RENAULT

N.T. 6525A

Vehicle	Engine
CLIO IV	D4F 744 / H4Bt 410
SANDERO II / LOGAN II	D4F 744 / H4Bt 410
DUSTER H79Ph2	K4M 642 / H4Mk 740
LODGY J92 / DOKKER FK67	K7M 828 / H4Mk 740
MEGANE / MÉGANE SCÉNIC	K4M 866
DUSTER H79Ph1	K4M 616
SANDERO B90, LOGAN	K7M 818
CLIO III/MODUS	D4F 744

Sub-section concerned: 17C

Diagnosis – GPL Landi Renzo System OMEGAS PLUS EURO 5 OMEGAS PLUS EURO 6

Edition n° 1 - MAY 2015

EDITION ANGLAISE

The methods may be modified as a result of changes introduced by the manufacturer in the production of the various component units and accessories from which his vehicles are constructed."

All copyrights reserved by Renault.

The reproduction or translation in part of whole of the present document, as well as the use of the spare parts reference numbering system, are prohibited without the prior written consent of Renault.

© Renault s.a.s. 2015

[&]quot;The repair methods given by the manufacturer in this document are based on the technical specifications current when it was prepared.

Contents

17C LPG Injection

Fault Finding –	Introduction		
	CONTENTS SCOPE OF THIS DOCUMENT PREREQUISITES FOR FAULT FINDING REMINDERS FAULT FINDING PROCEDURE FAULT FINDING LOG SAFETY INSTRUCTIONS GENERAL APPROACH TO FAULT FINDING	17C-Page 17C-Page 17C-Page 17C-Page 17C-Page 17C-Page 17C-Page	1 3 4 5 7 8 10
Fault Finding –	LPG System Description	17C-Page	11
Fault Finding –	Fault Summary Table	17C-Page	19
Fault Finding –	Interpretation of faults	17C-Page	22
Fault Finding –	Conformity check assisted with Plus Max RE	17C-Page	54
	REMINDERS PLUS MAX FUNCTIONS EXTRAS PLUS MAX RE INSTALLATION GUIDE OPERATIONS FOR REPLACING OR REPROGRAMMING THE GCU AUTOMATIC GCU RE-CALIBRATION OR GCU REPROGRAMMING MANUAL EMERGENCY PROCEDURE FOR GCU RE-CALIBRATION OR GCU REPROGRAMMING GENERAL INFO TO FAULT FINDING USIND PLUS MAX RE DESCRIPTION FAULT PAGES IN PLUS MAX RE COMPONENTS CONFORMITY CHECKS ASSISTED BY PLUSMAXRE	17C-Page 17C-Page 17C-Page 17C-Page 17C-Page 17C-Page 17C-Page 17C-Page 17C-Page	54 54 55 56 58 60 61 63 63 64
	CUSTOMER COMPLIANT - CONFORMITY CHECK	17C-Page	65
Fault Finding -	Fault Finding Charts	17C-Page	76

DISCLAIMER

For every problem, DTC or consideration not reported in this NT, please refer to the NT of the same vehicles with petrol version

IMPORTANT!

GCU Reprogramming

In case the operation of GCU Re-Calibration or GCU Reprogramming is interrupted by an Error Message (Example ER-ROR 110, ERROR 103, etc) and when PlusMaxRE tool cannot automatically detects the vehicle, the original GCU Hardware Version, SW Ver-sion and Calibration version, before to replace the GCU Manual Emergency Procedure must be applied.

IMPORTANT!

GAS INJECTION

Fault Finding - Introduction

1. SCOPE OF THIS DOCUMENT

This document introduces the special fault finding procedure applicable to all:

Vehicle(s): Sandero II, Logan II (BLK52), Clio IV (B98)

For Engines: H4Bt 410

Function concerned: LANDI RENZO LC03

Regulation: EURO6

Vehicle(s): Duster II (H79Ph2), Lodgy (J92), Dokker

(FK67)

For Engines: H4M 740

Function concerned: LANDI RENZO LC03

Regulation: EURO6

Vehicle(s): Sandero II, Logan II (B52, L52), Clio IV

(B98)

For Engines: **D4F*734**, **D4F*744**

Function concerned: LANDI RENZO LC03

Vehicle(s): Duster II (H79Ph2), Lodgy (J92), Dokker

(FK67)

For Engines: K4M*642, K7M*828

Function concerned: LANDI RENZO LC03

Vehicle(s): CLIO III (X85) For Engines: D4F 744

Function concerned: LANDI RENZO LC02

Vehicle(s): SANDERO 1 (B90, FU90), LOGAN 1 (xx90)

For Engines: K4M*642, K7M*828

Function concerned: LANDI RENZO LC02

Vehicle(s): Duster (H79), Scenic (BK95), Megane

(BK95)

For Engines: K4M 616, K4M866, K4M834 Function concerned: LANDI RENZO LC02

(DK95)

Computer Name: LC03

Software reference: RE3600xxG54

Computer Name: LC03

Software reference: RE3600xxG54

Computer Name: LC03

Software reference: **RE3520xxG54** Software reference: **RE3521xxG54**

Computer Name: LC03

Software reference: RE3521xxG54

Computer Name: LC02 (OMEGAS PLUS)

Software reference: RE2504xxG34

Computer Name: LC02 (OMEGAS PLUS)

Software reference: RE2504xxG34

Computer Name: LC02 (OMEGAS PLUS)

Software reference: **RE2504xxG34**

2. PREREQUISITES FOR FAULT FINDING

Documentation type

Fault finding procedures (this document):

- Assisted fault finding (integrated into the diagnostic tool), Dialogys.

Wiring Diagrams:

Visu-Schéma (CD-ROM), paper.

Type of diagnostic tools

- CLIP + multiplex line sensor

Special tooling required

- A multimeter and checking bornier **Elé. 1681** Universal bornier

The present repair method IS NOT APPLICABLE TO Software DR2020xxG24 or RE2020xxG34.

NT6525.mif

GAS INJECTION

Fault Finding - Introduction

3. REMINDERS

Procedure

To run fault finding on the vehicle's computers, switch on the ignition in fault finding mode (forced + after ignition supply voltage).

With vehicles with card reader, proceed as follows:

- vehicle card in reader
- press and hold the Start button (longer than 5 seconds) with start-up conditions not fulfilled,
- connect the diagnostic tool and perform the required operations.

To cut off the + after ignition supply voltage, proceed as follows:

- disconnect the diagnostic tool,
- press the Start button twice briefly (less than 3 seconds),
- ensure that the + after ignition power supply has been cut off by checking that the computer indicator lights on the instrument panel have gone out.

Faults

Faults are displayed as present or stored (they appeared in a certain context and have since disappeared, or they are still present but cannot be diagnosed in the current context).

The **present** or **stored** status of faults should be taken into consideration when the diagnostic tool is used after the + after ignition power supply is switched on (without acting on the system components).

For a present fault, apply the procedure described in the Interpretation of faults section.

For a stored fault, note the faults displayed and apply the instructions in the Notes section.

If the fault is confirmed when the instructions are applied, the fault is present. Deal with the fault.

If the fault is **not confirmed**, check:

- the electrical lines which correspond to the fault,
- the connectors for these lines (for oxidation, bent pins, etc.),
- the resistance of the component detected as faulty.
- the condition of the wires (melted or split insulation, wear).

Conformity check

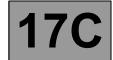
The aim of the conformity check is to check data that does not produce a fault on the diagnostic tool when the data is inconsistent. Therefore, this stage is used to:

- perform fault finding on faults that do not have a fault display, and which may correspond to a customer complaint.
- check that the system is operating correctly and that there is no risk of a fault recurring after repair.

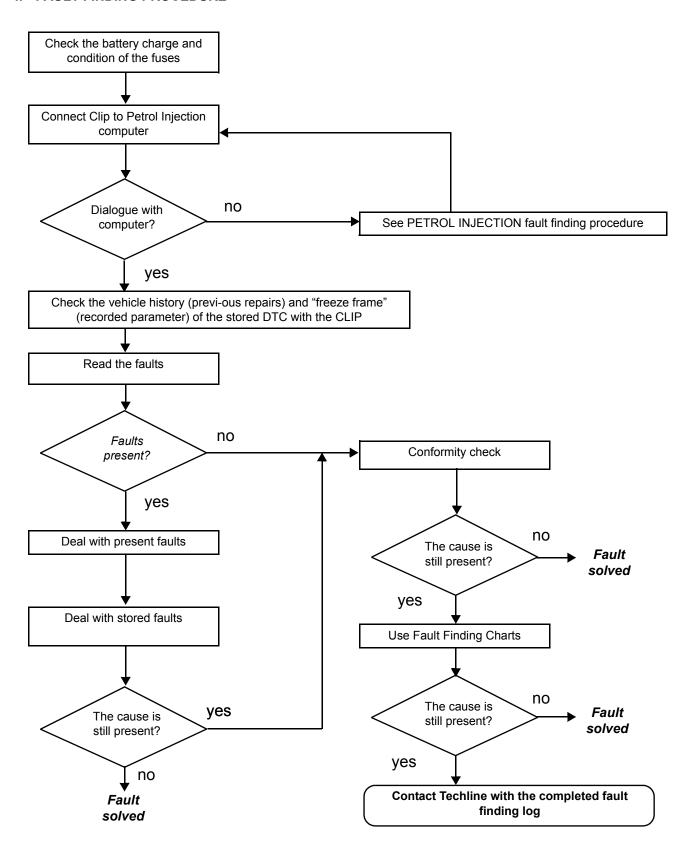
This section gives the fault finding procedures for statuses and parameters and the conditions for checking them.

If a status is not behaving normally or a parameter is outside the permitted tolerance values, consult the corresponding fault finding page.

Customer complaints - Fault finding chart


If the test with the diagnostic tool is OK but the customer complaint is still present, the fault should be processed by Customer complaints.

A summary of the overall procedure to follow is provided on the following page in the form of a flow chart


17C - 4

GAS INJECTION

Fault Finding - Introduction

4. FAULT FINDING PROCEDURE

GAS INJECTION

Fault Finding - Introduction

4. FAULT FINDING PROCEDURE (continued)

Order of priority:

Electrical faults must be processed before Functional faults (DTC2293, DTC0184, DTC1608, DTC109A, DTC0618, etc.) and Customer Complaints.

Note that there must be no electrical failures either present or stored before dealing with Functional or Customer Complaints operational faults.

Other priorities are dealt with in the procedure for the fault in question, in the Notes section.

Wiring check:

Fault finding problems:

Disconnecting the connectors and/or manipulating the wiring may temporarily remove the cause of a fault. Electrical measurements of the voltage, resistance and insulation are generally correct, especially if the fault is not present when the analysis is made (stored fault).

Visual inspection:

Look for damage under the bonnet and in the passenger compartment. Carefully check the fuses, insulation and wiring routing. Look for signs of oxidation.

Tactile inspection:

While manipulating the wiring, use the diagnostic tool to note any change in fault status from stored to present. Check that the connectors are correctly tightened, apply light pressure to the connectors, twist the wiring harness. If there is a change in status, try to locate the source of the fault.

Inspection of each component:

Disconnect the connectors and check the appearance of the clips and tabs, as well as their crimping (no crimping on the insulating section).

Make sure that the clips and tabs are properly locked in the sockets.

Make sure no clips or tabs have been dislodged during connection.

Check the clip contact pressure using an appropriate model of tab.

Resistance check:

Check the continuity of entire lines, then section by section. Look for a short circuit to earth, to **+ 12 V** or with another wire. If a fault is detected, repair or replace the wiring harness.

GAS INJECTION

Fault Finding - Introduction

5. FAULT FINDING LOG

IMPORTANT!

IMPORTANT

Any fault on a complex system requires thorough fault finding with the appropriate tools. The FAULT FINDING LOG, which should be completed during the fault finding procedure, ensures a record is kept of the procedure carried out. It is an essential document when consulting the manufacturer.

IT IS THEREFORE MANDATORY TO FILL OUT A FAULT FINDING LOG EACH TIME FAULT FINDING IS CARRIED OUT.

You will always be asked for this log:

- when requesting technical assistance from Techline,
- for approval requests when replacing parts with mandatory approval, and to be enclosed when returning monitored
 parts on request. The log is needed for warranty reimbursement, and enables better analysis of the parts removed.

GAS INJECTION

Fault Finding - Introduction

6. SAFETY INSTRUCTIONS

All work on components requires you to strictly follow safety rules to prevent any physical damage or human injury.

- Make sure the battery is properly charged to avoid damaging the computers with a low charge.
- Use the proper tools.

Safety instructions that must be followed before any operation is performed on the vehicle

- If a major LPG leak occurs, the vehicle must be isolated, away from buildings and any fire risks.
- The emergency services may be required to intervene if the situation cannot be controlled.
- All work on the LPG circuit must be performed by qualified and authorized personnel.
- Do not try to open the tank. Don't ever try to remove the multi-valve located at the end of the tank.
- Do not clean the engine compartment with detergent when the system is pressurized.
- Always refer to the RENAULT Workshop Repair Manual before performing any work.

Safety instructions that must be followed when any operation is performed on the vehicle

- All work must be carried out in a well-ventilated space.
- There must not be any flames, sparks, burning cigarettes or telephones near the area where work is being carried out.
- The operator must not wear acrylic clothes likely to generate static electricity.
- Disconnect the battery and leave the vehicle on the ground.
- If working on the tank, drain it by running the engine in LPG mode.
- Once it has been drained and removed, the tank can be sent to the GIAT Company, with the manual insulation valve in closed position (fully rotated clockwise) and fitted with its mounting.
- If work is to be done in the painting station, remove the tank (with its mounting).
- The tank must not be subjected to temperatures greater than 50°C.

Safety instructions that must be followed when any operation is performed on the vehicle

- After working on a LPG joint, check that it is not leaking after reassembling.
- Apply soapy water or the product distributed by SODICAM, part number 77 11 143 071 (leak detector) to the open joint(s).
- Fill the fuel tank with a few liters of LPG if it has been bled (the ignition must be switched off first).
- Crank the engine, switch in LPG mode and check again that there is no leak.
- If a leak is detected, retighten the relevant joint. If the leak persists, remake the joint.
- Fill the fuel tank (80 % of total volume). Start the engine, switch in LPG mode and check that there is no leak. After reassembling, check that all the rubber and encased metal LPG pipes are not in contact with any parts that can be accessed by the user and may create a LPG leak.

WARNING

Before performing any work on the vehicle, drain the LPG circuit.

Only personnel who have undergone specific LPG training can work with LPG joints where liquid LPG is circulating and moving through the fuel tank from the filler neck to the expansion valve.

In addition, only personnel who have undergone specific LPG training can perform maintenance and repairs on LPG vehicles.

Workshops can only carry out work on the fuel tank if they have a degassing burner.

If the tank cannot be degassed, do not touch it and contact the:

Comité Français du Butane et du Propane 8, terrasse Bellini 92807 PUTEAUX cedex E-Mail: contact@cfbp.fr Tél: +33 (0)1 41 97 02 80 Fax: +33 (0)1 41 97 02 89

NT6525.mit

GAS INJECTION

Fault Finding - Introduction

Maintenance operations

- No adjustment.
- Removal of internal components is not allowed, except when expressly authorized,..
- If LPG fixation clips and fittings are removed, they must be replaced.
- If LPG joints are removed, they must be replaced.

The tank must be empty before removing:

- · the fuel tank,
- · a component bolted onto the tank, before bleeding the LPG contained in the LPG circuit.

To remove the following, bleed all LPG contained in the LPG circuit (except the LPG in the tank):

- · the filler neck,
- · the pipes,
- the filter,
- · The pressure reducer
- The LPG injector

ESD protection

Electronic sensors and pushbuttons used for LPG injection systems integrates an electronic circuit. Electrostatic discharge (ESD) may cause serious damage to electronic circuits.

Personnel responsible for storage, transport, and handling must have training in ESD protection.

The material handling and installation system must be accommodated in agreement with allowable ESD limit of ELECTRONIC SENSORS AND PUSHBUTTONS as defined in its specification.

WARNING:

OBSERVE ALL PRECAUTIONS FOR ESD PROTECTION WHEN HANDLING ELECTRONIC COMPONENTS, GAS CONTROL UNIT, SENSORS AND PUSHBUTTONS USED FOR LPG INJECTION SYSTEMS!

