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Preface

In the first two editions of the book “Probability,” which appeared in 1980 and
1989 (see [118]), and were translated into English in 1984 and 1990 (see [119]), all
chapters were supplemented with a fairly comprehensive and diverse set of relevant
exercises. The next two (considerably revised and expanded) editions appeared in
2004 and 2007 (see [121]) in two volumes entitled “Probability 1” and “Probability
2.” While the work on the third edition was still in progress, it was determined
that it would be more appropriate to publish a separate book that includes all “old”
exercises, i.e., exercises included in the previous two editions, and many “new”
exercises, i.e., exercises, which, for one reason or another, were not included in
any of the previous editions (the main reason for that was the constrain on the size
of the volume that could go to print). This is how the present volume “Problems
in Probability” came to life. On the most part, this book includes problems and
exercises that I have created, collected and compiled over the course of many years,
while working on topics and subjects that interested me the most. These problems
derive from a rather diverse set of sources: textbooks, lecture notes, exercise
manuals, monographs, research papers, private communications and such. Some
of the problems came out of discussions that took place during special seminars for
graduate and undergraduate students in which I was involved.

It is impossible to cite here with complete accuracy all of the original sources
from which the problems and the exercises are derived. The bibliography included
at the end of the book and the citations throughout the main text are simply the result
of my best effort to give credit where credit is due.

I would like to draw the reader’s attention to the appendix included at the end of
the book. I strongly recommend that anyone using this book becomes familiar—
at least in passing—with the material included in the Appendix. There are two
reasons for this recommendation. First, the appendix contains a summary of the
main results, notation and terminology from probability theory, that are used not
only throughout this book, but also throughout the books “Probability.” Second,
the appendix contains additional material from combinatorics, potential theory and
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vi Preface

Markov chains, which is not covered in these books, but is nevertheless needed for
many of the exercises included here.

The following referencing conventions are adopted throughout the book:
(a) All references to the books “Probability” (see [121]) start with the token P .

For example, “[ P §1.1, 3 ]” points to Part 3 of Sect. 1 in Chap. 1 in [121], “[ P §2.6,
(6)]” and “[ P §2.6, Theorem 6]” point, respectively, to (6) and Theorem 6 from
Sect. 6 in Chap. 2 in [121]—and so on.

(b) Problems included in this book are referenced, for example, as “Prob-
lem 1.4.9,” which points to Problem 1.4.9 from Sect. 1.4 in Chap. 1 below.

The reader must be forewarned that the problems and the exercises collected in
the present volume differ from each other in nature:

(a) Some problems are simply meant to test the reader’s understanding of the
basic concepts and facts from the books “Probability.” For example, the exercises
from Sects. 1.1 and 1.2 in Chap. 1 relate to the various combinatorial methods for
counting the favorable outcomes of an event and illustrate the important notions of
partial factorial .N /n, combinations Cn

N and Cn
NCn�1 , Catalan numbersCn, Stirling

numbers of the first and second kind snN and SnN , Bell numbers BN , Fibonachi
numbers Fn, etc.

(b) Other problems are of a medium-to-high degree of difficulty and require
more creative thinking. A good example is Problem 7.4.3, which is asking for a
unified proof of Lebesgue’s dominated convergence theorem and Levy’s theorem of
convergence of conditional expectations.

(c) Some of the problems are meant to develop additional theoretical concepts
and tools that supplement the material covered in the books “Probability,” or simply
to familiarize the reader with various facts that, typically, are not covered in the
mainstream texts in probability theory, but are nevertheless “good to know”—or at
least good to know that such results exist and be aware of the respective sources.
One such example is M. Suslin’s result (see Problem 2.2.27 below), which states
that the projection of a Borel set in the plane onto one of the coordinate axes may
not be a Borel set inside the real line, or the result describing the set-operations
that allow one to produce the smallest algebra or �-algebra that contains a given
collection of sets—see Problems 2.2.25, 2.2.26 and 2.2.32. One must realize that, in
fact, many problems of this type represent fairly difficult theorems. The formulation
of such theorems in the form of exercises has the goal of inviting the reader to think
and to ask questions like: how does one construct a �-algebra anyway? The answer
to this and similar questions is of paramount importance in the study of models and
phenomena that pertain to what one may call “non-elementary probability theory.”

(d) Some of the problems are related to the passage from random walks to Brow-
nian motions and Brownian bridges—see Sect. 3.4, for example. The statements in
these problems are intimately related to what is known as the “invariance principle”
and may be viewed as some sort of a prelude by way of problems and exercises to
the general theory of stochastic processes in continuous time and, in particular, to
the functional limit theorems.



Preface vii

Many (but not all, by far) of the problems included in this book contain hints and
other relevant comments. I very much hope that these hints and comments will be
helpful not only for deriving the solution, but also for learning how to think about
the related concepts and problems.

Over nearly 50 years several of my colleagues at MSU have published exercise
manuals in probability theory that have been in continuous use in courses offered at
MSU, as well as in other institutions of higher education. I would like to mention
them:

1963 – L. D. Meshalkin. Exercise Manual in Probability Theory. Moscow
University Press, Moscow;
1980 – B. A. Sevastyanov, V. P. Chistyakov, A. M. Zubkov. Exercise Manual in
Probability Theory. Nauka, Moscow;
1986 – A. V. Prohorov, V. G. Ushakov, N. G. Ushakov. Exercises in Probability
Theory: Basic Notions, Limit Theorems, Random Processes. Nauka, Moscow;
1989 – A. M. Zubkov, B. A. Sevastyanov, V. P. Chistyakov. Exercise Manual in
Probability Theory, a-ed.. Nauka, Moscow;
1990 – M. V. Kozlov. Elements of Probability Theory Through Examples and
Exercises. Moscow University Press, Moscow.

Since this last book was published nearly 15 years ago, the curriculum in most
graduate-level courses in probability theory has changed considerably. Some new
directions have emerged, new areas of research were developed, and new problems
were formulated. An earnest effort was made to adequately reflect these changes in
the books “Probability” and, naturally, in the present volume, which first appeared
in 2006. At the same time, the traditional coverage of all classical domains of
probability theory was kept intact. At the end more than 1,500 problems (counting
the various parts of problems) found their way into the present volume.

As was the case with the books “Probability,” the final edit, arrangement and
proof-reading of the text was done by Tatyana Borisovna Tolozova, to whom I am
deeply indebted.
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Finally, I would like to express my gratitude to Andrew Lyasoff not only for
translating the present volume into English, but also for making a number of
corrections in the original and for enriching the text with many comments and
clarifications.

Moscow Albert N. Shiryaev
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Chapter 1
Elementary Probability Theory

1.1 Probabilistic Models for Experiments with Finitely
Many Outcomes

Problem 1.1.1. Verify the following relations involving the operations \ (intersec-
tion) and [ (union):

A [ B D B [ A, A \ B D B \ A (commutativity),
A [ .B [ C / D .A [ B/ [ C , A \ .B \ C / D .A \ B/ \ C (associativity),
A\.B [C / D .A\B/[.A\C /, A[.B \C / D .A[B/\.A[C / (distributivity),

A [ A D A, A \ A D A (idempotent property of \ and [).

Then prove that

A [ B D A \ B and A \ B D A [ B;

where � stands for the operation “complement of a set.”

Problem 1.1.2. (Various interpretations of the partial factorial .N /n�N.N � 1/

: : : .N � n C 1/; i.e., the number of permutations N take n—see Sect. A.1.) Prove
that:

(a) The number of all ordered samples .: : :/ without replacement (equivalently,
samples without repetition) of size n drawn from any finite set A of size jAj D N ,
1 � n � N , equals .N /n.

(b) The number of all words of length n composed from different letters selected
from an alphabet that consists of N letters, 1 � n � N , equals .N /n.

(c) Given a finite set X of size jX j D n and a finite set Y of size jY j D N ,
n � N , the number of all functions f W X 7! Y such that if x1; x2 2 X and x1 6D x2

then f .x1/ 6D f .x2/ (i.e., the number of all injections from X to Y ) equals .N /n.

Problem 1.1.3. (Various interpretations of the binomial coefficients C n
N �

N Š
nŠ .N �n/Š

—see Sect. A.1.) Prove that:

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics,
DOI 10.1007/978-1-4614-3688-1 1,
© Springer Science+Business Media New York 2012
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2 1 Elementary Probability Theory

(a) The number of all unordered samples Œ: : :� without replacement (equivalently,
samples without repetition) of size n, drawn from any finite set A of size jAj D N ,
1 � n � N , equals C n

N .
(b) The number of all ordered finite 0-1-sequences .: : :/ of length N that contain

exactly n 1’s and exactly .N � n/ 0’s, 1 � n � N , equals C n
N .

(c) The number of all possible placements of n indistinguishable particles into N

distinguishable cells, 1 � n � N , in such a way that each cell can contain at most
one particle (the so called “placement with locks”), equals C n

N .
(d) The number of all possible nondecreasing paths on the two-dimensional

lattice Z2C � f.i; j / W i; j D 0; 1; 2; : : :g, that start from the point .0; 0/ and end at
the point .n; N � n/, 0 � n � N , equals C n

N (a path on the two-dimensional lattice
is said to be nondecreasing if at each step the path moves either up by C1 or to the
right by C1—notice that C 0

N D 1).
(e) The number of all different subsets D of size jDj D n that are contained in

some finite set A of size jAj D N , n � N , equals C n
N .

Hint. Assuming that (a) has already been established, then one can establish
(b), (c), (d) and (e) by proving the equivalence relations .a/ ” .b/, .a/ ”
.c/; : : :—exactly as this is done in [ P §1.1, Example 6].

Problem 1.1.4. Similarly to Part (d) in the previous problem, consider the class
of all nondecreasing paths on the lattice Z2C � f.i; j / W i; j D 0; 1; 2; : : :g, that
start from the point .0; 0/ and end at the point .n; n/, while never moving above the
diagonal, i.e. all paths that go from .0; 0/ to .n; n/ and remain in the set f.i; j / 2
Z2C; 0 � j � i � ng. Prove that the number of paths in this class is given by the
.n C 1/st Catalan number CnC1, the nth Catalan number, n � 1, being defined as

Cn � 1

n
C n�1

2.n�1/ :

Note: Sometimes the Catalan numbers are defined as cn � 1
nC1

C n
2n ( D CnC1),

n � 0 (see, for example, [6]).
Prove that C1; : : : ; C9 equal, respectively, 1, 1, 2, 5, 14, 42, 132, 429, 1430.

Problem 1.1.5. The Catalan numbers Cn, n � 1, show up in many combinatorial
problems. Consider, for example, the number of binary bracketings of n letters—
this is the number of all possible ways in which one can compute the sum of n

numbers that are arranged in a row by adding only 2 neighboring numbers at the
time. For instance, one can compute the sum a C b C c either as ..a C b/ C c/ or
as .a C .b C c//. Thus, the number of binary bracketings of three letters equals 2. It
is not hard to see that there is a total of 5 binary bracketings of 4 letters:

a C b C c C d D ..a C b/ C .c C d//

D ...a C b/ C c/ C d/
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D ..a C .b C c// C d/

D .a C ..b C c/ C d//

D .a C .b C .c C d///:

(a) Prove that for any integer n � 3, the number of all binary bracketings of n

letters is given by the Catalan number Cn.
(b) Consider Euler’s polygon divison problem: In how many different ways can a

plane convex polygon of n sides, n � 4, be divided into triangles by non-intersecting
diagonals? Prove that the answer to Euler’s polygon divison problem is given by the
Catalan number Cn�1.

Hint. If a convex n-gone is divided into (non-intersecting) triangles whose
vertices are also vertices of the n-gone, then there would be exactly .n � 2/

triangles and any such division corresponds to the choice of .n�3/ non-intersecting
diagonals.

(c) Consider the numbers C �
n , n � 0, defined recursively by the relations:

C �
0 D 0; C �

1 D 1 and C �
n D

n�1X

iD1

C �
i C �

n�i ; for n > 1 : .�/

Prove that, for any n � 1, the number C �
n coincides with the nth Catalan number

Cn; in other words, prove that the Catalan numbers can be defined equivalently by
way of the recursive relation .�/.

(d) Prove that the generating function F �.x/ D P
n�1 C �

n xn, associated with
the sequence .C �

n /n�1 and defined by the recursive relation .�/ above, satisfies the
following relation:

F �.x/ D x C .F �.x//2:

(e) By taking into account that F �.0/ D 0, prove that

F �.x/ D 1

2
.1 � .1 � 4x/1=2/ ; jxj <

1

4
;

and conclude that, just as one would expect, the coefficients C �
n in the expansion of

the function F �.x/ coincide with the Catalan numbers Cn:

C �
n D �1

2
C n

1=2 .�4/n D 1
n

C n�1
2.n�1/ D Cn :

(For the definition of the quantity C n
1=2 see Problem 1.2.22.)

Problem 1.1.6. (Various interpretations of the binomial coefficients C n
N Cn�1 .)

Prove that:
(a) The number of all unordered samples with replacement Œ: : :� of size n drawn

from any finite set A of size jAj D N equals C n
N Cn�1 .
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(b) The number of all ordered lists .n1; � � � ; nN /, N � 1, whose entries ni , i D
1; : : : ; N , are non-negative integer numbers that satisfy the relation n1 C� � �CnN D
n, for some fixed n � 1, equals C n

N Cn�1 .
(c) The number of all possible placements of n � 1 indistinguishable particles

into N � 1 distinguishable cells without a restriction on the number of particles in
each cell (the so-called “placement without locks”), equals C n

N Cn�1 .
Hint. Follow the hint to Problem 1.1.3.

Problem 1.1.7. (Continuation of Part (b) in the previous problem.) Given some
fixed integers, N � 1 and n � 1, consider the collection of all unordered
solutions Œn1; : : : ; nN � to the equation n1 C � � � C nN D n, in terms of some non-
negative integers ni � 0, i D 1; : : : ; N . What is the total number of solutions in
this collection? What is the total number of all—still unordered—strictly positive
solutions ni > 0, i D 1; : : : ; N ? What is the total number of all ordered solutions
.n1; : : : ; nN / to the same equation, n1 C � � � C nN D n, in terms of positive integers
ni > 0, i D 1; : : : ; N ?

Problem 1.1.8. (Continuation of Part (b) in Problem 1.1.6 and Problem 1.1.7.)
Given some fixed integers, n � 1 and N � 1, consider the inequality n1C� � �CnN �
n. Count the total number of all ordered solutions .n1; : : : ; nN / and the total number
of all unordered solutions Œn1; : : : ; nN � to this inequality, in terms of non-negative
or strictly positive integers ni , i D 1; : : : ; N .

Problem 1.1.9. Prove that:
(a) The maximal number of disjoint regions in the plane R2, determined by n

different lines that are placed arbitrarily in the plane R2, equals

1 C n.n C 1/

2
:

(b) The maximal number of disjoint regions in the space R3, determined by n

different planes that are placed arbitrarily in the space R3, equals

1

6
.n3 C 5n C 6/ :

Problem 1.1.10. Suppose that A and B are any two subsets of the set ˝ . Prove that
the algebra, ˛.A; B/, generated by these two sets—i.e., following the terminology
introduced in [ P §1.1, 3 ], the algebra generated by the system A0 D fA; Bg—
consists of the following N.2/ D 16 subsets of ˝:

fA; B; A; B; A \ B; A \ B; A n B; B n A;

A [ B; A [ B; A [ B; A [ B; A 4 B; A 4 B; ˝; ¿g;
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where A 4 B D .A n B/ [ .B n A/ is the so called “symmetric difference” of the
sets A and B (see [ P §2.1, Table 1]).

Find those partitions D (see [ P §1.1, 3 ]) of the set ˝ , for which the algebra
˛.D/, i.e., the algebra generated by D , coincides with ˛.A; B/.

Finally, prove that the algebra ˛.A1; : : : ; An/, generated by the system A0 D
fA1; : : : ; Ang, where Ai � ˝ , i D 1; : : : ; n, consists of N.n/ D 22n

different
subsets of ˝ , so that N.2/ D 16, N.3/ D 256, and so on.

Problem 1.1.11. Prove Boole’s inequalities

(a) P
� n[

iD1

Ai

�
�

nX

iD1

P.Ai /; P
� n\

iD1

Ai

�
� 1 �

nX

iD1

P.Ai /:

Prove that for any integer n � 1 the following inequality is in force

(b) P
� n\

iD1

Ai

�
�

nX

iD1

P.Ai / � .n � 1/ :

Prove the Kounias inequality

(c) P
� n[

iD1

Ai

�
� min

k

� nX

iD1

P.Ai / �
X

i 6Dk

P.Ai \ Ak/

�
:

Prove the Chung-Erdös inequality

(d) P
� m[

iD1

Ai

�
�

�Pn
iD1 P.Ai /

�2

Pn
i;j D1 P.Ai \ Aj /

:

Hint. With n D 3 Part (b) comes down to the inequality P.A1 \ A2 \
A3/ � P.A1/ C P.A2/ C P.A3/ � 2, which can be established with elementary
considerations. The general case can then be handled by using induction with
respect to n. To prove (c), it is enough to establish that the following inequality
holds:

P
� n[

iD1

Ai

�
�

nX

iD1

P.Ai / �
X

2�i�n

P.A1 \ Ai / :

This inequality, too, can be established by induction.

Problem 1.1.12. Prove the “inclusion–exclusion formulas” (also known as
Poincaré’s formulas, Poincaré’s theorems, Poincaré’s identities) for the probability
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of a union of events and the probability of an intersection of events; namely, prove
that, for any n � 1 and for any choice of the events A1; : : : ; An, one has:

(a) P.A1 [ : : : [ An/ D
nX

mD1

.�1/mC1
X

1�i1<:::<im�n

P.Ai1 \ : : : \ Aim/

�
X

1�i1�n

P.Ai1/ �
X

1�i1<i2�n

P.Ai1 \ Ai2/ C
X

1�i1<i2<i3�n

P.Ai1 \ Ai2 \ Ai3/

C : : : C .�1/nC1P.A1 \ : : : \ An/

and

(b) P.A1 \ : : : \ An/ D
nX

mD1

.�1/mC1
X

1�i1<:::<im�n

P.Ai1 [ : : : [ Aim/

�
X

1�i1�n

P.Ai1/ �
X

1�i1<i2�n

P.Ai1 [ Ai2/ C
X

1�i1<i2<i3�n

P.Ai1 [ Ai2 [ Ai3/

C : : : C .�1/nC1P.A1 [ : : : [ An/:

Note 1. The formula in Part (a) is often written in the form

P
� n[

iD1

Ai

�
D S1 � S2 C : : : C .�1/nC1Sn;

where
Sm D

X

1�i1<:::<im�n

P.Ai1 \ : : : \ Aim/ ;

while the formula in Part (b) is often written in the form

P
� n\

iD1

Ai

�
D QS1 � QS2 C : : : C .�1/nC1 QSn ;

where
QSm D

X

1�i1<:::<im�n

P.Ai1 [ : : : [ Aim/ :

Note 2. Although the inclusion–exclusion formulas are considered here in the
context of [ P Chap. 1], which deals only with finite probability spaces .˝; A ; P/,
it is important to recognize that, in fact, these formulas are valid on any (finite or
infinite, countable or uncountable) probability space .˝; F ; P/, regardless of its
nature (see [ P Chap. 2]).
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Nevertheless, in order to use the inclusion–exclusion formulas in concrete
situations, one must be able to compute somehow the quantities Sm, or, which
amounts to the same, the probabilities P.Ai1 \: : :\Aim/. Usually, such computations
take into account the concrete probabilistic structure of the model encoded in
the space .˝; A ; P/—the models associated with the Bose–Einstein statistics and
Fermi–Dirac statistics illustrate this point rather well.

Hint. The formula in Part (a) can be established by induction with respect to the
number of events n, after showing first that for n D 2 one has

P.A1 [ A2/ D .P.A1/ C P.A2// � P.A1 \ A2/:

(See also Problem 1.4.9).
To prove the formula in Part (b), notice first that

P
� n\

iD1

Ai

�
D P

� n[

iD1

Ai

�
D 1 � P

� n[

iD1

Ai

�
:

and then apply the formula from Part (a) to the events A1; : : : ; An, instead of the
events A1; : : : ; An.

Note 3. Anticipating the use of the inclusion–exclusion formulas later in

this book, notice that P
�Tn

iD1 Ai

�
is the probability that neither of the events

A1; : : : ; An occurs.

Problem 1.1.13. Let Bm denote the event that exactly m of the events A1; : : : ; An

occur, the integers n � m � 0 being fixed. Assuming that the quantities S1; : : : ; Sn

are defined as in Problem 1.1.12, prove that

P.Bm/ D
nX

kDm

.�1/k�mC m
k Sk ;

which can be written also as

P.Bm/ D Sm � C 1
mC1 SmC1 C : : : C .�1/n�mC n�m

n Sn ;

and conclude that the probability P.B�m/ of the event B�m that at least m of the
events A1; : : : ; An occur, is given by

P.B�m/ � P.Bm/ C : : : C P.Bn/ D
nX

kDm

.�1/k�mC m�1
k�1 Sk;

which can be written also as

P.B�m/ D Sm � C 1
m SmC1 C : : : C .�1/n�mC n�m

n�1 Sn :
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Hint. The formula for P.Bm/ is known as Waring’s formula and can be proved
by using the method of “inclusion–exclusion,” just as in Problem 1.1.12. Such a
proof can be found, for example, in W. Feller’s book [39, vol. 1, Chap. IV, § 3].
However, readers familiar with the notions of random variables and expected values
(see [ P §1.4] and [ P §2.6, 4 ]) may follow these steps:

Given any i D 1; : : : ; n, let Xi � IAi denote the indicator of the event Ai and
consider the sum

X
Xi1 : : : Xim.1 � Xj1/ : : : .1 � Xjn�m/ ; .�/

where the summation is taken over all C m
n possible choices of the (unordered) list

Œi1; : : : ; im� from the list Œ1; : : : ; n� and

Œj1; : : : ; jn�m� � Œ1; : : : ; n� n Œi1; : : : ; im� :

When evaluated at a particular outcome !, the sum in .�/ is equal to 1 precisely
when ! belongs to exactly m of the events A1; : : : ; An and is equal to 0 in all
other cases. Consequently, the quantity P.Bm/ is nothing but the expected value
of the sum .�/. The remaining steps are similar to those described in the hint to
Problem 1.4.9. (See also Problem 2.6.31.)

Problem 1.1.14. By using the formulas for P.Bm/ and P.B�m/ obtained in
Problem 1.1.13, derive Bonferroni formulas: for any even integer number r � 2

one has

Sm C
rC1X

kD1

.�1/kC k
mCk SmCk � P.Bm/ � Sm C

rX

kD1

.�1/kC k
mCk SmCk;

Sm C
rC1X

kD1

.�1/kC k
mCk�1 SmCk � P.B�m/ � Sm C

rX

kD1

.�1/kC k
mCk�1 SmCk ;

where the quantities S1; : : : ; Sn are defined as in Problem 1.1.12.
Hint. One possibility is to prove first the following (also very useful) identities:

Sm D
nX

rDm

C m
r P.Bm/ ; Sm D

nX

rDm

C m�1
r�1 P.B�m/ :

Problem 1.1.15. By using the definition of the quantities S1; : : : ; Sn given in
Problem 1.1.12, derive:

(a) Bonferroni inequalities (this is a special case of the formulas obtains in the
previous problem): for any integer k � 1 with the property 2k � n, one has
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S1 � S2 C : : : � S2k � P

 
n[

iD1

Ai

!
� S1 � S2 C : : : C S2k�1:

(b) Fréchet inequality: for any integer 0 � r � n � 1 one has

SrC1

C rC1
n

� Sr

C r
n

:

(c) Gumbel inequality: for any integer 1 � r � n � 1 one has

C rC1
n � SrC1

C r
n�1

� C r
n � Sr

C r�1
n�1

:

Problem 1.1.16. (“The matching problem.”) Given some fixed integer n � 1,
consider the set of all possible permutations of the list .1; : : : ; n/, suppose that one
permuatation is chosen at random from that set and denote this randomly chosen
permutation by .i1; : : : ; in/. Assuming that all permutations are equally likely to
occur, i.e., each permutation is chosen with probability 1=nŠ, prove that:

(a) The probability P.m/ that exactly m of the numbers 1; : : : ; n, 1 � m � n,
appear in the permutation .i1; : : : ; in/ in their own positions (i.e., in the same
positions in which they appear in the list .1; : : : ; n/) is given by

1

mŠ

�
1 � 1

1Š
C 1

2Š
� 1

3Š
C : : : C .�1/n�m 1

.n � m/Š

� �
	 e�1

m
; n ! 1

�
:

(b) The probability P.�1/ that at least one of the numbers 1; : : : ; n appears in the
permutation .i1; : : : ; in/ in its own position is given by

1 � 1

2Š
C 1

3Š
� : : : C .�1/n�1 1

nŠ
.	 1 � e�1; n ! 1/;

and, consequently, the probability for a complete “disorder” (i.e., a situation where
none of the numbers 1; : : : ; n appears in its own position in the list .i1; : : : ; in/) is

given by 1 � P.�1/ D Pn
j D0

.�1/j

j Š
(	 e�1 when n ! 1).

Hint. For any 1 � i � n let Ai denote the event that the number i is located in
the i th position of the list .i1; : : : ; in/. The probability P.m/ is then the same as the
probability P.Bm/ in the previous problem, so that

P.m/ D Sm � C 1
mC1 SmC1 C : : : C .�1/n�mC n�m

n Sn :

Showing that in the present setting one has Sk D 1=kŠ for any m � k � n would
complete the proof.
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In order to establish the formula for P.�1/, it is enough to notice that, using again
the results from the previous problem, one has

P.�1/ D P.B�1/ D S1 � S2 C S3 � : : : C .�1/n�1Sn ;

where, in this case, Sk D .n�k/Š

nŠ
.

Problem 1.1.17. (“The absent-minded secretary problem.”) There are n different
letters and n envelopes addressed to the respective recipients of the letters. The
secretary who prepares the letters is absent-minded and stuffs the letters into the
envelopes at random. Assume the “classical,” i.e., equal-likelihood-of-outcomes,
definition of the probabilities involved (see [ P §1.1, 5 ]), and let P.m/ denote the
probability that exactly m of the letters will reach their (correct) recipients.

Prove that

P.m/ D 1

mŠ

�
1 �

n�mX

j D0

.�1/j

j Š

�
:

Hint. 1. First, one must clarify the assumption that “the secretary stuffs the letters
into the envelopes at random.” If we are to assume that the secretary chooses at
random one of the n envelopes and stuffs the first letter into that envelope, then
chooses at random one envelope from the remaining n � 1 envelopes and stuffs
the second letter into that envelope, and so on, then the entire procedure would
be tantamount to taking an ordered sample of size n without repetion from the
set of symbols .a1; : : : ; an/ that represent the different envelopes and then making
the assumption that any such sample is equally likely to occur, according to the
principles described in [ P §1.1, 5 ]. This means that we have an experiment with
.n/n D nŠ possible outcomes, every one of which occurs with probability 1=nŠ.

2. Denote by Ai the event that the i -th letter is placed in its own envelope. Then
P.m/ D P.Bm/ (see Problem 1.1.13) and, consequently,

P.m/ D
nX

kDm

.�1/k�mC m
k Sk:

After noticing that in this setting Sk D 1=kŠ, 1 � k � n, one obtains the desired
formula for P.m/. Notice that the probability P.0/ that none of the letters reaches
its recipient equals

Pn
kD1.�1/kC1 1

kŠ
, which is close to 1 � e�1 even for relatively

small values for n—for example, with n D 5 this sum equals 0:633333, while
1 � e�1 	 0:632121.

Problem 1.1.18. There are n children in a given kindergarten. When leaving the
kindergarten each child chooses at random one left and one right shoe. Prove that:

(a) The probability Pa that none of the children will bring home his or her own
pair of shoes is given by
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Pa D
nX

kD1

.�1/k .n � k/Š

kŠ nŠ
:

(b) The probability Pb that none of the children will bring home at least one of
his or her own shoes is given by

Pb D
� nX

kD2

.�1/k 1

kŠ

�2

:

Hint. First, one must give meaning to the phrase “each of the n children chooses
at random one left and one right shoe”—this can be done by following the principle
outlined in the hint to Problem 1.1.17.

(a) Let Ai denote the event that the i th child takes both his or her left and right
shoes. According to the inclusion–exclusion formula, we have

Pa D P
� n\

iD1

Ai

�
D 1 � P

� n[

iD1

Ai

�
D 1 � S1 C S2 � : : : C .�1/nSn;

and one must show that in this case Sk D .N �k/Š

kŠ nŠ
, which gives the desired formula

for Pa.
(b) In order to established the formula for Pb , it is enough to notice that Pb is

simply the product of the probability that none of the children brings home his or
her left shoe and the probability none of the children brings home his or her right
shoe, after which the statement in (b) follows with a straight-forward application of
the result established in Problem 1.1.17.

Problem 1.1.19. There are n particles that are distributed in M boxes according
to the Maxwell–Boltzmann statistics (placement without locks of distinguishable
particles in distinguishable cells). By following the classical method of Laplace for
counting probabilities (see [ P §1.1, (10)]), which encodes, so to speak, “the random
nature” of the placement of the particles, prove that the probability, Pk.nI M /, that
exactly k particles appear in any fixed cell is given by

Pk.nI M / D C k
n

.M � 1/n�k

M n
:

Conclude from the above formula that when n ! 1 and M ! 1 in such a way
that n=M ! � > 0, then

Pk.nI M / ! e�� �k

kŠ
:

(Comp. with the Poisson distribution—see [ P §1.6] and [ P §2.3, Table 2].)
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Problem 1.1.20. (Continuation of Problem 1.1.19.) Let Rm.nI M / stand for the
probability that exactly m cells remain empty. Prove that

Rm.nI M / D C n
M

M�mX

kD0

.�1/kC k
M�m

�
1 � m C k

M

�n

;

and conclude that if n ! 1 and M ! 1 in such a way that Me�n=M ! � > 0,
then

Rm.nI M / ! e�� �m

mŠ
:

Problem 1.1.21. Consider again a random placement of n particles into M cells,
but according to the Bose–Einstein statistics (placement without locks of indistin-
guishable particles in distinguishable cells). Denote by Qk.nI M / the probability
that there are exactly k particles in any fixed cell. Prove that

Qk.nI M / D C n�k
MCn�k�2

C n
MCn�1

and conclude that when n ! 1 and M ! 1 in such a way that n=M ! � > 0,
then

Qk.nI M / ! p.1 � p/k; where p D 1

1 C �
:

(Compare with the geometric distribution—see [ P §2.3, Table 2].)

Problem 1.1.22. A box contains N balls labeled 1; : : : ; N . A ball is sampled n

times from the box randomly and with repetition (i.e., the ball is returned to the box
after each sample). Given any fixed k 2 f1; : : : ; N g, let Ak denote the event that the
largest label found among the sampled balls equals k. Prove that

P.Ak/ D kn � .k � 1/n

N n
:

In addition, prove that if the balls are sampled randomly but without repetition, then
for any n � k � N one has

P.Ak/ D C n�1
k�1

C k
N

:

Problem 1.1.23. Verify the Leibniz formula for the N th derivative of the product of
two functions f and g:

DN .fg/ D
NX

nD0

C n
N .Dnf /.DN �ng/:
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Hint. Consider using induction and the property C n
N C1 D C n

N C C n�1
N , i.e., the

so called “Pascal triangle property.”

1.2 Some Classical Models and Distributions

Problem 1.2.1. Prove that:

.x C y/n D
nX

kD0

C k
n xk yn�k .binomial identity/;

.x C y/n D
nX

kD0

C k
n .x/k .y/n�k .Vandermonde’s identity/;

Œx C y�n D
nX

kD0

C k
n Œx�k Œy�n�k .Nørlund’s identity/;

where

.x/n D x.x � 1/.x � 2/ : : : .x � n C 1/ ;

Œx�n D x.x C 1/.x C 2/ : : : .x C n � 1/ :

Hint. Consider using Taylor’s expansion for polynomials.

Problem 1.2.2. By using probabilistic, combinatorial, or geometric arguments
(say, by counting the number of favorable outcomes, or, counting the number of
paths that connect one point with another), or some other type of reasoning (say,
by way of some algebraic argument analogous to identifying the coefficients for xn

in identities of the form .1 C x/a.1 C x/b D .1 C x/aCb/), verify the following
claims about the binomial coefficients (below bxc denotes the integer part of the
real number x, i.e., the largest integer number which is not greater than x, while
dxe denotes the smallest integer number which is not smaller than x):


 1 D C 0
n < C 1

n < : : : < C bn=2c
n D C dn=2e

n > : : : > C n�1
n > C n

n D 1

(symmetry and unimodality);

 C k�1

N C C k
N D C k

N C1 (this is the Pascal triangle rule)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::

I
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 C k
n D C k

n�2 C 2C k�1
n�2 C C k�2

n�2 I



NX

kD0

C k
N D 2N ;

NX

kD0

.C k
N /2 D C N

2N I



NX

kD0

2kC k
N D 3N ;

NX

kD1

kC k
N D N 2N �1I



NX

kD0

.�1/N �kC k
M D C N

M�1 ; M � N C 1I



NX

kD0

k.k � 1/C k
N D N.N � 1/2N �2; N � 2I


 kC k
N D N C k�1

N �1 ;

NX

mDk

C k
m D C kC1

N C1 I


 C k
N C l

k D C l
N C k�l

N �l ; l � k � N I



kX

j D0

C j
N D

kX

j D0

2j C k�j
N �1�j ; k � N � 1I



kX

j D0

C j
N Cj D C k

N CkC1 I


 C k
N �k C C k�1

N �k�1 D N

N � k
C k

N �k ; 0 � k � N I


 C n
N1CN2

D
N1X

kD0

C k
N1

C n�k
N2

(Vandermonde’s binomial convolution) ;


 C n�1
N � C n

N ; 1 � n � N C 1

2
I


 C n�1
N C nC1

N � .C n
N /2; n � N � 1I


 C N
MCN �

�
1 C M

N

�N�
1 C N

M

�M I

or, equivalently,
.M C N /Š

.M C N /MCN
� M Š N Š

M M N N
I
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 N k

kk
� C k

N � N k

kŠ
I



NX

kD0

C k
N .�1/N �k2k D 1I


 C n
N D

NX

kDn

.�1/N CkC k
N C n

k 2k�n; 1 � n � N I



NX

kD0

C k
N C n

k D 2N �nC n
N ;

NX

kD0

C 2kC1
2N C1 C nCk

2N D C 2n
2N ; 1 � n � N I


 C M�1
N �1 D C M

N � C MC1
N C � � � ˙ C N

N ; M � N I



MX

kD0

.�1/kC k
N D .�1/M C M

N �1 I



NX

kD0

.�1/k.C k
N /2 D

(
.�1/mC m

2m ; if N D 2m

0 if N ¤ 2m
I



NX

kD0

.�1/k.C k
N /3 D

(
.�1/m.3m/Š .mŠ/�3; if N D 2m

0 if N ¤ 2m
I



NX

kD1

C k
N

.�1/k�1

k
D

NX

kD1

1

k
I



NX

kD0

.�1/N �kkl C k
N D

(
0; if l < N

N Š; if l D N
I



NX

kD0

C N �k
2.N �k/ C k

2k D 22N :

(See also Problem 1.2.22.)

Problem 1.2.3. Prove that if p is a prime number and 1 � k � p � 2, then p

divides C k
p and one has C p

2p D 2 .mod p/.

Problem 1.2.4. Prove that the number of different ways in which a set of N objects
can be split into no more than two disjoint sets, the order in the sets being irrelevant,
equals bN=2c C 1, where bxc is the integer part of the real number x.

Problem 1.2.5. Given N � n � 1, the Stirling number of the second kind, Sn
N , is

defined as the number of all possible partitions of a set of N objects, say, the set
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f1; 2; : : : ; N g, into n disjoint and non-empty sets with no regard of the order in the
sets.1

Prove that the following relations are in force:

(a) S1
N D SN

N D 1 ; S2
N D 2N �1 � 1 ; SN �1

N D C 2
N I

(b) Sn
N C1 D Sn�1

N C nSn
N ; 1 � n � N I

(c) Sn
N C1 D

NX

kD0

C k
N Sn�1

k .S
p

k D 0 p > k/ I

(d) Sn
N D 1

nŠ

N �1X

kD0

.�1/kC k
n .n � k/N I

(e) Sn
N D 1

nŠ

nX

kD0

.�1/n�kC k
n kN I

(f) Sn
N < nN �nC n�1

N �1 :

Hint. To prove (b), which is the key to deriving (c) and (d), use the relation
xN D PN

nD0 Sn
N .x/n (see page 376 in the Appendix) and the relation .x/nC1 D

.x � n/ .x/n.

Problem 1.2.6. By using the relation xN D PN
nD0 Sn

N .x/n, it is shown in Sect. A.3
that the exponential generating function

ESn
�

.x/ �
X

N �0

Sn
N

xN

N Š
;

associated with the sequence Sn� D .Sn
N /n�0, consisting of Stirling numbers of the

second kind, has the property

ESn
�

.x/ D .ex � 1/n

nŠ
:

Prove the above identity by using property (e) in the previous problem.

1The definitions and some basic facts concerning the Stirling numbers (of the first and the second
kind), and also of the Bell numbers, can be found in Sect. A.1.
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Problem 1.2.7. According to one of the definitions of the Stirling numbers of the
first kind, sn

N , (see page 377 in Sect. A.3), the number .�1/N �nsn
N gives the total

number of permutations of the set f1; 2; : : : ; N g with exactly n cycles (note that
s0

N � 0).
Prove that

(a) s1
N D sN

N D 1;

(b) sn
N C1 D sn�1

N � Nsn
N ; 1 � n � N;

(c)
NX

nD1

.�1/N �nsn
N D

NX

nD1

jsn
N j D N Š:

In addition, prove that the numbers sn
N , 0 � n � N , satisfy the following algebraic

relation (see page 377)

(d) .x/N D
NX

nD0

sn
N xn;

where .x/N � x.x � 1/ : : : .x � N C 1/.
Hint. The recursive relation (b) may be established by way of combinatorial

reasoning. Alternatively, it may be derived directly from the algebraic relation (d).

Problem 1.2.8. Prove the following duality property of the Stirling numbers of the
first and second kinds: X

n�0

Sn
N sM

n D ıNM ;

where ıab is the Kronecker symbol associated with the quantities a and b, i.e., ıab D
1 if a D b and ıab D 0 if a ¤ b.

Problem 1.2.9. Prove that the exponential generating function

Esn
�

.x/ �
X

N �0

sn
N

xN

N Š
;

associated with the sequence sn� D .sn
N /N �0, comprised of Stirling numbers of the

first kind, is given by the following formula

Esn
�

.x/ D .ln.1 C x//n

nŠ
:

Problem 1.2.10. Given any N � 1, the Bell number BN is defined as (see page 362
in the Appendix) the number of all possible partitions of the set f1; 2; : : : ; N g, or,
which amounts to the same,
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BN �
NX

nD1

Sn
N ;

where Sn
N , 1 � n � N are the Stirling numbers of the second kind.

Setting B0 � 1, prove that:
(a) The following recursive relation is in force

BN D
NX

kD1

C k�1
N �1 BN �k :

(b) The exponential generating function EB.x/ � P
N �0 BN

xN

N Š
is given by the

formula
EB.x/ D expfex � 1g :

(c) BN < N Š and limN !1.BN =N Š/1=N D 0.

Finally, verify that the numbers B1; : : : ; B5 equal, respectively, 1, 2, 5, 15, 52.
Hint. To prove (b), use (a) and check that the function x �! EB.x/ satisfies the

following first-order equation

dEB.x/

dx
D exEB.x/ ;

with boundary condition EB.0/ D 1. In order to prove the second property in (c),

consider the radius of convergence R D 1= lim
�

BN

N Š

	1=N
for the series

P
N �0 BN

xN

N Š
,

which, as is easy to see, converges for all real x.

Problem 1.2.11. (Fibonacci numbers.) Given any integer n � 1, let Fn denote the
number of all possible representations of the number n as the sum of an ordered list
of 1’s and 2’s. Thus, one has F1 D 1, F2 D 2 (since 2 D 1 C 1 D 2), F3 D 3 (since
3 D 1 C 1 C 1 D 1 C 2 D 2 C 1), F4 D 5 (since 4 D 1 C 1 C 1 C 1 D 2 C 1 C 1 D
1 C 2 C 1 D 1 C 1 C 2 D 2 C 2), and so on.

(a) Setting F0 � 1, prove that for any n � 2 the Fibonacci numbers Fn satisfy
the following recursive relation

Fn D Fn�1 C Fn�2 ; n � 2: .�/

(b) By using the above relation, prove that

Fn D 1p
5


�
1 C p

5

2

�nC1

�
�

1 � p
5

2

�nC1�
: .��/

Notice that 1Cp
5

2
	 1:6180339887 : : : and 1�p

5
2

	 �0:6180339887 : : : :
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(c) By using .�/, prove that the generating function F.x/ � P
n�0 Fnxn,

associated with the sequence .Fn/n�0, is given by the formula

F.x/ D 1

1 � x � x2
: .���/

(d) The Fibonacci numbers2 have many interesting properties. For example,
setting F�1 � 0, for any choice of the integers m; n � 0 one can write:

F0 C F1 C : : : C Fn D FnC1 � 1; F 2
n�1 C F 2

n D F2n;

Fn�1Fn C FnFnC1 D F2nC1; FmFn C Fm�1Fn�1 D FmCn ;

Verify the last four identities.
(e) Prove that for any n � 0 the nth Fibonacci number is given by

Fn D
bn=2cX

kD0

C k
n�k :

For example, convince yourself that the list of the first 18 Fibonacci numbers
fF0; F1; : : : ; F17g is given by

f1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; 610; 987; 1597; 2584g:

(f) Prove that for any n � 9 one has

Fn

de.n�1/=2e D 1;

but for n D 10 one has F10=de9=2e < 1 and

lim
n!1

Fn

de.n�1/=2e D 0: .����/

Hint. (b) To prove .��/, start by looking for a sequences of the form .Fn �
˛n/n�1 that satisfies the recursive relation Fn D Fn�1CFn�2. The formula .��/ may
be obtained also by considering the coefficients for xn in Taylor’s expansion of the
function .���/. In this context it is useful to notice that 1�x�x2 D .1�ax/.1�bx/,
for a D .1 C p

5/=2 and b D .1 � p
5/=2.

2Tradtionally linked to the population growth of a colony of rabbits, and described as early as the
thirteenth century AD, by Leonardus Pisanus de filiis Bonaccii, widely known under the nickname
“Fibonacci,” in his book “Liber Abaci,” probably written around 1202 CE.
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(f) To prove .����/, notice that .��/ implies Fn 	 c1 .1:618 : : :/n, while
de.n�1/=2e 	 c2 .1:648 : : :/n, with some appropriate constants c1 and c2. Try to find
these two constants.

Problem 1.2.12. Prove that the multinomial (polynomial) coefficients

CN .n1; : : : ; nr / D N Š

n1Š : : : nr Š
; n1 C : : : C nr D N; ni � 0 ;

satisfy the following formula, known as Vandermonde’s multinomial convolution
formula:

CN1CN2 .n1; : : : ; nr / �
X

CN1.k1; : : : ; kr /CN2 .n1 � k1; : : : ; nr � kr/ ;

the summation being taken over all possible choices of the integers fki I i D
1; : : : ; rg, so that 0 � ki � ni , for any i D 1; : : : ; r ,

Pr
iD1 ki D N1, and

n1 C : : : C nr D N1 C N2.

Problem 1.2.13. Prove that

.x1 C : : : C xr /N D
X

CN .n1; : : : ; nr /x
n1

1 : : : xnr
r ;

the summation being taken over all possible choices for the integers n1; : : : ; nr ; in
such a way that ni � 0, for any i D 1; : : : ; r , and

Pr
iD1 ni D N .

Problem 1.2.14. Prove that the number of nondecreasing paths on the integer
lattice ZrC D f.i1; : : : ; ir / W i1; : : : ; ir D 0; 1; 2; : : :g that start at the origin .0; : : : ; 0/

and end at some point .n1; : : : ; nr / with
Pr

iD1 ni D N , equals CN .n1; : : : ; nr /.
(A path on the lattice ZrCis said to be nondecreasing if at every step only one of the
coordinates changes by C1.)

Problem 1.2.15. Consider the sets A and B , chosen so that the numbers of their
elements, resp. N � jAj and M � jBj, are both finite, and:

let F W A 7! B denote any function from A to B , i.e., any rule that assigns a unique
b 2 B to any a 2 A (one and the same b 2 B can be assigned to many a 2 A);

let IW A 7! B denote any injection of A into B , i.e., any rule that assigns to
different elements of A different elements of B , so that no two elements of A are
assigned one and the same element from B (for this to be possible one must have
jAj � jBj);

let SW A 7! B denote any surjection of A into B , i.e., any function from A into
B with the property that for every b 2 B there is at least one a 2 A with S.a/ D b

(for this to be possible one must have jAj � jBj);
and, finally, let BW A ! B denote any bijection from A into B , i.e., any function

from A into B which is both surjection and injection (for this to be possible one
must have jAj D jBj);
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Prove that the total number of: all functions from A into B , of all injections of A

into B , of all surjections from A onto B , and of all bijections between A and B , are
given, respectively, by:

N.F / D M N ; N.I/ D .M /N ; N.S/ D M Š SM
N ; and N.B/ D N Š :

Problem 1.2.16. Prove that the numbers PN D PN
nD0.N /n, N � 0, with .N /0 D 1

and .N /n D N.N � 1/ : : : .N � n C 1/, satisfy the following recursive relation:

PN D NPN �1 C 1; N � 1:

In addition, prove that

PN D N Š

NX

nD0

1

nŠ
;

and that PN is the nearest integer to eN Š.

Problem 1.2.17. Prove that the exponential generating function

EP .x/ D
1X

N D0

PN

xN

N Š
;

associated with the sequence P D .PN /N �0, which is defined in the previous
problem, satisfies the relation

EP .x/ D ex

1 � x
:

Problem 1.2.18. An urn contains M balls labeled 1; 2; : : : ; M . Each ball is painted
in either red or blue. Let M1 denote the number of red balls in the urn and let M2

denote the number of blue balls in the urn (M1 CM2 D M ). Consider an unordered
sample from the urn without a replacement of size n D n1 C n2 < M and let Bn1;n2

denote the random event that there are exactly n1 red and n2 blue balls in the sample.
Suppose that M ! 1, M1 ! 1 and M2 ! 1 in such a way that, for some finite
number 0 < p < 1, one has M=M1 ! p and M=M2 ! 1 � p. Prove that

P.Bn1;n2/ ! C n2

n1Cn2
pn1.1 � p/n2 :

Hint. Use the identity

P.Bn1;n2/ D C n1
n M

n1

1 M
n2

2

M n
:

Problem 1.2.19. Prove that in the multinomial distribution fP.An1;:::;nr /g the prob-
ability fP.An1;:::;nr /g is the largest when the list .k1; : : : ; kr / is chosen so that
npi � 1 < ki � .n C r � 1/pi , i D 1; : : : ; r .
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Problem 1.2.20. (One-dimensional Ising model.) There are n particles placed at
locations 1; : : : ; n. Each particle is either type-1 particle or type-2 particle. The
total number of type-1 particles is n1, the total number of type-2 particles is n2

(n1 C n2 D n) and all nŠ placements of the particles are equally likely.
Describe the associated probabilistic model and compute the probability of the

event An.m11; m12; m21; m22/ D f�11 D m11; : : : ; �22 D m22g, where �ij denotes
the total number of type-i particles that are placed immediately after a type j

particle (i; j D 1; 2).

Problem 1.2.21. Suppose that one must estimate the size N of a certain population
and that the estimation effort must be “minimal”; in particular, straight counting of
all individuals in the population cannot be used as a method. Such problems are of
interest when one must estimate, for example, the total number of citizens in a given
country, large city, etc.

In 1786 Pierre-Simon Laplace proposed the following method for estimating the
total number N of all French citizens:

Take some number, say, M , of French citizens and record their names. Then
return those citizens back in the general population so that they are “perfectly
mixed” with unrecorded individuals. Then choose a “perfectly random” sample
of n individuals and denote by X the total number of recorded individuals in that
sample.

(a) Given some fixed N , M and n, prove that the probability PN;M InfX D mg,
i.e., the probability that the number of recorded individuals in the sample is exactly
equal to m, is given by the formula for the hyper-geometric distribution (see [ P §1.2,
(4)]):

PN;M InfX D mg D C n
M C n�m

N �M

C n
N

:

(b) For some fixed M , n and m find the maximum of PN;M InfX D mg for various
choices of N . If bN denotes the value for N at which that maximum is achieved,
i.e., if bN is the “most likely” size of the entire population, given that the number
of recordeded individuals in the sample is m (this is also known as the maximim
likelihood estimate of N ), prove that

bN D
$

M n

m

%
;

where b�c is the “integer part” function. (This problem continues in Problem 1.7.4.)

Problem 1.2.22. In the (elementary) combinatorial theory the binomial coefficients
C n

M � .M/n

nŠ
D MŠ

nŠ .M�n/Š
(denoted equivalently by

�
M

n

	
) and the number of ordered

samples .M /n � M.M �1/ : : : .M �nC1/ are defined usually for integer numbers
n; M 2 N D f1; 2; : : :g. In some areas of analysis it is often useful to define “the
number of ordered samples .M /n” and “the binomial coefficient C n

M ,” with M

replaced by some arbitrary X 2 R. Assuming that n 2 f0; ˙1; ˙2; : : :g define
0Š D 1, .X/0 D 1, C 0

X D 1, and the define
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.X/n D X.X � 1/ : : : .X � n C 1/; C n
X D .X/n

nŠ
; for any n > 0 ;

and C n
X D 0, for any n < 0. In conjunction with the above definitions (and

some of the relations established in Problem 1.2.2) prove the following identities
for arbitrary X; Y 2 R and n 2 Z D f0; ˙1; ˙2; : : :g):

C n�1
X C C n

X D C n
XC1 .Pascal triangle property/I

C n
XCY D

nX

kD0

C k
X C n�k

Y

�
Vandermonde’s binomial
convolution

�
;

C n
X�1 D

nX

kD0

.�1/n�kC k
X I

C n�m
n�X D

n�mX

kD0

.�1/kC k
X C m

n�k I

C n
XCY Cn�1 D

nX

kD0

C n�k
XCn�k�1 C k

Y Ck�1 I

C n�X D .�1/nC n
XCn�1 :

Problem 1.2.23. Consider ordered samples without repetition of size M , taken
from an urn that has N � 2 balls, of which n � 2 are white and N �n are black. Let
Ai;j be the event that the i th and the j th balls in the sample are white, i < j � M ,
and let Ai;j;k be the event that the i th, the j th and the kth balls in the sample are
white, i < j < k � M . Compute the probability of the events Ai;j and Ai;j;k.

Problem 1.2.24. Find a formula for the probability Pn of having n spades in a hand
of 13 cards, taken at random from a full deck of 52 playing cards.

