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  Abstract       When exploring the temporal and spatial change law of ocean environment, the most common 
method used is using smaller-scale observed data to derive the change law for a larger-scale system. For 
instance, using 30-year observation data to derive 100-year return period design wave height. Therefore, 
the study of inherent self-similarity in ocean hydrological elements becomes increasingly important to the 
study of multi-year return period design wave height derivation. In this paper, we introduced multifractal to 
analyze the statistical characteristics of wave height series data observed from oceanic hydrological station. 
An improvement is made to address the existing problems of the multifractal detrended fl uctuation analysis 
(MF-DFA) method, where trend function showed a discontinuity between intervals. The improved MF-
DFA method is based on signal mode decomposition, replacing piecewise polynomial fi tting used in the 
original method. We applied the proposed method to the wave height data collected at Chaolian Island, 
Shandong, China, from 1963 to 1989 and was able to conclude the wave height sequence presented weak 
multi-fractality. This result provided strong support to the past research on the derivation of multi-year 
return period design wave height with observed data. Moreover, the new method proposed in this paper also 
provides a new perspective to explore the intrinsic characteristic of data. 

  Keyword : wave height; partition function; multifractal spectrum; multifractal detrended fl uctuation analysis 
(MF-DFA); signal mode decomposition 

 1 INTRODUCTION 

 The term  fractal , according to Mandelbrot, founder 
of fractal analysis, refers to “a shape made of parts 
similar to the whole in some way,” in which “similar 
... in some way” can be self-similarity, self-affi  nity, or 
statistical self-similarity, in terms of time or physical 
space. Fractal phenomena exist widely in nature (e.g., 
the shapes of coastlines, river networks, and the 
shapes of trees) and in physics and chemistry (such as 
fractal noise and soil particle distribution (Li and 
Zhang, 2005; Kou et al., 2015; Chen et al., 2016a, b). 
The nature of the fractal analysis is searching for 
innate law in seemingly unordered, high-dimension 
and uncertain data by exploring diff erent fractal 
dimensions. By varying the fractal dimensions, one is 
enabled to model the dynamic changing law of the 

environment, and therefore optimize distribution 
model. Currently (Cai and Gouveia, 2013; Chen et al., 
2016c)., the concept and idea of fractal analysis have 
been abstracted into a methodology, and there have 
been signifi cant achievements made in data science 
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based on the fractal analysis (Liu et al.,2015; Cao et 
al., 2016a, b). Fractal analysis has become a new 
perspective to study complicated systems and bridges 
the parts and the overall system (Chen et al., 2008, 
2017b; Li and Burgueño, 2010; Ponce-López et al., 
2016; Chen and Wang., 2017). 

 Previously, the method for calculating wave 
heights of a certain return period was to choose a 
probability distribution model (Gumbel and Max-
Entropy Distribution) as the probability distribution 
for annual extremes of wave heights (Wang et al., 
2013a). The observed annual extreme wave heights 
were used to determine the parameters of the 
probability distribution, after which a cumulative rate 
determined the wave height that only occurs once in 
many years (a century or more) (Wang et al., 2016, 
2017). Such a calculation method has three drawbacks: 
1) it assumes that all annual extreme wave heights 
follow the same probability distribution while 
disregarding whether the time period is short term or 
long term (Wang et al., 2013b; Chen et al., 2017a); 2) 
the statistical characteristics of the data obtained over 
a short period of time and those obtained over a long 
period (a century or more) are both strictly self-
similar(Wang et al., 2014); and 3) during the 
calculation, only annual extreme wave heights are 
used (only one data point each year) while most 
observational data are disregarded (Wang et al., 
2015). All of these drawbacks lead to unconvincing 
calculation results. In fact, the long-term evolution of 
wave heights at an observation point is a very complex 
system, and only by conducting multifractal analysis 
to reveal the relationship between the short-term 
observational wave height sequences (parts) and the 
long-term observational wave height sequence 
(overall) can the latter be inferred from the former 
(Kantelhardt et al., 2002; Lu, 2004; Yang et al., 2018), 
thus providing a good foundation for more reasonable 
estimations of wave heights that only occur once in 
many years. 

 We apply multifractal analysis for the fi rst time in 
the characterization of a wave height sequence 
observed in marine and hydrological stations, by 
conducting a comprehensive analysis on a part of the 
observed data using methods of statistical physics, 
from which the characteristics of the whole dataset 
can be calculated. Currently, two multifractal analysis 
methods have been proposed: the partition function 
method (Jiang and Zhou, 2008) and the MF-DFA 
method (Hu and Song, 2003; Wang and Tian, 2006; 
Xu, 2011). 

 The detrending of fl uctuations is an important step 
of the MF-DFA method; however, currently, there are 
some drawbacks associated with the calculations 
performed during this step: 1) the fi tted polynomial 
function becomes discontinuous at the connection 
points of adjacent segments, which leads to the 
generation of new pseudo-fl uctuation errors (Zhuang, 
2012); 2) the selection of the polynomial order is 
highly subjective—low-order polynomials cannot 
accurately represent data fl uctuations, whereas higher 
order polynomials can cause overfi tting problems. 
These drawbacks will lead to erroneous analysis 
results on observed data. 

