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Abstract. An iterative algorithm is proposed for nonlinearly constrained optimization calculations 
when there are no derivatives. Each iteration forms linear approximations to the objective and 
constraint functions by interpolation at the vertices of a simplex and a trust region bound restricts 
each change to the variables. Thus a new vector of variables is calculated, which may replace 
one of the current vertices, either to improve the shape of the simplex or because it is the best 
vector that has been found so far, according to a merit function that gives attention to the greatest 
constraint violation. The trust region radius p is never increased, and it is reduced when the 
approximations of a well-conditioned simplex fail to yield an improvement to the variables, until 
p reaches a prescribed value that controls the final accuracy. Some convergence properties and 
several numerical results are given, but there are no more than 9 variables in these calculations 
because linear approximations can be highly inefficient. Nevertheless, the algorithm is easy to use 
for small numbers of variables. 
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1. Introduction 

John Dennis has provided the best description of a direct search optimization cal
culation that I have encountered. It is to find the deepest point of a muddy lake, 
given a boat and a plumb line, when there is a price to be paid for each sound
ing. A specification of an algorithm that is suitable for solving this problem would 
probably appeal to geometric intuition, and probably the procedure would require 
widely spaced measurements to be taken, in order to smooth out any high frequency 
variations in the depth of the lake. Experience has shown that many computer users 
find such algorithms attractive for a wide range of optimization calculations. 

In particular, the method of Neider and Mead (1965) is used in very many fields to 
calculate the least value of a function F(~.), ~ E 'R,n, when there are no constraints on 
the variables. Confirmation of this assertion can be found in the CMCI CompuMath 
Citation Index, more than 200 different applications being listed during the last 
10 years. An iteration of this method is given the value of F at n + 1 points, 
{~(j) : j = 0, 1, ... , n} say, where the points have to satisfy the non degeneracy 
condition that the volume of their convex hull in nn is positive. Let ~(t) be a vertex 
of the convex hull at which F is greatest, so l is determined by the equation 
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Then, because 2;..(l) is a vertex at which the objective function is worst, the iteration 
replaces 2;..(l) by the point 

n 

2;..~~w = -17 il) + (1+17) n- 1 2: (2) 
j=O,j",l 

where the "reflection coefficient" 17 is a constant from the open interval (0,1). Fur
ther, if F (2;..~~w) is the least calculated function value so far, then a larger 17 may 
be used instead. We see that formula (2) defines 2;..~~w by extrapolation along the 
straight line that joins i(l) to the mean value of the other n points. Therefore it is 
elementary that, if F is a non constant linear function, then F(2;..~~w) is less than the 
average of the numbers {F(2;..(j)) : j = 0,1, ... , n, j =/; e}, so we expect an iteration 
to be successful at reducing F in the general case. If the iterations fail to make 
progress, however, and if an acceptably small value of the objective function has 
not been found, then the algorithm shrinks the current simplex with the vertices 
{2;..(j) : j = 0,1, ... , n} before continuing the sequence of iterations. This kind of 
technique when n = 2 might be suitable for seeking the deepest point of the muddy 
lake. In any case, the method is so straightforward to understand and to program 
for computer calculations that it is applied frequently. 

The NeIder and J\IIead algorithm was developed from the method of Spendley, 
Hext and Himsworth (1962), in which every simplex is regular, this property being 
sustained by the value 17 = 1 in formula (2). It was found, however, that the other 
choices of 17 that have been mentioned provide much better efficiency by adapting 
the shape of the simplex to the curvature of the objective function automatically. 
Further, the NeIder and Mead algorithm is sometimes used to solve constrained 
problems by the simple expedient of replacing F(2;..) by +00 if and only if 2;.. is 
infeasible. Then the simplex flattens itself so that it tends to be close to the active 
constraint boundaries. A disadvantage of this approach, however, is that an excellent 
change to the variables may be discarded because it gives an infinite value of the 
objective function. Therefore it is recommended by Subrahmanyam (1989) that, if 
a trial 2;.. is infeasible, then the setting of F(2;..) to +00 should be postponed until 
the beginning of the next iteration, the usefulness of this technique being shown by 
numerical examples. 

We take the view, however, that it may be possible to develop direct search meth
ods that provide much better efficiency by taking advantage of the available details 
of the constraints. Therefore we address constrained optimization calculations that 
are expressed in the form 

mInImIZe F(2;..) , 2;..ER~ } , 

subject to Ci(2;..) 2': 0, Z = 1,2, ... , m 
(3) 

and we assume that the objective and constraint functions can be calculated for 
every 2;.., but there are no smoothness assumptions. We take from the NeIder and 
Mead method the idea of generating the next vector of variables from function values 
at the vertices {2;..(j) : j = 0, 1, ... , n} of a non degenerate simplex in n n. In this case 
there are unique linear functions, F and {Cj : i = 1,2, ... , m} say, that interpolate F 
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and {Ci : i = 1,2, ... , m} at the vertices, and we approximate the calculation (3) by 
the linear programming problem 

mllllmlze F(~), xERn } 

subject to Ci(~) 2:~, i= 1, 2, ... , m . 
(4) 

On most iterations the problem (4) guides the changes to the variables, but some 
iterations give higher priority to modifying the shape of the simplex, in order that 
interpolation at its vertices is likely to yield good linear models of the objective 
and constraint functions. We are encouraged by the fact that the use of linear 
approximations to constraints is highly successful in variable metric algorithms (see 
Powell, 1978, for instance), because such approximations often take up much of the 
freedom in the variables in a suitable way. Thus it can happen that constrained 
calculations are easier than unconstrained ones, even when the given constraints are 
nonlinear. 