Problem 1.2.25. Consider n � 3 different points on a circle and suppose that 2 of
these points are chosen at random. What is the probability that these two points are
“neighbors”?

Problem 1.2.26. (“The married couples problem,” a.k.a. “problème des ménage.”)
In how many different ways can n married couples (n � 3) be seated at a round table
in such a manner that men and women alternate, i.e., there are no two men or two
women sitting next to each other, and, at the same time, there are no husband and
wife sitting next to each other?

Hint. Suppose that the seats around the table are labeled (say, clockwise)
1; : : : ; 2n, and that seat 1 is always occupied by a woman. Given some 1 � k � 2n,
let Ak denote the event that seats k and k C1 are occupied by some married couple,
with the understanding that seat 2n C 1 is identified with seat 1. Then the event
that there are no husband and wife sitting next to each other can be expressed as
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T2n
kD1 Ak. By the inclusion–exclusion formula (see Part (b) of Problem 1.1.12) one

can write

P
� 2n\

kD1

Ak

�
D 1 � P

� 2n[

kD1

Ak

�
D 1 �

X

i

P.Ai / C
X

i<j

P.Ai \ Aj / � : : : :

A straight-forward calculation shows that, for any 1 � i � 2n, one has

P.Ai / D n

�
.n � 1/Š

nŠ

�2

;

for any 1 � i < j � 2n one has

P.Ai \ Aj / D
8
<

:
n.n � 1/

�
.n�2/Š

nŠ

�2

; if ji � j j 6D 1;

0; if ji � j j D 1;

where P.A1 \ A2n/ D 0, and, in general, for any i1 < : : : < ik one has

P.Ai1\: : :\Aik / D

8
<̂

:̂

nŠ
.n�k/Š

�
.n�k/Š

nŠ

�2

; if jij C1 � ij j � 2 for 1 � k � k;

and 2n C i1 � ik � 2,

0 in all other cases:

Consequently,

P
� 2n\

kD1

Ak

�
D

nX

kD0

.�1/k .n � k/Š

nŠ
d k

n ;

where d k
n denotes the number of all possible choices of k non-intersecting pairs of

neighboring seats (the pairs .i; i C 1/ and .j; j C 1/ are said to be non-intersecting
if, either i C 1 < j , or j C 1 < i ). After showing that

d k
n D C k

2n�k

2n

2n � k
;

one arrives at the following conclusion: the probability that no married couple is
seated on two neighboring seats is given by

1

nŠ

nX

kD0

.�1/k.n � k/Š
2n

2n � k
C k

2n�k :

Problem 1.2.27. (Latin squares.) A Latin square of size n � n is simply a square
matrix of size n � n which is filled with the numbers 1; 2; : : : ; n in such a way that
each of these numbers appears precisely once in every column and precisely once
in every row. For example,
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1 2

2 1
and

2 1

1 2

are Latin squares of size 2 � 2, while

1 2 3

2 3 1

3 1 2

and
1 2 3

3 1 2

2 3 1

are Latin squares of size 3 � 3. If Ln stands for the total number of all Latin squares
of size n � n, prove that

Ln � nŠ .n � 1/Š : : : 1Š

�
D

nY

kD1

kŠ

�
:

Remark. One can show, for example, that L2 D 2, L3 D 12, L4 D 576, etc.;
however, an exact general formula for Ln is rather difficult to obtain. Nevertheless,
the following asymptotic result is well known:

ln Ln D n2 ln n C O.n2/ ; as n ! 1:

Problem 1.2.28. (G. Pólya’s urn scheme.) Suppose that an urn contains r red and
b black balls and consider the following trial: one ball is drawn at “random” from
the urn, after which that ball and a new ball of the same color are placed back into
the urn. Suppose that this trial is repeated many times and let Sn denote the number
of red balls that have been drawn from the urn during the first n trials. Prove that

PfSn D xg D C r�1
rCx�1 C b�1

bCn�x�1

C n
rCbCn�1

; 0 � x � n:

Problem 1.2.29. In the context of Pólya’s urn scheme described in the previous
problem, set

p D r

r C b
; q D b

r C b
� D 1

r C b
:

and suppose that when n ! 1 one has p ! 0 and � ! 0 in such a way that
np ! � and n� ! 1=�. Prove that for any fixed x one has

PfSn D xg ! C x
�pCx�1

� �

1 C �

���� 1

1 C �

�x

as n ! 1:

Problem 1.2.30. Consider the random placement of 2n balls, of which n are white
and n are black, into m boxes, labeled 1; : : : ; m. The probability for a black ball to
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be placed in the j th box is pj (p1 C � � � C pm D 1) and the probability for a white
ball to be placed in the j th box is qj (q1 C� � �Cqm D 1). Let � denote the number of
boxes that contain exactly one white and one black balls. Calculate the probability
Pf� D kg, k D 0; 1; : : : ; m, and the expected value E�.

Problem 1.2.31. (On Stirling’s formula—see also Problem 1.3.16 and Problem
8.8.1.) By the well known asymptotic series expansion for the gamma function,
one has

nŠ D p
2�n

�n

e

�n
�

1 C 1

12n
C 1

288n2
� 139

5140n3
C O

� 1

n4

��
:

By using the relations

ln nŠ D
nX

kD2

ln k and ln .n � 1/Š <

Z n

1

ln t dt < ln nŠ ;

in which
R n

1
ln t dt D n ln n � n C 1, derive the following (rough) lower and upper

bounds for nŠ :
e
�n

e

�n

< nŠ < en
�n

e

�n

; .�/

which leads to Stirling’s formula:

nŠ � p
2�n

�n

e

�n

:

Problem 1.2.32. (On the asymptotic decomposition of harmonic numbers.) A
harmonic number is a number of the form Hn D Pn

kD1
1
k

, n � 1. From the well
known asymptotic expansion of the digamma function, one has

Hn D ln n C � C 1

2n
� 1

12n2
C 1

120n4
C O

� 1

n6

�
;

where � D 0:5772 : : : is the Euler constant (a.k.a. the Euler-Mascheroni constant).
By using the method developed in the previous problem, for estimating certain

sums in terms of integrals, prove that for any n � 1 one has

ln n C 1

n
� Hn � ln n C 1 ;

and conclude that limn.Hn= ln n/ D 1.
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1.3 Conditional Probability: Independence

Problem 1.3.1. Prove by way of example that, in general, the following identities
do not hold:

P.B j A/ C P.B j A/ D 1;

P.B j A/ C P.B j A/ D 1 :

Problem 1.3.2. An urn contains M balls of which M1 are white. Consider a
random sample of size n and let Bj denote the event that the ball taken at the
j th drawing in the sample is white. Let Ak denote the event that there are exactly
k white balls in the entire sample of size n. Prove that, regardless of whether the
sampling is with replacement or without replacement, one must have

P.Bj j Ak/ D k=n :

Hint. Prove that in the case of sampling with replacement one must have

P.Bj \ Ak/ D C k�1
n�1 M k

1 .M � M1/
n�k

M n
;

P.Ak/ D C k
n M k

1 .M � M1/
n�k

M n
;

while in the case of sampling without replacement one must have

P.Bj \ Ak/ D C k�1
n�1 .M1/k.M � M1/n�k

.M /n

;

P.Ak/ D C k
n .M1/k.M � M1/n�k

.M /n
:

Problem 1.3.3. Let A1; : : : ; An be independent events with P.Ai / D pi .
(a) Prove that

P

 
n[

iD1

Ai

!
D 1 �

nY

iD1

P.Ai / : .�/

(b) Let P0 be the probability that none of the events A1; : : : ; An occurs. Prove
that

P0 D
nY

iD1

.1 � pi /:

Hint. Give a direct proof of the identity in .�/, i.e., a proof that makes no
use of the inclusion–exclusion formula (see Problem 1.1.12), by showing that if
A1; : : : ; An are independent events, then any events of the form eA1; : : : ;eAn, where
eAi is taken to be either Ai , or Ai , are also independent.
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Problem 1.3.4. Suppose that the events A and B are independent. Calculate the
probabilities that exactly k, at least k and at most k of the events A and B occur,
k D 0; 1; 2—comp. with Problem 1.1.13.

Problem 1.3.5. Suppose that the event A is such that it is independent from itself; in
other words, one can claim that the events A and A are independent. Prove that P.A/

equals either 0 or 1. In addition, prove that if the events A and B are independent
and A � B , then either P.A/ D 0, or P.B/ D 1.

Problem 1.3.6. Suppose that the event A is such that either P.A/ D 1 or P.A/ D 0.
Prove that, given any event B , one can claim that A and B are independent events.

Problem 1.3.7. Consider the electric circuit from [ P §1.4, Fig. 4]. Each of the
relays A; B; C; D and E function independently, and can be either off (i.e., not
allow electric current to pass through), or on (i.e., allow electric current to pass
through), respectively, with probabilities p and q. What is the probability for a signal
submitted at the input to eventually get transmitted through the circuit all the way
to the output? What is the conditional probability for the relay E to have been on,
given that the signal has been transmitted through the circuit and has reached the
output?

Hint. (a) Let S denote the event that the signal submitted at the input has been
received at the output. Then

P.S j E/ D 1 � 2p2 C p4 ; P.S j E/ D 2q2 � q4 ;

and, according to the total probability formula, one has

P.S/ D q.1 � p2/2 C pq2.2 � q2/ ;

while the Bayes formula implies that

P.E j S/ D .1 � p2/2

.1 � p2/2 C pq.2 � q2/
:

Problem 1.3.8. Suppose that P.A C B/ > 0. Prove that

P.A j A C B/ D P.A/

P.A/ C P.B/
:

Problem 1.3.9. Suppose that the event A is independent from each of the
events Bn, n � 1, chosen so that Bi \ Bj D ¿, i ¤ j . Argue that the events A andS1

nD1 Bn are independent.

Problem 1.3.10. Prove that if P.A j C / > P.B j C / and P.A j C/ > P.B j C/,
then P.A/ > P.B/.

Problem 1.3.11. Prove that

P.A j B/ D P.A j BC / P.C j B/ C P.A j BC/ P.C j B/:
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Problem 1.3.12. Suppose that X and Y are two independent binomial random
variables with parameters n and p. Prove that

P.X D k j X C Y D m/ D C k
n C m�k

n

C m
2n

; for any k D 0; 1; : : : ; min.m; n/:

Problem 1.3.13. Suppose that A, B and C are pair-wise independent events, with
A \ B \ C D ¿. Find the largest possible value for P.A/.

Problem 1.3.14. Consider an urn which already contains one white ball. One
randomly chosen ball—either white or black, with equal probability—is added to
the urn, after which one ball is taken from the urn at random. Assuming that this last
ball happens to be white, what is the probability that the ball left in the urn is also
white?

Problem 1.3.15. If the events A and B are independent, then, just by definition,
one has P.AB/ D P.A/P.B/. What conditions for A and B would gurantee that
P.AB/ � P.A/P.B/, or that P.AB/ � P.A/P.B/?

Problem 1.3.16. In conjunction with the generalization of Stirling’s formula (in
the form nŠ � p

2�n nne�n, n ! 1), prove that the gamma-function � .�/ DR1
0

u��1e�u du, � > 0 has the property:

� .�/ � p
2�n ��e�� ; � ! 1 :

1.4 Random Variables and Their Characteristics

Recall that in the present chapter the underlying sample space, ˝ , is assumed to be
finite and, therefore, all random variables under consideration can take only finitely
many values.

Problem 1.4.1. Verify the following properties of the indicators IA D IA.!/:

I¿ D 0; I˝ D 1; IA D 1 � IA;

IAB D IA � IB; IA[B D IA C IB � IAB;

IAnB D IA.1 � IB/; IA4B D .IA � IB/2 D IA C IB .mod 2/;

ISn
iD1 Ai

D 1 �
nY

iD1

.1 � IAi /; ISn
iD1 Ai

D
nY

iD1

.1 � IAi /; IPn
iD1 Ai

D
nX

iD1

IAi ;

where A4B is the symmetric difference of the sets A and B , i.e., the set .A n B/ [
.B n A/, and the summation symbol

P
stands for union (

S
) of non-intersecting

events.
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Problem 1.4.2. Conclude from the statement in Problem 1.4.1 that the following
“inclusion–exclusion” formula for the indicators of the events A, B and C is in
force:

IA[B[C D IA C IB C IC � ŒIA\B C IA\C C IB\C � C IA\B\C :

Find the analogous representation for the indicator IA1[:::[An of the union of
A1; : : : ; An.

Problem 1.4.3. Suppose that 	1; : : : ; 	n are Bernoulli random variables with

Pf	i D 0g D 1 � �i 
 ;

Pf	i D 1g D �i
 ;

for some small number 
 > 0, and for some choice of �i > 0. Prove that

Pf	1 C : : : C 	n D 1g D
� nX

iD1

�i

�

 C O.
2/ ;

Pf	1 C : : : C 	n > 1g D O.
2/ :

Problem 1.4.4. Prove that inf�1<a<1 E.	 �a/2 is achieved with a D E	 and that,
consequently,

inf�1<a<1 E.	 � a/2 D D	 :

Hint. Assuming that E	 D 0, prove that E.	 � a/2 D D	 C a2 � D	.

Problem 1.4.5. Let 	 be any random variable with distribution function F	.x/ D
Pf	 � xg and with median � D �.	/ � �.F	/, defined as the only � 2 R with

F	.��/ � 1

2
� F	.�/ :

(For an alternative definitions of the notion of median see Problem 1.4.23 below.)
Prove that

inf�1<a<1 Ej	 � aj D Ej	 � �j:
Hint. Assuming that � D 0, prove that for a > 0 one has

Ej	 � aj D Ej	j C Ef .	/ ;

where

f .x/ D

8
ˆ̂<

ˆ̂:

a; x � 0 ;

a � 2x; 0 < x < a ;

�a; x � a :
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Since f .x/ � 0, we have Ef .	/ � 0 and Ej	 � aj � Ej	j. Analogous statement
can be made for the case a < 0.

Problem 1.4.6. Let P	.x/ D Pf	 D xg and F	.x/ D Pf	 � xg. Prove that for
a > 0 and �1 < b < 1 one has

Pa	Cb.x/ D P	

�x � b

a

�
;

Fa	Cb.x/ D F	

�x � b

a

�
:

In addition, prove that for y � 0 one has

F	2 .y/ D F	.Cp
y/ � F	.�p

y/ C P	.�p
y/

and, with 	C D max.	; 0/, one has

F	C
.x/ D

(
0; x < 0 ;

F	.x/; x � 0 :

Hint. Use the following relations:

fa	 C b D xg D
(

	 D x � b

a

)
; fa	 C b � xg D

(
	 � x � b

a

)
;

f	2 � yg D f	 D �p
yg [ .f	 � Cp

yg n f	 � �p
yg/ ;

f	C � xg D
(

¿; x < 0 ;

f	 � xg; x � 0 :

Problem 1.4.7. Let 	 and � be any two random variables with D	 > 0 and D� > 0,
and let � D �.	; �/ denote the correlation between 	 and �. Prove that j�j � 1. In
addition, prove that j�j D 1 implies that there are constants a and b, for which one
can write � D a	 C b. Furthermore, if � D 1, then

� � E�p
D�

D 	 � E	p
D	

;

(so that � D 1 implies that a > 0) and, if � D �1, then

� � E�
p

D�
D �	 � E	

p
D	

(so that � D �1 implies a < 0).
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Problem 1.4.8. Suppose that 	 and � are two random variables with E	 D E� D 0

and D	 D D� D 1 and with correlation coefficient � D �.	; �/. Prove that

E max.	2; �2/ � 1 C
p

1 � �2:

Hint. Use the identity

max.	2; �2/ D 1

2
.	2 C �2 C j	2 � �2j/

and the Cauchy–Bunyakovski inequality.

Problem 1.4.9. By using the property ISn
iD1 Ai

D 1 � Qn
iD1.1 � IAi /, associated

with the indicators from Problem 1.4.1, verify the following “inclusion–exclusion”
formula:

P.A1 [ : : : [ An/ D
X

1�i1�n

P.Ai1 / �
X

1�i1<i2�n

P.Ai1 \ Ai2/ C : : : C

C .�1/mC1
X

1�i1<:::<im�n

P.Ai1 \ : : : \ Aim/ C : : :

C .�1/nC1P.A1 \ : : : \ An/

(comp. with Problem 1.1.12).
Hint. With the substitution Xi D IAi , prove first that the following “inclusion–

exclusion” formula for indicators is in force:

1 �
nY

iD1

.1 � Xi / D
X

1�i�n

Xi �
X

1�i1<i2�n

Xi1Xi2 C : : : C

C .�1/mC1
X

1�i1<:::<im�n

Xi1 : : : Xim C : : : C .�1/nC1X1 : : : Xn:

After that use the relation P
�Sn

iD1 IAi

�
D EISn

iD1 Ai
(comp. with the hint in

Problem 1.1.13).

Problem 1.4.10. Suppose that 	1; : : : ; 	n are independent random variables and that
'1 D '1.	1; : : : ; 	k/ and '2 D '2.	kC1; : : : ; 	n/ are any two random variables that
can be written as functions, respectively, of 	1; : : : ; 	k and 	kC1; : : : ; 	n. Prove that
'1 and '2 are independent.

Problem 1.4.11. Prove that the random variables 	1; : : : ; 	n are independent if and
only if for every choice of the real numbers x1; : : : ; xn one has

F	1;:::;	n .x1; : : : ; xn/ D F	1.x1/ : : : F	n.xn/;

where F	1;:::;	n .x1; : : : ; xn/ D Pf	1 � x1; : : : ; 	n � xng.
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Problem 1.4.12. Prove that the random variable 	 is independent from itself, i.e.,
one can claim that 	 and 	 are independent, if and only if 	.!/ � const, ! 2 ˝ .

Problem 1.4.13. Under what condition for the random variable 	 can one claim
that 	 and .sin 	/ independent?

Problem 1.4.14. Suppose that 	 and � are independent random variables and that

� ¤ 0. Find expressions for Pf	� � zg and P
n

	

�
� z

o
in terms of the probabilities

Pf	 � xg and Pf� � yg.

Problem 1.4.15. Suppose that the random variables 	, � and  are such that j	j � 1,
j�j � 1, jj � 1. Prove Bell’s inequality: jE	 � E�j � 1 � E	� (see [62], for
example).

Hint. Use the inequality 	.1 C �/ � 1 C �.

Problem 1.4.16. One throws, one-by-one and at random, k balls in n boxes (the
probability that a given ball would fall in a given box is 1=n). Find the expected
number of the non-empty boxes.

Problem 1.4.17. Suppose that 	1; : : : ; 	n are independent and identically dis-
tributed random variables with Pf	1 D 1g D p and Pf	1 D 0g D 1 � p, for
some 0 < p < 1, and let Sk D 	1 C : : : C 	k , k � n. Prove that, for 1 � m � n,
one has

P.Sm D k j Sn D l/ D C k
m C l�k

n�m

C l
n

:

Problem 1.4.18. Suppose that 	1; : : : ; 	n are independent random variables and let

	min D min.	1; : : : ; 	n/ and 	max D max.	1; : : : ; 	n/ :

Prove that

Pf	min � xg D
nY

iD1

Pf	i � xg and Pf	max < xg D
nY

iD1

Pf	i < xg :

Problem 1.4.19. Let S2n D 	1 C : : :C	2n and set M2n D max.S1; : : : ; S2n/. Prove
that, for any k � n, one must have

PfM2n � k; S2n D 0g D PfS2n D 2kg

and that, therefore,

P.M2n � k j S2n D 0/ D PfS2n D 2kg
PfS2n D 0g D C nCk

2n

C n
2n

:



34 1 Elementary Probability Theory

Conclude from the last relation that

E.M2n j S2n D 0/ D 1

2



1

PfS2n D 0g � 1

�
:

Problem 1.4.20. Give an example of two random variables, 	 and �, that share the
same distribution function (F	 D F�) and have the property Pf	 6D �g > 0 :

Problem 1.4.21. Suppose that 	, � and  are random variables, chosen so that
the distribution functions of 	 and � coincide. Can one claim that the distribution
functions of 	 and � also coincide?

Problem 1.4.22. Give an example of two independent random variables, 	 and �,
for which 	2 and �2 are dependent.

Problem 1.4.23. Suppose that 	 is some discrete random variable. Consider the
following three definitions of the median, � D �.	/, of 	 (see Problem 1.4.5):

(a) max.Pf	 > �g; Pf	 < �g/ � 1=2;
(b) Pf	 < �g � 1=2 � Pf	 � �g;
(c) � D inffx 2 R W Pf	 � xg � 1=2g.

Let Ma, Mb and Mc denote the sets of “medians” associated with definitions (a),
(b) and (c), respectively. How do these three sets relate to each other?

Problem 1.4.24. A urn contains N balls, of which a are white, b are black and c

are red, a C b C c D N . Suppose that n balls are taken from the urn and suppose
that among those n balls there are 	 white balls and � red balls. Prove that: if the
balls are sampled with replacement, one has

cov.	; �/ D �n p q ;

where p D a=N and q D b=N , and if the balls are sampled without replacement,
one has

cov.	; �/ D �n p q
N � n

N � 1
:

Finally, prove that in both cases the correlation is given by

�.	; �/ D �
r

p q

.1 � p/.1 � q/
:

1.5 Bernoulli Scheme I: The Law of Large Numbers

Problem 1.5.1. Suppose that 	 and � are two random variables with correlation co-
efficient �. Verify the following two-dimensional analog of Chebyshev’s Inequality:

P
˚j	 � E	j � "

p
D	 or j� � E�j � "

p
D�
� � 1

"2
.1 C

p
1 � �2/ :
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Hint. Without a loss of generality suppose that E	 D E� D 0 and D	 D D� D
1, in which case Pfj	j � " or j�j � "g D Pfmax.	2; �2/ � "2g. Then use the
(“usual”) Chebyshev inequality and the inequality established in Problem 1.4.8.

Problem 1.5.2. Suppose that f D f .x/ is some non-negative function which is
even and is also non-decreasing for positive x. Given any random variable 	 D
	.!/, with j	.!/j � C , C > 0, verify the following estimate:

Pfj	j � "g � Ef .	/ � f ."/

f .C /
:

In particular, for f .x/ D x2 one must have

E	2 � "2

C 2
� Pfj	 � E	j � "g

�
� D	

"2

�
:

Hint. Use the following relation

Ef .	/ D Ef .j	j/ � f .C /Pfj	j � "g C f ."/ :

Problem 1.5.3. Let 	1; : : : ; 	n be any sequence of independent random variables
with D	i � C . Prove that

P
nˇ̌
ˇ
	1 C : : : C 	n

n
� E.	1 C : : : C 	n/

n

ˇ̌
ˇ � "

o
� C

n"2
:

(With the conventions adopted in [ P §1.5, (8)], the above inequality gives a version
of the law of large numbers, which is more general than the version obtained in the
context of the Bernoulli scheme.)

Problem 1.5.4. Suppose that 	1; : : : ; 	n are independent Bernoulli random vari-
ables with Pf	i D 1g D p > 0 and Pf	i D �1g D 1 � p. Verify Bernstein’s
estimate: there is some a > 0, for which

P
nˇ̌
ˇ
Sn

n
� .2p � 1/

ˇ̌
ˇ � "

o
� 2e�a"2n ;

where Sn D 	1 C : : : C 	n and " > 0.
Hint. See the proof of [ P §1.6, (42)].

Problem 1.5.5. Let 	 be any non-negative random variable and let a > 0. Find the
maximal possible value for the probability Pf	 � ag in each of the following three
cases (m and � are given real numbers):

(i) E	 D m;
(ii) E	 D m, D	 D �2;

(iii) E	 D m, D	 D �2 and 	 is symmetric relative to its mean value m.
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Problem 1.5.6. Let S0 D 0 and Sn D 	1 C : : : C 	n, n � N , where 	1; : : : ; 	n is a
Bernoulli sequence of independent random variables, with Pf	n D 1g D p > 0 and
Pf	n D 0g D q, n � N , and let Pn.k/ D PfSn D kg. Prove that, for n < N and
k � 1, one has

PnC1.k/ D p Pn.k � 1/ C q Pn.k/ :

Problem 1.5.7. Suppose that 	1; : : : ; 	N are independent Bernoulli random vari-
ables, with Pf	i D 1g D Pf	i D �1g D 1=2, i D 1; : : : ; N , and let Sm D
	1 C : : : C 	m. Prove that for 2m � N one has

PfS1 : : : S2m 6D 0g D 2�2mC m
2m :

Problem 1.5.8. Consider M cells, labeled 1; : : : ; M . Suppose that the cell with
label n contains one white ball and n black balls. Consider a random sample of balls
from the M cells, let

	n D
(

1; if a white ball is drawn from the cell with label n,

0; if a black ball is drawn,

and let SM D 	1 C : : : C 	M denote the total number of white balls in the sample.
Prove that for large M the quantity SM “has order” ln M , in the sense that, for any
" > 0, one has, as M ! 1,

P
� ˇ̌
ˇ̌ SM

ln M
� 1

ˇ̌
ˇ̌ � "

�
! 0

(with the convention adopted in formula [ P §1.5, (8)]).

Problem 1.5.9. Suppose that 	1; : : : ; 	n are some independent Bernoulli random
variables, with Pf	k D 1g D pk and Pf	k D 0g D 1 � pk , 1 � k � n, and let
a D 1

n

Pn
kD1 pk . Prove that, for any fixed 0 < a < 1, the variance, DSn, of the

variable Sn D 	1 C : : : C 	n attains its maximal value when p1 D : : : D pn D a.

Problem 1.5.10. Suppose that 	1; : : : ; 	n are some independent Bernoulli random
variables, with Pf	k D 1g D p and Pf	k D 0g D 1 � p, 1 � k � n.
Find the conditional probability that the first 1 (“success”) appears in the mth step,
conditioned to the event that in all n steps “success” occurs exactly once.

Problem 1.5.11. Let .p1; : : : ; pr / and .q1; : : : ; qr / be any two probability distribu-
tions. Prove the Gibbs inequality:

�
rX

iD1

pi ln pi � �
rX

iD1

pi ln qi :

In particular, the entropy H D �Pr
iD1 pi ln pi must satisfy the relation H � ln r—

see [ P §1.5, 4 ].
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Problem 1.5.12. In the context of Problem 1.5.10, prove the Rényi inequality:

P
� ˇ̌
ˇ̌Sn

n
� p

ˇ̌
ˇ̌ � "

�
� exp

�
� n"2

2pq.1 C "=.2pq//2

�
:

1.6 Bernoulli Scheme II: Limit Theorems
(Local, Moivre–Laplace, Poisson)

Problem 1.6.1. Let n D 100 and consider the choices p D 1=10; 2=10; 3=10; 4=10;

5=10. By using the relevant tables for the binomial and the Poisson distributions
(see [12], for example), or by using a computer, compare the exact values of the
following probabilities:

Pf10 < S100 � 12g; Pf20 < S100 � 22g; (1.1)

Pf33 < S100 � 35g; Pf40 < S100 � 42g; (1.2)

Pf50 < S100 � 52g; (1.3)

with the respective values obtained by the normal and the the Poisson
approximations.

Problem 1.6.2. Let p D 1=2 and let Zn D 2Sn � n (the aggregate excess of 1’s
vs. 0’s in n trials, the outcome from each trial being 0 or 1). Prove that

sup
j

ˇ̌p
�n PfZ2n D j g � e�j 2=4n ˇ̌ ! 0 ; as n ! 1 :

Hint. Setting 2n D m and k D j=2 C n, the proof comes down to showing that

sup
k

ˇ̌
ˇ̌
r

�m

2
PfSm D kg � e

� .k�mp/2

2mpq

ˇ̌
ˇ̌
�

� sup
k

".k; m/
�

! 0 ; as m ! 1 :

With this relation in mind, one must prove that

sup
k

".k; m/ D max.am; bm/ ;

where

am D sup
fkWjk�mpj�.mpq/sg

".k; m/ ; bm D sup
fkWjk�mpj>.mpq/sg

".k; m/ ;

for some s 2 .1=2; 2=3/, and then verify that am ! 0 and bm ! 0 as m ! 1.

Problem 1.6.3. Prove that in the Poisson theorem (with p D �=n, � > 0) one has

sup
k

ˇ̌
ˇPn.k/ � �ke��

kŠ

ˇ̌
ˇ � �2

n
:
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Hint. Let �1; : : : ; �n and 1; : : : ; n be two different sets of independent random
variables, distributed, respectively, according to Poisson’s law with parameter �=n

and Bernoulli’s law with

Pfi D 0g D e�=n.1 � �=n/ and Pfi D 1g D 1 � e�=n.1 � �=n/ :

Setting

	i D
(

0; if �i D 0, i D 0,

1 in all other cases;

notice that 	1; : : : ; 	n are independent Bernoulli random variables with

Pf	i D 0g D 1 � �

n
; Pf	i D 1g D �

n
;

and that the distribution of 	 D 	1 C : : : C 	n is given by Pf	 D kg D Pn.k/. Then
take into account that � D �1 C : : : C �n is distributed according to the Poisson law
with parameter �, and that, given any k D 0; 1; 2; : : :, one has

jPf	 D kg � Pf� D kgj � Pf	 6D �g � �2

n
:

(Comp. with the results and the proofs in [ P §3.12].)

Problem 1.6.4. Let 	1; : : : ; 	n be independent and identically distributed random
variables with Pf	k D 1g D Pf	k D �1g D 1=2 (this is a symmetric Bernoulli
scheme), let Sn D 	1 C : : : C 	n, and let Pn.k/ D PfSn D kg, for k 2
En D f0; ˙1; : : : ; ˙ng. By using the total probability formula (see [ P §1.3, (3)]),
verify the following recursive relation (a special case of the Kolmogorov–Chapman
equation—see [ P §1.12]):

PnC1.k/ D 1

2
Pn.k C 1/ C 1

2
Pn.k � 1/; k 2 EnC1 ; .�/

which is equivalent to

PnC1.k/ � Pn.k/ D 1

2


Pn.k C 1/ � 2Pn.k/ C Pn.k � 1/

�
: .��/

Problem 1.6.5. (Continuation of Problem 1.6.4.) The sequence of random vari-
ables S0 D 0, S1 D 	1, S2 D 	1 C 	2, . . . , Sn D 	1 C : : : C 	n, may be identified
with the trajectory of a random walk of a particle that starts from 0 and moves one
unit up or down at integer times.

Suppose now that the up and down moves in the random walk occur only at times

; 2
; : : : ; n
, for some 
 > 0, and that the particle move up or down at distance

x. Instead of the probabilities Pn.k/ D PfSn D kg, introduced in the previous
problem, consider the probabilities
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Pn
.k
x/ D PfSn
 D k
xg:

Analogously to the recursive relation .��/, we find that

P.nC1/
.k
x/ � Pn
.k
x/



D 1

2

h
Pn
..k C 1/
x/�

� 2Pn
.k
x/ C Pn
..k � 1/
x/
i
;

i.e., the (discrete) “first derivative” in the time-parameter coincides up to a factor
of 1

2
with the (discrete) “second derivative” in the space variable.

With 
x D p

, t > 0, x 2 R, consider the special limiting procedure with

n ! 1 and k ! 1, taken so that n
 ! t and k
p


 ! x, and prove that for this
procedure one can claim that

(a) the limit Pt .x/ D lim Pn
.k
p


/ exists, and,
(b) as a function of t , satisfies the heat equation, namely,

@Pt .x/

@t
D 1

2

@2Pt .x/

@x2

(L. Bachelier, A. Einstein).

Problem 1.6.6. To generalize the result in the previous problem, suppose that the
particle moves up at distance 
x with probability p.
/ D 1

2
C
x, and moves down

at distance 
x with probability q.
/ D 1
2

� 
x. Again set 
x D p

 and suppose

that n
 ! t and k
p


 ! x. Prove that, just as in the previous problem, one can
claim that the limit Pt .x/ D lim Pn
.k

p

/ exists and satisfies the equation

@Pt .x/

@t
D �@Pt .x/

@x
C 1

2

@2Pt .x/

@x2
:

Problem 1.6.7. What should be changed in the limiting procedures in the last two
problems, in order to claim that the function obtained in the limit satisfies the
equation

@Pt .x/

@t
D ��

@Pt .x/

@x
C 1

2
�2 @2Pt .x/

@x2
;

known as the Fokker–Planck equation, or Kolmogorov forward equation.

Problem 1.6.8. Suppose that Fn D Fn.t/, t 2 Œ0; 1�, n � 1, is some sequence of
nondecreasing functions, with the property Fn.t/ ! t , for all rational t 2 Q\ Œ0; 1�.
Prove that this convergence must be uniform, i.e.,

sup
t2Œ0;1�

jFn.t/ � t j ! 0 as n ! 1

(see also [ P §3.1, (5)]).
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Problem 1.6.9. Prove that, given any x > 0, one has

x

1 C x2
'.x/ < 1 � ˚.x/ <

'.x/

x
;

where '.x/ D 1p
2�

e�x2=2 and ˚.x/ D R x

�1 '.y/ dy.

Hint. Take the derivatives ' 0.x/ and .x�1'.x//0.

Problem 1.6.10. Prove that the Poisson distribution satisfies the following local
theorem: given any k D 0; 1; 2; : : :, as � ! 1 one has

p
�

ˇ̌
ˇ̌�

k

kŠ
e�� � 1p

2��
exp

n
� 1

2�
.k � �/2

oˇ̌
ˇ̌ ! 0 :

Hint. Use Stirling’s formula.

1.7 Estimate of the Probability for Success in Bernoulli Trials

Problem 1.7.1. A priori, it is known that the parameter � takes values in the set
�0 � Œ0; 1�. Explain when it might be possible to find an unbiased estimate for the
parameter � , that takes values only in the set �0.

Hint. If �0 is a singleton (�0 D f�0g), then the value �0 must be the estimate
itself. If �0 contains at least two points, then the following condition is necessary
and sufficient for the existence of an unbiased estimate: f0g 2 �0 and f1g 2 �0.
Verify this claim.

Problem 1.7.2. In the context of the previous problem, find an analog of the Rao–
Cramér inequality and investigate the efficiency of the estimate.

Problem 1.7.3. In the context of the first problem, investigate the construction of
confidence intervals for � .

Problem 1.7.4. As a continuation of Problem 1.2.21, investigate whether the
estimate bN is unbiased and/or efficient, assuming that N is sufficiently large,
N  M , N  n. Analogously to the confidence intervals for the parameter �

(see [P1 § 1.7, (8) and (9)]), construct confidence intervals ŒbN � a.bN /; bN C b.bN/�

for N with the property

PN; M I n

n
bN � a.bN / � N � bN C b.bN /

o
	 1 � " ;

where " is some small positive number.

Problem 1.7.5. (�2–goodness-of-fit test). Suppose that 	1; : : : ; 	n are independent
Bernoulli random variables with Pf	i D 1g D p and Pf	i D 0g D 1�p, 1 � i � n.
Unlike the main discussion in [ P §1.7], which is concerned with estimates of the
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probability for “success,” p, here we are concerned with the problem of testing,
based on the observations x D .x1; : : : ; xn/, of the hypothesis H0: p D p0, i.e., the
hypothesis that the true value of the parameter p equals some given number 0 <

p0 < 1. Let Sn.	/ D 	1 C : : : C 	n and set

�2
n.	/ D .Sn.	/ � np0/2

np0.1 � p0/
:

Assuming that the hypothesis H0 is true, prove that, for any x � 0, one must have

Pf�2
n.	/ � xg !

Z x

0

1p
2�y

e�y=2 dy ; as n ! 1 :

(According to [ P §2.3, Table 3], F.x/ D R x

0
1p
2�y

e�y=2 dy is the cumulative

distribution function of a �2-random variable with one degree of freedom, i.e., the
square of a standard .0; 1/-Gaussian random variable.)

The �2–goodness-of-fit criterion for testing the hypothesis H0: p D p0 is based
on the following argument. Choose the number " > 0 so small that, in a single
experiment, events that have probability " are extremely unlikely to occur. (If " is,
say, 0:01, then by the law of large numbers—see the remark related to formula (8)
in [ P §1.5]—an event that occurs in each trial with probability 0:01 will occur “on
average” only once in 100 independent trials.)

Next, consider " > 0 as fixed and choose �."/ so that
R1

�."/
1p
2�y

e�y=2 dy D ".

One can now test the hypothesis H0: p D p0 (by the �2–goodness-of-fit test) in
the following manner: if the value �2

n.x/, calculated from the observations x D
.x1; : : : ; xn/, exceeds the quantity �."/, then H0 is rejected and if �2

n.x/ � �."/

then H0 is accepted, i.e., one assumes that the observation x D .x1; : : : ; xn/ is in
agreement with the property p D p0.

(a) Based on the law of large numbers (see [ P §1.5]), argue that, at least for very
large values of n, using the �2–goodness-of-fit criterion for testing H0: p D p0 is
quite natural.

(b) By using the Berry–Esseen inequality [ P §1.6, (24)], prove that, under the
hypothesis H0: p D p0, one must have

sup
x

ˇ̌
ˇ̌Pf�2

n.	/ � xg �
Z x

0

1p
2�y

e�y=2 dy

ˇ̌
ˇ̌ � 2p

np0.1 � p0/
:

(c) Suppose that �n."/ is chosen so that Pf�2
n.	/ � �n."/g � ". Find the rate

of convergence of �n."/ ! �."/ and, this way, determine the error resulting from
replacing the event “�2

n.	/ � �n."/” with the event “�2
n.	/ � �."/,” which is used

in the �2–goodness-of-fit test.

Problem 1.7.6. Let 	 be any binomial random variable with distribution

P� f	 D kg D C k
n �k.1 � �/n�k ; 0 � k � n ;
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where n is some given number and � is an “unknown parameter,” which must be
estimated by the (unique) observation over the random variable 	.

A standard estimator for � is given by the value T .	/ D 	

n
. This estimator is

unbiased: given any � 2 Œ0; 1�, one has

E� T .	/ D � :

Prove that, in the class of unbiased estimators eT D eT .	/, the estimator T .	/ is also
efficient:

E� .T .	/ � �/2 D inf
eT

E� .eT .	/ � �/2 :

Argue that, for n D 3, if it is a priori known that � 2 . 1
4
; 3

4
/, then the estimator

bT .	/ � 1
2
, which is unbiased for every choice of � 6D 1

2
, is “better” than the

unbiased estimator T .	/ D 	

3
:

E� ŒbT .	/ � ��2 < E� ŒT .	/ � ��2 ;

i.e.,

E�

h1

2
� �

i2

< E�

h	

3
� �

i2

:

Investigate the validity of this statement for arbitrary n.

Problem 1.7.7. Two correctors, A and B, are proof-reading a book. As a result,
A detects a misprints and B detects b misprints, of which c misprints are detected
by both A and B. Assuming that the two correctors work independently from each
other, give a “reasonable” estimate of the number of misprints that have remained
undetected.

Hint. Based on a probabilistic argument, assuming that the number n of all
missprints in the book is quite large, one can suppose that a

n
and b

n
are reasonably

close to the probabilities pa and pb for a misprint to be detected, respectively, by
corrector A and corrector B.

1.8 Conditional Probabilities and Expectations with Respect
to Partitions

Problem 1.8.1. Give an example of two random variables, 	 and �, that are not
independent and yet the relation

E.	 j �/ D E	

still holds (see [ P §1.8, (22)]).
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Problem 1.8.2. The conditional variance of the random variable 	 with respect to
the partition D is defined as the random variable

D.	 j D/ D EŒ.	 � E.	 j D//2jD � :

Prove that the variance of 	 satisfies the relation:

D	 D ED.	 j D/ C DE.	 j D/ :

Hint. Convince yourself that

ED.	 j D/ D E	2 � EŒE.	 j D/�2 and DE.	 j D/ D EŒE.	 j D/�2 � .E	/2 :

Problem 1.8.3. Starting from the relation [ P §1.8, (17)], prove that, given any
function f D f .�/, the conditional expectation E.	 j �/ has the property:

EŒf .�/E.	 j �/� D EŒ	f .�/� :

Problem 1.8.4. Given two random variables, 	 and �, prove that inff E.� �
f .	//2 is achieved with the function f �.	/ D E.� j 	/. (This way, the optimal
mean-square-error-minimizing estimator of � given 	 can be identified with the
conditional expectation E.� j 	/.)

Hint. Convince yourself that, for any function f D f .x/, one has

E.��f .	//2 D E.��f �.	//2C2EŒ.��f �.	//.f �.	/�f .	//�CE.f �.	/�f .	//2 ;

where the expected value of the variable in box brackets EŒ � � actually vanishes.

Problem 1.8.5. Let 	1; : : : ; 	n and � be independent random variables, such that
	1; : : : ; 	n are identically distributed and � takes its values in the set 1; : : : ; n. Prove
that the sum of random number of random variables, namely S� WD 	1 C : : : C 	� ,
satisfies the relations

E.S� j �/ D �E	1; D.S� j�/ D �D	1

and
ES� D E� � E	1; DS� D E� � D	1 C D� � .E	1/

2 :

Hint. Use the relations

E.S� j �/ D �E	1 and D.S� j �/ D �D	1 :

Problem 1.8.6. Suppose that the random variable 	 is independent from the partion
D (i.e., for any Di 2 D , the random variables 	 and IDi are independent). Prove
that

E.	 j D/ D E	 :
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Problem 1.8.7. Let E be some experiment, with associated space of possible
outcomes ˝ D f!1; : : : ; !kg, the respective probabilities (i.e., “weights” for the
outcomes) being given by pi D p.!i /,

Pk
iD1 pi D 1. It is established in [ P §1.5,

(14)] that the formula H D �Pk
iD1 pi ln pi gives the entropy of the distribution

.p1; : : : ; pk/, defined as a measure of the “uncertainty” in the experiment E . In the
same section it is also shown that the uncertainty is maximal in experiments where
all k outcomes are equally likely to occur, in which case one has H D ln k.

The fact that, in the case where all outcomes are equally likely, the logarithmic
function is a natural measure for the degree of uncertainty in the outcome of the
experiment can be justified with the following argument, which is offered here as an
exercise.

Suppose that the degree of uncertainty in an experiment E , with k outcomes, is
given by some function f .k/, chosen so that f .1/ D 0 and f .k/ > f .l/ if k > l . In
addition, suppose that f .kl/ D f .k/Cf .l/. (This reflects the requirement that, for
independent experiments, E1 and E2, respectively, with k outcomes and l outcomes,
the degree of uncertainty in the experiment E1 ˝ E2, which comes down to carrying
out simultaneously E1 and E2, must be the sum of the degrees of uncertainty in the
two experiments.)

Prove that under the above conditions f .k/ must be of the form: f .k/ D c logb k,
where c > 0 is some constant and the logarithm logb k is taken with an arbitrary
base b > 0.

Remark. As the transition from one logarithmic base to another is given by
logb k D logb a � loga k, it is clear that such a transition comes down to changing the
unit in which the uncertainty is being measured. The most common choice is b D 2,
which gives log2 k D 1 for k D 2 and therefore allows one to identify the selected
unit of uncertainty with the uncertainty in an experiment with two equally likely
outcomes. In communication theory (and, in particular, in coding theory) such an
unit of uncertainty is called bit of information, or simply bit, which originates from
the term BInary digiT. For example, in an experiment E with k D 10 equally likely
outcomes, the degree of uncertainty equals log2 10 	 3:3 bits of information.

Problem 1.8.8. Let .˝; F ; P/ be any discrete probability space and suppose that
	 D 	.!/, ! 2 ˝ , is any random variable that takes its values in the set
fx1; : : : ; xkg, with respective probabilities Pf	 D xi g D pi . The entropy of the
random variable 	 (or, equivalently, of the experiment E	 , which comes down to
observing the realization of 	) is defined as

H.	/ D �
kX

iD1

pi log2 pi :

(Comp. with [ P §1.5, (14)], where, instead of the binary logarithm log2, the natural
logarithm ln is used—as explained above, this choice is inessential.)

Analogously, given a pair .	; �/ of random variables with Pf	 D xi ; � D yj g D
pij , i D 1; : : : ; k, j D 1; : : : ; l , the entropy H.	; �/ is defined as



1.8 Conditional Probabilities and Expectations with Respect to Partitions 45

H.	; �/ D �
kX

iD1

lX

j D1

pij log2 pij :

Prove that if 	 and � are independent, then H.	; �/ D H.	/ C H.�/.

Problem 1.8.9. Consider a pair .	; �/ of random variables with values .xi ; yj /,
i D 1; : : : ; k, j D 1; : : : ; l . The conditional entropy of the random variable �, given
the event f	 D xi g, is defined as

Hxi .�/ D �
lX

j D1

Pf� D yj j 	 D xi g log2 Pf� D yj j 	 D xi g :

Then the mean conditional entropy of � given 	 is defined as

H	.�/ D
kX

iD1

Pf	 D xi gHxi .�/:

Prove that:
(a) H.	; �/ D H.	/ C H	.�/;
(b) if 	 and � are independent, then

H.	; �/ D H.	/ C H	.�/I
(c) 0 � H	.�/ � H.�/.

Problem 1.8.10. For a pair of random variables, .	; �/, the quantity

I	.�/ D H.�/ � H	.�/

gives the amount of information for the variable � that is contained in the variable 	.
This terminology is justified by the fact that the difference H.�/ � H	.�/ represents
the amount by which observations over 	 decrease the uncertainty of �, i.e., decrease
the quantity H.�/.

Prove that:
(a) I	.�/ D I�.	/ � 0;
(b) I	.�/ D H.�/ if and only if � happens to be a function of 	;
(c) given any three random variables, 	, � and , one has

I.	;/.�/ D H.�/ � H.	;/.�/ � I	.�/;

i.e., the information about � contained in observations over .	; / cannot be less than
the information about � contained in 	 alone.
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Problem 1.8.11. Let 	1; : : : ; 	n be independent and identically distributed
Bernoulli random variables, with Pf	i D 1g D p and Pf	i D 0g D 1 � p,
and let Sn D 	1 C : : : C 	n. Prove that

(a) P.	1 D x1; : : : ; 	n D xn j Sn D k/ D Ifxg.k/

C x
n

;

(b) P.Sn D x j SnCm D k/ D C x
n C k�x

m

C k
nCm

;

where x D x1 C : : : C xn, xi D 0; 1, so that x � k .

1.9 Random Walk I: Probability of Ruin and Time Until
Ruin in Coin Tossing

Problem 1.9.1. Verify the following generalization of [ P §1.9, (33) and (34)]:

ESx
�x
n

D x C .p � q/E�x
n ;

EŒSx
�x
n

� �x
n E	1�2 D D	1 � E�x

n C x2 :

Problem 1.9.2. Consider the quantities ˛.x/, ˇ.x/ and m.x/, which are defined
in [ P §1.9], and investigate the limiting behavior of these quantities as the level A

decreases to �1 (A & �1).
Hint. The answer is this:

lim
A!�1 ˛.x/ D

(
0; p � q ;
.q=p/ˇ�.q=p/x

.q=p/ˇ ; p < q ;

lim
A!�1 m.x/ D

(
ˇ�x

p�q
; p > q ;

1; p � q :

Problem 1.9.3. Consider a Bernoulli scheme with p D q D 1=2 and prove that

EjSnj �
r

2

�
n ; as n ! 1 : .�/

Hint. One can verify directly the following discrete version of Tanaka’s formula
(see Problem 7.9.8): for any n � 1, one has

jSnj D
nX

kD1

sign.Sk�1/ 
Sk C Nn; .��/
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where S0 D 0, Sk D 	1 C : : : C 	k , 
Sk D 	k ,

sign x D

8
ˆ̂<

ˆ̂:

1; x > 0 ;

0; x D 0 ;

�1; x < 0 ;

and Nn D #f0 � k � n � 1 W Sk D 0g is the number of integers k, 0 � k � n � 1,
for which Sk D 0. Then prove that

EjSnj D ENn D E
n�1X

kD0

I.Sk D 0/ D
n�1X

kD0

PfSk D 0g .���/

and use the fact that PfS2k D 0g D 2�2kC k
2k and that PfSk D 0g D 0 for odd k.

Remark. One can conclude from .���/ that

ENn �
r

2

�
n ; as n ! 1 :

(See [ P §7.9, Example 2]—in formula (15) in that example 2� must be changed to
2=� .)

Problem 1.9.4. Two players are tossing symmetric coins (each player tosses his
own coin). Prove that the probability that both players will have the same numbers
of heads after n tosses is given by 2�2n

Pn
kD0.C

k
n /2 and conclude that the following

identity must hold:
Pn

kD0.C
k
n /2 D C n

2n (see Problem 1.2.2).
Let �n be the first instant when the number of heads obtained by the two players

in a total of n trials coincide, with the understanding that �n D nC1, if coincidence
does not occur in the first n trials. Calculate the probability Pf�n D kg, 1 � k �
n C 1, and the expected value E min.�n; n/.

Hint. Let 	
.k/
i D 1 (or �1), if player k, k D 1; 2, obtains a head (or a tail) in the

i th trial. Then

P
�

the numbers of heads obtained by
the players after n trials coincide

�
D P

� nX

iD1

	
.1/
i D

nX

iD1

	
.2/
i

�

D
nX

j D0

P
� nX

iD1

	
.1/
i D 2j � n;

nX

iD1

	
.2/
i D 2j � n

�
D

nX

j D0

2�2n.C j
n /2

and

P
� nX

iD1

	
.1/
i D

nX

iD1

	
.2/
i

�
D P

� 2nX

iD1

�i D 0

�
D 2�2nC n

2n ;

where �1 D 	
.1/
1 , �2 D �	

.2/
1 , �3 D 	

.1/
2 , �4 D 	

.2/
2 , . . . .
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Problem 1.9.5. Suppose that 	1; : : : ; 	N are independent Bernoulli random vari-
ables with Pf	i D 1g D Pf	i D �1g D 1=2 and let Sn D 	1 C : : :C	n, 1 � n � N .
Compute

P
� [

N1<n�N2

fSn D 0g
�

;

i.e., compute the probability that at some moment n 2 .N1 C 1; : : : ; N2/, N2 � N ,
one has Sn D 0.

Problem 1.9.6. Suppose that 	1; : : : ; 	N are independent Bernoulli random vari-
ables with Pf	i D 1g D Pf	i D �1g D 1=2, 1 � i � N . Set Sn D 	1 C : : : C 	n

and consider the discrete telegraph signal Xn D 	0.�1/Sn , 1 � n � N . Find the
values and the variance of the random variables Xn, 1 � n � N . Find also the
conditional distribution PfXn D 1 j 	0 D ig, i D ˙1, 1 � n � N .

Problem 1.9.7. Let 	1; : : : ; 	N be independent Bernoully random variables, with
Pf	i D 1g D p and Pf	i D �1g D 1 � p, and let Si D 	1 C : : : C 	i , 1 � i � N ,
S0 D 0. Let RN be the span (or the breadth) of—i.e., the total number of locations
visited by—the random walk fS0; S1; : : : ; SN g.