 In this study, we use the method of signal 
decomposition (Cai et al., 2011a, b, 2016; Xu and 
Wang, 2011; Chen and Wang, 2012; Hu et al., 2013; 
Ding and Fan, 2015, 2016; Escalante et al., 2016) to 
obtain a more reasonable fl uctuation function. An 
improvement has been made to the detrending 
procedure of the MF-DFA method, which is described 
in Section 2. In Section 3, we use the MF-DFA method 
and its improved version to analyze the wave height 
sequence (signifi cant wave heights) of Chaolian 
Island, Shandong, China, waves measured over a 27-
year period. We make a comparison between the 
analysis results, including a detailed comparison 
between the fl uctuation function obtained from 
polynomial fi tting and that obtained from mode 
decomposition, which demonstrates the advantages 
of the improved method. 

 2 IMPROVEMENT ON THE 
CONVENTIONAL MF-DFA METHOD 

 The MF-DFA method is eff ective in verifying the 
multifractality of a non-stationary time series, which 
describes the multifractality of the object using the 
generalized Hurst exponent  H ( q ). A key step of the 
MF-DFA method is to calculate the trend function in 
each segment, determining the fi tting polynomial 
function using the least-squares method. The degree 
of the polynomial determines the type of detrended 
fl uctuation, which leads to several problems: 1) the 
fi tted polynomial function is discontinuous at 
connection points between adjacent segments, which 
leads to the generation of new pseudo-fl uctuation 
errors (Koag et al., 2014; Wei et al., 2017; Zhang et 
al., 2017b, 2018; Barrs and Chen, 2018; Bhimani et 
al., 2018); 2) the fi tted polynomial can be linear, 
quadratic, or of higher orders(Liu et al., 2015; Zhang 
and Kleit, 2016; Xu et al., 2017a, b; Zhang et al., 
2017a; Zhe et al., 2017). Lower order polynomials 
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cannot accurately represent the trend in data 
fl uctuation, whereas higher order polynomials can 
cause overfi tting problems. Selection of the specifi c 
type depends on the specifi c issues being studied, and 
this is a highly subjective procedure. 

 Based on the previous problems, this paper 
proposes using mode decomposition of signals to 
solve the trend function, which can better meet the 
requirements of solving fi tted trends while avoiding 
the disadvantages of the conventional MF-DFA 
method. 

 2.1 Defi nition of multifractal and an improved 
MF-DFA method 

 Multifractal can be described by generalized fractal 
dimension or the spectral function; the defi nition is as 
following: 

 Defi nition 1: Suppose the function sequence of 
time{ X ( t )}is a stable stochastic process, if it satisfi es: 

  E [| X ( t +Δ t )| q ]= c ( q )(Δ t ) τ  (  q  )+1 .       (1) 
 We say that it has multifractal, of which  t    T , 0   T ; 

 q    Q , [0,1]   Q ;  T ,  Q  is a real interval with positive 
length;  τ ( q ),  c ( q ) is a function on  Q , Δ t  is the increment 
in time,  τ ( q ) is the multifractal mass index.  

 The two key parameters of multifractal are the 
generalized Hurst index and the mass index 
respectively. 

 Defi nition 2: Generalized Hurst index  H  is defi ned 
as:  

  
1

{ [| ( ) ( ) | ]} ( )( ) .H qq qE X t t X t c q t        (2) 

 Defi nition 3: Defi nition of multifractal spectrum 
 f ( α ): If the fractal object is divided into  N  intervals 
with  ε  as the linearity of each interval, the probability 
density of the  i -th interval shall be:  

  P  i ( ε )~ ε  α .             (3) 
 Of which  α  is called singularity index. Let the 

number of intervals with the same  α  value be  N  α ( ε ), 
then 

  N  α ( ε )~ ε  -  f  (  α  ) ,          (4) 
  f ( α ) is the multifractal spectrum, indicating fractal 
characteristics of sub-intervals with diff erent  α  values 
within the fractal object. 

 Defi nition 4: Mass index is defi ned as: 
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 Of which  χ  q ( ε ) is the partition function, indicating 
the weighted summation of probabilities of all 

intervals: 
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 Zhang (2006) adapted the fast-bandpass signal-
fi ltering method proposed by Xu and Wang (personal 
communication; published in 2011) to the empirical 
mode decomposition of signals, establishing a fast 
fi ltering method for signal mode decomposition that 
provided good results. We use the latter method to 
solve the trend function signals. A detailed description 
of this method can be found in the references (Zhang 
2006, 2007; Xu and Wang, 2011) and a brief 
introduction is given here. 

 Discrete Fourier transform is conducted on the 
wave height sequence { x  n }, resulting in the sequence 
{ x  m }. The pre-determined upper and lower limits of 
the bandpass frequency are  ω  m  

1
  and  ω  m2

   , respectively, 
both of which are converted to  m  1  and  m  2  according to 
 m = N Δ tω  m /(2π). The sequence { W  m } is generated as 
follows: 
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                       (7) 

 When an inverse Fourier transform is performed 
on the sequence { W  m }, the real part of the resulting 
sequence is the signal { x  n  (  k  ) } of the fi ltered bandpass. 

