized, as pointers always have a size
of 4 bytes. Going back to the example in Listing 7.3, name is first assigned the address of the string
"William" allocated in the heap, then a new string, "Greetings, William", is allocated in the call to
greetings, and its address is returned as its output and re-assigned to name. This means that you can
allocate whatever object you need at any point in the heap, in any order and wherever you want.

package main

type Point struct {
x 132
y i32

}

func CreatePoints () {
var points [5]Point
var ptr *[5]Point

var ¢ 132
for ¢ = 0; ¢ < 5; c++ {
points[c] = Point{x: c, y: ¢ + 1}

}

ptr = &points
}

func main () {
for true {
CreatePoints ()

}

Listing 7.4: Pointer to a Structu

But allocating anything you want and wherever you want isn’t problematic? Indeed, it is so
problematic that in some programming languages you need to personally take care of what and
when you want to allocate a new object in the heap, and even when you need to destroy that object.
These languages are said to have "manual memory management," and perhaps the most popular
language of this type is C. For example, Listing 7.4 executes an infinite loop that repeatedly calls
CreatePoints, which creates an array of 5 Point instances, and allocates them in the heap. As you
can notice, nothing else happens with the pointer to this array, CreatePoints simply allocates this

7.1 Memory Segments 39

array of Point instances, and then returns. Now, as we are doing this an indefinitely number of times,
wouldn’t this program cause a heap overflow eventually? Not really, CX’s garbage collector will
be activated each time the heap is full, and remove the objects that are no longer being used. The
resulting dead objects could be anywhere in the heap, which will cause fragmentation, but don’t
worry as the garbage collector deals with this problem too. As can be noted, the heap is the most
flexible memory segment.

The last memory segment is the code segment. This segment can be modified at will, unlike in
other programming languages. This segment holds all the program’s elements, such as functions,
expressions and structure declarations. Modifying this memory segment will be discussed in Chapter
11.

00NN AW~

— = = = e e e e e e
O 0NN AW~ OO

(8. OpenGL and GLFW with CX

In the Skycoin team we believe that a bright future exists for blockchain technologies in video game
development. For this reason, one of the first libraries that was developed for CX was the OpenGL
library. This Chapter presents some video game examples that should help you get started with video
game development in CX. In order to use the OpenGL and GLFW libraries in your CX programs,
just import "gl" and import "glfw" after a package declaration.

The current OpenGL library does not implement all of the OpenGL functions and constants, but
it should implement everything in the future. The OpenGL version that the CX library targets is 2.1.

CX also provides a GLFW library that helps the programmer set up things like windows and
input devices. The GLFW version targeted by the CX library is 3.2.

The examples in this Chapter are not explained thoroughly, as the purpose of this book is to
explain the features of the CX programming language, not to explain how OpenGL and GLFW work.

package main
import "gl"
import "glfw"

var width i32 = 800
var height 132 = 600

func main () {
glfw . Init ()
glfw . WindowHint(glfw . Resizable , glfw.False)
glfw . WindowHint(glfw . ContextVersionMajor, 2)
glfw . WindowHint(glfw . ContextVersionMinor, 1)

glfw . CreateWindow ("window", width, height, "Window Example")
glfw . MakeContextCurrent ("window")

gl.Init()
var program i32

20
21
22
23
24
25
26
27
28
29
30
31

0N N bW~

LUS T NS T N T NG T (O T O T (O T NS TN NS I (O I SO R e e e i
SOOI WD~ OOV A WND—~OO

41

program = gl.CreateProgram ()
gl.LinkProgram (program)

for bool.not(glfw.ShouldClose ("window")) {
gl.Clear(i32.bitor (gl .COLOR_BUFFER_BIT, gl.DEPTH_BUFFER_BIT))

gl . UseProgram (program)

glfw . PollEvents ()
glfw.SwapBuffers ("window")

Listing 8.1: Creating a Window using OpenGL

The first step to creating a video game is to create the window where everything is going to be
displayed. Listing 8.1 shows a bare-bones example that only displays an empty window. You could
think that it’s a lot of instructions to only accomplish a simple task such as creating a window, but
it’s the OpenGL way. This example can be used as a template to start a new OpenGL project in CX.

The window has a resolution of 800x600, as defined by the global variables width and height,
AT Lines 6, respectively. The function that actually creates the window to be displayed is created at
Line 15, and it is constantly being re-drawn in the loop that begins at Line 23.

package main

import "gl"
import "glfw"

var width 132 = 800
var height 132 = 600

func main () () {
glfw . Init ()

'

glfw . CreateWindow ("window", width, height, "Triangle")
glfw . MakeContextCurrent ("window")

gl.Init()

var program i32
program = gl.CreateProgram ()

gl.LinkProgram (program)

for bool.not(glfw.ShouldClose ("window")) {
gl . Clear (gl.COLOR_BUFFER_BIT)

gl.UseProgram (program)
gl . MatrixMode (gl . PROJECTION)

gl.Loadldentity ()
gl . MatrixMode (gl .MODELVIEW)

31
32
33
34
35
36
37
38
39
40
41
42
43

0N N bW~

——
N — O O

42

Chapter 8. OpenGL and GLFW with CX

Figure 8.1: Triangle in OpengGL window

000

Triangle

gl.Begin (gl .TRIANGLES)
gl.Color3f(1.0, 0.0, 0.0)

gl. Vertex3f(—-0.6, —0.4, 0.0)

gl.Color3f (0.0, 1.0, 0.0)

gl. Vertex3f (0.6, —0.4, 0.0)

gl.Color3f (0.0, 0.0, 1.0);

gl.Vertex3f (0.0, 0.6, 0.0);

gl . End();

glfw . PollEvents ()
glfw.SwapBuffers ("window")

Listing 8.2: Drawing a Triangle to a Window

Now that we can create a window and display it, let’s draw something on it. Listing 8.2 adds
some lines of code to the code in Listing 8.1 (Lines 27 - 38). Functions gl.Color3f and gl. Vertex3f
are used to assign a color and coordinates to a vertex for a triangle, enclosed by calls to gl.Begin and
gl.End. After running the code in this Listing, you should see a window with a triangle like in the
one displayed in Figure 8.1.

package main

"

import

gl"
import "glfw'

'

var width 132 = 800
var height 132 = 600

type Ball struct {
x 32
y 32
vx {32

13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

43

}

vy {32
gravity f32
radius 32

func drawBall (ball Ball) () {

}

var full_angle f32

full_angle = f32.mul(2.0, 3.141592654)
var x f32

var y f32

gl.Begin (gl .POLYGON)
gl.Color3f(1.0, 1.0, 1.0)

var i f32

for i = 0.0; f32.1t(i, 20.0); i = f32.add(i, 1.0) {
x = f32.add(ball.x, f32.mul(ball.radius, f32.cos(f32.div(f32.mul(i,
y = f32.add(ball.y, f32.mul(ball.radius, f32.sin(f32.div(f32.mul(i,
gl. Vertex2f(x, y)

}

gl .End ()

func main () () {

glfw . Init ()

glfw . CreateWindow ("window", width, height, "Bouncing Ball")
glfw . MakeContextCurrent ("window")

gl.Init ()
var program i32
program = gl.CreateProgram ()

gl.LinkProgram (program)

var ball Ball
ball = Ball{
radius: 0.05,
x: 0.0,
y: 0.0,
vx: 0.01,
vy: 0.01,
gravity: 0.01}

for bool.not(glfw.ShouldClose ("window")) {
gl.Clear (gl .COLOR_BUFFER_BIT)

gl . UseProgram (program)

gl . MatrixMode (gl . PROJECTION)
gl.Loadldentity ()

gl . MatrixMode (gl .MODELVIEW)

if f32.1teq(f32.add(ball.y, ball.radius), —1.0) {
ball.vy = f32.abs(ball.vy)

full_angle),
full_angle),

20.0))))
20.0))))

69
70
71
72
73
74
75
76
77
78
79
80
81

44 Chapter 8. OpenGL and GLFW with CX

Figure 8.2: Bouncing ball in OpengGL window

e0e0 Bouncing Ball

} else {
ball.vy = f32.sub(ball.vy, ball.gravity)
}

ball .x
ball.y

f32.add(ball .x, ball.vx)
f32.add(ball.y, ball.vy)

drawBall(ball)

glfw . PollEvents ()
glfw . SwapBuffers ("window")

Listing 8.3: Bouncing Ball Example

As the final example of this Chapter, Listing 8.3 presents a little more complex situation. We
use a structure that will represent a ball to be drawn on screen, declared at Line 9. In the for loop
that updates the screen (Lines 58-80) we update the coordinates (x and y) of the ball, and draw the
ball’s new position to the window. The function drawBall uses the coordinates of the ball structure
instance as a center, and uses its radius to draw a circle using polygons, which represents the ball.