Calculate ERN and DRN . Explain for what values of p one can claim that the
variables RN satisfy the following version of the law of large numbers

P
nˇ̌
ˇ
RN

N
� c

ˇ̌
ˇ > "

o
! 0; N ! 1 ;

where " > 0 and c is some constant. (See Problem 2.6.87 and Problem 8.8.16.)

Problem 1.9.8. Let 	1; : : : ; 	N be identically distributed random variables (not
necessarily of Bernoulli type) and set S0 D 0, Si D 	1 C : : : C 	i , 1 � i � N .

Let

Nn D
nX

kD1

I.Sk > 0/

be the total number of positive elements of the sequence S0; S1; : : : ; Sn. Prove the
Sparre-Andersen identity:

PfNn D kg D PfNk D kgPfNn�k D 0g ; 0 � k � n :

Problem 1.9.9. Let 	1; : : : ; 	N be the Bernoulli random variables from
Problem 1.9.7 and define the variables X1; : : : ; XN by

X1 D 	1 ; Xn D �Xn�1 C 	n ; 2 � n � N; � 2 R:

Calculate EXn, DXn and cov.Xn; XnCk/.



1.10 Random Walk II: The Reflection Principle and the Arcsine Law 49

1.10 Random Walk II: The Reflection Principle
and the Arcsine Law

Problem 1.10.1. Define �2n D minf1 � k � 2n W Sk D 0g, with the understanding
that �2n D 1 (or �2n D 2n), if Sk 6D 0 for all 1 � k � 2n. What is the rate of
convergence in E min.�2n; 2n/ ! 1 as n ! 1?

Hint. Note that according to [ P §1.10, 1 ] one must have

E min.�2n; 2n/ D
nX

kD1

u2.k�1/ C 2 n u2n ;

where u2n � 1=
p

�n, and conclude that

E min.�n; 2n/ � 4

r
n

�
; n ! 1 :

Problem 1.10.2. Let �n D minf1 � k � nW Sk D 1g, with the understanding that
�n D 1 if Sk < 1, for all 1 � k � n. What is the limit of E min.�n; n/ as n ! 1
in the case of a symmetric .p D q D 1=2/ and non-symmetric .p ¤ q/ Bernoulli
walk?

Hint. The answer here is this:

E min.�n; n/ !
(

.p � q/�1; p > q;

1; p � q:

Problem 1.10.3. Based on the concepts and the methods developed in [ P §1.10],
prove that the symmetric (p D q D 1=2) Bernoulli random walk fSk; k � ng, given
by S0 D 0 and Sk D 	1 C : : : C 	k , k � 1, satisfies the following relations (N is
any positive integer):

P
n

max
1�k�n

Sk � N; Sn < N
o

D PfSn > N g ;

P
n

max
1�k�n

Sk � N
o

D 2PfSn � N g � PfSn D N g ;

P
n

max
1�k�n

Sk D N
o

D PfSn D N g C PfSn D N C 1g D 2�nC
b nCN C1

2 c
n ;

P
n

max
1�k�n

Sk � 0
o

D PfSn D 0g C PfSn D 1g D 2�nC
b n

2 c
n ;

P
n

max
1�k�n�1

Sk � 0; Sn > 0
o

D PfS1 6D 0; : : : ; Sn 6D 0; SnC1 D 0g ;



50 1 Elementary Probability Theory

PfS1 > 0; : : : ; S2n�1 > 0; S2n D 0g D 1

n
2�2n C n�1

2n�2 ;

PfS1 � 0; : : : ; S2n�1 � 0; S2n D 0g D 1

n C 1
2�2n C n

2n :

In addition, prove that the relations

PfS2n D 2kg D 2�2nC n�k
2n ; k D 0; ˙1; : : : ; ˙n ;

and

PfS2nC1 D 2k C 1g D 2�2n�1C n�k
2nC1 ; k D �.n C 1/; 0; ˙1; : : : ; ˙n ;

can be re-written in the form:

PfSn D kg D
(

2�nC .n�k/=2
n ; if k � n .mod 2/,

0 in all other cases ;

where k D 0; ˙1; : : : ; ˙n.
In addition to the above formula for Pfmax1�k�n Sk D N g for positive integers

N , prove that

P
n

max
0�k�n

Sk D r
o

D C b.n�r/=2c
n � 2�n ;

for r D 0; 1; : : : ; n.

Problem 1.10.4. Let 	1; : : : ; 	2n be independent Bernoulli random variables with
Pf	k D 1g D Pf	k D �1g D 1=2, k � 2n. Let S0 D 0 and Sk D 	1 C : : : C 	k , for
k � 1, and, finally, let

g2n D maxf0 < 2k � 2n W S2k D 0g
be the moment of the last zero in the sequence .S2; S4; : : : ; S2n/, where we set
g2n D 0 if no such moment exists.

Prove that
Pfg2n D 2kg D u2nu2.n�k/; 1 � k � n ;

where u2k D PfS2k D 0g D 2�2kC k
2k .

By comparing the distribution of g2n with the probability P2k;2n of the event that
on the interval Œ0; 2n� the random walk spends 2k units of time in the positive axis
(see formula [ P §1.10, (12)]), one finds that, just as in formula [ P §1.10, (15)], the
following property holds for 0 < x < 1:

X

fkW0< k
n �xg

Pfg2n D 2kg ! 2

�
arcsin

p
x ; as n ! 1 I

i.e., the probability distribution of the last zero satisfies the asymptotic arcsine law.
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Problem 1.10.5. In the context of the previous problem, let �2n denote the moment
of the first maximum in the sequence S0; S1; : : : ; S2n, i.e., �2n D k, if S0 <

Sk; : : : ; Sk�1 < Sk , while SkC1 � Sk; : : : ; S2n � Sk , and �2n D 0 if no such
k > 1 exists. Prove that

Pf�2n D 0g D u2n ; Pf�2n D 2ng D 1

2
u2n ;

and that, for 0 < k < n,

Pf�2n D 2k or 2k C 1g D 1

2
u2ku2n�2k:

Then conclude that, just as in the previous problem, the law of the moment of the
first maximum satisfies the arcsine law: given any 0 < x < 1, one has

X

fkW0< k
n �xg

Pf�2n D 2k or 2k C 1g ! 2

�
arcsin

p
x; n ! 1:

Consider also the case x D 0 and x D 1.

Problem 1.10.6. Let Sk D 	1C: : :C	k , k � 2n, where 	1; : : : ; 	2n are independent
and identically distributed random variables with Pf	1 D 1g D Pf	1 D �1g D 1=2.
Prove that:

(a) For r D ˙1; : : : ; ˙n, one has

PfS1 6D 0; : : : ; S2n�1 6D 0; S2n D 2rg D C nCr
2n

jr j
n

2�2n:

(b) For r D 0; ˙1; : : : ; ˙n, one has

PfS2n D 2rg D C n�r
2n 2�2n:

Problem 1.10.7. Let fSk; k � ng, given by S0 D 0 and Sk D 	1 C : : : C 	k , for
k � 1, be a symmetric Bernoulli random walk (with independent and identically
distributed 	1; : : : ; 	n, with Pf	1 D 1g D Pf	1 D �1g D 1=2). Setting

Mn D max
0�k�n

Sk ; mn D min
0�k�n

Sk ;

prove that

.Mn � Sn; Sn � mn; Sn/
lawD .�mn; Mn; Sn/

lawD .Mn; �mn; Sn/ ;

where “
lawD ” means that the respective triplets share the same joint distribution.
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Problem 1.10.8. Let S0 D 0 and Sk D 	1 C : : : C 	k , k � 1, where 	1; 	2; : : :

are independent random variables with Pf	k D 1g D p and Pf	k D �1g D q,
p C q D 1. Prove that

P
n

max
1�k�n

Sk � N; Sn D m
o

D C u
n pvqn�v ;

where u D N C.n�m/=2 and v D .nCm/=2, and conclude that, for p D q D 1=2

and m � N , one has

P
n

max
1�k�n

Sk D N; Sn D m
o

D PfSn D 2N � mg � PfSn D 2N � m C 2g :

Problem 1.10.9. Let 	1; 	2; : : : be any infinite sequence of independent Bernoulli
random variables with Pf	i D C1g D Pf	i D �1g D 1=2. Define S0 D 0,
Sn D 	1 C � � � C 	n, n � 1, and, given any x 2 Z D f0; ˙1; ˙2; : : :g, consider the
moment (of the first visit of x after time zero):

�1.x/ D inffn > 0 W Sn D xg;

with the understanding that �1.x/ D 1, if f � g D ¿.
Prove that, for x D 1; 2; : : :, one has

Pf�1.x/ > ng D P
n

max
0�k�n

Sk < x
o

; Pf�1.1/ D 2n C 1g D 2�2n�1

n C 1
C n

2n ;

Pf�1.x/ D ng D x

n
2�n C .nCx/=2

n ; Pf�1.1/ > ng D 2�n C Œn=2�
n :

Remark. With regard to the question of existence of an infinite sequences of
independent random variables 	1; 	2; : : :, see [ P §1.5, 1 ].

Problem 1.10.10. Let everything be as in the previous problem. In addition to the
moments �1.x/, define the moments

�k.x/ D inffn > �k�1.x/ W Sn D xg ; k D 2; 3; : : : ;

with the understanding that �k.x/ D 1 if f � g D ¿. (The meaning of these
moments should be clear: �k.x/ is the moment of the kth visit to x.)

Prove that, for n D 1; 2; : : : , one has

Pf�1.0/ D 2ng D 2�2nC1n�1C n�1
2n�2 ; Pf�1.0/ < 1g D 1;

Pf�1.0/ > 2ng D 2�2nC n
2n D PfS2n D 0g; E�1.0/ D 1:

Show also that �1.0/; �2.0/ � �1.0/; �3.0/ � �2.0/; : : : is a squence of independent
and identically distributed random variables. (This property is the basis for the



1.10 Random Walk II: The Reflection Principle and the Arcsine Law 53

method of “regenerating cycles,” which is crucial in the study of random walk
sequences—see Sect. A.7 in the Appendix for details.)

Problem 1.10.11. Let 	1; 	2; : : : be any infinite sequence of independent Bernoulli
random variables and let S0 D 0 and Sn D 	1 C � � � C 	n, n � 1. Define

Ln.x/ D #fk; 0 < k � n W Sk D xg

and notice that Ln.x/ is nothing but the total number of moments 0 < k � n, at
which the random walk .Sk/0<k�n happens to be in state x, x D 0; ˙1; ˙2; : : :—
comp. this definition with the related quantity Nn.x/, introduced in Problem 7.9.8;
see also Problem 1.9.3. The quantities Ln.x/ and Nn.x/ are commonly referred to
as (discrete) local times in state x on the time interval fk W 0 � k � ng.

Prove that, for k D 0; 1; : : : ; n, one has:

PfL2n.0/ D kg D PfL2nC1.0/ D kg D 2�2nCkC n
2n�k ;

PfLn.0/ D kg D 2�2Œn=2�CkC bn=2c
2bn=2c�k

;

PfL2n.0/ < kg D Pf�k.0/ > 2ng D 2�2n

k�1X

j D0

2j C n
2n�j ;

PfLn.x/ D 0g D Pf�1.x/ > ng D
1X

j DnC1

2�j x

j
C .j Cx/=2

j ;

and, for x D ˙1; ˙2; : : :, one has:

PfL�1.0/.x/ D 0g D 2jxj � 1

2jxj ; EL�1.0/.x/ D 1 :

(The quantities �1.x/ are defined in Problem 1.10.10.)

Problem 1.10.12. In the context of the previous problem, set

�.n/ D min
n
k; 0 � k � n W Sk D max

0�j �k
Sj

o
;

and prove that

Pf�.2n/ D kg D
(

C bk=2c
2bk=2c I C n�bk=2c

2n�2bk=2c I 2�2n�1; k D 1; 2; 3; : : : ; 2n ;

C n
2n I 2�2n; k D 0 :
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1.11 Martingales: Some Applications to the Random Walk

Problem 1.11.1. Let D0 4 D1 4 � � � 4 Dn be any nondecreasing sequence of
partitions of ˝ , such that D0 D f˝g, and let �k , 1 � k � n, be some random
variables on ˝ , chosen so that each �k is Dk-measurable. Prove that the sequence
	 D .	k; Dk/1�k�n, given by

	k D
kX

lD1

Œ�l � E.�l j Dl�1/� ;

is a martingale.
Hint. Prove that E.	kC1 � 	k j Dk/ D 0.

Problem 1.11.2. Suppose that the random variables �1; : : : ; �n are chosen so that
E�1 D 0 and E.�k j �1; : : : ; �k�1/ D 0, 1 � k � n. Prove that the sequence
	 D .	k/1�k�n, given by 	1 D �1 and

	kC1 D
kX

iD1

fi .�1; : : : ; �i / �iC1 ; k < n ;

for some choice of the functions fi .�1; : : : ; �i /, represents a martingale.

Problem 1.11.3. Prove that any martingale 	 D .	k; Dk/1�k�n has independent
increments: if a < b < c < d , then

cov.	d � 	c; 	b � 	a/ D 0:

(Recall that in the present chapter all random variables are assumed to take only
finitely many values.)

Problem 1.11.4. Let 	 D .	1; : : : ; 	n/ be any random sequence in which each 	k

is Dk-measurable (D1 4 D2 4 : : : 4 Dn). Prove that in order for this sequence to
be a martingale (relative to the partitions .Dk/), it is necessary and sufficient that,
for any stopping time � (relative to .Dk/), one has E	� D E	1. (The phrase “for
any stopping time” may be replaced by “for any stopping time that takes only two
values”.)

Hint. Let E	� D E	1, for any stopping time � that takes only two values. For a
fixed k 2 f1; : : : ; n � 1g and A 2 Dk , consider the moment

�.!/ D
(

k; if 	k.!/ 62 A ;

k C 1; if 	k.!/ 2 A :

After showing that E	� D E	kIA C E	kIA, conclude that E	kC1IA D E	kIA.
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Problem 1.11.5. Prove that if 	 D .	k; Dk/1�k�n is a martingale and � is a stopping
time, then for any k � n one has

EŒ	nIf�Dkg� D EŒ	kIf�Dkg� :

Problem 1.11.6. Let 	 D .	k; Dk/1�k�n and � D .�k; Dk/1�k�n be any two
martingales with 	1 D �1 D 0. Prove that

E	n�n D
nX

kD2

E.	k � 	k�1/.�k � �k�1/

and that, in particular,

E	2
n D

nX

kD2

E.	k � 	k�1/2:

Problem 1.11.7. Let �1; : : : ; �n be any sequence of independent and identically
distributed random variables with E�i D 0. Prove that the sequence 	 D .	k/1�k�n,
given by

	k D
 

kX

iD1

�i

!2

� k E�2
1 ; or by 	k D expf�.�1 C : : : C �k/g

.E expf��1g/k
;

represents a martingale.

Problem 1.11.8. Let �1; : : : ; �n be any sequence of independent and identically
distributed random variables that take values only in the (finite) set Y . Let f0.y/ D
Pf�1 D yg > 0, y 2 Y , and let f1.y/ be any non-negative function withP

y2Y f1.y/ D 1. Prove that the sequence 	 D .	k; D
�

k /1�k�n, with

	k D f1.�1/ : : : f1.�k/

f0.�1/ : : : f0.�k/
; D

�

k D D�1;:::;�k
;

forms a martingale. (The variables 	k are known as likelihood ratios and play a
fundamental role in statistics.)

Problem 1.11.9. We say that the sequence 	 D .	k; Dk/0�k�n is a supermartingale
(submartingale) if P-a.s. one has

E.	kC1 j Dk/ � 	k .� 	k/; 0 � k � n :

Prove that every supermartingale (submartingale) can be represented (and in a
unique way) in the form

	k D mk � ak . C ak/ ;



56 1 Elementary Probability Theory

where m D .mk; Dk/0�k�n is a martingale and a D .ak; Dk/0�k�n is a non-
decreasing sequence such that a0 D 0 and each ak is Dk�1-measurable.

Problem 1.11.10. Let 	 D .	k; Dk/0�k�n and � D .�k; Dk/0�k�n be any two
supermartingales and let � be any stopping time, relative to the partition .Dk/0�k�n,
chosen so that Pf	� � ��g D 1. Prove that any sequence  D .k; Dk/0�k�n that
switches from � to 	 at the random moment � , i.e., any  given either by

k D 	kI.� > k/ C �kI.� � k/ ;

or by
k D 	kI.� � k/ C �kI.� < k/ ;

is also a supermartingale.

Problem 1.11.11. Let 	 D .	k; Dk/0�k�n be any submartingale of the form

	k D
X

m�k

IAm;

where Am 2 Dm. Find the Doob decomposition for this submartingale.

Problem 1.11.12. Let 	 D .	k; Dk/1�k�n be any submartingale. Verify the follow-
ing “maximal” inequality:

E max
l�n

	C
l � e

1 � e
Œ1 C E.	C

n lnC 	C
n /� ;

where lnC x D max.ln x; 0/.

1.12 Markov Chains: The Ergodic Theorem: The Strong
Markov Property

Problem 1.12.1. Let 	 D .	0; 	1; : : : ; 	n/ be a Markov chain with values in the
space X and let f D f .x/ (x 2 X ) be some function on X . Does the sequence
.f .	0/; f .	1/; : : : ; f .	n// represent a Markov chain? Does the “reverse” sequence
.	n; 	n�1; : : : ; 	0/ represent a Markov chain?

Problem 1.12.2. Let P D kpij k, 1 � i; j � r be any stochastic matrix and let �

be any eigenvalue of that matrix, i.e., � is a solution to the characteristic equation
detŒP � �I � D 0. Prove that �1 D 1 is always an eigenvalue and that the absolute
values of all remaining eigenvalues �2; : : : ; �r cannot exceed 1. Furthermore, if
there is a number n, such that Pn > 0 (in the sense that p

.n/
ij > 0), then j�i j < 1,

i D 2; : : : ; r . Show also that if all eigenvalues �1; : : : ; �r are different, then the
transition probabilities p

.k/
ij can be written as

p
.k/
ij D �j C aij .2/�k

2 C : : : C aij .r/�k
r ;
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where the quantities �j , aij .2/; : : : ; aij .r/ can be expressed in terms of the entries
of the matrix P . (In particular, as a result of this algebraic approach to the study of
the asymptotic properties of Markov chains, we find that, if j�2j < 1; : : : ; j�r j < 1,
then the limit lim

k
p

.k/
ij exists for any j and, in fact, does not depend on i .)

Problem 1.12.3. Let 	 D .	0; 	1; : : : ; 	n/ be any homogeneous Markov chain with
(finite) state space X and with transition probability matrix P D kpxyk. Denote by

T '.x/ D EŒ'.	1/ j 	0 D x�
�
D
X

y

'.y/pxy

�

the associated one-step transition operator and suppose that the function ' D '.x/

satisfies the equation
T '.x/ D '.x/ ; x 2 X ;

i.e., happens to be “harmonic.” Prove that for any such choice of the function ', the
sequence

 D .k; D
	

k /0�k�n ; with k D '.	k/ ;

is a martingale, where D
	

k D D	0;:::;	k
.

Problem 1.12.4. Let 	 D .	n; ˘; P/ and Q	 D . Q	n; ĕ ; P/ be any two Markov
chains that share the same transition matrix P D kpij k, 1 � i; j � r , but have
two different initial distributions, resp. ˘ D .p1; : : : ; pr / and ĕ D . Qp1; : : : ; Qpr/.
Letting ˘.n/ D .p

.n/
1 ; : : : ; p

.n/
r / and ĕ .n/ D . Qp.n/

1 ; : : : ; Qp.n/
r / denote the respective

n-steps distributions, prove that if mini;j pij � " > 0, then

rX

iD1

j Qp.n/
i � p

.n/
i j � 2.1 � r"/n :

Hint. Use induction in n.

Problem 1.12.5. Let P and Q be any two stochastic matrices. Prove that PQ and
˛P C .1 � ˛/Q, for any choice of 0 � ˛ � 1, are also stochastic matrices.

Problem 1.12.6. Consider any homogeneous Markov chain .	0; 	1; : : : ; 	n/ with
state-space X D f0; 1g and with transition probability matrix of the form

�
1 � ˛ ˛

ˇ 1 � ˇ

�
;

for some 0 < ˛ < 1 and 0 < ˇ < 1, and set Sn D 	0 C : : : C 	n. As a generalization
of the Moivre–Laplace theorem (see [ P §1.6]), prove that

P

8
<̂

:̂

Sn � ˛
˛Cˇ

n
q

n˛ˇ.2�˛�ˇ/

.˛Cˇ/3

� x

9
>=

>;
! ˚.x/ ; as n ! 1 :
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Argue that if ˛ C ˇ D 1 one can claim that the variables 	0; : : : ; 	n are independent
and that the last relation comes down to

P

(
Sn � ˛np

n˛ˇ
� x

)
! ˚.x/ ; as n ! 1 :

Problem 1.12.7. Let 	0; 	1; : : : ; 	N be any Bernoulli sequence of independent
random variables with Pf	i D 1g D Pf	i D �1g D 1=2. Consider the variables
�0; �1; : : : ; �N , defined by �0 D 	0 and �n D 	n�1C	n

2
, 1 � n � N .

(a) Is the sequence �0; �1; : : : ; �N Markovian?
(b) Is the sequence 0; 1; : : : ; N , given by 0 D 	0, and n D 	n�1	n, 1 � n �

N , Markovian?

Problem 1.12.8. Let X1; : : : ; Xn be any collection of independent and identically
distributed random variables. With any such collection one can associate what
is known as the order statistics and is defined as the sequence X

.n/
1 ; : : : ; X

.n/
n ,

obtained by arranging the values X1; : : : ; Xn in non-decreasing order. (So that
X

.n/
1 D min.X1; : : : ; Xn/, : : : ; X

.n/
n D max.X1; : : : ; Xn/, with the understanding

that when Xi1 D : : : D Xik D min.X1; : : : ; Xk/ and i1 < : : : < ik , then X
.n/
1 is the

variable Xi1 . Similar convention is made in all analogous cases (see Problem 2.8.19,
for example).

Note that, in general, the elements of the order statistics X
.n/
1 ; : : : ; X

.n/
n (known

as rank statistics) will not be independent even if the variables X1; : : : ; Xn are.
Prove that when each variable Xi takes only two values, the rank statistics form a

Markov chain. Prove by way of example that, in general, this claim cannot be made
if each Xi takes three values. (Note that if each Xi is continuously distributed (see
[ P §2.3]), then the rank statistics always form a Markov chain.)



Chapter 2
Mathematical Foundations
of Probability Theory

2.1 Probabilistic Models of Experiments with Infinitely
Many Outcomes: Kolmogorov’s Axioms

Problem 2.1.1. Let ˝ D fr W r 2 Œ0; 1� \ Qg denote the set of all rational numbers
inside the interval Œ0; 1�, let A be the algebra of sets that can be expressed as finite
unions of non-intersecting sets A of the form fr W a < r < bg, fr W a � r < bg,
fr W a < r � bg, or fr W a � r � bg, and let P.A/ D b � a. Prove that the set-
function P.A/, A 2 A , is finitely additive but not countably additive.

Problem 2.1.2. Let ˝ be any countable set and let F denote the collection of all
subsets of ˝ . Set �.A/ D 0 if A is finite and �.A/ D 1 if A is infinite. Prove that
the set-function � is finitely additive but not countably additive.

Problem 2.1.3. Let � be any countably additive measure on .˝;F /. Prove that
(a) If An " A, then �.An/ " �.A/;
(b) If An # A and �.Ak/ < 1 for some k, then �.An/ # �.A/;
(c) If � is finite (�.˝/ < 1) and A D limAn, i.e., A D limAn D limAn, then

�.A/ D lim�.An/.

(This problem continues in Problem 2.1.15.)
Hint. Use the relations

limAn D
1[

nD1

1\

kDn
Ak and limAn D

1\

nD1

1[

kDn
Ak:

Problem 2.1.4. Verify the following properties of the symmetric difference be-
tween sets:

.A4B/4C D A4.B4C/; .A4B/4.B4C/ D A4C;
A4B D C ” A D B4C:

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics,
DOI 10.1007/978-1-4614-3688-1 2,
© Springer Science+Business Media New York 2012
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Problem 2.1.5. Prove that the “metrics” �1.A;B/ and �2.A;B/, defined by

�1.A;B/ D P.A4B/;

�2.A;B/ D
(

P.A4B/
P.A[B/ ; if P.A [ B/ ¤ 0;

0; if P.A [ B/ D 0;

where A4B is the symmetric difference of A and B , satisfy the “triangular
inequality.”

Hint. Use the relation A4C � .A4B/[ .B4C/.

Problem 2.1.6. Let � be any finitely additive measure on some algebra A . Show
that if the sets A1;A2; � � � 2 A are non-intersecting and, in addition, one has A DP1

iD1 Ai 2 A , then one can claim that �.A/ � P1
iD1 �.Ai /.

Problem 2.1.7. Prove that

lim supAn D lim infAn; lim infAn D lim supAn;

lim infAn � lim supAn; lim sup.An [ Bn/ D lim supAn [ lim supBn;

lim inf.An \ Bn/ D lim infAn \ lim infBn;

lim supAn \ lim infBn � lim sup.An \ Bn/ � lim supAn \ lim supBn:

Prove also that if An " A, or if An # A, then

lim infAn D lim supAn:

Problem 2.1.8. Let .xn/ be any sequence of real numbers and let An D .�1; xn/.
Prove that for x D lim supxn and A D lim supAn one has .�1; x/ � A �
.�1; x�. (In other words, A must be either .�1; x/ or .�1; x�.)

Problem 2.1.9. Lt A1;A2; : : : be any sequence of subsets of the set ˝ . Prove that

lim sup .An n AnC1/ D lim sup .AnC1 nAn/ D .lim supAn/ n .lim infAn/:

Problem 2.1.10. Give an example showing that, in general, a measure that can take
the value C1 could be countably additive, but still not continuous at “the zero” ¿.

Problem 2.1.11. We say that the events fAi 2 F W 1 � i � ng are exchangeable
(or interchangeable) if all probabilities P.Ai1 : : : Ail / are identical (D pl ) for every
choice of the indices 1 � i1 < � � � < il � n, and this property holds separately for
every 1 � l � n. Prove that for such events the following “inclusion–exclusion”
formula is in place (see Problem 1.1.12):

P

 
n[

iD1
Ai

!
D np1 � C 2

n p2 C C 3
n p3 � � � � C .�1/n�1pn:
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Problem 2.1.12. Let .Ak/k�1 be any infinite sequence of exchangeable events, i.e.,
for every l � 1 one can claim that the probability P.Ai1 : : : Ail / (D pl ) does not
depend on choice of the indices 1 � i1 < � � � < il . Prove that in any such situation
one has

P
�

lim
n

An

�
D P

 1\

kD1
Ak

!
D lim

l!1pl ;

P
�

lim
n
An

�
D P

 1[

kD1
Ak

!
D 1 � lim

l!1.�1/
l�l.p0/;

where p0 D 1, �1.pn/ D pnC1 � pn, �l.pn/ D �1.�l�1.pn//, l � 2.

Problem 2.1.13. Let .An/n�1 be any sequence of sets and let I.An/, n � 1, be the
associated sequence of indicator functions. Prove that

.a/ I
�

lim
n

An

�
D lim

n

I.An/; I
�

lim
n
An

�
D lim

n
I.An/;

.b/ lim
n
I.An/ � lim

n

I.An/ D I
�

lim
n
An n lim

n

An

�
;

.c/ I

 1[

nD1
An

!
�

1X

nD1
I.An/:

Problem 2.1.14. Prove that

I

 1[

nD1
An

!
D max

n�1 I.An/; I

 1\

nD1
An

!
D min

n�1 I.An/:

Problem 2.1.15. (Continuation of Problem 2.1.3.) Let � be any countably additive
measure on .˝;F /. Prove that

(a) �.limAn/ � lim�.An/.
(b) If, in addition, the measure � happens to be finite (�.˝/ < 1), then

�.limAn/ � lim�.An/:

(c) In the special case of probability measures P, one has

P.limAn/ � lim P.An/ � lim P.An/ � P.limAn/

(“Fatou’s lemma for sets”).

Deduce from the above relations the following generalization of the “continuity”
properties (2) and (3) of the probability P, mentioned in the Theorem of [ P §2.1, 2 ]:
if A D limn An (i.e., limAn D limAn D A), then P.A/ D limn P.An/.
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Problem 2.1.16. Let A� D limAn and let A� D limAn. Prove that
P.An � A�/ ! 0 and P.A� �An/ ! 0.

Problem 2.1.17. Suppose that An ! A (in the sense that A D A� D A�; see
Problem 2.1.16). Prove that P.A4An/ ! 0.

Problem 2.1.18. Suppose that the sets An converge to the set A, in the sense
that P.A4 limAn/ D P.A4 limAn/ D 0. Prove that in that case one must have
P.A4An/ ! 0.

Problem 2.1.19. Let A0;A1; : : : and B0;B1; : : : be any two sequences of subsets
of ˝ . Verify the following properties of the symmetric difference:

A0 4B0 D A0 4B0;

A0 4
�[

n�1
Bn

�
�
[

n�1
.A0 4Bn/;

A0 4
�\

n�1
Bn

�
�
\

n�1
.A0 4Bn/;

�[

n�1
An

�
4
�[

n�1
Bn

�
�
[

n�1
.An 4Bn/;

�\

n�1
An

�
4
�\

n�1
Bn

�
�
[

n�1
.An 4Bn/:

Problem 2.1.20. Let A;B;C be any three random events. Prove that

jP.A \ B/ � P.A \ C/j � P.B 4C/:

Problem 2.1.21. Prove that for any three events, A, B and C , the probability that
exactly one of these events will occur can be expressed as P.A/C P.B/C P.C /�
2
�
P.AB/C P.AC /C P.CD/

�C 3P.ABC/. (Comp. with Problem 1.1.13.)

Problem 2.1.22. Let .An/n�1 be any sequence of events in F , for which

X

n

P.An 4AnC1/ < 1:

Prove that
P
˚�

limAn
�4 �

limAn
�� D 0:

Problem 2.1.23. Prove that, for any two events A and B , one has

max.P.A/;P.B// � P.A [ B/ � 2max.P.A/;P.B//
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and

P.A[ B/P.A \ B/ � P.A/P.B/:

When can one claim that the last relation is actually an identity?
Show also the Boole inequality: P.A \ B/ � 1 � P.A/ � P.B/.

Problem 2.1.24. Let .An/n�1 and .Bn/n�1 be any two sequences of events chosen
so that An � Bn for every n � 1. Prove that fAn i. o. g � fBn i. o. g (“i.o.” stands
for “infinitely often,” meaning that infinitely many events in the associated sequence
occur).

Problem 2.1.25. Suppose again that .An/n�1 and .Bn/n�1 are two sequences of
events such that

PfAn i. o. g D 1 and PfBn i. o. g D 0:

Prove that PfAn \ Bn i. o. g D 1.

Problem 2.1.26. Give an example of two finite measures, �1 and �2, defined on
the same sample space ˝ (i.e., two measures with �1.˝/ < 1 and �2.˝/ < 1),
for which the smallest measure, �, with the property � � �1 and � � �2 is not, as
one might think, max.�1; �2/, but is actually �1 C �2.

Problem 2.1.27. Suppose that the measure space .˝;F / is endowed with a
sequence of probability measures, P1;P2; : : :, and suppose that P.A/, A 2 F , is
some set-function on F , for which the following relation holds for every A 2 F :

Pn.A/ ! P.A/:

Prove the following properties, known as the Vitali–Hahn–Saks theorem:
(a) The set-function P D P.�/ is a probability measure on .˝;F /.
(b) For any sequence A1;A2; : : : 2 F with Ak # ¿ as k ! 1, one must have

supn Pn.Ak/ # 0 as k ! 1.

Problem 2.1.28. Consider the measure space .R;B.R// and give an example of a
sequence of measures �n D �n.A/, A 2 B.R/, n � 1, such that for every A 2
B.R/ the sequence .�n.A//n�1 is decreasing, but the limit �.A/ D limn �n.A/,
A 2 B.R/, does not represent a finitely-additive set function and, therefore, cannot
be treated as a measure.

Problem 2.1.29. Let .˝;F ;P/ be any probability space and let .An/n�1 be any
sequence of events inside F . Suppose that P.An/ � c > 0, n � 1, and let A D
limAn. Prove that P.A/ � c.

Problem 2.1.30. (The Huygens problem.) Two players, A and B, take turns tossing
two fair dice. Player A wins if he gets a six before player B gets a seven (otherwise
player A looses and player B wins). Assuming that player A tosses first, what is the
probability that player A wins?

Hint. One must calculate the probability PA D P1
kD0 P.Ak/, where Ak is the

event that player A wins after the .k C 1/st turn. (The answer is: PA D 30=61.)
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Problem 2.1.31. Suppose that the set ˝ is at most countable and let F be any
�-algebra of subsets of ˝ . Prove that it is always possible to find a partition D D
fD1;D2; : : :g (

S
i2NDi D ˝ ,Di\Dj D ¿, i 6D j , N D f1; 2; : : :g) that generates

F , i.e.,

F D
n [

i2M
Di WM � N

o
:

(Comp. with the analogous statement for the case of a finite set ˝ formulated in
[ P §1.1, 3 ])

Hint. Consider constructing D from the equivalence classes in the set ˝
associated with the relation

!1 � !2 , .!1 2 A , !2 2 A for every A 2 F /:

2.2 Algebras and � -algebras: Measurable Spaces

Problem 2.2.1. Let B1 and B2 be any two �-algebras of subsets of the space ˝ .
Can one claim that the following collections of sets form �-algebras

B1 \ B2 	 fAWA 2 B1 and A 2 B2g;
B1 [ B2 	 fAWA 2 B1 or A 2 B2g‹

Let B1 _ B2 be the smallest �-algebra, �.B1;B2/, that contains B1 and B2.
Prove that B1 _ B2 coincides with the smallest �-algebra that contains all sets of
the form B1 \ B2, for all choices of B1 2 B1 and B2 2 B2.

Hint. Convince yourself that B1 \ B2 is a �-algebra and prove by way of
example that, in general, B1 [ B2 is not a �-algebra. (Such an example can be
constructed with a set ˝ that has only three elements.)

Problem 2.2.2. Let D D fD1;D2; : : : g be any countable partition of the set˝ and
let B D �.D/. What is the cardinality of the �-algebra B?

Hint. With any sequence x D .x1; x2; : : : /, that consists of 0’s and 1’s, one can
associate the setDx D D

x1
1 [Dx2

2 [ : : : , whereDxi
i D ¿, if xi D 0, andDxi

i D Di ,
if xi D 1.

Problem 2.2.3. Prove that

B.Rn/˝ B.R/ D B.RnC1/:

Problem 2.2.4. Prove that the sets (b)–(f) from [ P §2.2, 4 ] belong to B.R1/.
Hint. In order to show, for example, (b), notice that

n
x W lim

n
xn � a

o
D

1\

kD1

1[

mD1

\

nDm

�
x W xn < aC 1

k

�
:
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In other words, limn xn � a , 8k 2 N 9m 2 N W 8n � m; xn < a C 1

k
. One

can derive (c)–(f) with a similar argument.

Problem 2.2.5. Prove that the sets A2 and A3 from [ P §2.2, 5 ] do not belong to
B.RŒ0;1�/.

Hint. As is the case with the set A1, the desired property of A2 and A3 can be
established by contradiction.

Problem 2.2.6. Verify that the function in [ P §2.2, (18)] is indeed a metric.

Problem 2.2.7. Prove that B0.Rn/ D B.Rn/, n � 1, and B0.R1/ D B.R1/.

Problem 2.2.8. Let C D C Œ0;1/ be the space of continuous functions x D .xt /,
defined for t � 0. Prove that, relative to the metric

�.x; y/ D
1X

nD1
2�n minŒ sup

0�t�n
jxt � yt j; 1 �; x; y 2 C;

this space is a Polish space (just as C D C Œ0; 1�), i.e., a complete, separable metric
space, and the �-algebra B0.C /, generated by all open sets, coincides with the �-
algebra B.C /, generated by all cylinder sets.

Problem 2.2.9. Show the equivalence between the group of conditions f.�a), (�b),
(�c/g and the group of conditions f.�a), (�0

b), (�0
c/g in [ P §2.2, Definition 2]).

Problem 2.2.10. Prove [ P §2.2, Theorem 2] by using the statement in [ P §2.2,
Theorem 1].

Problem 2.2.11. In the context of [ P §2.2, Theorem 3], prove that the system L
is a �-system.

Problem 2.2.12. A �-algebra is said to be countably generated, or separable, if it
is generated by some countable collection of sets.

Prove that the �-algebra B, comprised of all Borel sets inside ˝ D .0; 1�, is
countably generated.

Prove by way of example that it is possible to find two �-algebras, F1 and F2,
such that F2 is countably generated, one has F1 
 F2, and yet F1 is not countably
generated.

Problem 2.2.13. Prove that, in order for the �-algebra G to be countably generated,
it is necessary and sufficient that G D �.X/, for some appropriate random variable
X (see [ P §2.2, 4 ] for the definition of �.X/).

Problem 2.2.14. Prove that .X1;X2; : : : / are independent random variables
([ P §2.2, 4 ] and [ P §2.2, 5 ]) whenever �.Xn/ and �.X1; : : : ; Xn�1/ are
independent for every n � 1.

Problem 2.2.15. Let .˝;F ;P/ be any complete (see [ P §2.3, 1 ] and Problem
2.2.34) probability space, let G be any sub-�-algebra of F (G � F ) and let .En/n�1
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be any non-increasing sequence of sub-�-algebras of F (E1 � E2 � : : : ; En � F ,
n � 1). Suppose that all �-algebras under consideration are completed with all P-
negligible sets from F . It may appear intuitive that, at least up to sets of measure
zero, one must have

\

n

�.G ;En/ D �
�
G ;
\

n

En
�
; .�/

or, in a different notation,
\

n

.G _ En/ D G _
\

n

En; .��/

where G _ En 	 �.G ;En/ is the smallest �-algebra generated by the sets from
G and E , and the identity in .�/ and .��/ is understood as “identity up to sets of
measure zero” between two complete �-algebras, say H1 � F and H2 � F , in
the sense that, for every A 2 H1 one can find some B 2 H2—and vice versa, for
every B 2 H2 one can find some A 2 H1—so that P.A4B/ D 0.

Nevertheless, the following example taken from [134] shows that, in general, the
operations _ (the supremum) and \ (the intersection) between �-algebras cannot
be interchanged.

(a) Let 	0; 	1; 	2; : : : be any sequence of Bernoulli random variables with
Pf	i D 1g D Pf	i D �1g D 1=2, and let Xn D 	0	1 : : : 	n,

G D �.	1; 	2; : : :/; and En D �.Xk; k > n/:

Prove that \

n

�.G ;En/ 6D �
�
G ;
\

n

En
�
:

Hint. Prove that 	0 is measurable with respect to
T
n �.G ;En/ (D �.G ; 	0/), but

is still independent from the events in �.G ;
T
n En/ (D G ).

(This problem continues in Problem 7.4.25 below.)
(b) The fact that for �-algebras the operations _ and \ do not commute follows

from the (considerably simpler than (a)) claim (see [23]) that, if 	1 and 	2 are any two
of the random variables described in (a) (i.e., any two independent and symmetric
Bernoulli random variables) and if E1 D �.	1/, E2 D �.	2/ and G D �.	1	2/, then

.G _E1/\ .G _E2/ 6D G _ .E1\E2/ and .G \E1/_ .G \E2/ 6D G \ .E1_E2/:

Prove this last statement.

Problem 2.2.16. Let A1 and A2 be any two independent collections of sets,
every one of which represents a 
-system. Prove that �.A1/ and �.A2/ are also
independent. Give an example of two independent collections of sets, A1 and A2,
neither of which is a 
-systems, and �.A1/ and �.A2/ are not independent.
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Problem 2.2.17. Assuming that L is a �-system, prove that .A;B 2 L ; A\B D
¿/ H) .A[ B 2 L /.

Problem 2.2.18. Let F1 and F2 be any two �-algebras of subsets of the set ˝
and let

d.F1;F2/ D 4 sup
A12F1;A22F2

jP.A1A2/� P.A1/P.A2/j:

Prove that the above quantity, which can be viewed as a measure of the dependence
between F1 and F2, has the following properties:

(a) 0 � d.F1;F2/ � 1;
(b) d.F1;F2/ D 0 if and only if F1 and F2 are independent;
(c) d.F1;F2/ D 1 if and only if the intersection F1 and F2 contains an event

that has probability equal to 1=2.

Problem 2.2.19. Following the proof of [ P §2.2, Lemma 1], prove the existence
and the uniqueness of the classes �.E / and 
.E /, which contain the system of
sets E .

Problem 2.2.20. Let A be any algebra of sets that has the following property: for
any sequence, .An/n�1, of non-intersecting sets An 2 A , one has

S1
nD1 An 2 A .

Prove that A is actually a �-algebra.

Problem 2.2.21. Suppose that .Fn/n�1 is some increasing sequence of �-algebras,
i.e., Fn � FnC1, n � 1. Prove that, generally,

S1
nD1Fn could only be claimed to

be an algebra.

Problem 2.2.22. Let F be any algebra (resp., �-algebra) and let C be any set
which does not belong to F . Consider the smallest algebra (resp., �-algebra), which
contains the family F [fC g. Prove that this algebra (resp., �-algebra) is comprised
of all sets of the form .A \ C/[ .B \ C/, for all choices of A;B 2 F .

Problem 2.2.23. Let R D R[f�1g[f1g be the extended real line. The Borel �-
algebra B.R/ may be defined (comp. with [ P §2.2, 2 ]) as the �-algebra generated
by the sets Œ�1; x�, x 2 R, where Œ�1; x� D f�1g [ .�1; x�. Prove that the
�-algebra B.R/ coincides with any of the �-algebras that generated, respectively,
by any of the following families of sets:

(a) Œ�1; x/, x 2 R;
(b) .x;1�, x 2 R (where .x;1� D .x;1/ [ f1g);
(c) All finite intervals and f�1g and f1g.

Problem 2.2.24. Consider the measurable space .C;B0.C //, in whichC DC Œ0; 1�

is the space of all continuous functions x D .xt /0�t�1 and B0.C / is the Borel �-
algebra for the metric �.x; y/ D sup0�t�1 jxt � yt j. Prove that:

(a) The space C is complete (relative to the metric �.�; �/).
(b) The space C is separable (relative to the metric �.�; �/).
Hint. Use the Bernstein polynomials—see [ P §1.5].
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(c) If treated as a subset of C Œ0; 1�, the subspace

Cd Œ0; 1� D fx 2 C Œ0; 1� Wx is differentiableg;

is not a Borel set.

Problem 2.2.25. Let A0 be any non-empty system of subsets of the sample
space ˝ . Prove that ˛.A0/, defined as the algebra generated by the system A0,
can be constructed as follows: Set A1 D A0 [ f¿;˝g and define, for n � 1,

AnC1 D fA[ B W A;B 2 Ang:

Then A0 � A1 � : : : � An � : : : and

˛.A0/ D
1[

nD1
An:

Problem 2.2.26. For a given non-empty system of subsets of the sample space ˝ ,
denoted A0, in Problem 2.2.25 we gave a method for constructing the smallest
algebra, ˛.A0/, that contains the system A0. Analogously, we now define the
systems:

A1 D A0 [ f¿;˝g;

A2 D A1 [
( 1[

nD1
Bn W B1;B2; : : : 2 A1

)
;

A3 D A2 [ fB W B 2 A2g;

A4 D A3 [
( 1[

nD1
Bn W B1;B2; : : : 2 A3

)
;

A5 D A4 [ fB W B 2 A4g;

A6 D A5 [
( 1[

nD1
Bn W B1;B2; : : : 2 A5

)
;

: : :

It may seem intuitive that the system A1 D S1
nD1 An should give the smallest �-

algebra, �.A0/, that contains the system A0, however, in general, this claim cannot
be made: one always has A1 � �.A0/, while, in general, A1 6D �.A0/, i.e., the
above procedure may not give the entire �-algebra �.A0/. Prove by way of example
that �.A0/ can be strictly larger than A1.

Hint. Consider the case where A0 is the system of all intervals on the real line R.
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Note that if one is to follow the above procedure, starting with A1 instead of A0,
in general, one still cannot claim that �.A0/ will be produced at the end. In order
to produce �.A0/, one must use transfinite induction (@1 “times”). We refer to [47,
vol. 1, p. 235, vol. 2, p. 1068] for further explanation of G. Cantor’s cardinality (or
power) numbers and the related continuum hypothesis.

Problem 2.2.27. (Suslin’s counterexample.) The construction and the conclusion
given in the previous problem show that, in principle, a �-algebra may have a rather
complicated structure. In 1916 M. Suslin produced a counterexample, which proved
that the following statement, due to H. Lebesgue is not true in general: the projection
of every Borel set B inside R2 onto one of the coordinate axes is a Borel set
inside R1. Just as M. Suslin did in 1916, construct a counterexample that disproves
this statement.

Hint. M. Suslin’s idea was to construct a concrete sequence,A1;A2; : : :, of open
sets in the plain R2 so that the projection of the intersection

T
An on one of the

coordinate axes is not a Borel set.

Problem 2.2.28. (Sperner’s lemma.) Consider the set A D f1; : : : ; ng and let
fA1; : : : ; Akg be any family of subsets ofA, chosen so that no member of this family
is included in some other member of the same family. Prove that the total number
K satisfies the estimate K � C Œn=2�

n .

Problem 2.2.29. Let E be any system of subsets of ˝ and let F D �.E / be the
smallest �-algebra that includes the system E (i.e., the �-algebra generated by E ).
Suppose that A 2 F . By using the “suitable sets principle,” prove that one can
always find a countable family, C � E , for which one can claim that A 2 �.C /.
Problem 2.2.30. The Borel �-algebra E associated with the metric space .E; �/
is defined as the �-algebra generated by all open sets sets inside E (relative to the
metric �—see [ P §3.1, 3 ]). Prove that, for certain metric spaces, the �-algebra E0,
generated by all open balls, may be strictly smaller than E (E0 
 E ).

Problem 2.2.31. Prove that there is no �-algebra of cardinality @0 (“aleph-naught,”
the cardinality of the set of natural numbers), that has countably infinitely many
elements. Plainly, the structure of any �-algebra is always such that it has either
finitely many elements (see Problem 1.1.10) or has uncountably many elements. For
example, according to the next problem, as a set, the collection of all Borel subsets
of Rn has power c D 2@0 (i.e., the power of the continuum), which is the same as
the power of the collection of all subsets of the set of natural numbers.

Problem 2.2.32. Just as in the previous problem, let c D 2@0 denote the power of
the continuum. Prove that, as a set, the collection of all Borell subsets of Rn has
power c, while the �-algebra of all Lebesgue subsets has power 2c.

Problem 2.2.33. Suppose that B is some Borel subset of the real line R and let �
denote the Lebesgue measure on R. The density of the set B is defined as the limit
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D.B/ D lim
T!1

�fA\ Œ�T; T �g
2T

; .�/

provided that the limit exists.
(a) Give an example of a set B for which the densityD.B/ does not exist, in that

the limit .�/ does not exist.
(b) Prove that if B1 andB2 are two non-intersecting Borel subsets of the real line,

then
D.B1 CB2/ D D.B1/CD.B2/;

in the sense that if either side of the above identity exists then so does also the other
side and the identity holds.

(c) Construct a sequence, B1;B2; : : : , of Borel sets inside R, every one of which
admits density D.Bi /, but, nevertheless, countrary to the intuition, one has

D

	 1X

iD1
Bi



6D

1X

iD1
D.Bi /:

Problem 2.2.34. (Completion of �-algebras.) Let .˝;F ;P/ be any probability
space. We say that this probability space is complete (or, equivalently, P-complete,
or, complete relative to the measure P), if B 2 F and P.B/ D 0 implies that any
set A with A � B must be an element of F .

Let N denote the collection of all subsets N � ˝ with the property that there
is a set (possibly depending on N ), BN 2 F , with P.BN / D 0 and N � BN . Let

F (sometimes written as FP or F
P

) denote the collection of all sets of the form
A[N , for some choice of A 2 F and N 2 N . Prove that:

(a) F is a �-algebra;
(b) If B � ˝ and there are sets, A1 and A2, from F , with A1 � B � A2 and

P.A2 nA1/ D 0, then B 2 F ;
(c) The probability space .˝;F ;P/ is complete.

2.3 Methods for Constructing Probability Measures
on Measurable Spaces

Problem 2.3.1. Suppose that P is a probability measure on .R;B.R// and let
F.x/ D P.�1; x�, x 2 R. Prove that

P.a; b� D F.b/� F.a/; P.a; b/ D F.b�/� F.a/;
PŒa; b� D F.b/� F.a�/; PŒa; b/ D F.b�/� F.a�/;
P.fxg/ D F.x/ � F.x�/;

where F.x�/ D limy"x F.y/.

Problem 2.3.2. Verify formula [ P §2.3, (7)].
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Problem 2.3.3. Give a complete proof of [ P §2.3, Theorem 2].

Problem 2.3.4. Prove that a (cumulative) distribution function F D F.x/, defined
on the real line R can have at most countably many points of discontinuity. Does
this statement have an analog for distribution functions defined on Rn?

Hint. Consider using the relation fx W F.x/ 6D F.x�/g D S1
nD1fx W F.x/ �

F.x�/ � 1
n
g. In general, for distribution functions defined in Rn, one cannot claim

that the points of discontinuity are at most countably many. To find a counter-
example, consider the delta-measure

ı0.A/ D
(
1; if 0 2 A;
0; if 0 62 A; A 2 B.Rn/:

Problem 2.3.5. Prove that each of the functions

G.x; y/ D
(
1; x C y � 0;

0; x C y < 0;

G.x; y/ D bx C yc D the integer part of x C y;

is right continuous and increasing in each variable but, nevertheless, cannot be
treated as a (generalized) distribution function in R2.

Problem 2.3.6. Let � denote the Lebesgue–Stieltjes measure associated with some
generalized distribution function and let A be any at most countable set. Prove that
�.A/ D 0.

Problem 2.3.7. Prove that the Cantor set N is uncountable, perfect (meaning, a
closed set in which every point is an accumulation point, or, equivalently, a closed
set without isolated points), nowhere dense (meaning, a closed set without interior
points) and has vanishing Lebesgue measure.

Problem 2.3.8. Let .˝;F ;P/ be any probability space and let A be any algebra
of subsets of˝ , such that �.A / D F . Prove that, for every " > 0 and for every set
B 2 F , one can find a set A" 2 A , with the property

P.A"4B/ � ":

Hint. Consider the family B D fB 2 F W 8" > 0 9A 2 A W P.A4B/ � "g
and prove that B is a �-algebra, so that F � B � �.A / D F .

Problem 2.3.9. Let P be any probability measure on .Rn;B.Rn//. Prove that,
given any " > 0 and any B 2 B.Rn/, one can find a compact set A1 and an open
set A2 so that A1 � B � A2 and P.A2 n A1/ � ". (This result is used in the proof
of [ P §2.3, Theorem 3].)
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Hint. Consider the family

B D

8
ˆ̂<

ˆ̂:

B 2 B.Rn/W8" > 0 there is a compact set A1 and

an open set A2, so that the closure A2 is compact

and one has A1 � B � A2 and P.A1 n A1/ < "

9
>>=

>>;

and then prove that B constitutes a �-algebra.