 In Eq.7, take  m  2 = N /2 and  m  1 = m  2 –1,  m  2 –2, …, and 
calculate the fi ltered signal { x  n  (  1  ) } for diff erent values 
of  m  1 . In addition, every calculation result is examined 
for being an intrinsic mode function (IMF). The 
procedure is repeated until an  m  1  value is taken that 
makes the signal fi ltered through the bandpass ( ω  m  

1
 , 

 ω  m  
2
 ) an IMF while the signal fi ltered through the 

bandpass ( ω  m  
1  –1 ,  ω  m  

2
 ) is no longer an IMF. In this way, 

the fi rst IMF { x  n  (  1  ) } is decomposed from the wave 
height sequence { x  n }. 

 Similarly, take  m  2 = m  1 –1, and repeat the previous 
procedure, and the second IMF { x  n  (  2) } can be 
decomposed.  

 The same procedure is repeated until the  k  th  IMF is 
decomposed from the wave height sequence { x  n }, in 
which the last signal through the last bandpass (0, 
 ω  k  –1 ) is a monotonic function { M  n }. In this way, the 
signal { x  n } is decomposed into multiple IMFs and one 
monotonic function, as shown below: 

          (1) (2) ( )= + +... + ,k
n n n n nx x x x M       (8) 

 where      (1) (2) ( ), , ... k
n n nx x x  are all IMFs, and { M  n } 
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is the trend function that represents the overall trend 
of the signal. 

 2.2 An improved MF-DFA method 

 The improvement focuses on replacing the 
segmentation procedure of the MF-DFA method for 
fi tting polynomial trends with mode decomposition of 
trends, while the other steps remain essentially the 
same. 

 For a wave height sequence { x  n } of a given length 
 N , the major steps of the improved MF-DFA method 
are as follows: 

 1. Calculate the cumulative deviations { y  n } of the 
wave height sequence: 

 
=1

( )= ( - ), 1, 2, ..., 
i

k
k

y i x x i N.  (9) 

 2. Calculate the mode trend function of the 
cumulative deviations and segment this cumulative 
deviation sequence as well as the trend function: the 
fast fi ltering method of signal decomposition is used 
to calculate the mode trend { T ( n )} of the cumulative 
sequence { T ( n )}. In order to maintain the remaining 
part, segmentation is conducted from opposite ends, 
dividing the sequences { y ( n )} and { T ( n )} into 2 Ns  
segments of equal length  s , in which  Ns =[ N / s ] 
(rounding up the result). 

 3. Calculate the  q  th  order fl uctuation function: fi rst, 
calculate the mean of the squared residuals, i.e., 
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 Therefore, the  q  th  order fl uctuation function is 
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 4. Calculate the generalized Hurst exponent: the 
relationship between the fl uctuation function  F  q ( s ) 
and the length  s  of each segment is as follows: 

  F  q ( s )   s  H  (  q  ) .          (12) 
 In the expression,  H ( q ) is called the generalized 

Hurst exponent. For each value of  q , the corresponding 
 H ( q ) can be obtained from the linear fi tting of the 
ln F  q ( s ) vs ln s  plot.  

 When the value of the generalized Hurst exponent 

 H ( q ) is independent of  q , the wave height sequence is 
a monofractal series; when the value of  H ( q ) changes 
with  q , the sequence is a multifractal series. 

 3 EMPIRICAL ANALYSES 

 In this section, we analyze the observational data 
from the Chaolian Island Hydrological Station for the 
wave height sequence (signifi cant wave heights) 
using the partition function method, the traditional 
MF-DFA method, and the improved MF-DFA method. 

 3.1 Data information 

 The data in this study are the wave height sequence 
(signifi cant wave heights), measured four times a day 
in the Chaolian Island Hydrological Station from 
1963 to 1989. Data are missing or insuffi  cient in some 
years. Figure 1 shows the scatter plot of the original 
wave heights, illustrating that starting from 1963, 
there are some data anomalies in the fi rst few years. In 
the subsequent discussion, the self-similarity and 
scale invariance of wave height through all the 
measured data are discussed. Based on a shape made 
of parts similar to the whole in some way, when 
extrapolating the design wave height, the single 
extremal data over a certain threshold will be selected 
to estimate the parameters of the distribution function. 

 To prevent interference from the abnormal data, 
the data of the fi rst three years were excluded from the 
original data. For the sake of the simplifi cation of 
discussions, this paper selects the wave height over 
the given threshold. If other thresholds are selected, it 
does not aff ect the self-similarity of the wave height 
data. As the scatter plot illustrates, the observed data 
in the fi rst three years were belong to anomalies. 
Therefore, the abnormal data were excluded from the 
subsequent discussion and the data of the later 
23 years were selected. In addition, since the research 
focuses on larger wave heights, a threshold selection 
was performed. A total of 13 546 eff ective wave 
height data whose threshold values were above 
average were used for the analysis, as shown in the 
scatter plot in Fig.2. As the fi gure illustrates, the 
overall wave height sequence is statistically similar to 
its local parts, and therefore it can be further analyzed 
using fractal theory. 

 3.2 The fractal characteristic analysis method 

 Using a mass exponent  τ ( q ) and multifractal 
spectrum  f ( α ), we describe the characteristics of the 
normalized wave height sequence in intervals of 
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diff erent scales, to demonstrate the fractal properties 
of the sequence (Fig.3). 