The iterative use of expression (4) puts our method in the class of "sequen
tial linear programming algorithms" that originated from the work of Griffith and 
Stewart (1961). A good discussion of the merits and disadvantages of this class is 
given in Section 6.1 of IIimmelblau (1972), in the case when the gradients of the 
linear approximations are calculated analytically or are difference approximations 
to derivatives. It is possible, however, that our construction of these gradients is 
new, because we derive them by interpolation at the vertices of simplices that are 
analogous to the ones that occur in the Nelder and Mead algorithm. 

Our procedure is specified in Section 2. We will find that it has the following 
properties. Changes to the variables are restricted by a trust region bound, which 
gives the user some control over the steps that are taken automatically and which 
responds satisfactorily to the fact that there may be no finite solution to the linear 
programming problem (4). The trust region radius remains constant until predicted 
improvements to the objective function and feasibility conditions fail to occur, al
though the simplex has a good shape. Then the trust region radius is reduced until 
it reaches a final value that has to be set by the user. The lengths of the trial steps 
are usually equal to the current trust region bound, in order that little damage is 
done to the early iterations by any high frequency fluctuations in the objective and 
constraint functions that are of small amplitude. The shapes of successive simplices 
can vary greatly, because most changes to the variables would satisfy any linear 
constraints, so there is often a tendency for the simplices to be squashed onto the 
constraint boundaries, which we remove explicitly. Indeed, as mentioned already, 
some iterations pick changes to the variables whose primary purpose is to improve 
the shape of the simplex. \Ve employ a merit function of the form 

in order to compare the goodness of two different vectors of variables. Here f..l is 
a parameter that is adjusted automatically, and the subscript "+" means that the 
expression in square brackets is replaced by zero if and only if its value is negative, 
so we have <I>(~) = F(~) whenever ~ is feasible. We take the view that ~ E R n is 
better than y E R n if and only if the inequality <I>(~) < <I>(y) holds. Moreover, it is 
not difficult to implement the given rules for adjusting the-variables. 
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Our knowledge of the convergence properties of the algorithm is the subject of 
Section 3. Then Section 4 discusses some of the details of Section 2 and presents 
a few numerical results. We conclude that the proposed method is suitable for a 
range of optimization calculations, but that the final accuracy is sometimes severely 
limited by the use of linear approximations to nonlinear functions. A Fortran im
plementation of the algorithm is available from the author at the e-mail address 
mjdp@amtp.cam.ac.uk. 

2. The Algorithm 

The algorithm includes several strategies, and is summarised in Figure 1. First 
we consider the vector of variables that is calculated from the linear programming 
problem (4) by the "Generate ~(.)" box of the figure. This task requires the vertices 
{~(j) : j = 0,1, ... , n} ora nondegenerate simplex, a positive trust region radius p, 
and the current value of the parameter fL of the merit function (5). The vertices 
have already been ordered so that ~(O) is optimal, which means that the inequalities 

(6) 

are satisfied. Then the trust region condition on the new vector of variables, ~(.) 
say, is the bound 

(7) 

If possible, we let ~(.) minimize the linear approximation f(~(·») to the objective 
function subject to the inequality (7) and 'to the linear constraints 

(8) 

of the problem (4), picking the ~(.) that gives the least value of 1I~(o)-~(O)lb if 
these conditions admit more than one ~(.). Alternatively, it can happen that the 
inequalities (7) and (8) are contradictory. Then we define ~(*) by minimizing the 
greatest of the constraint violations {-Ci(~(·») : i = 1,2, ... , m} subject to the trust 
region bound. Further, any remaining freedom in ~(.) is used to minimize f(~(·») 
and, if some freedom still remains, then we remove the ambiguity by again making 
II~(·) - ~(O)1I2 as small as possible. The calculation of ~(.) has been implemented 
by imagining that p is increased continuously from zero to the current value. The 
sequence of values of ~(.) that would occur for this range of p is a continuous trajec
tory that is composed of straight line pieces. It is convenient to follow the trajectory 
from ~(O) to the required ~(.) by identifying and updating the active sets of linear 
constraints that define the linear pieces. 

Next we describe the adjustment of fL, because it depends on the ~(.) that has 
just been specified. We set fL = 0 initially, but in this case, when choosing the 
optimal vertex, it is assumed that fL is a tiny positive number whose value need not 
be specified. Later we take the view that it is unreasonable to expect the reduction 
<P(~(.») < <P(~(O») in the merit function (5) if the value of fL does not provide the 
condition ~(~(*») < ~(~(O»), where ~ is the approximation 
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Set p=Pbeg, J.l=O and Branch=(*). Form the 
initial simplex. 

Ensure that ~(O) is the optimal vertex and that 
FLAG=ON iff the simplex is acceptable. 

YES Branch=( *) or FLAG=ON? NO 

YES 

Calculate ~(I:i.), F(~(I:i.») and 
{Ci(~(I:i.»): i=1,2, ... ,m}. 
Make ~(I:i.) a vertex of the 
simplex. Set Branch=(*). 

NO---, 

Calculate F(~(*») and {ci(i*») : i= 
1,2, ... ,m}. Revise the simplex if 
<I>(~(*») < <I>(~(O») or if a change may 
help acceptability . 