After running this last example, you should see a ball that starts at the center of the screen, and
starts falling and bouncing to the right of the screen. It should display something similar to Figure
8.2.

FG S I NI

9. Interpreted and Compiled

As has been noted in previous Chapters, CX is both an interpreted and a compiled language. But this
doesn’t only mean that you can run a program by interpreting it or compile it and then run it; CX
goes further. CX can work with both compiled and interpreted code at the same time, just like some
languages, such as Common Lisp. The reason behind this design decision is that it maximizes the
number of features CX can provide. For example, a function that is constantly being constructed by
affordances is far easier to be evaluated if it’s purely interpreted, instead of recompile the function
every time (or maybe even the whole program).

CX started as being purely interpreted, mainly because the Skycoin team was still testing some
ideas on what direction the language was going to take. As the language progressed in complexity,
and we wanted to test programs that were more expensive regarding computational resources, it was
clear that CX needed to implement optimization techniques to the code it was generating. However,
we realized that the current design had reached certain limit. The generated programs were very
flexible, as many features of the language were managed by the underlaying language: Go. This
flexibility allowed CX to implement affordances, an integrated genetic programming algorithm and
other features in a short amount of time. Nevertheless, its speed was comparable to Martz’s Ruby
(no, not Ruby, Martz’s Ruby is about 5 times slower than Ruby). As a consequence to this, CX had
to take another direction in its design, and some core optimizations were implemented.

Nowadays CX is pretty fast, even if a plethora of optimizations still need to be implemented.
At some benchmark tests CX scored a similar speed to Python, but we still need to perform more
benchmarks to get a more objective conclusion. Even if the resulting speed is actually 5 times
slower than Python, it’s far better than before and, as stated above, many optimizations can still be
implemented.

$ ¢x hello—world.cx
Hello, world!

$ cx hello—world.cx —i
Hello, world!

Listing 9.1: Interpreting and Compiling the same Program

46 Chapter 9. Interpreted and Compiled

You may be wondering what happened to the interpreted version of CX. It’s still in use and it is
faster now than before. We realized that some of the optimizations that were implemented for the
compiled version can work with the CX interpreter, and it got benefited from them. It is still slow,
but it retained all its flexibility. If you open a CX REPL, you’ll be running the CX interpreter, and if
you run a $ cx example.cx command, without the -i flag, you’ll be running the compiled version of CX
(this is shown clearer in Listing 9.1).

Having both interpreted and compiled code results in a workflow you can follow to maximize
productivity and performance. You can use the CX interpreter to test code without having to be
re-compiling your code every time, and when you’re done testing and fine-tuning your code, you can
compile for speed and better memory management.

Interpreted CX Features

The first and most notorious feature is the REPL. Having a REPL would be cumbersome if we
had all the code compiled every time a change was made to the program, and the REPL basically
does this, unless you’re just testing a function call. In the CX REPL you can not only redefine
full functions, global variables or other "higher scope" elements, but you can also fine-tune these
elements. For example, if you only want to change the type of a structure declaration’s field, you
can do it in CX. You don’t need to re-write all the structure declaration with your changes into
the REPL’s prompt. This same feature applies to functions, packages, statements inside functions,
expressions, anything. If you’re interested on finding out how you can do all of this in the REPL,
check Chapter 15. In order to provide all the previously described functionalities, the REPL uses a
feature called meta-commands to mimic some of the functionalities of affordances (see Chapter 11).

Similarly to meta-commands, affordances are more easily implemented using the CX’s inter-
preter. As mentioned before, affordances are similar to meta-commands. The main differences are:
affordances can be called without having to be in the REPL, i.e. you can create calls to affordances
in your source code files; and affordances can work with a set of rules to have an automated behavior.

Lastly, a genetic programming algorithm is provided as a native function in CX (see Chapter
13. This algorithm can be used to create functions that meet some criteria. The most traditional
objective is to solve some sort of curve-fitting problem [LS86]. Theoretically, you can construct any
type of function using genetic programming, and we want to achieve that in CX in later stages of
the language. Just imagine setting up a rule set that defines a website or a mobile application, and
the genetic programming algorithm takes care of the rest. We believe that affordances will allow to
create this type of solutions in conjunction with genetic programming.

And that’s it, the REPL and meta-commands, affordances and genetic programming are all
features that can exist in the CX environment thanks to its interpreter. Now let’s review the compiler
in the next Section.

Compiled CX Features

In the interpreted version of CX we had Golang managing all the memory allocations of a program.
CX didn’t have any of the memory segments discussed in Section 7.1, all the values were held in
Go structures, and the stack was just a sequence of structures containing all the information form
each of the function calls. This is very practical because we could focus all the development to
researching interesting features, but the downside was performance, both in memory and speed. A
simple for loop that iterated 1 million times was taking something in the order of the dozens of

9.2 Compiled CX Features 47

seconds. This performance can be acceptable for some kind of programs or for testing some ideas,
but it’s definitely unacceptable for most programs in their production stage.

The CX’s compiler is not exactly a compiler in the traditional sense of the word, but it definitely
will become one soon. We call it a compiler for now because it will become one and because of the
optimizations it makes to the generated code. In a sense, that can be already considered a compiler,
as the code is not run line-by-line as in an interpreter. We are only lacking a proper way to create
executables targeted to a platform (operating system and CPU).

As stated in the previous Section, CX’s compiled code performs similarly to Python in some
tests. Python should beat CX in other benchmarks, as it’s a language that has been optimized since
1991, but at least it’s not super slow as CX’s interpreted programs.

Another feature of CX’s compiler is that it has its own garbage collector now. Go’s garbage
collector is remarkable, but it was not working well with CX. Now that CX has its own memory
segments, we can optimize very well how that memory is allocated.

In conclusion, the compiler was not necessary in terms of features, but it was definitely necessary
as performance is almost always a critical aspect of any programming language. Even interpreted
languages are often discarded or chosen because of their speed or how well they manage memory.

10. Garbage Collector

CX is a garbage collected language, unlike other languages like C, where you have to manually
manage memory allocations and deallocations, or languages like Rust that adopt other techniques
to manage memory. Manual memory management brings the advantage of efficiency in memory
deallocations, but at the expense of possible memory leaks. If you define a routine where you allocate
some objects and then you forget to properly deallocate them when they’re no longer being used, you
could end up exhausting your heap memory, and the program could crash. Another problem is that it
could not necessarily crash immediately, but after some days or weeks of use. Maybe the program
is not properly deallocating a single object every hour, so exhausting your heap memory will take
some time, but it will definitely happen if the program is meant to be run forever, such as a web
service. For this reason, programs made in C, for example, are usually used to solve problems where
efficiency is far more important than reliability, and garbage collected languages, such as Java or Go,
are usually used to write software systems meant to run for large periods of time, where reliability is
preferred over resource efficiency. Manual memory management is less important nowadays that
computing resources are cheaper than ever (although this statement can not be treated as a fact, we
can clearly see a tendency to opt for automatic memory management in the present). Additionally,
many garbage collectors are now extremely efficient and the impact on a program’s performance
could be regarded as negligible in many situations.