AVOID ELECTROSTATIC DISCHARGE!

GAS INJECTION

Fault Finding - Introduction

7. GENERAL APPROACH TO FAULT FINDING

- Use Plus Max RE to identify the system fitted to the vehicle.

If the Software Version is in the form: RE36xxxxG54 the GCU is an LC03 adopted on vehicles compliant with EU6 emission norm.

If the Software Version is in the form: RE35xxxxG54 the GCU is an LC03 adopted on vehicles compliant with EU5+ emission norm.

If the Software Version is in the form: RE25xxxxG34 the GCU is an LC02 adopted on vehicles compliant with EuroV emission norm.

In the chapter "Fault Finding – Fault Interpretation" carefully follow the symbolism:

in order to ensure the correctness of the repair procedure.

GAS INJECTION

Fault Finding - LPG System Description

1. LPG SYSTEM DESCRIPTION

1.1 Changeover from petrol to gas

The vehicle switch to LPG when:

- 1) The driver has selected the LPG fuel switch mode in the current trip or in the previous trip the engine stopped in LPG mode.
- 2) Coolant water temperature must be higher than the tuned threshold; this threshold is a function of a complex algorithm and depends on the coolant temperatures and LPG rail temperature at the crank; usually the threshold is 30°C when external temperature is 20°C.
- 3) A tuned delay is elapsed from the cranking; the delay a function of a complex algorithm and depends on the coolant temperatures and LPG rail temperature at the crank; usually cranking at a coolant temperature of 20°C the delay is 60s.
- 4) Gas Temperature must be higher than the tuned threshold. Please note that with low winter temperature (for example -10°C), the delay requested to the LPG temperature to reach the threshold could be long and sometimes more than 5 minutes.
- 5) RPM value must be greater than the tuned RPM threshold ranging from idle or cut-off condition for vehicles with Stop&Start function and usually between 1300 and 1800 RPM depending on engine power and vehicle gearbox ratio on vehicles without Stop&Start System
- 6) LPG switching isn't allowed at very high engine loads, for example in full acceleration.
- 7) No LPG system fault must be present.

1.2 Temporary switcback

The vehicle can temporarily switch to gasoline mode at high load and when the LPG in the tank is not compliant with external temperature requirements. Usually this happens in cold climate.

Refer to User Notes

1.3 General checks

Before proceeding with repairs, verify that there are no additional faults stored in the petrol ECU.

The **operating pressure** of the LPG displayed on the DIAGNOSTIC TOOLS should be between **1.15 & 1.36 bar**, when the vehicle is running in LPG mode, at idle speed (750 rpm) and when the temperature of the coolant is over 70°C, with all auxiliary load (AC, fan,...) **switched off**.

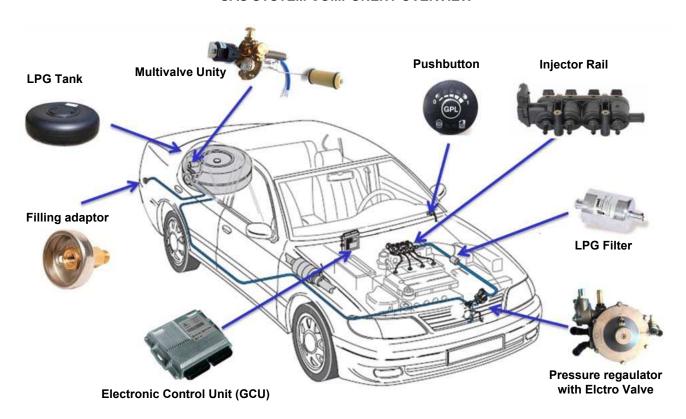
[Usually the LPG pressure should be 0,9 - 0,95 bar over the intake manifold pressure].

The **system automatically switches** the vehicle **back to petrol** when pressure drops below a safety threshold, depending on the engine load.

This switchback to petrol can occur when the LPG tank is empty; in this case no DTC code is stored in the memory of the diagnostic system.

The "supply voltage of LPG injectors" influences the correct operation of the LPG system. The voltage range for a correct operation is between 9 & 16 Volts.

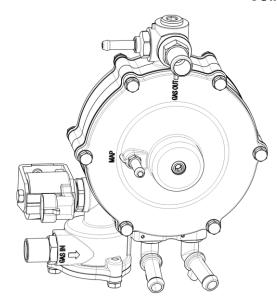
1.4 Road Test


If a road test is required make a comparison between Petrol Mode and LPG mode driving. Perform the same tests and check for a different driving behaviour of the vehicle.

GAS INJECTION

Fault Finding - LPG System Description

GAS SYSTEM COMPONENT OVERVIEW



GAS INJECTION

Fault Finding - LPG System Description

COMPONENT DESCRIPTION

LI 10 PRESSURE REGULATOR

Aluminium body
ON-OFF solenoid safety valve
Filter incorporated in solenoid

Supply pressure:

Calibration pressure:

Temperature range:

Solenoid power supply:

Maximum flow rate:

2.5 to 30 bar

0,95 bar

-20° to 120°C

6 to 16 Volts

30 Kg/h

Weight:

1450 g.

Homologation: ECE/ONU R67/01

COALESCENCE EURO 5 LPG FILTER

Type of gas: LPG or Methane

Pipe diameter IN: 14 mm Pipe diameter OUT: 14 mm Body diameter: 58 mm

Maximum pressure: 2.2 bar (absolute)

Filtering grade: 10 micron

Weight: 75 g

Homologation: ECE R110 - ECE R67/01

COALESCENCE EURO 6 LPG FILTER

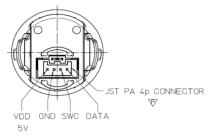
Type of gas: LPG or Methane

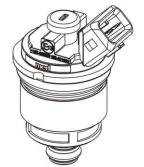
Pipe diameter IN: 14 mm
Pipe diameter OUT: 14 mm
Body diameter: 50 mm

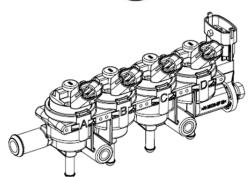
Maximum pressure: 2.2 bar (absolute)

Filtering grade: 10 micron

Weight: 75 g


Homologation: ECE R110 - ECE R67/01


GAS INJECTION


Fault Finding - LPG System Description

SWITCH

The switch shows the level of LPG and offers the driver a choice of fuels (gas/petrol).

The switch have an internal "buzzer" that work when the system switch back to petrol in case of any fault on LPG system or when the LPG tank is empty.

Pin assignment:

- 1) +5V Power supply
- 2) Ground
- 3) Contact
- 4) Serial Data

GAS INJECTOR used on EU5 application

Current management: 6/1.5A "Peak and hold"

Supply voltage: 6 to 16 Volts
Temperature range: - 40 °C to +120 °C
Nominal pressure: 0.8 to 3 bar

Opening time @12V: 2.0 ms

Dimensions: Ø 32 x h 73 mm

Weight: 120 g

Homologation: ECE R 110 - ECE R 67/01

GAS RAIL used on EU6 application (SingleInjectors cannot be singularly replaced)

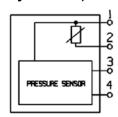
Version: 3 and 4 cylinder

Current management: 8/1.6A "Peak and hold" Supply voltage: 6 to 16 Volts

Supply voltage: 6 to 16 Volts
Temperature range: - 40 °C to +120 °C
Nominal pressure: 0.8 to 3 bar
Opening time @12V: 2.0 ms

Dimensions: Ø 32 x h 73 mm

Weight: 120 g


Homologation: ECE R 110 - ECE R 67/01

LPG PRESSURE AND TEMPERATURE SENSOR

Supply voltage: 4.5 to 5.5 Volts
Temperature range: - 40 °C to +120 °C
Nominal pressure: 50 to 350 kPa

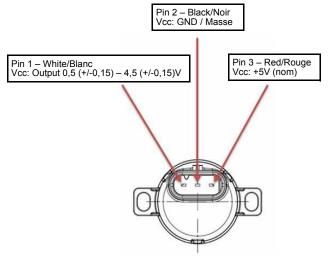
Nominal pressure

(only for H4Bt): 50 to 550 KPa

Connector-Track assignment

Track 1 Ground
Track 2 NTC resistor

Track 3 +5 V


Track 4 Output signal

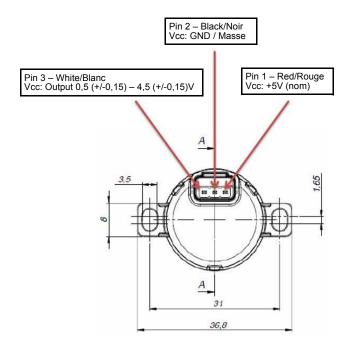
GAS INJECTION

Fault Finding - LPG System Description

HALL EFFECT TANK LEVEL SENSOR (3 TERMINALS)

- 1) The level sensor must be supplied with 5,00 V nominal
- 2) Supply Voltage must be in the range 4,5 5,5 V. Below 4,5 V the measure isn't accurate; over 5,5 V the sensor could be damaged.
- 3) The Hall Effect Sensor Output Voltage is Ratiometric over the Power Supply

Level Sensor / Capteur Niveau X98, H79PH2, X92, X67 (463518000) Clio IV, Duster 2, Lodgy, Dokker.


(External tank)

GAS INJECTION

Fault Finding - LPG System Description

- 1) The level sensor must be supplied with 5,00 V nominal
- 2) Supply Voltage must be in the range 4,5 5,5 V. Below 4,5 V the measure isn't accurate; over 5,5 V the sensor could be damaged.
- 3) The Hall Effect Sensor Output Voltage is Ratiometric over the Power Supply

Level Sensor / Capteur Niveau X52 (616506000) Sandero II

(Internal tank)

LC03

RESISTIVE TANK LEVEL SENSOR (2 TERMINALS)

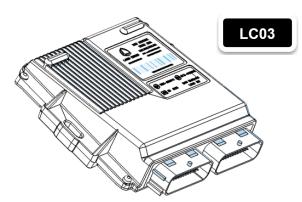
Temperature range: - 10 °C to +85 °C

Nominal resistance: from 100 to 21800 ohm

Connector-Track assignment

Track 1 Tank Level Voltage

Track 2 Ground

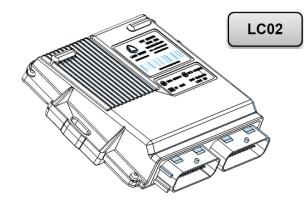

NT6525.mif V4

GAS INJECTION

Fault Finding – LPG System Description

GCU PINOUT

LC03 GAS CONTROL UNIT


Automotive 16 bit 40 Mhz microprocessor Manages up to 6 injectors and 2 additional relay Internal self-diagnosis for sensors and actuators Temperature range – 40° to 105°C CAN communication

	LANDIRENZO GCU	J PIN-0	OUT 56 WAYS
PIN	FUNCTION DESCRIPTION	PIN	FUNCTION DESCRIPTION
1	N.C.	29	N.C.
2	Gasoline Pump Shutdown Relay Control	30	N.C.
	when present on the specific vehicle)		
3	N.C.	31	N.C.
4	N.C.	32	N.C.
5	N.C.	33	N.C.
6	N.C.	34	N.C.
7	POWER GROUND	35	N.C.
8	N.C.	36	TNKLV_IN - LEVEL SENSOR IN
9	N.C.	37	+15_PINJ
10	Gasoline Pump Shutdown Relay Coil	38	N.C.
	Feedback		
	(when present on the specific vehicle)		
11	Gasoline Pump Shutdown Relay Status	39	N.C.
	(when present on the specific vehicle)		
12	PC_TX	40	PC_RX
13	N.C.	41	N.C.
14	CAN H	42	CAN L
15	+30_POWER SUPPLY FROM BATTERY	43	+30_POWER SUPPLY FROM BATTERY
16	+15 INJECTOR SUPPLY (Safety Relay)	44	+15 INJECTOR SUPPLY (Safety Relay)
17	GV1_OUT - TANK SHUT OFF VALVE	45	GASP_IN - LPG PRESSURE
18	GV2_OUT - VAPORIZER SHUT OFF VALVE	46	GAST_IN - LPG TEMPERATURE
19	VCC_S +5V LPG PRESSURE SENSOR	47	VCC_S +5V TANK LEVEL SENSOR
20	HMI_GAS_L - SERIAL LINE SWITCH	48	LOGIC GROUND
21	VCC_HMI_GL - 5 VOLT SUPPLY SWITCH	49	F_SW_IN - LPG PUSHBUTTON SWITCH
22	POWER GROUND	50	+15_KEY-ON / +APC
23	INJECTOR 4 EMULATOR INJ SIDE	51	INJECTOR 4 EMULATOR GCU SIDE
24	INJECTOR 3 EMULATOR INJ SIDE	52	INJECTOR 3 EMULATOR GCU SIDE
25	INJECTOR 2 EMULATOR INJ SIDE	53	INJECTOR 2 EMULATOR GCU SIDE
26	INJECTOR 1 EMULATOR INJ SIDE	54	INJECTOR 1 EMULATOR GCU SIDE
27	GAS INJECTOR 1	55	GAS INJECTOR 3
28	GAS INJECTOR 2	56	GAS INJECTOR 4

GAS INJECTION

Fault Finding – LPG System Description

LC02 GAS CONTROL UNIT

Automotive 16 bit 40 Mhz microprocessor Manages up to 6 injectors and 2 additional relay Internal self-diagnosis for sensors and actuators Temperature range – 40° to 105 °C CAN communication

	LANDIRENZO GCU PIN-OUT 56 WAYS				
PIN	FUNCTION DESCRIPTION	PIN	FUNCTION DESCRIPTION		
1	INJECTOR 1 EMULATOR GCU SIDE	29	INJECTOR 1 EMULATOR INJ SIDE		
2	INJECTOR 2 EMULATOR GCU SIDE	30	INJECTOR 2 EMULATOR INJ SIDE		
3	INJECTOR 3 EMULATOR GCU SIDE	31	INJECTOR 3 EMULATOR INJ SIDE		
4	INJECTOR 4 EMULATOR GCU SIDE	32	INJECTOR 4 EMULATOR INJ SIDE		
5	+15_KEY-ON / +APC	33	N.C.		
6	GAST_IN - LPG TEMPERATURE	34	N.C.		
7	N.C.	35	N.C.		
8	GASP_IN - LPG PRESSURE	36	N.C.		
9	VCC_S +5V LPG PRESSURE SENSOR	37	PRESSURE SENSOR LOGIC GROUND		
10	PC_RXD	38	PC_TXD		
11	SERIAL SUPPLY	39	SERIAL LOGIC GROUND		
12	N.C.	40	N.C.		
13	N.C.	41	N.C.		
14	CAN H	42	N.C.		
15	+30_POWER SUPPLY FROM BATTERY	43	+30_POWER SUPPLY FROM BATTERY		
16	N.C.	44	N.C.		
17	N.C.	45	N.C.		
18	TNKLV_IN - LEVEL SENSOR IN	46	N.C.		
19		47	HMI_GAS_L - SERIAL LINE SWITCH		
20	CAN L	48	F_SW_IN - LPG PUSHBUTTON SWITCH		
21	LEVEL SENSOR LOGIC GROUND	49	VCC_HMI_GL - 5 VOLT SUPPLY SWITCH		
22	LOGIC GROUND	50	SWITCH LOGIC GROUND		
23	GV2_OUT - TANK SHUT OFF VALVE	51	GROUND TANK SHUT OFF VALVE		
24	GV1_OUT - VAPORIZER SHUT OFF VALVE	52	GROUND VAPORIZER SHUT OFF VALVE		
25	POWER GROUND	53	POWER GROUND		
26	+15 INJECTOR SUPPLY (Safety Relay)	54	+15 INJECTOR SUPPLY (Safety Relay)		
27	GAS INJECTOR 1	55	GAS INJECTOR 3		
28	GAS INJECTOR 2	56	GAS INJECTOR 4		