YES Is ~(O) the op- NO 

timal vertex? 

...... --YES 

YES 

END 

NO---+I 

NO-----.-! 

NO------~ 

Set Branch=(~). 

Set Branch=(*). 
Update P and J.l. 

Figure 1: A summary of the algorithm 
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to ~ that is obtained by replacing F and {Ci : i = 1,2, ... , m} by their current 
linear approximations. Therefore the following strategy is employed by the "Is p. 
large enough" and "Revise p" boxes ,of the figure. Let {t be the least nonnegative 
value of p. that would yield ~(~(*») ~ ~(~(O»), the existence of {t being an elementary 
consequence of the definition of ~(,,). We leave p. unchanged if it satisfies p. ~ ~ (t, but 
otherwise we increase p. to 2{t. The choice of the factors ~ and 2 in this technique 
was guided by guesswork and numerical calculations. Many similar factors will occur 
later, some of their values being discussed in Section 4. 

A possible consequence of increasing p. is that condition (6) no longer holds. In 
this case the optimality of ~(O) is restored by exchanging two vertices of the simplex. 
Then the calculation of ~(,,) and any necessary further adjustments to p. are repeated 
until ~(O) is optimal and the value of p. is acceptable. This procedure cannot cycle, 
because each change to ~(O) must reduce the value of the term [ma: ... { -Ci(~(O») : i = 
1,2, ... ,m}]+. 

The strategy for adjusting the trust region radius borrows from the NeIder and 
Mead algorithm the principle that one should continue to use the current P until the 
iterations fail to provide satisfactory reductions in the merit function, and then P 
should be decreased. We have the complication, however, that many different shapes 
of simplex can occur, so we also require the current simplex to be "acceptable" before 
decreasing P, in case unsuitable shapes have caused the linear programming problem 
(4) to be a very poor approximation to the main calculation, where "acceptable" is 
defined later. Therefore the bottom two boxes of Figure 1 are reached if we have an 
acceptable simplex, and if either the left hand side of inequality (7) is less than ~p 
or we find the condition -

(10) 

which means that changing the variables from ~(O) to ~(,,) fails to provide a tenth of 
the improvement in the merit function that is predicted by the approximation (9). 
It can be argued that in both of these cases there is a need for a reduction in the 
trust region radius. 

The initial and final values of P, namely Pbeg and Pend, are given by the user. We 
recommend that Pbeg be a reasonable change to make to the variables for a coarse 
exploration of the calculation, while Pend should be approximately the required dis
tance from the final vector of variables to the solution of the optimization problem. 
The following action is taken when the conditions for reducing P are satisfied. If 
P ~ Pend, then the iterative procedure is terminated, the final vector of variables 
being the current ~(O), except that ~(,,) is preferred instead if <p(~(,,») is available 
and satisfies <p(~(.») < <p(~(O»). Alternatively, when P > Pend, the trust region radius 
is set to the value 

Pnew = { !p, p>3pend 
Pend., P ~ 3pend. 

(11) 

Further, because it is shown in Section 3 that the merit function parameter p. can 
become very large, we estimate whether it would be advantageous to decrease p. when 
P is reduced. Specifically, we take the view that the i-th constraint is important to 
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the merit function if i is in the set 

{ . (min) 1 (max)} {I 2 } I = Z: Ci < 2Ci n" ... , m , (12) 

where c~min) and c~max) are the least and greatest values of c;(.q,J at the vertices of 
the current simplex. Then Jl is set to zero if I is empty, but otherwise we replace Jl 
by the number 

L=~'\~~.,n F(~U») -j=ff!/~.,n F(~U»)] / min {[ c~max) J+ - c~min) : i E I} , (13) 

provided that this change reduces Jl. An explanation of the ratio (13) is given in 
Section 4. 

A major difference between our algorithm and the method of NeIder and Mead 
is that we retain the current simplex when p is decreased. Therefore any immediate 
change to ~(*) is due to the new right hand side of inequality (7). Further, the 
current simplex will certainly be revised if it is not "acceptable" for the new value 
of p, the definition of "acceptability" being as follows. 

For j = 1,2, ... , n, let (TU) be the Euclidean distance from the vertex ~(j) to the 
opposite face of the current simplex, and let 7]U) be the length of the edge between 
~U) and ~(O). We say that the simplex is "acceptable" if and only if the inequalities 

(T(j) 2:: 0: P } 
7]U)'!::/3p , j=I,2, ... ,n, (14) 

hold, where 0: and j3 are constants that satisfy the conditions 0 < 0: < 1 < /3. The 
software picks the values o:=i and /3=2.1. Thus the lengths of the edges and the 
volume of an acceptable simplex are of magnitudes p and pn respectively, so they 
are appropriate to the current trust region radius. 

The initial simplex is constructed in the following way from Pbeg and an initial 
vector of variables, which have to be provided by the user. We let l;.(O) be the 
given vector and then we cycle through the indices j = 1,2, ... , n. For each j we 
set ~(j) = ~(O)+Pbegfj' where fj is the j-th coordinate vector. Further, ~(j) is 
exchanged with ~(O) before proceeding to the next value of j if and only if the 
condition F(~(j») < F(~(O») is satisfied. Thus ~(O) becomes the optimal vertex of the 
initial simplex, and we do not worry about the possibility that this simplex may not 
be "acceptable". 