Problem 2.3.10. For a given probability measure P, verify the compatibility of
the measures fP�g, defined by P� .B/ D P.I� .B// (see (21) and Theorem 4 in
[ P §2.3, 5 ]).

Problem 2.3.11. Verify that [ P §2.3, Tables 2 and 3] represent probability distri-
butions, as claimed.

Problem 2.3.12. Prove that the system OA , introduced in [ P §1.2, 3 ], is a �-
algebra.

Problem 2.3.13. Prove that the set function�.A/, A 2 OA , introduced in Remark 2
in [ P §2.3, 1 ] is a measure.

Problem 2.3.14. Prove by way of example that if the measure �0, defined on the
algebra A , is finitely additive but is not countably additive, then �0 cannot be
extended to a countably additive measure on �.A /.

Problem 2.3.15. Prove that any finitely additive probability measure, defined on
some algebra, A , of subsets of˝ , can be extended to a finitely additive probability
measure defined on all subsets of ˝ .

Problem 2.3.16. Let P be any probability measure defined on some �-algebra F
that consists of subsets of ˝ and suppose that the set C � ˝ is chosen so that
C … F . Prove that the measure P can be extended (countable additivity preserved)
to a measure on the �-algebra �.F [ fC g/.
Problem 2.3.17. Prove that the support, denoted by suppF , of any continuous
distribution function F must be a perfect set, i.e., a closed set without isolated
points. (Recall that, for a given cumulative distribution function F defined on R,
suppF is the smallest closed set G with the property �.R nG/ D 0, where � is the
measure associated with F—see Sect. A.2.)

Give an example of a cumulative distribution function F , associated with some
discrete probability measure on R, for which one has suppF D R, i.e., the support
of F is the entire real line R.

Problem 2.3.18. Prove the following fundamental result (see the end of
[ P §2.3, 1 ]): every distribution function F D F.x/ can be expressed in the
form

F D ˛1Fd C ˛2Fabc C ˛3Fsc ;

where ˛i � 0, ˛1 C ˛2 C ˛3 D 1, and
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Fd is a discrete distribution function (with jumps pk > 0 at the points xk):

Fd D
X

fkWxk�xg
pk I

Fabc is an absolutely continuous ditribution function:

Fabc D
Z x

�1
f .t/ dt

with density f D f .t/, which is non-negative, Borel-measurable and
Lebesgue-integrable, i.e.,

R1
�1 f .t/ dt D 1;

Fsc is a continuous and singular distribution function, i.e., continuous distribution
function for which the points of increase form a set of Lebesgue measure 0.

What can be said about the uniqueness of the above decomposition of the distribu-
tion function F D F.x/?

Problem 2.3.19. (a) Prove that every real number ! 2 Œ0; 1� admits a ternary (i.e.,
base 3) expansion of the form

! D
1X

nD1

!n

3n
;

where !n 2 f0; 1; 2g, n � 1.
(b) Prove that if ! 2 Œ0; 1� admits two ternary expansions, ! D P1

nD1
!n
3n

and

! D P1
nD1

!0

n

3n
, both of which are non-terminating (i.e.,

P1
nD1 j!nj D 1 andP1

nD1 j!0
nj D 1), then one must have !n D !0

n for all n � 1 (uniqueness of
the non-terminating expansions).

Notice that non-uniqueness of the ternary expansion is possible for reals ! 2
Œ0; 1� that admit a terminating expansions of the form ! D Pm

nD1
!n
3n

, m < 1. In
any such case, the following “canonical” expansion may be chosen:

1. If ! D Pm�1
nD1

!n
3n

C 2
3m

, set

!0
n D

8
ˆ̂<

ˆ̂:

!n; n � m � 1;
2; n D m;

0; n � mC 1I

2. And if ! D Pm�1
nD1

!n
3n

C 1
3m

, set

!0
n D

8
ˆ̂<

ˆ̂:

!n; n � m � 1;

0; n D m;

2; n � mC 1:
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(c) Suppose that the set N � Œ0; 1� comprises all points of increase for the
Cantor function on the interval Œ0; 1� (recall that the Cantor function is a canonical
example of a distribution function which is both continuous and singular—see
[ P §2.3, 1 ]). Prove that every ! 2 N admits an expansion of the form

! D
1X

nD1

!n

3n
;

where !n 2 f0; 2g, n � 1.

Remark. It is interesting that (see [132]) if decimal expansions for the numbers
! 2 N are considered, then there will be precisely 14 numbers in the Cantor set
N that admit terminating expansions. These numbers are

1

4
;
3

4
;
1

10
;
3

10
;
7

10
;
9

10
;
1

40
;
3

40
;
9

40
;
13

40
;
27

40
;
31

40
;
37

40
;
39

40
:

Problem 2.3.20. Let N denote the Cantor set inside the interval Œ0; 1�.
(a) Prove that N has the same cardinality as the set Œ0; 1�.
(b) Describe the sets that can be identified with N ˚ N and N � N , i.e., the

sets f! C !0 W ! 2 N ; !0 2 N g and f! � !0 W ! 2 N ; !0 2 N g.

Problem 2.3.21. Let C be any closed subset of the real line R. Give an example of
a distribution function F , for which one can claim that the support of F is precisely
the set C , i.e., suppF D C .

Problem 2.3.22. Give an example of a �-finite measure � which is defined on
.R;B.R// and

(a) is not a Lebesgue–Stieltjes measure, in other words, one cannot find a non-
decreasing and right-continuous functionG D G.x/ (i.e., a generalized distribution
function) with the property �..a; b�/ D G.b/�G.a/, a < b;

(b) is not a locally finite measure, in other words, every open neighborhood of
every point x 2 R has infinite measure.

Problem 2.3.23. Find a subset of the interval Œ0; 1�, which does not belong to the
collection of all Lebesgue-measurable sets B.Œ0; 1�/—see [ P §2.3, 1 ].

Problem 2.3.24. Give a probabilistic proof of Euler’s product formula for the
Riemann zeta function; namely, consider the Riemann zeta function �.˛/ DP1

nD1 1
n˛

, 1 < ˛ < 1, and prove that the following representation, in which
p1; p2; : : : is the sequence of all prime numbers greater than 1, is in force:

�.˛/�1 D
1Y

nD1

 
1 � 1

p˛n

!
:
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Hint. Let N D f1; 2; : : :g be the set of all natural numbers endowed with the
�-algebra (2N) comprised of all possible subsets of the (countable) set N—see the
notation for N.A / at the end of [ P §1.1, 3 ]. Then define a probability measure P
on .N; 2N/ so that, given any A � N, one has

P.A/ D �.˛/�1
X

n2A
n�˛:

Let A.pi / D fpi ; 2pi ; : : :g denote the collection of those numbers n 2 N for
which pi is a factor (i.e., a divisior) of n. Prove that

(a) P.A.pi // D p�˛
i ;

(b) The events A.p1/; A.p2/; : : : are independent;
(c)
T1
iD1 A.pi / D f1g.

Furthermore, argue that, since (b) implies that the events A.p1/; A.p2/; : : : are
also independent, then (c) and (a) imply that

P
	 1\

iD1
A.pi /



D P.f1g/ D Œ�.˛/��1

and, at the same time, that

P
	 1\

iD1
A.pi /



D

1Y

iD1

�
1 � P.A.pi //

� D
1Y

iD1

 
1 � 1

p˛i

!
;

which completes the proof.

Problem 2.3.25. Give a probabilistic proof of Euler’s product formula for Euler’s
totient function '.n/, which, for any n 2 N, gives the total number of positive
integers p that do not exceed n and are also relatively prime to n (i.e., the only
common divisor of n and p is 1); namely, by using probabilistic reasoning, prove
that

'.n/

n
D
Y

p jn

 
1 � 1

p

!
;

where the product is taken over all prime numbers p that divide n (i.e., all prime
numbers p that are factors of n).

Hint. Consider the usual uniform probability distribution P.fkg/ D 1=n, 1 �
k � n on the set f1; : : : ; ng. For a fixed n 2 N, let A.p/ D fk � n W
p is a factor of kg and let p1; p2; : : : denote the (distinct) prime numbers that divide
n. Prove that:

(a) P.A.pi // D p�1
i .

(b) That the events A.p1/; A.p2/; : : : are independent.
(c) That

Q
p jn A.p/ can be identified with the event that k � n is a prime number.
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Then argue that

'.n/

n
D P

	Y

p jn
A.p/



D
Y

p jn
Œ1 � P.A.p//� D

Y

p j n

�
1 � 1

p

�
:

Problem 2.3.26. Prove that the Lebesgue measure on .Rn;B.Rn// is invariant
under translation when n � 1, and invariant under rotation when n � 2.

Problem 2.3.27. In the context of Carathéodory’s theorem, prove by way of
example that the requirement for the system of sets A to be an algebra is essential
for both the existence and the uniqueness of the extension of the probability measure
P, originally defined on A , to a measure defined on the �-algebra F D �.A /.
Specifically:

(a) Construct a sample space ˝ , two systems of subsets of ˝ , E and F , such
that E is not an algebra and F D �.E /, and then construct a probability measure
P, defined on E , which cannot be extended to a probability measure on the �-
algebra F .

(b) Construct a sample space ˝ , two systems of subsets of ˝ , E and F with
F D �.E /, and also two distinct probability measures, P and Q, defined on the
�-algebra F , such that their restrictions to E , i.e., the measures PjE and QjE —see
[ P §2.3, 4 ]—coincide.

Hint. To prove (a), consider the sample space ˝ D f1; 2; 3g, set

E D f¿; f1g; f1; 2g; f1; 3g;˝g;
define F to be the �-algebra of all subsets of ˝ , and, finally, set P.˝/ D
P.f1; 2g/ D P.f1; 3g/ D 1, P.f1g/ D 1=2, P.¿/ D 0.

To prove (b), consider the sample space ˝ D f1; 2; 3; 4g, set

E D ff1; 2g; f1; 3gg;
define F to be the �-algebra of all subsets of ˝ and, finally, define P.f2g/ D
P.f4g/ D 1=2, Q.f2g/ D Q.f3g/ D 1=2.

Problem 2.3.28. Let F D F.x/, x 2 R, be any distribution function. Prove that
for any a � 0 one has

Z

R
ŒF .x C a/ � F.x/� dx D a:

Problem 2.3.29. The density of a given distribution functionF.x/ is defined as any
non-negative and Riemann integrable function f .x/, x 2 R, for which one can write
F.x/ D R x

�1 f .t/ dt , for all x 2 R. Sometimes (say, when integrals are considered
only in the sense of Riemann—not in the sense of Lebesgue) one does not suppose
that the function f .x/ is Borel measurable.



2.3 Methods for Constructing Probability Measures on Measurable Spaces 77

Give an example of a function f .x/ which is not Borel measurable, but
nevertheless represents a probability density (in the sense described above) and
defines a probability measure on the Borel subsets B of the real line R, according to
the formula �.B/ D R1

�1 f .x/IB.x/ dx.
Hint. The collection of all Borel subsets of the interval Œ0; 1� has cardinality c,

i.e., the cardinality of the continuum, while the cardinality of the Lebesgue subsets
of Œ0; 1� is 2c (see Problem 2.2.32). By using this fact conclude that if N denotes the
Cantor set inside the interval Œ0; 1�, then one can find a subset D � Œ1=2; 1� \ N ,
which is not a Borel-measurable set and has a Lebesgue measure 0. Then convince
yourself that the function f .x/ D 2IŒ1=2;1�nD.x/, not being Borel measurable, is
actually Riemann integrable and the integral

R
f .x/IB.x/ dx is well defined and

gives rise to a probability measure on the Borel sets B � Œ0; 1�.

Problem 2.3.30. Find two sets, A and B , inside the real line R, which have
Lebesgue measure equal to 0, and yet have the property A˚ B D R.

Problem 2.3.31. Let A be any �-algebra of subsets of the set ˝ and let F D
�.A /. Let � be any �-finite measure on F . Prove that:

(a) The measure � may not be �-finite on A .
(b) If the measure � is �-finite on A then the analog of the property stated in

Problem 2.3.8 still holds, i.e., for every " > 0 and every B 2 F with �.B/<1
one can find a subset A" 2 A such that �.A" 4B/ < ".

(c) If the measure� is not �-finite on A , then the claim made in b) may be false.

Problem 2.3.32. Prove that a probability measure � defined on .Rd ;B.Rd // is
always regular, in the sense that for any Borel set B 2 B.Rd // one has

�.B/ D inf
U

f�.U / W U � B; U is an open setg;

and �.B/ D sup
F

f�.F / W F � B; F is a closed setg:

In addition, prove that the following relation holds for any Borel set B 2 B.Rd //:

�.B/ D sup
K

f�.K/ W K � B; K is a compact setg:

Problem 2.3.33. (Bertrand’s Paradox.) The well known Bertrand’s Paradox is a
good illustration of the fact that in many probabilistic models (in particular, models
involving geometric probabilities, which the paradox is concerned with) one must
be careful in the formulation of the model and in giving meaning to phrases like
“a randomly chosen point,” “a randomly chosen figure,” etc. (This was already
discussed in Problem 1.1.12.)

The problem, found in Bertrand’s book [7], and its contradicting answers
(whence the term“paradox”), found by using different calculation methods, were
understood to imply that in random experiments with infinitely many outcomes there
are events to which it is impossible to assign probabilities in a meaningful way.
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Bertrand’s problem may be stated as follows: Suppose that a chordAB , with end-
points A and B , is chosen at random on a circle of radius r . What is the probability
that the length jABj of the (random) chord AB is smaller than the radius r?

Consider the following three possible formulations of this problem:
(a) The phrase “the chord AB is chosen at random” is understood to mean that

the points A and B are sampled independently from the uniform distribution on the
circle.

Prove that in this case PafjABj < rg D 1=3. (Fix the point A and consider the
regular hexagon inscribed in the circle so that one of its vertices coinsides with A.)

(b) Every chordAB is uniquely determined by the pointM 2 AB , chosen so that
OM ? AB , O being the center of the circle. The phrase “the chord AB is chosen
at random” is understood to mean that the point M is sampled from the uniform
distribution on the disc (surrounded by the circle).

Prove that in this case PbfjABj < rg D 1=4. (Convince yourself that the event
fjABj < rg is the same as the event that M belongs to the ring surrounded by the
circle of radius r and radius r

p
3=4.)

(c) As the length of the chord AB is determined by its distance to the center of
the circle and not by its position on the circle, one may suppose that AB is parellel
to the horizontal diameter CD, while the random point M 2 AB , defined as the
intersection between AB and the vertical diameter EF (which is perpendicular to
CD) is uniformly distributed on EF .

Prove that in this case

PcfjABj < rg D 1 �
p
3

2
.0:13/:

(One must prove that the event fjABj < rg coincides with the event fjOM j >p
3r=2g, where jOM j is the distance between M and the center,O , of the circle.)

Problem 2.3.34. (Continuation of Problem 2.3.33.) Argue that the situation de-
scribed in Problem 2.3.33 can actually be connected to three different problems.
More specifically, let � D jOM j, where O is the center of the circle and the point
M is defined as in part (b) in the previous problem, and let  denote the angle
between the chord AB and some fixed direction, so that, assuming that r D 1, for a
chord with jABj > 0 one must have 0 < � � 1, 0 �  < 2
 .

Prove that in parts (a), (b) and (c) in the previous problem the joint distribution
of .�; / is given, respectively, by the densities

pa.�; / D 1

2
2
p
1 � �2 ; pb.�; / D �



; pc.�; / D 1

2

:

Consequently, there is no “paradox”, as the phrase “the chord AB is chosen at
random” is given a completely different probabilistic meaning in parts (a), (b)
and (c).
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Problem 2.3.35. Let .X;X ; �/ be the space associated with some measurable
structure .X;X / and some countably additive measure � (see [ P §2.3, Definitions
5 and 6]).

A measurable set A is said to be an atom relative to the measure �, or,
equivalently, a �-atom, if �.A/ > 0 and for every measurable set B one has either
�.A \ B/ D 0 or �.A n B/ D 0. The measure � is said to be atomic, if every
measurable set with a positive �-measure contains an atom.

The measure � is said to be non-atomic if no �-atoms exist.
The measure � is said to be a diffusion measure if every one-point set is a

measurable �-null set.
Give examples of atomic, non-atomic and diffusion measures and also an

example of a measure which is simultaneously an atomic measure and a diffusion
measure.

Prove that the sum of an atomic and a non-atomic measure may be an atomic
measure.

Problem 2.3.36. Let P andeP be any two probability measures on .˝;F / such that
P.A/ D eP.A/, for any A 2 F with P.A/ � 1=2. Prove that when this condition is
satisfied then P.A/ D eP.A/ for every set A 2 F .

2.4 Random Variables I

Problem 2.4.1. Prove that the random variable 	 has a continuous distribution, or,
“	 is continuous” for short, if and only if Pf	 D xg D 0 for any x 2 R.

Problem 2.4.2. Can one claim that if j	j is F -measurable then 	 also must be F -
measurable?

Problem 2.4.3. Prove that xn, xC D max.x; 0/, x� D �min.x; 0/ and jxj D xCC
x� are all Borel functions of x. Prove that the following more general statement:
every continuous function f D f .x/, x 2 R is Borel measurable.

Hint. Given any ˛ 2 R, consider the open set f! 2 R W f .!/ < ˛g and use the
result established in Problem 2.2.7.

Problem 2.4.4. Prove that if 	 and � are F -measurable then

f! W 	.!/ D �.!/g 2 F :

Problem 2.4.5. Let 	 and � be any two random variables on .˝;F / and letA 2 F .
Then the function

�.!/ D 	.!/IA C �.!/IA

also must be a random variable.

Problem 2.4.6. Let 	1; : : : ; 	n be any n � 1 random variables and let '.x1; : : : ; xn/
be any Borel-measurable function. Prove that '.	1.!/; : : : ; 	n.!// is a random
variable.
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Hint. Show first that the map

! Ý .	1.!/; : : : ; 	n.!// 2 Rn

is F=B.Rn/-measurable. Then use the fact that the map ! Ý '.	1.!/; : : : ; 	n.!//

is a composition of measurable maps.

Problem 2.4.7. Let 	 and � be any two random variables with values in the
set f1; : : : ; N g and suppose that F	 D F�. Prove that there is a permutation
.i1; : : : ; iN / of the set .1; : : : ; N / for which one can claim that for any j D 1; : : : ; N

the sets f!W 	 D j g and f!W � D ij g coincide.
Hint. Consider using [ P §2.4, Theorem 3], according to which there are

functions ' and  such that 	 D '.�/ and � D  .	/. Then argue that ij D  .j /

gives the desired permutation.

Problem 2.4.8. Give an example of a random variable 	 that admits a probability
density f .x/ such that limx!1 f .x/ does not exist and, therefore, the function
f .x/ does not vanish at infinity.

Problem 2.4.9. Let 	 and � be any two bounded random variables with j	j � c1,
j�j � c2. Prove that if

E	m�n D E	m � E�n;

for any m; n � 1, then 	 and � must be independent.

Problem 2.4.10. Let 	 and � be any two random variables whose distribution
functions, F	 and F� coincide. Prove that if x 2 R and f!W 	.!/ D xg ¤ ¿,
then there is a real number y 2 R such that f!W 	.!/ D xg D f!W �.!/ D yg.

Problem 2.4.11. Let E be any at most countable subset of R and consider the map
	W˝ 7! E . Prove that 	 is a random variable on .˝;F / if and only if f!W 	.!/ D
xg 2 F for any x 2 E .

Problem 2.4.12. Let 	 be any random variable with the property Pf	 6D 0g > 0.
Suppose that for some a and b the random variables a	 and b	 have one and the
same distribution, i.e., Fa	.x/ D Fb	.x/, x 2 R. Can one claim that this is possible
only if a D b? Does the assumption a � 0 and b � 0 change the answer to the last
question?

Problem 2.4.13. Let .˝;F ;P/ be any probability space and let .˝;F
P
;P/ be

its completion relative to the measure P (see Problem 2.2.34 and Remark 1

in [ P §2.3, 1 ]). Prove that, given any random variable 	 D 	.!/ on .˝;F
P
;P/,

it is always possible to find a random variable 	 D 	.!/, defined on .˝;F ;P/,
for which one can claim that Pf	 6D 	g D 0, i.e., 	 and 	 differ only on a set with
probability 0.

Problem 2.4.14. Let 	 be any random variable and B be any Borel set in R.
Prove that

�.	I.	 2 B// D 	�1.B/ \ �.	/:
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Problem 2.4.15. Let 	1; 	2; : : : be any sequence of independent random variables
every one of which is uniformly distributed in the interval Œ0; 1�. Given any ! 2 ˝ ,
consider the set A.!/ � Œ0; 1� which consists of all values 	1.!/; 	2.!/; : : : . Prove
that for almost every ! 2 ˝ one can claim that the set A.!/ is everywhere dense
in Œ0; 1�.

Problem 2.4.16. Let 	1; 	2; : : : be any sequence of Bernoulli random variables,
such that Pf	k D 1g D Pf	k D �1g D 1=2, k � 1. Consider the random walk
S D .Sn/n�0, defined by S0 D 0 and Sn D 	1 C : : :C 	n, for n � 1.

Let �0 D inffn > 0 W Sn D 0g be the first moment (after n D 0) at
which the random walk returns to 0, with the understanding that �0 D 1 if
fn > 0 W Sn D 0g D ¿.

Prove that

Pf�0 > 2ng D Cn
2n

�1
2

�2n
and Pf�0 D 2ng D 1

2n� 1
Cn
2n

�1
2

�2n
:

By using Stirling’s formula, argue that for large n one has

Pf�0 > 2ng � 1p

n

and Pf�0 D 2ng � 1

2
p

 n3=2

(comp. with the formulas for u2k and f2k given in [ P §1.10]). For example, the above
formulas imply that Pf�0 < 1g D 1 and E�˛0 < 1 if and only if ˛ < 1=2—see
[ P §1.9] for related results.

Problem 2.4.17. In the context of the previous problem, let �k D inffn � 1 W Sn D
kg, k D 1; 2; : : : Prove that

Pf�k D ng D k

n
PfSn D kg

and conclude that

Pf�k D ng D k

n
C

nCk
2

n

�1
2

�n
:

Problem 2.4.18. Let 	 D 	.!/ be any non-degenerate random variable, such that,
with some constants a > 0 and b, the distribution of a	 C b coincides with the
distribution of 	. Prove that this is only possible if a D 1 and b D 0.

Problem 2.4.19. Let 	1 and 	2 be any two exchangeable random variables, i.e., 	1
and 	2 are such that the distribution law of .	1; 	2/ coincides with the distribution
law of .	2; 	1/. Prove that if f D f .x/ and g D g.x/ are any two non-negative and
non-decreasing functions, then

Ef .	1/g.	1/ � Ef .	1/g.	2/:
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Problem 2.4.20. (On [ P §2.4, Theorem 2].) Let 	1; 	2; : : : be any sequence of real-
valued random variables. Prove that

B WD f! W lim 	n.!/ exists and is finiteg 2 F :

Hint. Use the fact that B may be expressed as:

B D flim 	n > �1g \ flim 	n < 1g \ flim 	n � lim 	n D 0g:

Problem 2.4.21. Let 	1; 	2; : : : be any sequence of independent and identically
distributed random variables that share the same continuous distribution function.
Let A1;A2; : : : be any sequence of events, such that A1 D ˝ and

An D f	n > 	m for all m < ng; n � 2;

i.e.,An is the event that a “record” occurs at time n. Prove that the eventsA1;A2; : : :
are independent and that P.An/ D 1=n, n � 1.

Problem 2.4.22. Let 	 and � be any two random variables, such that Law.�/, i.e.,
the distribution law of �, is absolutely continuous (in the sense that the associated
distribution function F� is absolutely continuous). Prove that:

(a) If 	 and � are independent, then Law.	 C �/ is also absolutely continuous.
(b) If 	 and � are not independent, then Law.	 C �/ may not be absolutely

continuous.

Problem 2.4.23. Let 	 and � be any two random variables, such that 	 is discrete
and � is singular, i.e., F	 is a discrete distribution function and F� is a singular
distribution function. Prove that the distribution function F	C�, associated with the
random variable 	 C �, is singular.

Problem 2.4.24. Let .˝;F / be any measurable space, such that the �-algebra F
is (countably) generated by some partition D D fD1;D2; : : :g (see [ P §2.2, 1 ]).
Prove that the �-algebra F can be identified with the �-algebra FX , generated by
the random variable

X.!/ D
1X

nD1

'.IDn.!//

10n
;

where '.0/ D 3 and '.1/ D 5.

Problem 2.4.25. (a) Suppose that the random variableX has a symmetric distribu-
tion, i.e., Law.X/ D Law.�X/. Prove that Law.X/ D Law.	Y /, where 	 and Y
are independent random variables, such that Pf	 D 1g D Pf	 D �1g D 1=2 and
Law.Y / D Law.jX j/.

(b) Suppose that 	 and Y are two independent random variables and that
Pf	 D 1g D Pf	 D �1g D 1=2. Prove that 	 and 	Y are independent if and only if
Y has a symmetric distribution, i.e., Law.Y / D Law.�Y /.
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Problem 2.4.26. Suppose that the random variableX takes only two values, x1 and
x2, x1 6D x2, and that the random variable Y also takes only two values y1 and y2,
y1 6D y2. Prove that if cov.X; Y / D 0 then X and Y must be independent.

Problem 2.4.27. Suppose that 	1; 	2; : : : are independent and identically distributed
random variables, all being uniformly distributed in the interval Œ0; 1�. Given any
0 < x < 1, set

�.x/ D minfn � 1 W 	1 C � � � C 	n > xg:
Prove that Pf�.x/ > ng D xn=nŠ, n � 1.

Problem 2.4.28. Suppose that X1, X2 and X3 are independent and identically
distributed random variables with exponential density f .x/ D e�xI.x > 0/. Define
the random variables

Y1 D X1

X1 CX2
; Y2 D X1 CX2

X1 CX2 CX3
and Y3 D X1 CX2 CX3:

Prove that the above random variables, Y1, Y2 and Y3 are independent.

Problem 2.4.29. Suppose that X1 and X2 are independent random variables,
both having a �2-distribution, respectively, with r1 and r2 degrees of freedom
(see formula [ P §2.8, (34)], or [ P §2.3, Table 3]). Prove that the random variables
Y1 D X1=X2 and Y2 D X1 C X2 are independent (comp. with the statements of
Problems 2.13.34 and 2.13.39).

2.5 Random Elements

Problem 2.5.1. Let 	1; : : : ; 	n be any family of n discrete random variables. Prove
that these random variables are independent if and only if for every choice of the
real numbers x1; : : : ; xn one has

Pf	1 D x1; : : : ; 	n D xng D
nY

iD1
Pf	i D xi g:

Problem 2.5.2. Give a complete proof of the fact that every random function
X.!/ D .	t .!//t2T is a random process in the sense of [ P §2.5, Definition 3]
and vice versa.

Hint. If X D X.!/ is a F=B.RT /-measurable function, then for every t 2 T

and B 2 B.R/ one has

f! W 	t .!/ 2 Bg D f! W X.!/ 2 C g 2 F ; where C D fx 2 RT W xt 2 Bg:

Conversely, it is enough to consider sets C 2 B.RT / of the form fx W xt1 2
B1; : : : ; xtn 2 Bng, B1; : : : ; Bn 2 B.R/, which, obviously, belong to F .
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Problem 2.5.3. Let X1; : : : ; Xn be random elements with values, respectively, in
.E1;E1/; . . . , .En;En/. Furthermore, suppose that .E 0

1;E
0
1/; : : : ; .E

0
n;E

0
n/ are mea-

surable spaces and that g1; : : : ; gn are, respectively, E1=E 0
1; : : : ;En=E

0
n-measurable

functions. Prove that if X1; : : : ; Xn are independent, then the random elements
g1ıX1; : : : ; gnıXn also must be independent, where giıXi D gi .Xi/, i D 1; : : : ; n.

Hint. It is enough to notice that for any Bi 2 Ei , i D 1; : : : ; n, one has

Pfg1.X1/ 2 B1; : : : ; gn.Xn/ 2 Bng D PfX1 2 g�1
1 .B1/; : : : ; Xn 2 g�1

n .Bn/g:

Problem 2.5.4. Let X1;X2; : : : be any infinite sequence of exchangeable random
variables, i.e., the joint distribution of any k elements of the sequence with distinct
indices, say, Xi1; : : : ; Xik , depends on k but not on the choice or the order of
the indices i1; : : : ; ik—comp. with the definition in Problem 2.1.11. Prove that if
EX2

n <1, n � 1, then the covariance of X1 and X2 satisfies cov.X1;X2/ � 0.

Hint. Using the exchangeability, write the variance D
�Pn

iD1 Xi
�

in terms of the

first two moments and the covariances and then take the limit as n ! 1.

Problem 2.5.5. Let 	1; : : : ; 	m and �1; : : : ; �n be any two (arbitrarily chosen) sets
of random variables. Define the vectors X D .	1; : : : ; 	m/ and Y D .�1; : : : ; �n/

and suppose that the following conditions are satisfied:

(i) the random variables 	1; : : : ; 	m are independent;
(ii) the random variables �1; : : : ; �n are independent;

(iii) the random vectorsX and Y , treated as (random) elements of, respectively,
Rm and Rn are independent.

Prove that the random variables 	1; : : : ; 	m; �1; : : : ; �n are independent.

Problem 2.5.6. Consider the random vectors X D .	1; : : : ; 	m/ and Y D
.�1; : : : ; �n/ and suppose that their components 	1; : : : ; 	m; �1; : : : ; �n are
independent.

(a) Prove that the random vectors X and Y , treated as random elements, are
independent (comp. with Problem 2.5.5).

(b) Let f W Rm ! R be gW Rn ! R be two Borel functions. Prove that the random
variables f .	1; : : : ; 	m/ and g.�1; : : : ; �n/ are independent.

Problem 2.5.7. Suppose that .˝;F / is a measurable space and let .E;E ; �/ be
a metric space endowed with metric � and a Borel �-algebra E , associated with
the metric �—see [ P §2.2]. Let X1.!/;X2.!/; : : : be some sequence of F=E -
measurable functions (i.e., random elements), such that for any ! 2 ˝ the limit

X.!/ D lim
n!1Xn.!/

exists. Prove that the limit X.!/, treated as a function of ! 2 ˝ , must be F=E -
measurable.
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Problem 2.5.8. Let 	1; 	2; : : : be any sequence of independent and identically
distributed random variables, let Fn D �.	1; 	2; : : :/, n � 1, and let � be any
stopping time (relative to .Fn/n�1). Set

�n.!/ D 	nC�.!/.!/:

Prove that the sequence .�1; �2; : : :/ has the same distribution as the sequence
.	1; 	2; : : :/.

2.6 The Lebesgue Integral: Expectation

Problem 2.6.1. Prove that the representation in [ P §2.6, (6)] is indeed in force.
Hint. Let S denote the space of simple functions s. If s 2 fs 2 S W s � 	g

and if .	n/n�1 is some sequence of simple random variables such that 	n " 	,
then max.	n; s/ " 	 and Es � E max.	n; s/. From the last inequality one can
conclude that Es � E	 and that supfs2S Ws�	g Es � E	. The opposite inequality
follows directly from the construction of E	.

Problem 2.6.2. Verify the following generalization of property E, described in
[ P §2.6, 3 ]. Suppose that 	 and � are two random variables for which the
expectations E	 and E� are well defined and the expression E	C E� is meaningful,
in the sense that it does not have the form 1 � 1 or the form �1 C 1. Then one
can write

E.	 C �/ D E	 C E�:

Hint. Just as in the proof of property E, one must consider the infinities arrising
from the representations 	 D 	C �	� and � D �C ���. If, for example, E	C D 1,
then, by using the assumptions in the problem, one can prove by contradiction that
E.	 C �/C D 1.

Problem 2.6.3. Generalize property G in [ P §2.6, 3 ] by showing that if 	 D �

(a. e.) and E	 is well defined, then E� also well defined and E� D E	.

Problem 2.6.4. Let 	 be any extended random variable and let � be any �-finite
measure with the property

R
˝

j	j d� < 1. Prove that j	j < 1 (�-a. e.). (Comp.
with Property J.)

Problem 2.6.5. Suppose that � is some �-finite measure and that 	 and � are
extended random variables for which

R
	 d� and

R
� d� are well defined. Prove

that if one can claim that
R
A
	 d� � R

A
� d� for any set A 2 F , then one can also

claim that 	 � � (�-a. e.). (Comp. with property I.)

Problem 2.6.6. Assuming that 	 and � are two independent random variables,
prove that E	� D E	 � E�.
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Hint. Instead of 	 and � consider the simple random variables 	n and �n, chosen
so that 	n " 	 and �n " �. According to [ P §2.6, Theorem 6] one must have
E	n�n D E	nE�n. The proof can be completed by using the monotone convergence
theorem.

Problem 2.6.7. By using Fatou’s lemma prove that

P.limAn/ � lim P.An/; P.limAn/ � lim P.An/:

Problem 2.6.8. Construct an example that proves that, in general, in the dominated
convergence theorem one cannot relax the condition “j	nj � �, E� < 1”.

Hint. Let ˝ D Œ0; 1�, let F D B.Œ0; 1�/, suppose that P is the Lebesgue
measure on Œ0; 1�, and then consider the random variables 	n.!/ D �nI.! � 1=n/,
n � 1.

Problem 2.6.9. By way of example, prove that, in general, in the dominated
convergence theorem one cannot remove the condition “	n � �, E� > �1”.

Problem 2.6.10. Prove the following variant of Fatou’s lemma: if the family of
random variables f	C

n ; n � 1g is uniformly integrable, then

lim E	n � E lim 	n:

Hint. Use the fact that for any " > 0 one can find some c > 0 such that
E	nI.	n > c/ < ", for all n � 1.

Problem 2.6.11. The Dirichlet function is given by

d.x/ D
(
1; x is rational

0; x is irrational
; x 2 Œ0; 1�:

This function is Lebesgue-integrable (on Œ0; 1�), but is not Riemann-integrable.
Why?

Problem 2.6.12. Give an example of a sequence of Riemann-integrable functions
.fn/n�1, which are defined on Œ0; 1� and are such that jfnj � 1, fn ! f Lebesgue-
almost everywhere, and yet the limit f is not Riemann-integrable.

Hint. Consider the function fn.x/ D Pn
iD1 Ifqi g.x/, where fq1; q2; : : : g is the

set of all rational numbers in Œ0; 1�.

Problem 2.6.13. Let faij I i; j � 1g be any sequence of real numbers withP
i;j jaij j < 1. By using Fubini’s theorem, prove that

X

.i;j /

aij D
X

i

�X

j

aij

�
D
X

j

�X

i

aij

�
: .�/
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Hint. Consider an arbitrary sequence of positive numbers p1; p2; : : : withP1
iD1 pi D 1 and define the probability measure P on ˝ D N D f1; 2; : : : g

according to the formula P.A/ D P
i2A pi . Then define the function f .i; j / D

aij
pi pj

, observe that

Z

˝�˝
jf .!1; !2/j d.P � P/ D

X

i;j

jf .i; j /jpipj D
X

i;j

jaij j < 1;

and use Fubini’s theorem.

Problem 2.6.14. Give an example of a sequence .aij I i; j � 1/ for whichP
i;j jaij j D 1, but the second identity in .�/ (Problem 2.6.13) does not hold.
Hint. Consider the sequence

aij D
(
0; i D j

.i � j /�3; i 6D j
:

Problem 2.6.15. Starting with simple functions and using the results concerning
the passage to the limit under the Lebesgue integral, prove the following version of
the change of variables theorem.

Let h D h.y/ be any non-decreasing and continuously differentiable function
defined on the interval Œa; b� and let f .x/ be any integrable (relative to the standard
Lebesgue measure dx) function on the interval Œh.a/; h.b/�. Then the function
f .h.y//h0.y/ is Lebesgue-integrable on the interval Œa; b� and

Z h.b/

h.a/

f .x/ dx D
Z b

a

f .h.y//h0.y/ dy:

Hint. First prove the result for functions f that can be written as finite linear
combinations of indicators of Borel sets. By using the monotone convergence
theorem then extend the result for all non-negative functions f and, finally, prove
the result for arbitrary functions f by using the usual representation f D f C �f �.

Problem 2.6.16. Verify formula [ P §2.6, (70)].
Hint. Consider the random variablee	 D �	, which has a distribution function

eF .x/ D 1 � F..�x/�/, and notice that
R 0

�1 jxjn dF.x/ D R1
0
xn deF .x/. Use

formula [ P §2.6, (69)].

Problem 2.6.17. Let 	; 	1; 	2; : : : be any sequence of non-negative random
variables that converges in probability P to the random variable 	, i.e.,

P.j	n � 	j > "/ ! 0, n ! 1 (notation: 	n
P! 	—see [ P §2.10]).

(a) Generalize [ P §2.6, Theorem 5] by showing that if E	n < 1, n � 1, then the
following claim can be made: E	n ! E	 < 1 if and only if the family f	n; n � 1g
is uniformly integrable; in other words, the statement of Theorem 5 remains valid if
the convergence with probability 1 is replaced by convergence in probability.
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(b) Prove that if all random variables 	; 	1; 	2; : : : are integrable, i.e., E	 < 1
and E	n < 1, n � 1, then

E	n ! E	 H) Ej	n � 	j ! 0:

Hint. (a) The sufficiency follows from [ P §2.6, Theorem 4] and Problem 2.10.1.
The necessity can be established, as in [ P §2.6, Theorem 5], by replacing the
almost everywhere convergence with convergence in probability (one must again
use Problem 2.10.1).

(b) Given any c > 0 one has

Ej	 � 	nj � Ej	 � .	 ^ c/j C Ej.	 ^ c/ � .	n ^ c/j C Ej.	n ^ c/ � 	nj:

By keeping " > 0 fixed and by choosing c > 0 so that Ej	 � .	 ^ c/j < ", one can
claim (due to the assumptions) that Ej.	^c/�.	n^c/j � " and Ej.	n^c/�	nj � 3",
for all sufficiently large n. Consequently, Ej	 � 	nj � 5", for all sufficiently large n.

Problem 2.6.18. Let 	 be any integrable random variable, i.e., Ej	j < 1.
(a) Prove that for any " > 0 one can find some ı > 0 with the property that for

any A 2 F with P.A/ < ı one has EIAj	j < " (absolute continuity property of the
Lebesgue integral).

(b) Conclude from (a) that if .An/n�1 is some sequence of events for which
limn P.An/ D 0, then E.	I.An// ! 0, as n ! 1. Hint. Use Lemma 2 in
[ P §2.6, 5 ].

Remark. Comp. with (b) from [ P §2.6, Theorem 3].

Problem 2.6.19. Suppose that the random variables 	; �; � and 	n; �n; �n, n � 1,

are such that (see the definition of convergence in probability
P! in Problem 2.6.17)

	n
P! 	; �n

P! �; �n
P! �; �n � 	n � �n; n � 1;

E�n ! E�; E�n ! E�;

and the expectations E	;E�;E� are all finite. Prove the following result known as
Pratt’s lemma:

(a) E	n ! E	.
(b) If, in addition, �n � 0 � �n, then Ej	n � 	j ! 0.

Conclude that if 	n
P! 	, Ej	nj ! Ej	j and Ej	j < 1, then Ej	n � 	j ! 0.

Give an example showing that if condition (b) is removed then it is possible that
Ej	n � 	j 6! 0.
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Hint. For the random variables e�n D 0, e	n D 	n � �n, e�n D �n � �n and

e� D 0,e	 D 	 � �,e� D � � �, one has 0 � e�n
P! � and E�n ! E�. According

to part (a) in Problem 2.6.17 the family f�n; n � 1g is uniformly integrable and,
since 0 � e	n � e�n, the family fe	n; n � 1g also must be uniformly integrable.
Consequently, one can claim that Ee	n ! Ee	 (and even that Eje	n�e	j ! 0). Because
of the assumption E�n ! E�, it follows that E	n ! E	.

Problem 2.6.20. Prove thatL�f � L�f and, if the function f is bounded and the
measure � is finite, then L�f D L�f (see Remark 2 in [ P §2.6, 11 ]).

Problem 2.6.21. Prove that for any bounded function f one has Ef D L�f (see
Remark 2 in [ P §2.6, 11 ]).

Problem 2.6.22. Prove the final statement in Remark 2 in [ P §2.6, 11 ].

Problem 2.6.23. Let F D F.x/ be the distribution function of the random
variable X . Prove that:

.a/ EjX j < 1 ”
Z 0

�1
F.x/ dx < 1 and

Z 1

0

.1 � F.x// dx < 1I

.b/ EXC < 1 ”
Z 1

a

ln
1

F.x/
dx < 1 for some a.

Hint. (b) Verify the following inequality

EŒXI.X > a/� �
Z 1

a

ln
1

F.x/
dx � 1

F.a/
EŒXI.x > a/�; a > 0:

Problem 2.6.24. Prove that if p > 0 and limx!1 xpPfj	j > xg D 0, then
Ej	jr < 1 for all r < p. Give an example showing that if r D p then one can
have Ej	jr D 1.

Problem 2.6.25. Give an example of a probability density f .x/, which is not an
even function, but nevertheless all odd moments vanish, i.e.,

R1
�1 xkf .x/ dx D 0,

k D 1; 3; : : : .

Problem 2.6.26. Give an example of a sequence of random variables 	n, n � 1,
that has the following property:

E
1X

nD1
	n ¤

1X

nD1
E	n:

Problem 2.6.27. Suppose that the random variable X is such that for any ˛ > 1

one has

PfjX j > ˛ng
PfjX j > ng ! 0 as n ! 1:

Prove that then X admits finite moments of all orders.
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Hint. Use the formula

EjX jN D N

Z 1

0

xN�1P.jX j > x/ dx; N � 1:

Problem 2.6.28. Let X be any random variable that takes the values k D 0; 1;

2; : : : with probabilities pk . The function G.s/ D EsX (D P1
kD0 pksk), jsj � 1, is

known as the generating function of the random variable X (see Sect. A.3). Verify
the following formulas:

(a) If X is a Poisson random variable, i.e., pk D e���k=kŠ, k D 0; 1; 2; : : : ;, for
some � > 0, then

G.s/ D EeX D e��.1�s/; jsj � 1:

(b) If the random variable X has a geometric distribution, i.e., if pk D pqk ,
k D 0; 1; 2; : : : , for some 0 < p < 1 and q D 1 � p, then

G.s/ D p

1 � sq ; jsj � 1:

(c) If X1; : : : ; Xn are independent and identically distributed random variables
with PfX1 D 1g D p, PfX1 D 0g D p (q D 1 � p), then

G.s/ D .ps C q/n
	

D
nX

kD0
ŒC k
n p

kqn�k�sk



and, consequently, PfX1 C : : :CXn D kg D C k
n p

kqn�k .

Problem 2.6.29. Let X be any random variable that takes values in the set
f0; 1; 2; : : :g and let G.s/ D P1

nD0 pksk , where pk D PfX D kg, k � 0. Assuming
that r � 1, prove that:

(a) If EXr < 1, then the factorial moment E.X/r 	 EX.X�1/ : : : .X�rC1/ is
finite and E.X/r D lims!1 G

.r/.s/ (D G.r/.1/), whereG.r/.s/ is the r-th derivative
of G.s/.

(b) If EXr D 1, then E.X/r D 1 and lims!1 G
.r/ D 1.

Problem 2.6.30. Let X be any random variable which is uniformly distributed in
the set f0; 1; : : : ; ng, i.e., PfX D kg D 1

nC1 , where k D 0; 1; : : : ; n. Prove that

G.s/ D 1
nC1

1�snC1

1�s and, after computing EX and EX2, establish the following
relations:

nX

kD1
k D n.nC 1/

2
;

nX

kD1
k2 D n.nC 1/.nC 2/

6
:
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Problem 2.6.31. (Continuation of Problem 1.1.13.) Consider the (not-necessarily
independent) events A1; : : : ; An, let Xi D IAi , i D 1; : : : ; n, and let ˙n D IA1 C
: : :CIAn . Prove that the generating functionG˙n.s/ D Es˙n is given by the formula:

G˙n.s/ D
nX

mD0
Sm.s � 1/m;

where

Sm D
X

1�i1<:::<im�n
P.Ai1 C : : :CAim/

	
D

X

1�i1<:::<im�n
PfXi1 D 1; : : : ; Xim D 1g




(see Problem 1.1.12). Conclude that the probabilities of the events BmDf˙n D mg
are given by the formula

P.Bm/ D
nX

kDm
.�1/k�mCm

k Sk:

Hint. Use the relations G˙n.s/ D E
Qn
iD1.1CXi.s � 1// and

nY

iD1
.1CXi .s�1// D 1C

mX

iD1
Xi .s�1/C

X

1�i1<i2�n
Xi1Xi2.s�1/2C: : :C

nY

iD1
Xi .s�1/n:

Problem 2.6.32. In addition to the generating functions G.s/, it is often useful
to work with moment generating functions, which are defined as M.s/ D EesX ,
assuming that s is chosen so that EesX < 1. Note that if the random variable X
is non-negative and s D ��, where � � 0, then the function bF .�/ D M.��/
(D Ee��X ) is nothing but the Laplace transform of the random variable X with
c.d.f. F D F.x/.

(a) Prove that if the moment generating function M.s/ is defined for all s in
some neighborhood of the origin (s 2 Œ�a; a�, a > 0), then all derivativesM.k/.s/,
k D 1; 2; : : : , exist at s D 0 and

M.k/.0/ D EXk:

This observation justifies the term “moment generating function” in reference to the
functionM.s/.

(b) Give an example of a random variable for whichM.s/ D 1 for every s > 0.
(c) Prove that if X has a Poisson distribution with � > 0 then M.s/ D e��.1�es /

for all s 2 R.
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(d) Give an example of two random variables, X and Y , which are not
independent and, at the same time, MXCY .s/ D Ees.XCY / is the product of the
moment generating functionsMX.s/ D EesX and MY .s/ D EesY .

Problem 2.6.33. Prove that if 0 < r < 1, Xn 2 Lr and Xn
P�!X , then the

following conditions are equivalent:

(i) The family fjXnjr ; n � 1g is uniformly integrable.
(ii) Xn ! X in Lr .

(iii) EjXnjr ! EjX jr < 1.

Problem 2.6.34. (Spitzer identity.) Let X1;X2; : : : be independent and identically
distributed random variables with EjX1j < 1, and let Sk D X1 C � � � CXk , Mk D
max.0; S1; : : : ; Sk/, k � 1. Prove that, for any n � 1,

EMn D
nX

kD1

1

k
ESC

k ; .�/

where SC
k D max.0; Sk/.

Hint. By using the relations

Mn D I.Sn > 0/Mn C I.Sn � 0/Mn;

EŒI.Sn > 0/Mn� D EŒI.Sn > 0/X1�C EŒI.Sn > 0/Mn�1�

and EŒI.Sn > 0/X1� D n�1ESC
n , one can prove by induction that

EMn D 1

n
ESC

n C EMn�1 D 1

n
ESC

n C


1

n � 1ESC
n�1 C EMn�2

�
D : : : D

D
nX

kD2

1

k
ESC

k C EM1 D
nX

kD1

1

k
ESC

k :

Remark. One can derive .�/ by differentiating in t the more general Spitzer
identity, according to which, for any 0 < u < 1, one has

1X

kD0
ukEeitMk D exp

� 1X

kD1

uk

k
EeitS

C

k

�
:

The proof of the above relation is somewhat more involved than the proof of .�/.
Problem 2.6.35. Let S0 D 0, Sn D X1 C � � � C Xn, n � 1, be a simple random
walk (see [ P §8.8]) and let � D min fn > 0WSn � 0g. Prove that

E min.�; 2m/ D 2EjS2mj D 4mPfS2m D 0g; m � 0:
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Problem 2.6.36. (a) Let 	 be any standard Gaussian random variable (	 �
N .0; 1/). By using integration by parts, prove that E	k D .k � 1/E	k�2, k � 2,
and conclude that, for k � 1,

E	2k�1 D 0 and E	2k D 1 � 3 � � � � � .2k � 3/ � .2k � 1/ .D .2k � 1/ŠŠ/:
(b) Prove that for any random variable X that has Gamma distribution (see

[ P §2.3, Table 3]) with ˇ D 1 one has

EXk D � .k C ˛/

� .˛/
; k � 1:

In particular, EX D ˛, EX2 D ˛.˛ C 1/ and, therefore, DX D ˛. Find an analog
of the above formula when ˇ ¤ 1.

(c) Prove that for any Beta-distributed random variable X (see Table 3 in § 3)
one must have

EXk D B.r C k; s/

B.r; s/
; k � 1:

Problem 2.6.37. Prove that the function

	.!1; !2/ D e�!1!2 � 2e�2!1!2 ; !1 2 ˝1 D Œ1;1/; !2 2 ˝2 D .0; 1�;

has the following properties:
(a) for any fixed !2, 	 is Lebesgue-integrable in the variable !1 2 ˝1;
(b) for any fixed !1, 	 is Lebesgue-integrable in the variable !2 2 ˝2,

and yet Fubini’s theorem does not hold.

Problem 2.6.38. Prove Beppo Levi’s theorem, which claims the following: if the
random variables 	1; 	2; : : : are integrable (i.e., Ej	nj < 1 for all n � 1), if
supn E	n < 1, and if 	n " 	 for some random variable 	, then 	 is integrable
and one has E	n " E	 (comp. with [ P §2.6, Theorem 1a]).

Problem 2.6.39. Prove the following variation of Fatou’s lemma: if 0 � 	n ! 	

(P-a.s.) and E	n � A < 1, n � 1, then 	 must be integrable and E	 � A.

Problem 2.6.40. (On the connection between the Riemann and the Lebesgue
integrals.) Suppose that the Borel function f D f .x/, x 2 R, is integrable with
respect to the Lebesgue measure �, i.e.,

R
R jf .x/j�.dx/ < 1. Prove that for any

" > 0 one can find:
(a) a step function of the form f".x/ D Pn

iD1 fi IAi .x/, the sets Ai being
bounded intervals, such that

R
R jf .x/ � f".x/j�.dx/ < ";

(b) an integrable continuous function g".x/ that has bounded support and is such
that

R
R jf .x/ � g".x/j�.dx/ < ".
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Problem 2.6.41. Prove that if 	 is any integrable random variable then

E	 D
Z 1

0

Pf	 > xg dx �
Z 0

�1
Pf	 < xg dx:

Show also that for any a > 0 one must have

EŒ	 I.	 > a/� D
Z 1

a

Pf	 > xg dx C aPf	 > ag

and that if 	 � 0 then

EŒ	I.	 � a/� D
Z a

0

Pfx < 	 � ag dx:

Problem 2.6.42. Let 	 and � be any two integrable random variables. Prove that

E	 � E� D
Z 1

�1
ŒPf� < x � 	g � Pf	 < x � �g� dx:

Problem 2.6.43. Let 	 be any non-negative random variable (	 � 0) with Laplace
transform bF .�/ D Ee��	 , � � 0.