 First, the ln X  q ( s ) vs ln( s ) relationship was examined. 
Figure 3a shows the double logarithmic plots of the 
sequence for diff erent values of  q , in which a total of 
21 integer values ranging from -10 to 10 are taken for 
 q . Figure 3a shows only the patterns for even values 
of  q . The data points produce a nearly straight line 
regardless of the value of  q , suggesting that for any 
given  q , the wave height sequence has fractal scaling 
properties. The fi gure also shows that for diff erent 
values of  q , slopes of the lines in which the data points 
lie are diff erent from each other, suggesting a 

multiscale property of the sequence; i.e., the wave 
height sequence of Chaolian Island has a multifractal 
characteristic.  

 Table 1 shows the diff erences between the value of 
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 Table 1 Deviation from straight line of mass exponent  τ ( q ) 

  q   -10  -5  0  5  10 

  τ ( q )  -11.510  -6.138  -1.004  3.926  8.712 

 Straight line  -11.510  -6.454  -1.399  3.656  8.712 

 Deviation  0  0.316  0.395  0.270  0 

 Total sum of squared 
deviations  1.650 7 
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 Fig.1 Scatter plot of all original wave heights 
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 τ ( q ) and that of the corresponding straight line for 
diff erent values of  q . Combined to Fig.3b, it is found 
that the  τ ( q ) vs  q  curve deviates slightly from a straight 
line, with the total sum of squared deviations reaching 
1.650 7, implying insignifi cant multifractality of the 
wave height sequence.  

 When Fig.3c and Table 2 are combined, the 
multifractal spectrum  f ( α ) mainly appears as a hook-
shaped quadratic curve to the left. The Holder 
singularity exponent  α  is featured with a scale range 
of (0.948, 1.093)—the entire scale range is larger than 
0.5, while Δ α  is only 0.145, and the maximum value 
of  f ( α ) is 1.004, suggesting a relatively narrow 
distribution of the multifractal spectrum curve. This 
result not only demonstrates the presence of long-
term memory behavior in the fractal pattern of this 
wave height sequence but also depicts its multiscaling 
property implied by the variability in the scaling 
exponent versus volatility, both of which further 
indicate the relatively weak multifractal characteristic 
of the wave height sequence at Chaolian Island.  

 3.3 A comparison between the analytical results 
obtained by the conventional MF-DFA method 
and those by the improved MF-DFA method 

 A comparison is made between the conventional 
MF-DFA method and the improved MF-DFA method 
on the basis of two aspects: trend-fi tting eff ect and 
fi nal pattern.  

 The trend-fi tting eff ect obtained by mode 

decomposition is the overall trend-fi tting result for 
the cumulative deviation sequence. For comparison, 
third-order polynomials fi tted to the cumulative 
deviation sequence were added. In the conventional 
MF-DFA method, trend fi tting for cumulative 
deviations is conducted using piecewise polynomials, 
normally with a fi rst-, second-, or third-order 
polynomial trend that depends on the volume of data. 
In this case, the cumulative deviation data were 
divided into segments, each with 50 data points, and a 
second-order polynomial was fi tted to each segment 
(Fig.4). 

 As Fig.4 shows, the third-order polynomial fi tting 
is too general compared to that obtained by mode 
decomposition and to that by piecewise polynomial 
fi tting—it cannot accurately represent the local 
fl uctuations of the cumulative deviations of wave 
heights, and therefore, it provides the worst fi t. To 
further compare the results obtained by mode 
decomposition with those by piecewise polynomial 
fi tting of the MF-DFA method, the region containing 
data numbers 4 960–5 160 in Fig.4 is enlarged and 
shown in Fig.5.  

 Figure 5 can be analyzed from two perspectives. 
First, within a complete segment—data points 5 001–
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 Table 2 Multifractality spectrum value domain 

   Maximum  Minimum  Δ 

  α   1.093  0.948  0.145 

  f ( α )  1.004  0.584  0.420 
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5 050, for example—the trend obtained by mode 
decomposition is smoother than the MF-DFA 
piecewise polynomial trend, and it works better to 
depict the projections and declines of the fl uctuations, 
implying a better fi tting eff ect; second, at the 
connection points (i.e., data points 5 001 and 5 050), 
there is a large jump present in the curve of the MF-
DFA method, which means that the fi tting is 
discontinuous at connection points of adjacent 
segments, which generates new pseudo-fl uctuation 
errors that interfere with the subsequent calculations. 

However, such a discontinuity does not occur in the 
mode decomposition method, and therefore no 
pseudo-fl uctuation error is generated.  

 Next, we examine the detrending results for the 
wave height cumulative deviations (Fig.6). Figure 6a 
shows the normalized cumulative deviations, and 
Figure 6b shows the cumulative deviations after the 
overall third-order polynomial function is detrended. 
It reveals that the goal of detrending is not achieved. 
Figure 6c and d shows the cumulative deviation 
results obtained by detrending the piecewise 
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polynomial as well as mode decomposition, 
respectively, both of which reach the goal of 
detrending. In addition, as the fi gure illustrates, 
because the trend obtained by mode decomposition 
implies a better fi tting eff ect at the connection points , 
when the long-term measured data and the short-term 
measured data are nested each other, the advantage of 
the fi tting, based on the signal mode decomposition 
method, will more evident with the increase of short-
term nested data nested. The means and variances of 
the cumulative deviations in the latter two groups are 
calculated for further analysis (Table 3). 