The vector ~(*) is not calculated on every iteration, because it is clear sometimes 
that priority should be given to trying to satisfy the conditions (14). Specifically, 
this priority is imposed if and only if the previous iteration would have reduced the 
current value of p if its simplex were "acceptable", the priority being initiated by 
the "Set Branch = 6." box of Figure 1. In the next paragraph we define a vector ~(6 ) 
that is an alternative new vector of variables that is chosen to improve acceptability. 
Therefore the current iteration calculates ~(*) instead of ~(6) if and only if at least 
one of the following five conditions holds. (C1) There is no previous iteration. (C2) 
The previous iteration reduced p. (C3) The previous iteration calculated ~(6). (C4) 
The previous iteration calculated l;.(*) and reduced the merit function by at least 
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one tenth of the predicted reduction. (C5) The current simplex is "acceptable". 
The first four conditions are mutually exclusive, but usually condition (C3) or (C4) 
holds when (C5) is achieved. Exceptions can occur, however, because sometimes the 
previous iteration will have replaced a vertex of the simplex by a vector ~(*) that 
does not satisfy condition (10). 

When none of the above conditions holds, the vector ~(t:.) is defined as follows. 
If any of the numbers {7](j) : j = 1,2, ... , n} of expression (14) is greater than (3p, 
we let £ be the least integer from [1, n] that satisfies the equation 

7](l) =max{7J(j) :j=1,2, ... ,n}. (15) 

Otherwise we obtain £ from the formula 

(j(l) =min{(j(j) :j=1,2, ... ,n}, (16) 

the inequality (j(t) < exp being implied by the failure of condition (C5). The iteration 
is going to replace the vertex ~(l) by ~(t:.), so we require ~(t:.) to be well away from 
the face of the simplex that is opposite the vertex ~(l). Therefore we let !L(i) be the 
vector of unit length that is perpendicular to this face, and we make the choice 

(17) 

where the ± sign is chosen to minimize the approximation <i»(~(t:.») to the new value 
of the merit function, and where 'Y is a constant from the interval (ex, 1) that is set 
to 'Y = ~ by the software. Then the next iteration is given the simplex that has the 
vertices {~(j) : j = 0,1, ... , n, j f:. £} and ~(t:.). The description of an iteration that 
calculates ~(t:.) is complete. 

Alternatively, when an iteration forms ~(*), we have to choose between three 
options, namely reducing p, or preserving p for another iteration that will calculate 
~(*), or preserving p for another iteration that will give priority to improving the 
"acceptability" of the simplex. The rules that govern the choice have been specified 
already. Because we employ the test (10) if and only if ~(*) satisfies the condition 

(18) 

the function values F(~(*») and {Ci(~(*»): i=I,2, ... ,m} are calculated only when 
inequality (18) holds. Then we may include these function values in future linear 
approximations by letting ~(*) replace one of the vertices {~(j) : j = 1,2, ... , n} of 
the current simplex, any change to the simplex being made in the following way. 

The numbers {o-(j) : j = 1,2, ... , n} are found, where o-(j) is defined to be the 
distance from ~(*) to the face of the current simplex that is opposite ~(j). These 
numbers are useful, because some elementary geometry shows that, if ~(j) is replaced 
by ~C*), then the volume of the simplex is multiplied by the factor (j(j) / (j(j). There
fore we take the view that the nonsingularity of the interpolation conditions will not 
be damaged if j is in the set 

(19) 
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where 0' is introduced in expression (14). Moreover, we expect the optimal vertex 
of the next iteration to be the point 

x(O) _ {g;,C*), cI>{~(*»<cI>{~(0» 
- - ~(O), cI>{~(*»~cI>{~(0». 

(20) 

Therefore, if .1 is non empty, we let f. be the least element of .1 that has the property 

1I~(l) -~(0)1I2 = max{II~(j) -~(0)1I2 : j E .1}. (21) 

Then the algorithm gives attention to the second of the acceptability requirements 
(14) by replacing ~(l) by ~(*) if we have the inequality ,,~(lL~(O)I/2>op, where 0 is 
a constant satisfying 1 < 0 ~ (3 that is set to 0 = 1.1 by the software. Otherwise the 
new simplex is determined by the rule that its volume is to be maximized, subject 
to the condition that updating is mandatory when cI>{~(*» is less than cI>{~(0». In 
other words, if one (or both) of the conditions cI>{~(*» < cI>{~(0» and q(l) > u(t) holds, 
then ~(l) is replaced by ~(*), where now the integer f. is derived from the equation 

q(l) / u(l) = max{ q(j) / u U) : j = 1,2, ... , n}. (22) 

Thus the simplex is revised by most iterations that calculate the objective and 
constraint functions at ~(*), the only exception being when, in addition to all the 
inequalities f q(j) ~ u(j) : j = 1,2, ... , n} and cI>{~(*» ~ cI>{~(0», we find that the 
distance ,,~(j)-~(0)1I2 is bounded above by op for every j in .1. 

The description of our algorithm is now complete. Further details of the im
plementation are available in the Fortran listing that is mentioned at the end of 
Section 1. 

3. Convergence Properties 

Our knowledge of the convergence properties of the algorithm is slight. If we tried 
to establish a global convergence theorem by standard methods, then we would 
address the following four assertions. (AI) The parameter J.l of the merit function 
(5) remains finite. (A2) The number of reductions in the trust region radius p is 
also finite. (A3) If J.l and p remain constant, then any optimal vertex ~(O) cannot be 
retained for an infinite number of iterations. (A4) If J.l and p remain constant, then 
the number of replacements of the optimal vertex is finite. These assertions would 
imply termination, because, for each p, the algorithm has the property that every 
change to the merit function parameter multiplies J.l by at least the factor 4/3. 

