
Azulik whitepaper first draft

Azulik Group

January 13, 2018

Abstract

Raiblocks outlined the concept of a “block lattice”, where each account has it’s own
blockchain and each “block” contains just one transaction. Raiblocks is a very elegant proto-
col allowing instant and fee-less transactions. Raiblocks has everything to become the next
Bitcoin, and as every great product needs an alternative we propose in this draft a potential
approach allowing to enable the privacy feature. Zero-knowledge proof systems is well docu-
mented, however it has been rarely applied to directed acyclic graph especially with the view
to transfer value instantaneously and without fees. This draft try to explain the problematic
and a potential approach. Further approach have been or will be considered to solve the
problem and allow to create an Anonymous Raiblock fork.

1 Disclaimer
The following draft isn’t a whitepaper as you use to read. Indeed, it focus on applying privacy to
cryptocurrency based on directed acyclic graph and especially the Raiblocks. We hope it will allow
to start the discussion with the community about the feasibility to have an anonymous Raiblocks.
The authors shall not be held liable for the up-to-dateness, correctness, completeness or quality
of the information provided. Thanks to not use part or the totality of the information in this
whitepaper without the author’s agreement. This version is a very first draft.

2 Introduction
In cryptocurrency environment, the mobility of the network users necessitates an agile authenti-
cation system. Zero-knowledge proof systems allow an interaction between parties to determine
trustworthiness in a quick and effective manner. In order to make these interactions as fast and
secure as possible, they are most often based on problems from the NP-complete class (NP, or
"nondeterministic polynomial," is the complexity class of problems with "polynomial time veri-
fiers." I.e., if the problem has a solution, it must be possible to verify the solution in polynomial
time, even if finding the solution is much harder.), which contains many graph theory problems. A
strong and lightweight zero-knowledge protocol must satisfy the following criterion: it must have a
small number of bits transferred between parties, it must require few iterations to achieve a given
trust level, and it must be difficult for a cheater to pass as trustworthy.

3 Background

3.1 Graph theory background
This section is meant as a guide to some of the graph theoretic terms and concepts employed in
this whitepaper draft. A graph is a pair G = (V,E) such that E is a subset of V xV , where V
is the set of vertices and E is the set of edges in the graph. Vertices can also be called nodes
especially in the cryptocurrency field. An edge is incident to a vertex if the vertex is one of the
edge’s endpoints. Two vertices are adjacent if they are connected by an edge. The degree of a
vertex (or valency) is the number of edges incident to it. An adjacency matrix representation of a
graph is a matrix in which the rows and columns represent the vertices and an entry equal to 1 in
row and u column implies the existence of an edge between vertices and, while an entry equal to
0 implies that there is no edge between u and v.

1



3.2 NP-Completeness
The class NP is the class of decision problems for which any yes-instance has a solution that is
verifiable in polynomial time. The class P contains all decision problems that can be solved in
polynomial time, and hence also have solutions that can be verified in polynomial time, implying
that P ⊆ NP. A problem L in the class NP is in the subclass of NP-complete problems if every
problem in NP can be reduced to the problem L in polynomial time. A reduction from problem K
to problem L is an algorithm which takes as input an arbitrary instance of problem K and outputs
an instance of problem L. Given this definition, it is clear that the class of NP-complete problems
contains the hardest problems in the class NP, as an easy solution for one NP-complete problem
leads to an easy solution for all problems in the class NP. In order to prove a problem is in the
class of NP-complete problems, we need only prove that a known NP-complete problem L reduces
to our problem.

3.3 Zero-Knowledge Proof Systems
We begin with the notion of an interactive proof system which is the key for privacy. An interactive
proof system is an interaction between two participants, called the prover and the verifier, in which
the prover attempts to prove some fact (or knowledge of some private input) to the verifier. An
interactive proof system is formally defined as a protocol based on a decision problem which satisfies
the following properties:

1. Completeness: Each yes-instance of the decision problem leads to acceptance by the verifier
with probability at least 1 − n−k for any constant k > 0, where is the size of the problem
instance.

2. Soundness: Each no-instance of the decision problem leads to rejection by the verifier with
probability at least 1− n−k for any prover.

An important component of a zero-knowledge proof system is the commitment. Zero-knowledge
proof systems usually require that the prover has some method of “locking up” information about
the problem instance prior to receiving the verifier’s challenge. Otherwise, the prover would be
able to manufacture a response to the verifier’s challenge, and this new response may or may not
be consistent with the problem instance.

4 Zero-Knowledge Proofs applied to Raiblocks

4.1 First approach proposed
The longest path problem for a general graph is not as easy as the shortest path problem because
the longest path problem doesn’t have optimal substructure property. In fact, the Longest Path
problem is NP-Hard for a general graph. However, the longest path problem has a linear time
solution for directed acyclic graphs.

Figure 1: Long path problem decomposition

2



The above figure illustrates the step by step long path problem. A zero-knowledge proof system for
the longest path problem could hence be applied. The common inputs to the protocol are a graph
G, and a positive integer k, which represents the length of a longest path in G. The private input is
the longest path itself. The prover (P) chooses randomly an isomorphism π to permute the graph
G and then sends a commitment to this new graph π(G), , to the verifier (V). V then chooses a
random bit c which is sent to P. If c=0, P sends π to V along with the decommitment information
for π(G) and V checks that π(G) was formed correctly from G and π. If c=1, then P sends the
decommitment information for π(P) to V (where π(P) represents the entries corresponding to the
edges of the path that is the private input) and V checks that π(P) forms a path of the specified
length. the prover does not need to send any information in addition to the edges of the path
to the verifier. The permutations used by the prover are unnecessary information for the verifier,
as checking that the edges revealed form a path is a simple task without the knowledge of the
permutations. The prover also does not need to identify the vertices that are endpoints on the
path, as the verifier can determine these from the revealed entries by examining which rows and
columns have one and only one entry equal to 1.

Figure 2: Hamiltonian cycle illustration

This figure illustrate a possible way to apply a zero-knowledge proof system and hence privacy to
DAG. However even if we believe this approach will allow fee-less transaction they won’t be instant
anymore (at this stage of our reflection). We could hence think about a protocol allowing privacy
as on option. We will soon develope a WIP approach.

To be continued ...

Thanks for reading

Azulik Group

3


	Disclaimer
	Introduction
	Background
	Graph theory background
	NP-Completeness
	Zero-Knowledge Proof Systems 

	Zero-Knowledge Proofs applied to Raiblocks
	First approach proposed