GCU DIAGNOSIS

SUMMARY OF FAULT THAT CAN BE READ WITH THE DIAGNOSTIC TOOL

RENAULT CLIP Faults (Managed on all LC02 and LC03 with 2C39 -RDC720 SW)			LR Diagnosis Enum	LPG System Failure Info CAN GCU
DTC (\$)	Failure Type (\$)	Description	LABEL	LABEL
	•	E	LECTRICAL Failures	
	15	TANK SOLENOID VALVE	DIAGTANKSOV_OC	ElecDiagLPGTankValve_OC
2666	15	CIRCUIT	DIAGTANKSOV_SCPLUS	ElecDiagLPGTankValve_OC
2000	11		DIAGTANKSOV_SCGND	Short circuit to Ground
	38		DIAG_TANKSOVMAXCYC	TankShutOffValveCyclesDiagnosis
	15	REGULATOR SOLENOID VALVE	DIAGREGSOV_OC	ElecDiagPressureValve_OC
2294	15	CIRCUIT	DIAGREGSOV_SCPLUS	ElecDiagPressureValve_OC
	11		DIAGREGSOV_SCGND	ElecDiagPressureValve_CC
1572	38	REGULATOR SOLENOID VALVE CYCLES	DIAGREGSOVMAXCYC	VaporizerShutOffValveCyclesDiagn sis
	12	LPG PRESSURE SENSOR	DIAGPGAS_ELECT_SCPLUS	ElecDiagGazPressure_CC_plus
18A	11	CIRCUIT	DIAGPGAS_ELECT_SCGND_OC	ElecDiagGazPressure_CC
	13		DIAGPGAS_ELECT_SCGND_OC	ElecDiagGazPressure_OC
185	11	GAS TEMPERATURE SENSOR	DIAGTGAS_ELECT_SCGND	ElecDiagGazPressure_CC_plus
100	15	CIRCUIT	DIAGTGAS_ELECT_SCPLUS_OC	ElecGazTemperature_OC
2265	11	GAS TANK GAUGE VOLTAGE	DIAGTANKLEVEL_SCGND	ElecTankLevelSensor_CC
2200	15	SIGNAL	DIAGTANKLEVEL_SCPLUS_OC	ElecTankLevelSensor_OC
	12	CYLINDER 1 GAS INJECTOR	DIAG_GINJ1_SCPLUS	ElecGazInj_1_CC_plus
10A0	14	CIRCUIT	DIAG_GINJ1_SCGND	ElecGazInj_1_OC_or_CC
	14		DIAGGINJ1_OC	ElecGazInj_1_OC_or_CC
	12	CYLINDER 2 GAS INJECTOR	DIAGGINJ2_SCPLUS	ElecGazInj_2_CC_plus
10A1	14	CIRCUIT	DIAGGINJ2_SCGND	ElecGazInj_2_OC_or_CC
	14		DIAGGINJ2_OC	ElecGazInj_2_OC_or_CC
	12	CYLINDER 3 GAS INJECTOR	DIAGGINJ3_SCPLUS	ElecGazInj_3_CC_plus
10A2	14	CIRCUIT	DIAGGINJ3_SCGND	ElecGazInj_3_OC_or_CC
	14		DIAGGINJ3_OC	ElecGazInj_3_OC_or_CC
	12	CYLINDER 4 GAS INJECTOR	DIAGGINJ4_SCPLUS	ElecGazInj_4_CC_plus
10A3	14	CIRCUIT	DIAGGINJ4_SCGND	ElecGazInj_4_OC_or_CC
	14		DIAGGINJ4_OC	ElecGazInj_4_OC_or_CC
1316	11	GASOLINE PUMP SHUTDOWN RELAY	DIAG_GSLPMPRLY_SCGND_OC DIAG_GSLPMPRLY_PLAUS DIAG_GSLPMPRLY_DAMAGE	ElecGslPmpRelayDrv_OC_or_CC
	12		DIAG_GSLPMPRLY_SCPLUS	ElecGslPmpRelayDrv_CC_plus


GCU DIAGNOSIS

Fault Finding – Fault Summary Table

	FUNCTIONAL Failures					
DTC (\$)	Failure Type (\$)	Description	Reference	LABEL		
	21	PRESSURE IN THE LPG RAIL	DIAGPGAS_FUNCT_HIGH	FctDiagGazPressure_TooHigh		
	22					
2293				FctDiagGazPresLPGTank_coherenc y		
	64		DIAGPGAS_PLAUS	On Euro6 applications this DTC will be generated only when TANK LVL over a tunable value (usually 20%) and no re-pressurization happens after 1st switchback.		
0184	21	GAS TEMPERATURE IN THE RAIL	DIAGTGAS_FUNCT_LOW	FctGazTemperature_TooLow		
	22		DIAGTGAS_FUNCT_HIGH	FctGazTemperature_TooHigh		
1318	21	GAS PRESSURE LEAKAGE	DIAGLOWPRESS_LEAKAGE	FctGazLeakageLoPress LPG System isn't able to pressurize the circuit (Pgas<1150mBar)		
			DIAG_LOPRESS_SMALLLEAKAGE	LPG System detect a pressure decay during testing phase		
1608	4B	INJECTOR CONTROL COMPUTER	DIAGNTC1TEMP_HIGH	ElecInjectorDrivers_Overtemp		
109A	64	AUTOMATIC COMPUTER FEED RELAY	FctSafetyRelay_coherency	FctSafetyRelay_coherency		
109A	64	AUTOMATIC COMPUTER FEED RELAY	DIAG_SR_VOLTAGE_LOW DIAG_SR_SCPLUS DIAG_SR_SCGND	Internal Safety Relay Short Circuit		
1570	13	LPG SWITCH STATUS	DIAGBUTTON_SCGND_OC	ElecDiagSwitchPosition_OC		
1612	16	SENSOR SUPPLY VOLTAGE	DIAG5V_LOW	LGPPowerSupplyTooLowDiagnosis		
1012	17		DIAG5V_HIGH	LGPPowerSupplyTooHighDiagnosis		
1610	16	BATTERY VOLTAGE	DIAGVBAT_LOW	ElecBatteryVoltage_U_Min		
	17		DIAGVBAT_HIGH	ElecBatteryVoltage_U_Sup		
0618	46	LPG SYSTEM	DIAGEEPROM	ElecE2PROM_DIAG		

GCU DIAGNOSIS

Fault Finding – Fault Summary Table

		DTC Related t	o LPG System but managed by ECU	
			CAN Messages Faults	LPG System Failure Description
DTC (\$)	Failure Type (\$)	Description	Reference	LABEL
0300	F8	Random/Multiple Cylinder Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
0301	F8	Cylinder 1 Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
0302	F8	Cylinder 2 Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
0303	F8	Cylinder 3 Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
0304	F8	Cylinder 4 Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
0313	F8	Misfire Detected with Low Fuel	Internal Gasoline ECU diagnostics	Not managed by LPG System
0314	F8	Single Cylinder Misfire (Cylinder not Specified)	Internal Gasoline ECU diagnostics	Not managed by LPG System
1314	F8	Single Cylinder LPG Misfire (Cylinder not Specified)	Internal Gasoline ECU diagnostics	Not managed by LPG System
1300	F8	Random/Multiple Cylinder LPG Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
1301	F8	Cylinder 1 LPG Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
1302	F8	Cylinder 2 LPG Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
1303	F8	Cylinder 3 LPG Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
1304	F8	Cylinder 4 LPG Misfire Detected	Internal Gasoline ECU diagnostics	Not managed by LPG System
C108	87	Lost communication with alternative fuel control module	Internal Gasoline ECU diagnostics	Not managed by LPG System
1170	09	LPG Fuel Trim Function	Internal Gasoline ECU diagnostics	Not managed by LPG System

GCU DIAGNOSIS

Fault Finding - Interpretation of faults

DTC2666 PRESENT OR STORED

NOTES

TANK SOLENOID VALVE CIRCUIT

15: Open circuit

15: Short circuit to +12 V

11: Short circuit to ground.

38: Too much open close cycles

Conditions for applying the diagnostic to stored faults:

If the fault reappears in the memory after the engine has been running for 5 minutes in

LPG mode

Special notes:

Use the correct bornier Ele. 1681 for all operations on the engine management

computer

This electrical fault could occur when the GCU Diagnostic System detects a short circuit to +12V, a short circuit to ground, a wiring interruption or solenoid coil resistance out of range, in the circuit controlling the tank electrovalve solenoid.

FAILURE TYPE 15 and 11

NOTES

Priority of treatment if more than one fault is present: If the fault DTC2294 is present at the same time, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on GCU Track 16 and 44.

Check if the tank electrovalve plug has been properly connected. Repair if necessary.

Check the tank electrovalve connections. Repair if necessary.

Check the computer connections. Repair if necessary

Remove the GCU 56 way connector.

Ensure the continuity of the connection between:

LC03	GCU connector Track 17 → Track 2 of the EV plug
LC03	Track 1 of the EV plug → Ground
LC02	GCU connector Track 23 → Track 1 of the EV plug
LC02	Track 2 of the EV plug → Ground

Measure the resistance of the coil of the tank Electrovalve

Replace the coil if the resistance is not in the range 11,0 and 13,5 ohm at ambient temperature (20°C).

If the fault persist after these check, replace the coil.

The Tank Solenoi Multivalve reached the number of Opening/Closing Cycle limit. Replace the Tank Solenoid Multivalve

GCU DIAGNOSIS

DTC2294
PRESENT
OR
STORED

PRESSURE CONTROL CIRCUIT VALVE

15: Open circuit

15: Short circuit to +12 V11: Short circuit to ground.

Conditions for applying the diagnostic to stored faults:

If the fault reappears in the memory after the engine has been running for 5 minutes in LPG mode

NOTES

Special notes:

Use the correct bornier Ele.1681 for all operations on the engine management computer

This electrical fault could occur when the GCU Diagnostic System detects a short circuit to +12V, a short circuit to ground, a wiring interruption or solenoid coil resistance out of range, in the circuit controlling the tank electrovalve solenoid.

DTC2294 PRESSURE CONTROL CIRCUIT VALVE

FAILURE TYPE 15 and 11	NOTES	Priority of treatment if more than one fault is present: If the fault DTC2666 is present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on GCU Track 16 and 44.
---------------------------	-------	--

Check if the pressure regulator electrovalve plug has been properly connected. Repair if necessary.

Check the pressure regulator electrovalve connections. Repair if necessary.

Check the computer connections. Repair if necessary

Remove the GCU 56 way connector.

LC03	GCU connector Track 18 → Track 1 of the EV plug
LC03	Track 2 of the EV plug → Ground
LC02	GCU connector Track 23 → Track 1 of the EV plug
LC02	Track 2 of the EV plug → Ground
LC02	Truck 2 of the Ev plug / Glound

If required, replace the faulty harness.

Measure the resistance of the coil of the electrovalve.

Replace the coil if the resistance is not in the range 11,0 and 13,5 ohm at ambient temperature (20 °C).

If the fault persist after these check, replace the coil.

GCU DIAGNOSIS

DTC1572 PRESENT	PRESSURE CONTROL CIRCUIT VALVE 38: Too much open close cycles
OR STORED	

DTC1572 PRESSURE CONTROL VALVE CIRCUIT

|--|

The Solenoid Valve assembled on the Reducer/Vaporizer inlet reached the number of Opening/Closing Cycle limit.
Replace the Reducer/Vaporizer Solenoid Valve

NT6525.mif V4

GCU DIAGNOSIS

Fault Finding – Interpretation of faults

DTC018A PRESENT OR STORED	LPG PRESSURE SENSOR CIRCUIT 11: Short-circuit to ground 12: Short-circuit to +5V 13: Open Circuit
NOTES	Conditions for applying the diagnostic to stored faults: If the fault reappears in the memory after the engine has been running for 5 minutes in LPG mode
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer
	WARNING: It is imperative that no ohmmeter check is carried out on the pressure sensor (risk of destroying it).

This electrical fault could occur when the GCU Diagnostic System detects any electrical fault (short circuit, wiring interruption or LPG Pressure Sensor in open circuit or short circuit) in the circuit acquiring the LPG Pressure Signal.

DTC018A LPG PRESSURE SENSOR CIRCUIT

FAILURE TYPE 11, 12 and 13	NOTES	Priority of treatment if more than one fault is present: If the fault DTC018A is present at the same time, perform the current check first.
Check the LPG pressure	e connections. Repair if ne	cessary
Check the GCU connect	tions. Repair if necessary.	
Remove the GCU 56 wa	ay connector.	
LC03	GCU connector Track 19	→ Track 3 of the sensor plug
LC03	GCU connector Track 45	5 → Track 4 of the sensor plug
LC03	Track 1 of the sensor plu	ug → Ground
LC02	GCU connector Track 9	→ Track 3 of the sensor plug
LC02	GCU connector Track 8	→ Track 4 of the sensor plug
LC02	Track 1 of the sensor plu	ug → Ground

AFTER REPAIR	Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.
	Switch the ignition off and carry out a road test followed by a test using diagnosis tool.

GCU DIAGNOSIS

Ensure the insulation against Ground of the connection between:

LC03	GCU connector Track 19 → Track 3 of the sensor plug
LC02	GCU connector Track 9 → Track 3 of the sensor plug

Repair if necessary. If required, replace the faulty harness.

Reconnect the GCU 56 way connector and check for the presence of a 5V +/-10% supply voltage on Track 3 of the sensor when in Key-On and push button LEDs are turned on.

If the fault persist after these check, carry out a road test followed by a test using the diagnostic tool and proceed to fault finding of "Unexpected switch back to petrol" Chart 1.

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only

GCU DIAGNOSIS

DTC2293 PRESENT OR STORED	LPG PRESSURE 21: Low LPG pressure 22: High LPG pressure 64: Incoherence
NOTES	Conditions for applying the diagnostic to stored faults: If the fault reappears in the memory after the engine has been running for 5 minutes in LPG mode
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer
	WARNING: It is imperative that no ohmmeter check is carried out on the pressure sensor (risk of destroying it).

This functional fault could occur when the GCU Diagnostic System detects pressure parameters out of range (LPG pressure too low or too high to guarantee a regular operation of the engine, or pressure delay due to a leakage in the rubber hoses) in the circuit controlling the LPG pressure supply to the LPG rail. The 64 recurrence could be symptomatic of a clogged hose or a leakage in a rubber hose connection or damaged hose.

DTC2293 LPG PRESSURE

FAILURE TYPE 21 and 22	NOTES	Priority of treatment if more than one fault is present: Deal with the faults DF633/DTC1170, DF635/DTC1301, DF636/DTC1302, DF637/DTC1303, DF638/DTC1304 and DF639/DTC1300 if are present at the same time. Deal with the electrical fault DTC018A if is present at the same time.
---------------------------	-------	---

Ensure that there are no leaks on the inlet manifold.

Repair if necessary.

If no fault is found, then there must be a problem with the LPG fuel system and proceed to fault finding of "Unexpected switch back to petrol" Chart 1 checking:

- Fuel check
- Fuel pressure sensor check
- Multivalve electrovalve check
- Fuel supply hoses check
- Fuel pressure regulator check

Replace the defective component.

For both

LC03

LC02

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

DTC2293 LPG PRESSURE

FAILURE TYPE 64	NOTES	Priority of treatment if more than one fault is present: Deal with the electrical fault DTC018A if is present at the same time.
--------------------	-------	---

Ensure that there are no leaks on the inlet manifold. Repair if necessary.

If no fault is found, then there must be a problem with the LPG fuel system and proceed to fault finding of:

Fault finding Assisted by PlusMaxRE Chart LPG 2

FUEL SUPPLY CONFORMITY CHECK: LEAKAGE TEST [DTC 2293-64]

FUEL SUPPLY CONFORMITY CHECK: TOO LOW PRESSURE [DTC 2293-64]

"IMPOSSIBLE SWITCHING IN LPG MODE" Chart 3 and/or "IMPOSSIBLE TO SWITCH IN LPG MODE AND LPG SWITCH IS BUZZING" Chart 8.

For both

LC02

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

DTC1318
PRESENT
OR
STORED

NOT CORRECT LPG PRESSURIZATION

21: Low LPG pressure

Conditions for applying the diagnostic to stored faults:

If the fault reappears in the memory after the engine has been running for 5 minutes in LPG mode

NOTES

Special notes:

Use the correct bornier Ele. 1681 for all operations on the engine management computer

WARNING: It is imperative that no ohmmeter check is carried out on the pressure sensor (risk of destroying it).