 As shown in Table 3, both means are close to zero. 
Since both methods need to solve the fl uctuation 
function after detrending the cumulative deviations, 
the mean value does not have a signifi cant eff ect on 
the succeeding calculations; the major impact is the 
volatility of the cumulative deviations. Variance 
refl ects data dispersion, i.e., the magnitude of 
volatility. The variance of the fi rst method is fi ve 
times that of the latter, showing that the dispersion of 
the detrended cumulative deviations obtained by 

mode decomposition is smaller, with smaller 
fl uctuations, and therefore that this trend tends to 
stabilize more easily.  

 In the previous discussions, the advantages and 
disadvantages of the MF-DFA method and its 
improved version in terms of fi tting eff ect have been 
discussed; it is demonstrated that the latter can achieve 
a better fi tting eff ect while avoiding some drawbacks 
of the original method. 

 In the following discussion, we further analyze the 
advantages and disadvantages of these two methods 
by comparing the fi nal graphs. For both methods, a 
total of 21 integer values from -10 to 10 were set for 
the parameter  q . 

 Figures 7 and 8, respectively, show the ln F  q ( s ) vs 
ln s  double logarithmic plots obtained with the MF-
DFA method and with the improved MF-DFA method. 
Figures 7a and 8a show the ln  F  q ( s ) vs ln s  double 
logarithmic plots, and Figs.7b and 8b show the 
corresponding linear curve fi tting results. When 
comparing the two fi gures, we see that the double 
logarithmic plots obtained with both methods are of 
good linearity, indicating that the wave height 
sequence is long-range power-law correlated and thus 
that it has a multifractal characteristic, which is 
consistent with the results obtained by the partition 
function method. In addition, both of the wave height 
fl uctuation functions obtained tend to converge at 
some level, the diff erence being that the former tends 
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 Table 3 Comparison of fl uctuation of detrended cumulative 
deviations 

 Cumulative deviations  Mean  Variance 

 Detrended piecewise polynomial  -0.004 8  0.015 4 

 Detrended mode decomposition  2.505 5e-17  0.003 0 
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to converge slowly whereas the latter has a faster 
convergence speed; its fl uctuation becomes smaller 
and smaller and therefore tends to stabilize more 
easily. This is inconsistent with the results shown in 
Table 3, which further corroborates the good 
performance of the improved method. 

 Figures 9 and 10 show the curves of the generalized 
Hurst exponent  H ( q ) calculated using the two 
methods. When comparing the two fi gures, we see 
that the generalized Hurst exponent  H ( q ) decreases as 
the partition order  q  increases. According to the 
theory, this suggests that the value of  H ( q ) actually 
changes as  q  changes and that the wave height 

sequence has a multifractal characteristic.  
 Meanwhile, it is roughly shown that the  H ( q ) curve 

of the improved method has a more marked infl ection 
point compared with the original method—the 
infl ection point occurs at  q =-3 and decays much 
faster. 

 As Table 4 shows, for the same set of  q  values, the 
fl uctuation Δ H ( q ) of  H ( q ) calculated with the original 
method is only 0.284 3, while that of the improved 
method reaches 0.694 3, which is almost 2.5 times 
that of the original method. This further confi rms that 
the improved MF-DFA method has a faster decay rate 
as well as better stability. 
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 5 CONCLUSION 

 The multifractal spectrum  f ( α ) of Chaolian Island 
appears as a hook-shaped quadratic curve to the left 
and its Holder singularity exponents  α  obtained are all 
larger than 0.5. However, the entire scale range is 
relatively small: Δ α  is only 0.145, and the maximum 
value of  f ( α ) is 1.004. The multifractal spectrum has a 
relatively narrow distribution, showing weak 
multifractality in the wave fl uctuations of Chaolian 
Island. 

 In this paper, we have applied fractal theory to the 
analysis of the fl uctuation characteristics of waves. A 
partition function-based multifractal analysis of the 
observational wave height data of Chaolian Island 
was conducted, and it was observed that the 
multifractal spectrum  f ( α ) appears as a hook-shaped 
quadratic curve to the left. In addition, the Holder 

singularity exponents  α  obtained are all larger than 
0.5. However, the entire scale range is relatively 
small: Δ α  is only 0.145, and the maximum value of 
 f ( α ) is 1.004. The multifractal spectrum has a relatively 
narrow distribution, showing weak multifractality in 
the wave fl uctuations of Chaolian Island.  