The following simple example suggests, however, that it would be difficult to 
make assumptions that provide assertion (AI) without ruling out some optimization 
calculations that the algorithm should solve. Let n = 1 and let the calculation be 
the problem 

minimize F(x) = -lx-3/, xEn,} 
subject to c(x) = ~-Ixl ~ 0 ' 

(23) 

whose solution is x = -~. Further, let x and p satisfy x> 3 and p= 1 initially. Then 
on the first iteration the approximation (9) to the merit function is the expression 

- 1 cI>(x)=-x+3+J.l[x-;d+, xEn, (24) 
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so the algorithm sets the first value of the merit function parameter to J-t = 2. It is 
now straightforward to deduce the action of an iteration if the optimal vertex of the 
current simplex satisfies x(O) >!. Specifically, one can show by induction that x(l) 
and x(*) have the values x(O)+p and x(OLp respectively, that J-t = 2 is preserved, and 
that the inequality ~(x(*») < ~(x(O») holds, which causes the next simplex to have 
the vertices x(O) - p and x(O). Further, the trust region radius is not reduced until 
inequality (10) is satisfied, which requires the condition x(O) < 0.325, mainly because 
p=l, J-t=2 and 0.325$x(0)$3 imply the relation 

~(x(O») - ~(x(*») = [F(x(O») - F(x(*»)] + 2 {_c(x(O») - [-c(x(O) -1)]+} 

= 1 + 2 {x(O) - ~ - [ Ix(O) -11 - ~ ]+} 

~ 1 + 2 {0.325 - ~ - [0.675 - ~]} = 0.3 

~ 0.1 [<f,(xCO») - <f,(xC*»)]. (25) 

Therefore an iteration can begin with xCO ) =! -f, and can generate a simplex with 
the vertices x CO ) = -~ -f and x (1 ) =! -f, where f is a very small positive number. 
In this case the approximation to the merit function on the next iteration has the 
form 

(26) 

It now follows that we decrease the infeasibility of the linear approximation to the 
constraint function by increasing x. Further, we seeJ that this change to x provides 
the required reduction in <f, only if p. is made larger than 1/(2f). 

Hence, even in the simple case (23), .there i.s no a priori upper bound on J-t. 
The difficulty is that the values of a function at the vertices of a simplex can be 
tiny perturbations of a constant, although the function itself varies substantially for 
most changes to the variables. Thus the linear approximations that are made by the 
algorithm may be highly misleading. On the other hand, the numerical results of the 
next section show that the given algorithm solves a range of nonlinear optimization 
calculations fairly well. It therefore seems futile to impose restrictions that would 
allow assertion (AI) to be established analytically. Moreover, a proof of assertion 
(A4) may be even more elusive, so we ignore this challenge too, at least in the case 
when the precision of the computer arithmetic is infinite. 

On the other hand, the validity of assertion (A2) is an easy consequence offormula 
(11) and the condition Pend> O. Further, the following argument establishes that 
assertion (A3) is also true. 

Lemma 1. Any sequence of iterations of the given algorithm that does not change 
either p or the optimal vertex ~CO) is finite. 

Proof: We recall that, if a simplex is acceptable at the beginning of an iteration, 
and if the operations of the iteration do not alter the optimal vertex, then either 
a reduction in p or termination occurs at the end of the iteration. Therefore it 
is sufficient to prove that the conditions (14) are satisfied after a finite number of 
iterations of the given sequence. 

Now Figure 1 shows that an iteration would change ~CO) if the previous it
eration had calculated an ~C*) that satisfied ~(~C*») < ~(~(O»). Therefore alter
nate iterations in the sequence revise the simplex by replacing one of the vertices 
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{,;.(j) : j = 1, 2, ... , n} by the point (17). Further, if the set {j : 1I,;.(j) -,;.(0)1I2>,Bp} 
is nonempty, then the replacement reduces the number of elements in this set by 
one. Further, none of the other changes to the simplex can increase the number 
of elements in this set, because every ,;.(*) satisfies inequality (7). It follows that 
the second of the conditions (14) holds for every j after at most n iterations of the 
given sequence have used formula (17) to introduce a new vertex, which happens on 
alternate iterations. 

The conditions 1I,;.(*)-,;.(0)1I2:S p and 1I,;.(~)-,;.(0)1I2:SP also imply that the given 
iterations never add any elements to the set {j : 1I~(j)-,;.(O)lb > op}, where <5 is 
introduced soon after equation (21). Therefore this set does not change after a 
finite number of iterations. It follows from some details in Section 2 that eventually 
none of the iterations under consideration reduces the volume of the current simplex. 
Further, the alternate iterations that replace a vertex ,;.(l) by the point (17) multiply 
the volume by a factor that exceeds ,,(/0:. Thus, if the lemma were false, the volume 
would become unbounded, which would contradict the second of the conditions (14). 
The proof is complete. • 

The formula (17) that defines ,;.(~) also has the following interesting property. 