This functional fault could occur when the GCU Diagnostic System detects pressure parameters out of range (LPG pressure too low or too high to guarantee a regular operation of the engine, or pressure decay due to a leakage in the rubber hoses) in the circuit controlling the LPG pressure supply to the LPG rail and could be symptomatic of a clogged hose or a leakage in a rubber hose connection or damaged hose.

FAILURE TYPE 21

NOTES

Priority of treatment if more than one fault is present: Deal with the electrical fault **DTC018A** if is present at the same time.

Ensure that there are no leaks on the inlet manifold. Repair if necessary.

If no fault is found, then there must be a problem with the LPG fuel system and proceed to fault finding of:

Fault finding Assisted by PlusMaxRE Chart LPG 2

FUEL SUPPLY CONFORMITY CHECK: LEAKAGE TEST [DTC 2293-64] or [DTC 1318-64]

FUEL SUPPLY CONFORMITY CHECK: TOO LOW PRESSURE [DTC 2293-64] or [DTC 1318-64]

"IMPOSSIBLE SWITCHING IN LPG MODE" Chart 3 and/or "IMPOSSIBLE TO SWITCH IN LPG MODE AND LPG SWITCH IS BUZZING" Chart 8.

For both

LC03

LC02

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

DTC0185	LPG TEMPERATURE SENSOR CIRCUIT
PRESENT	11: Open circuit
OR	15: Short circuit to ground
STORED	

NOTES	Conditions for applying the diagnostic to stored faults: If the fault reappears in the memory after the engine has been running for 5 minutes in LPG mode	
NOTES	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer	

This electrical fault could occur when the GCU Diagnostic System detects any electrical fault (short circuit, wiring interruption or LPG Temperature Sensor in open circuit or short circuit) in the circuit acquiring the LPG Temperature Signal.

DTC0185 LPG TEMPERATURE SENSOR CIRCUIT

FAILURE TYPE 11 and 15	NOTES	Priority of treatment if more than one fault is present: If the fault DTC0184 is present at the same time, perform the current check first.
---------------------------	-------	---

Check the LPG pressure connections. Repair if necessary

Check the GCU connections. Repair if necessary.

Remove the GCU 56 way connector.

LC03	GCU connector Track 46 → Track 2 of the sensor plug
LC03	Track 1 of the sensor plug → Ground
LC02	GCU connector Track 6 → Track 2 of the sensor plug
LC02	Track 1 of the sensor plug → Ground
	, 5

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

Ensure the insulation against +12V of the connection between:		
LC03	GCU connector Track 46 → Track 3 of the sensor plug	
LC02 GCU connector Track 6 → Track 3 of the sensor plug		
Repair if necessary. If required, replace the faulty harness.		

If the fault persist after these check, carry out a road test AND proceed to fault finding of "Unexpected switch back to petrol" Chart 1.

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

Fault Finding - Interpretation of faults

DTC0184 PRESENT OR STORED	LPG TEMPERATURE 21: Low LPG temperature 22: High LPG temperature
NOTES	Conditions for applying the diagnostic to stored faults: If the fault reappears in the memory after the engine has been running for 5 minutes in LPG mode
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer
	WARNING: It is imperative that no ohmmeter check is carried out on the pressure sensor (risk of destroying it).

This functional fault could occur when the GCU Diagnostic System detects temperature parameters out of range (LPG temperature too low or too high to guarantee a regular combustion and operation of the engine) in the circuit controlling the LPG pressure supply to the LPG rail.

DTC0184 LPG TEMPERATURE

FAILURE TYPE 21 and 22	NOTES	Priority of treatment if more than one fault is present: Deal with the electrical fault DTC0185 if is present at the same time.
---------------------------	-------	--

Proceed to fault finding of "wrong gas temperature" fault finding Chart 2

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

1	7C	

DTC2265 PRESENT OR STORED	LPG TANK LEVEL SENSOR CIRCUIT 11: Open circuit 15: Open circuit or short-circuit to +5V
NOTES	Conditions for applying the diagnostic to stored faults: If the fault reappears in the memory after the engine has been running for 5 minutes in LPG mode
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer
	WARNING: It is imperative that no ohmmeter check is carried out on the tank level sensor (risk of destroying it).

This electrical fault could occur when the GCU Diagnostic System detects any electrical fault (short circuit, wiring interruption or LPG Level Sensor in open circuit or short circuit) in the circuit acquiring the LPG Tank Level Signal.

DTC2265 GAS TANK GAUGE VOLTAGE SIGNAL

NOTES	Priority of treatment if more than one fault is present: If faults DTC2666 and DTC2294 are present at the same time, perform a rear wiring harness check first.	
vel Signal. Repair if neces	sary	
tions. Repair if necessary.		
ay connector.		
GCU connector Track 47	7 → Track 1 of the sensor plug	
GCU connector Track 36	S → Track 3 of the sensor plug	
Track 2 of the sensor plu	ug → Ground	
GCU connector Track 18	3 → Track (1) of the sensor plug	
GCU connector Track 21	→ Track (2) of the sensor plug	
	vel Signal. Repair if necessions. Repair if necessary. y connector. GCU connector Track 47 GCU connector Track 36 Track 2 of the sensor plu GCU connector Track 18	NOTES If faults DTC2666 and DTC2294 are present at the same time, perform a rear wiring harness check first. vel Signal. Repair if necessary tions. Repair if necessary.

AFTER REPAIR	Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.
	Switch the ignition off and carry out a road test followed by a test using diagnosis tool.

GCU DIAGNOSIS

On LC03 Systems only, ensure the continuity of the connection between:

LC03	Track 2 of the sensor plug → Ground
------	-------------------------------------

Ensure the insulation against +12V of the connection between:

LC03	GCU connector Track 47 → Track 2 of the sensor plug
LC02	GCU connector Track 21 → Track (2) of the sensor plug

GCU connector Track 47 → Track 1 of the EV plug

Repair if necessary. If required, replace the faulty harness.

If the harness is conform replace just the level sensor, not the complete MultiValve.

Reconnect the GCU 56 way connector and check for the presence of a 5 +/-10% volt supply on Track 1 of the sensor when in Key-On and push button LEDs are turned on.

If there is no supply, replace the injection computer (reprogram and configure the computer: see introduction).

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

DTC1608 PRESENT OR STORED	INJECTION CONTROL COMPUTER 4B: GCU's Over temperature
NOTES	Conditions for applying the diagnostic to stored faults: If the fault reappears in the memory after the engine has been running for 8 minutes in LPG mode
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer

This electrical fault could occur when the GCU Diagnostic System detects as an over temperature of LPG Injector drivers due to a short circuit to +12V in the wiring harness, an intermittent wiring interruption or solenoid coil resistance out of range.

DTC1608 INJECTION CONTROL COMPUTER

FAILURE TYPE 4B	NOTES	Priority of treatment if more than one fault is present: If one or more of the following faults DTC10A0, DTC10A1, DTC10A2, DTC10A3, are present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on:
		GCU Track 16 and 44 on LC03 Systems GCU Track 26 and 54 on LC02 Systems
		and deal with those faults before all else.

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

Check if the LPG Injectors plugs has been properly connected. Repair if necessary.

Check the connection and condition of the injector connector. Change the connector if necessary.

Check the ground connection to the chassis. Repair if necessary.

With the engine running in LPG mode, check for the presence of +12 volts on the correct Track (1 or 2) of the injector. (Check the correct track assignment on wiring diagram of the function for the vehicle concerned).

Connect the bornier in place of the computer and check the resistance value of the injector by measuring between tracks 1 and 2 of the LPG injector:

Track 16 and 27 for an injector 1;

Track 16 and 28 for an injector 2;

Track 44 and 55 for an injector 3;

Track 44 and 56 for an injector 4;

Replace the interested LPG Injector if the resistance is not approximately: **1.2** Ω **± 0.2** Ω **at 25** °C. (For more details, consult the electrical properties of the LPG injector in the Repair method).

If the fault persists after these checks, contact Techline

AFTER REPAIR	Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.
	Switch the ignition off and carry out a road test followed by a test using diagnosis tool.

GCU DIAGNOSIS

DTC10A0 PRESENT OR STORED	CYLINDER 1 LPG INJECTOR CIRCUIT 12: Short circuit to +12 volts 14: Open circuit 14: Short circuit to ground		
NOTES	Conditions for applying the diagnostic to stored faults: The fault is declared present while: - the LPG system in pre-heating mode or while or the engine is running in LPG mode and - the LPG Injector 1 is activated for 50 time and for 50 times the GCU Diagnostic System detect the fault.		
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer		

These electrical faults could occur individually or in multiple messages, when the GCU Diagnostic System detects any electrical fault (short circuit, wiring interruption or solenoid coil resistance out of range) in the circuit controlling the four LPG injectors.

DTC10A0 CYLINDER 1 LPG INJECTOR CIRCUIT

FAILURE TYPE 12 and 14	NOTES	Priority of treatment if more than one fault is present: If one or more of the following faults DTC10A0, DTC10A1, DTC10A2, DTC10A3, are present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on:		
		GCU Track 16 and 44 on LC03 Systems GCU Track 26 and 54 on LC02 Systems		
		and deal with those faults before all else.		

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

Check if the LPG Injectors plugs has been properly connected. Repair if necessary.

Check the connection and condition of the injector connector. Change the connector if necessary.

Check the ground connection to the chassis. Repair if necessary.

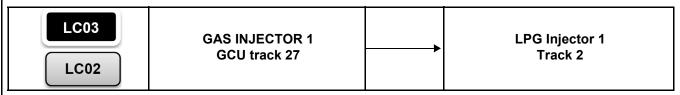
With the engine running in gasoline mode and the LPG Pushbutton in waiting mode, check for the presence of +12 volts on the correct Track (1 or 2) of the injector. (Check the correct track assignment on wiring diagram of the function for the vehicle concerned).

AFTER REPAIR	AF	TER	REP	AIR
--------------	----	-----	-----	-----

Clear the faults from the computer memory only using CLIP.

Switch the ignition off and carry out a customer road test to confirm repair using engine speed and load ranges frequently encountered during the vehicle's life, followed by a test using diagnosis tool.

GCU DIAGNOSIS



If there is no supply voltage, check the insulation, continuity and absence of interference resistance of the connection:

LC03	+15 INJECTOR SUPPLY GCU track 16	-	LPG Injector 1 Track 1
LC02	+15 INJECTOR SUPPLY GCU track 26	-	LPG Injector 1 Track 1

Repair if necessary.

If there is no supply voltage, check the insulation, continuity and absence of interference resistance of the connection:

Repair if necessary.

Check the resistance value of the injector by measuring between tracks 1 and 2 of the LPG injector.

Replace the interested LPG Injector if the resistance is not approximately: **1.2** $\Omega \pm 0.2$ Ω at **25** °C. (For more details, consult the electrical properties of the LPG injector in the Repair method).

Check the resistance value of the injector by measuring between tracks 1 and 2 of the LPG injector.

Replace the interested LPG Injector if the resistance is not approximately: **1.2** $\Omega \pm 0.2$ Ω at **25** °C. (For more details, consult the electrical properties of the LPG injector in the Repair method).

Reverse the connection between 2 LPG injectors.

If the fault persist after these check, replace GCU.

Restore the correct connection on the LPG injectors.

AFTER REPAIR

Clear the faults from the computer memory only using CLIP.

Switch the ignition off and carry out a customer road test to confirm repair using engine speed and load ranges frequently encountered during the vehicle's life, followed by a test using diagnosis tool.

Deal with any other possible faults.

V4

GCU DIAGNOSIS

DTC10A1 PRESENT OR STORED	CYLINDER 2 LPG INJECTOR CIRCUIT 12: Short circuit to +12 volts 14: Open circuit 14: Short circuit to ground
NOTES	Conditions for applying the diagnostic to stored faults: The fault is declared present while: - the LPG system in pre-heating mode or while or the engine is running in LPG mode and - the LPG Injector 1 is activated for 50 time and for 50 times the GCU Diagnostic System detect the fault.
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer

These electrical faults could occur individually or in multiple messages, when the GCU Diagnostic System detects any electrical fault (short circuit, wiring interruption or solenoid coil resistance out of range) in the circuit controlling the four LPG injectors.

DTC10A1 CYLINDER 2 LPG INJECTOR CIRCUIT

FAILURE TYPE 12 and 14	NOTES	Priority of treatment if more than one fault is present: If one or more of the following faults DTC10A0, DTC10A1, DTC10A2, DTC10A3, are present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on:		
		GCU Track 16 and 44 on LC03 Systems GCU Track 26 and 54 on LC02 Systems		
		and deal with those faults before all else.		

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

Check if the LPG Injectors plugs has been properly connected. Repair if necessary.

Check the connection and condition of the injector connector. Change the connector if necessary.

Check the ground connection to the chassis. Repair if necessary.

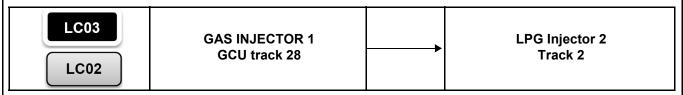
With the engine running in gasoline mode and the LPG Pushbutton in waiting mode, check for the presence of +12 volts on the correct Track (1 or 2) of the injector. (Check the correct track assignement on wiring diagram of the function for the vehicle concerned).

AFTER REPAIR	R
--------------	---

Clear the faults from the computer memory only using CLIP.

Switch the ignition off and carry out a customer road test to confirm repair using engine speed and load ranges frequently encountered during the vehicle's life, followed by a test using diagnosis tool.

GCU DIAGNOSIS



If there is no supply voltage, check the insulation, continuity and absence of interference resistance of the connection:

LC03	+15 INJECTOR SUPPLY GCU track 16	-	LPG Injector 2 Track 1
LC02	+15 INJECTOR SUPPLY GCU track 26		LPG Injector 2 Track 1

Repair if necessary.

If there is no supply voltage, check the insulation, continuity and absence of interference resistance of the connection:

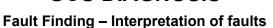
Repair if necessary.

Check the resistance value of the injector by measuring between tracks 1 and 2 of the LPG injector.

Replace the interested LPG Injector if the resistance is not approximately: **1.2** $\Omega \pm 0.2$ Ω at **25** °C. (For more details, consult the electrical properties of the LPG injector in the Repair method).

Reverse the connection between 2 LPG injectors.

If the fault persist after these check, replace GCU.


Restore the correct connection on the LPG injectors.

AFTER REPAIR

Clear the faults from the computer memory only using CLIP.

Switch the ignition off and carry out a customer road test to confirm repair using engine speed and load ranges frequently encountered during the vehicle's life, followed by a test using diagnosis tool.

GCU DIAGNOSIS

DTC10A2 PRESENT OR STORED	CYLINDER 3 LPG INJECTOR CIRCUIT 12: Short circuit to +12 volts 14: Open circuit 14: Short circuit to ground
NOTES	Conditions for applying the diagnostic to stored faults: The fault is declared present while: — the LPG system in pre-heating mode or while or the engine is running in LPG mode and — the LPG Injector 1 is activated for 50 time and for 50 times the GCU Diagnostic System detect the fault.
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer

These electrical faults could occur individually or in multiple messages, when the GCU Diagnostic System detects any electrical fault (short circuit, wiring interruption or solenoid coil resistance out of range) in the circuit controlling the four LPG injectors.

DTC10A2 CYLINDER 3 LPG INJECTOR CIRCUIT

FAILURE TYPE 12 and 14	NOTES	Priority of treatment if more than one fault is present: If one or more of the following faults DTC10A0, DTC10A1, DTC10A2, DTC10A3, are present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on:		
		GCU Track 16 and 44 on LC03 Systems GCU Track 26 and 54 on LC02 Systems		
		and deal with those faults before all else.		

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

Check if the LPG Injectors plugs has been properly connected. Repair if necessary.

Check the connection and condition of the injector connector. Change the connector if necessary.

Check the ground connection to the chassis. Repair if necessary.

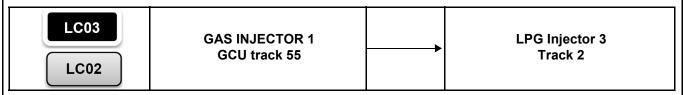
With the engine running in gasoline mode and the LPG Pushbutton in waiting mode, check for the presence of +12 volts on the correct Track (1 or 2) of the injector. (Check the correct track assignement on wiring diagram of the function for the vehicle concerned).