 In addition, in this paper, the signal mode 
decomposition method is proposed to solve the trend 
function against the existing problems of the piecewise 
polynomial method used during the detrended 
fl uctuation analysis of the MF-DFA method. An 
improved MF-DFA method is established based on 
mode decomposition, which is applied to the analysis 
of the wave height observational data from Chaolian 
Island. A comparison with the conventional MF-DFA 
method shows that: 

 (1) Compared to the original method, the improved 
method achieves fi ner trend fi tting, enabling it to 
better depict the projections and declines of the 
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 Fig.10 Generalized Hurst exponent of the improved MF-
DFA method 

 Table 4 Comparison between MF-DFA and its improved 
generalized Hurst exponent 

 q  H(q) of the conventional 
MF-DFA 

 H(q) of the improved 
MF-DFA 

 -10  0.534 0  0.660 6 

 -9  0.528 2  0.637 0 

 -8  0.521 9  0.607 3 

 -7  0.515 2  0.569 2 

 -6  0.508 1  0.519 4 

 -5  0.500 5  0.453 2 

 -4  0.492 5  0.364 2 

 -3  0.484 0  0.248 0 

 -2  0.475 0  0.130 6 

 -1  0.465 5  0.068 1 

 0  0.455 3  0.035 9 

 1  0.444 3  0.014 3 

 2  0.431 8  -0.000 2 

 3  0.416 8  -0.009 8 

 4  0.397 6  -0.016 3 

 5  0.373 2  -0.021 0 

 6  0.345 4  -0.024 5 

 7  0.317 4  -0.027 4 

 8  0.291 7  -0.029 8 

 9  0.269 1  -0.031 8 

 10  0.249 7  -0.033 7 

 ΔH(q)  0.284 3  0.694 3 
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fl uctuations, thus achieving a better fi tting eff ect. In 
addition, the use of the improved method avoids the 
problems of the original one wherein the fi tted trend 
is discontinuous at connection points of adjacent 
intervals; thus, it does not generate a new pseudo-
fl uctuation error, which is benefi cial to the succeeding 
calculations of fl uctuation functions. 

 (2) The cumulative deviations of the wave height 
data have a smaller dispersion after the detrending 
procedure by the improved method and thus have 
smaller fl uctuations—the variance obtained is only 
1/5 that of the original method, suggesting that the 
improved method can better meet the requirements of 
detrending fl uctuations.  

 (3) A comparison between the double logarithmic 
plots ln F  q ( s ) vs ln s  obtained with the two methods 
shows that both methods can achieve good linearity, 
indicating that the wave height sequence is long-
range power-law correlated and thus has a multifractal 
characteristic, which is consistent with the results 
obtained by the partition function method. However, 
the wave height fl uctuation function calculated with 
the improved method has a more obvious convergence 
tendency, with a faster convergence speed, and thus 
tends to stabilize more easily. 

 (4) The generalized Hurst exponent  H ( q ) curve 
calculated with the improved method has a more 
marked infl ection point, which occurs at  q =-3. Under 
the same set of  q  values, the fl uctuation range Δ H ( q ) 
of  H ( q ) calculated with the original method is only 
0.284 3, while that of the improved method reaches 
0.694 3, nearly 2.5 times that of the original method, 
implying that the generalized Hurst exponent has a 
faster decay rate, thus indicating better stability of the 
improved method. 

 In this paper, we introduced fractal to explore the 
fl uctuation characteristics of sea waves. The 
introduction of the method can better analyses the 
internal statistical characteristics of waves. By 
discussing the statistical self-similaritities of the 
multifractal and the probability distribution models 
known (Pearson-Ⅲ, Gumbel Distribution) ,we can 
not only calculate the design wave height and the 
design water level, but also get more details about the 
internal statistical characteristics of waves.The 
research work in this paper facilitates to accurately 
classify the disaster grades of storm surges. By 
discussing the statistical characteristics of dense 
discrete data, it provides feasible theoretical support 
for extrapolating the design wave height with discrete 
extremum data. 

 6 DATA AVAILABILITY STATEMENT 

 The datasets generated and analyzed during the 
current study are available from the corresponding 
author on reasonable request. 

 References 

 Barrs A, Chen B Y. 2018. How emerging technologies could 
transform infrastructure. http://www.governing.com/
commentary/col-hyperlane-emerging-technologies-
transform-infrastructure.html. Accessed on 2018-03-06. 

 Bhimani J, Yang Z Y, Mi N F et al. 2018. Docker container 
scheduler for I/O intensive applications running on NVMe 
SSDs.  IEEE   Transactions   on   Multi - Scale   Computing  
 Systems , https://doi.org/10.1109/TMSCS.2018.2801281.  

 Cai W, Chan J, Garmire D. 2011a. 3-axes MEMS hall-eff ect 
sensor.  In : Proceedings of 2011 IEEE Sensors Applications 
Symposium. IEEE, San Antonio, TX, USA. p.141-144.  

 Cai W, Gouveia L L. 2013. Modeling and simulation of 
Maximum power point tracker in Ptolemy.  Journal   of  
 Clean   Energy   Technologies ,  1 (1): 6-9.  

 Cai W, Li C, Luan S W. 2016. SOI RF switch for wireless 
sensor network.  Advances   in   Engineering :  an   International  
 Journal ,  1 (2): 1-9.  

 Cai W, Zhou X R, Cui X L. 2011b. Optimization of a GPU 
implementation of multi-dimensional RF pulse design 
algorithm.  In : Proceedings of the 2011 5th International 
Conference on Bioinformatics and Biomedical 
Engineering. IEEE, Wuhan, China. 

 Cao Y Z, Tian N N, Bahr D et al. 2016b. The infl uence of 
cellulose nanocrystals on the microstructure of cement 
paste.  Cement   and   Concrete   Composites ,  74 : 164-173.  