For the reasons stated above, we decided to make CX a garbage collected language, although
in the future you’ll be able to handle memory manually too. One of the platforms that we want to
target in the future is micro-controllers, and manual memory management is usually preferred in this
situation. But for now, all programs made in CX are garbage collected.

What is Garbage Collection

If you read Section 7.1, you’ll have a better idea of what garbage collection is (or if you have a
background in software development, of course). If your programs always use fixed-sized data
structures, such as integers, floating-point numbers and structures containing this kind of data,
you can always store your data in the sfack segment, as your program’s objects can be stored and

10.2 CX’'s Garbage Collector 49

destroyed in a sequential manner, and they’ll always have the same relative address in the stack.
However, programs limited to fixed-sized data structures are not going to be able to solve many
situations, or not conveniently at least. For this reason, it is practical to have another segment of
memory called the heap, where variable sized data structures can be stored. Objects in the heap, in
CX, start being allocated sequentially, just like in the stack, but they can be destroyed in an arbitrary
order. This behavior leaves fragmented chunks of memory being used, and other fragments that
are no longer being used. A garbage collector’s mission is to manage these fragmented chunks of
memory.

CX’s Garbage Collector

There exist many types of garbage collector. CX’s garbage collector is of a type called mark-and-
compact, which is a variation of another algorithm called mark-and-sweep. The mark-and-sweep is
arguably the most common form of garbage collector, and the first garbage collector was of this type.
The basic idea behind a mark-and-sweep garbage collector is to traverse all the pointers in the stack,
and mark their pointees as alive objects. After marking all the alive objects, we can consider all the
other objects as dead objects (sweep them!). This marking process usually involves changing a bit in
the object’s header from O to 1. Now if we want to allocate a new object, we can use the bytes of
dead objects (marked with a O in their header).

As you can imagine, a lot of fragmentation is going to occur in the mark-and-sweep algorithm.
Allocating new objects become an issue if the heap is too fragmented. An allocation algorithm must
search in the heap for enough free bytes for the object that you want to allocate. In fact, you could
end up with enough free bytes to allocate a new object, but they could be all scattered around in the
heap. In CX we wanted to avoid this fragmentation, as fragmentation causes a program to be "using"
more memory than it should. As a consequence, we decided to implement a mark-and-compact
algorithm, as was stated before. In the mark-and-compact algorithm, instead of just marking the
objects as either alive or dead, we move every alive object to the beginning of the heap, and thus,
the objects are compacted by squashing out the dead objects. The way you organize the remaining
alive objects is arbitrary, but the most common way of doing this is by moving the objects to the
beginning of the heap in the order that they were created. This form of compaction is called "sliding
compaction."

Each of the garbage collection algorithms has its advantages and disadvantages. The most
prominent disadvantages of CX’s current garbage collector are that it needs to stop any process in a
program to start the marking and compacting in the heap, and that it needs to check all the pointers in
the stack. The best type of garbage collectors are hybrid solutions, where a mix of the most common
garbage collectors are used to attenuate the disadvantages of each of the base algorithms used. In the
future, CX’s garbage collector will move to this direction in order to provide a better solution. In the
meantime, the CX’s current solution provides a garbage collector that is efficient in memory space,
as it completely avoids fragmentation.

Additionally, allocating a new object in CX is actually faster than in C, for example. The
mark-and-compact algorithm can implement a form of allocation called "sequential allocation." In
this algorithm, a pointer is always pointing to the end of the used heap, and thus knowing where a
new object should be allocated will be immediately known. In contrast, C’s malloc function needs to
traverse the heap, searching for a chunk of memory that can store the object. This search process is
unnecessary in sequential allocation.

11. Affordances

The concept of affordance was developed by the psychologist James J. Gibson, and it was first
presented in [Gib66]. The traditional explanation of what an affordance is can be found in the
aforementioned work, and it is as follows:

The affordances of the environment are what it offers the animal, what it provides
or furnishes, either for good or ill. The verb to afford is found in the dictionary, the
noun affordance is not. I have made it up. I mean by it something that refers to both
the environment and the animal in a way that no existing term does. It implies the
complementarity of the animal and the environment.

In other words, an affordance is whatever an environment allows an object to do or to be.
Affordances can act in both ways, they describe what the object can do with its environment and
what it can "receive" from its environment. For example, a person can push or pull a door, and the
door can be pushed or pulled by something.

In CX, affordances describe the allowed actions that can be performed on program elements
and what actions can an element perform on other program elements. These program elements are
functions declarations, global variables, expressions, function parameters, packages, expression
arguments, structure declarations and their fields. If you read Section 7.1, you will notice that all of
these are elements that are present in the code segment. The kind of actions that affordances describe
in CX are, for example, adding an argument to an expression, removing a function parameter, adding
a whole new expression to a function declaration, and modifying a global variable to hold a new
value. You can notice that these are all actions that you usually perform when creating a program.
In fact, you can create a full program only by using affordances. The first affordance of an empty
program is to add a package; it can either be an arbitrary package or a main package, depending
if you want to create a library or an application. After adding a package, the options increase
dramatically, as you could, first of all, delete or rename the previously created package, add another
empty package, or add declarations to your first package. As you begin to add more elements, the
number of affordances increases exponentially.

00NN AW~

et et et
O 0NN AW~ OO

51

There are obviously some rules or limitations on what it can be done with affordances. For
example, you cannot add a structure field to a function declaration. A less obvious example is that
you cannot send a 32-bit integer to str.print(), as this function is expecting an argument of type
str. These limitations help reduce the number of affordances in a program, but they can still be a
lot, even in relatively small programs. The solution to handling this problem is to implement some
mechanism that allows us to get only those affordances that are useful. This mechanism is a rule
set that you can define before asking CX what affordances are available at certain point during a
program’s execution. These rules will examine the elements that can be part of an affordance, and
check if they meet some criteria. For example, in a video game we could reject any player that has hit
points lower than certain quantity, or allow a boss to appear to the screen if the player has completed
certain quests. Although these examples could have been solved using simple if/else statements,
affordances can solve more obscure and complex problems, as they have a true global scope. For
example, if you wanted to check if an object has already been discarded by CX’s garbage collector,
you can do that with affordances. Or what about if you want to have access to values of variables in
previous function calls, that’s right, you can do that with affordances.

Affordances were created with the purpose of increasing security in a program. There are certain
types of attacks where a function call can access other parts of memory. In this case, affordances add
an extra layer of security, assuring that only a limited number of elements can interact with other
elements of a program.

It is worth noting that affordances not only act at compile-time, but also at runtime. You can
create a function that is constantly evaluating what is allowed in the interaction among a program’s
elements.