AF	TER	REPA	AIR

Clear the faults from the computer memory only using CLIP.

Switch the ignition off and carry out a customer road test to confirm repair using engine speed and load ranges frequently encountered during the vehicle's life, followed by a test using diagnosis tool.

GCU DIAGNOSIS



If there is no supply voltage, check the insulation, continuity and absence of interference resistance of the connection:

LC03	+15 INJECTOR SUPPLY GCU track 44		LPG Injector 3 Track 1
LC02	+15 INJECTOR SUPPLY GCU track 54	-	LPG Injector 3 Track 1

Repair if necessary.

If there is no supply voltage, check the insulation, continuity and absence of interference resistance of the connection:

Repair if necessary.

Check the resistance value of the injector by measuring between tracks 1 and 2 of the LPG injector.

Replace the interested LPG Injector if the resistance is not approximately: **1.2** $\Omega \pm 0.2$ Ω at **25** °C. (For more details, consult the electrical properties of the LPG injector in the Repair method).

Reverse the connection between 2 LPG injectors.

If the fault persist after these check, replace GCU.

Restore the correct connection on the LPG injectors.

AFTER REPAIR

Clear the faults from the computer memory only using CLIP.

Switch the ignition off and carry out a customer road test to confirm repair using engine speed and load ranges frequently encountered during the vehicle's life, followed by a test using diagnosis tool.

Deal with any other possible faults.

NT6525.mif

17C - 41

GCU DIAGNOSIS

DTC10A3 PRESENT OR STORED	CYLINDER 4 LPG INJECTOR CIRCUIT 12: Short circuit to +12 volts 14: Open circuit 14: Short circuit to ground
NOTES	Conditions for applying the diagnostic to stored faults: The fault is declared present while: - the LPG system in pre-heating mode or while or the engine is running in LPG mode and - the LPG Injector 1 is activated for 50 time and for 50 times the GCU Diagnostic System detect the fault.
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer

These electrical faults could occur individually or in multiple messages, when the GCU Diagnostic System detects any electrical fault (short circuit, wiring interruption or solenoid coil resistance out of range) in the circuit controlling the four LPG injectors.

DTC10A3 CYLINDER 4 LPG INJECTOR CIRCUIT

FAILURE TYPE 12 and 14	NOTES	Priority of treatment if more than one fault is present: If one or more of the following faults DTC10A0, DTC10A1, DTC10A2, DTC10A3, are present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on:		
		GCU Track 16 and 44 on LC03 Systems GCU Track 26 and 54 on LC02 Systems		
		and deal with those faults before all else.		

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

Check if the LPG Injectors plugs has been properly connected. Repair if necessary.

Check the connection and condition of the injector connector. Change the connector if necessary.

Check the ground connection to the chassis. Repair if necessary.

With the engine running in gasoline mode and the LPG Pushbutton in waiting mode, check for the presence of +12 volts on the correct Track (1 or 2) of the injector. (Check the correct track assignment on wiring diagram of the function for the vehicle concerned).

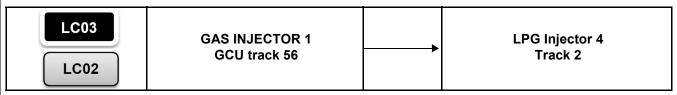
AFTER REPAIR

Clear the faults from the computer memory only using CLIP.

Switch the ignition off and carry out a customer road test to confirm repair using engine speed and load ranges frequently encountered during the vehicle's life, followed by a test using diagnosis tool.

GCU DIAGNOSIS

Fault Finding - Interpretation of faults



If there is no supply voltage, check the insulation, continuity and absence of interference resistance of the connection:

LC03	+15 INJECTOR SUPPLY GCU track 44	LPG Injector 4 Track 1	
LC02	+15 INJECTOR SUPPLY GCU track 54	•	LPG Injector 4 Track 1

Repair if necessary.

If there is no supply voltage, check the insulation, continuity and absence of interference resistance of the connection:

Repair if necessary.

Check the resistance value of the injector by measuring between tracks 1 and 2 of the LPG injector.

Replace the interested LPG Injector if the resistance is not approximately: **1.2** $\Omega \pm 0.2$ Ω at **25** °C. (For more details, consult the electrical properties of the LPG injector in the Repair method).

Reverse the connection between 2 LPG injectors.

If the fault persist after these check, replace GCU.

Restore the correct connection on the LPG injectors.

AFTER REPAIR

Clear the faults from the computer memory only using CLIP.

Switch the ignition off and carry out a customer road test to confirm repair using engine speed and load ranges frequently encountered during the vehicle's life, followed by a test using diagnosis tool.

Deal with any other possible faults.

NT6525.mif

GCU DIAGNOSIS

Fault Finding - Interpretation of faults

DTC1570 PRESENT OR STORED	LPG SWITCH STATUS 13: Open circuit
NOTES	Conditions for applying the diagnostic to stored faults: The fault reappears in the memory after the engine has been running for 5 minutes in LPG mode.
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer

This electrical fault could occur when the GCU Diagnostic System detects an open circuit of the contact of the pushbutton.

DTC1570 LPG SWITCH STATUS

FAILURE TYPE 13	NOTES	None
Check the pushbutton electrical connections. Repair if necessary.		
Check the GCU connections. Repair if necessary.		

Remove the GCU 56 way connector.

Ensure the continuity of the connection between:

LC03	GCU connector Track 49 → Track 3 of the pushbutton
LC03	Track 2 of the pushbutton plug → Ground
LC02	GCU connector Track 48 → Track 3 of the pushbutton
LC02	Track 2 of the pushbutton plug → Ground
1002	Truck 2 of the publication plug 7 Ground

Repair if necessary. If required, replace the faulty harness.

If the fault persist after these checks, change the **Pushbutton**.

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

DTC1610 PRESENT OR STORED	BATTERY VOLTAGE 16: Too Low voltage 17: Too High voltage
NOTES	Conditions for applying the fault finding procedure to the fault stored The fault is declared present during Power On, after the engine has been running in LPG Mode.
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer

This electrical fault could occur when the GCU Diagnostic System detects a power supply voltage below 9V or over 16V for at least 3 seconds.

DTC1610 BATTERY VOLTAGE

FAILURE TYPE 16 and 17	NOTES	Priority of treatment if more than one fault is present: If one or more of the following faults DTC10A0, DTC10A1, DTC10A2, DTC10A3, are present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on:		
		GCU Track 16 and 44 on LC03 Systems GCU Track 26 and 54 on LC02 Systems and deal with those faults before all else.		

Make sure that the cable connecting the battery to the GCU, the battery Ground cable to the chassis and the chassis grounding cable to the engine and transmission assembly are in good condition. Repair if necessary.

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

Fault Finding - Interpretation of faults

Make sure that the battery is in a good state of charge and, if necessary, check the charging circuit.

Connect the bornier in place of the computer and check the insulation, continuity and absence of interference resistance of the connections:

LC03	+30_POWER SUPPLY FROM BATTERY GCU track 15		BATTERY FUSE
LC03	+30_POWER SUPPLY FROM BATTERY GCU track 43	-	BATTERY FUSE
LC03	POWER GROUND GCU track 22		CHASSIS GROUND
LC03	POWER GROUND GCU track 7	-	CHASSIS GROUND
LC03	LOGIC GROUND GCU track 48		CHASSIS GROUND

Repair if necessary.

Connect the bornier in place of the computer and check the **insulation**, **continuity and absence of interference resistance** of the connections:

LC02	+30_POWER SUPPLY FROM BATTERY GCU track 15	-	BATTERY FUSE
LC02	+30_POWER SUPPLY FROM BATTERY GCU track 43	•	BATTERY FUSE
LC02	POWER GROUND GCU track 25	-	CHASSIS GROUND
LC02	POWER GROUND GCU track 53	-	CHASSIS GROUND
LC02	LOGIC GROUND GCU track 22	-	CHASSIS GROUND

Repair if necessary.

If the fault persists after these checks, reflash the GCU with the last released SW and Calibration.

If the fault persists after these checks, contact Techline

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

DTC1612 PRESENT OR STORED	SENSOR SUPPLY VOLTAGE 16: Too Low voltage 17: Too High voltage
NOTES	Conditions for applying the fault finding procedure to the fault stored The fault is declared present during Power On, after the engine has been running in LPG Mode.
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer

This electrical fault could occur when the GCU Diagnostic System detects a sensor supply voltage below 4,5 V or over 5,5 V for at least 500 milliseconds.

DTC1612 BATTERY VOLTAGE

FAILURE TYPE 16 and 17	NOTES	Priority of treatment if more than one fault is present: If one or more of the following faults DTC10A0, DTC10A1, DTC10A2, DTC10A3, are present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on:		
		GCU Track 16 and 44 on LC03 Systems GCU Track 26 and 54 on LC02 Systems		
		and deal with those faults before all else.		

Make sure that the cable connecting the battery to the GCU, the battery Ground cable to the chassis and the chassis grounding cable to the engine and transmission assembly are in good condition. Repair if necessary.

Check the voltage output on Track 19 of the GCU.

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

DTC109A PRESENT OR STORED	GCU SAFETY RELAY 64: GCU Safety relay incoherence
NOTES	Conditions for applying the diagnostic to stored faults: If the fault reappears in the memory after the engine has been running for 3 minutes in LPG mode
	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer

This functional fault could occur when the GCU Diagnostic System detects a failure in internal Solid State Safety Relay voltage feedback from safety relay detects an closed status when it should be open or viceversa.

DTC109A GCU SAFETY RELAY

		Priority of treatment if more than one fault is present: If one or more of the following faults DTC2666, DTC2294, are present, check for a wiring harness short circuit to battery on:	
FAILURE TYPE 64	NOTES	GCU Track 16 and 17 on LC03 Systems GCU Track 26 and 54 on LC02 Systems	
		and deal with those faults before all else.	

Make sure that the cable connecting the battery to the GCU, the battery Ground cable to the chassis and the chassis grounding cable to the engine and transmission assembly are in good condition. Repair if necessary.

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

With the engine running in gasoline mode and the LPG Pushbutton not selected, check for the absence of +12 volts on the correct Track (17 or 18 for LC03 GCU and 23 or 24 for LC02 GCU) of the TANK and VAPORIZER SHUT OFF VALVE output.

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

Fault Finding - Interpretation of faults

If there +12V is present when the GCU is running in gasoline mode:

- 1) Remove the GCU 56 way connector.
- 2) and check the insulation of the connection between:

LC03	+ GCU connector Track 17	-	+30_POWER SUPPLY FROM BATTERY
			GCU track 15
LC03	+ GCU connector Track 18	-	+30_POWER SUPPLY FROM BATTERY
			GCU track 15
LC02	GCU connector Track 23	-	+30_POWER SUPPLY FROM BATTERY
			GCU track 15
LC02	GCU connector Track 24	-	+30_POWER SUPPLY FROM BATTERY
			GCU track 15

Make sure that the cable connecting the GCU and the TANK SHUT OFF VALVE or GCU and VAPORIZER SHUT OFF VALVE are in good condition.

Repair if necessary.

If the fault persists after these checks, contact Techline

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

DTC0618 PRESENT OR STORED	LPG SYSTEM 46: GCU's Last trip data corrupted
NOTES	Conditions for applying the diagnostic to stored faults: If the fault reappears in the memory after the engine has been running for 8 minutes in LPG mode
NOTES	Special notes: Use the correct bornier Ele. 1681 for all operations on the engine management computer

This functional fault could occur when the GCU Diagnostic System detects a failure in recording last trip data information; typically this occurs when the battery clamp or LPG GCU Power Supply Ground is disconnected during a "Power-latch" of the GCU.

DTC0618 LPG SYSTEM

		Priority of treatment if more than one fault is present: If one or more of the following faults DTC10A0, DTC10A1, DTC10A2, DTC10A3, are present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on:
FAILURE TYPE 46	NOTES	
		GCU Track 16 and 44 on LC03 Systems
		GCU Track 26 and 54 on LC02 Systems
		and deal with those faults before all else.

Make sure that the cable connecting the battery to the GCU, the battery Ground cable to the chassis and the chassis grounding cable to the engine and transmission assembly are in good condition. Repair if necessary.

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

GCU not correctly flashed

Apply "Fault Finding - Conformity check assisted with Plus Max RE" LPG 1 - NO DIALOGUE BETWEEN GCU AND TOOL.

Apply "MANUAL EMERGENCY PROCEDURE FOR GCU RE-CALIBRATION OR GCU REPROGRAMMING"

If the fault persists after these checks, contact Techline.

A F-			PAIR
ΔF	ırk	RFF	UIR

Deal with any other possible faults. Clear the faults from the computer memory only

GCU DIAGNOSIS

Fault Finding - Interpretation of faults

Connect the bornier in place of the computer and check the **insulation**, **continuity and absence of interference resistance** of the connections:

LC03	+30_POWER SUPPLY FROM BATTERY GCU track 15		BATTERY FUSE
LC03	+30_POWER SUPPLY FROM BATTERY GCU track 43	-	BATTERY FUSE
LC03	POWER GROUND GCU track 22	-	CHASSIS GROUND
LC03	POWER GROUND GCU track 7	-	CHASSIS GROUND
LC03	LOGIC GROUND GCU track 48		CHASSIS GROUND

Repair if necessary.

Connect the bornier in place of the computer and check the **insulation**, **continuity and absence of interference resistance** of the connections:

LC02	+30_POWER SUPPLY FROM BATTERY	-	BATTERY FUSE
	GCU track 15		
LC02	+30_POWER SUPPLY FROM BATTERY	-	BATTERY FUSE
	GCU track 43		
LC02	POWER GROUND		CHASSIS GROUND
LCUZ	GCU track 25	—	CHASSIS GROUND
LC02	POWER GROUND		CHASSIS GROUND
LC02	GCU track 53	—	
1,000	LOGIC GROUND		CHASSIS GROUND
LC02	GCU track 22	—	CHASSIS GROUND

Repair if necessary.

If the fault persists after these checks, reflash the GCU with the last released SW and Calibration.

If the fault persists after these checks, contact Techline

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

DTC1316 PRESENT OR STORED	GASOLINE PUMP RELAY 00: Open circuit 11: Short circuit to ground 12: Short circuit to +12 volts.
	Priority for dealing with a number of faults: First, deal with the DF046 / DTC1610 battery voltage fault if it is present or stored. Conditions for applying the fault finding procedure to the fault stored: The fault is declared present 3 seconds after the switching in LPG mode.
NOTES	Special note: This fault could be present or stored on LC03 System only. LC03

These electrical faults could occur individually or in multiple messages, when the GCU Diagnostic System detects any electrical fault (short circuit, wiring interruption or solenoid coil resistance out of range) in the circuit controlling the gasoline pump relay.

DF1316 GASOLINE PUMP RELAY

FAILURE TYPE 11 and 12	NOTES	Priority of treatment if more than one fault is present: If one or more of the following faults DF1366, DF1367, DF1368, DF1369, are present, check the "+15 INJECTOR SUPPLY (Safety Relay)" Voltage on:		
		GCU Track 16 and 44 on LC03 Systems GCU Track 26 and 54 on LC02 Systems		
		and deal with those faults before all else.		

Check the **condition of the clips** on the injection relay (on the engine fuse/relay plate).

Replace the clips if necessary.

With the engine running in gasoline mode and the LPG Pushbutton in waiting mode, check for the presence of +12 volts on the Track CDE+ of the injector. (Check the correct track assignment on wiring diagram of the function for the vehicle concerned).

If there is no power supply check the insulation, continuity and absence of interference resistance of the connection:

LC03	+15 INJECTOR SUPPLY GCU track 16		FUEL PUMP CUT-OFF RELAY Track CDE+
Repair if necessary.	-		

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

Fault Finding - Interpretation of faults

Connect the bornier in place of the computer and check the insulation, continuity and absence of interference resistance of the connection:

LC03	Gasoline Pump Shutdown Relay Control GCU track 02		FUEL PUMP CUT-OFF RELAY Track CDE-
LC03	Gasoline Pump Shutdown Relay Status GCU track 11	•	FUEL PUMP CUT-OFF RELAY Track CDE-

Repair if necessary.

Check the resistance value of the relay by measuring between tracks CDE+ and CDE- of the relay. Replace the relay if the resistance is not approximately: 65 ohms $\Omega \pm 5 \Omega$ at 25 °C.