 Cao Y Z, Zavattieri P, Youngblood J et al. 2016a. The 
relationship between cellulose nanocrystal dispersion and 
strength.  Construction   and   Building   Materials ,  119 : 71-
79.  

 Chen B Y, Escalera S, Guyon I et al. 2016a. Overcoming 
calibration problems in pattern labeling with pairwise 
ratings: application to personality traits.  In : Hua G, Jégou 
H eds. European Conference on Computer Vision (ECCV 
2016) Workshops. Springer, Cham. p.419-432, https://doi.
org/10.1007/978-3-319-49409-8_33 

 Chen B Y, Liu G L, Wang L P. 2017a. Predicting joint return 
period under ocean extremes based on a maximum 
entropy compound distribution model.  International  
 Journal   of   Energy   and   Environmental   Science ,  2 (6): 117-
126.  

 Chen B Y, Liu G L, Zhang J F. 2016b. Method for calculate 
design wave height the shows three elements of typhoon: 
CN107103173A. 2017-08-29. (in Chinese) 

 Chen B Y, Wang B Y. 2017. Location selection of logistics 
center in e-commerce network environments.  American  
 Journal   of   Neural   Networks   and   Applications ,  3 (4): 40-
48, https://doi.org/10.11648/j.ajnna.20170304.11. 

 Chen B Y, Yang Z Y, Huang S Y et al. 2017b. Cyber-physical 
system enabled nearby traffi  c fl ow modelling for 



12 J. OCEANOL. LIMNOL.,

autonomous vehicles.  In : Proceedings of the 36th IEEE 
International Performance Computing and 
Communications Conference. IEEE, San Diego, 
California, USA. p.1-6.  

 Chen G D, Wang Z C. 2012. A signal decomposition theorem 
with Hilbert transform and its application to narrowband 
time series with closely spaced frequency components. 
 Mechanical   Systems   and   Signal   Processing ,  28 : 258-279.  

 Chen G D, Warren J, Evans J. 2008. Automatically generated 
consumer health metadata using semantic spaces.  In : 
Proceedings of the Second Australasian Workshop on 
Health Data and Knowledge Management. ACM, 
Wollongong, NSW, Australia. p.9-15.  

 Ding M, Fan G L. 2015. Multilayer joint gait-pose manifolds 
for human gait motion modeling.  IEEE   Transactions   on  
 Cybernetics ,  45 (11): 2 413-2 424.  

 Ding M, Fan G L. 2016. Articulated and generalized gaussian 
kernel correlation for human pose estimation.  IEEE  
 Transactions   on   Image   Processing ,  25 (2): 776-789.  

 Escalante H J, Ponce-lópez V, Wan J et al. 2016. ChaLearn 
joint contest on multimedia challenges beyond visual 
analysis: an overview.  In : Proceedings of the 23rd 
International Conference on Pattern Recognition (ICPR). 
IEEE, Cancun, Mexico. p.67-73.  

 Hu S L J, Yang W L, Li H J. 2013. Signal decomposition and 
reconstruction using complex exponential models. 
 Mechanical   Systems   and   Signal   Processing ,  40 (2): 421-
438.  

 Hu X M, Song X F. 2003. Multifractal analysis of both 
Shenzhen and Shanghai stock market.  Quantitative   &  
 Technical   Economics , (8): 124-127. (in Chinese with 
English abstract) 

 Jiang Z Q, Zhou W X. 2008. Multifractal analysis of Chinese 
stock volatilities based on the partition function approach. 
 Physica   A :  Statistical   Mechanics   and   its   Applications , 
 387 (19-20): 4 881-4 888, https://doi.org/10.1016/j.physa. 
2008.04.028. 

 Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E et al. 
2002. Multifractal detrended fl uctuation analysis of 
nonstationary time series.  Physica   A :  Statistical  
 Mechanics   and   Its   Applications ,  316 (1-4): 87-114, https://
doi.org/10.1016/S0378-4371(02)01383-3. 

 Koag M-C, Kou Y, Ouzon-Shubeita H et al. 2014. Transition-
state destabilization reveals how human DNA polymerase 
β proceeds across the chemically unstable lesion N7-
methylguanine.  Nucleic   Acids   Research ,  42 (13): 8 755-
8 766.  

 Kou Y, Koag M-C, Lee S. 2015. N7 methylation alters 
hydrogen-bonding patterns of guanine in duplex DNA. 
 Journal   of   the   American   Chemical   Society ,  137 (44): 
14 067-14 070.  

 Li Z, Burgueño R. 2010. Using soft computing to analyze 
inspection results for bridge evaluation and management. 
 Journal   of   Bridge   Engineering ,  15 (4): 430-438.  

 Li Z, Zhang Z X. 2005. Response of Shanghai running-metro 
line 2 to the construction of adjacent tunnels.  Chinese  
 Journal   of   Rock   Mechanics   and   Engineering ,  24 (1): 

5 125-5 129. (in Chinese with English abstract) 
 Liu G L, Zheng Z J, Wang L P et al. 2015. Power-type wave 

absorbing device and using method thereof: 
CN105113452B. 2015-12-02. (in Chinese) 

 Lu F Y. 2004. The multifractal analysis on stock market returns 
in China.  System   Engineering - Theory   &   Practice ,  24 (6): 
50-54. (in Chinese with English abstract) 

 Ponce-López V, Chen B Y, Oliu M et al. 2016. ChaLearn LAP 
2016: fi rst round challenge on fi rst impressions—dataset 
and results.  In : Hua G, Jégou H eds. Computer Vision— 
ECCV 2016 Workshops. Springer, Cham. Springer 
International Publishing, Switzerland. p.400-418. https://
doi.org/10.1007/978-3-319-49409-8_32. 