As alast note before looking at the examples that follow, please bear in mind that CX’s affordance
system is still under development and many of its features could change in the future. For example,
the rule set was previously managed by an embedded Prolog interpreter, and you had to know some
Prolog in order to use it. This was obviously a very bad idea, but it allowed us to experiment with
many of the possibilities of affordances. Now the rules are created using a very simple syntax. At
the moment, affordances can only work with expressions, but most of the code to manipulate other
program elements is almost complete.

package main

func main () {

fool := 1
foo2

foo3 := 3
target = —>{

pkg(main) fn(main) exp(message)

}

rules = —>{
allow (x > 1)

}

affs := aff.query(target, rules)
aff . print(affs)
aff .execute (target , affs, 0)

20
21
22

—_

SO0 IRk W~

52 Chapter 11. Affordances

message :
i32 . print (0)
}

Listing 11.1: Using Affordances on an Expression

Listing 11.1 shows a basic program that uses affordances to filter among the possible values that
the expression at Line 21 can take. As this is a small program, the only possible values are those
being held by fool, foo2 and foo3. In order to know what expression we want to target, we need
to label it first. To do this, we can simply use to-do labels, as seen at Line 20, where we label our
target expression as "message." The next step is to create a variable to hold the target expression.
To do this, we use the affordance mini programming-language, which is called by writing ->, and
we write the desired statements inside of the braces. Creating a target is done at Line 8. Targets are
constructed by going down in levels of scope: the package is specified first, then the function, and
lastly the expression. To specify the desired package, you use (pkg) followed by the name of the
package enclosed by parentheses. For functions, you use fn, followed by the name of the function
enclosed by parentheses. Lastly, to specify the expression, you use exp followed by the label given
to the expression, again, enclosed by parentheses.

Rules, as mentioned before, are used to filter the possible options. In this example, rules are
defined at Line 12, and they contain only one clause: allow anything that is greater than 1. The
asterisk in here represents the initial allowed objects to be sent to the targeted expression. As the
expression is waiting for a 32-bit integer, the asterisk will be of type i32. Think about it like how the
X in mathematics can mean any number but, in this case, it can mean any program element. If the
targeted expression can receive a structure instance as its input, we could create predicates of the
form x. field == something, for example.

Now that we have both the target and the rule set, we can query CX’s affordance system using
aff.query, as shown at Line 16. The results returned by aff.query can be pretty-printed to the
console by calling aff.print, as shown at Line 17. This is useful if you want the user to be involved
on what affordance to execute. For example, you could use affordances to create an entire program
just by selecting the options that you want, and aff.print would be used to let the programmer know
what affordance to execute. When you have chosen an appropriate affordance, either manually or
automatically, you can execute it by calling aff.execute, as shown at Line 18. aff.execute takes
three arguments as inputs: a target, the set of affordances, and an index representing the desired
option to execute. As you can see, you could execute the same affordance to several targets, and
execute several affordances by specifying different indexes. In the case of the above example, we
simply execute the first option, represented by index 0. After running the whole program, the number
2 should be printed to the console, as is the first element that is greater than 1.

package main

var goNorth 132 = 1
var goSouth 132 = 2
var goWest i32 = 3
var goEast 132 = 4

func map2DtolD (r i32, ¢ i32, w i32) (i i132) {
i =WwW=*xrT 4+ C

}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

53

func maplDto2D (i i32, w i32) (r i32, c i32) {

r=1 /W
c=1%W
}
func robot (row i32, col 132, action i32) (r i32, c i32) {

if action == 1 {
r = row — 1
¢ = col

}

if action == 2 {
r = row + 1
¢ = col

}

if action == 3 {
¢c = col — 1
r = row

}

if action == 4 {
¢ = col + 1
r = row

1

}

func getRules (row i32, col 132, width i32, wallMap [25]bool, wormholeMap [25]bool) (rules

rules —>= allow (x == x)
if wallMap[map2DtolD(row — 1, col, width)] {

rules —>= —>{reject(x == 1)}

if wallMap[map2DtolD(row + 1, col, width)] {
rules —>= —>{reject(x == 2)}

if wallMap[map2DtolD(row, col + 1, width)] {
rules —>= —>{reject(x == 3)}

if wallMap[map2DtolD(row, col — 1, width)] {
rules —>= —>{reject(x == 3)}

if wormholeMap[map2DtolD (row — 1, col, width)] {
rules —>= —>{allow (x == 1)}

if wormholeMap [map2DtolD(row + 1, col, width)] {
rules —>= —>{allow (x == 2)}

if wormholeMap [map2DtolD (row, col + 1, width)] {
rules —>= —>{allow (¥ == 3)}

aff) {

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

54 Chapter 11. Affordances

if wormholeMap[map2DtolD (row, col — 1, width)] {
rules —>= —>{allow (x == 3)}
1
}

func main () (out str) {
var wallMap [25]bool = [25]bool{
true , true, true, true, true,
true , false , true, false, true,
true , false, true, false, true,
true , false , false, false, true,
true , true, true, true, true}

var wormholeMap [25]bool = [25]bool{
false , false false , false , false
false , false, false, false, false
false , false , false, false, false ,
false , false , false, false, false ,
false , false, false, false, false}

var width 132 =
var row 132 = 1
var col 132 1

5

var target aff
var rules aff

target = —>{pkg(main) fn(main) exp(robot)}

for ¢ := 0; ¢ < 6; c++ {
wallMap [map2DtolD (row, col, width)] = true
wormholeMap [map2DtolD (row, col, width)] = false
rules = getRules(row, col, width, wallMap, wormholeMap)

affs := aff.query(target, rules)

aff.execute(target, affs, 0)
robot:

row, col = robot(row, col, 1)

Listing 11.2: Using Affordances on an Expression

Listing 11.2 shows a much more complex example. The program is an extremely naive represen-
tation of a robot moving on a map. The map is built using two arrays, where each of the indexes
represents a room, and the indexes "surrounding" them are used as the contiguous rooms. One of the
arrays has walls, and the other one wormholes. If the robot encounters a wall on the map, it can’t
move to that direction, but if a wormhole is on the wall, it can move to the other side. In the arrays, a
true value means that a wall or a wormhole is present there, and a false means there is not. In the
example, there is no wormhole, so you can play with the values to see the different results.

12. Serialization

In CX, every program object and piece of data can be serialized at any moment, preserving any state
in which the program is. You can choose to serialize all the program or only certain parts of it, such
as structure instances or functions. These serialization features are very useful, as you can save a
program to a file or a database.

The serialization process not only involves the program structure, e.g. function declarations and
structure instances. Other parts of a CX program are also serialized, such as the call stack and the
different memory segments in CX. This means that a program can be totally or partially serialized,
and it can resume its execution later on. A program could be paused, serialized and sent over a
network to different computers to be executed in there. A common example of CX’s serialization
combined with other of CX’s features is as follows.

Imagine you want to evolve programs to predict a financial market’s price movement. You can
start evolving functions inside of a CX program using its integrated genetic programming system (see
Chapter 13). At certain points in time you can save these serializations to a database, for example,
programs which achieved a very good performance. You can then send some of these serializations
to other workstations or servers where they will initialize a separate evolutionary process. This is
something similar to taking some monkey from Earth to different planets in the Universe: wait a few
millions of years, and then check how they evolved in each of these planets (only if you believe in
the theory of evolution, though; otherwise, they will still be monkeys).

Evolutionary algorithms can often be manually manipulated (imagine aliens interfering with
the DNA of a planet’s species). A person can log in to one of the workstations or servers in this
evolutionary network, and check some of the individuals being evolved in CX. This person will
just have to pause the program using the CX REPL, and check the program’s structure using the
:dp meta-command (see Chapter 15). But maybe this person doesn’t know what can be added or
removed from the function being evolved. This is not a problem, because the function is evolving
according to a rule set established in CX’s affordance system (see Chapter 11, and you’d only need
to call the affordance system in the CX REPL and start selecting options from a menu. After being
happy with the changes, the program can be resumed again by issuing the meta-command :step 0,
so the program continues its execution (see Chapter 15).