If the fault persists after these checks, contact Techline

AFTER REPAIR

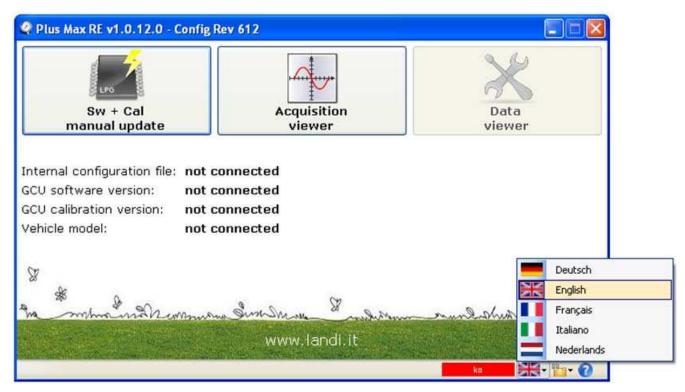
Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

1. REMINDERS

Landi Renzo diagnostic tool Plus Max Renault Version (in the following PluxMaxRe) is a diagnostic tool developed to run second level diagnostic on LPG system.

Always use the official diagnostic tool (Renault Clip) supplied by the manufacturer of the vehicle as primary diagnostic and repairing tool.


LR PlusMaxRE tools could be used in order to perform a second level diagnostic after the authorization of Renault's After Sales supervisors only.

2. PLUS MAX RE FUNCTIONS

See all the information relating the LPG System
OPERATIONS FOR REPLACING OR REPROGRAMMING THE GCU
Physical measurements
GCU test
Multimeter

PluxMaxRE can be installed on ANY PC running windows XP/VISTA/Windows 7 (32 bit only)

PlusMaxRE supports English French and Italian language.

How to select language

GCU DIAGNOSIS

Fault Finding - Conformity check assisted with Plus Max RE

3. EXTRAS

3.1 Info

If the primary installation, follow the instructions, which is attached. If you already have an earlier version, it is recommended to uninstall and then follow the installation instructions. It only works with original USB adapter.

3.2 Info

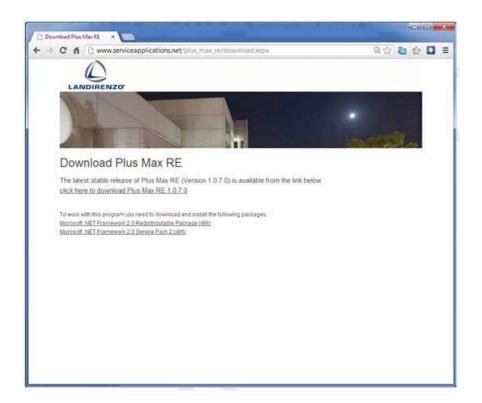
LR has created several versions of Diagnostic tools system named PlusMax. Just the version named Plus Max Renault Version (PluxMaxRe) must be connected to the LPG computer via Diag connector. It operates as a diagnostic interface, checking out a series of parameters as well as figuring out problems that you may then solve.

Previous version of PlusMax or other tools, as reflashing tools, or other unauthorized Tools could cause permanent damage to GCU calibration.

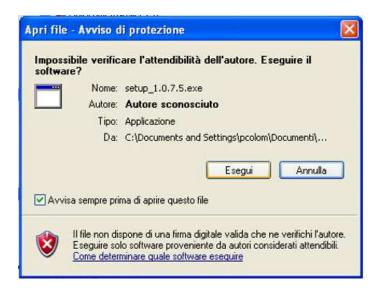
3.3 Info

Always keep to the instructions supplied by the vehicle manufacturer. The equipment should be used by trained personnel only.

GCU DIAGNOSIS



4. PLUS MAX RE INSTALLATION GUIDE


Before installing please uninstall previous version of PlusMaxRE if you have;

Download the latest Plus Max RE diagnostic tool from Landi Renzo Aftersales Center

http://www.serviceapplications.net/plus_max_re/download.aspx

Double click the downloaded installation file (setup_1.0.x.x.exe) Follow instructions step by step

GCU DIAGNOSIS

Fault Finding - Conformity check assisted with Plus Max RE

SW Installation completed

Desktop Icon

IMPORTANT:

The Diagnostic Functions of the PlusMaxRE tools are not enabled (blocked by code); just the check and SW updating function is allowed

CU DIAGNOSIS

Fault Finding - Conformity check assisted with Plus Max RE

5. OPERATIONS FOR REPLACING OR REPROGRAMMING THE GCU

5.1 Procedure to be applied before replacement

This procedure must be applied before replacing or reprogramming the Gas Control Unit (LPG Computer)

IMPORTANT:

- Connect a battery charger and switch on the vehicle + after ignition supply voltage.
- Switch off all the electrical consumers (lights, interior lighting, air conditioning, radio, etc.).
- Connect the diagnostic tool power supply (mains or cigarette lighter supply).
- Connect the LR USB interface to the diagnostic tool:

Part Number

7711392500

Description

KIT INTERFACCIA USB PER CENTRALINE USB TYPE (LR USB interface)

- Connect the LR USB interface connecting cable to the diagnosis plug on the LPG ECU.
- − Switch on vehicle + after ignition (+APC) power supply and wait until the coolant temperature is less than 60 °C and the air temperature is less than 50 °C and LPG injector driver temperature is less than 40 °C. Consult parameter GP103 Coolant temperature and GP104 Air temperature and GP030 LPG injector driver temperature.

IMPORTANT:

It is necessary to respect these temperature values in order to carry out the computer programming or reprogramming operations.

 Apply the programming or reprogramming operations described in Technical Note Appendix A GCU Computer (re)programming procedure.

IMPORTANT:

After (re)programming the computer, switch off the + after ignition (+APC) power supply and wait for the loss of communication message to appear on the PlusMaxRE diagnostic tool. If the message does not appear, wait for 60 seconds.

Failure to follow this procedure may cause the computer data to be corrupted.

5.2 Procedure to be applied after repair

This procedure must be applied after replacing or reprogramming the computer.

5.3 Injection computer initialisation

- Rigorously Clear any fault code using Clip connected to Gasoline ECU. (During the reprogramming of a generic vehicle computer this cannot send messages on the CAN Network; this could generate some DTCs in the ECU).
- Crank and stop the engine to initialize the computer and wait for the loss of communication message to appear on the diagnostic tool, if the message does not appear, wait for 60 seconds.
- The computer is automatically configured according to the GCU and options present on the LPG System.
- Verify the correct configuration of the LPG System.

GCU DIAGNOSIS

Fault Finding - Conformity check assisted with Plus Max RE

5.4 Procedure to be applied during the reprogramming

This procedure must be applied during the reprogramming the Gas Control Unit (LPG Computer)

The operation replaces the Software and the Calibration inside the GCU with the latest version with the help of PlusMaxRE.

Reprogramming procedure concerns GCU already assembled in the vehicle and already operational, and GCU delivered already programmed by Spare Part Centers (Magasin Pièces de Rechanges).

The reprogramming operation avoids the systematic replacement of GCUs.

5.5 When reprogramming

The operation is done in the following sistuations:

When a well-defined Opération "Technique Spécifique" (OTS) or Note Technique Incidentielle (NTi) is put in effect in order to solve issues find in After Sales and/or an improvement of performances.

Following a RENAULT's Techline request

Following RENAULT's Technical Directive (Directives Techniques RENAULT)

Following a Landi Renzo's Released Software Evolution

Following an ACTIS Solution

5.6 Operating Mode

The operating mode for both GCU Re-Calibration or GCU Reprogramming is strictly the same.

This operation must be done with PlusMaxRE diagnostic tools updated at the last version.

IMPORTANT:

Before any GCU Re-Calibration or GCU Reprogramming always update the tool downloading the latest Plus Max RE diagnostic tool from Landi Renzo Aftersales Center

IMPORTANT:

In order to avoid any malfunctioning, outage and blockaged of the GCU, the procedures MUST be rigorously observed:

Procedure to be applied before replacement

Procedure to be applied after repair

IMPORTANT:

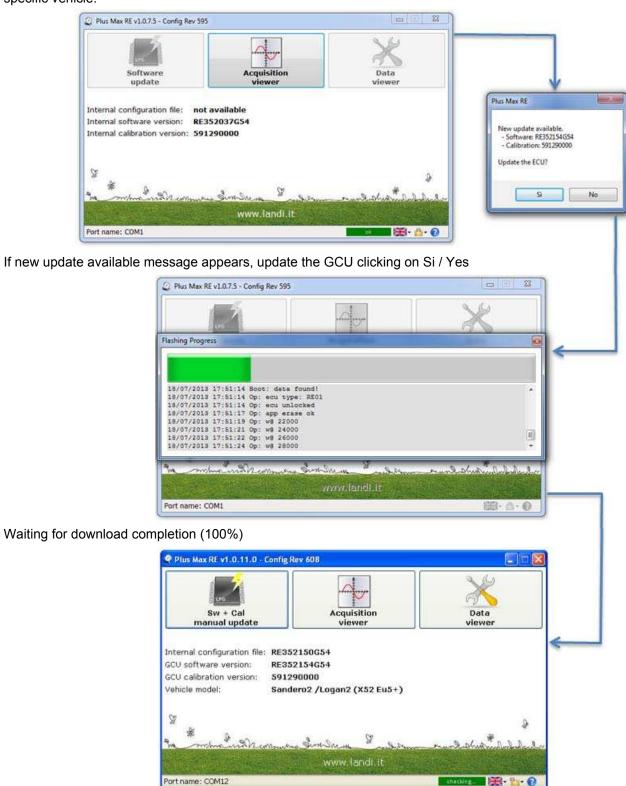
After GCU Re-Calibration or GCU Reprogramming always erase story of Gas Control Unit Stored Faults.

WARNING:

DO NOT WORK ON THE VEHICLE OR ON THE DIAGNOSTIC TOOL

NT6525.mif

17C - 59


GCU DIAGNOSIS

6. AUTOMATIC GCU RE-CALIBRATION OR GCU REPROGRAMMING

The operation replaces the Software and the Calibration inside the GCU with the latest version released for the specific vehicle.

At the end of the download it will appear the main page with new SW version.

After (re)programming the computer, switch off the + after ignition (+APC) power supply and wait for the loss of communication message to appear on the PlusMaxRE diagnostic tool, if the message does not appear, wait for 60 seconds.

NT6525.mif

17C - 60

GCU DIAGNOSIS

7. MANUAL EMERGENCY PROCEDURE FOR GCU RE-CALIBRATION OR GCU REPROGRAMMING

This Manual Emergency Procedure must be applied when:

The operation of GCU Re-Calibration or GCU Reprogramming is interrupted by an Error Message (Example ER-ROR 110, ERROR 103, etc)

When the PlusMaxRE tool cannot automatically detects the vehicle, the original GCU Hardware Version, SW Version and Calibration version.

The operation replaces the Software and the Calibration inside the GCU with the latest version released for the specific vehicle.

The Manual Emergency Procedure consists in the Manual Selection of the vehicle for GCU Re-Calibration or GCU Reprogramming.

The procedure must be authorized by Renault Techline and registered on FIC to report following parameters:

The VIN of the vehicle.

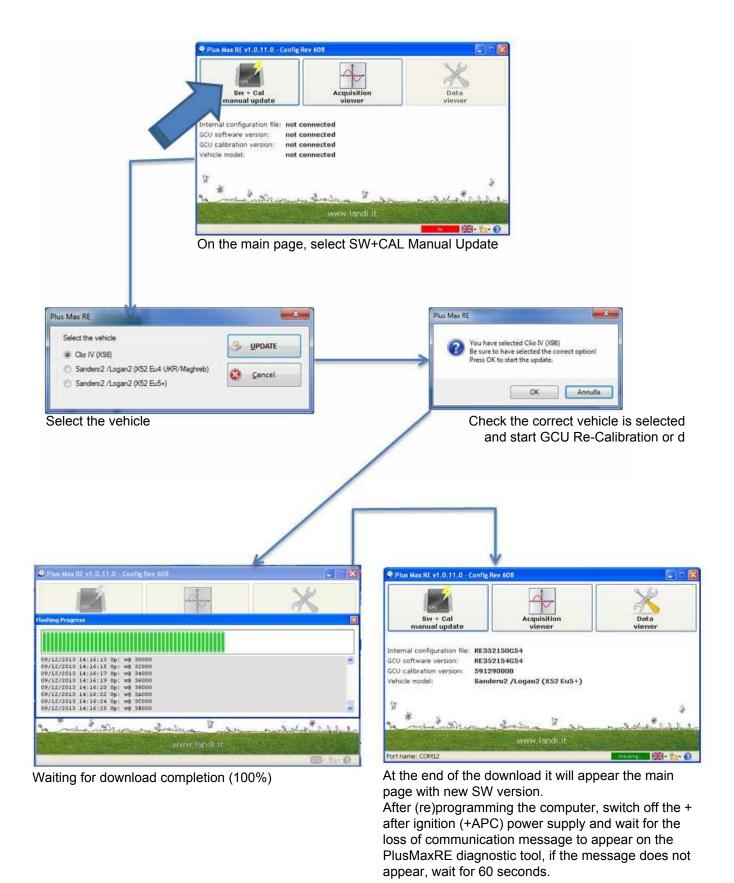
The fabrication number of the vehicle.

The code of error message specified in PlusMaxRE or error description

The SW and CAL number present on the label of the GCU

IMPORTANT:

The speed and relevance of the solution provided by Techline will depend on the accuracy with which this information is entered into the customer fault log.


After Techline analysis of the fault, you are authorized to apply the Manual Emergency Procedure for GCU Re-Calibration or GCU Reprogramming; depending on type of fault, this procedure can only be unlocked by a 6 character code (eg:F4A0B9).

This code is also necessary to perform all the diagnosis show in next chapter (in other word to open "parameter visualization" page)

GCU DIAGNOSIS

Fault Finding – Conformity check assisted with Plus Max RE

GCU DIAGNOSIS

8. GENERAL INFO TO FAULT FINDING USING PLUS MAX RE

Always use the official diagnostic tool (Renault Clip) supplied by the manufacturer of the vehicle as primary diagnostic and repairing tool.

Always clear any fault code using Clip connected to Gasoline ECU and not using the Reset Pushbutton on the Diagnosis Page of PlusMaxRE.

9. DESCRIPTION FAULT PAGES IN PLUS MAX RE

As in Clip, faults are displayed as present or stored (they appeared in a certain context and remain present since they are fix, or they are still present but cannot be diagnosed in the current context).

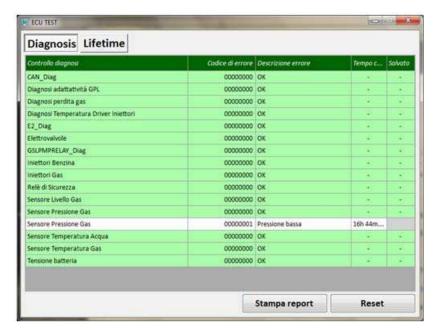
The present or stored status of faults should be taken into consideration when the diagnostic tool is used after the + ignition power supply is switched on (without acting on the system components).

If the fault is **confirmed** when the instructions are applied, the fault is present. Deal with the fault.

If the fault is **not confirmed**, check:

- the electrical lines which correspond to the fault,
- the connectors for these lines (for oxidation, bent pins, etc.),
- the resistance of the component detected as faulty.
- the condition of the wires (melted or split insulation, wear).

Using PlusMaxRE to access the diagnostic page, click the "Fault List Page" link on top right of the main page. Present faults are highlighted in yellow; stored faults are highlighted in white. Stored faults cannot be erased. On stored faults the "ECU time elapsed" column indicates the GCU time elapsed from the moment when the fault appeared the last time. So a fault with an ECU time elapsed = 0h 01m appears just 1 minute before, while a fault with ECU time elapsed = 16 h 44 m appear 16 hours and 44 minutes before.



Example of present fault Highlighted in yellow

NT6525.mif

GCU DIAGNOSIS

Fault Finding – Conformity check assisted with Plus Max RE

Example of stored fault Highlighted in white

10. COMPONENTS CONFORMITY CHECKS ASSISTED BY PLUSMAXRE

The aim of the conformity check is to check main LPG components in order to avoid wrong diagnostic and incorrect replacement of components.