Lemma 2. Let an iteration replace the vertex ,;.(l) of the current simplex by ,;.(~), 
and let the distances from the vertices (excluding ,;.(0») to their opposite faces in 
the old and new simplices be {u~1J : j = 1,2, ... ,n} and {u~j,,~: j = 1,2, ... ,n} 
respectively. Then, in addition to the equation u~9.w='YP, we have the inequalities 

(27) 

Proof: The equation u~~w = 'YP follows from the choice (17) and the definition of 
Q(l). Further, this definition implies the relation 

(28) 

the left hand side being a scalar product. Let j be any integer from [1, n] that 
is different from.e. Then the closest point to ,;.(j) in the opposite face of the new 
simplex can be expressed in the form 

n 

,;.(0) + L Bi(,;.(;)-iO») + Bl(~(~)-';'(O») 
;=1 
;#j,l 

for some multipliers {B;: i=1,2, ... ,n, i,ej}, which gives the bound 

n 

[u~~ f = II (,;.(j) _,;.(0») - L B;(~(;) _,;.(0») - Bl(';'(~) -iO»)II~ 
;=1 
;#j,l 

n 

~ 1I(,;.(j)-,;.(0») - L O;(,;.(i)_iO»)II~, 
;=1 
;#j,l 

(29) 

(30) 
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where the last line depends on all the equations (28). We see that this right hand 
side is the square of the distance from ~(j) to a point in the opposite face of the old 
simplex. Thus the required inequality (27) is a consequence of the definition of O"~{ 

• 
We complete this section by establishing termination under the crude assumption 

that, due to the limited precision of computer arithmetic, only a finite number of 
different values of the functions F and {Cj: i=I,2, ... ,m} can occur. In this case 
assertion (A4) of the opening paragraph of this section holds, because every change 
to the optimal vertex has to provide a strict reduction in the merit function, which 
now cannot happen infinitely often. Further, we have noted already that assertions 
(A2) and (A3) are valid. Therefore it is straightforward to deduce termination if 
the number of changes to p. is finite, which should be another consequence of the 
computer arithmetic. Nevertheless, we will respond to the challenge of allowing p. 
to be any nonnegative real number. 

Since every increase in p. is by at least the factor 4/3, and since we have already 
treated the case when p. is changed finitely often, we can assume without loss of 
generality that p. is greater than any positive constant n. We set n = 1 if all 
calculable values of F are the same, or if m = 0, or if all calculable values of the 
constraint violation function 

(31) 

are equal. Otherwise, we let n be the greatest change that can occur in F divided 
by the smallest positive change that can occur in r, this ratio being well-defined 
because of the crude assumption in the previous paragraph. Then, if p. exceeds n, 
the reduction q,(~(.») < q,(~(O)) is found in practice if and only if we have either 
r(~(o)) < r(~(O)) or r(~H) = r(~(O)) and F(~(·)) < F(~(O)), the value of F being 
immaterial in the former case due to the choice of n. Thus the conditions that define 
an optimal vertex become independent of p. when the merit function parameter is 
sufficiently large. Hence the number of reductions in the merit function that can be 
achieved by updating the optimal vertex is finite. Therefore assertion (A4) is valid 
even if the condition that p. remains constant is replaced by the requirement that p. be 
sufficiently large, so there is no need for assertion (AI). It follows that the presumed 
finite precision of the computer arithmetic implies termination. Further, one could 
take advantage of this argument in practice by forcing a coarse discretization on the 
values of F and r when testing whether a vertex is optimal. 

4. Discussion and Numerical Results 

The main influence on the design of the algorithm was the belief that linear approxi
mations to nonlinear constraints are highly useful. Further, because one can express 
a general objective function as a linear objective function subject to an inequality 
constraint by introducing a slack variable, it is consistent to make a linear approx
imation to the objective function too. We picked the easiest way of defining these 
linear approximations, namely interpolation at the vertices of a simplex. It was 
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then necessary to impose a trust region bound in order that each linear program
ming subproblem has a finite solution. The shape of the trust region was chosen to 
be spherical, in order to preserve rotational symmetry when one takes a geometrical 
view of the steps of the algorithm, and the changes to the trust region radius are 
monotonic, in order to avoid all the careful attention to details that would arise from 
a strategy that allowed p to increase. We picked a merit function that employs the 
greatest constraint violation because this is often what users want. Here we have 
in mind that 1000 constraint violations of 10-6 are usually preferable to a single 
constraint violation of 10-3 , but a I-norm merit function would not distinguish be
tween these two cases. On the other hand, a smooth merit function would provide 
so many advantages that this subject deserves some research. 

The example in the second paragraph of Section 4 is worrying because of the 
severe loss of efficiency that can occur if J.l becomes huge. Indeed, consider the 
simple case when n = 2 and m = 1, when F and C1 are the linear functions 

(32) 

when p = 1, and when the vertices of the current simplex have the components 
.f.(O) = (0,1), .f.(1) = (f, 0) and .f.(2) = (1,1), where the number f is very small and 
positive. If J.l satisfied the condition J.l> l/f, then .f.(O) would be the optimal vertex 
and .f.(*) would have the coordinates (0,0). Furt.her, the current iteration of our 
algorithm would update the simplex by replacing .f.(1) by .f.(.) , although this change 
to the variables is tiny. Instead, therefore, it might be better to let .f.(.) solve the 
linear programming problem (4) subject to the trust region bound 11.f.(· L.f.(l) 112 5: p, 
which would give the trial vector .f.( *) = (0, -[ 1-:- f2 P/2). This choice, however, is 
also unsatisfactory, because, if C1 were replaced by a mildly nonlinear function that 
satisfied C1 (.f.) = -Xl at the vertices of the current simplex, then it is likely that we 
would find the increase <I>(.f.(.») > <I>(.f.(O») in the merit function. Thus the large value 
of J.l would cause a reduction in p, although there is no evidence that the variables 
are nearly optimal. 