56 Chapter 12. Serialization

12.1 Serialization

Now let’s see how you can serialize the different program elements and data in CX.

package main

func main () {
var target aff
var result []byte

target —>{}
result = serialize (target)

O 001NN AW~

Listing 12.1: Serialization of a Program

Listing 12.1 shows how to serialize a full program using the function serialize, which is the
one that we’re going to be using in all the subsequent examples. We can tell the function serialize
what to serialize by using the affordance operator (->) (see Chapter 11). In the case of serialization,
we’re only going to be using the affordance operator to specify a target to be serialized. In the case
of Listing 12.1, we’re leaving the target empty. This is a special case that instructs CX to serialize
everything or, in other words, the full program.

package main
func main () {

var target aff
var result []byte

target —>{pkg(main)}
result = serialize (target)

O 01N LN bW~

Listing 12.2: Serialization of a Package

If your program only has one package, as in Listing 12.2, you could end up with a similar
serialization as in Listing 12.1, but with some differences. —>{} instructs CX to serialize everything,
including CX’s memory segments (see Chapter 10), whereas —>{pkg(main)} is only going to cause a
serialization of the program segment (the program structure).

package main
func main () {

var target aff
var result []byte

target —>{mem(heap)}
result = serialize (target)

—>{mem(stack)}
serialize (target)

target
result

— O 0 001NN AW~

—_

12
13
14
15

0N N bW~

12.1 Serialization 57

target —>{mem(data)}
result = serialize (target)

Listing 12.3: Serialization of the Memory Segments

To serialize the other memory segments, you can use the affordance target mem(), and give
either heap, stack or data as its argument, as seen in Listing 12.3.

It is worth noting that if you serialize your stack, you are actually serializing all the stacks. CX,
at the time of writing, is still not a multi-threaded programming language. Nevertheless, it should
soon become one, and the data contained in all of the stacks will be serialized. Additionally, CX
manages its call stack and stack separately, but both of these segments are serialized together when
calling serialize with mem(stack).

In later versions of CX, we might introduce native functions to process information from these
serialization results, but for now, you can only deserialize this information into another instance of a
CX program (see the next Section) or process the byte slice byte by byte to do whatever you require
to do.

package main
var foo 132

func bar () {
str.print("Hi.")

}

type foobar struct f{
foo 132

}

func main () {
var target aff
var result []byte

target —>{pkg(main) var(foo)}
result = serialize (target)

target = —>{pkg(main) fn(bar)}

result = serialize (target)
target = —>{pkg(main) strct(foobar)}
result = serialize (target)

Listing 12.4: Serialization of Declarations

Listing 12.4 shows how to serialize declarations in packages. Note that the structure and function
serializations are serializing the code representation of these declarations, and not instances of these.
In other words, we’re serializing the Person structure, not John or Ana, which would be instances
of this structure. In the case of the function declaration, CX does not have functions as first-class

58 Chapter 12. Serialization

objects yet, so there should not be any confusion, but it’s good to notice that we’re referring to the
function declaration itself, and not an instance of this function.

1 package main

2

3 type Point struct {

4 X 132

5 y i32

6 1}

7

8 func main () {

9 var target aff

10 var result []byte

11

12 var foo 132

13 var bar Point

14

15 foobar:

16 i32 . print (foo)

17

18 target = —>{pkg(main) fn(main) var(foo)}
19 result = serialize (target)

20

21 target = —>{pkg(main) fn(bar) var(bar)}
22 result = serialize (target)

23

24 target = —>{pkg(main) fn(bar) expr(foobar)}
25 result = serialize (target)

26 }

Listing 12.5: Serialization of Expressions

Lastly, you can also serialize function statements, expressions and variable declarations. As you
can see in Listing 12.5, function variables are targeted by specifying the package, the function and
the name of the variable using pkg, fn and var in the affordance operator, respectively. The case of
targeting an expression is a bit more complex, as you need to label it first (Line 15), and then use
that label to target the expression in the affordance operator.

12.2 Deseridlization

After serializing program elements or data using the procedures described in the last Section, you
may now want to deserialize the resulting slices of bytes.

1 package main

2

3 func main () {

4 var target aff

5 var result []byte

6

7 target = —>{}

8 result = serialize (target)
9

deserialize (result)

10

12.2 Deserialization 59

Listing 12.6: Deserialization of a Program

We’re not going to be deserializing all of the examples from the last Section, as it’d be pointless.
You’re always going to have a slice of bytes, and they are always going to be deserialized by the
deserialize function. Listing 12.6 shows deserialize in action, which is deserializing a slice of bytes
representing the whole program.

What deserialize does is something similar to a patch. If a declaration in the slice of bytes
already exists in the current program, it will simply redefine it; if it does not exist, it will create
it. In the case of function declarations, statements and expressions, they can be applied using the
affordance system, although this functionality has not been implemented yet.

13. Genetic Programming

After the first version of affordances was implemented in CX, it seemed natural to use it for creating
a genetic programming algorithm. Genetic programming (GP) is an evolutionary algorithm that
automatically creates programs (programs creating programs!). In theory, you could only tell a GP
algorithm a set of goals and GP will generate the program for you, so you could tell it "I want an
operating system that does this and this and this" and it could arrive to that solution. But of course in
practice this would be extremely difficult. In reality, GP is usually used to find solutions to problems
that are relatively hard for a human being, but relatively easy for a computer to solve. For example,
you can use GP to find a mathematical model that describes a financial market (such as SKY price
movements!), and it will find it in minutes or maybe seconds, depending on your hardware. However,
obtaining such model by hand would be very difficult, as it could take you days, weeks or even
months to create such a model.

GP is pretty easy to understand. Imagine that you have a set of operators, such as +, -, / and
*. Now imagine that you have a set of input variables, such as x. Lastly, imagine that you have
the plot of a curve that curiously enough resembles the curve generated by plotting f(x) = x> + x.
When run the GP algorithm, it will start making random combinations of operators and variables,
such as x+x, x +x+x, x *x* X, X *x 4+ x 4 x, and so on. These combinations of operators then will
be evaluated to see how well they perform. For example, x * x +x + x will throw a curve that is
closer to our target function than, say, x + x (as this isn’t even a curve). Those combinations that
behave well are kept, while the ones that perform poorly are destroyed, just like in natural selection
where the strong individuals are the ones that survive (and hence the name gernetic programming).
Again, as in natural selection, the strong individuals are the ones to reproduce and share their genetic
material among them to create stronger individuals. In the case of GP, the genetic material represents
mathematical terms. So, for example, if we reproduce x*x and x *x -+ x -+ x, we can end up with these
combinations: x *x+x and x *x + x4+ x (depending on how you design your crossover operators,
i.e. how you want the individuals to be reproducing), where the former corresponds to the terms
contained in an equivalent function to our target function.

As said at the beginning of this Chapter, CX’s GP is entirely based on affordances. If you read
Chapter 11, you now know that affordances can list all the possible actions that can be performed on

0N N AW~

e}

61

a program’s element, such as functions. Well, we can use this functionality to list all the operators
that can be used to create expressions for the target functions (the one that we want to simulate).
Then we can also use affordances to determine what we can send to these expressions. Also, if
we want to reproduce individuals, we can use affordances to know what expressions from each
individual can be obtained, and how they can be added to their offspring. You can do everything in a
GP using affordances.

package main

func realFn (n f64) (out f64) {
out = n * n + n

}

func simFn (n f64) (out f64) {}

func main () (out f64) {
var numPoints 132
var inps []f64
var outs []f64

var ¢ i32
for ¢ = 0; ¢ < numPoints; c++ {

inps = append(inps, i32.f64(c) — 10.0D)
}

1]
o

for ¢ < numPoints; c++ {

append (outs , realFn(inps[c]))

o O
=
-
»
-

}

var target aff
target = —>{pkg(main) fn(realFn)}

var fnBag aff
fnBag = —>{fn(f64.add) fn(f64.mul) fn(f64.sub)}

evolve (target , fnBag, inps, outs, 5, 100, 0.1D)

str.print("Testing evolved solution")

for ¢ = 0; ¢ < numPoints; c++ {
printf ("%f\n", simFn(inps[c]))

}

Listing 13.1: Using Genetic Programming to Evolve a Function

But enough about theory, let’s see an example in action. Listing 13.1 shows how to use CX’s
GP to find a function that curve-fits f(x) = x? + x. This target function is defined at Line 3, and the
function that will try to simulate the curve defined by the real function, simFn, is defined at Line 7.
As you can see, simFn starts as an empty function declaration. This is because the GP is going to
fill this function with expressions.