This section gives the fault finding procedures supported by LR PlusMaxRE diagnostic Tool for behavior and parameters and the conditions for checking them.

If a behavior is not acting normally or a parameter is outside the permitted tolerance values, consult the corresponding fault finding page.

GCU DIAGNOSIS

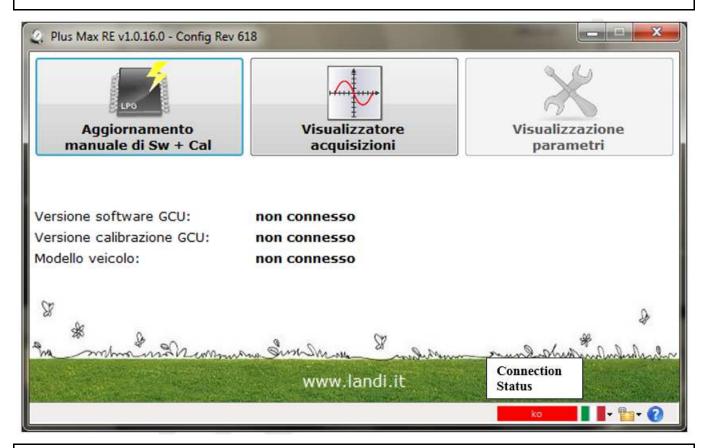
11. CUSTOMER COMPLIANT - CONFORMITY CHECK

NOTES	Only check the Interpretation of Fault with PluxMaxRE tool after performing a complete check with the RENAULT's CLIP diagnostic tool. To open PlusMaxRE parameter page the unlock code is necessary.	
NOTES	NOTE For any operation on a component of the LPG supply circuit, consult the safety instructions (see 17C).	

NO DIALOGUE BETWEEN GCU AND TOOL	LPG 1
FUEL SUPPLY CONFORMITY CHECK	
LEAKAGE TEST	LPG 2
LOW PRESSURE	LPG 3
PRESSURE AND TEMPERATURE SENSOR CHECK	LPG 4
PRESSURE REGULATOR CHECK	LPG 5
INJECTORS CHECK	
MISFIRES	LPG 6
FUEL ADAPTATION	LPG 7
LPG LEVEL SENSOR CHECK	LPG 8
ALL LEDS TURNED OFF ON THE SWITCH BUTTON	LPG 9

17C - 65

GCU DIAGNOSIS



LPG 1 NO DIALOGUE BETWEEN GCU AND TOOL

Use USB interface to connect your laptop to the diagnosis plug present in the GCU harness

This fault happens when the Tool isn't able to connect the diagnostic

The Area "Connection Status" must be green and parameters shown in the central part of the page.

If this area is red and parameters show "not connected message" there are no connection between PC and GCU, when key is ON.

Check:

GCU Power Supply: check if the GCU is properly supplied (check if the LPG push button is ON) USB connection: maybe the interface isn't recognized by the PC USB port; restart the PC if necessary. Cable connection: maybe the USB interface cable is damaged or unplugged; check cable connection.

Make sure that the cable connecting the battery to the GCU, the battery Ground cable to the chassis and the chassis grounding cable to the engine and transmission assembly are in good condition. Repair if necessary.

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

With the engine running in gasoline mode and the LPG Pushbutton selected, **check for the presence of +12 volts** on the correct Track (17 or 18 for LC03 GCU and 23 or 24 for LC02 GCU) of the TANK and VAPORIZER SHUT OFF VALVE output.

NT6525.mif

GCU DIAGNOSIS

Fault Finding - Conformity check assisted with Plus Max RE

LPG 2

FUEL SUPPLY CONFORMITY CHECK: LEAKAGE TEST [DTC 2293-64]

NOTES

GCU Integrates a strategy to check if the functionality of fuel supply lines are verified. In case this check isn't successful an LPG fault is generated and sent to ECU.

When test is performed:

Injector pre-heating (Antisticking function) NOT active

Tank level > 20%

At least 10 engine cranking and powersafe (60sec) after vehicle assembling or after SW reflashing.

Engine run in gasoline mode

Engine-on by at least 2 sec

Coolant water temperature at cranking > 30 °C

No other fault on Tank Level Sensor, Regulator EV, Tank EV.

Failure appears as "Leakage diagnosis" in the PlusMaxRE GCU Test page. The fault can happen only during petrol mode. ECU TEST Diagnosis Lifetime Diagnosis control Ecu time ela... Stored Error code | Error description Battery voltage 00000000 OK CAN_Diag 00000000 OK E2_Diag 00000000 OK Gas Injectors 000000000 OK Gas Pressure Sensor 00000000 OK Gas Temperature Sensor 00000000 OK GSLPMPRELAY_Diag 00000000 OK Injectors Drivers Temperature Diagnosis Leakage diagnosis 00000001 ERRORE_Low_Pressure_Pipe_Leakage LPG adaptivity diagnosis 00000000 OK Petrol Injectors 00000000 OK Safety Relay 00000000 OK Solenoid valves 00000000 OK Tank Level Sensor 00000000 OK Water Temperature Sensor 00000000 OK Print report Reset

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

Switch the ignition off and carry out a road test followed by a test using diagnosis tool.

17C - 67

GCU DIAGNOSIS

Fault Finding - Conformity check assisted with Plus Max RE

Test is performed in 2 different phases:

Few seconds after crank both LPG electrovalves open for 1 second (if the condition to perform the test are verified). In this phase the GCU check that the pressure reach at least 1.15 bar.

After both electrovalves closure the GCU monitor the LPG pressure for some seconds to verify if there is a pressure drop higher than a calibrated threshold.

The pressure doesn't reach 1.15 bar after EV opening:

	1	
LC03	EV blocked: the current supplies the coil but the EV of the regulator don't open	Replace mobile element
LC03	Wrong level indication: if no LPG is present in the tank but the sensor indicates more than 20% (not so common)	Fill the tank and check if the behavior is still present
LC03	Low Pressure pipe disconnected: a pipe is completely disconnected and LPG pressure sensor read atmospheric value	Reconnect the pipe
LC03	Component or pipe clogged: it can interrupt the flow of LPG inside the pipes, avoiding the rise of pressure	Not easy to detect, check if a pipe has an internal part that block it
LC03	LPG Pressure/Temperature Sensor fault	Check for DTC018A or DTC0185 present at the same time and deal with.

Drop of pressure during leakage test phase higher than the limit.

LC03	Injector leakage in the manifold: can create a drop of pressure and produce driveability issue during the test phase or during crank	Confirm the leakage from one single injector and replace it
LC03	Hoses leakage: Hose Clips, Double Wire Clips and Spring Band Clamps (Mubea Clamps) can be not correctly fixed	Fix correctly hoses or clamps
LC03	Safety valve leakage: the component not close correctly. If you remove the pipe you can smell LPG odour	Replace the regulator
LC03	Regulator leakage: if the membrane of the regulator is broken you can smell LPG odour from the MAP connection (after removing pipe)	Replace the regulator

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

Fault Finding - Conformity check assisted with Plus Max RE

LPG₃

FUEL SUPPLY CONFORMITY CHECK: TOO LOW PRESSURE [DTC 2293-64]

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

Failure appears as "Too low pressure" in the PlusMaxRE ECU Test page. The fault can happen only in LPG mode.

	N.		
Error code	Error description	Ecu tim	Store
00000000	OK		*
00000000	OK		*
00000000	ок		3
00000000	ОК	-	5-
00000000	ок		98
00000001	Too Low pressure	33h 21	
00000000	ок	2	12
00000000	ОК	-	34
00000000	OK		25
00000000	OK	0h 35m	
00000000	OK	2	-
00000000	OK	-	14
00000000	ОК	*	25
00000000	OK		1
00000000	OK		-
00000000	OK	-	
	00000000 00000000 00000000 00000000 0000	Error code Error description 00000000 OK 00000000 OK	00000000 OK -

Low	pressure	error:
	picoouic	CIIOI.

LC03	EV blocked: Due to cranking condition, leakage test wasn't performed in the current trip and EV don't open when we switch to LPG	Replace mobile element
LC03	Tank valve manually closed	Open the valve and test again the system
LC03	Hoses blocked: if a pipe is clogged or bended, LPG flow can drop and decrease LPG pressure	Fix the pipes

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

Fault Finding - Conformity check assisted with Plus Max RE

LPG 4	PRESSURE AND TEMPERATURE SENSOR CHECK
NOTES	Note the difference between functional and electrical error.

DTC 2293 and DTC 0184 are related to functional errors and you don't have to replace the sensor in these cases.

"IMPOSSIBLE SWITCHING IN LPG MODE" Chart 3 and/or "IMPOSSIBLE TO SWITCH IN LPG MODE AND LPG SWITCH IS BUZZING" Chart 8.

With the vehicle stopped remove the sensor from the LPG rail

Leave the plug connected to be able to read the signals

After some minutes put the vehicle in key ON mode to supply the sensor

Check on the plus max RE the pressure and temperature value, they have to be coherent with the atmospheric value

Continuity check		
	Track 1 of LPG p/T sensor with ground	
1 002	Track 2 of LPG p/T sensor with pin 46 of the GCU	
LC03	Track 3 of LPG p/T sensor with pin 19 of the GCU	
	Track 4 of LPG p/T sensor with pin 45 of the GCU	
	Track 1 of LPG p/T sensor with ground	
1.000	Track 2 of LPG p/T sensor with pin 6 of the GCU	
LC02	Track 3 of LPG p/T sensor with pin 9 of the GCU	
	Track 4 of LPG p/T sensor with pin 8 of the GCU	
-		

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only

GCU DIAGNOSIS

LPG 5	PRESSURE REGULATOR CHECK
NOTES	Note the difference between functional and electrical error.

DTC2293-21 → Too low pressure

This error is never present on petrol ECU. When the GCU store this fault it consider the problem has a finish of LPG in the tank and didn't send any DTC to petrol ECU (if LPG level is different from 0 the error will be DTC2293-

DTC2293-22 → Too high pressure

DTC2293-64 → Incoherence between LPG level and pressure

This error appear when LPG pressure is too low but a normal value of pressure is attended (there is LPG inside

TEST
The operating pressure of
TOOLS should be between

Regulator checks

The operating pressure of the LPG displayed on the DIAGNOSTIC	1.15 & 1.36 bar
TOOLS should be between 1.15 & 1.36 bar, when the vehicle is	
running in LPG mode, at idle speed (750 rpm) and when the	
temperature of the coolant is over 70°C, with all auxiliary load (AC,	
fan,) switched off.	
[Usually the LPG pressure should be 0,9 - 0,95 bar over the	

Idle, LPG mode, auxiliary load ON (AC, defrost, ...), and when the

temperature of the coolant is over 70 °C. Remove vacuum pipe, when the vehicle is running in LPG mode, at

idle speed (750 rpm) and when the temperature of the coolant is over 70 °C.

When the vehicle is running in LPG mode, gear in neutral position, push accelerator pedal driving Open regulator's EV with +12V power supply (cold engine, only key

ON) and check if you can immediately hear the sound of the opening

1.35 & 1.55 bar

1.85 & 2.05 bar

Pressure moves from 1.15 to 2 bar according to manifold pressure

Not related with pressure value but to EV functionality

EXPECTED PRESSURE VALUE

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only

GCU DIAGNOSIS

LPG 6	LPG INJECTOR CHECK: MISFIRE	
NOTES	Injector issue, both electrical or functional, are always related to MIL lamp presence	

If a fault code related to misfire occurs DTC030(x) (gasoline mode) or DTC130(x) (LPG mode) is stored in the petrol ECU.

Misfires can happen for different reasons, not only related to LPG injectors.

Customer Complain

Check if the issue happen during cold conditions (eg: low external temperature) and/or after few minutes from the switch to LPG.

Verify if the issue disappears when the engine is warm (coolant temperature over 70 °C).

If so a not correct vaporization of the regulator can be occurred.

In this case don't replace injector rail because they aren't responsible for the misfire.

DTC check

Check if there are other errors related to fuel combustion, for example related to lambda sensor or lean/rich combustion

Injectors check

Check the **resistance value** of the injector by measuring between **tracks 1 and 2 of the LPG injector**. Replace the interested LPG Injector if the resistance is not approximately: **1.2** Ω **± 0.2** Ω **at 25** °C. (For more details, consult the electrical properties of the LPG injector in the Repair method).

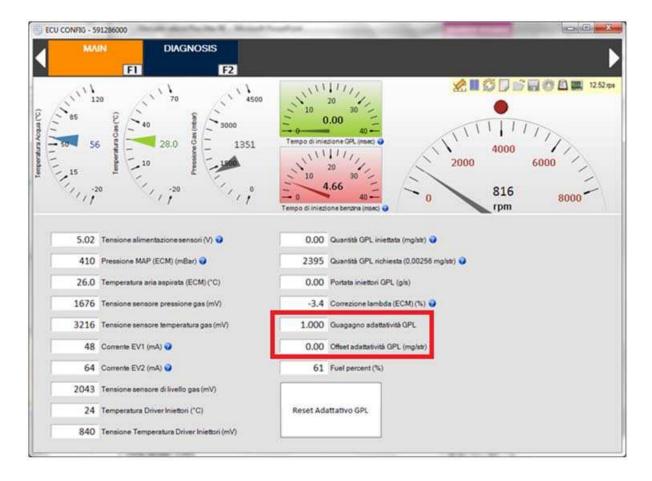
AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

LPG 7

LPG INJECTOR CHECK: FUEL ADAPTIVITY


NOTES

Injector issue, both electrical or functional, are always related to MIL lamp presence

LPG system has adaptive parameters similar to petrol that correct LPG fuel mass injected.

Gain: default value is 1. For value higher than 1 mass flow rate will be increased; for values lower that 1 mass flow rate will be decreased. Expected value are between 0.8 and 1.2

Offset: default value is 0. Expected value are between -2 and +2

When adaptivity reaches its own limits an error appears. If this happen replace the injectors.

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

LPG 8	LEVEL SENSOR AND FUEL INDICATION CHECK	
NOTES	Remember that electrical fault and bad level indication should be manage in different ways	

First of all analyze the costumer complaint: if the issue is related to blocked level indication (always 3 led for example), it can be a mechanical issue of the multivalve; if the complaint is about a bad or not coherent indication the system can be conform anyway.

As described in "Fault Finding – System Description" there are 3 different level sensors:

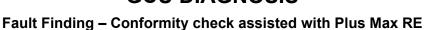
- 1) "3 wires" level sensor for internal tanks (X52 Sandero II, Logan II)
- 2) "3 wires" level sensor for external tanks (Clio IV, Duster II, Lodgy, Dokker)
- 3) "2 wires" level sensor for old Euro5 tanks (Clio III, Sandero I, Logan I, Duster I)

Check if there are errors related to electrical fault of the level sensor and, if so, check the correct connection of the wiring.

On Plus Max RE it is also showed the voltage related to the sensor.

	This sensor has a continuous output that moves from than 200 mV to more than 4 V	
•	LC02	This sensor has only 5 discrete levels that correspond to LED on the switch (on full tank the resistance between the 2 pins is 21.8 kOhm

During the vehicle driving you can see the value that moves during long turn or during slopes: **this indicates that the leverage inside the tank isn't blocked**. Consider that the voltage has an hysteresis inside the GCU so the plus max value moves slower that the mechanical behavior of the leverage (this means that, also if you see a fixed value on the plus max, the leverage can't be free to move).


If the leverage isn't blocked and no electrical fault is present the system is conform and the indication should be consider coherent.

If you think, after previous test, that the leverage is blocked remove the tank MultiValve unit from the tank and manually test it (you can again check the coherence with the position of the level sensor and the switch).

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

LPG 9	ALL LEDs TURNED OFF ON THE SWITCH BUTTON
NOTES	When all LEDs on the Pushbutton are turned off this could be due to several failures

Electrical wiring harness not connected.

Remove pushbutton and check for integrity of the connection between wiring harness and pushbutton;

Connect connector on wiring harness to the Electronic pushbuttons connector. During connector installation, DO NOT force the on the connector housing and DO NOT use not approved assembling tooling. To do so will result in damage to the connector of parts.

Carefully follow Landi Renzo assembling instruction (IOT) to put in place the pushbutton in the hole as specified in the installation instruction.