(a) Prove that for any 0 < r < 1 one has

E	r D r

� .1 � r/

Z 1

0

1 � bF .�/
�rC1

d�:

Hint: use the fact that

1

r
� .1� r/sr D

Z 1

0

1 � e�s�

�rC1
d�;

for any s � 0 and any 0 < r < 1.

(b) Prove that for any r > 0 one has

E	�r D 1

r � .r/

Z 1

0

bF .�1=r / d�:

Hint: use the fact that

s D r

r � .1=r/

Z 1

0

exp f�.�=s/rg d�;

for any s � 0 and any r > 0.
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Problem 2.6.44. (a) Prove that in Hölder’s inequality [ P §2.6, (29)] the identity is
attained if and only if j	jp and j�jq are linearly dependent P-a.e., i.e., one can find
constants a and b, that are not simultaneously null, for which one has P-a.e. aj	jp D
bj�jq.

(b) Prove that in Minkowski’s inequality [ P §2.6, (31)] (with 1 < p < 1) the
identity is attained if and only if one can find two constants, a and b, that are not
simultaneously null, for which one has a	 D b�, P-a.e..

(c) Prove that in Cauchy–Bunyakovsky’s inequality [ P §2.6, (24)] the identity is
attained if and only if 	 and � are linearly dependent P-a.e., i.e., a	 D b�, P-a.e.,
for some constants a and b that are not simultaneously null.

Problem 2.6.45. Suppose that X is a random variable with Pfa � X � bg D 1,
for some choice of a; b 2 R, a < b. Setting m D EX and �2 D DX , prove
that �2 � .m � a/.b � m/, where equality is reached if and only if PfX D agC
PfX D bg D 1.

Problem 2.6.46. Assuming that X is a random variable with EjX j < 1,
prove that:

(a) If X > 0 (P-a.s.) then

E
1

X
� 1

EX
; E lnX � ln EX; E .X lnX/ � EX � ln EX;

where we suppose that 0 � ln 0 D 0.
(b) If X takes values only in the interval Œa; b�, 0 < a < b < 1, then

1 � EX � E
1

X
� .a C b/2

4ab

(when do the equalities in the last relation hold?).
(c) If the random variable X is positive and if EX2 < 1, then the following

lower bound estimate, known as the Paley–Zygmund inequality, holds: for any 0 <
� < 1

PfX > �EXg � .1 � �/2
.EX/2

EX2
:

(d) By using the above inequality, prove that if PfX � ug � c for some u > 0

and c � 0, then for every r > 0 one has

EXr � ur

1 � .cEX2r /1=2=EXr
:

provided that the expression in the denominator is well defined and strictly positive.
(e) Prove that if X is a non-negative integer-valued random variable then

PfX > 0g � .EX/2

EX2
:
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Problem 2.6.47. Suppose that 	 is a random variable with E	 D m and E.	 �
m/2 D �2. Prove Cantelli’s inequalities:

max
�
Pf	 �m > "g;Pf	 �m < "g� � �2

�2 C "2
; " > 0I

Pfj	 �mj � "g � 2�2

�2 C "2
; " > 0:

Problem 2.6.48. Suppose that 	 is some random variable with Ej	j < 1 and let
g D g.x/ be any strictly convex function defined on the real line R. Prove that
Eg.	/ D g.E	/ if and only if 	 D E	 (P-a.s.).

Problem 2.6.49. Let 	 be any integrable random variable, i.e., Ej	j < 1. Prove
that for any " one can find a simple random variables 	" > 0 so that Ej	 � 	"j � ".

Problem 2.6.50. Consider the equation

Zt D B.t/C
Z t

0

Zs�dA.s/

(comp. with equation [ P §2.6, (74)]), where A.t/ and B.t/ are functions with
locally bounded variations, which are right-continuous (for t � 0), admit left
limits (for t > 0) and are such that A.0/ D B.0/ D 0, �A.t/ > �1, where
�A.t/ D A.t/� A.t�/, t > 0, �A.0/ D 0).

Prove that, in the class of all locally bounded functions, the above equation
admits a unique solution Et .A;B/, which, for any t > 0, is given by the formula:

Et .A;B/ D Et�.A/
Z t

0

1

Es�.A/
dB.s/:

Problem 2.6.51. Let V.t/ be any function with locally bounded variation, which is
right-continuous (for t � 0), admits left limits (for t > 0), and satisfies the relation

V.t/ � K C
Z t

0

V .s�/ dA.s/;

with some constant K � 0 and some non-decreasing and right continuous function
A.t/, which admits left limits and has the property A.0/ D 0.

Prove that

V.t/ � KEt .A/; t � 0I
in particular, if A.t/ D R t

0
a.s/ ds, a.s/ � 0, then the function V.t/ satisfies the

Gronwall–Bellman inequality:

V.t/ � K exp

� Z t

0

a.s/ ds

�
; t � 0:
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Problem 2.6.52. The derivation of Hölder’s inequality [ P §2.6, (29)] uses the
inequality

ab � ap

p
C bq

q
;

in which a > 0, b > 0 and p > 1 and q > 1 are such that 1
p

C 1
q

D 1. Prove that

the above inequality is a special case (with h.x/ D xp�1) of Young’s inequality:

ab � H.a/C eH.b/; a > 0; b > 0;

where

H.x/ D
Z x

0

h.y/ dy; eH.x/ D
Z x

0

eh.y/ dy;

and h D h.y/, y 2 RC, is some continuous and strictly increasing function with
h.0/ D 0, limy!1 h.y/ D 1, while eh D eh.y/, y 2 RC, is the inverse of the
function h D h.y/, i.e.,

eh.y/ D infft W h.t/ > yg:
Note that since h D h.y/ is continuous and strictly increasing then one haseh.y/ D
h�1.y/.

Problem 2.6.53. Let X be any random variable. Prove that the following implica-
tions are in force for any a > 0:

EjX ja < 1 ,
1X

nD1
na�1PfjX j � ng < 1:

Problem 2.6.54. Let 	 be any non-negative random variable. Prove that for any
r > 1 one has Z 1

0

E.	 ^ xr/
xr

dx D r

r � 1E	1=r :

In particular,
Z 1

0

E.	 ^ x2/
x2

dx D 2E
p
	:

Problem 2.6.55. Let 	 be any random variable with E	 � 0, 0 < E	2 < 1 and let
" 2 Œ0; 1�. Verify the following “inverse” of the Chebyshev inequality

Pf	 > "E	g � .1 � "/ 2.E	/
2

E	2
:

Problem 2.6.56. Let .˝;F / be any measurable space and define the set function
� D �.B/, B 2 F , so that

�.B/ D
(

jBj; if B is finite;

1 if B is not finite;
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where jBj denotes the cardinality of the set B . Prove that the set function � defined
above is a measure (in the sense of [ P §2.1, Definition 6]). This measure is known
as counting measure. It is �-finite if and only if the set ˝ is at most countable.

Problem 2.6.57. (On the Radon–Nikodym Theorem I.) Let �, � and � be �-
finite measures defined on the measurable space .˝;F / and suppose that the
Radon–Nikodym derivatives d�

d�
and d�

d�
exist. Then show that the Radon–Nikodym

derivative d�
d�

also exists and

d�

d�
D d�

d�

d�

d�
.�-a.e./:

Problem 2.6.58. (On the Radon–Nikodym Theorem II.) Consider the measure
space .˝;F / D .Œ0; 1�;B.Œ0; 1�//, let � be the Lebesgue measure and let � be
any counting measure (as in Problem 2.6.56) on F . Prove that � � �, but, at
the same time, the Radon–Nikodym theorem, which guarantees the existence of the
density d�

d�
, is not valid.

Problem 2.6.59. Let � and � be any two �-finite measures on .˝;F / and let
f D d�

d�
. Prove that if �f! W f D 0g D 0, then the density d�

d�
exists and can

be represented by the function

' D
(
1
f

on the set ff 6D 0g;
c on the set ff D 0g;

where c is some arbitrary constant.

Problem 2.6.60. Prove that the following function on the interval Œ0;1/

f .x/ D
(
1; x D 0;

sin x
x
; x > 0;

is Riemann-integrable (in fact, .R/
R1
0
f .x/ dx D 


2
), but is not Lebesgue

integrable.

Problem 2.6.61. Give an example of a function f D f .x/ defined on Œ0; 1�, which
is bounded and Lebesgue integrable, and yet one cannot find a Riemann integrable
function g D g.x/ which coincides with f D f .x/ Lebesgue-almost everywhere
in Œ0; 1�.

Problem 2.6.62. Give an example of a bounded Borel function f D f .x; y/

defined on R2, which is not Lebesgue-integrable on .R2;B.R2//, but is such that,
for every y 2 R and every x 2 R, one has, respectively,

Z

R
f .x; y/ �.dx/ D 0 and

Z

R
f .x; y/ �.dy/ D 0;

where both integrals are understood to exist in the sense of Lebesgue.
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Problem 2.6.63. (On Fubini’s Theorem I.) Let � D �.dx/ denote the Lebesgue
measure on Œ0; 1� and let � D �.dy/ be any counting measure on Œ0; 1�. Let D
denote the diagonal of the unit square Œ0; 1�2. Prove that

Z

Œ0;1�

 Z

Œ0;1�

ID.x; y/ �.dx/

�
�.dy/ D 0

and Z

Œ0;1�

 Z

Œ0;1�

ID.x; y/ �.dy/

�
�.dx/ D 1:

The above relations show that the property [ P §2.6, (49)], in the conclusion of
the Fubini theorem ([ P §2.6, Theorem 3]), cannot hold without the finiteness
assumption for the measure.

Problem 2.6.64. (On Fubini’s Theorem II.) Prove that Fubini’s theorem remains
valid even if the requirement for the two participating measures to be finite is
replaced with the requirement that these measures are �-finite. Prove that, in
general, the assumption for �-finiteness of the participating measures cannot be
relaxed further (see Problem 2.6.63).

Problem 2.6.65. (Part a) in [ P §2.6, Theorem 10].) Give an example of a
bounded non-Borel function which is Riemann integrable (a reformulation of
Problem 2.3.29).

Problem 2.6.66. Let f D f .x/ be any Borel-measurable function defined on the
measurable structure .Rn;B.Rn//, which is endowed with the Lebesgue measure
� D �.dx/. Assuming that

R
Rn jf .x/j�.dx/ < 1, prove that:

lim
h!0

Z

Rn
jf .x C h/� f .x/j�.dx/ D 0:

Hint. Use part (b) in Problem 2.6.40.

Problem 2.6.67. For any finite number of independent and integrable random
variables 	1; : : : ; 	n one has

E
nY

kD1
	k D

nY

kD1
E	k

(see [ P §2.6, Theorem 6]). Prove that if 	1; 	2; : : : is any sequence of independent
and integrable random variables, then, in general, one has

E
1Y

kD1
	k 6D

1Y

kD1
E	k:
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Problem 2.6.68. Suppose that the random variable 	 is such that E	 < 0 and
Ee	 D 1 for some  6D 0. Prove that this is only possible if  > 0.

Problem 2.6.69. Let h D h.t; x/ be any function defined on the set Œa; b� � R,
where a; b 2 R and a < b.

(a) Suppose that
1. For any fixed xı 2 R the function h.t; xı/, t 2 Œa; b�, is continuous;
2. For any fixed tı 2 Œa; b� the function h.tı; x/, x 2 R, is B.R/-(i.e., Borel)-

measurable,

and prove that when the above conditions are satisfied one can claim that the
function h D h.t; x/, t 2 Œa; b�, x 2 R, is B.Œa; b�/ � B.R/-measurable.

(b) Assume that 	 is a random variable, defined on some probability space, and
that when conditions 1 and 2 above are satisfied, together with the condition

3. The family of random variables fh.t; 	/; t 2 Œa; b�g is uniformly integrable.
Show that:
(i) The expected value Eh.t; 	/ is a continuous function of the variable t 2

Œa; b�.
(ii) If H.t; x/ D R t

a
h.s; x/ ds, then the derivative d

dt
EH.t; 	/ exists for all

t 2 .a; b/ and equals Eh.t; 	/, i.e.,

d

dt
E
Z t

0

h.s; 	/ ds D Eh.t; 	/:

Problem 2.6.70. (On [ P §2.6, Lemma 2].) (a) Let 	 be any random variable with
Ej	j < 1. Prove that for any " > 0 one can find a ı > 0, so that P.A/ < ı, A 2 F ,
implies E.j	jIA/ < ". Conclude that, given any random variable 	 with Ej	j < 1
and any " > 0, one can find a constantK D K."/ so that

E.j	jI j	j > K/ 	 E j	jI.j	j > K/ < ":
(b) Prove that if f	n; n � 1g is a uniformly integrable family of random variables,

then the family
n
1
n

Pn
kD1 	k; n � 1

o
also must be uniformly integrable.

Problem 2.6.71. Prove that Jensen’s inequality [ P §2.6, (25)] remains valid even
when the function g D g.x/, assumed to be convex, is defined not on the entire real
line R, but only on some open set G � R, and the random variable 	 is such that
Pf	 2 Gg D 1 and Ej	j < 1. Prove that a function g D g.x/, which is defined
on an open set G and is convex, must be continuous. Prove that any such function
admits the representation:

g.x/ D supn.anx C bn/; x 2 G;
where an and bn are some appropriate constants.
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Problem 2.6.72. Prove that for any a; b 2 R and any r � 0 one has

jaC bjr � cr .jajr C jbjr /;
where cr D 1 when r � 1 and cr D 2 r�1 when r � 1. The above relation is known
as the cr -inequality.

Problem 2.6.73. Assuming that 	 and � are two non-negative random variables
with the property

Pf	 � xg � x�1EŒ�I.	 � x/�; for every x > 0;

prove that

E	p �
	

p

p � 1


p
E�p; for every p > 1:

Hint. Consider first the case where 	 is bounded, i.e., replace 	 by 	c D 	 ^ c,
c > 0, in which case, according to [ P §2.6, (69)], one must have

E	pc D p

Z c

0

xp�1Pf	 > xg dx:

Then prove the required property for E	pc and pass to the limit as c " 1.

Problem 2.6.74. Prove the following analog of the integration-by-substitution rule
(see Problem 2.6.15 and [ P §2.6, Theorem 7], regarding the change of variables in
the Lebesgue integral).

Let I be any open subset of Rn and let y D '.x/ be any function which is defined
on I and takes values in Rn (if x D .x1; : : : ; xn/ 2 I , then y D .y1; : : : ; yn/ with
yi D 'i .x1; : : : ; xn/, i D 1; : : : ; n). Suppose that all derivatives @'i

@xj
are well defined

and continuous and that jJ'.x/j > 0, x 2 I , where J'.x/ stands for the determinant
of the Jacobian of the function ', i.e.,

J'.x/ D det

����
@'i

@xj
; 1 � i; j � n

����:

As a consequence of the above assumptions, the set '.I / � Rn is open, the function
' admits an inverse h D '�1, and the Jacobian Jh.y/ exists and is continuous on
'.I /, with jJh.y/j > 0, y 2 '.I /.

Prove that for every non-negative or integrable function g D g.x/, x 2 I ,
one has Z

I

g.x/ dx D
Z

'.I /

g.h.y//jJh.y/j dy;

which can be written also as
Z

I

g.x/ dx D
Z

'.I /

g.'�1.y//jJ'�1 .y/j dy;

where all integrals are understood as Lebesgue integrals in Rn.
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Problem 2.6.75. Let F D F.x/ be a cummulative distribution function with
F.0/ D 0 and F.1/ D 1, which is Lipschitz continuous, in that jF.x/ � F.y/j �
Ljx � yj, x; y 2 Œ0; 1�. Letm be the measure on Œ0; 1� given bym.B/ D R

B
dF.x/,

B 2 B.Œ0; 1�/, and let � be the Lebesgue measure on Œ0; 1�.
Prove that m � � and

dm

d�
� L .�-a.e./:

Problem 2.6.76. Suppose that g D g.x/ is some function which is defined on the
interval Œa; b� � R and is convex, i.e., g..1��/xC�y/ � .1��/g.x/C�g.y/ for
any x; y 2 Œa; b� and any 0 � � � 1). Prove that this function must be continuous
on the interval .a; b/ and conclude that it is a Borel function.

Hint. Argue that convexity implies that for every choice of x; y; z 2 Œa; b�,
x <y < z, one has

g.y/ � g.x/

y � x
� g.z/ � g.y/

z � y
:

By using the above relation conclude that g D g.x/ must be continuous on the
interval .a; b/.

Problem 2.6.77. Consider the generating functionG.s/ D P1
kD0 pksk , associated

with the discrete random variable X with PfX D kg D pk, k D 0; 1; 2; : : :,P1
kD0 pk D 1 (see Problem 2.6.28), and let

qk D PfX > kg; rk D PfX � kg; k D 0; 1; 2; : : : :

Prove that the generating functions for the sequences q D .qk/k�0 and r D .rk/k�0
are given, respectively, by

Gq.s/ D 1 �G.s/

1 � s
; jsj < 1; Gr.s/ D G.s/

1 � s
; jsj < 1:

Problem 2.6.78. (On the “probability for ruin”—see [ P §1.9].) Let S0 D x and let
Sn D xC 	1 C : : :C 	n, n � 1, where .	k/k�1 is some sequence of independent and
identically distributed random variables with Pf	k D 1g D p, Pf	k D �1g D q,
p C q D 1, and x is some integer number with 0 � x � A. Consider the stopping
time for the random walk (or for the “game” between two players—see [ P §1.9]),
which is given by

� D inffn � 0 W Sn D 0 or Sn D Ag:
Consider also the probability px.n/ D Pf� D n; Sn D 0g for the stopping to occur
with “ruin” (i.e., fSn D 0g) in the nth-period.

Prove that the generating function Gx.s/ D P1
nD0 px.n/sn satisfies the follow-

ing recursive relation:

Gx.s/ D p s GxC1.s/C q s Gx�1.s/;
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with G0.s/ D 1 and GA.s/ D 0. By using this relation prove the formula

Gx.s/ D
� q
p

�x �A�x
1 .s/ � �A�x

2 .s/

�A1 .s/ � �A2 .s/
;

where

�1.s/ D 1

2ps
f1C

p
1 � 4pqs2g and �2.s/ D 1

2ps
f1�

p
1 � 4pqs2g:

Problem 2.6.79. Consider a lottery with tickets numbered 000000; : : : ; 999999
and suppose that one of these tickets is chosen at random. Find the probability, P21,
that the sum of the six digits on this ticket equals 21.

Hint. Use the methodology based on generating functions, developed
in Sect. A.3 (pp. 372–373). The answer is P21 D 0:04.

Problem 2.6.80. Suppose that 	 is a random variable with unimodal probability
density f .x/ that has maximum at the point x0 (referred to as the mode, or the
peak, of the respective distribution), so that f .x/ is non-decreasing for x < x0 and
is non-increasing for x > x0.

Prove Gauss inequality:

Pfj	 � x0j � "Ej	 � x0j2g � 4

9"2
; for every " > 0 :

Hint. If the function g.y/ does not increase for y > 0, then

"2
Z 1

"

g.y/ dy � 4

9

Z 1

0

y2g.y/ dy; for any " > 0 :

One can conclude from the above inequality that, given any " > 0 and d2 D Ej	 �
x0j2, one has

Pfj	 � x0j � "d g � 4

9

EŒ.	 � x0/=d �2
"2

D 4

9"2
:

Problem 2.6.81. Suppose that the random variables 	1; : : : ; 	n are independent and
identically distributed, with Pf	i > 0g D 1 and D ln 	1 D �2. Given any " > 0,
prove that

Pf	1 : : : 	n � .E ln 	1/nen"g � 1 � �2

n"2
:

Hint. Use Chebyshev’s inequality

PfjYn � EYnj � n"g � 1 � DYn
n2"2

;

with Yn D Pn
iD1 ln 	i .
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Problem 2.6.82. Let P and eP be probability measures on .˝;F /, such that eP is
absolutely continuous with respect to P (eP � P), with density that is bounded by
some constant c � 1:

deP
dP

� c .P-a.s.):

Prove that there is a number ˛ 2 .0; 1� and a probability measure Q for which one
can write

P D ˛eP C .1 � ˛/Q:

Hint. Choose an arbitrary constant C > c and set ˛ D 1=C and

Q.A/ D 1

1 � ˛
Z

A

 
1 � ˛

deP
dP

!
dP:

Problem 2.6.83. Let 	 and � be any two independent random variables with
E	 D 0. Prove that Ej	 � �j � Ej�j.
Problem 2.6.84. Let 	1; 	2; : : : be any sequence of independent and identically
distributed random variables taking values in R D .�1;1/ and set S0 D 0,
Sn D 	1 C : : : C 	n. The so-called “ladder indexes” (a.k.a. “ladder moments”) are
defined by the following recursive rule:

T0 D 0; Tk D inffn > Tk�1 W Sn � STk�1
> 0g; k � 1;

where, as usual, we set inf ¿ D 1. It is clear that

PfT1 D ng D PfS1 � 0; : : : ; Sn�1 � 0; Sn > 0g; for all n � 1:

Prove that the generating function G.s/ D P1
nD1 fnsn for the random variable T1

(with fn D PfT1 D ng) is given by the formula

G.s/ D exp

�
�

1X

nD1

sn

n
PfSn > 0g

�
; jsj < 1:

Problem 2.6.85. With the notation adopted in the previous problem, setting

A D
1X

nD1

1

n
PfSn � 0g; B D

1X

nD1

1

n
PfSn > 0g;

prove that

PfT1 < 1g D
(
1; if B D 1;

1 � e�B; if B < 1:
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Show also that if B D 1, then

ET1 D
(
eA; if A < 1;

1; if A D 1:

Problem 2.6.86. Just as in Problem 2.6.84, let 	1; 	2; : : : be any sequence of
independent and identically distributed random variables with E	1 > 0, set S0 D 0,
Sn D 	 C � � � C 	n, and let

� D inffn �W Sn > 0g:

Prove that E� < 1.

Problem 2.6.87. Let everything be as in Problem 2.6.84, let RN denote the breadth
(span) of the sequence S0; S1; : : : ; SN , i.e., the total number of different values that
can be found in that sequence, and let

�.0/ D inffn > 0 W Sn D 0g

be the moment of the first return to 0.
Prove that for N ! 1 one has

E
RN

N
! Pf�.0/ D 1g:

Note that Pf�.0/ D 1g is the probability for no-return to 0—comp. this result with
Problem 1.9.7.

Remark. According to Problem 8.8.16, in the case of a simple random walk with
Pf	1 D 1g D p and Pf	1 D �1g D q, one must have

E
RN

N
! jp � qj as N ! 1 I

in other words,

E
RN

N
!

8
ˆ̂<

ˆ̂:

p � q; if p > 1=2;

0; if p D 1=2;

q � p; if p < 1=2 :

Problem 2.6.88. Let 	1; 	2; : : : be any sequence of independent random variables
that are uniformly distributed in the interval .0; 1/ and let

� D minfn � 2 W 	n > 	n�1g; �.x/ D minfn � 1 W 	1 C � � � C 	n > xg;
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where 0 < x � 1. Prove that:
(a) Pf�.x/ > ng D xn=nŠ, n � 1;
(b) Law.�/ D Law.�.1//;
(c) E� D E�.1/ D e.
Hint. (a) Consider proof by induction.
(b) One must show that Pf� > ng D Pf	1 > 	2 > � � � > 	ng D 1=nŠ.

2.7 Conditional Probabilities and Conditional Expectations
with Respect to � -algebras

Problem 2.7.1. Suppose that 	 and � are two independent and identically dis-
tributed random variables, such that E	 exists. Prove that

E.	 j 	 C �/ D E.� j 	 C �/ D 	 C �

2
(a. e.):

Hint. Observe that for any A 2 �.	 C �/ one has E	IA D E�IA.

Problem 2.7.2. Suppose that 	1; 	2; : : : are independent and identically distributed
random variables, such that Ej	i j < 1. Prove that

E.	1 jSn; SnC1; : : : / D Sn

n
(a. e.);

where Sn D 	1 C � � � C 	n.
Hint. Use the fact that E	i IA D E	j IA for any A 2 �.Sn; SnC1; : : : /.

Problem 2.7.3. Suppose that the random elements .X; Y / are such that there is
a regular distribution of the form Px.B/ D P.Y 2 B jX D x/. Prove that if
Ejg.X; Y /j < 1, for some appropriate function g, then Px-a. e. one has

EŒg.X; Y / jX D x� D
Z
g.x; y/Px.dy/ :

Hint. By using the definition of a regular conditional distribution and the notion
of “
-�-system” (see [ P §2.2]), prove that for any function g.x; y/ of the formPn

iD1 �iIAi , where Ai 2 B.R2/, the map

x Ý
Z

R
g.x; y/ Px.dy/
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must be B.R/=B.R/-measurable and

Eg.X; Y /IB D
Z

B

	Z

R
g.x; y/ Px.dy/



Q.dx/; for every B 2 B.R/;

where Q stands for the distribution of the random variable X . Prove that these
properties hold for all bounded B.R2/-measurable functions, and then conclude
that they must hold for all g.x; y/ with Ejg.X; Y /j < 1.

Problem 2.7.4. Let 	 be a random variable with (cummulative) distribution func-
tion F	.x/. Prove that

E.	 j a < 	 � b/ D
R b
a
x dF	.x/

F	.b/ � F	.a/
;

where we suppose that F	.b/ � F	.a/ > 0.
Hint. Use the fact that, by the very definition of conditional expectation, if

EŒI.a < 	 � b/� > 0 one can write

E.	 j a < 	 � b/ D EŒ	I.a < 	 � b/�

EŒI.a < 	 � b/�
:

Problem 2.7.5. Let g D g.x/ be any function defined on R which is convex and is
such that Ejg.	/j < 1. Prove that Jensen’s inequality holds P-a. e. for conditional
expected values, namely,

g.E.	 j G // � E.g.	/ j G / .a:e:/:

Hint. First use the fact that for the regular conditional distribution Q.xIB/,
associated with the random variable 	, relative to the �-algebra G one can write

E.g.	/ j G /.!/ D
Z

R
g.x/Q.!I dx/

(see [ P §2.7, Theorem 3]), and then use Jensen’s inequality for standard expected
values.

Problem 2.7.6. Prove that the random variable 	 and the �-algebra G are indepen-
dent (i. e., the random variables 	 and IB.!/ are independent for every choice of
B 2 G ) if and only if E.g.	/ j G / D Eg.	/ for any Borel function g.x/, such that
Ejg.	/j < 1.

Hint. If A 2 G and B 2 B.R/, then, due to the independence between 	 and G ,
we have P.A \ fg.	/ 2 Bg/ D P.A/Pfg.	/ 2 Bg, and, therefore, E.g.	/ j G / D
Eg.	/. Conversely, when the last relation holds, setting g.	/ D I.	 2 B/, one finds
that

P.A \ f	 2 Bg/ D P.A/Pf	 2 Bg:
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The independence between 	 and G follows from the fact that in the last relation
A 2 G and B 2 B.R/ are chosen arbitrarily.

Problem 2.7.7. Suppose that 	 is a non-negative random variable and let G be some
�-algebra, G � F . Prove that E.	 j G / < 1 (a. e.) if and only if the measure Q,
defined on the sets A 2 G by Q.A/ D R

A
	 dP, is �-finite.

Hint. To prove the sufficiency part, set A1 D fE.	 j G / D 1g, An D
fE.	 j G / � ng, and check that Q.An/ � n, which implies that Q is �-finite.

To prove the necessity part, one must conclude from the existence of the sets
A1;A2; : : : 2 G , with

S1
iD1 Ai D ˝ and Q.Ai / < 1, i D 1; : : : ; n, that E.	 j G / <

1 (P-a.s.).

Problem 2.7.8. Prove that the conditional probability P.A jB/ can be claimed to
be “continuous”, in the sense that if limn An D A and limn Bn D B , with P.Bn/ > 0
and P.B/ > 0, then limn P.An jBn/ D P.A jB/.
Problem 2.7.9. Let ˝ D .0; 1/, F D B..0; 1//, and let P denote the Lebesgue
measure. Suppose that X.!/ and Y.!/, ! 2 ˝ , are two independent random
variables that are uniformly distributed on .0; 1/. Consider a third random variable,
Z.!/ D jX.!/ � Y.!/j, which represents the distance between the random points
X.!/ and Y.!/. Prove that the distribution ofZ.!/ admits density fZ.z/ D 2.1�z/,
0 � z � 1, and conclude that EZ D 1=3.

Problem 2.7.10. Two points, A1 and A2, are chosen at random on the circle
f.x; y/Wx2 C y2 � R2g; more specifically, A1 and A2 are sampled independently
and in such a way that (in polar coordinates, Ai D .�i ; i /, i D 1; 2)

P.�i 2 dr; i 2 d/ D r dr d


R2
; i D 1; 2 :

Prove that the random variable �, which represents the distance between A1 and A2,
admits density f�.r/, given by

f�.r/ D 2r


R2


2 arccos

� r
2R

�
� r

R

r
1 �

� r

2R

�2�
;

where 0 < r < 2R.

Problem 2.7.11. The point P D .x; y/ is sampled randomly (clarify!) from the
unit square, i.e., from the square with vertices .0; 0/, .0; 1/, .1; 1/, .1; 0/. Find the
probability that the point P is closer to the point .1; 1/, than to the point .1=2; 1=2/.

Problem 2.7.12. (The “random meeting” problem.) Person A and person B have
agreed to meet between 7:00 p.m. and 8:00 p.m. at a particular location. They have
both forgotten the exact meeting time and choose their respective arrival times
randomly and independently from each other between 7:00 p.m. and 8:00 p.m.,
according to the uniform distribution on the interval Œ7W00; 8W00�. They both have
patience to wait no longer than 10 min. Prove that the probability that A and B will
actually meet equals 11=36.
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Problem 2.7.13. Let X1;X2; : : : be a sequence of independent random variables
and let Sn D Pn

iD1 Xi . Prove that S1 and S3 are conditionally independent relative
to the �-algebra �.S2/, generated by the random variable S2.

Problem 2.7.14. We say that the �-algebras G1 and G2 are conditionally
independent relative to the �-algebra G3 if

P.A1A2 j G3/ D P.A1 j G3/P.A2 j G3/; for all Ai 2 Gi , i D 1; 2.

Prove that the conditional independence of G1 and G2 from G3 is equivalent to
the claim that any of the following conditions holds P-a. e.:

(a) P.A1 j �.G2 [ G3// D P.A1 j G3/, for all A1 2 G1;
(b) P.B j �.G2 [ G3// D P.B j G3/ for all B 2 P1, where P1 is any 
-system

of subsets of G1, such that G1 D �.P1/;
(c) P.B1B2 j �.G2 [ G3// D P.B1 j G3/P.B2 j G3/ for all sets B1 2 P1 and

B2 2 P2, where P1 and P2 are any two 
-systems of subsets of, respectively, G1
and G2, chosen so that G1 D �.P1/ and G2 D �.P2/;

(d) E.X j �.G2 [ G3// D E.X j G3/ for any �.G2 [ G3/-measurable random
variable X , for which the expectation EX exists (see Definition 2 in § 6).

Problem 2.7.15. Prove the following generalization of Fatou’s lemma for condi-
tional expectations (comp. with (d) from [ P §2.7, Theorem 2]).

Let .˝;F ;P/ be any probability space and let .	n/n�1 be any sequence of
random variables, chosen so that the expectations E	n, n � 1, are well defined
and the limit E lim 	n exists (and may equal ˙1—see [ P §2.6, Definition 2]).

Suppose that G is some �-algebra of events inside F chosen so that

sup
n�1

E.	�
n I.	n � a/ j G / ! 0 as a ! 1 .P-a. e./:

Then
E.lim 	n j G / � lim E.	n j G / (P-a. e.).

Problem 2.7.16. Just as in the previous problem, let .	n/n�1 be any sequence of
random variables, chosen so that all expectations E	n, n � 1, exist, and suppose
that G is some �-algebra of events inside F chosen so that

sup
n

lim
k!1 E.j	njI.j	nj � k/ j G / D 0 (P-a. e.). .�/

Prove that if 	n ! 	 (P-a. e.) and the expected value E	 exists, then

E.	n j G / ! E.	 j G / (P-a. e.). .��/

Problem 2.7.17. Let everything be as in the previous problem, but suppose that .�/
is replaced with the condition supn E.j	nj˛ j G / < 1 (P-a. e.), for some ˛ > 1.
Prove that the convergence in .��/ still holds.
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Problem 2.7.18. Prove that if 	n
Lp�! 	, for some p � 1, then

E.	n j G / Lp�! E.	 j G /;

for any sub-�-algebra G � F .

Problem 2.7.19. Let X and Y be any two random variables with EX2 < 1 and
EjY j < 1.

(a) Setting D.X jY / 	 EŒ.X � E.X jY //2 jY �, prove that DX D ED.X jY /C
DE.X jY / (see Problem 1.8.2).

(b) Prove that cov.X; Y / D cov.X;E.Y jX//.
Problem 2.7.20. Is the sufficient statistics T .!/ D s.X1.!//C � � � C s.Xn.!// in
[ P §2.7, Example 5] minimal?

Problem 2.7.21. Prove the factorization identity [ P §2.7, (57)].

Problem 2.7.22. In the context of [ P §2.7, Example 2], prove that E .Xi jT / D
nC1
2n
T , where Xi.!/ D xi for ! D .x1; : : : ; xn/, i D 1; : : : ; n.

Problem 2.7.23. Let .˝;F ;P/ be a probability space, let A, B and C1; : : : ; Cn be
events chosen from the �-algebra F , and suppose that for any i D 1; : : : ; n one has

P.Ci / > 0; P.A jCi/ � P.B jCi/;

and
Sn
iD1 Ci D ˝ . Can one claim that P.A/ � P.B/?

Problem 2.7.24. Let X and Y be any two random variables with EjX j < 1,
EjY j < 1, such that E.X jY / � Y and E.Y jX/ � X (P-a. e.). Prove that X D Y

(P-a. e.).
Hint. Prove that it is enough to consider the case where the inequalities � are

replaced by equalities.
Method I. Consider the function g.u/ D arctan u. Then .X � Y /.g.X/ �

g.Y //� 0 (P-a. e.), and, at the same time, one can show that EŒ.X � Y /.g.X/ �
g.Y //� D 0, from where one can conclude that X D Y (P-a. e.).

Method II. Argue that E XCC1
YCC1 D 1, E YCC1

XCC1 D 1. Then conclude setting Z D
XCC1
YCC1 , show that E.

p
Z � 1p

Z
/2 D 1. Then conclude that PfXC D Y Cg D 1. One

can show, analogously, that PfX� D Y �g D 1.

Method III. Prove that if PfX < Y g > 0 then there is a constant c with the
property PfX � c < Y g > 0. Consider the sets A D fX � cg and B D fY > cg
and argue that
Z

˝

.Y �X/ dP D
Z

A

.Y � X/ dP C
Z

BnA
.Y � X/ dP C

Z

A\B
.Y �X/ dP < 0;

which contradicts to
R
˝.Y �X/ dP D 0.
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Remark. It is not possible to find two random variablesX and Y with EjX j < 1
and EjY j < 1, such that the strict inequalities E.X jY / > Y and E.Y jX/ > X

both hold with probability 1. Indeed, assuming that such random variables exist
would lead to a contradiction: EX D EE.X jY / > EY D EE.Y jX/ > EX .

Problem 2.7.25. Assuming that X is some geometrically distributed random vari-
able with

PfX D kg D p qk�1; k D 1; 2; : : : ; 0 � p � 1; q D 1 � p; .�/

prove that

PfX > nCm jX > ng D PfX > mg; form; n 2 f1; 2; : : :g : .��/
What is the interpretation of the above property?

In addition, prove the converse statement: if a discrete random variable takes
values in the set f1; 2; : : :g and has the property .��/, then it must also have the
property .�/.

(Comp. with Problem 2.7.45.)

Problem 2.7.26. Prove that the random vectors .X; Y / and .eX; Y / share the same

distribution (.X; Y /
dD .eX; Y /), if and only if PfX 2 A jY g D PfeX 2 A jY g

(P-a. e.), for any event A.

Problem 2.7.27. Let X and Y be any two independent Poisson random variables
with parameters, respectively, � > 0 and � > 0. Prove that the conditional
distribution Law.X jX C Y / is binomial, i.e.,

P.X D k jX C Y D n/ D C k
n

	
�

�C �


k	
�

�C �


n�k
; for 0 � k � n:

Problem 2.7.28. Suppose that 	 is a random variable that is uniformly distributed
in the interval Œ�a; b�, with a > 0, b > 0, and, setting G1 D �.j	j/ and G2 D
�.sign 	/, calculate the conditional probabilities P.A j Gi /, i D 1; 2, for the events
A D f	 > 0g and A D f	 � ˛g, where ˛ 2 Œ�a; b�.
Problem 2.7.29. Prove by way of example that the relation E.	 C � j G / D
E.	 j G / C E.� j G / (P-a. e.) does not always hold (comp. with property D�
in [ P §2.7, 4 ]).

Hint. It may happen that the expected value E.	 C � j G / is well defined and
equals zero (P-a. e.), while, at the same time, the sum E.	 j G / C E.� j G / is not
defined.

Problem 2.7.30. In the definition of the conditional probability P.B j G /.!/ (of the
event B 2 F relative to the �-algebra G � F—see Definition 2 in [ P §2.7, 2 ]),
the map P. � j G /.!/ is not required to be a measure on .˝;F / for P-a.e. ! 2 ˝ .
Prove that such a requirement cannot be imposed; namely, construct an example
where the set of all ! 2 ˝ for which P. � j G /.!/ fails to be a measure is not P-
negligible.
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Problem 2.7.31. Give an example of two independent random variables,X and Y ,
and a �-algebra G , chosen so that for some choice of the events A and B one has

P.X 2 A; Y 2 B j G /.!/ 6D P.X 2 A j G /.!/P.Y 2 B j G /.!/;
for all ! inside some set of positive P-measure. In other words, show that
independence does not imply conditional independence.

Problem 2.7.32. If the family of random variables f	ngn�1 is uniformly integrable
and 	n ! 	 (P-a. e.), then E	n ! E	 (see b) in Theorem 4 from [ P §2.6]). At
the same time the P-a. e.convergence of the conditional expectations E.	n j G / !
E.	 j G / can be established (see a) in Theorem 2 from [ P §2.6]) under the
assumption that j	nj � �, E� < 1, n � 1, and 	n ! 	 (P-a. e.).

Give an example showing that if the condition “j	nj � �, E� < 1, n � 1”
is replaced by the condition “the family f	ngn�1 is uniformly integrable,” then
the convergence E.	n j G / ! E.	 j G / (P-a. e.) may not hold. Analogous claim
can be made about condition a) in [ P §2.6, Theorem 4] (i.e., Fatou’s Lemma for
uniformly integrable random variables) in the case of conditional expected values
(see, however, Problems 2.7.15–2.7.17 above).

Problem 2.7.33. Suppose that .˝;F ;P/ is identified with the probability space
.Œ0; 1�;F ; �/, where � is the Lebesgue measure and F is the Borel �-algebra on
Œ0; 1�. Give an example of a sub-�-algebra G � F , chosen so that the Dirichlet
function

d.!/ D
(
1; if ! is irrational;

0; if ! is rational;

is a version of the conditional expectation E.1 j G /.!/. In particular, the conditional
expectation E.	 j G /.!/ of some “smooth” function 	 D 	.!/ (for example,
	.!/	 1) may have a version, which, as a function of !, may be “extremely non-
smooth”.

Problem 2.7.34. If, given a random variable 	, the expected value E	 exists, then,
by property G� in [ P §2.7, 4 ], one can write E.E.	 j �// D E	 for any random
variable �. Give an example of two random variables 	 and �, for which E.E.	 j �//
is well defined, while E	 is not.

Problem 2.7.35. Consider the sample space ˝ D f0; 1; 2; : : :g and suppose that
this space is endowed with a family of Poisson distribution laws P fkg D e� k

kŠ
,

k 2 ˝ , parameterized by  > 0. Prove that it is not possible to construct an
unbiased estimator T D T .!/ for the parameter 1


, i.e., one cannot construct a

random variable T D T .!/, ! 2 ˝ with the property E jT j < 1, for all  > 0,
and ET D 1


, for all  > 0.

Problem 2.7.36. Consider the statistical model .˝;F ;P/, where P D fPg is
some dominated family of probability measures P. Prove that if G � F is some
sufficient �-algebra then any �-algebra bG with G � bG � F is also sufficient.
(Burkholder’s example [18] shows that if the family P is not dominated, then, in
general, this claim cannot be made.)
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Problem 2.7.37. Prove that each of the following structures represents a Borel
space:

(a) .Rn;B.Rn//;
(b) .R1;B.R1//;
(c) any complete separable metric space, i.e., any Polish space.

Problem 2.7.38. Assuming that .E;E / is a Borel space, prove that there is a
countably-generated algebra A , for which one can claim that �.A / D E .

Problem 2.7.39. (On the property K�.) Let � be any G -measurable random
variable, 	 be any F -measurable random variable and suppose that Ej�jq < 1
and Ej	jp < 1, where p > 1 and 1

p
C 1

q
D 1. Prove that E.	� j G / D �E.	 j G /.

Problem 2.7.40. Given some symmetrically distributed random variable X (i.e.,
Law.X/ D Law.�X/), calculate the conditional distribution

P.X � x j �.jX j//.!/; x 2 R;

in terms of the (cumulative) distribution function F.x/, where �.jX j/ stands for the
�-algebra generated by jX j.
Problem 2.7.41. Assuming that A and B are two events with P.A/ D ˛ and
P.B/ D 1 � ˇ, where 0 � ˇ < 1 and ˇ � ˛, prove that

˛ � ˇ

1 � ˇ � P.A jB/:

Problem 2.7.42. Let pk denote the probability that a given family has k children,
and suppose that

p0 D p1 D a .< 1=2/ and pk D .1 � 2a/2�.k�1/; k � 2:

It is assumed that in any given birth the probability for a boy and the probability for
a girl both equal to 1/2.

Assuming that a particular family already has two boys, what is the probability
that:

(a) The family has only two children;
(b) The family also has two girls.
Hint. The solution is a straight-forward application of Bayes’ formula. The two

probabilities are respectively 27=64 and 81=512.

Problem 2.7.43. Suppose that X is some symmetrically distributed random vari-

able
�

i.e., X
dD �X

�
and the function ' D '.x/, x 2 R, is chosen so that

Ej'.X/j < 1. Prove that

EŒ'.X/ j jX j� D 1

2
Œ'.jX j/C '.�jX j/� (P-a. e.):
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Problem 2.7.44. Assuming thatX is some non-negative random variable, calculate
the conditional probabilities

P.X � x j bXc/ and P.X � x j dXe/;
where bXc stands for the largest integer which does not exceed X and dXe stands
for the smallest integer which is greater than or equal to X .

Problem 2.7.45. Assuming that X is some exponentially distributed random vari-
able with parameter � > 0, i.e., PfX > xg D e��x , x � 0, prove that for any two
non-negative real numbers, x and y, one has

P.X > x C y jX > x/ D PfX > yg:
The last relation is often interpreted as the “lack of memory” in the values of X .
Prove that if some extended (i.e., with values in Œ0;1�) random variable X lacks
memory, i.e., has the above property, then only one of the following three cases is
possible: PfX D 0g D 1, or PfX D 1g D 1, or X is exponentially distributed
with some parameter 0 < � < 1.

Hint. Setting f .x/ D PfX > xg, the lack of memory property can be expressed
as f .xCy/ D f .x/f .y/. Consequently, the proof comes down to showing that, in
the class of all right-continuous functions f .�/ with values in the interval Œ0; 1�, the
solution to the equation f .x C y/ D f .x/f .y/ can be either of the form f .x/ 	
0, or of the form f .x/ 	 1, or of the form f .x/ D e��x , for some parameter
0 < � < 1.

Problem 2.7.46. Assuming that the random variables X and Y have finite second
moments, prove that:

(a) cov.X; Y / D cov.X;E.Y jX//;
(b) If E.Y jX/ D 1 then DX � DXY:

2.8 Random Variables II

Problem 2.8.1. Establish the validity of formulas (9), (10), (24), (27), (28) and
(34)–(38) in [ P §2.8].

Problem 2.8.2. Suppose that 	1; : : : ; 	n, n � 2, are independent and identically
distributed random variables with (cumulative) distribution function F.x/ and, if it
exists, density f .x/. Let 	 D max.	1; : : : ; 	n/, 	 D min.	1; : : : ; 	n/ and � D 	 � 	 .
Prove that:

F	;	.y; x/ D
(
.F.y//n � .F.y/ � F.x//n; y > x;

.F.y//n; y � xI
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f	;	.y; x/ D
(
n.n � 1/ŒF.y/ � F.x/�n�2f .x/f .y/; y > x;

0; y � xI

F�.x/ D
8
<

:
n

Z 1

�1
ŒF .y/ � F.y � x/�n�1f .y/ dy; x � 0;

0; x < 0I

f�.x/ D
8
<

:
n.n � 1/

Z 1

�1
ŒF .y/ � F.y � x/�n�2f .y � x/f .y/ dy; x > 0;

0; x < 0:

Problem 2.8.3. Assuming that 	1 and 	2 are two independent Poisson random
variables with parameters, respectively, �1 > 0 and �2 > 0, prove that:

(a) 	1 C 	2 has Poisson distribution with parameter �1 C �2.
(b) The distribution of 	1 � 	2 is given by

Pf	1 � 	2 D kg D e�.�1C�2/
	
�1

�2


k=2
Ik.2

p
�1�2/; k D 0;˙1;˙2; : : : ;

where

Ik.2x/ D xk
1X

rD0

x2r

rŠ � .k C r C 1/

is the modified Bessel function of the first kind and of order k.
Hint. One possible proof of Part (b) is based on the series expansion of the

generating function of the random variable 	1 � 	2—see Sect. A.3.

Problem 2.8.4. Setting m1 D m2 D 0 in formula [ P §2.8, (4)], show that

f	=�.z/ D �1�2
p
1 � �2


.�22 z2 � 2��1�2z C �21 /
:

Problem 2.8.5. The maximal correlation coefficient between the random variables
	 and � is defined as the quantity ��.	; �/ D supu;v � .u.	/; v.�//, where the
supremum is taken over all Borel functions u D u.x/ and v D v.x/, for which the
correlation coefficient � .u.	/; v.�// is meaningful. Prove that the random variables
	 and � are independent if and only if ��.	; �/ D 0—see Problem 2.8.6 below.

Hint. The necessity part of the statement is obvious. To prove the sufficiency part,
given two arbitrarily chosen sets A and B , set u.	/ D IA.	/ and v.�/ D IB.�/ and
show that supu;v �.u.	/; v.�// D 0 implies

Pf	 2 A; � 2 Bg � Pf	 2 AgPf� 2 Bg D �.IA.	/; IB.�// D 0:
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As the sets A and B are arbitrarily chosen, the last relation guarantees that 	 and �
are independent.

Problem 2.8.6. (Continuation of Problem 2.8.5.) Let .˝;F ;P/ be a probability
space, let F1 � F , and F2 � F be any two sub-�-algebras of F , and let
L2.˝;Fi ;P/, i D 1; 2, be the usual spaces of random variables with finite second
moment.

Set
��.F1;F2/ D sup j�.	1; 	2/j;

where �.	1; 	2/ is the correlation coefficient between 	1 and 	2 and the supremum is
taken with respect to all pairs of random variables .	1; 	2/ with 	i 2 L2.˝;Fi ;P/,
i D 1; 2.

(a) Prove that if F1 D �.X1/ and F2 D �.X2/, for some random variables X1
and X2 on .˝;F ;P/, then

��.�.X1/; �.X2// D j�.X1;X2/j:

(b) Let F1 D W
i2I Ai (D S

i2I Ai ) and F2 D W
i2I Bi (D S

i2I Bi ) , where
I is some index set. Assuming that all �-algebras �.Ai ;Bi /, i 2 I , are jointly
independent (�.Ai ;Bi / stands for the �-algebra generated by the sets Ai 2 Ai and
Bi 2 Bi ), prove that

��
	_

i2I
Ai ;

_

i2I
Bi



D sup

i2I
��.Ai ;Bi /:

Problem 2.8.7. Let .˝;F ;P/ be any probability space and let F1 � F and F2 �
F be any two sub-�-algebras of F . Define the following quantities, every one of
which measures the degree of mixing between F1 and F2:

˛.F1;F2/ D sup
˚jP.A \ B/� P.A/P.B/j WA 2 F1; B 2 F2

�I
'.F1;F2/ D sup

˚jP.B jA/� P.B/j WA 2 F1; B 2 F2; P.A/ > 0
�I

 .F1;F2/ D sup

� ˇ̌
ˇ̌ P.A \ B/

P.A/P.B/
� 1

ˇ̌
ˇ̌ WA 2 F1; B 2 F2; P.A/P.B/ > 0

�
:

In addition, let

ˇ.F1;F2/ D sup
1

2

NX

iD1

MX

jD1
jP.Ai \ Bj /� P.Ai /P.Bj /j;

where the supermum is taken over all finite partitions fA1; : : : ; AN g and
fB1; : : : ; BM g, with Ai 2 F1 and Bj 2 F2, 1 � i � N , 1 � j � M and
N � 1, M � 1.
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Verify the following inequalities, in which the quantity ��.F1;F2/ is as defined
in Problem 2.8.6:

˛.F1;F2/ � ˇ.F1;F2/ � '.F1;F2/ �  .F1;F2/;

and

˛.F1;F2/ � ��.F1;F2/ � 2'1=2.F1;F2/;

��.F1;F2/ � 2'1=2.F1;F2/'
1=2.F2;F1/:

Problem 2.8.8. Assuming that �1; : : : ; �k are independent and identically dis-
tributed random variables, all having exponential distribution with density

f .t/ D �e��t ; t � 0;

prove that �1 C � � � C �k is distributed with density

�ktk�1e��t

.k � 1/Š ; t � 0;

and

P.�1 C � � � C �k > t/ D
k�1X

iD0
e��t .�t/i

i Š
:

Problem 2.8.9. Assuming that 	 � N .0; �2/, prove that for every p � 1 one has

Ej	jp D Cp�
p;

where

Cp D 2p=2


1=2
�
�p C 1

2

�

and � .s/ D R1
0
e�xxs�1 dx is Euler’s Gamma function. In particular, for any

integer n � 1 one can write (see Problem 2.6.36)

E	2n D .2n� 1/ŠŠ �2n:

Problem 2.8.10. Prove that if 	 and � are two independent random variables, such
that the distribution of 	C� coincides with the distribution of 	, then � D 0 (P-a. e.).

Hint. Use the fact that if �1; : : : ; �n, n � 1, are independent random variables,
all having the same distribution as �, then, for any n � 1, the distribution of 	 C
�1 C � � � C �n coincides with the distribution of 	.
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If 	 and � admit moments of all orders, then one can use the relationship between
the semi-invariants s.k/	C� and s.k/	 , k � 1 (see [ P §2.12]).