It is difficult, however, to devise techniques that increase and decrease a merit 
function parameter and that are guaranteed not to cycle in general optimization 
calculations. Therefore we include the partial remedy of only reducing J.l if it seems 
to be too large when p is decreased, which happens finitely often. The procedure 
that is given in Section 2 is derived from the magnitudes of the two terms on the 
right hand side of the definition (5) of the merit function. Clearly the numerator 
of expression (13) is approximately a typical change to F, and it is reasonable to 
exclude from consideration the constraints whose indices are not in I. Further, the 

[ (max)] (min) . . I hi' h . f . 'f (max) . term Ci + -Ci IS a tYPlca c ange to tIe z-t constramt unctIOn 1 Ci IS 

nonnegative and otherwise it is a change that has to be made to achieve feasibility, 
but the choice of "min" rather than "max" in the denominator of the ratio (13) is 
debatable. Here we take the view that, if J.l is decreased, then we want each of the 
relevant constraints to make a contribution to the merit function that is not much 
less than a typical change to F. It is therefore helpful if the user scales the constraint 
functions so that they have similar magnitudes. 

The values of the parameters a, /3, 7 and 8 that are mentioned in Section 2 were 
guided by some numerical tests that did not provide clear answers. vVe picked a = i 
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for the first of the acceptability conditions (14), because a = ~ gave relatively poor 
results in the numerical experiments, and because the proof of Lemma 1 suggests 
that there should be enough scope for "1/ a to be substantially greater than one. 
There was little difference in practice between "1 = ~ and "1 = 1, so we preferred the 
smaller value, because formula (17) tends to move ~(Il.) away from any subspace that 
contains the most successful vectors of variables. We require /3> 1 in expression (14). 
Further, the condition /3 ~ 2 is advantageous, because otherwise it would be usual 
for every edge of the current simplex to be too long immediately after halving p, 
and then "acceptability" might demand the updating of all the suboptimal vertices 
before the next reduction in p. On the other hand, an example in the penultimate 
paragraph of this section will show that too large a value of /3 can be highly inefficient. 
Therefore /3 = 2.1 was selected. The parameter 6 that occurs soon after equation 
(21) should certainly satisfy 1 < 6 ::; /3. We picked 6 = 1.1, because a value that is 
only a little larger than one helps the newly calculated function values at ~(*) to be 
included in the linear approximations of the next iteration. 

The algorithm was applied to the following ten problems using single precision 
arithmetic on a Sparc 2 workstation. In every case the initial trust region radius 
was p= ~ and all components of the initial vector of variables were set to 1. Firstly, 
some easy tests of the effects of nonlinearity were made by the calculations 

and 

minimize F(~) = X1X2, 

subject to xi + x~ ::; 1 
"En', } , 

minimize F(~) = XIX2X3, 1;.En3 ,} 

subject to xi + 2x~ + 3x~ ::; 1 ' 

(.4) 

(B) 

(C) 

there being no constraints in problem (A). The next two calculations were also 
unconstrained, being the mild versions 

(D) 

and 
(E) 

of the well-known problem of Rosenbrock (1960). We took the constrained calcula
tions 

and 

minimize F(~) = -X1-X2, ~En2, } 
subject to xI ::; X2 and to xi + x~ ::; 1 ' 

mInImiZe F(~) = X3, ~En3, } 
subject to 5Xl - X2 + X3 ~ 0, -5xI - X2 + X3 ~ 0 

and to xi + X~ + 4X2 ::; X3 

(F) 

(G) 

from Fletcher's (1987) book. Finally, problems (H)-(J) are the ones with the num
bers 43, 100 and 108 in Hock and Schittkowski (1980), so they have 4, 7 and 9 
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Problem FWlction Final Final Final 

number values F(~) r(~) 1I~_~(opt)1I2 

(A) 37 1.8 X 10-5 0 3.3x10-3 

(B) 37 -0.5000 2.0x10-6 1.3 X 10-3 

(C) 45 -0.0786 4.7x10-6 1.4 X 10-3 

(D) 100 3.1 X 10-5 0 1.3 X 10-2 

(E) 347 4.0xl0-3 0 1.4 X 10-1 

(F) 30 -1.4142 3.0xlO-6 1.2 X 10-4 

(G) 29 -3.0000 1.3 X 10-4 5.9xl0-5 

(H) 74 -44.0000 2.9Xl0-6 1.4 X 10-3 

(1) 198 680.6303 5.7xl0-5 5.9x 10-3 

(1) 143 -0.8660 1.0 X 10-6 8.9xlO-4 

Table 1: Problems (A)-(J) when Pend = 10-3 

Problem Function Final Final Final 
number values F(~) r(~) 1I~_~(opt)1I2 

(A) 65 1.2 x 10-1 0 2.8xl0-4 

(B) 44 -0.5000 6.0x 10-8 6.1 X 10-5 

(C) 60 -0.0786 0 9.2 X 10-6 

(D) 173 6.4 x 10-1 0 1.7xl0-3 

(E) 698 9.5x 10-5 0 2.2xlO-2 

(F) 41 -1.4142 1.5 x 10-1 4.6xl0-5 

(G) 33 -3.0000 0 2.4 X 10-8 

(H) 87 -44.0000 2.2x 10-6 1.2 X 10-3 

(1) 212 680.6303 0 5.3xl0-3 

(J) 173 -0.8660 1.2 X 10-1 9.5 X 10-5 

Table 2: Problems (A)-(J) when Pend = 10-4 

variables respectively. This last calculation is intended to maximize the area of a 
hexagon of unit diameter, but it provides the value !v'3~0.866, although the area 
of a circle of unit diameter is only ~71"~0.785. The reason for the incorrect result is 
that the formulation of the problem allows one circuit of the hexagon to degenerate 
to two circuits of an equilateral triangle, the area of the triangle being counted twice. 
This example is also interesting because it includes some local minima where the 
area has the value 0.5. 