62 Chapter 13. Genetic Programming

After defining our simFn, we now need our data. In curve-fitting algorithms you usually need
two sets of data: the inputs and the outputs of the target function. For example, if you input 1, you’ll
get a 2, if you input a 2, you’ll get a 3, etc. In this case, the inputs are constructed at Line 17, while
the outputs at Line 21. The inputs range from -10 to 10, and the outputs are obtained by evaluating
realFn with these inputs.

The next step is to set a "bag" of operators. These operators are the ones that will be used to
create the CX expressions that will be inside simFn. In previous versions of CX we used a string
to define these operators, e.g. "132.addli32.mulli32.sub", but now we have integrated affordances
with the GP even more, and we specify the functions using the affordance operator, as can be seen at
Line 28. Similarly, the function to be evolved was previously defined with a string, e.g. "simFn",
but now we also use the affordance operator, as seen at Line 25.

After having defined all the data mentioned in the previous paragraphs, we only need to decide
how many expressions should our simulated function have, for how many generations should our
algorithm run, and what’s our threshold error. "What the..." you may be saying to yourself at this
point, but the cure for this is to explain these concepts in the following paragraphs.

First, CX’s GP is of a certain type called cartesian genetic (CGP) programming, which was
devised by Miller and Thomson in [MTO0O]. In CGP you limit the number of expressions or statements
that can be defined in a function to be evolved. This is a simple method that completely eliminates
bloat, which is a major problem in traditional GP. In traditional GP, you can end up with evolved
functions having thousands and thousands of expressions, and many of them might not even make
any sense. For example, you could have expressions suchas x + x + x —x —x —xorx = x / x. CGP
has been proved in several research works that limiting the number of expressions forces GP to
improve its solutions, while completely eliminating bloat, and use less computing resources as an
extra.

Next, we have the number of generations. This parameter is clearly understood once we
remember that programs are reproduced or crossed over, just like in biological evolution. The
number of generations tell the GP how many times individuals are going to reproduce among
them. The first generation will create sons and daughters (this is a book that supports gender
equality after all), the next generation will create grandsons and granddaughters, the next will create
great-grandsons and great-granddaughters, and so on.

The last parameter is a threshold error, often called epsilon. In most problems trying to be solved
by any evolutionary algorithm, it will be very hard to achieve an exact solution. However, in all of
these problems, a close-enough solution is usually a sufficient solution. For example, take a look at
Figure 13.1. We can see two plots, and maybe our target function is represented by the blue line,
while our evolved solution is the red one. Maybe this is enough, depending on where we want to use
this function. For example, maybe we want to evolve a program that manages the cruise control of a
car, and if we don’t get an exact solution, the car might go 2 miles per hour faster or slower than our
desired speed limit, and this could be a very good solution. In other cases, any error is unacceptable,
such as in determining if a patient requires an amputation or not. Now, epsilon tells the GP algorithm
how bad a solution can perform while maintaining us happy with the results. In CX, this error is
obtained by calculating the mean-squared error (MSE), which is pretty easy to understand: you only
need subtract every simulated data point to each of its real counterpart, sum all of these numbers
and average them, and then get that number’s square root. If you are wondering why provide both a
number of generations and an epsilon, the answer is that the program will stop when any of these
criteria are met. These stop criteria can be interpreted as: "I’m willing to wait for 100 generations or
until the solution achieves this performance error," and this makes perfect sense once you realize

63

Figure 13.1: Curve approximation

that many optimization problems can take weeks or months to finish.

Having explained all the input parameters, we can now fully understand the single most important
Line in Listing 13.1: Line 30. In this Line, we can see a call to evolve, which will contain all of the
previously discussed input parameters. In order, we’re sending: the function to be evolved (targer),
the operators to be used in the evolutionary process (fnBag), the inputs (inps), the outputs (outs), the
limit number of expressions our evolved function can have, the number of generations the algorithm
will run, and epsilon or the good-enough error.

After waiting a few milliseconds (it’s an extremely easy problem to solve, after all), we’ll have a
simFn filled with expressions that will hopefully simulate the target function f(x) = x> 4 x. To test
this, we can evaluate the evolved function with each of the inputs (the integers from -10 to 10), and
check if these outputs correspond to the outputs from the target function. This testing is performed
at Lines 33-35.

L N O R S

14. Understanding the CX Base Language

In Chapter 1 we mentioned that CX is actually a programming language specification, which means
that you could create your own CX. The CX that we have been using throughout the book to run all
the examples is called CXGO (something similar to how the most popular Python implementation is
actually called CPython).

At the moment, the specification file has not been finished and it needs to be heavily updated,
which means that creating your own CX from scratch is not possible, as you wouldn’t know what
conditions need to be met by your language. But fear not, because you can use the official Skycoin
implementation to create it!

CX does not specify any syntax or grammar to be followed, which means that you could even
create a CX in Minecraft using redstone. In order for a language to be called CX, it only needs to
implement the necessary native functions and follow the same program structure as any other CX.
For example, your CX can’t implement classes, as they don’t exist in CX. Also, you’d be required to
implement an affordance system, as this feature is required in all CX programming languages.

How programs are executed in CX is also unspecified, which means that you could build your
own runtime, compiler, linker, etc. However, you are required to compile to the same program
structure. The objective with this approach is to have any program created in any CX to run using
any runtime system. This is similar to the approach that some languages like Clojure or F# take,
where they run using the JVM or the CLR, respectively.

Skycoin’s implementation is divided in two parts: a generalized library that can be used to
construct programs to be run in CX, called CX base, and the actual programming language, which
was created using the CX base language and a parser built in goyacc and Go. If you don’t mind
programming in Go, you can import the CX base language to create a CX.

package main

import (
"github .com/skycoin/cx/cx'

'

)

0NN AW~

65

func main () {
prgrm := MakeProgram ()
mainPkg := MakePackage (" main"
mainFn := MakeFunction("main")

prgrm . AddPackage (mainPkg)
mainPkg. AddFunction (mainFn)

prgrm . RunCompiled ()

Listing 14.1: Writing a program using CX base language

Listing 14.1 shows how you can use the CX base language to create a very basic program that
can be run using Skycoin’s CX runtime. First we need to import the CX base language package, as
shown at Line 4. This package will give us access to makers, adders, removers and other utility
functions that will help us construct a compliant CX program. Line 8 creates the minimal CX
program you could create: a null program. A null program is one that does not have any package,
functions or anything in it. If you try to run this program, CX will complain because it doesn’t have
a main package nor a main function, but this doesn’t mean it’s not a valid CX program; if you were
developing a library, neither of these two components are required.

As we are interested on running a program, not just creating a library, we create a main package
and function, at Lines 9 and 10, respectively. As you can see, the naming convention for the functions
that are going to be creating the program elements is MakeXXX, and these functions will usually
require the essential properties to be sent as input parameters, such as the name of a package.