Problem 2.8.11. Suppose that the random point .X; Y / is distributed uniformly in
the unit disk f.x; y/Wx2 C y2 � 1g, let W D X2 C Y 2, and set

U D X

r
�2 lnW

W
; V D Y

r
�2 lnW

W
:

Prove that U and V are independent N .0; 1/-distributed random variables.

Problem 2.8.12. Suppose that U and V are two independent random variables that
are uniformly distributed in the interval .0; 1/, and set

X D p� lnV cos.2
U /; Y D p� lnV sin.2
U /:

Prove that X and Y are independent N .0; 1/-distributed random variables.

Problem 2.8.13. Consider some positive random variable R, which is distributed
according to Rayley law, i.e., has density

fR.r/ D r

�2
exp

�
� r2

2�2

�
; r > 0;

with some �2 > 0, and suppose that the random variable  is uniformly distributed
in the interval .˛; ˛ C 2
k/, where k 2 N D f1; 2; : : :g and ˛ 2 Œ0; 2
/.

Prove that the random variables X D R cos  and Y D R sin  are independent
and distributed with law N .0; �2/.

Problem 2.8.14. Give an example of two Gaussian random variables, 	 and �, for
which 	 C � is not Gaussian.

Problem 2.8.15. LetX1; : : : ; Xn be independent and identically distributed random
variables with density f D f .x/ and let

Rn D max.X1; : : : ; Xn/� min.X1; : : : ; Xn/

denote the “range” of the sample .X1; : : : ; Xn/. Prove that the density of the random
variable Rn is given by

fRn.x/ D n.n � 1/

Z 1

�1
ŒF .y/ � F.y � x/�n�2f .y/f .y � x/ dx; x > 0;

where F.y/ D R y
�1 f .z/ d z. In particular, if X1; : : : ; Xn are uniformly distributed

in the interval Œ0; 1�, then one has

fRn.x/ D
(
n.n � 1/xn�2.1 � x/; 0 � x � 1;

0; x < 0 or x > 1.
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Problem 2.8.16. Let F.x/ be any (cummulative) distribution function. Prove that
for any a > 0 the functions

G1.x/ D 1

a

Z xCa

x

F.u/ du and G2.x/ D 1

2a

Z xCa

x�a
F.u/ du

are also (cummulative) distribution functions.

Problem 2.8.17. Suppose thatX is some exponentially distributed random variable
with parameter � > 0, i.e., X has density fX.x/ D �e��xI.x � 0/.

(a) Find the density of the distribution law of the random variable Y D X1=˛ ,
˛ > 0, which is known as the Weibull distribution.

(b) Find the density of the distribution law of the random variable Y D lnX ,
which is known as the double exponential law.

(c) Prove that the integer part and the fractional part of the random variable
X , i.e., bXc and fXg D X � bXc, are independent random variables. Find the
distribution of bXc and fXg.

Problem 2.8.18. Let X and Y be any two random variables with joint density of
the form f .x; y/ D g.

p
x2 C y2/.

Find the density of the joint distribution of the random variables � D p
X2 C Y 2

and  D tan�1.Y=X/, and prove that � and  are independent.
Setting U D .cos˛/XC .sin ˛/Y and V D .� sin ˛/XC .cos˛/Y , ˛ 2 Œ0; 2
�,

prove that the joint density U and V coincides with f .x; y/. (This property reflects
the fact that the distribution of the vector .X; Y / is invariant under rotation in R2.)

Problem 2.8.19. LetX1; : : : ; Xn be independent and identically distributed random
variables with continuous (cummulative) distribution function F D F.x/. As this
assumption implies PfXi D Xj g D 0, i 6D j (see Problem 2.8.76 below), it follows
that

PfXi D Xj for some i 6D j g D P
[

i<j

fXi D Xj g
�

�
X

i<j

PfXi D Xj g D 0:

Consequently, one can claim that with probability 1 the numbersX1.!/; : : : ; Xn.!/
can be arranged (and in a unique way) in a strictly increasing sequence. The ele-
ments of this sequence, which we denote byX.n/

1 .!/; : : : ; X
.n/
n .!/, are well-defined

random variables that are commonly referred to as order statistics—see also
[ P §3.13] and Problem 1.12.8. Thus, with probability 1 we have

X
.n/
1 .!/ < � � � < X.n/

n .!/

and

X
.n/
1 .!/ D min.X1.!/; : : : ; Xn.!//; : : : ; X.n/

n .!/ D max.X1.!/; : : : ; Xn.!//:
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In addition, we will suppose that the distribution F D F.x/ admits density f D
f .x/.

Prove that:
(a) The density of X.n/

k is given by

nf .x/C k�1
n�1 ŒF .x/�k�1Œ1 � F.x/�n�k :

(b) The joint density, f .n/.x1; : : : ; xn/, of X.n/
1 ; : : : ; X

.n/
n is given by

f .n/.x1; : : : ; xn/ D
(
nŠ f .x1/ : : : f .xn/; if x1 < � � � < xn,

0 in all other cases.

(c) If f .x/ D IŒ0;1�.x/ (i.e., if the random variables Xi are distributed uniformly
in Œ0; 1�), then

EX.n/
r D r

nC 1
and cov.X.n/

r ; X.n/
p / D r.n � p C 1/

.nC 1/2.nC 2/
; r � p:

Problem 2.8.20. Let 	1; : : : ; 	n be independent and identically distributed random
variables with normal distribution N .m; �2/. The quantities 	 and s2, given by

	 D 1

n

nX

iD1
	i and s2 D 1

n � 1

nX

iD1
.	i � 	/2; n > 1;

are known, respectively, as sample mean and sample variance (for the sample
	1; : : : ; 	n).

Prove that:
(a) Es2 D �2.
(b) The sample mean 	 and the sample variance s2 are independent.
(c) 	 has normal N .m; �2=n/-distribution, while .n � 1/s2=�2 has �2-

distribution with .n � 1/ degrees of freedom.

Problem 2.8.21. Suppose that X1; : : : ; Xn are independent and identically dis-
tributed random variables, let � be any random variable with values in the set
f1; : : : ; ng, which is independent from X1; : : : ; Xn, and set S� D X1 C � � � C X� .
Prove that

DS� D DX1E� C .EX1/2D�;
DS�
ES�

D DX1
EX1

C EX1
D�
E�
:

Problem 2.8.22. Let M.s/ D EesX be the moment generating function for the
random variables X (see Problem 2.6.32). Prove that PfX � 0g � M.s/ for
any s > 0.
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Problem 2.8.23. Let X;X1; : : : ; Xn be independent and identically distributed
random variables and set Sn D Pn

iD1 Xi , S0 D 0, Mn D max0�j�n Sj and

M D supn�0 Sn. Prove that (“	
dD �” means that the distribution laws of 	 and

� coincide):

(a) Mn
dD .Mn�1 CX/C, n � 1.

(b) If Sn ! 1 (P-a. e.), then M
dD .M CX/C.

(c) If �1 < EX < 0 nd EX2 < 1, then

EM D DX � D.S CX/�

�2EX :

Problem 2.8.24. Let everything be as in the previous problem and let M."/ D
supn�0.Sn � n"/, for " > 0. Prove that lim"#0 "M."/ D .DX/=2.

Problem 2.8.25. Suppose that 	 and � are two independent random variables with
densities f	.x/, x 2 R, and f�.y/ D IŒ0;1�.y/, y 2 R (i.e., � is distributed uniformly
in Œ0; 1�). Prove that in this special case formulas [ P §2.8, (36) and (37)] can be
written as

f	�.z/ D
8
<

:

Z 1

z

f	.x/ dx

x
; z � 0;

0; z < 0;

and

f	=�.z/ D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Z 1

0

xf	.zx/ dx; 0 � z � 1;

1

z2

Z 1

0

xf	.x/ dx; z > 1;

0; z < 0:

In particular, prove that if 	 is also uniformly distributed in Œ0; 1�, then

f	=�.z/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1

2
; 0 � z � 1;

1

2z2
; z > 1;

0; z < 0:

Problem 2.8.26. Let 	 and � be two independent random variables that are
exponentially distributed with the same parameter � > 0.

(a) Prove that the random variable 	

	C� is distributed uniformly in Œ0; 1�.
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(b) Prove that if 	 and � are two independent and exponentially distributed
random variables with parameters, respectively, �1 nd �2, �1 6D �2, then the density
of 	 C � is given by

f	C�.z/ D e�z=�1 � e�z=�2

�1 � �2
I.0;1/.z/:

Problem 2.8.27. Suppose that 	 and � are two independent standard normal (i.e.,
N .0; 1/) random variables and prove that:

(a) Both 	=� and 	=j�j have Cauchy distribution with density 1

.1Cx2/ , x 2 R.

(b) j	j=j�j has density 2

.1Cx2/ , x � 0.

Problem 2.8.28. Let X1; : : : ; Xn be independent and exponentially distributed
random variables with parameters, respectively, �1; : : : ; �n, and suppose that �i 6D
�j , i 6D j . Setting Tn D X1 C : : : C Xn, prove that the probability PfTn > tg can
be expressed in the form

PfTn > tg D
nX

iD1
aine

��i t

and find the coefficients ain, i D 1; : : : ; n. (Comp. with Problem 2.8.8.)

Problem 2.8.29. Let 	1; 	2; : : : be any sequence of random variables with E	n D 0,
E	2n D 1 and let Sn D 	1 C : : :C 	n. Prove that for any positive a and b one has

PfSn � a nC b for some n � 1g � 1

1C a b
:

Problem 2.8.30. Suppose that the random variable 	 takes values in the finite set
fx1; : : : ; xkg. Prove that

lim
n!1.E	

n/1=n D max.x1; : : : ; xk/:

Problem 2.8.31. Suppose that 	 and � are two independent random variables that
take values in the set f1; 2; : : :g and are such that either E	 < 1, or E� < 1. Prove
that

E min.	; �/ D
1X

kD1
Pf	 � kgPf� � kg:

Problem 2.8.32. Let 	1 and 	2 be any two independent and exponentially dis-
tributed random variables with parameters, respectively, �1 and �2. Find the
distribution functions of the random variables 	1

	1C	2 and 	1C	2
	1

.
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Problem 2.8.33. Let X and Y be two random matrices and suppose that EY Y �
is invertible. Prove the following matrix version of the Cauchy-Bunyakovsky
inequality:

.EXY �/.EY Y �/�1.EYX�/ � EXX�;

where the relation � is understood as the difference between the right and the left
side being non-negative definite.

Problem 2.8.34. (L. Shepp.) Suppose that X is a Bernoulli random variable with
PfX D 1g D p, PfX D 0g D 1 � p.

(a) Prove that one can find a random variable Y which is independent from X

and is such that X C Y has symmetric distribution (X C Y
dD �.X C Y /).

(b) Among all random variables Y that have the above property, find the one that
has the smallest variance DY .

Problem 2.8.35. Suppose that the random variable U is uniformly distributed in
the interval .0; 1/. Prove that:

(a) Given any � > 0, � 1
�

lnU is exponentially distributed with parameter �.
(b) tan
.U � 1

2
/ is distributed according to the Cauchy law with density 1


.1Cx2/ ,
x 2 R.

(c) bnU c C 1 is distributed uniformly in the (discrete) set f1; 2; : : : ; ng.

(d) Given any 0 < q < 1, the random variable X D 1 C
j

lnU
ln q

k
has geometric

distribution with PfX D kg D qk�1.1 � q/, k � 1.

Problem 2.8.36. Give an example of a sequence of independent and identically
distributed random variables fX1;X2; : : :g with supn EXp

n < 1, for all p > 0, but
such that

P
n

sup
j

Xnj < 1
o

D 0

for any sub-sequence fn1; n2; : : :g.

Problem 2.8.37. Let 	 and � be any two independent random variables with (cum-
mulative) distribution functions F D F.x/ and G D G.x/. Since Pfmax.	; �/ �
xg D Pf	 � xgPf� � xg, it is easy to see that the distribution function of max.	; �/
is nothing but F.x/G.x/. Give an alternative proof of the last claim by identifying
the event fmax.	; �/ � xg with the union of the events f	 � x; 	 � �g and
f� � x; 	 < �g, and by expressing the probabilities of these events in terms of
the conditional probabilities (in the final stage use formula (68) from § 6).

Problem 2.8.38. Suppose that 	 and � are two independent random variables
whose product 	 � is distributed with Poisson law of parameter � > 0. Prove that
one of the variables 	 and � takes values in the set f0; 1g.
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Problem 2.8.39. Prove that, given a standard normal, i.e., N .0; 1/, random
variable 	, one has the following asymptotic result (see Problem 1.6.9):

Pf	 � xg � '.x/

x
; as x ! 1; where '.x/ D 1p

2

e�x2=2

What is the analog of this result for a random variable � which has gamma-
distribution (see [ P §2.3, Table 3])?

Problem 2.8.40. Let 	 be any random variable and let Ma be the collection of all
medians of 	, as defined in part (a) of Problem 1.4.23. This object is meaningful
for arbitrary random variables (Problem 1.4.23 refers to discrete random variables).
Prove that for any b 2 R and any p � 1 with Ej	jp < 1, one must have

j� � bjp � 2Ej	 � bjp;

where � D �.	/ 2 Ma is a median for 	. In particular, if Ej	j2 < 1, then j� �
E	j � p

2D	.)

Problem 2.8.41. Suppose that 	 and � are two independent random variables with
finite second moments. Prove that the random variables 	 C � and 	 � � are
uncorrelated if and only if D	 D D�.

Problem 2.8.42. Given any two L1-functions, f and g, their convolution, f � g,
is defined as f � g D R

R
f .y/g.x � y/ dy. Prove Young’s inequality:

Z

R
j.f � g/.x/j dx �

Z

R
jf .x/j dx �

Z

R
jg.x/j dx:

Problem 2.8.43. According to formula [ P §2.8, (22)] the density, f�.y/, of the
random variable � D '.	/ can be connected with the density, f	.x/, of the random
variable 	 by the relation

f�.y/ D f	.h.y//
ˇ̌
h0.y/

ˇ̌
;

where h.y/ D '�1.y/.
Suppose that I is some open subset of Rn and that y D '.x/ is some Rn-valued

function defined on I (for x D .x1; : : : ; xn/ 2 I and y D .y1; : : : ; yn/ 2 Rn, the
relation y D '.x/ is understood as yi D 'i .x1; : : : ; xn/, i D 1; : : : ; n). Suppose
that all derivatives @'i

@xj
exist and are continuous and that jJ'.x/j > 0, x 2 I , where

J'.x/ stands for the determinant of the Jacobian of ', i.e.,

J'.x/ D det

����
@'i

@xj
; 1 � i; j � n

����:
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Prove that if 	 D .	1; : : : ; 	n/ is some I -valued random vector with density f	.x/
and if � D '.	/, then the density f�.y/ is well defined on the set '.I / D fy W y D
'.x/; x 2 I g and can be written as

f�.y/ D f	.h.y//jJh.y/j;

where h D '�1 is the inverse of the function ' (we have jJh.y/j > 0, as long as
jJ'.x/j > 0).

Hint. Use the multivariate analog of the integration-by-substitution rule (Prob-
lem 2.6.74), with g.x/ D G.'.x//f	.x/, for some appropriate functionG.

Problem 2.8.44. Let � D A	 CB , where: 	 D .	1; : : : ; 	n/, � D .�1; : : : ; �n/, A is
an n � n-matrix with j detAj > 0, and B is an n-dimensional vector. Prove that

f�.y/ D 1

j detAj f	.A
�1.y � B//:

Hint. Use the result established in Problem 2.8.43 with '.x/ D Ax C B and
prove that jJ'�1 .y/j D 1=j detAj.
Problem 2.8.45. (a) Let �.	; �/ be the correlation coefficient between two given
random variables, 	 and �. Prove that

�.c1	 C c2; c3�C c4/ D �.	; �/ � sign.c1c3/;

where sign x D 1 for x > 0, signx D 0 for x D 0 and signx D �1 for x < 0.
(b) Consider the random variables 	1; 	2; 	3; 	4 with correlation coefficients

�.	i ; 	j /, i 6D j , and prove that

�.	1 C 	2; 	3 C 	4/ D Œ�.	1; 	3/C �.	1; 	4/�C Œ�.	2; 	3/C �.	2; 	4/�:

Problem 2.8.46. Let X D .X1; : : : ; Xn/ be any Gaussian random vector whose
components are independent and identically distributed with Xi � N .0; �2/, i D
1; : : : ; n. Consider the spherical coordinates, fR;˚1; : : : ; ˚n�1g, of the vector X D
.X1; : : : ; Xn/; in other words, suppose that

X1 D R sin˚1;

Xm D R sin˚m cos˚m�1 : : : cos˚1; 2 � m � n � 1;
Xn D R cos˚n�1 cos˚n�2 : : : cos˚1;

where R � 0, ˚i 2 Œ0; 2
/, 1 � i � n � 1. Prove that, for r � 0, 'i 2 Œ0; 2
/, i D
1; : : : ; n � 1, n � 2, the joint density, f .r; '1; : : : ; 'n�1/, of the random variables
.R;˚1; : : : ; ˚n�1/ is given by



126 2 Mathematical Foundations of Probability Theory

f .r; '1; : : : ; 'n�1/ D
rn�1 exp

�
� r2

2�2

�

.2
/n=2�n
cosn�2 '1 cosn�3 '2 : : : cos'n�2;

where we set by convention '0 D 0.

Problem 2.8.47. Suppose that X is a random variable with values in the interval
Œ0; 1� and such that the distribution of X is given by the Cantor function (see § 3).
Compute all moments EXn, n � 1.

Problem 2.8.48. (a) Verify that each of the following functions is a (cummulative)
distribution function:

FG.x/ D exp.�e�x/; x 2 RI

FF.x/ D
(
0; x < 0;

exp.�x�˛/; x � 0;
where ˛ > 0I

FW.x/ D
(

exp.�jxj˛/; x < 0;

1; x � 0;
where ˛ > 0:

These functions are known, respectively, as the Gumbel’s distribution, or double
exponential distribution; comp. with Problem 2.8.17 (FG.x/), Fréchet distribution
.FF.x//, and Weibull distribution .FW.x//.

These distributions are special cases of the following three types (everywhere
below we suppose that � 2 R, � > 0, and ˛ > 0):

Type 1 (Gumbel-type distributions):

FG.x/ D exp
n

� e� .x��/2

�

o
:

Type 2 (Fréchet-type distribution):

FF.x/ D

8
<̂

:̂

0; x < �;

exp

�
�
	
.x � �/2

�


˛�
; x > �:

Type 3 (Weibull-type distribution):

FW.x/ D

8
<̂

:̂
exp

�
�
	
.x � �/2

�


˛�
; x � �;

1; x > �:

(b) Prove that if X has Type 2 distribution, then the random variable

Y D ln.X � �/
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has Type 1 distribution. Similarly, if X has Type 3 distribution, then

Y D � ln.� � X/

also must have Type 1 distribution.

Remark. This explains why Type 1 distributions, which are often referred to as
extreme value distributions, are fundamental in the “extreme value theory”.

Problem 2.8.49. (Factorial moments.) Given some random variableX , its factorial
moments are defined as

m.r/ D EX.X � 1/ : : : .X � r C 1/; r D 1; 2; : : : ;

i.e., m.r/ D E.X/r .
If X has Poisson distribution law of parameter �, then for r D 3 one has

m.3/ D�. Calculate m.r/ for an arbitrary r .

Problem 2.8.50. Suppose that 1 and 2 are two independent random variables that
are distributed uniformly in Œ0; 2
/, and let X1 D cos 1 and X2 D cos 2.

Prove that
1

2
.X1 CX2/

lawD X1X2

(recall that “
lawD ,” or “

dD,” means “identical in law”).

Problem 2.8.51. The random variable  is distributed uniformly in the interval
Œ0; 2
/ and the random variable C is distributed in the real line R according to
the Cauchy law with density 1


.1Cx2/ , x 2 R.

(a) Prove that the random variables cos2  and 1=.1 C C2/ share the same

distribution law (i.e., cos2 
lawD 1=.1C C2/).

(b) Prove that cot 
2

lawD C .
(c) Find the densities of the distribution laws of the random variables sin.C'/,

' 2 R, and ˛ tan  , ˛ > 0.

Problem 2.8.52. Let 	 be any exponentially distributed random variable with
Pf	 � tg D e�t , t � 0, and let N be any standard normal random variable (i.e.,
N � N .0; 1/), which is independent from 	. Prove that

	
lawD p

2	 jN j;
i.e., the distribution law of 	 coincides with the distribution law of

p
2	 jN j.

Problem 2.8.53. Suppose that X is a random variable that takes values in the set
f0; 1; : : : ; N g and has binomial moments b0; b1; : : : ; bN , given by bk D C k

X D
1
kŠ

E.X/k 	 1
kŠ

EX.X � 1/ : : : .X � k C 1/—see Sect. A.3.
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Prove that the moment generating function of X is given by

GX.s/ D EsX D
NX

kD0
bk.s � 1/k D

NX

nD0
sn
	 NX

kDn
.�1/k�nCn

k bk



;

and that, consequently, for any n D 0; 1; : : : ; N , one has

PfX D ng D
NX

kDn
.�1/k�nCn

k bk:

Problem 2.8.54. Suppose that X and Y are two independent random variables that
are distributed uniformly in the interval Œ0; 1�. Prove that the random variable

Z D
(
X C Y; 0 � X C Y � 1;

.X C Y /� 1; 1 < X C Y � 2;

is also uniformly distributed in Œ0; 1�.

Problem 2.8.55. Suppose that X1; : : : ; Xn are independent and identically dis-
tributed random variables that take the values 0, 1 and 2 with probability 1=3 each.
Find a general formula for the probabilities

Pn.k/ D PfX1 C � � � CXn D kg; 0 � k � 2n

(for example, Pn.0/ D 3�n, Pn.1/ D n3�n, Pn.2/ D C 2
nC1 3�n, Pn.5/ D .C 5

nC4 �
nC 2

nC1 / � 3�n, and so on).

Problem 2.8.56. The random variables 	 and � are such that E	2 < 1 and E�2 <
1. Prove that:

(a) D.	 ˙ �/ D D	 C D�˙ 2 cov.	; �/;
(b) If, in addition, 	 and � are independent, then

D.	�/ D D	 � D�C D	 � .E�/2 C D� � .E	/2:

(See Problem 2.8.69.)

Problem 2.8.57. The joint density, f .x; y/, for the pair of random variables
.X; Y /, is said to be “spherically symmetric” if it can be expressed as

f .x; y/ D g.x2 C y2/ ;

for some choice of the probability density function g D g.z/, z � 0. Assuming that
R and  represent the polar coordinates of .X; Y /, i.e., X D R cos  , Y D R sin  ,
prove that  is uniformly distributed in Œ0; 2
/, while R is distributed with density
h.r/ D 2
rg.r2/.
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Problem 2.8.58. Given a pair of random variables, .X; Y /, with density f .x; y/,
consider the complex random variables

Zt D Zeit ; t 2 R; where Z D X C iY:

Prove that in order to claim that the distribution law of Zt does not depend on t 2 R
it is necessary to assume that f .x; y/ has the form f .x; y/ D g.x2 C y2/, where,
just as in the previous problem, g is some probability density function.

Problem 2.8.59. Let 	 and � be any two independent and exponentially distributed
random variables with density f .x/ D �e��x , x > 0. Prove that the random
variables 	 C � and 	

�
are independent.

Problem 2.8.60. Suppose that 	 and � are two independent random variables with
densities

f	.x/ D 1




1p
1 � x2

; jxj < 1; and f�.y/ D y

�2
e

� y2

2�2 ; y > 0; � > 0:

Prove that the random variable 	 � is normally, N .0; �2/-distributed.

Problem 2.8.61. Consider the random matrix k	ij k of size n � n, whose (random)
entries are such that Pf	ij D ˙1g D 1=2. Prove that the expected value and the
variance of the determinant of this random matrix are equal, respectively, to 0 and nŠ.

Problem 2.8.62. Suppose that X1;X2; : : : are independent random variables that
are distributed uniformly in the interval Œ0; 1�. Prove that

E
nX

kD1
X2
k

 nX

kD1
Xk

��1
! 2

3
as n ! 1:

Problem 2.8.63. Suppose that the random vector X D .X1;X2;X3/ is distributed
uniformly in the tetrahedron

˙3 D f.x1; x2; x3/ W x1 � 0, x2 � 0, x3 � 0 x1 C x2 C x3 � cg;
where c > 0 is some fixed constant. Find the marginal distributions of the random
vector X D .X1;X2;X3/, associated with the componentsX1 and .X1;X2/.

Hint. The density, f .x1; x2; x3/, of the vector X D .X1;X2;X3/ is equal to the
constant V �1, where V D c3=6 is the volume of ˙3. With this observation in mind,
prove that the density of .X1;X2/ is given by f .x1; x2/ D 6.c � x1 � x2/=c and
then calculate the density of X1.

Problem 2.8.64. Let X1; : : : ; Xn be positive, independent and identically dis-
tributed random variables with EX1 D �, EX�1

1 D r and Sm D X1 C � � � C Xn,
1 � m � n. Prove that:

(a) ES�1
n � r ;

(b) EXiS�1
n D 1=n, i D 1; : : : ; n;
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(c) ESmS�1
n D m=n, if m � n;

(d) ESnS�1
m D 1C .n �m/ES�1

m , if m < n.

Problem 2.8.65. (Dirichlet distribution.) In [ P §2.3, Table 3] the beta-distribution,
with parameters ˛ > 0 and ˇ > 0, is defined as a probability distribution on Œ0; 1�
with density

f .xI˛; ˇ/ D x˛�1.1� x/ˇ�1

B.˛; ˇ/
;

where

B.˛; ˇ/ D
Z 1

0

x˛�1.1 � x/ˇ�1 dx
	

D � .˛ C ˇ/

� .˛/� .ˇ/
; with � .˛/ D

Z 1

0

x˛�1e�x dx


:

The Dirichlet distribution, is a multivariate analog of the beta-distribution and is
defined as the probability distribution on the set

�k�1 D f.x1; : : : ; xk�1/ W xi � 0; 0 � x1 C : : : xk�1 � 1g; for k � 2 ;

given by the density

f .x1; : : : ; xk�1I˛1; : : : ; ˛k�1; ˛k/ D

D � .˛1 C : : :C ˛k/

� .˛1/ : : : � .˛k/
x
˛1�1
1 : : : x

˛k�1
k�1 .1 � .x1 C : : :C xk�1//˛k�1;

where ˛i > 0, i D 1; : : : ; k, are given parameters. Alternatively, the Dirichlet
distribution can be defined on the simplex f.x1; : : : ; xk/ W xi � 0;

Pk
iD1 xi D 1g by

specifying the “density”

ef .x1; : : : ; xk I˛1; : : : ; ˛k�1; ˛k/ D � .˛1 C : : :C ˛k/

� .˛1/ : : : � .˛k/
x
˛1
1 : : : x

˛k
k

(the quotation marks around the word “density” are simply a reference to the
fact that the function ef .x1; : : : ; xk I˛1; : : : ; ˛k�1; ˛k/ does not represent a density
relative to the Lebesgue measure in Rk).

Suppose that all component of the random vector X D .X1; : : : ; Xk/ are non-
negative, i.e., Xi � 0, and are such that the sum X1 C � � � C Xk D 1 has
Dirichlet distribution with density f .x1; : : : ; xk�1I˛1; : : : ; ˛k�1; ˛k/ on �k�1 (in
the sense that this function represents the joint density of the first k�1 components,
X1; : : : ; Xk�1, of the vector .X1; : : : ; Xk/, after eliminating the last component,Xk ,
from the relation Xk D 1 � .X1 C : : :CXk�1/).
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(a) Prove that

EXj D ˛j
Pk

iD1 ˛i
; DXj D

˛j

�Pk
iD1 ˛i � ˛j

�

�Pk
iD1 ˛i

�2�Pk
iD1 ˛i C 1

� ;

cov.Xj1 ; Xj2/ D � ˛j1˛j2�Pk
iD1 ˛i

�2�Pk
iD1 ˛i C 1

� ; j1 6D j2:

(b) Prove that for every choice of non-negative integer numbers, r1; : : : ; rk, one
can write

EXr1
1 : : : X

rk
k D

�
�Pk

iD1 ˛i
� Qk

iD1 � .˛i C ri /

Qk
iD1 � .˛i / �

�Pk
iD1.˛i C ri /

� :

(c) Find the conditional density, fXk jX1;:::;Xk�1
.xk j x1; : : : ; xk�1/, of the random

variablesXk , given X1; : : : ; Xk�1.

Problem 2.8.66. The concentration function of a random variable X is defined as

Q.X I l/ D sup
x2R

Pfx < X � x C lg; l � 0:

Prove that:
(a) If X and Y are two independent random variables, then

Q.X C Y I l/ � min.Q.X I l/;Q.Y I l//; for all l � 0:

(b) There is a number x�
l , for which one can write Q.X I l/ D Pfx�

l < X �
x�
l C lg, and the distribution function of X can be claimed to be continuous if and

only if Q.X I 0/ D 0.
Hint. (a) If FX and FY stand for the distribution functions of X and Y , then

Pfz < X C Y � z C lg D
Z 1

�1
ŒFX .z C l � y/� FX.z � y/� dFY.y/:

Problem 2.8.67. Suppose that 	 � N .m; �2/, i.e., 	 has normal distribution with
parameters m and �2, and consider the random variable � D e	 , which has log-
normal distribution with density (see formula [ P §2.8, (23)])

f�.y/ D
8
<

:

1p
2
 �y

exp
h
� .m�ln y/2

2�2

i
; y > 0;

0; y � 0:
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Given any ˛ 2 Œ�1; 1� define the function

f .˛/.y/ D
(
f�.y/

˚
1 � ˛ sinŒ
��2.m � lny/�

�
; y > 0;

0; y � 0:

(a) Prove that f .˛/.y/ is a probability density function, i.e., f .˛/.y/ � 0 andR1
0
f .˛/.y/ dy D 1.

(b) Suppose that � is some random variable with density f�.y/ D f .˛/.y/, ˛ 6D
0, and prove that � and � have identical moments of all orders: E�n D E�n, n � 1.
(This shows that the log-normal distribution admits moments of all orders, and yet
this distribution is not uniquely determined by its moments.)

Problem 2.8.68. Let .	n/n�0 be any sequence of independent, identically, and
symmetrically distributed random variables, and, given any n � 1, let S0 D 0

and Sn D 	1 C : : : C 	n. Define the respective sequences of partial maximums and
partial minimums,M D .Mn/n�0 andm D .mn/n�0, given by

Mn D max.S0; S1; : : : ; Sn/ and mn D min.S0; S1; : : : ; Sn/:

As a generalization of Problem 1.10.7, prove that for any fixed n one has

.Mn � Sn; Sn �mn; Sn/
lawD .�mn;Mn; Sn/

lawD .Mn;�mn; Sn/;

i.e., the joint distribution laws of the above triplets of random variables coincide.
Hint. Use the following relation, which is easy to verify:

.Sn � Sn�kI k � n/
lawD .SkI k � n/ for any n � 1 :

Problem 2.8.69. The random variables 	 and � are such that D	 < 1 and D�<1.
Prove that

cov2.	; �/ � D	 D�

and explain when does the identity in this relation hold.

Problem 2.8.70. Let 	1; : : : ; 	n be independent and identically distributed random
variables. Prove that

Pfmin.	1; : : : ; 	n/ D 	1g D n�1:

Show also that the random variables min.	1; : : : ; 	n/ and If	1Dmin.	1;:::;	n/g are
independent.
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Problem 2.8.71. Let X be any random variable with distribution function F D
F.x/ and let C be any constant. Find the distribution functions for the following
random variables:

X _ C 	 max.X; C /; X ^ C 	 min.X; C /; XC D
(
X; if jX j � C ,

0; if jX j > C .

Problem 2.8.72. Let X be any random variable, let � > 0 and let '.x/ D x

1C x
.

Prove the following inequalities:

E
�
'.jX j�/� '.x�/

� � PfjX j � xg � E'.jX j�/
'.x�/

:

Problem 2.8.73. Let 	 and � be two independent random variables that have
gamma-distribution with parameters, respectively, .˛1; ˇ/ and .˛2; ˇ/ (see [ P §2.3,
Table 3]). Prove that:

(a) The random variables 	 C � and
	

	 C �
are independent.

(b) The random variable
	

	 C �
has beta distribution with parameters .˛1; ˛2/

(see also [ P §2.3, Table 3]).

Problem 2.8.74. (Bernoulli Scheme with random probability for success.) Suppose
that the random variables 	1; : : : ; 	n and 
 are chosen so that 
 is uniformly
distributed in .0; 1/, 	i , i D 1; : : : ; n, take values 1 and 0 with conditional
probabilities

P.	i D 1 j
 D p/ D p; P.	i D 0 j
 D p/ D 1 � p;

and, furthermore, are conditionally independent, in the sense that (in what follows
xi , stands for a number that is either 0 or 1, for i D 1; : : : ; n)

P.	1 D x1; : : : ; 	n D xn j
/ D P.	1 D x1 j
/ : : :P.	n D xn j
/:

Prove that:
(a) One has the identity

Pf	1 D x1; : : : ; 	n D xng D 1

.nC 1/C x
n

;

where x D x1 C : : :C xn.
(b) The random variable Sn D 	1 C : : : C 	n is uniformly distributed in the

(discrete) set f0; 1; : : : ; ng.
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(c) The conditional distributions P.
 � p j 	1 D x1; : : : ; 	n D xn/ and P.
 �
p jSn D x1 C : : :C xn/ coincide, for any p 2 .0; 1/.

(d) The conditional distribution P.
 � p jSn D x/, where x D x1 C : : : C xn,
has density

f
jSn.p j x/ D .nC 1/C x
n p

x.1 � p/n�x;

and one has E.
 jSn D x/ D x C 1

nC 2
.

Problem 2.8.75. Let 	 and � be two non-negative, independent and identically
distributed random variables with Pf	 D 0g < 1, and suppose that min.	; �/ and
	=2 have the same distribution. Prove that 	 and �must be exponentially distributed.

Hint. Consider the relation

.Pf	 > xg/2 D Pfmin.	; �/ > xg D Pf	 > 2xg;

and conclude that .Pf	 > xg/2n D Pf	 > 2nxg. Then conclude that for every
a > 0 and for every non-negative rational x one has Pf	 > xg D e��x=a, where
� D � ln Pf	 > ag. Finally, conclude that Pf	 > xg D e��x=a, for all x � 0.

Problem 2.8.76. Let 	 and � be two independent and identically distributed random
variables with distribution function F D F.x/. Prove that

Pf	 D �g D
X

x2R

jF.x/ � F.x�/j2:

(Comp. with Problem 2.12.20.)

Problem 2.8.77. Consider the random variables X1; : : : ; Xn and prove the follow-
ing “inclusion–exclusion” formula (for the maximum of several random variables—
comp. with Problems 1.1.12 and 1.4.9):

max.X1; : : : ; Xn/ D
nX

iD1
Xi �

X

1�i1<i2�n
min.Xi1; Xi2/

C
X

1�i1<i2<i3�n
min.Xi1 ; Xi2 ; Xi3/C : : :C .�1/nC1 min.X1; : : : ; Xn/:

By choosing the random variables X1; : : : ; Xn accordingly, prove the “inclusion–
exclusion” formula for the probability P.A1 [ : : :[An/ (see again Problems 1.1.12
and 1.4.9).

Problem 2.8.78. Let 	1; 	2; : : : be any sequence of independent and identically
distributed Bernoulli random variables with Pf	1 D 1g D Pf	1 D �1g D 1=2

and let zn.!/ D 1

2

Pn
kD1

	k.!/

3k
and z1.!/ D limn!1 zn.!/. Prove that the

distribution function F.x/ D Pfz1.!/ � xg is the Cantor function (see [ P §2.3]).
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In particular, this means that Law.z1/ refers to a probability distribution concen-
trated on the Cantor set. The random variables z1 D z1.!/ is an example of what is
known as fractal random variable (its distribution is neither discrete nor absolutely
continuous—see Problem 2.3.18).

Problem 2.8.79. Prove that in the binomial case (see [ P §1.2, 1 ] and [ P §2.3,
Table 2]) the distribution function

Bn.mIp/ 	
mX

kD0
C k
n p

kqn�k; 0 � m � n;

can be expressed in terms of the (incomplete) beta-function:

Bn.mIp/ D 1

B.mC 1; n �m/

Z 1

p

xm.1 � x/n�m�1 dx;

where

B.p; q/ D
Z 1

0

xp�1.1 � x/q�1 dx
	

D � .p/� .q/

� .p C q/
; with � .p/ D

Z 1

0

xp�1e�x dx


:

Problem 2.8.80. Prove that the Poisson distribution function F.mI�/ DPm
kD0 e

���k

kŠ
, m D 0; 1; 2; : : :, can be expressed in terms of the (incomplete)

gamma-function as

F.mI�/ D 1

mŠ

Z 1

�

xme�x dx:

Problem 2.8.81. In addition to the mean and the variance, another important
characteristics of the shape of the density f D f .x/ are the “skewness” parameter,
given by

˛3 D �3

�3
;

and the “kurtosis” or “peakedness” parameter, given by

˛4 D �4

�4
;

where �k D R
.x � �/kf .x/ dx, � D R

xf .x/ dx, and �2 D �2.
What are the values of the parameters ˛3 and ˛4 for the distributions listed in

[ P §2.3, Table 3]?
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Problem 2.8.82. Suppose that X is some binomial random variable with parame-
ters n and p (see Table 2 in [ P §2.3, 1 ]). Analogously to Problem 2.8.81), define
the “skewness” parameter

skw.X/ D ˛3

	
D E.X � EX/3

.DX/3=2



;

and prove that (with q D 1 � p)

skw.X/ D q � pp
npq

:

(If 0 < p < 1=2, then skw.X/ > 0, in which case one says that the distribution
has “long right tail”.) Find also the value of the “kurtosis” parameter kur.X/ D ˛4

(D E.X�EX/4

.DX/2 ).

Problem 2.8.83. Suppose that 	1; : : : ; 	n are independent and identically dis-
tributed random variables with “skewness” parameter ˛3 (D skw.	1/) and with
“kurtosis” parameter ˛4 (D kur.	1/). Prove that

skw.	1 C : : :C 	n/ D n�1=2skw.	1/

and
kur.	1 C : : :C 	n/ D 3C n�1fkur.	1/� 3g:

Problem 2.8.84. The well known binomial distribution arises as the distribution
law of the total number of “successes,” �, in n independent trials, with probability
for success in each individual trial 0 � p � 1. More precisely, this distribution
can be identified with the collection of probabilities Pnf� D rg D C r

n p
rqn�r ,

r D 0; : : : ; n, for some fixed integer n and fixed 0 � p � 1. The negative binomial
distribution Prf� D kg (a.k.a. the Pascal distribution) arises as the probability
distribution of the trial, � , during which r-“successes” are observed for the first
time. Prove that, for any r D 1; 2; : : : and any k � r , one has

Pr .� D k/ D C r�1
k�1 prqk�r ; k D r; r C 1; : : : ;

where p is the probability for success in a single trial. The negative binomial
distribution can be identified with the collection of all probabilities Prf� D kg,
k D r; r C 1; : : : , for fixed r . Given any fixed r , prove that Er � D rq=p, where
q D 1 � p.

Problem 2.8.85. The (discrete) random variable 	, with values in the set f1; 2; : : :g,
is said to have a discrete Pareto law with parameter � > 0, if

Pf	 D kg D c

k�C1 :
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Prove that

c D 1

�.�C 1/
and E	 D �.�/

�.�C 1/
;

where �.s/ D P1
nD1 1

ns
stands for Riemann’s zeta function (for a description of the

continuous Pareto law see Problem 3.6.23).

Problem 2.8.86. Let 	1; : : : ; 	n be independent and identically distributed random
variables with distribution function F.x j /, which depends on some (random)
parameter  , with prior distribution ˘./, known to be in some class K . Let
˘. j x1; : : : ; xn/ be the posterior distribution, calculated from the Bayes formula,
where x1; : : : ; xn are the observed values of 	1; : : : ; 	n. If the posterior distribution
also belongs to the class K , we say that the distribution ˘./ is the K -conjugate
of the distribution F.x j /.

Prove that:
(a) If F.� j / � N .; a�1

0 / and ˘./ � N .m0; b
�1
0 /, then

˘. j x1; : : : ; xn/ � N

	
b0m0 C a0.x1 C : : :C xn/

b0 C na0
;

1

b0 C na0



:

(b) If F.� j / � N .0; �1/ and ˘./ � � .kI�/ 	 gamma-distribution with
density

�.kI�/.x/ D �kxk�1e��x

� .k/
IŒ0;1/.x/;

where k > 0 and � > 0, then

˘. j x1; : : : ; xn/ � �

 
k C 1

2
nI�C 1

2
.x21 C : : :C x2n/

!
:

(c) If F.� j / � exp./ 	 exponential distribution with parameter  , and
˘./ � � .kI�/, then

˘. j x1; : : : ; xn/ � � .k C nI�C .x1 C : : :C xn//:

(d) If F.� j / � Poisson./ and ˘./ � � .kI�/, then

˘. j x1; : : : ; xn/ � � .k C .x1 C : : :C xn/I�C n/:

(e) If F.� j / � Bernoulli./ and ˘./ � B.kIL/ 	 beta-distribution with
density

ˇ.kIL/.x/ D xk�1.1 � x/L�1

B.kIL/ I.0;1/.x/;

then

˘. j x1; : : : ; xn/ � B.k C .x1 C : : :C xn/ILC n � .x1 C : : :C xn//:
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Problem 2.8.87. Suppose that X is a random variable with one of the following
distributions: binomial, Poisson, geometric, negative-binomial, or Pareto. Find the
probability of the event fX is eveng. If, for example, X has geometric distribution
with parameter p (see [ P §2.3, Table 2]), then PfX is eveng D .1 � p/=.2 � p/.

Problem 2.8.88. (Exponentially distributed random variables.) Let 	1; : : : ; 	n be
independent and exponentially distributed random variables with parameters, re-
spectively, �1; : : : ; �n.

(a) Prove that Pf	1 < 	2g D �1=.�1 C �2/.
(b) Prove that min1�k�n 	k has exponential distribution with parameter � DPn
kD1 �k and conclude from part (a) that

P
n
	j D min

1�k�n 	k
o

D �j

. nX

kD1
�k:

(c) Assuming that �i 6D �j , i 6D j , find the density of the random variable
	1 C � � � C 	n (for the case n D 2, see Problem 2.8.26).

(d) Prove that E min.	1; 	2/ D 1=.�1 C �2/ and find E max.	1; 	2/.
(e) Find the distribution density of the random variable 	1 � 	2.
(f) Prove that the random variables min.	1; 	2/ and 	1 � 	2 are independent.

2.9 Construction of Stochastic Processes with a Given
System of Finite-Dimensional Distributions

Problem 2.9.1. Let ˝ D Œ0; 1�, let F be the class of Borel sets in Œ0; 1�, and let
P stand for the Lebesgue measure on Œ0; 1�. Prove that .˝;F ;P/ is a universal
probability space, in the sense that, given any distribution functions F.x/, one can
construct on .˝;F ;P/ a random variable 	 D 	.!/, ! 2 ˝ , whose distribution
function, F	.x/ D Pf	 � xg, coincides with F.x/.

Hint. Set 	.!/ D F�1.!/, where F �1.!/ D supfxWF.x/ < !g, 0 < ! < 1,
(	.0/ and 	.1/ may be chosen arbitrarily).

Problem 2.9.2. Verify the consistency of the families of probability distributions
described in the corollaries to [ P §2.9, Theorems 1 and 2].

Problem 2.9.3. Prove that Corollary 2 to [ P §2.9, Theorem 2] can be derived from
[ P §2.9, Theorem 1].

Hint. Show that the measures defined in [ P §2.9, (16)] form a consistent family
of (finite-dimensional) distributions.

Problem 2.9.4. Consider the random variables Tn, n � 1, from [ P §2.9, 4 ] and
let Fn, n � 1, denote their respective distribution functions. Prove that FnC1.t/ DR t
0
Fn.t � s/ dF.s/, n � 1, where F1 D F .
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Problem 2.9.5. Prove that PfNt D ng D Fn.t/ � FnC1.t/ (see [ P §2.9, (17)]).

Problem 2.9.6. Prove that the renewal function m.t/ from [ P §2.9, 4 ] satisfies
what is known as the recovery equation:

m.t/ D F.t/C
Z t

0

m.t � x/ dF.x/: .�/

Problem 2.9.7. Prove that the function defined by formula [ P §2.9, (20)] is the
only solution to equation .�/, within the class of functions that are bounded on
every finite interval.

Problem 2.9.8. Let T be an arbitrary set.
(a) Suppose that for every t 2 T there is a probability space .˝t ;Ft ;Pt /, and let

˝ D Q
t2T ˝t and F D ˝t2TFt . Prove, that there is a unique probability measure

P, defined on the .˝;F /, for which the following independence property holds:

P

 
Y

t2T
Bt

!
D
Y

t2T
P.Bt /;

where Bt 2 Ft , t 2 T , and Bt D ˝t for all but finitely many indices t 2 T .
Hint. Define P on the some appropriate algebra and use the argument of the

proof of the Ionescu-Tulcea Theorem.

(b) Suppose that for every t 2 T there is a measurable space .Et ;Et / and a
probability measure Pt defined on that space. Prove the following result, which is
due to Łomnicki and Ulam: there is a probability space .˝;F ;P/ and independent
random elements .Xt /t2T , such that eachXt is F=Et -measurable and PfXt 2 Bg D
Pt .B/, B 2 Et .

2.10 Various Types of Convergence of Sequences
of Random Variables

Problem 2.10.1. By using [ P §2.10, Theorem 5] prove that in [ P §2.6, Theo-
rems 3 and 4] one can replace “convergence almost surely” with “convergence in
probability”.

Hint. If 	n
P! 	, j	nj � �, E� < 1, and Ej	n � 	j 6! 0, then one can find

some " > 0 and a sub-sequence .nk/k�1, such that Ej	nk � 	j > " and 	nk
P! 	.

Furthermore, according to [ P §2.10, Theorem 5], one can find such a sub-sequence
.kl /l�1, that 	nkl 6! 	 (P-a. e.). The next step is to use [ P §2.6, Theorem 3] to find
a contradiction to the assumption Ej	n � 	j 6! 0.
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Problem 2.10.2. Prove that the space L1 is complete.
Hint. Take a sequence .	k/k�1, which is fundamental in L1, in the sense that

k	m � 	nkL1 � an, for n � m, with an ! 0 as n ! 1, and set

	.!/ D
8
<

:
limn 	n.!/; if limn 	n.!/ < 1;

0; if limn 	n.!/ D 1:

Prove that, as defined above, 	.!/ is a well defined random variable and, further-
more, k	 � 	nkL1 � an ! 0 as n ! 1.

Problem 2.10.3. Prove that if 	n
P�!	 and, at the same time, 	n

P�!�, then 	 and � are
equivalent, in the sense that Pf	 ¤ �g D 0.

Problem 2.10.4. Let 	n
P�!	 and �n

P�!� and suppose that the random variables 	 and
� are equivalent. Prove that for any " > 0 one has

Pfj	n � �nj � "g ! 0 as n ! 1:

Problem 2.10.5. Let 	n
P�!	 and �n

P�!�. Prove that if ' D '.x; y/ is some

continuous function, then '.	n; �n/
P�!'.	; �/. (Slutsky’s lemma.)

Hint. Given some " > 0, choose c > 0 so that

Pfj	nj > cg < "; Pfj�nj > cg < "; n � 1;

Pfj	j > cg < "; Pfj�j > cg < ":

As the function ' D '.x; y/ is continuous, it must be uniformly continuous on
the compact Œ�c; c� � Œ�c; c�. Therefore one can find some ı > 0 so that for any
x; y 2 Œ�c; c� with �.x; y/ < ı, one has j'.x/ � '.y/j � " (�.x; y/ D max.jx1 �
y1j; jx2 � y2j/, x D .x1; x2/, y D .y1; y2/). Finally, consider the estimate

Pfj'.	n; �n/� '.	; �/j > "g � Pfj	nj > cg C Pfj�nj > cg
C Pfj	j > cg C Pfj�j > cg C Pfj	n � 	j > ıg C Pfj�n � �j > ıg;

and prove that for large n the right side does not exceed 6".

Problem 2.10.6. Let .	n � 	/2
P�! 0. Prove that 	2n

P�! 	2.

Problem 2.10.7. Prove that if 	n
d! C , where C is some constant, then the

convergence must hold also in probability; in other words

	n
d! C H) 	n

P�!C:
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Hint. For a given " > 0, consider the function f".x/ D .1 � jx�cj
"
/C and notice

that
Pfj	n � cj � "g � Ef".	n/ ! Ef".c/ D 1:

Problem 2.10.8. Let the sequence .	n/n�1 be such that
P1

nD1 Ej	njp < 1, for
some p > 0. Prove that 	n ! 0 (P-a. e.).

Hint. Use Chebyshev’s inequality and the Borel-Cantelli lemma.

Problem 2.10.9. Let .	n/n�1 be a sequence of identically distributed random
variables. Prove the following implications:

Ej	1j < 1 ”
1X

nD1
Pfj	1j > "ng < 1; " > 0 ”

”
1X

nD1
P
nˇ̌
ˇ
	n

n

ˇ̌
ˇ > "

o
< 1; " > 0 H) 	n

n
! 0 .P-a. e./:

Hint. Use the following easy to verify inequalities:

"

1X

nD1
Pfj	1j > "ng � Ej	1j � "C "

1X

nD1
Pfj	1j > "ng:

Problem 2.10.10. Let .	n/n�1 be some sequence of random variables and let 	 be
a random variable.

(a) Prove that if Pfj	n � 	j � " i. o.g D 0 for every " > 0, then 	n ! 	 (P-a. e.).
(b) Prove that if one can find a sub-sequence .nk/, such that 	nk ! 	 (P-a. e.)

and maxnk�1<l�nk j	l � 	nk�1
j ! 0 (P-a. e.) for k ! 1, then 	n ! 	 (P-a. e.).

(c) Prove that if 	n ! 	 (P-a. e.), then Pfj	n � 	j � " i. o.g D 0, for every " > 0.
(This is the converse of property (a).)

Problem 2.10.11. Define the distance, d.	; �/, between two random variables, 	
and �, as

d.	; �/ D E
j	 � �j

1C j	 � �j ;

and prove that the function d D d.�; �/ defines a metric in the space of all
equivalence classes of random variables (on a given probability space) for the
relation “identity almost everywhere.” Prove that convergence in probability is
equivalent to convergence in the metric d.�; �/.

Hint. Check the triangle inequality and convince yourself that

"

1C "
Pfj	n � 	j > "g � E

j	n � 	j
1C j	n � 	j � "Pfj	n � 	j � "g C Pfj	n � 	j > "g;

for every " > 0.
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Problem 2.10.12. Prove that the topology of convergence almost surely is not
metrizable.