GCU not correctly flashed

Apply "Fault Finding – Conformity check assisted with Plus Max RE" LPG 1 - NO DIALOGUE BETWEEN GCU AND TOOL.

Apply "MANUAL EMERGENCY PROCEDURE FOR GCU RE-CALIBRATION OR GCU REPROGRAMMING"

If the fault persists after these checks, contact Techline.

AFTER REPAIR

Deal with any other possible faults. Clear the faults from the computer memory only using CLIP.

GCU DIAGNOSIS

Fault Finding – Fault Finding Charts

NOTES	Only consult this customer complaint after a complete check using the diagnostic tool.
-------	--

UNEXPECTED SWITCH BACK TO PETROL	Chart 1
WRONG GAS TEMPERATURE	Chart 2
IMPOSSIBLE SWITCHING TO LPG MODE	Chart 3
IMPOSSIBLE TO CRANK THE ENGINE	Chart 4
GAS LEVEL INDICATOR: INCOHERENT WRONG LEVEL INDICATION	Chart 5
ENGINE STALL AT SWITCHING IN LPG MODE	Chart 6
MISFIRE – BAD DRIVEABILITY	Chart 7

GCU DIAGNOSIS

Fault Finding - Fault Finding Charts

CHART 1	UNEXPECTED SWITCH BACK TO PETROL	
NOTES	Only consult this customer complaint after a complete check using the diagnostic tool	

Conformity of LPG Fuel check:

- Check that there is LPG present (the LPG gauge may be faulty).
- Check that the LPG is of the proper type

Fuel pressure sensor check:

 Remove the sensor from the gas rail and check that the pressure value is approximately at atmospheric value with +APC (1 bar at sea level, engine temperature isn't relevant).

If the value is considerably different replace the sensor.

Tank Multivalve electrovalve check:

- Open EV reducer from the software or with +12V power supply (cold engine, only key ON) and check if you can immediately hear the clack noise of the opening.

Fuel supply hoses check:


- Check that no low pressure hoses are pinched (especially after a removal operation).
- Check that no low pressure hoses are damaged and clips or strips are correctly closed
- Check that no foreign body is inside the low pressure hoses
- Check the condition of the fuel filter; change it if necessary.
- Engine in LPG mode, running in idle and auxiliary load OFF → gas pressure target 1.15 1.36 bar.
- Switch off the engine and check the pressure is still the same after 5 minutes, to assure that no leakage is present (don't switch on engine, only +APC to give power supply to the sensor)

Pressure regulator check:

- Open EV reducer from the software or with +12V power supply (cold engine, only key ON) and check if you can immediately hear the clack noise of the opening.
- Check pressure on idle,GPL mode, AUX load OFF,warm engine → gas pressure target 1.15 1.36 bar.
- Remove vacuum pipe, idle, LPG mode → pressure target 1.9 2 bar
- In LPG mode, push accelerator and check that the pressure moves between 1.1 and 2 bar and Manifold Pressure reference shall be approximately 0,95 bar less than LPG pressure.

NT6525.mif

GCU DIAGNOSIS

CHART 2	WRONG GAS TEMPERATURE	
NOTES	Only consult this customer complaint after a complete check using the diagnostic tool.	

Conformity of LPG Fuel check:

- Check that there is LPG present (the LPG gauge may be faulty).
- Check that the LPG is of the proper type.

Fuel temperature sensor check:

Park the car inside the garage, remove the sensor from the LPG pipe, but leave it electrically connected. Wait
15 minutes and check the LPG temperature using the diagnostic tool: it should be the same as ambient
temperature. If the value is different replace the sensor (more than 15°C)

Harness check:

- check that the plug of p/T sensor is correctly fixed
- check that wiring isn't damaged or broken.

Customer complaint:

 Analyze the customer complaint: if the error occur at really low temperature (-10°C) consider the behavior has normal (at -10°C there is the diagnosys of too low temperature)

GCU DIAGNOSIS

IMPOSSIBLE SWITCHING TO LPG MODE: SWITCH BLINKING IN **CHART 3** WAITING CONDITION OR LEDS SWITCHED OFF Only consult this customer complaint after a complete check using the diagnostic tool. Important: remember that the switch to LPG isn't allowed immediately after pressing the **NOTES** button. The system need to reach determinate conditions before switch to LPG mode, as described in chapter 6.

Conformity of LPG Fuel check:

- Check that there is LPG present (the LPG gauge may be faulty).
- Check that the LPG is of the proper type.?

Pushbutton check:

Check that the LEDs on the switch are ON; if not check the harness connection of the switch.

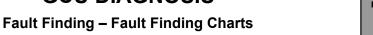
Switching condition check:

To allow LPG switch a lot of condition must be reached.

Check that

- The driver has selected the LPG fuel switch mode in the current trip or in the previous trip the engine stopped in LPG mode.
- Coolant water temperature must be higher than set threshold; this threshold depends on the temperature at the crank; usually the threshold is between 20 and 25 °C.
- A calibrated delay is elapsed from the cranking. The delay depends on the temperature at the crank: usually cranking at a coolant temperature of 20 °C the delay is 60s.
- Gas Temperature must be higher than the tuned threshold usually between 2 and 5 °C. Please note that with low winter temperature (for example -10 °C), the delay requested to the LPG temperature to reach the threshold could be long and sometimes more than 5 minutes.
- RPM value must be greater than the tuned RPM threshold usually around 1500 RPM.
- LPG switching isn't allowed at very high engine loads, for example in full acceleration.

If costumer complains on delayed switch explain him that in some cases we need more than 5 minutes to reach all the conditions. It is really important that the system reach the right temperature to have a correct vaporization of the gas, even it's in the tank LPG can have really low temperature.


GCU Status check:

- Using diagnostic tool, check on diagnosis page if there are any errors.
- Check on diagnosis page if there are any errors.

LPG Fuel Trim check:

- Deal with the faults DF633/DTC1170, DF635/DTC1301, DF636/DTC1302, DF637/DTC1303, DF638/DTC1304 and **DF639/DTC1300** if are present at the same time.
- Contact Techline with the completed fault finding log.

GCU DIAGNOSIS

CHART 4	IMPOSSIBLE TO CRANK THE ENGINE	
NOTES	Only consult this customer complaint after a complete check using the diagnostic tool.	

Conformity of LPG Fuel check:

- Check that there is LPG present (the LPG gauge may be faulty).
- Check that the LPG is of the proper type.

Battery and Fuse check:

- Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

GCU Status check:

- Using diagnostic tool, check on diagnosis page if there are any errors.
- If you experienced troubles to connect diagnostic tool, proceed with GCU Power supply and Fuses check.

GCU Power supply and Fuses check:

Make sure that the cable connecting the battery to the GCU, the battery Ground cable to the chassis and the chassis grounding cable to the engine and transmission assembly are in good condition. Repair if necessary.

Make sure that the battery is correctly charged. If it is not, carry out fault finding on the charging circuit.

17C - 80

GCU DIAGNOSIS

Fault Finding - Fault Finding Charts

Connect the bornier in place of the computer and check the **insulation**, **continuity and absence of interference resistance of the connections**:

LC03	+30_POWER SUPPLY FROM BATTERY GCU track 15	-	BATTERY FUSE
LC03	+30_POWER SUPPLY FROM BATTERY GCU track 43		BATTERY FUSE
LC03	POWER GROUND GCU track 22		CHASSIS GROUND
LC03	POWER GROUND GCU track 7		CHASSIS GROUND
LC03	LOGIC GROUND GCU track 48	-	CHASSIS GROUND

Repair if necessary.

Connect the bornier in place of the computer and check the **insulation**, **continuity and absence of interference resistance of the connections**:

LC02	+30_POWER SUPPLY FROM BATTERY GCU track 15	-	BATTERY FUSE
LC02	+30_POWER SUPPLY FROM BATTERY GCU track 43	-	BATTERY FUSE
LC02	POWER GROUND GCU track 25	-	CHASSIS GROUND
LC02	POWER GROUND GCU track 53	-	CHASSIS GROUND
LC02	LOGIC GROUND GCU track 22		CHASSIS GROUND

Repair if necessary.

GCU DIAGNOSIS

Fault Finding - Fault Finding Charts

GAS LEVEL INDICATOR: INCOHERENT WRONG LEVEL **CHART 5 INDICATION NOTES** Only consult this customer complaint after a complete check using the diagnostic tool.

Conformity of LPG Fuel check:

- Check that there is LPG present (the LPG gauge may be faulty).
- Check that the LPG is of the proper type.

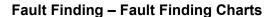
GCU Status check:

- Using diagnostic tool, check on diagnosis page if there are any errors.
- On Plus Max RE note which percentage is indicated for the LPG level
- During driving monitor the level sensor voltage (you can also record the signal on Plus Max RE) to understand if it is moving or not: if so the leverage of the multivalve isn't blocked (take into account the difference between the 2 level sensor, 2 or 3 wires)

Customer complaint check:

 Analyze the costumer complaint in order to understand if there was a temporary block of the level gauge or the complaint is only due to the fluctuation of the LEDs of level indicator during the driving (uphill, downhill, roundabout); in this second case explain to the customer that the behavior is unfortunately normal and the best choice is to use the odometer to know accurately the mileage he can drive.

Level indicator check:


- Drive the vehicle with PlusMaxRE connected and record Tank Level Sensor Electrical Signal; during acceleration, braking and turning, the electrical signal must change.
- Remove level indicator and check it can move freely and the position is correctly shown on the switch (wait 30 seconds for each position)
- If level sensor is "2 wires" version check the resistance is 21.8 kOhm at full level; if level sensor is "3 wires" version check the correct wiring connection (ground, +5V, signal)

Multivalve check:

If the voltage of level sensor is fixed remove the multivalve from the tank to check it.

- The driver has selected the LPG fuel switch mode in the current trip or in the previous trip the engine stopped in LPG mode.
- Coolant water temperature must be higher than set threshold; this threshold depends on the temperature at the crank; usually the threshold is between 20 and 25°C.
- A calibrated delay is elapsed from the cranking. The delay depends on the temperature at the crank: usually cranking at a coolant temperature of 20°C the delay is 60s.
- Gas Temperature must be higher than the tuned threshold usually between 2 and 5°C. Please note that with low winter temperature (for example -10°C), the delay requested to the LPG temperature to reach the threshold could be long and sometimes more than 5 minutes.
- RPM value must be greater than the tuned RPM threshold usually around 1500 RPM.
- LPG switching isn't allowed at very high engine loads, for example in full acceleration.

GCU DIAGNOSIS

CHART 6 ENGINE STALL AT SWITCHING IN LPG MODE Only consult this customer complaint after a complete check using the diagnostic tool. Typically this issue is due to a lack of LPG in the low pressure side: during the switch pressure regulator needs few instants for fill the pipes (they should be already fill if no problem occurs)

Conformity of LPG Fuel check:

- Check that there is LPG present (the LPG gauge may be faulty).
- Check that the LPG is of the proper type.

GCU Status check:

- Using diagnostic tool, check on diagnosis page if there are any errors.

Pressure in idle check:

- Check LPG pressure when:
 - Water temperature over 80°C
 - Engine is running in LPG mode in idle (≅ 750 RPM)
 - Auxiliary electrical loads OFF,

The **operating pressure** of the LPG displayed on the Diagnostic should be between **1.15 & 1.36 bar**, [usually the LPG pressure should be 0,9 - 0,95 bar over the manifold pressure].

Tank Multivalve electrovalve check:

- Check that manual valve on the tank MultiValve unit is completely open.
- Open EV reducer from the software or with +12V power supply (cold engine, only key ON) and check if you can immediately hear the clack noise of the opening.

Fuel supply hoses check:

- Check that no low pressure hoses are pinched (especially after a removal operation).
- Check that no low pressure hoses are damaged and clips or strips are correctly closed
- Check that no foreign body is inside the low pressure hoses
- Check the condition of the fuel filter; change it if necessary.
- Crank the engine monitoring:

Gas Level (mV)

Gas Pressure (mbar)

- Engine in LPG mode, running in idle and auxiliary load OFF → attended pressure 1.3 bar.
- Switch off the engine (leave key on to stay connected with the software) and check the pressure is still the same after 5 minutes, to assure that no leakage is present.

1

GCU DIAGNOSIS

Fault Finding - Fault Finding Charts

Pressure regulator check:

- Open EV reducer from the software or with +12V power supply (cold engine, only key ON) and check if you can immediately hear the clack noise of the opening.
- Check pressure on idle,GPL mode, AUX load OFF,warm engine → gas pressure target 1.15 1.36 bar.
- Remove vacuum pipe, idle, GPL mode → pressure target 1.9 2 bar
- In LPG mode, push accelerator and check that the pressure moves between 1.1 and 2 bar and MAP reference shall be approximately 0,95 bar less than GPL pressure

LPG Fuel Trim check:

- Deal with the faults DF633/DTC1170, DF635/DTC1301, DF636/DTC1302, DF637/DTC1303, DF638/DTC1304 and DF639/DTC1300 if are present at the same time.
- Contact Techline with the completed fault finding log

GCU DIAGNOSIS

CHART 7	MISFIRE – BAD DRIVEABILITY		
	Only consult this customer complaint after a complete check using the diagnostic tool.		
NOTES	Priority for dealing with a number of faults: First deal with petrol faults cylinder coils control, engine speed sensor; downstream and upstream oxygen sensors, heating of upstream and downstream oxygen sensors, if they are present or stored.		

Petrol fuel supply check:

- Check the petrol fuel system:
 - If requested in the petrol repairing manual, check ignition system by checking the condition of the plug and the low and high voltage contacts of the cylinder coil. Replace any faulty components.
 - If requested in the petrol repairing manual, check the compression ratio of cylinders. Repair if necessary.
 - If requested check the flywheel target (warping or cracks). Replace the flywheel if necessary.
 - Ensure that there are no leaks on the inlet manifold. Repair if necessary.

If no fault is found, then there must be a problem with the LPG fuel system. Therefore check:

- the conformity of LPG fuel.
- the condition of the LPG fuel filter,
- the LPG flow and pressure
- the Tank manual valve check,
- the Tank and Regulator Electrovalves
- the Fuel supply hoses check,
- the LPG Fuel Trim check,

Replace the defective component.

Conformity of LPG Fuel check:

- Check that there is LPG present (the LPG gauge may be faulty).
- Check that the LPG is of the proper type

Fuel filter check:

- Check that there is LPG present (the LPG gauge may be faulty).
- Check that the LPG is of the proper type.

GCU DIAGNOSIS

Fault Finding - Fault Finding Charts

Pressure in idle check:

- Check LPG pressure when:
 - Water temperature over 80 °C
 - Engine is running in LPG mode in idle (≅ 750 RPM)
 - Auxiliary electrical loads OFF,

The **operating pressure** of the LPG displayed on the diagnostic tool should be between **1.15 & 1.36 bar**, [usually the LPG pressure should be 0,9 - 0,95 bar over the manifold pressure].

Tank Manual Valve Check:

Check that manual valve on the tank MultiValve unit is completely open.

Fuel supply hoses check:

- Check that no low pressure hoses are pinched (especially after a removal operation).
- Check that no low pressure hoses are damaged and clips or strips are correctly closed
- Check that no foreign body is inside the low pressure hoses
- Check the condition of the fuel filter; change it if necessary.
- Engine in GPL mode, running in idle and auxiliary load OFF → attended pressure 1.3 bar.
- Switch off the engine (leave key on to stay connected with the software) and check the pressure is still the same after 5 minutes, to assure that no leakage is present.

Pressure regulator check:

- Open EV reducer from the software or with +12V power supply (cold engine, only key ON) and check if you can
 immediately hear the clack noise of the opening.
- Check pressure on idle,GPL mode, AUX load OFF,warm engine → gas pressure target 1.15 1.36 bar.
- Remove vacuum pipe, idle, GPL mode → pressure target 1.9 2 bar
- In GPL mode, push accelerator and check that the pressure moves between 1.1 and 2 bar and MAP reference shall be approximately 0,95 bar less than GPL pressure

LPG Fuel Trim check:

- Deal with the faults DF633/DTC1170, DF635/DTC1301, DF636/DTC1302, DF637/DTC1303, DF638/DTC1304 and DF639/DTC1300 if are present at the same time.
- Contact Techline with the completed fault finding log

V4