 Shen W, Li D S, Zhang S F et al. 2017. Analysis of wave 
motion in one-dimensional structures through fast-
Fourier-transform-based wavelet fi nite element method. 
 Journal   of   Sound   and   Vibration ,  400 (2017): 369-386.  

 Wang L P, Chen B Y, Chen C et al. 2016. Application of linear 
mean-square estimation in ocean engineering,  China  
 Ocean   Engineering ,  30 (1): 149-160.  

 Wang L P, Chen B Y, Zhang J F et al. 2013b. A new model for 
calculating the design wave height in typhoon-aff ected 
sea areas.  Nat .  Hazards ,  67 (2): 129-143.  

 Wang L P, Huang G L, Chen Z S et al. 2014. Risk analysis and 
assessment of overtopping concerning sea dikes in the 
case of storm surge.  China   Ocean   Engineering ,  28 (4): 
479-488.  

 Wang L P, Liu G L, Chen B Y et al. 2015. Typhoon based on 
the principle of maximum entropy waters aff ect the design 
wave height calculation method: CN102063564B. 2010-
12-20. (in Chinese) 

 Wang L P, Liu G L, Chen B Y et al. 2013a. Method for 
calculating combined return period of ocean extreme 
value considering typhoon infl uence: CN102063527B, 
2011-05-18. (in Chinese) 

 Wang L P, Xu X, Liu G L et al. 2017. A new method to estimate 
wave height of specifi ed return period.  Chinese   Journal   of  
 Oceanology   and   Limnology ,  35 (5): 1 002-1 009.  

 Wang S Y, Tian H. 2006. Empirical research on the multifractal 
behavior in China security market.  Journal   of   Beijing  
 Institute   of   Technology  ( Social   Sciences   Edition ),  8 (2): 
71-73. (in Chinese with English abstract) 

 Xu D L, Wang L P. 2011. Analysis of Ocean Random Data — 
Principles, Methods and Applications. Higher Education 
Press, Beijing. 231p. (in Chinese) 

 Xu J C, Huang L P, Yang L. 2017a. Magnetic transforms of 
modulus type applied at region of lower latitudes in SE 
China.  Journal   of   Applied   Geophysics ,  139 : 188-194.  

 Xu J C, Ren Q W, Shen Z Z. 2017b. Sensitivity analysis of the 
infl uencing factors of slope stability based on LS-SVM. 
 Geomechanics   and   Engineering ,  13 (3): 447-458.  

 Xu J. 2011. A study on the multifractal characteristics of the 
stock market in China and their relationship with risks. 
 Journal   of   Jiamusi   University  ( Natural   Science   Edition ), 
 29 (1): 158-160. (in Chinese) 

 Yang Z Y, Wang Y F, Bhimani J et al. 2018. EAD: elasticity 
aware deduplication manager for datacenters with multi-



13LIU et al.: Wave height intrinsic characteristic analysis

tier storage systems.  Cluster   Computing , https://doi.
org/10.1007/s10586-018-2141-z.  

 Zhang K Y, Kleit A N. 2016. Mining rate optimization 
considering the stockpiling: A theoretical economics and 
real option model.  Resources   Policy ,  47 : 87-94.  

 Zhang K Y, Olawoyin R, Nieto A et al. 2017a. Risk of 
commodity price, production cost and time to build in 
resource economics.  Environment ,  Development   and  
 Sustainability . https://doi.org/10.1007/s10668-017-0003-0. 

 Zhang L Z. 2006. Fast fi ltering decomposing signal into 
intrinsic mode function and its applications in marine data 
analysis. Ocean University of China, Beijing, China. (in 
Chinese with English abstract) 

 Zhang L Z. 2007. Decomposing method of orthogonal intrinsic 
mode function.  Journal   of   Vibration   and   Shock ,  26 (5): 27-
32. (in Chinese with English abstract) 

 Zhang S F, Shen W, Li D S et al. 2018. Nondestructive 
ultrasonic testing in rod structure with a novel numerical 
laplace based wavelet fi nite element method.  Latin  
 American   Journal   of   Solids   and   Structures ,  15 (7): 1-17.  

 Zhang X, Ding M, Fan G L. 2017b. Video-based human 
walking estimation using joint gait and pose manifolds. 
 IEEE   Transactions   on   Circuits   and   Systems   for   Video  
 Technology ,  27 (7): 1 540-1 554.  

 Zhe Z, Ou J P, Li D S et al. 2017. A thermography-based 
method for fatigue behavior evaluation of coupling beam 
damper.  Fracture   and   Structural   Integrity ,  11 (40): 149-
161.  

 Zhuang X Y. 2012. Empirical study of the volatility of Shanghai 
composite index based on R-MFDFA method.  Journal   of  
 Huaibei   Normal   University  ( Natural   Science ),  33 (2): 21-
26. (in Chinese with English abstract) 