Hint. Suppose that there is metric, �, which defines convergence almost surely,

and consider some sequence .	n/n�1, chosen so that 	n
P! 0, but 	n 6! 0 (P-a. e.).

Then, for some " > 0, one can find a sub-sequence .nk/k�1 so that �.	nk ; 0/ > "

and, at the same time, 	nk
P! 0. Finally, by using [ P §2.10, Theorem 5] one can

find a contradiction to the claim that convergence in the metric � is the same as
convergence almost surely.

Problem 2.10.13. Prove that if X1 � X2 � : : : and Xn
P�! X , then one also has

Xn ! X (P-a. e.).

Problem 2.10.14. Let .Xn/n�1 be a sequence random variables. Prove that:
(a)Xn ! 0 (P–a. e.) H) Sn=n ! 0 (P–a. e.), where, as usual, Sn D X1C� � �C

Xn.

(b) Xn
Lp�! 0 H) Sn=n

Lp�! 0, if p � 1 and, in general,

Xn
Lp�! 0 6) Sn

n

Lp�! 0:

(c) In general,Xn
P�! 0 does not imply the convergenceSn=n

P�! 0 (comp. with
the last statement in Problem 2.10.34).

(d) Sn=n ! 0 (P-a. e.) if and only if Sn=n
P! 0 and S2n=2n ! 0 (P-a. e.).

Problem 2.10.15. Let .˝;F ;P/ be a probability space, on which one has the

convergence Xn
P�! X . Prove that if P is an atomic measure, then Xn ! X also

with probability 1 (for the definition of atomic measure, see Problem 2.3.35).

Problem 2.10.16. According to part (a) in the Borel–Cantelli lemma (the “first
Borel–Cantelli lemma”), if

P1
nD1 P.j	nj > "/ < 1 for some " > 0, then 	n ! 0

(P-a. e.). Give an example of a sequence f	ng for which 	n ! 0 (P-a. e.), and yetP1
nD1 P.j	nj > "/ D 1, for some " > 0.

Problem 2.10.17. (On part (b) in the Borel–Cantelli lemma; i.e., on the “second
Borel–Cantelli lemma.”) Let ˝ D .0; 1/, B D B..0; 1//, and let P stand
for the Lebesgue measure. Consider the events An D .0; 1=n/ and prove thatP

P.An/ D 1, even though every ! 2 .0; 1/ can belong only to finitely many
sets A1; : : : ; AŒ1=!�, i.e., PfAn i. o.g D 0.

Problem 2.10.18. Prove that in the second Borel-Cantelli lemma, instead of requir-
ing that the eventsA1;A2; : : : are independent, it is enough to require only that these
events are pair-wise independent, in that P.Ai \Aj /� P.Ai/P.Aj / D 0, i 6D j ; in
fact, it is enough to require only thatA1;A2; : : : are pair-wise negatively correlated,
in that P.Ai \ Aj / � P.Ai /P.Aj / � 0, i 6D j .
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Problem 2.10.19. (On the second Borel–Cantelli lemma.) Prove the following
variants of the second Borel–Cantelli lemma: given an arbitrary sequence of (not
necessarily independent) events A1;A2; : : : , one can claim that:

(a) If
1X

nD1
P.An/ D 1 and lim inf

n

Pn
i;kD1 P.AiAk/

Œ
Pn

kD1 P.Ak/�
2

D 1;

then (Erdös and Rényi [37]) P.An i.o./ D 1.
(b) If

1X

nD1
P.An/ D 1 and lim inf

n

Pn
i;kD1 P.AiAk/

Œ
Pn

kD1 P.Ak/�
2

D L;

then (Kochen and Stone [64], Spitser [125]) L � 1 and P.An i.o./ D 1=L.
(c) If

1X

nD1
P.An/ D 1 and lim inf

n

P
1�i<k�nŒP.AiAk/� P.Ai /P.Ak/�

Œ
Pn

kD1 P.Ak/�
2

� 0;

then (Ortega and Wschebor [92]) P.An i.o./ D 1.
(d) If

P1
nD1 P.An/ D 1 and

˛H D lim inf
n

P
1�i<k�nŒP.AiAk/ �HP.Ai /P.Ak/�

Œ
Pn

kD1 P.Ak/�
2

;

where H is an arbitrary constant, then (Petrov [95]) P.An i.o./ � 1
HC2˛H andH C

2˛H � 1.

Problem 2.10.20. Let A1;A2; : : : be some sequence of independent events and
suppose that

P1
nD1 P.An/ < 1. Prove that for Sn D Pn

kD1 I.Ak/ the following
stronger version of the “second Borel-Cantelli lemma” is in force:

lim
n

Sn

ESn
D 1 (P-a. e.):

Problem 2.10.21. Let .Xn/n�1 and .Yn/n�1 be any two sequences of random
variables with identical finite-dimensional distributions, i.e., FX1;:::;Xn D FY1;:::;Yn ,

n � 1, and suppose that Xn
P�! X . Prove that there is a random variable Y , whose

distribution is identical to the distribution of X (notation: Law.X/ D Law.Y /, or

X
lawD Y , or X

dD Y ), for which one can claim that Yn
P�! Y .

Problem 2.10.22. Let .Xn/n�1 be a sequence independent random variables with

Xn
P�! X , for some random variable X . Prove that X must be a degenerate random

variable.
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Problem 2.10.23. Prove that for every sequence of random variables, 	1; 	2; : : : , it
is possible to find a sequence of constants, a1; a2; : : : , so that 	n=an ! 0 (P-a. e.).

Problem 2.10.24. Let 	1; 	2; : : : be a sequence random variables and let Sn D 	1C
� � � C 	n, n � 1. Prove that the set fSn ! g, i.e., the set of all ! 2 ˝ , for which the
series

P
k�1 	k.!/ converges, can be represented in the form:

fSn ! g D
\

N�1

[

m�1

\

k�m

n
sup
l�k

jSl � Skj � N�1
o
:

Similarly, the set fSn 6! g, on which the series
P

k�1 	k.!/ diverges, can be
represented in the form

fSn 6! g D
[

N�1

\

m�1

[

k�m

n
sup
l�k

jSl � Skj > N�1o:

Problem 2.10.25. Consider the probability space .˝;F ;P/, in which the sample

space ˝ is at most countable, and prove that if 	n
P�! 	, then 	n ! 	 (P-a. e.).

Problem 2.10.26. Give an example of a sequence of random variables, such that
with probability 1 one has lim sup 	n D 1, lim inf 	n D �1, but, nevertheless, one

can find a random variable � with 	n
P�! �.

Problem 2.10.27. Prove the following version of the the 0–1 law (comp. with the
0–1 law of [ P §4.1]): if the events A1;A2; : : : are pairwise independent, then

PfAn i.o.g D
(
0; if

P
P.An/ < 1,

1; if
P

P.An/ D 1.

Problem 2.10.28. Let A1;A2; : : : be an arbitrary sequence of events, such that
limn P.An/ D 0 and

P
n P.An \ AnC1/ < 1. Prove that PfAn i.o.g D 0.

Problem 2.10.29. Prove, that if
P

n Pfj	nj > ng < 1, then lim supn.j	nj=n/ � 1

(P-a. e.).

Problem 2.10.30. Suppose that 	n # 	 (P-a. e.), Ej	nj < 1, n � 1, and infn E	n >

�1. Prove that 	n
L1�! 	, i.e., Ej	n � 	j ! 0.

Problem 2.10.31. In conjunction with the second Borel-Cantelli lemma, prove that
PfAn i.o.g D 1 if and only if

P
n P.A \An/ D 1, for every set A with P.A/ > 0.

Problem 2.10.32. Suppose that the events A1;A2; : : : are independent and chosen
so that P.An/ < 1, for all n � 1. Prove that PfAn i.o.g D 1 if and only if
P.
S
An/ D 1.
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Problem 2.10.33. Let X1;X2; : : : be any sequence of independent random vari-
ables with PfXn D 0g D 1=n and PfXn D 1g D 1 � 1=n. Set En D fXn D 0g. By
using the properties

P1
nD1 P.En/ D 1,

P1
nD1 P.En/ D 1, conclude that limn Xn

does not exist (P-a. e.).

Problem 2.10.34. Let X1;X2; : : : be any sequence of random variables. Prove that

Xn
P�! 0 if and only if

E
jXnjr

1C jXnjr ! 0; for some r > 0.

In particular, if Sn D X1 C � � � CXn, then

Sn � ESn
n

P�!0 ” E
.Sn � ESn/2

n2 C .Sn � ESn/2
! 0:

Show also that, given any sequence of random variables X1;X2; : : : , one can claim
that

max
1�k�n jXkj P�! 0 H) Sn

n

P�! 0:

Problem 2.10.35. Let X1;X2; : : : be any sequence of independent and identically
distributed Bernoulli random variables with PfXk D ˙1g D 1=2. Setting Un DPn

kD1
Xk
2k

, n � 1, prove that Un ! U (P-a. e.), where U is some random variable,
which is distributed uniformly on Œ�1;C1�.
Problem 2.10.36. (Egoroff’s Theorem.) Let .˝;F ; �/ be any measurable space,
endowed with a finite measure �, and let f1; f2; : : : be some sequence of Borel

functions, which converges in measure � to the Borel function f , i.e., fn
�! f .

Egoroff’s Theorem states that for every given " > 0 it is possible to find a set
A" 2 F , with �.A"/ < ", such that fn.!/ ! f .!/ uniformly for all ! 2 A",
where A" D ˝ n A" is the complement of A". Prove this statement.

Problem 2.10.37. (Luzin’s theorem.) Let .˝;F ;P/ D .Œa; b�;F ; �/, where �
stands for the Lebesgue measure on Œa; b� and F is the collection of all Lebesgue
sets. Let f D f .x/ be any finite F -measurable function. Prove Luzin’s Theorem:
for every given " > 0 one can find a continuous function f" D f".x/, such that

Pfx 2 Œa; b� W f .x/ 6D f".x/g < " :

Problem 2.10.38. The statement of Egoroff’s Theorem leads naturally to the notion
of almost uniform convergence. We say that the sequence of functions f1; f2; : : :
converges almost uniformly to the function f , if, for every " > 0, it is possible to
find a set A" 2 F with �.A"/ < ", so that fn.!/ ! f .!/ uniformly for all ! 2 A"
(notation: fn � f ).
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Prove that the almost uniform convergence fn � f implies both convergence in

measure (fn
�!f ) and convergence almost surely (fn

�-a. e.! f ).

Problem 2.10.39. Let X1;X2; : : : be a sequence random variables and let fXn 6!g
denote the set of those ! 2 ˝ for whichXn.!/ does not converge as n ! 1. Prove
that

fXn 6! g D
[

p<q

flim infXn � p < q � lim supXng;

where the union is taken over all pairs of rational numbers, .p; q/, with p < q.

Problem 2.10.40. Let X1;X2; : : : be any sequence of random variables defined
on some complete probability space, which converges with probability 1 to the
random variableX . Show that the �-algebras �.X1;X2; : : :/ and �.X1;X2; : : : ; X/,
generated, respectively, by the random elements .X1;X2; : : :/ and .X1;X2; : : : ; X/
(see [P § 2.5]) coincide.

Problem 2.10.41. Let X1;X2; : : : be any sequence of independent and identically
distributed random variables, such that their distribution function F D F.x/

satisfies the condition

lim
x!1 x2Œ1 � F.x/� D 0:

Prove that
1p
n

max
1�i�nXi

P! 0 as n ! 1:

Problem 2.10.42. Let 	1; 	2; : : : be any sequence of independent and identically
distributed random variables with E	1 D �, D	1 D �2 < 1 and Pf	1 D 0g D 0.
Prove that Pn

kD1 	kPn
kD1 	2k

P! �

�2 C �2
as n ! 1:

Problem 2.10.43. Suppose that 	n
P! 	, �n

P! � and Pf	n � �ng D 1, n � 1.
Prove that Pf	 � �g D 1.

Problem 2.10.44. Let 	1; 	2; : : : be any sequence of non-negative random variables

and suppose that the �-algebras F1;F2; : : : are such that E.	n j Fn/
P! 0. Prove

that 	n
P! 0.

Problem 2.10.45. Let 	n
d! 	 and cn	n

d! 	 (“
d!” means convergence in

distribution), where 	 is some non-degenerate random variable and cn > 0. Prove
that cn ! 1.

Problem 2.10.46. Let A1;A2; : : : be any sequence of random events. Setting A D
limn An, prove that, if

P1
nD1 P.An/ D 1, then the following relation, known as

the Kochen–Stone inequality (see [64]), must hold:

P.A/ � lim
n

�Pn
mD1 P.Am/

�2

Pn
kD1

Pn
lD1 P.Ak \ Al/

:
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Problem 2.10.47. Let 	1; 	2; : : : be any sequence of independent and identically
distributed random variables with Ej	1j < 1. Given some positive constant, ˛, set
An D fj	nj > ˛ ng, n � 1, and prove that P.limAn/ D 0.

Problem 2.10.48. Prove that in the space of continuous functions, C , there is no
metric � for which the convergence �.fn; f / ! 0 is equivalent to the point-wise
the convergence fn ! f (comp. with Problem 2.10.12).

Problem 2.10.49. Assuming that c > 0 is an arbitrary constant, give an example
of a sequence of random variables 	; 	1; 	2; : : :, such that E	n D �c for all n � 1,
	n.!/ ! 	.!/ in point-wise sense, and yet E	 D c.

Problem 2.10.50. For each of the three definitions in Problem 1.4.23 find the
median �n D �.	n/ of the random variables 	n D If��.�1/n�1=ng, where � is a
standard Gaussian random variable.

Problem 2.10.51. Let �n D �.	n/ be the uniquely defined medians (see Prob-
lem 1.4.23) of the random variables 	n, n � 1, which converge almost surely to
a random variable 	. Give an example showing that, in general, limn �.	n/ may
not exist.

Problem 2.10.52. Let 	1; 	2; : : : be any sequence of independent, non-negative and
identically distributed non-degenerate random variables with E	1 D 1. Setting Tn DQn
kD1 	k , n � 1, prove that Tn ! 0 (P-a. e.).

Problem 2.10.53. Let 	1; 	2; : : : be any sequence of independent and identically
distributed random variables and let Sn D 	1 C � � � C 	n, n � 1. Prove that:

.a/ E	C
1 D 1 and E	�

1 D 1 H) Sn

n
! C1 (P-a. e.)I

.b/ Ej	1j < 1 and E	1 6D 0 H) max.j	1j; : : : ; j	nj/
jSnj ! 0 (P-a. e.)I

.c/ E	21 < 1 H) max.j	1j; : : : ; j	nj/p
n

! 0 (P-a. e.).

Problem 2.10.54. Let 	1; 	2; : : : be any sequence of random variables and let 	 be a
random variable. Prove that for everyp � 1 the following conditions are equivalent:

(a) 	n
Lp! 	 (i.e., Ej	n � 	jp ! 0);

(b) 	n
P! 	 and the family fj	njp; n � 1g is uniformly integrable.

Problem 2.10.55. Let 	1; 	2; : : : be some sequence of independent and identically
distributed random variables, chosen so that Pf	1 > xg D e�x , x � 0 (i.e., each
random variable is exponentially distributed). Prove that

Pf	n > ˛ lnn; i. o. g D
(
1; if ˛ � 1;

0; if ˛ > 1:



148 2 Mathematical Foundations of Probability Theory

Convince yourself that the above statement can be further refined as follows:

Pf	n > lnnC ˛ ln lnn; i. o. g D
(
1; if ˛ � 1;

0; if ˛ > 1;

and, in general, for every k � 1 one has

Pf	n > ln nC ln lnnC : : :C ln : : : ln„ ƒ‚ …
k times

nC ˛ ln : : : ln„ ƒ‚ …
kC1 times

n i.o.g D
(
1; if ˛ � 1;

0; if ˛ > 1:

Problem 2.10.56. Prove the following generalization of [ P §2.10, Theorem 3],
which is concerned with situations where convergence in L1 comes as a conse-
quence of convergence a. e.: if 	 is a random variable and .	n/n�1 is some sequence
of random variables, chosen so that that Ej	j < 1, Ej	nj < 1, and 	n ! 	 (P-
a. e.), then Ej	n � 	j ! 0 if and only if Ej	nj ! Ej	j as n ! 1. This statement is
known as Scheffe’s lemma. (Comp. with the statement in Problem 2.6.19).

Problem 2.10.57. Let 	1; 	2; : : : be any sequence of positive, independent and
identically distributed random variables that share one and the same density f D
f .x/, with limx#0 f .x/ D � > 0. Prove that

nmin.	1; : : : ; 	n/
d! �;

where � is an exponentially distributed random variable with parameter �.

Problem 2.10.58. Prove that if one of the conditions (i), (ii), or (iii) in the
assumptions of Problem 2.6.33 holds, then

EjXnjp ! EjX jp; for all 0 < p � r:

Problem 2.10.59. Let .	n/n�1 be any sequence of independent and normally
distributed random variables, i.e., 	n � N .�n; �

2
n/. Prove that the series

P
n�1 	2n

converges in L1 if and only if

X

n�1
.�2n C �2n/ < 1:

Show also that when the above condition holds the series
P

n�1 	2n converges in Lp

for all p � 1.
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Hint. To prove the second statement, one has to establish that
���
X

n�1
	2n

���
p
< 1; for all p � 1:

Problem 2.10.60. Let X1;X2; : : : be independent random variables that are uni-
formly distributed on the interval Œ0; 1�. Setting Yn D X1 : : : Xn, n � 1, consider the
series

P1
nD1 znYn and prove that its radius of convergence, R D R.!/, equals the

constant e with probability 1.
Hint. Use the relation 1=R D limn jYnj1=n.

Problem 2.10.61. Let .˝;F ;P/ D .Œ0; 1/;B.Œ0; 1//; �/, where � denotes the
Lebesgue measure, and let ! D .a1; a2; : : :/ be the continued fraction expansion
of ! 2 Œ0; 1/ (in particular, an D an.!/ are integer numbers)—see [2]. Prove that
as n ! 1 one has

�f! W an.!/ D kg ! 1

ln 2
ln
h 1C 1=k

1C 1=.k C 1/

i
:

Remark. Discussion of the origins of this problem and various approaches to its
solution can be found in the “Essay on the history of probability theory” in the book
“Probability-2” (see [121]) and on p. 101 in Arnold’s book [3].

Problem 2.10.62. Let X1;X2; : : : be independent and identically distributed ran-
dom variables with PfX1 D 0g D PfX1 D 2g D 1=2. Prove that

(a) The series
P1

nD1
Xn
3n

converges almost surely to some random variable X .
(b) The distribution function of the random variable X is the Cantor function

(see [ P §2.3]).

2.11 Hilbert Spaces of Random Variables with Finite
Second Moments

Problem 2.11.1. Prove that if 	 D l:i:m: 	n, then k	nk ! k	k.

Problem 2.11.2. Prove that if 	 D l:i:m: 	n and � D l:i:m: �n, then .	n; �n/ !
.	; �/.

Problem 2.11.3. Prove that the norm k � k satisfies the “parallelogram law:”

k	 C �k2 C k	 � �k2 D 2.k	k2 C k�k2/:
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Problem 2.11.4. Let f	1; : : : ; 	ng be any family of orthogonal random variables.
Prove that

���
nX

iD1
	i

���
2 D

nX

iD1
k	ik2:

This property is known as the “Pythagorean theorem.”

Problem 2.11.5. Let 	1; 	2; : : : be any sequence of orthogonal random variables
and let Sn D 	1C� � �C	n. Prove that if

P1
nD1 E	2n < 1, then one can find a random

variable S with ES2 < 1, so that l:i:m: Sn D S , i.e., kSn�Sk2 	 EjSn�S j2 ! 0

as n ! 1.
Hint. According to Problem 2.11.4 one must have

kSnCk � Snk2 D
nCkX

mDnC1
k	mk2:

Problem 2.11.6. Prove that Rademacher’s functions Rn can be defined by the
relation

Rn.x/ D sign .sin 2n
x/; 0 � x � 1; n D 1; 2; : : :

Problem 2.11.7. Prove, that for any 	 2 L2.˝;F ;P/ and for any sub-�-algebra
G � F one has

k	k � kE.	 j G /k ;
with equality taking place if and only if 	 D E.	 j G / (P-a. e.).

Problem 2.11.8. Prove that if X; Y 2 L2.˝;F ;P/, E.X jY / D Y and
E.Y jX/ D X , then X D Y (P-a. e.). In fact, the assumption X; Y 2 L2.˝;F ;P/
can be relaxed to X; Y 2 L1.˝;F ;P/, but under this weaker assumption the
propertyX D Y (P-a. e.) is much harder to establish—see Problem 2.7.24.

Problem 2.11.9. Suppose that F is a �-algebra and that .G .1/
n /, .G .2/

n / and .G .3/
n /

are three sequences of sub-�-algebras that are contained in F and are chosen so
that

G .1/
n � G .2/

n � G .3/
n ; for every n:

Then suppose that 	 is some F -measurable and bounded random variable, for which
one can find a random variable � with

E.	 j G .1/
n /

P�! � and E.	 j G .3/
n /

P�! �:

Prove, that when the above conditions hold one must also have E.	 j G .2/
n /

P�! �.

Problem 2.11.10. Let x Ý f .x/ be any Borel-measurable function, which is
defined on Œ0;1/ and is such that

R1
0
e��xf .x/ dx D 0, for any � > 0. Prove

that f D 0 almost surely relative to the Lebesgue measure on Œ0;1/.
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Problem 2.11.11. Suppose that the random variable � is uniformly distributed in
Œ�1; 1� and let 	 D �2. Prove that:

(a) The optimal (in terms of the mean-square distance) estimate for 	 given �,
and for � given 	, can be expressed, respectively, as

E.	 j �/ D �2 and E.� j 	/ D 0:

(b) The respective optimal linear estimates can be expressed as

bE.	 j �/ D 1=3 and bE.� j 	/ D 0:

2.12 Characteristic Functions

Problem 2.12.1. Let 	 and � be two independent random variables and suppose that
f .x/ D f1.x/C if2.x/, g.x/ D g1.x/C ig2.x/, where fk.x/, gk.x/, k D 1; 2, are
Borel functions. Prove that if Ejf .	/j < 1 and Ejg.	/j < 1, then

Ejf .	/g.�/j < 1

and
Ef .	/g.�/ D Ef .	/ � Eg.�/:

(Recall that by definition Ef .	/ D Ef1.	/ C iEf2.	/, Ejf .	/j D E.f 2
1 .	/ C

f 2
2 .	//

1=2.)

Problem 2.12.2. Let 	 D .	1; : : : ; 	n/ and Ek	kn < 1, where k	k D
pP

	2i .
Prove that

'	.t/ D
nX

kD0

ik

kŠ
E.t; 	/k C "n.t/ktkn;

where t D .t1; : : : ; tn/, .t; 	/ D t1	1 C : : :C tn	n, and "n.t/ ! 0 as ktk ! 0.
Hint. The proof should be analogous to the one in the one-dimensional case,

after replacing t 	 with .t; 	/.

Problem 2.12.3. Prove [ P §2.12, Theorem 2] for n-dimensional distribution func-
tions of the form F D Fn.x1; : : : ; xn/ and G D Gn.x1; : : : ; xn/.

Problem 2.12.4. Let F D F.x1; : : : ; xn/ be any multivariate distribution function
and let ' D '.t1; : : : ; tn/ be the associated characteristic function. By using the
notation from equation [ P §2.3, (12)], prove the multivariate conversion formula:

P.a; b� D lim
c!1

1

.2
/n

Z c

�c
: : :

Z c

�c

nY

kD1

e�i tkak � e�i tkbk
i tk

'.t1; : : : ; tn/ dt1 : : : dtn:
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(In the above formula it is assumed that the set .a; b�, where a D .a1; : : : ; an/

and b D .b1; : : : ; bn/, is a continuity interval for the function P.a; b�, in the sense
that for all k D 1; : : : ; n the marginal distribution functions Fk.xk/, obtained from
F.x1; : : : ; xn/ by setting all arguments except xk to C1, are continuous at the
points ak , bk.)

Problem 2.12.5. Let 'k.t/, k � 1, be any sequence of characteristic functions and
let �k , k � 1, be any sequence of non-negative numbers with

P
�k D 1. Prove that

t Ý
P
�k'k.t/ must be a characteristic function.

Problem 2.12.6. Assuming that '.t/ is a characteristic function, is it true that
Re '.t/ and Im'.t/ are also characteristic functions?

Hint. Let ' D '.t/ be the characteristic function for some distribution P . To
answer the question regarding Re '.t/, consider the distribution Q with Q.A/ D
1
2
ŒP.A/C P.�A/�, where �A D f�x W x 2 Ag. To answer the question regarding

Im'.t/, consider the characteristic function '.t/ 	 1.

Problem 2.12.7. Let '1; '2; '3 be any three characteristic functions with '1'2 D
'1'3. Can one conclude that '2 D '3?

Problem 2.12.8. Prove the formulas for the characteristic functions listed in
[ P §2.12, Tables 4 and 5].

Hint. The characteristic functions for the first five discrete distributions can be
obtained with elmentary calculations.

In the case of the negative binomial distribution (C r�1
k�1 prqk�r , k D r; r C 1; : : :

and r D 1; 2; : : : ), notice that for jzj < 1 one has

1X

kDr
C r�1
k�1 zk�r D .1 � z/�r :

In the case of the characteristic function '.t/, associated with the normal
distribution N .m; �2/, notice that withm D 0 and �2 D 1, according to the general
theory of functions of complex variables, one must have

'.t/ D 1p
2


Z

R
eitxe� x2

2 dx D e
t2

2
1p
2


Z

R
e� .x�i t /2

2 dx D e
t2

2

Z

L

f .z/ d z ;

where f .z/ D 1p
2

e� .z�i t /2

2 , L D fz W Im z D 0g, and

Z

L

f .z/ d z D
Z

L0

f .z/ d z D 1p
2


Z

R
e� y2

2 dy D 1 ;

where L0 D fz W Im z D tg.
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The characteristic function of the gamma-distribution can be computed in a
similar fashion.

As for the characteristic function '.t/, associated with the Cauchy distribution,
notice that for t > 0 one has

'.t/ D
Z

R

eitx 


.x2 C 2/
dx D

Z

L

f .z/ d z ;

where L D fz W Im z D 0g and f .z/ D eitz


.z2C2/ . By the Cauchy’s residue theorem
and the Jordan lemma (see [47, vol. 1]) one has

Z

L

f .z/ d z D 2
i res
i
f D e�t

Similarly, for t < 0 one can prove that '.t/ D et , so that '.t/ D e� jt j for any
real t .

Problem 2.12.9. Let 	 be any integer-valued random variable and let '	.t/ be its
characteristic function. Prove that

Pf	 D kg D 1

2


Z 


�

e�ikt'	.t/ dt; k D 0;˙1;˙2; : : : :

Problem 2.12.10. Consider the space L2 D L2.Œ�
; 
�/, endowed with the Borel
�-algebra BŒ�
; 
� and the Lebesgue measure, and prove that the collection of

functions
n

1p
2

ei�n; n D 0;˙1;˙2; : : :

o
forms an orthonormal basis in that space.

Hint. Use the following steps:
(a) For a given " > 0 find a constant c > 0 such that

k' � f kL2 < ";

where f .x/ D '.x/I.j'.x/j � c/.
(b) By using Lusin’s theorem (see Problem 2.10.37), find a continuous function

f".x/ such that jf".x/j � c and

�fx 2 Œ�
; 
� W f".x/ 6D f .x/g < " ;

so that kf � f"kL2 � 2c
p
".

(c) Find a continuous function ef ".x/ with the property ef ".�
/ D ef ".
/ and
kef � f"kL2 � ":
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(d) By using the Weierstrass theorem find a function f ".x/ D Pn
kD�n akeikx

with the property
sup

x2Œ�
;
�
jef ".x/ � f ".x/j � ";

which implies kef " � f "kL2 � ".
Conditions (a)–(d) above imply that the collection of all finite sums

of the form
Pn

kD�n akeikx is everywhere dense in L2, i.e., the systemn
1p
2

ei�n; nD 0;˙1;˙2; : : :

o
forms and orthonormal basis.

Problem 2.12.11. In the statement of the Bochner–Khinchin theorem it is assumed
that the function under consideration, '.t/, is continuous. Prove the following result
(due to F. Riesz), which shows to what extent it may be possible to remove the
continuity assumption from the Bochner–Khinchin theorem.

Let ' D '.t/ be any complex-valued and Borel-measurable function with the
property '.0/ D 1. Then one can claim that the function ' D '.t/ is positive
definite if and only if it coincides with some characteristic function Lebesgue-almost
everywhere on the real line.

Problem 2.12.12. Which of the functions

'.t/ D e�jt j˛ ; 0 � ˛ � 2; '.t/ D e�jt j˛ ; ˛ > 2;

'.t/ D .1C jt j/�1; '.t/ D .1C t4/�1;

'.t/ D
(
1 � jt j3; jt j � 1;

0; jt j > 1; '.t/ D
(
1 � jt j; jt j � 1=2;

1=.4jt j/; jt j > 1=2;

can be claimed to be a characteristic function?
Hint. In order to demonstrate that some of the above functions are not char-

acteristic, use [ P §2.12, Theorem 1] and also the inequalities established in
Problem 2.12.21 below.

Problem 2.12.13. Prove that the function t Ý '.t/, given by

'.t/ D
(p

1 � t2; jt j � 1;

0; jt j > 1;

cannot be identified with the characteristic function of any random variable.
Can one make the same claim about the function t Ý '.t/ D sin t

t
?

Problem 2.12.14. Prove that if the function t Ý '.t/ is a characteristic, then so is
also the function t Ý j'.t/j2.
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Problem 2.12.15. Prove that if the function t Ý '.t/ is characteristic, then so is
also the function t Ý e�.'.t/�1/ for every � � 0. Can one claim that the function
t Ý '.t/ 	 e�.e

�jt j�1/ is characteristic?

Problem 2.12.16. Prove that if t Ý '.t/ is a characteristic function, then the
following functions must be characteristic, too:

t Ý
Z 1

0

'.ut/ du; t Ý
Z 1

0

e�u'.ut/ du:

Problem 2.12.17. Prove that for every n � 1 the function

'n.t/ 	 eit �Pn�1
kD0.i t/k=kŠ

.i t/n=nŠ

can be identified with the characteristic function of some random variable.

Problem 2.12.18. Let 'Xn.t/ be the characteristic function of the random variable
Xn, which is uniformly distributed in the interval .�n; n/. Prove that

lim
n!1'Xn.t/ D

(
1; t D 0;

0; t 6D 0:

Problem 2.12.19. Let .m.n//n�1 be the sequence of all moments of the random
variableX , which has distribution function F D F.x/, i.e.,m.n/ D R1

�1 xn dF.x/.

Prove that if the series
P1

nD1 m
.n/

nŠ
sn converges absolutely for some s > 0, then

the sequence .m.n//n�1 uniquely defines the distribution function F D F.x/.

Problem 2.12.20. Let F D F.x/ be any distribution function and let '.t/ DR1
�1 eitx dF.x/ be its characteristic function. Prove that

lim
c!1

1

2c

Z c

�c
e�i tx'.t/ dt D F.x/ � F.x�/

and

lim
c!1

1

2c

Z c

�c
j'.t/j2 dt D

X

x2R

ŒF .x/ � F.x�/�2:

In particular, the distribution function F D F.x/ can be claimed to be continuous
if and only if its characteristic function '.t/ satisfies the condition

lim
c!1

1

c

Z c

�c
j'.t/j2 dt D 0:
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Problem 2.12.21. Prove that any characteristic function ' D '.t/ must satisfy the
following inequalities:

1 � Re '.nt/ � nŒ1 � .Re '.t//n� � n2Œ1 � Re '.t/�; n D 0; 1; 2; : : : I (�)

j Im'.t/j2 � 1

2
Œ1 � Re '.2t/�I 1 � Re '.2t/ � 2.Re'.t//2I

j'.t/ � '.s/j2 � 4'.0/j1� '.t � s/jI 1 � j'.2t/j2 � 4Œ1 � j'.t/j2�I
j'.t/ � '.s/j2 � 2Œ1 � Re '.t � s/�I

1

2h

Z tCh

t�h
'.u/ du � .1C Re '.h//1=2; t > 0:

(The last two relations are known as the Raikov inequalities.)
Hint. The proof is based on the relation '.t/ D R1

�1 eitxdF.x/ (and the
associated relations for Re'.t/ and Im'.t/). Thus, for example, in order to prove
the inequality

1 � Re '.2t/ � 4Œ1 � Re '.t/� .��/
(a special case of .�/ with n D 2) it is enough to notice that

1 � Re '.2t/ D
Z 1

�1
.1 � cos 2tx/ dF.x/ and 1 � cos 2tx � 4.1� cos tx/:

Problem 2.12.22. Suppose that the characteristic function ' D '.t/ is such that
'.t/ D 1C f .t/C o.t2/ as t ! 0, where f .t/ D �f .�t/. Prove that '.t/ 	 1.

Hint. Use the relation .��/ in the previous problem.

Problem 2.12.23. Let ' D '.t/ be the characteristic function of some random
variable X , which has distribution function F D F.x/.

(a) Prove that
R1

�1 jxj dF.x/ < 1 if and only if
R1

�1
1 � Re '.t/

t2
dt < 1 and

that these conditions imply

EjX j 	
Z 1

�1
jxj dF.x/ D 1




Z 1

�1
1 � Re '.t/

t2
dt D 2




Z 1

0

1 � Re '.t/

t2
dt:

(b) Prove that if
R1

�1 jxj dF.x/ < 1 then one has

EjX j 	
Z 1

�1
jxj dF.x/ D � 1




Z 1

�1
Re ' 0.t/

t
dt:

(See Problem 2.12.37.)
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Hint. (a) Use the following easy to check formula

jxj D 1




Z 1

�1
1 � cos xt

t2
dt:

(b) Use the fact that jxj D x signx, where

signx D

8
ˆ̂<

ˆ̂:

1; x > 0;

0; x D 0;

�1; x < 0;

in conjunction with the relation

sign x D 1




Z 1

�1
sin xt

t
dx:

Problem 2.12.24. Consider a characteristic function of the form '.t/ D 1 C
O.jt j˛/ for t ! 0, where ˛ 2 .0; 2�. Prove that if 	 is a random variable with
characteristic function '.t/, then the following property must hold:

Pfj	j > xg D O.x�˛/ as x ! 0:

Problem 2.12.25. Let X and Y be any two independent and identically distributed
random variables with vanishing means and standard deviations equal to 1. By using
characteristic functions prove that if the distribution of the random variable .X C
Y /=

p
2 coincides with the distribution ofX and Y , thenX and Y must be Gaussian.

Problem 2.12.26. The Laplace Transform of a non-negative random variable X ,
with distribution functionF D F.x/, is defined (see Problem 2.6.32) as the function
bF D bF .�/, � � 0, given by

bF .�/ D Ee��X D
Z

Œ0;1/

e��x dF.x/; for � � 0:

Prove the following criterion, which is due to S. N. Bernstein: the function
bF DbF .�/, defined on .0;1/, is the Laplace transform of some distribution function
F D F.x/ on Œ0;1/, if and only if bF is completely monotone, in the sense that all
derivatives bF .n/.�/, n � 0, exist and satisfy .�1/nbF .n/.�/ � 0.

Problem 2.12.27. Suppose that the distribution function F D F.x/ admits density
f D f .x/, has characteristic function ' D '.t/, and suppose that at least one of
the following conditions holds:

(a)
Z 1

�1
j'.t/j dt < 1 or (b)

Z 1

�1
f 2.x/ dx < 1:
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Prove Parseval’s formula:

Z 1

�1
f 2.x/ dx D 1

2


Z 1

�1
j'.t/j2 dt .< 1/:

(Comp. with Parseval’s idenity—see [ P §2.11, (14)].)

Problem 2.12.28. Prove that if the distribution function F D F.x/ has density
f D f .x/, then its characteristic function ' D '.t/ must be such that '.t/ ! 0 as
t ! 1.

Problem 2.12.29. Let F D F.x/ and eF D eF .x/ be any two distribution functions
on .R;B.R// and let '.t/ and e'.t/ be their respective characteristic functions.
Prove Parseval’s relation: for every t 2 R one has

Z
e'.x � t/ dF.x/ D

Z
e�i ty'.y/ deF .y/: .�/

In particular, if eF is the distribution function associated with the normal distribution
law N .0; �2/, then

Z 1

�1
e� �2.x�t /2

2 dF.x/ D 1p
2
�2

Z 1

�1
e�i tye� y2

2�2 '.y/ dy: .��/

(Comp. with the result in Problem 2.12.40.)

Problem 2.12.30. By using .��/ in the previous problem, conclude that if the
distribution functions F1 and F2 share the same characteristic function, then one
must have F1 D F2. (Comp. with the result in Problem 2.12.41.)

Problem 2.12.31. By using Parseval’s relation .�/ in Problem 2.12.29, prove the
following result: if '	.t/ is the characteristic function of the random variable 	, then
the Laplace transform of the random variable j	j is given by the formula

Ee��j	j D
Z 1

�1
�


.�2 C t2/
'.t/ dt; � > 0:

(Comp. with the statement in Problem 2.12.23.)

Problem 2.12.32. Let F D F.x/ be any distribution function and let '.t/ DR1
�1 eitx dF.x/ be its characteristic function. According to [ P §2.12, Theorem

3-b)], the property
R1

�1 j'.t/j dt < 1 guarantees the existence of a continuous
density f .x/. Give an example of a distribution functions F D F.x/ which admits
a continuous density, and yet

R1
�1 j'.t/j dt D 1.
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Problem 2.12.33. Let '.t/ D R
R e

itx dF.x/ be some characteristic function.
According to [ P §2.12, Theorem 1], if

R
R jxj dF.x/ < 1, then '.t/ must be

differentiable. By using appropriate examples, prove that, in general, the converse
statement does not hold. Prove that, in fact, it is possible to find a characteristic
function '.t/, which is infinitely differentiable, and yet

R
R jxj dF.x/ D 1.

Problem 2.12.34. (The “inversion formula.”) By using the argument in the proof
of [ P §2.12, Theorem 3], prove that, for any distribution function F D F.x/ and
any a < b, the following general “inversion formula” is in force:

lim
c!1

1

2


Z c

�c
e�i ta � e�i tb

i t
'.t/ dt D 1

2
ŒF.b/C F.b�/�� 1

2
ŒF.a/C F.a�/�:

Problem 2.12.35. (a) Prove that the probability distribution with density

f .x/ D 1 � cos x


x2
; x 2 R;

has characteristic function given by

'.t/ D
(
1 � jt j; jt j � 1;

0; jt j > 1:

(b) What is the characteristic function of the distribution with density

f .x/ D 1 � cos 
x


2x2
; x 2 R ‹

(c) Prove that the characteristic functions of the probability densities

f1.x/ D 1


 coshx
and f2.x/ D 1

2 cosh2 x
; x 2 R;

are given, respectively, by

'1.t/ D 1

cosh 1
2

t

and '2.t/ D 
t

2 sinh 1
2

t
;

where coshy D .ey C e�y/=2 and sinhy D .ey C e�y/=2.
(d) Find the probability distributions associated with the following characteristic

functions:

1C it

1C t2
;

1 � it

1C t2
; cos

t

2
;

2

3eit � 1
;

1

2
e�i t C 1

3
C 1

6
e2it :
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Problem 2.12.36. Let m.k/ D R
R x

k dF.x/, k � 1, be the moments of the
probability distribution F D F.x/. Prove that

Z

R
cosh.ax/ dF.x/ D

X

k

a2k

.2k/Š
m.2k/:

Problem 2.12.37. Suppose that, just as in Problem 2.12.23, ' D '.t/ is the
characteristic function of some random variable X , which has distribution function
F D F.x/. Prove that

Z 1

�1
jxjˇ dF.x/ < 1 for ˇ 2 .0; 2/

if and only if
Z 1

�1
1 � Re '.t/

jt j1Cˇ dt < 1 ;

in which case

EjX jˇ 	
Z 1

�1
jxjˇ dF.x/ D Cˇ

Z 1

�1
1 � Re '.t/

jt j1Cˇ dt ;

where

Cˇ D
" Z 1

�1
1 � cos t

jt j1Cˇ dt

#�1
D � .1C ˇ/



sin

ˇ


2
:

Hint. Use the relation

jxjˇ D Cˇ

Z 1

�1
1 � cos xt

jt j1Cˇ dt :

Problem 2.12.38. Prove the statement in Problem 2.8.27 by calculating the charac-
teristic functions of the random variables 	

�
, 	

j�j ,
j	j
j�j , and the characteristic function

of the random variable C that has Cauchy distribution with density 1

.1Cx2/ , x 2 R.

Problem 2.12.39. (Non-uniqueness in the problem of moments.) It was shown in
[ P §2.12, 9 ] that it is possible to find two different distribution functions that,
nevertheless, have identical moments of all orders n � 1. Here is one such
construction in terms of densities.
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Let � be any standard normally distributed random variable (� � N .0; 1/) and
let 	 D e�. Prove that:

(a) The density f	.x/ is given by the formula

f	.x/ D 1p
2


x�1e� .lnx/2

2 ; x > 0

(comp. with [ P §2.8, (23)]).
(b) The function

g.x/ D f	.x/Œ1C sin.2
 lnx/�; x > 0;

is such that g.x/ � 0 and
R1
0 g.x/ dx D 1.

(c) For all n � 1 one has

Z 1

0

xnf	.x/ dx D
Z 1

0

xng.x/ dx:

Problem 2.12.40. Let 	 and � be two independent random variables, such that �
has standard normal distribution (i.e., � � N .0; 1/) and let f D f .x/ be any
bounded Borel function with compact support. Prove that for every � > 0 one has

Ef
�
	 C 1

�
�
�

D 1

2


Z 1

�1
e

� t 2

2�2 '	.t/bf .�t/ dt; .�/

where '	.t/ D Eeit	 and bf .t/ D R1
�1 eit	f .x/ dx. (Comp. with the result in

Problem 2.12.29.) Formulate an analogous result for multivariate random variables
	 and �.

Problem 2.12.41. By using the relation .�/ in the previous problem, prove that the
characteristic function '	.t/ of any random variable 	 completely determines the
probability distribution of 	. (Comp. with [ P §2.12, Theorem 2].)

Hint. Convince yourself that, under the assumptions of the previous problem,
the relation .�/ implies that

Ef .	/ D lim
�!1

1

2


Z 1

�1
e

� t 2

2�2 '	.t/bf .�t/ dt; .��/

and conclude (using the fact the f D f .x/ is an arbitrary bounded function with
compact support), that the characteristic function '	.t/ indeed uniquely determines
the distribution of the random variable 	. Verify that the relation .��/ holds also for
multivariate random variables, 	 and obtain a multivariate analog of the relation .�/.
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Problem 2.12.42. Let ' D '.t/ be a characteristic function and suppose that for
some b > 0 and some 0 < a < 1 one has

'.t/ � a; for any jt j � b:

Show the Cramér’s inequality: for any jt j < b one has

j'.t/j � 1 � .1 � a2/
t2

8b2
:

Hint. Use the inequality 1 � j'.2t/j2 � 4.1� j'.t/j2/ from Problem 2.12.21.

Problem 2.12.43. (Addendum to the inequalities in Problem 2.12.21.) Let F D
F.x/ be any distribution function and let ' D '.t/ be its characteristic function.
Show the von Bahr–Esseen inequality:

j1 � '.t/j � Crˇ
.r/jt jr ; for every 1 � r � 2;

where ˇ.r/ D R1
�1 jxjr dF.x/ and Cr is some constant.

Problem 2.12.44. For integer numbers n � 1 the moments m.n/ D EXn and the
absolute moments ˇn D EjX jn of the random variable X can be expressed in terms
of derivatives of order at most n of the characteristic function '.t/ D EeitX , t 2 R
(see formula [ P §2.12, (13)] or (c) in Problem 2.12.23). In order to obtain similar
representation for the moments m.˛/ D EX˛ and ˇ˛ D EjX j˛ for arbitrary ˛ > 0,
one must resort to fractional derivatives, as explained below.

Let ˛ D nC a, for some integer number n and some 0 < a < 1. The fractional

derivative D.˛/f .t/ (D d˛

dt˛
f .t/) of the function f D f .t/, t 2 R, is defined as

the function

a

� .1 � a/

Z t

�1
f .n/.t/ � f .n/.s/

.t � s/1C˛
ds;

assuming that the integral in the above expression is well defined for any t 2 R. In
particular, if f .t/ D '.t/ (D R1

�1 eitxdF.x/) is some characteristic function, then

DnCa'.t/
ˇ̌
ˇ
tD0 D � 1

� .�a/
Z 1

0

f .n/.0/� f .n/.�u/

u1Ca
du

D .�1/nC1

� .�a/
� Z 1

0

 Z 1

�1
xn.1 � cos ux/ dF.x/ (*)

C i

Z 1

�1
xn sin ux dF.x/

�
du

u1Ca

�
:
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Prove that for even numbersn the absolute momentsˇnCa are finite, i.e., ˇnCa < 1,
if and only if:

(i) ˇn < 1;
(ii) ReŒDnCa'.t/jtD0� exists.

Prove that when these conditions hold one must have

ˇnCa D 1

cos a

2

Re
�
.�1/n=2D˛'.t/

ˇ̌
tD0
�
:

Hint. Use .�/ and the fact that for every 0 < b < 2 one has the following
formula: Z 1

0

1 � cos u

u1Cb
du D �� .�b/ cos


b

2
:

Remark. A detailed discussion of the calculation of EjX jnCa, for arbitrary n � 0

and 0 < a < 1, can be found in the book [84].

Problem 2.12.45. Prove that the following inequality is in force for every charac-
teristic function ' D '.t/ and every u and s:

j'.u C s/j � j'.u/j � j'.s/j � Œ1 � j'.u/j2�1=2Œ1 � j'.s/j2�1=2:
Hint. Use Bochner–Khinchin’s theorem (see [ P §2.12, 6 ]).

Problem 2.12.46. Suppose that .	; �/ is a pair of random variables with joint
density

f .x; y/ D 1

4

˚
1C xy.x2 � y2/

�
I.jxj < 1; jyj < 1/:

Prove that 	 and � are two dependent random variables with densities

f	.x/ D 1

2
I.jxj < 1/; f�.y/ D 1

2
I.jyj < 1/:

Show also that the characteristic function, '	C�.t/, of the sum 	 C �, equals the
product of the characteristic functions '	.t/ and '�.t/, i.e., '	C�.t/ D '	.t/ '�.t/.

Problem 2.12.47. Let 	1; 	2; : : : be a sequence of independent and identically
distributed random variables that take the values 0; 1; : : : ; 9 with probability 1=10
and let

Xn D
nX

kD1

	k

10k
:

Prove that the sequence .Xn/n�1 converges not only in distribution, but also almost
surely to a random variable that is uniformly distributed in the interval Œ0; 1�.

Hint. Use the method of characteristic functions.
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2.13 Gaussian Systems of Random Variables

Problem 2.13.1. Prove that, given any Gaussian system of random variables,
.	; �1; : : : ; �n/, the conditional expectation E.	 j �1; : : : ; �n/ coincides with the
conditional expectations in wide sensebE.	 j �1; : : : ; �n/.
Problem 2.13.2. Let .	; �1; : : : ; �k/ be a Gaussian system. Describe the structure
of the conditional expectations E.	n j �1; : : : ; �k/, n � 1, as functions of the random
variables �1; : : : ; �k .

Problem 2.13.3. Let X D .Xk/1�k�n and Y D .Yk/1�k� be two Gaussian random
sequences with EXk D EYk , DXk D DYk, 1 � k � n, and

cov.Xk;Xl/ � cov.Yk; Yl /; 1 � k; l � n:

Prove the Slepyan’s inequality: for every x 2 R one has

P
n

sup
1�k�n

Xk < x
o

� P
n

sup
1�k�n

Yk < x
o
:

Problem 2.13.4. Let 	1; 	2; 	3 be three independent standard Gaussian random
variables, i.e., 	i � N .0; 1/, i D 1; 2; 3. Prove that

	1 C 	2	3p
1C 	23

� N .0; 1/:

(This gives rise to the interesting problem of describing the family of all nonlinear
transformations of a given family of independent Gaussian random variables,
	1; : : : ; 	n, n � 2, that yield a Gaussian distribution.)

Problem 2.13.5. In the context of [ P §2.13], prove that the “matrix” R D
.r.s; t//s;t2A, associated with the function r.s; t/ from [ P §2.13, (25), (29) and
(30)], is non-negative definite.

Problem 2.13.6. Let A be any matrix of order m � n. We say that the matrix A˚,
of order n �m, is the pseudo-inverse of the matrix A, if one can find two matrices,
U and V , such that

AA˝A D A; A˚ D UA� D A�V:

Prove that the matrix A˚, defined by the above conditions, exists and is unique.

Problem 2.13.7. Prove that formulas (19) and (20) in the Theorem of the Normal
Correlation (Theorem 2 in [ P §2.13, 4 ]) remains valid in the case of a degenerate
matrix D		 , provided that the inverse D�1

		 is replaced by the pseudo-inverse D˚
		 .
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Problem 2.13.8. Let .; 	/ D .1; : : : ; k I 	1; : : : ; 	l / be a Gaussian vector and
suppose that the matrix � 	 D � D˚

		D
�
	 is non-degenerate. Prove that the

conditional distribution function P. � a j 	/ D P.1 � a1; : : : ; k � ak j 	/
admits density given by (P-a. e.)

p.a1; : : : ; ak j 	/ D j�j�1=2
.2
/k=2

exp
n
�1
2
.a � E. j 	//���1.a � E. j 	//

o
:

Problem 2.13.9. Let 	 and � be two independent standard Gaussian random vari-
ables (i.e., Gaussian random variables with vanishing mean and standard deviation
equal to 1).

(a) Prove that the random variables 	 C � and 	 � � are also independent and
Gaussian.

(b) By using (a) and the result in Problem 2.8.27, prove that

C
lawD 	 C �

	 � �

lawD
1C �

	

1 � �

	

lawD 1C C

1 � C
lawD 1

C
;

where C is a random variable with Cauchy density 1

.1Cx2/ (recall that “

lawD” stands
for “equality in distribution”).

Problem 2.13.10. (S. N. Bernstein.) Let 	 and � be any two independent and
identically distributed random variables with finite variance. Prove that if 	 C �

and 	 � � are independent, then 	 and � must be Gaussian. (For a generalization of
this result, see the Darmois–Skitovich Theorem stated in Problem 2.13.44.)

Hint. Use the following line of reasoning (by '�.t/ we denote the characteristic
function of the random variable �):

(a) From '	.t/ D ' 	C�
2

.t/ ' 	��
2

.t/ D '	C�.t=2/C '	��.t=2/ conclude that

'	.t/ D
	
'	

	
t

2



2 ˇ̌
ˇ̌'�

	
t

2


ˇ̌
ˇ̌
2

; t 2 R;

and, analogously,

'�.t/ D
	
'�

	
t

2



2 ˇ̌
ˇ̌'	

	
t

2


ˇ̌
ˇ̌
2

; t 2 R:

(b) By using (a) conclude that j'	.t/j D j'�.t/j and that j'�.t/j D ˇ̌
'	
�
t
2

�ˇ̌4
.