The results are presented in Tables 1 and 2, the difference between the tables 
being that the final trust region radii are 10-3 and 10-4, respectively. The columns 
of each table display the problem number, the number of calculations of F and 
{Ci : i = 1, 2, ... , m}, the final value of the objective function, the final value of the 
maximum constraint violation (31), and the final value of 1I~_~(opt)1I2' which is the 
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Euclidean distance from the calculated vector of variables to a true solution. We 
see that the amount of computation is not excessive for an easy-to-use algorithm 
that does not require any derivatives, although the NeIder and Mead (1965) method 
is sometimes much more efficient when there are no constraints, because it adapts 
the shape of the simplex to the curvature of the objective function. Further, a 
comparison of the two tables shows that the accuracy in the calculated variables can 
be controlled approximately by the final value of p, but some of the entries in the 
last column of the tables are rather large. 

The reason for these large entries is that linear approximations to nonlinear 
functions are often misleading near a solution to an optimization calculation. For 
example, we consider the unconstrained minimization of the quadratic function 

(33) 

where !vI is a positive constant, and we let () be a positive parameter. Then the 
points 

(34) 

provide an acceptable simplex, and we have the function values 

F(~(O)) = 02, F(~(l)) = F(~(2)) = 02 - 40p + (/6 + ~~ /If)p2. (35) 

Thus ~(O) is an optimal vertex if the inequality 

(36) 

holds. Further, the algorithm makes the linear approximation 

(37) 

to the objective function, so ~(*) has the components (0 + p, 0) when ±(O) is the 
optimal vertex. In this case, unfortunately, we find the inequality F(~(·)) > F(~(O)), 
so either termination occurs or p is reduced, although the distance from ~(O) to the 
true solution can exceed 185 M p. Therefore it is possible for large errors to occur in 
the calculated solution when the second derivative matrix \7 2 F is positive definite 
and only mildly ill-conditioned. Further, if p is halved when 0 = 185 M p, and if the 
final variables are nearly optimal, then at least another 145 AI iterations are needed. 
In the light of this example, the numerical results of Tables 1 and 2 are as good as 
can be expected. 

Further, this example suggests that it may be possible to develop a very useful 
new algorithm by using quadratic instead of linear approximations to the objective 
and constraint functions. Then each simplex of (n + 1) points would have to be 
replaced by a suitable set of 4 (n + 1)( n + 2) points, in order that the coefficients 
of the new approximations can be calculated by interpolation. The author intends 
to investigate this approach, at least in the unconstrained case, because such re
search should yield another algorithm that is more suitable for the minimization of 
noisy functions than the usual methods that employ difference approximations to 
derivatives. 



DIRECT SEARCH CONSTRAINED OPTIMIZATION 67 

Acknowledgements 

This work began when David Ingram of Westland Helicopters asked for my advice 
on the technique of extending a version of the NeIder and Mead (1965) method to 
constrained optimization by forcing the objective function to be infinite at infea
sible points. Thus he provided the motivation for the given algorithm. I am also 
very grateful to the Mathematics Department of the University of Canterbury, New 
Zealand, because it provided excellent facilities for this research while I was there 
on sabbatical leave. Further, I offer my thanks to a referee who suggested several 
improvements to the presentation. 

References 

R. Fletcher (1987), Practical Methods of Optimization, John Wiley and Sons (Chich
ester). 

R.E. Griffith and R.A. Stewart (1961), "A nonlinear programming technique for 
the optimization of continuous processing systems", Management Sci., Vol. 7, 
pp. 379-392. 

D.lV1. Himmelblau (1972), Applied Nonlinear Programming, McGraw-Hill (New 
York). 

W. Hock and K. Schittkowski (1980), Test Examples for Nonlinear Programming 
Codes, Lecture Notes in Economics and Mathematical Systems 187, Springer
Verlag (Berlin). 

J .A. NeIder and R. Mead (1965), "A simplex method for function minimization", 
Comput. J., Vol. 7, pp. 308-313. 

IvI.J .D. Powell (1978), "A fast algorithm for nonlinearly constrained optimization 
calculations", in Numerical Analysis, Dundee 1977, Lecture Noles in Mathe
matics 630, ed. G.A. Watson, Springer-Verlag (Berlin), pp. 144-157. 

H.H. Rosenbrock (1960), "An automatic method for finding the greatest or least 
value of a function", Comput. J., Vol. 3, pp. 175-184. 

W. Spendley, G.R. Hext and F.R. Himsworth (1962), "Sequential application of 
simplex designs in optimisation and evolutionary operation", Technometrics, 
Vol. 4, pp. 441-461. 

M.B. Subrahmanyam (1989), "An extension of the simplex method to constrained 
optimization", J. Optim. Theory Appl., Vol. 62, pp. 311-319. 