We already have the elements created, but they have not been added to the main program structure
yet. We can do this by calling an adder method on the elements that are going to hold these new
elements. In this case, we are interested on adding a function to a package, and adding that package
to the main program structure. To do this, we’re calling the program’s method AddPackage, and
sending the created package as an argument, and we do the same with the main function by calling
the package’s method AddFunction, and sending it as an argument. These operations are seen at
Lines 12 and 13.

Finally, even though the program does nothing, we run the program by calling the program’s
method RunCompiled at Line 15. Save that code to a file, run it by executing go run example.go, and
you should see... nothing. Let’s now create a more interesting program: let’s calculate 10 + 10!

package main

import (
"github .com/skycoin/cx/cx"

)

func main () {
prgrm := MakeProgram ()

mainPkg := MakePackage ("main"
mainFn := MakeFunction("main")
initFn := MakeFunction (SYS_INIT_FUNC)

prgrm . AddPackage (mainPkg)

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

66 Chapter 14. Understanding the CX Base Language

mainPkg . AddFunction (mainFn)
mainPkg. AddFunction (initFn)

sum := MakeExpression(Natives [OP_I32_ADD], "", 0)

num := MakeArgument("", "", 0)
num. AddType("i32")
num. Offset = 0

WriteToStack(&prgrm. Stacks [0], O, []byte{10, O, O, 0})

sum. AddInput (num)
sum. AddInput (num)

result := MakeArgument("result", "", 0)
result.AddType("i32")
sum. AddOutput(result)

prnt := MakeExpression(Natives [OP_I32_PRINT], "", 0)
prnt.AddInput(result)

mainFn. AddExpression (sum)
mainFn. AddExpression (prnt)

prgrm . RunCompiled (0)

Listing 14.2: Summing 10 + 10 using CX base language

Listing 14.2 shows how you can double a number, and then print the result using the CX base
language. It’s quite a shock right? Similarly to the last example, we need to create a program, a
main package, and a main function. In addition to that, we need to create a *init function, which,
as explained in Chapter 2, initializes some parts of a CX program such as global variables. These
components are created and added to the program at Lines 8-15. Then we continue with the
expression that will perform the sum at Line 17.

As mentioned before, we’ll be doubling a number. This is important to note, as we’re not going
to be adding, for example, a 10 and another 10; instead, we’re using the same number to double
it. This might not make sense, but let’s see how we create the inputs. First, we need to create the
argument at Line 19. The first input argument to MakeArgument is the name of the argument,
which only makes sense if we’re creating a variable or symbol. In this case we just want to hold a
reference to the number 10, so we don’t really need to name the argument. Additionally, we already
have the internal name of this argument, as we’re assigning it to the Go variable num. num will be
pointing to the offset 0, as seen at Line 19. This means that whatever is stored at the beginning of a
stack frame, that’ll be the value of our num argument, and as it is of type i32, it’ll have a size of
4, which means that it’ll read the first 4 bytes of the stack frame. Before continuing with the next
parts, the second and third arguments of MakeArgument are the file name where the argument is
declared and line number respectively, which we don’t need for this example.

Next we will write our information to the stack. To do this, we’ll use the function WriteToStack,
which first takes a stack as its argument, then the offset at which it should start writing bytes, and
lastly the sequence of bytes to write. As has been mentioned in other Chapters, CX is currently
single-threaded, but it will become multi-threaded in the future. As a consequence of this, you need

67

to send WriteToStack a reference to the stack to which you want to write to. For this example, we
are using the first stack, we’ll start writing our bytes at the index 0 of the stack, and we’ll write
10, 0, 0, 0, which corresponds to the 32-bit integer 10.

After creating the argument and writing the bytes our argument will be pointing to, we can now
add this argument to our expression. This is done at Lines 25 and 26. As you can see, we are adding
the same argument twice to the expression (we want to be efficient with our memory, after all).

If we run the program until this point, CX will complain about evaluating the expression and not
using the result, similarly to what Go would throw. Let’s now assign the result to a variable to avoid
this error. To do this, we create another argument, as seen at Line 28, and then we add this argument
as the sum expression’s output, as seen at Line 30.

Now if we run the program until this point, we’ll have CX doubling 10, and overwriting this
number with 20. The reason behind this is that the output variable result has a default offset of 0
too, so it’s pointing to the same memory address as num.

The next expression does a call to i32.print, and is defined at Line 32. After defining the
expression, we can add an input argument to it which, in this case, is the result argument, as seen at
Line 33.

It has been an exhaustive journey, but we now only need to add the expressions to our main
function, as it’s done at Lines 35 and 36, and call our program’s RunCompiled method. Finally, if
we run our file with go run example.go, we’ll see a 20 being printed to the terminal. Feel proud about
your achievement!

As a final comment, if you want to create your own CX, you’ll need to be generating all of these
commands automatically. For example, you can use a parser such as goyacc (the one used by CXGO)
to generate the program’s structure.

15. CX’s Read-Eval-Print Loop

The REPL has been used to certain extent in the preceding Chapters, but its features have not been
thoroughly discussed. This Chapter aims to explain all of the currently developed features for CX’s
REPL.

Most of the features that are presented here are related to meta-commands, which are commands
that you can enter in the REPL that affect a program, but are not actual expressions, statements or
declarations.

15.1 Selectors

Let’s first discuss selectors, which are meta-commands that allow us to navigate a program’s structure
and target elements to be affected by other meta-commands.

1 C€X 0.5.7

2 More information about CX is available at http://cx.skycoin.net/ and https ://github.com/skycoin/c
3

4 :func main {...

5 *

6

7 * func foo () {}

8

9 x :dp

10 Program

11 0.— Package: main

12 Functions

13 0.— Function: main () ()
14 1.— Function: *xinit () ()
15 2.— Function: foo () ()
16

17 % :func foo {}

18

19 :func foo {...

20
21
22
23
24
25
26
27
28
29
30
31

0N N bW~

e e e e
[c BN le RV, B N =R =

156.2 Stepping 69

* 132 . print(5 + 95)

:func foo {...

* :dp
Program
0.— Package: main
Functions
0.— Function: main () ()
1.— Function: *xinit () ()

2.— Function: foo () ()
0.— Expression: xlcl_0 i32 = add(5 132, 5 i32)
1.— Expression: printf(str, =lcl_0 i132)

Listing 15.1: REPL function selection meta-command

Listing 15.1 shows a REPL session where we start inside the function main at Line 5, and then
we exit that scope using Ctrl-D. At any moment, you can know in what scope you are in by looking
at the line above the prompt, and you can go up one level in scope by hitting Ctrl-D. If you are in the
global scope and hit Ctrl-D, you’ll leave the CX REPL, so be careful.

After exiting main, we declare a new function in the global scope: foo, at Line 7, and we check
that it was actually created by debugging the program structure using the :dp meta-command (which
stands for "debug program"), at Line 9.

To change scope, we’ll use our first selector :func. Line 17 shows the meta-command in action,
and we can see that it changed the scope to foo’s at Line 20. At that same Line, we add an expression
to foo: a call to printf, which will only print 10 to the terminal. We again check that the expression
was correctly added by calling :dp.

The other selectors are :package and :struct, which change the scope to another package or to
another struct declaration, respectively.

Stepping
Let’s continue the REPL session from Listing 15.1 in Listing 15.2.

:func foo {...
*

% :func main {}

:func main {...
* foo ()

:func main {...

* :dp
Program
0.— Package: main
Functions

0.— Function: main () ()
0.— Expression: foo()
1.— Function: *xinit () ()
2.— Function: foo () ()
0.— Expression: xlcl_0 i32 = add(5 132, 5 i32)

19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

Chapter 15. CX’s Read-Eval-Print Loop

1.— Expression: 132 .print(xlcl_0 132)

:func main {...

*

10

:step O

:func main {...

*

:step 1

in:main, expr\#:1, calling:main.foo ()

:func main {...

*

:step 1

in:foo, expr\#:1, calling:add()

:func main {...

*

cstep 1

in:foo, expr\#:2, calling:i32.print()

10

:func main {...

*

:step 1

in:terminated

:func main {...

*

:step 1

in:main, expr#:1, calling:main.foo ()

:func main {...

*

:step 1

in:foo, expr#:1, calling:add()

:func main {...

*

:step 1

in:foo, expr#:2, calling:i32.print()

10

:func main {...

*

:step —1

:func main {...

*

:step 1

in:foo, expr#:2, calling:i32.print ()

10

:func main {...

*

:step —1

:func main {...

*

istep 1

in:foo, expr#:2, calling:i32.print ()

10

We want to add a call to foo in our main function, and we do this by simply writing foo() while

Listing 15.2: REPL Session Example

156.2 Stepping 71

being in the scope of the main function. To do this, we first need to exit foo’s scope by hitting
Ctrl+D, and using the :func selector, as seen at Line 4. After this, we can add the call to foo, and we
can check our new program’s structure using the :dp meta-command.

In order to test our program, we can use CX'’s stepping features. First, if we want to run all the
program until the end, we can use the :step 0 meta-command, as seen at Line 22. But sometimes
we’ll need to check a program’s execution step by step, and we can do this by giving the :step
meta-command a different argument than 0. Starting at Line 26, we can see how the REPL tells us
at what line number we are in what function call. After issuing enough :step 1 meta-commands, we
finally see that the program finalizes at Line 39, with the REPL printing the message in: terminated.

An even more interesting feature of stepping is that you can give it negative arguments. If this is
the case, CX will create a behavior similar to a for loop, where the stepped back expressions will be
executed again. An example of negative stepping starts at Line 56. You can see how we step back
and forth to keep printing the number 10 to the terminal.

—_

OO XN AW~

16. Unit Testing in CX

As CX grew, a mechanism to test all the features of the language was needed. Sometimes adding
a new feature to CX breaks other features of the language. For example, once methods were
added to the language, bugs related to accessing structure instance fields arose. The parser was
getting confused, as it didn’t know how to differentiate between, for example, instance . field and
instance . methodCall(). We were not noticing these errors until we actually run code involving method
calls or accessing fields. The solution to this problem is to unit test each of the features of the
language every time the language gets considerably modified.

At the time of writing, CX’s unit testing library consists of a single function: assert. As in other
languages, assert’s objective is to check if two arguments are equal. In CX, this test is performed
byte by byte, so a 32-bit integer is never going to be equal to a 64-bit integer, even if they represent
the same real number, because they have different sizes.

package main

func main () {
var correct []bool

correct = append(correct, assert(i32.add(10, 10), 20, "Add error"))

correct = append(correct, assert(l10 — 10, O, "Subtract error"))
correct = append(correct, assert(i32.f32(10), 10.0, "Parse to F32 error"))
assert(5 < 10, true, "I32 Less than error")

Listing 16.1: Testing with assert

Listing 16.1 shows an example on how to use assert to test different arithmetic operations. The
first and second input arguments to assert are the ones that get compared byte by byte, while the
third argument is a custom error message that is appended to the default error message. In CX it’s
conventional to start with the expression to be tested as the first input argument, and then use the

0N N AW~

O O S T T T O O R OO T N B N B N I e O R N R N B N N i e e
— OV IAIALELRN —~—O VAN ELN =0T R WN — OO

73

second input argument as the desired result of the first input argument. The custom error message
is helpful to understand what expression raised an error, in addition to the usual file name and line
number thrown by CX.

Also, notice that assert returns a boolean argument, which indicates if the test was successful
or not. This might seem like it does not make sense, as assert will stop a program’s execution if
the test is not successful, but this behavior is there for two reasons: 1) you can count the number
of tests performed, and 2) CX will implement in the future a function, test.error, which tests if
an expression raised an error in a particular situation, while avoiding halting the program. For
example, i32.div (0, 0) has to raise a divide by 0 error, and if it doesn’t, then this is an error. After
re-implementing this function (most likely with a different name, as the test package no longer
exists), we will be able to count how many tests return true and how many return false.

package main

func main () {
var check 132
check = 999

if 2 <3 {
check = 333
}

assert (check, 333, "not entering IF error")

if 3 <2 {
check = 555
}

assert (check, 333, "entering IF error")

if 2 <3 {
check = 888
} else {
check = 444

}

assert (check, 888, "entering else in IF/ELSE error")

if 3 <2 {
check = 111
} else {
check = 777

}

assert (check, 777, "entering if in IF/ELSE error")

if 3 >0 {
if 25.0 > 29.0 {
check = 0
assert(check, 10, "entering nested IF/ELSE 2nd level error")
} else {
if 30L < 60L ¢{
check = 999

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

74 Chapter 16. Unit Testing in CX

} else {
check = 0
assert (check, 10, "entering nested IF/ELSE 3rd level error")

}
} else {
check = 0
assert(check, 10, "entering nested IF/ELSE 1st level error"

}

assert (check, 999, "entering nested IF/ELSE error")
var i 132

for i = 0; i < 10; i = i32.add(i, 1) {

check = i

}

assert (check, 9, "FOR loop error")

for i = 1; i32.1teq(i, 10); i = i32.add(i, 1){
if i32.eq(i32.mod(i, 2), 0000) {

check = 1
} else {
check = i

}
}

assert (check, 10, "FOR-IF/ELSE loop error")

Listing 16.2: Testing control flow statements

Listing 16.2 shows a more complex situation, where we are testing if the different control flow
statements of CX are behaving as intended or not. For example, in an if/else statement, if the
predicate is true, the then clause needs to be executed, not the else clause. To test this behavior, we
can create a "check" variable that is going to be changing its value, just like it can be seen at Line
8. If this if statement is successful, the check variable will change its value from 999 to 333. As
a consequence, we need to use assert to check if check’s value is now 333. If this is not the case,
we can now be sure that there’s an error with how the if statement is implemented, and we need
to correct it. Likewise, at Line 14 we check if the if statement is correctly not entering when its
predicate evaluates to false. If the if statement enters in this case, the value of check will be changed
to 555, so we need to test using assert that check’s value is still 333.

REFERENCES 75

References

[Gib66] James Jerome Gibson. “The senses considered as perceptual systems.” In: (1966) (cited
on page 50).

[LS86] Peter Lancaster and Kestutis Salkauskas. Curve and surface fitting: an introduction.
Academic press, 1986 (cited on page 46).

[MTOO0] Julian F Miller and Peter Thomson. “Cartesian genetic programming”. In: European
Conference on Genetic Programming. Springer. 2000, pages 121-132 (cited on page 62).

	Getting Started with CX
	What is CX?
	Installing CX
	Hello, world!
	Introduction to the REPL
	Strict Typing System

	CX Programs Representation
	Everything in a Function is an Expression
	Elements Redefinition

	Data Structures
	Primitive Types
	Variables
	Arrays
	Slices
	Structures
	Scope of a Variable

	Functions
	Lexical Scoping
	Side Effects
	Methods

	Control Flow
	jmp and goto
	if and if/else
	for Loop
	return

	Packages
	CX Workspaces

	Pointers
	Memory Segments

	OpenGL and GLFW with CX
	Interpreted and Compiled
	Interpreted CX Features
	Compiled CX Features

	Garbage Collector
	What is Garbage Collection
	CX's Garbage Collector

	Affordances
	Serialization
	Serialization
	Deserialization

	Genetic Programming
	Understanding the CX Base Language
	CX's Read-Eval-Print Loop
	Selectors
	Stepping

	Unit Testing in CX