(c) By using (b) conclude that '�.t/ 6D 0 for every t 2 R, so that one can define
the function f .t/ D ln j'�.t/j, with f .t/ D 4f .t=2/, t 2 R.

(d) From E�2 < 1 conclude that '�.t/ 2 C2.R/ and by using (c) conclude that

f 00.t/ D f 00
	
t

2



D � � � D f 00

	
t

2k



! f 00.0/; t 2 R;

so that f 00.t/ D const.
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(e) By using (d) conclude that f .t/ D at2 C bt C c, which, in conjunction with
(c), gives f .t/ D at2.

(f) By using (e) conclude that '�.t/ D ei˛.t/Cat2 , where the function ˛.t/ should
be continuous as long as '�.t/ is continuous.

(g) Convince yourself that ˛.t/ has the property

˛.t/ D 2˛

	
t

2



; t 2 R:

(h) By using the relation E�2 < 1 conclude that '�.t/ is differentiable at 0 and
by using (g) conclude that as k ! 1 one must have

˛.t/

t
D ˛.t=2k/

t=2k
! ˛0.0/; t 6D 0;

which shows that ˛.t/ D ˛0.0/t .

As a result, '�.t/ D ei˛
0.0/tCat2 , i.e., � has Gaussian distribution. With a similar

line of reasoning one can show that the random variable 	 is also Gaussian.

Problem 2.13.11. (Mercer Theorem.) Let r D r.s; t/ be any continuous covari-
ance function defined on the rectangle Œa; b� � Œa; b�, where �1 < a < b < 1.
Prove that the equation

�

Z b

a

r.s; t/u.t/ dt D u.s/; a � s � b

admits a continuous solution, u.t/, for infinitely many values � D �k > 0, k � 1,
and the respective system of solutions fuk D uk.s/; k � 1g forms a complete
orthonormal system in L2.a; b/, such that

r.s; t/ D
1X

kD1

uk.s/uk.t/

�k
;

where the series converges absolutely and uniformly on Œa; b� � Œa; b�.
Problem 2.13.12. LetX D fXt; t � 0g be any Gaussian process with EXt D 0 and
with covariance function r.s; t/ D e�jt�sj, s; t � 0. Given any 0 < t1 < � � � < tn, let
ft1;:::;tn .x1; : : : ; xn/ denote the (joint) density of the random variables Xt1; : : : ; Xtn .
Prove, that this density admits the following representation:

ft1;:::;tn .x1; : : : ; xn/ D
h
.2
/n

nY

iD2

�
1 � e2.ti�1�ti /

�i�1=2

� exp

�
�x

2
1

2
� 1

2

nX

iD2

.xi � e.ti�1�ti /xi�1/2

1 � e2.ti�1�ti /

�
:
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Problem 2.13.13. Let f D ffn D fn.u/; n � 1I u 2 Œ0; 1�g be a complete
orthonormal (for the Lebesgue measure on Œ0; 1�) system of L2-functions and let
.	n/n�1 be any sequence of independent and identically distributed N .0; 1/-random
variables. Prove that the process Bt D P

n�1 	n
R t
0
fn.u/ du, 0 � t � 1 is a

Brownian motion.

Problem 2.13.14. Prove, that if Bı D .Bı
t /0�t�1 is a Brownian bridge process,

then the process B D .Bt /t�0 given by Bt D .1C t/Bı
t=.1Ct / is a Brownian motion.

Problem 2.13.15. Verify that if B D .Bt /t�0 is a Brownian motion, then each of
the following processes is also a Brownian motion:

B
.1/
t D �Bt ; t � 0I

B
.2/
t D tB1=t ; t > 0; B

.2/
0 D 0I

B
.3/
t D BtCs � Bs; s > 0; t � 0I

B
.4/
t D BT � BT�t for 0 � t � T , T > 0;

B
.5/
t D 1

a
Ba2t ; a > 0; t � 0 (scaling property):

Problem 2.13.16. Let B� D .Bt C �t/t�0 be a Brownian motion with drift.
(a) Find the distribution of the random variables B�

t1 C B
�
t2 , for t1 < t2.

(b) Calculate EB�
t0B

�
t1 and EB�

t0B
�
t1B

�
t2 , for t0 < t1 < t2.

Problem 2.13.17. Consider the process B� from the previous problem and calcu-
late the conditional distributions

P.B�
t2 2 � jB�

t1 /; for t1 < t2 and t1 > t2 ;

and
P.B�

t2 2 � jB�
t0 ; B

�
t1 /; for t0 < t1 < t2 :

Problem 2.13.18. Let B D .Bt /t�0 be a Brownian motion process. Prove that the
process Y D .Yt /t2R, given by Yt D e�tBe2t , is an Ornstein–Uhlenbeck process,
i.e., a Gauss–Markov process with EYt D 0 and EYsYt D e�jt�sj.

Problem 2.13.19. Let Y D .Yt /t2R be an Ornstein–Uhlenbeck process. Prove that
the process

Bı
t D

(p
t.1 � t/ Y 1

2 ln t
1�t
; 0 < t < 1;

0; t D 0; 1;

is a Brownian bridge.

Problem 2.13.20. Let 	0; 	1; 	2; : : : be independent and identically distributed stan-
dard Gaussian (i.e., N .0; 1/) random variables. Prove that the series
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Bı
t D

1X

kD1
	k

p
2 sin k
t

k

; 0 � t � 1;

defines a Brownian bridge, while, just as the series in [ P §2.13, (26)], the series

Bt D 	0t C
1X

kD1
	k

p
2 sin k
t

k

; 0 � t � 1;

defines a Brownian motion.

Problem 2.13.21. Give a detailed proof of the fact that the processes .Bt /0�t�1,
defined in [ P §2.13, (26) and (28)], and the process

Bt D p
2

1X

nD1
	n
1 � cos n
t

n

;

where 	n, n � 1, are chosen as in [ P §2.13, (26) and (28)], are all Brownian
motions.

Problem 2.13.22. Let X D .Xk/1�k�n be any Gaussian sequence, let

m D max
1�k�n

EXk; �2 D max
1�k�n

DXk;

and suppose that

P
n

max
1�k�n

.Xk � EXk/ � a
o

� 1=2; for some a.

Prove the following inequality, which is due to E. Borel:

P
n

max
1�k�nXk > x

o
� 2�

�x �m � a

�

�
;

where �.x/ D .2
/�1=2
R1
x
e�y2=2 dy.

Problem 2.13.23. Let .X; Y / be any bi-variate Gaussian random variable
with EX D EY D 0, EX2 > 0, EY 2 > 0, and with correlation coefficient
� D EXYp

EX2EY 2
.

(a) Prove that the variablesX andZ D .Y ��X/=p1 � �2 are independent and
normally distributed.

(b) Prove that

PfXY < 0g D 1 � 2PfX > 0; Y > 0g D 
�1 arccos�;
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and conclude that

PfX > 0; Y > 0g D PfX < 0; Y < 0g D 1

4
C 1

2

arcsin �;

@

@�
PfX > 0; Y > 0g D 1

2

p
1 � �2 ;

PfX > 0; Y < 0g D PfX < 0; Y > 0g D 1

4
� 1

2

arcsin �:

(c) Let Z D max.X; Y /, where EX2 D EY 2 D 1. Prove that

EZ D
r
1 � �



; EZ2 D 1:

(d) Prove that for arbitrary a and b one has the following inequalities:

.1 �˚.a//.1 � ˚.c// � PfX > a; Y > bg

� .1 �˚.a//.1 �˚.c//C �'.b/.1� ˚.d//

'.a/
;

where c D .b � a�/=
p
1 � �2, d D .a � b�/=

p
1 � �2 and '.x/ D ˚ 0.x/ is the

standard normal density.
Hint. Property (b) can be derived from property (a).

Problem 2.13.24. Let Z D XY , where X � N .0; 1/ and PfY D 1g D PfY D
�1g D 1

2
. Prove that Z � N .0; 1/, find the distribution of the pairs .X;Z/ and

.Y;Z/, and find the distribution of the random variable X C Z. Convince yourself
that X and Z are uncorrelated and yet dependent.

Problem 2.13.25. Let 	 be any standard normal random variable, i.e., 	 �
N .0; 1/, and let

�˛ D
(

	; if j	j � ˛ ;

�	; if j	j > ˛ :
Prove that �˛ � N .0; 1/ and that with ˛ chosen so that

Z ˛

0

x2f	.x/ dx D 1

4

	
f	.x/ D 1p

2

e� x2

2



;

the variables 	 and �1=4 are uncorrelated and yet dependent Gaussian random
variables (comp. with [ P §2.13, Theorem 1-a)]).
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Problem 2.13.26. Let 	 and � be two normally distributed random variables with
E	 D E� D 0, E	2 D E�2 D 1 and E	� D �. Prove that:

.a/ E max.	; �/ D p
.1� �/=
I

.b/ E.	 j �/ D ��; D.	 j �/ D 1 � �2I

.c/ E.	 j 	 C � D z/ D z=2; D.	 j 	 C � D z/ D .1 � �/=2I

.d/ E.	 C � j 	 > 0; � > 0/ D 2
p
2=
:

Give the analogs of the above formulas for the case where D	 D �21 and D� D
�22 , for arbitrary �1 > 0 and �2 > 0.

Problem 2.13.27. Let
�
X
Y

�
be any bi-variate Gaussian random variable with co-

variance matrix

cov.X; Y / D
	
�2 �2

�2 �2



:

Write
�
X
Y

�
in the form 	

X

Y



D Q

	
	

�



;

whereQ is an orthogonal matrix and 	 and � are two independent Gaussian random
variables.

Problem 2.13.28. Let 	 D .	1; : : : ; 	n/ be any non-degenerate Gaussian vector
with vanishing mean and with covariance matrix R D kE	i 	j k, and suppose that
�1; : : : ; �n are the eigenvalues of the matrixR. Prove that the characteristic function,
'.t/, of the random variable 	21 C : : :C 	2n coincides with the characteristic function
of a random variable of the form �1�

2
1C: : :C�n�2n, where �1; : : : ; �n are independent

standard Gaussian random variables (�k � N .0; 1/), and, furthermore, one has

'.t/ D
nY

jD1
j1 � 2it�j j�1=2 :

Problem 2.13.29. Let 	1; : : : ; 	n, n � 2, be any set of independent and identically
distributed random variables. Prove that the distribution of the vector .	1; : : : ; 	n/
is rotation invariant if and only if each of the variables 	1; : : : ; 	n is normally
distributed with vanishing mean.

Hint. Use characteristic functions.
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Problem 2.13.30. (Statistics of the normal distribution N .m; �2/: part I.) Sup-
pose that 	1; : : : 	n, n � 2, are independent and identically distributed normal,
N .m; �2/, random variables. Prove that the variables

	 D 1

n

nX

kD1
	k and s21 D 1

n � 1
nX

kD1
.	k � 	/2

are independent and

.n � 1/s21
dD

n�1X

kD1
.	k �m/2:

Hint. Use the statement in the previous problem.

Problem 2.13.31. (Statistics of the normal distribution N .m; �2/: part II.) Let
	1 : : : ; 	n be any set of independent and identically distributed random variables
with normal distribution N .m; �2/, and let x D .x1; : : : ; xn/ be some sample of
observations over 	 D .	1; : : : ; 	n/, n � 1.

(a) Prove that the pairs of statistics

T1.x/ D
nX

iD1
xi ; T2.x/ D

nX

iD1
x2i

and

x D 1

n

nX

iD1
xi ; s2.x/ D 1

n

nX

iD1
.xi � x/2

are sufficient.
(b) Convince yourself that

s2.x/ D 1

n

nX

iD1
x2i � x2:

Problem 2.13.32. (Statistics of the normal distribution N .m; �2/: part III—m
is unknown and �2 D �20 .) In this and the following problem it is assumed
that 	1; : : : ; 	n is a set of independent and identically distributed N .n; �2/-
random variables and the notation from Problem 2.13.30 (with n � 2) and from
Problem 2.13.31 (with n � 1) is assumed.

Suppose that m is unknown, �2 is known to be �2 D �20 .
(a) Prove that, for 	 D 1

n

Pn
iD1 	i (D 1

n
Ti .	/), one has

E	 D m .unbiased estimate/ and D	 D �20
n
:
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(b) Prove that (for �2 D �20 ) the sample mean x is an effective estimate, i.e., un-
biased estimate with minimal dispersion. For that purpose, prove that in this case the
unbiased estimate, T .x/, for the parameterm satisfies the Rao–Cramér’s inequality:

DT � 1

nE
	
@ lnp

.m;�20 /
.	/

@m


 D 1�
n

�20

� ;

where

p.m;�20 /
.x/ D 1q

2
�20

e
� .x�m/2

2�20 :

(c) Prove that the variable
	 �m�
�0p
n

�

has a standard normal, i.e., N .0; 1/, distribution, and, furthermore, if �."/ is chosen
so that

1 � " D 1p
2


Z �."/

��."/
e�t 2=2 dt .D 2˚.�."// � 1/;

where 0 < " < 1, then the interval
	
x � �0p

n
�."/; x C �0p

n
�."/




is a confidence interval for m with confidence level 1 � ", i.e., the “probability for
cover,” satisfies

P.m;�20 /

�
	 � �0p

n
�."/ � m � 	 C �0p

n
�."/

�
D 1 � ";

where P.m;�20 / stands for the probability law with density p.m;�20 /. (Comp. with the
Definition in [ P §1.7, 2 ].)

Problem 2.13.33. (Statistics of the normal distribution N .m; �2/: part IV—m D
m0, but �2 is unknown.)

If m is known (m D m0), then it is natural to estimate �2 not by the variable
s2.x/ D 1

n

Pn
iD1.xi � x/2, but, rather, by the variable

s20.x/ D 1

n

nX

iD1
.xi �m0/

2:
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(a) Prove that

Es20.	/ D �2 .unbiased estimate/ and Ds20.	/ D 2�4

n
:

(b) Prove that the sample dispersion s20.x/ (withm D m0) is an effective estimate
of the variable �2, i.e., unbiased estimate with a minimal dispersion. To this end,
prove that the Rao–Cramér inequality for the unbiased estimate T .x/ of the variable
�2 has the form:

DT � 1

nE
�
@ lnp

.m0;�
2/
.	/

@�2

� D 1�
n
2�4

� :

Remark. As for the accuracy of the estimate s20.x/, one can construct a confi-
dence interval for �2 by using the following considerations.

Given x D .x1; : : : ; xn/, let

�2n.x/ D
nX

iD1

	
xi �m0

�


2
:

Since

�2n.	/
dD

nX

iD1
�2i .D �2n/;

according to [ P §2.8, (34)], the variable �2n.	/ has �2-distribution with n degrees
of freedom; more specifically, it has density (x � 0)

f�2n.x/ D x
n
2�1e�x=2

2n=2� .n=2/

(see also [ P §2.3, Table 3]). Since, at the same time, one can write

s20.x/ D �2n.x/�
2

n
;

one must have

P.m0;�20 /

�
s20.x/n

�2
� x

�
D
Z x

0

f�2n .t/ dt:

For this reason, given any 0 < " < 1, it is possible to find a �0."/ and �00."/ so that

Z �0."/

0

f�2n.t/ dt D "

2
and

Z 1

�00."/

f�2n .t/ dt D "

2
:
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Consequently, Z �00."/

�0."/

f�2n .t/ dt D 1 � ":

Furthermore, the interval 	
s20.x/n

�00."/
;
s20.x/n

�0."/




is a confidence interval for �2 with confidence level .1 � "/, since

�
s20.x/n

�00."/
� �2 � s20.x/n

�0."/

�
D f�0."/ � �2n.x/ � �00."/g:

Finally, we note that the choice of " > 0 does not determine uniquely a0."/ and
a00."/ from the relation

Z a00."/

a0."/

f�2n .t/ dt D 1 � ":

(c) How should one choose a0."/ and a00."/ in order to define the narrowest
possible confidence interval for �2 with confidence level .1 � "/? Are these values
for a0."/ and a00."/ going to be the same as �0."/ and �00."/?

Problem 2.13.34. (Statistics of the normal distribution N .m; �2/: part V—m is
unknown and �2 is unknown).

(a) Prove that in this case, for any n > 1, the unbiased estimates for m and �2

are given by

x D 1

n

nX

iD1
xi and s21.x/ 	 n

n � 1
s2.x/ D 1

n� 1

nX

iD1
.xi � x/2:

(b) Prove that the statistics

tn�1.x/ D x �m�
s1.x/p
n

�

has Student distribution with n � 1 degrees of freedom—see [ P §2.3, Table 3].
Hint. Write the variables tn�1.x/ in the form

tn�1.x/ D
x�m
�

p
n

�
s1.x/

�

�



2.13 Gaussian Systems of Random Variables 175

and notice that:
(i) The numerator in the last expression has standard normal, N .0; 1/,

distribution.
(ii) The denominator s1.	/

�
has the same distribution as the random variableq

1
n�1�

2
n�1, where �2n�1

dD Pn�1
iD1 �2i and �1; : : : ; �n�1 are independent standard

normal, N .0; 1/, random variables.
(iii) The variables x�m

�

p
n and s1.	/

�
are independent.

The desired statement with regard to the variables tn�1.	/ follows from (i), (ii),
(iii), and the formula [ P §2.8, (38)].

(c) By taking into account that the variable tn�1.x/ D x�m�
s1

p

n

� has Student

distribution, construct confidence intervals for the parameter m with confidence
level 1 � ".

(d) Prove that the variable .n� 1/ � s1
�

�2
has �2-distribution with .n� 1/ degrees

of freedom and, by using this property, construct a confidence interval for the
parameter � with confidence level .1 � "/.

Problem 2.13.35. Suppose that '.t/ is the characteristic function from Prob-
lem 2.13.28 and prove that for every choice of 0 < a1 < : : : < an and pk � 0,
1 � k � n, with

Pn
kD1 pk D 1, the function

 .t/ D
nX

kD1
pk'

	
t

ak




is characteristic.

Problem 2.13.36. Consider the Gaussian sequences X D .Xn/n�0, with covari-
ance function of the form

e�ji�j j or min.i; j / .D 2�1.ji j C jj j � ji � j j//; i; j D 0; 1; 2; : : : :

What structural properties (such as independent increments, stationarity, Markovian,
etc.) does this sequence have?

Problem 2.13.37. Let N be a standard Gaussian random variable (N � N .0; 1/).
Prove that for any ˛ < 1 one has

E
1

jN j˛ D 1p
2˛


�
�1
2

� ˛

2

�
:

Problem 2.13.38. Let X and Y be two independent standard normal (N .0; 1/)
random variables. Prove that

E
	

1

.X2 C Y 2/p=2



< 1

if and only if p < 2.
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Problem 2.13.39. Let everything be as in Problem 2.13.38 and suppose that

T D 1

2
.X2 C Y 2/ and g D X2

X2 C Y 2
:

Prove that:
(a) T and g are independent;
(b) T has exponential distribution (PfT > tg D e�t , t > 0);
(c) g has arcsin-distribution (with density 1



p
x.1�x/ , x 2 .0; 1/).

Problem 2.13.40. Let B D .Bt /t�0 be a Brownian motion and let

Ta D infft � 0 W Bt D ag

be the first passage time to level a > 0, with the understanding that Ta D 1, if the
set in the right side of the last relation is empty.

By using the reflection principle, i.e., the property Pfsups�t Bs > ag D 2PfBt �
ag (see [17], [103]), prove that the density pa.t/ D @PfTa�tg

@t
, t > 0, is given by the

formula
pa.t/ D ap

2
t3
e�a2=.2t/:

Hint. Use the fact that PfTa � tg D 2PfBt � ag.

Problem 2.13.41. Let T D T1, where Ta is the first passage time defined in the
previous problem. Prove that

T
lawD N�2;

where N is a standard normal (N � N .0; 1/) random variable. In addition, prove
that the Laplace transform of T is given by

Ee� �2

2 T D Ee� �2

2 � 1

N2 D e��; � � 0;

while the Fourier transform of T is given by

EeitT D Eeit
1

N2 D exp
n

� jt j1=2
�
1 � i

t

jt j
�o
; t 2 R:

(The above relations may be viewed as a constructive definition of the random
variable 1=N 2, which has a stable distribution with parameters ˛ D 1

2
, ˇ D 0,

 D �1, and d D 1 (see [ P §3.6, (9) and (10)]).
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Problem 2.13.42. Let X and Y be two independent normally distributed
(N .0; �2/) random variables.

(a) Prove that the variables

2XYp
X2 C Y 2

and
X2 � Y 2p
X2 C Y 2

are independent and normally distributed with mean 0 and dispersion 1=2.
(b) Conclude that

X

Y
� Y

X

lawD 2C;

where C is a Cauchy random variable with density 1=.
.1C x2//, x 2 R, and that

C � 1

C

lawD 2C:

(c) Generalize this result by showing that for every a > 0 one has

C � a

C

lawD .1C a/C:

(d) Prove that the variables X2 C Y 2 and
Xp

X2 C Y 2
are independent.

Hint. (a) Use the representation for the variables X and Y obtained in Prob-
lem 2.8.13.

(b) Use the result in Problem 2.8.27 (a).

(c) For the proof it suffices to show that if f .x/ D x � ax�1

1C a
, then for any

bounded function g.x/ the integrals
R1

�1 g.f .x//
dx

1C x2
and

R1
�1 g.x/

dx

1C x2
coincide.

Problem 2.13.43. Prove that for any 0 < H � 1 the function

R.s; t/ D 1

2

�
t2H C s2H � jt � sj2H �; s; t � 0

is non-negative definite (see formula [ P §2.13, (24)]) and that, therefore, one can
construct a Gaussian process BH D .BH

t /t�0 with mean 0 and covariance function
R.s; t/. (By using Kolmogorov’s criterion—see, for example, [17]—it is possible to
show that, in fact, BH D .BH

t /t�0 may be chosen to have continuous sample paths.
Such a process is commonly referred to as a fractal Brownian motion with Hurst
parameter H .)

Convince yourself that for H > 1 the function R.s; t/ is not non-negative
definite.



178 2 Mathematical Foundations of Probability Theory

Problem 2.13.44. (The Darmois–Skitovich theorem.) Let 	1; : : : ; 	n be independent
and identically distributed random variables and let a1; : : : ; an and b1; : : : ; bn be
some non-zero constants. Prove that the following characterization holds: if the
random variables

Pn
iD1 ai 	i and

Pn
iD1 bi 	i are independent, then the variables

	1; : : : ; 	n must have normal distribution. (With n D 2 and with a1 D a2 D 1, b1 D
1 and b2 D �1 this is nothing but the Bernstein theorem from Problem 2.13.10.)

Problem 2.13.45. Let 	1; 	2; : : : be any sequence of independent standard normal
(N .0; 1/) random variables. Prove that as n ! 1 the random variables

Xn D p
n

Pn
iD1 XiPn
iD1 X2

i

Yn D
Pn

iD1 Xi�Pn
iD1 X2

i

�1=2

converge in distribution to a standard normal (N .0; 1/) random variable.

Problem 2.13.46. Let .X; Y / be any pair of Gaussian random variables with EX D
EY D 0, DX D DY D 1, and with correlation coefficient �X;Y . Prove that the
correlation coefficient �˚.X/;˚.Y / of the variables ˚.X/ and ˚.Y /, where ˚.x/ D
.2
/�1=2

R x
�1 e�y2=2 dy, is given by the formula

�˚.X/;˚.Y / D 6



arcsin

�X;Y

2
:

Problem 2.13.47. Let .X; Y;Z/ be any 3-dimensional Gaussian random vector
with EX D EY D EZ D 0, DX D DY D DZ D 1 and with correlation
coefficients �.X; Y / D �1, �.X;Z/ D �2, �.Y;Z/ D �3. Prove that (comp. with
statement (b) in Problem 2.13.23)

PfX > 0; Y > 0;Z > 0g D 1

8
C 1

4

farcsin�1 C arcsin �2 C arcsin �3g:

Hint. Let A D fX > 0g, B D fY > 0g, C D fZ > 0g. Then, for p D
P.A \ B \ C/, by the “inclusion–exclusion formula” (Problem 1.1.12), one has

1 � p D P.A [ B [ C/ D �
P.A/C P.B/C P.C /

�

� �
P.A \ B/C P.A\ C/C P.B \ C/�C p:

Finally, use the result in Problem 2.13.23(b).

Problem 2.13.48. Prove that the Laplace transform, Ee��R2 , � > 0, of the square
of the “span”, of the Brownian bridge Bı D .Bı

t /0�t�1, namely, the quantity

R D
r
2




�
max
0�t�1 B

ı
t � min

0�t�1B
ı
t

�
;
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is given by the formula

Ee��R2 D
	 p

�


sinh
p
�



2
:

Problem 2.13.49. (O. V. Viskov.) Let � and � be any two independent standard
normal (N .0; 1/) random variables. Prove that:

(a) For any given function f D f .z/, z 2 C, with Ejf .x C .�C i�//j < 1, the
following “averaging” property is in force

f .x/ D Ef .x C .�C i�//:

(b) For any Hermite polynomial Hen.x/, n � 0 (see p. 380 in the Appendix) the
following representation is in force

Hen.x/ D E.x C i�/n:





Chapter 3
Topology and Convergence in Spaces
of Probability Measures: The Central
Limit Theorem

3.1 Weak Convergence of Probability Measures
and Distributions

Problem 3.1.1. We say that the function F D F.x/, defined on Rm, is continuous
at the point x 2 Rm if, for every " > 0, one can find a ı > 0, such that
jF.x/ � F.y/j < " for all y 2 Rm that satisfy

x � ıe < y < x C ıe;

where e D .1; : : : ; 1/ 2 Rm. The sequence of distribution functions .Fn/n�1 is
said to converge in general to the distribution function F (notation: Fn ) F ) if
Fn.x/ ! F.x/ as n ! 1, for any x 2 Rm at which the function F D F.x/ is
continuous.

Prove that the statement in [ P §3.1, Theorem 2] also holds for the spaces Rm,
m > 1 (see Remark 1 after [ P §3.1, Theorem 1]).

Hint. In the context of [ P §3.1], it is enough to show only the equivalence
.1/ , .4/. To prove the implication .1/ ) .4/, suppose that x 2 Rm is a
continuity point for F , and convince yourself that if @.�1; x� is the boundary of
the set .�1; x� D .�1; x1� � � � � � .�1; xm�, then P.@.�1; x�/ D 0, so that
Pn..�1; x�/ ! P..�1; x�/, i.e., Fn.x/ ! F.x/. The proof of the implication
.4/ ) .1/ in them-dimensional case is analogous to the one-dimensional argument
in the proof of [ P §3.1, Theorem 2].

Problem 3.1.2. Prove that in the spaces Rm the class of “elementary” sets, K , is a
convergence defining class.

Problem 3.1.3. LetE be one of the space R1,C orD (see [ P §2.2]). The sequence
of probability measures .Pn/n�1 (defined on the Borel �-algebra, E , generated by
the open sets in the respective space) converges in general, in the sense of finite-

dimensional distributions, to the probability measure P (notation: Pn
f) P), if

Pn.A/ ! P.A/ as n ! 1, for all cylindrical sets A with P.@A/ D 0.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics,
DOI 10.1007/978-1-4614-3688-1 3,
© Springer Science+Business Media New York 2012
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Prove that in the case of the space R1 one has

.Pn
f)P/ ” .Pn ) P/: .�/

Can one make the same statement for the spaces C and D?
Hint. The implication ( in .�/ is straight-forward. Therefore it is enough to

prove only that .Pn
f) P/ ) .Pn ! P/. Let f be any bounded (jf j � c) function

from the space C.R1/. Given any m 2 N D f1; 2; : : : g, define the functions
fmW R1 ! R by

fm.x1; : : : ; xm; xmC1; : : : / D fm.x1; : : : ; xm; 0; 0; : : : /:

Clearly, one has fm 2 C.R1/, jfmj � c and fm.x/ ! f .x/, for every x 2 R1.
Next, consider the sets

Am D
n
x 2 R1 W jfm.x/ � f .x/j � "

o
;

and convince yourself that the following estimate holds for all sufficiently large n
andm:

ˇ̌
ˇ̌
Z

R1

fm dPn �
Z

R1

f dPn

ˇ̌
ˇ̌ � "Pn.Am/C 2cP.Am/ � "C 4 c ":

Then notice that
R

R1 fm dPn ! R
R1 fm dP for every m and by using the above

estimate prove that

ˇ̌
ˇ̌ lim
n

Z

R1

f dPn �
Z

R1

fm dP

ˇ̌
ˇ̌ � "C 4 c " ;

ˇ̌
ˇ̌ lim
n

Z

R1

f dPn �
Z

R1

fm dP

ˇ̌
ˇ̌ � "C 4 c " :

for all sufficiently large m. The Lebesgue dominated convergence theorem yieldsR
R1 fm dP ! R

R1 f dP, and the previous two inequalities yield:
ˇ̌
ˇ̌ lim
n

Z

R1

f dPn �
Z

R1

f dP

ˇ̌
ˇ̌ � "C 4 c "I

ˇ̌
ˇ̌ lim
n

Z

R1

f dPn �
Z

R1

f dP

ˇ̌
ˇ̌ � "C 4 c " :

Since " > 0 is arbitrarily chosen, it follows that
Z

R1

f dPn !
Z

R1

f dP; n ! 1 :
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Problem 3.1.4. Let F and G be any two distribution functions on the real line
and let

L.F;G/ D inf
n
h > 0WF.x � h/� h � G.x/ � F.x C h/C h

o

be the Lévy distance between them. Prove that the convergence in the Lévy metric,
L. �; � /, is equivalent to the convergence in general, i.e.

.Fn ) F / ” .L.Fn; F / ! 0/:

Hint. The implication .L.Fn; F / ! 0/ ) .Fn ) F / follows directly from
the definition. The inverse implication can be established by contradiction, i.e.,
by showing that Fn ) F , while, at the same time, L.Fn; F / 6! 0, leads to a
contradiction.

Problem 3.1.5. Suppose that Fn ) F and that the distribution function F is
continuous. Prove that the functions Fn.x/ converge uniformly to F.x/ as n ! 1
(comp. with Problem 1.6.8):

sup
x

jFn.x/ � F.x/j ! 0; n ! 1:

Hint. Choose an arbitrary " > 0 and let m > 1=". Taking into account that F
is continuous, choose the points x1; : : : ; xm�1 so that F.xi / D i

m
and jFn.xi / �

F.xi /j < ", i D 1; : : : ; m � 1, for any sufficiently large n. Conclude that for any
x 2 Œxk; xkC1� (with the understanding that x0 D �1 and xm D 1) one must have

Fn.x/ � F.x/ � Fn.xkC1/� F.xk/ � F.xkC1/C "� F.xk/ D "C 1

m
< 2" :

Analogously,F.x/�Fn.x/ < 2" and, therefore, jFn.x/�F.x/j < 2 " for all x 2 R.

Problem 3.1.6. Prove the statement formulated in Remark 1 after Theorem 1 in
[ P §3.1].

Problem 3.1.7. Prove the equivalence of conditions (I*)—(IV*), formulated in
Remark 2 after Theorem 1 in [ P §3.1].

Problem 3.1.8. Prove that Pn
w! P (

w! stands for “weakly converges to”) if and
only if every sub-sequence, .Pn0/, of the sequence .Pn/ contains a sub-sub-sequence

.Pn00/ with the property Pn00

w! P.
Hint. The necessity part is obvious. For the sufficiency part, it is enough to notice

that if Pn
w
6!P, then one can find: some continuous and bounded function f , some

" > 0, and some sub-sequence .n0/, so that
ˇ̌
ˇ̌
Z

E

f dPn0 �
Z

E

f dP

ˇ̌
ˇ̌ > ":

By using this property, one can show that the existence of a sub-sub-sequence

.n00/ � .n0/ with Pn00

w! P leads to a contradiction.
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Problem 3.1.9. Give an example of probability measures P , Pn, n � 1, on

.R;B.R//, such that Pn
w�! P , and, at the same time, it is not true that Pn.B/ !

P.B/ for all Borel sets B 2 B.R/.

Problem 3.1.10. Give an example of distribution functions F D F.x/, Fn D
Fn.x/, n � 1, such, that Fn

w�! F , but supx jFn.x/ � F.x/j 6! 0, n ! 1.

Problem 3.1.11. In many probability theory texts, the implication (4) ) (3) in
[ P §3.1, Theorem 2], concerning the convergence of the distribution functions Fn,
n � 1, to the distribution function F , is attributed to E. Helly and H. E. Bray. Prove
one more time the following statements:

(a) Helly–Bray Lemma. If Fn ) F (see Definition 1), then

lim
n

Z b

a

g.x/ dFn.x/ D
Z b

a

g.x/ dF.x/;

where a and b are any two continuity points for the distribution functionF D F.x/,
and g D g.x/ is any continuous function on the interval Œa; b�.

(b) Helly–Bray Theorem. If Fn ) F , then

lim
n

Z 1

�1
g.x/ dFn.x/ D

Z 1

�1
g.x/ dF.x/;

for any bounded and continuous function g D g.x/ defined on the real line R.

Problem 3.1.12. Suppose that Fn ) F and that for some b > 0 the sequence�R jxjb dFn.x/
�
n�1 happens to be bounded. Prove that:

lim
n

Z
jxja dFn.x/ D

Z
jxja dF.x/; 0 � a � bI

lim
n

Z
xk dFn.x/ D

Z
xk dF.x/ for every k D 1; 2; : : : ; Œb�, k ¤ b.

Problem 3.1.13. Let Fn ) F and let � D med.F / and �n D med.Fn/ denote,
respectively, the medians of the distributions F and Fn, n � 1 (see Problem 1.4.5).
Assuming that the medians � and �n are uniquely defined for all n � 1, prove
that �n ! �.

Problem 3.1.14. Suppose that the distribution function F is uniquely determined
by its moments m.k/ D R1

�1 xk dF.x/, k D 1; 2; : : : , and let .Fn/n�1 be any
sequence of distribution functions, such that

m.k/
n D

Z 1

�1
xk dFn.x/ ! m.k/ D

Z 1

�1
xk dF.x/; k D 1; 2; : : : :

Prove that Fn ) F .
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Problem 3.1.15. Let� be any �-finite measure on the Borel �-algebra, E , for some
metric space .E; �/. Prove that for every B 2 E one has

�.B/ D supf�.F /I F � B; F is closedg D inff�.G/I G 	 B; G is open/g:

Problem 3.1.16. Prove that a sequence of distribution functions,Fn, n � 1, defined

on the real line R, converges weakly to the distribution functions F (Fn
w! F )

if and only if there is a set D which is everywhere dense in R and is such that
Fn.x/ ! F.x/ for every x 2 D.

Problem 3.1.17. Suppose that the functions g.x/ and .gn.x//n�1, x 2 R, are
continuous and have the properties:

sup
x;n

jgn.x/j � c < 1I

lim
n

sup
x2B

jgn.x/ � g.x/j D 0;

for every bounded interval B D Œa; b�.
Prove that the convergence of distribution functions Fn ) F implies

lim
n

Z

R
gn.x/ dFn.x/ D

Z

R
g.x/ dF.x/:

By constructing appropriate examples, prove that, in general, the point-wise conver-
gence gn.x/ ! g.x/, x 2 R, is not enough to guarantee the above convergence.

Problem 3.1.18. Suppose that the following convergence of distribution functions
takes place: Fn ) F as n ! 1.

(a) By constructing appropriate examples, prove that, in general,

Z

R
x dFn.x/ 6!

Z

R
x dF.x/:

(b) Prove that if supn
R

R jxjk dFn � c < 1, for some k � 1, then for all
1 � l � k � 1 one must have

Z

R
xl dFn.x/ !

Z

R
xl dF.x/:

Problem 3.1.19. As a generalization of the previous problem, prove that if f D
f .x/ is some continuous function, not necessarily bounded, but such that

lim
jxj!1

jf .x/j
g.x/

D 0;
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for some positive function g D g.x/ with supn
R

R g.x/ dFn.x/ � c < 1, then
Z

R
f .x/ dFn.x/ !

Z

R
f .x/ dF.x/:

3.2 Relative Compactness and Tightness of Families
of Probability Distributions

Problem 3.2.1. Prove Theorems 1 and 2 from [ P §3.2] for the spaces Rn, n � 2.

Problem 3.2.2. Let P˛ be a Gaussian measure on the real line, with parametersm˛

and �2˛ , for every ˛ 2 A. Prove that the family P D fP˛I˛ 2 Ag is tight if and
only if there are constants, a and b, for which one can write

jm˛j � a; �2˛ � b; ˛ 2 A:

Hint. The sufficiency statement follows from the fact that for every ˛ 2 A one
can find a random variable �˛ 
 N .0; 1/, such that �˛ D m˛ C �˛�˛. With this
observation in mind, one can conclude that Pfj�˛j � ng � P

˚j�˛j � n�a
b

�
. As a

result, the family fP˛g must be tight. The necessity statement can be established by
contradiction.

Problem 3.2.3. Give examples of tight and non-tight families of probability mea-
sures P D fP˛I˛ 2 Ag, defined on the measure space .R1;B.R1//.

Hint. Consider the following families of measures:
(a) fP˛g, where P˛ � P is such that

P.A/ D
(
1; if .0; 0; : : : / 2 A;
0; if .0; 0; : : : / 62 AI

(b) fPn; n 2 Ng, where Pn is a probability measure concentrated at the point
xn D .n; 0; 0; : : : /.

Problem 3.2.4. Let P be a probability measure, defined on the Borel �-algebra, E ,
in some metric space .E; �/. We say that the measureP is tight (comp. with [ P §3.2,
Definition 2]), if for any " > 0 one can find a compact set K � E , such that
P.K/ � 1 � ". Prove the following result, known as “Ulam theorem”: every
probability measure P , defined on the Borel �-algebra in some Polish space (i.e.,
some complete and separable metric space) is automatically tight.

Problem 3.2.5. Suppose that X D fX˛ 2 Rd I˛ 2 Ag is some family of random
vectors in Rd , chosen so that sup

˛

EkX˛kr < 1 for some r > 0. Setting P˛ D
Law.X˛/, ˛ 2 A, show that family P D fP˛I˛ 2 Ag is tight.
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Problem 3.2.6. The family of random vectors f�t 2 RnI t 2 T g is said to be tight, if

lim
a!1 sup

t2T
Pfk�tk > ag D 0:

(a) Prove that f�k 2 RnI k � 0g is tight if and only if

lim
a!1 lim

k!1 Pfk�kk > ag D 0:

(b) Prove that the family of non-negative random variables f�k I k � 0g is tight if
and only if

lim
�#0

lim
k
Œ1 � Ee���k � D 0:

Problem 3.2.7. Let .�k/k�0 be any sequence of random vectors in Rn, and suppose

that �k
d! �, i.e., the distributions Fk of the vectors �k converge weakly (equiva-

lently, converge essentially) to the distribution F of some random vector �. Prove
that family f�k I k � 0g is tight.

Problem 3.2.8. Let .�k/k�0 be any tight sequence of random variables and suppose

that the sequence .�k/k�0 is such that �k
P! 0 as k ! 1. Conclude from these

conditions that �k�k
P! 0 as k ! 1.

Problem 3.2.9. Let X1;X2; : : : be any infinite sequence of exchangeable random
variables (for a definition, see Problem 2.5.4) and suppose that the variablesXi take
only the values 0 or 1.

Prove the following result: there is a probability distribution functionG D G.�/

on the interval Œ0; 1�, such that, for every 0 � k � n, and every n � 1, one has

PfX1 D 1; : : : ; Xk D 1;XkC1 D 0; : : : ; Xn D 0g D
Z 1

0

�k.1 � �/n�k dG.�/:

(This is a special case of B. de Finetti’s Theorem, according to which the distribution
law of every infinite sequence of exchangeable random variables can be identified
with the distribution law of a (convex) mixture of infinite sequences of independent
and identically distributed random variables—see [1] and [29].)

Hint. Consider the event

Ak D fX1 D 1; : : : ; Xk D 1;XkC1 D 0; : : : ; Xn D 0g
and write the probability P.Ak/ in the form

P.Ak/ D
mX
jD0

P.Ak jSm D j /PfSm D j g; .�/
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where m � n and Sm D Pm
iD1 Xi . Next, by using the exchangeability property,

prove that the right side of .�/ may be re-written as

E
k�1Y
iD0
.mYm � i/ �

n�k�1Y
jD0

.m.1 � Ym/� j / � 1Qn�1
lD0.m� l/

;

where Ym D Sm=m. (Notice that for large m this expression is close to EŒY k
m.1 �

Ym/
n�k�.) Finally, pass to the limit as m ! 1 and conclude that the limit can be

expressed as
R 1
0
�k.1 � �/n�k dG.�/, where G.�/ is some distribution function on

the interval Œ0; 1�.

Problem 3.2.10. Let �1; : : : ; �n be any sequence of exchangeable random variables,
which take the values 0 and 1. Prove that:

(a) P.�i D 1 jSn/ D Sn

n
, where Sn D �1 C : : :C �n;

(b) P.�i D 1; �j D 1 jSn/ D Sn.Sn � 1/

n.n � 1/ , where i 6D j .

Problem 3.2.11. As a generalization of [ P §1.11, Theorem 2], prove that if
�1; : : : ; �n is some set of exchangeable random variables with values in f0; 1; 2; : : :g,
and if Sk D �1 C : : :C �k , 1 � k � n, then

P.Sk < k for all 1 � k � n jSn/ D
 
1 � Sn

n

!C
:

3.3 The Method of Characteristic Functions for Establishing
Limit Theorems

Problem 3.3.1. Prove the statement in [ P §3.3, Theorem 1] in the case of the
spaces Rn, n � 2.

Hint. The proof is analogous to the one-dimensional case, except for [ P §3.3,
Lemma 3]. The multidimensional analog of this lemma can be stated in the form:

Z

A

dF.x/ � k

an

Z

B

.1 � Re '.t// dt;

where

A D
n
x 2 Rn W jx1j � 1

a
; : : : ; jxnj � 1

a

o
;

B D
n
t 2 Rn W 0 � t1 � a; : : : ; 0 � tn � a

o
:
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Problem 3.3.2. (The law of large numbers.)

(a) Let �1; �2; : : : be any sequence of independent random variables with finite
expected values Ej�nj and dispersions D�n � K , n � 1. Prove that the law of large
numbers holds: for every " > 0

P

( ˇ̌
ˇ̌
ˇ
�1 C : : :C �n

n
� E.�1 C : : :C �n/

n

ˇ̌
ˇ̌
ˇ � "

)
! 0 as n ! 1: .�/

(b) Let �1; �2; : : : be any sequence of random variables with finite expected values
Ej�nj, dispersions D�n � K , n � 1, and covariances cov.�i ; �j / � 0, i 6D j . Prove
that the law of large numbers .�/ holds.

Hint. To prove (a) and (b), use Chebyshev’s inequality.

(c) (S. N. Bernstein.) Let �1; �2; : : : be any sequence of random variables with
finite expected values Ej�nj and dispersions D�n � K , n � 1, and suppose that the
covariances are such that cov.�i ; �j / ! 0 as ji � j j ! 1. Prove that when these
conditions are satisfied the law of large numbers .�/ holds.

Hint. Convince yourself that under the specified conditions one has

D.�1 C : : :C �n/=n ! 0 as n ! 1:

(d) Let �1; �2; : : : be independent and identically distributed random variables,
let �n D EŒ�1I.j�1j � n/�, and suppose that

lim
x!1xPfj�1j > xg D 0:

Prove the following version of the law of large numbers:

Sn

n
� �n

P! 0;

where, as usual, Sn D �1 C : : :C �n. (See also Problem 3.3.20.)
Hint. Given some s > 0, set �.s/i D �i I.j�i j � s/ andm.s/

n D EŒ�.s/1 C : : :C �
.s/
n �,

and prove that

P
n
j�1 C : : :C �n �m.s/

n j > tg � t�2D
�
�
.s/
1 C : : :C �.s/n

�

CPf�1 C : : :C �n 6D �
.s/
1 C : : :C �.s/n

o
:

By using this estimate, convince yourself (setting s D n and t D "n, " > 0) that

P
nˇ̌
ˇ�1 C : : :C �n

n
� E�1I.j�1j � n/

ˇ̌
ˇ > "

o

� 2

"2n

Z n

0

xPfj�1j > xgdx C nPfj�1j > ng;

which leads to the desired property.
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Problem 3.3.3. In the setting of Theorem 1, prove that the family f'n; n � 1g is
uniformly equicontinuous and the convergence 'n ! ' is uniform on every finite
interval.

Hint. The uniform equicontinuity of the family f'n; n � 1g means that for every
" > 0 one can find a ı > 0, such that, for every n � 1 and every s; t with jt�sj < ı,
one has j'n.t/ � 'n.s/j < ".

Assuming that Fn
w! F , the Prokhorov Theorem (see [ P §3.2, Theorem 1])

implies that, given any " > 0, one can find some a > 0 so that
R

jxj�a dFn < ",
n � 1. Consequently,

j'n.t C h/� 'n.t/j �
Z

jxj�a
jeitx � 1j dFn C 2";

from where the desired uniform equicontinuity property easily follows. By using
this property one can prove that

sup
t2Œa;b�

j'n.t/ � '.t/j ! 0 as n ! 1;

for every finite interval Œa; b�.

Problem 3.3.4. Let �n, n � 1, be any sequence of random variables with

characteristic functions '�n.t/, n � 1. Prove that �n
d! 0 if and only if '�n.t/ ! 1

as n ! 1, in some neighborhood of the point t D 0.
Hint. For the proof of the sufficiency part, consider using Lemma 3, according

to which the family of measures fLaw.�n/; n � 1g is tight.

Problem 3.3.5. Let X1;X2; : : : be independent and identically distributed random
vectors in Rk with vanishing mean and with (finite) covariance matrix 	 . Prove that

X1 C � � � CXnp
n

d! N .0; 	 /:

(Comp. with Theorem 3.)
Hint. According to Problem 3.3.1, it is enough to prove that, for every t 2 Rk ,

one has

Eei.t;�n/ ! Eei.t;�/ as n ! 1;

where �n D n�1=2.X1 C � � � CXn/ and � 
 N .0; 	 /.

Problem 3.3.6. Let �1; �2; : : : and �1; �2; : : : be two sequences of random vari-

ables, chosen so that �n and �n are independent for every n, and suppose that �n
d�! �

and �n
d�! � as n ! 1, where � and � are also independent.

(a) Prove that the sequence of bi-variate random variables .�n; �n/ converges in
distribution to .�; �/.
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(b) Let f D f .x; y/ be any continuous function. Verify that the sequence
f .�n; �n/ converges in distribution to f .�; �/.

Hint. The convergence .�n; �n/
d! .�; �/ obtains from the statement in

Problem 3.3.1. In order to establish the convergence f .�n; �n/
d! f .�; �/, consider

the composition ' ı f W R2 ! R, where 'W R ! R is some continuous and bounded
function.

Problem 3.3.7. By constructing an appropriate example, prove that in part (2) of
[ P §3.3, Theorem 1] the continuity condition at 0 for the limiting characteristic
function '.t/ D limn 'n.t/ cannot be weakened in general. (In other words, if '.t/
is not continuous at 0, then it is possible that 'n.t/ ! '.t/, but there is no function

F for which Fn
w!F .) Convince yourself by way of example that if the continuity

at 0 for the limiting function '.t/ fails, then the family of probability distributions
fPn; n � 1g, with characteristic functions 'n.t/, n � 1, may no longer be tight.

Hint. Take Fn to be the distribution function of a Gaussian random variable with
mean 0 and dispersion n.

Problem 3.3.8. As an extension to inequality [ P §3.3, (4)] from [ P §3.3,
Lemma 3], prove that if � is a random variable with characteristic function '.t/,
then:

(a) For any a > 0 one has

Pfj�j � a�1g � 2

a

Z

jt j�a
j'.t/j dt:

(b) For any positive b and ı one has

Pfj�j � bg �
�
1C 2


bı

�2
ı

Z ı

0

Œ1 � Re '.t/� dt:

(c) If � is a non-negative random variable and  .a/ D Ee�a� , a � 0, is its
Laplace transform, then

Pf� � a�1g � 2.1�  .a//:

Problem 3.3.9. Suppose that �; �1; �2; : : : is some sequence of random vectors

in Rn. Prove that �k
d! � as k ! 1 if and only if for any vector t 2 Rn one

has the following convergence of the respective scalar products

.�k; t/
d! .�; t/:

(This result is the basis for the Cramér–Wold method, which comes down to
replacing the test for convergence in distribution of random vectors from Rn to the
test for convergence in distribution of certain scalar random variables.)
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Problem 3.3.10. As a continuation to Theorem 2, which is known as Khinchin law
of large numbers (or Khinchin criterion), prove the following statement.

Let �1; �2; : : : be some sequence of independent and identically distributed
random variables and let Sn D �1 C : : :C �n, 0 < p < 2. Then there is a constant,
c 2 R, for which

n�1=pSn
P! c;

if and only if one can claim that as r ! 0:
(a) rpPfj�1j > rg ! 0 and c D 0, if p < 1;
(b) rPfj�1j > rg ! 0 and EŒ�1I.j�1j � r/� ! c, if p D 1;
(c) rpPfj�1j > rg ! 0 and E�1 D c D 0, if p > 1.

Problem 3.3.11. Let �1; �2; : : : be a sequence of independent and identically dis-
tributed random variables and let Sn D �1 C : : : C �n. Prove that the variables
n�1=2Sn converge in probability as n ! 1 if and only if Pf�1 D 0g D 1.

Problem 3.3.12. Let F.x/ and .Fn.x//n�1 be some distribution functions and let
'.t/ and .'n.t//n�1 be their respective characteristic functions. Prove that if

sup
t

j'n.t/ � '.t/j ! 0;

then

sup
x

jFn.x/ � F.x/j ! 0:

Problem 3.3.13. Let �1; �2; : : : be independent and identically distributed random
variables with distribution function F D F.x/ and let Sn D �1 C � � � C �n, n � 1.

Prove the following version of the law of large numbers (due to A. N. Kol-
mogorov): for the existence of a sequence of numbers .an/n�1, such that

Sn

n
� an P! 0 as n ! 1 ; .�/

it is necessary and sufficient that

nPfj�1j > ng ! 0 as n ! 1 ; .��/

or, equivalently, that

xŒ1 � F.x/ � F.�x/� ! 0 as x ! 1 :

Furthermore, when these conditions hold one has an � E.�1I.j�1j � n// ! 0 as
n ! 1. (The existence of a sequence .an/n�1 for which the property .�/ holds is
known as “stability of the sequence

�
Sn
n

�
n�1 in the sense of Kolmogorov”.)

Problem 3.3.14. In the context of the previous problem, prove that if Ej�1j < 1
then the condition .��/ holds and it is possible to take an � m, where m D E�1.
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(Comp. with [ P §3.3, Theorem 2], Khinchin criterion for the law of large numbers,
and Problems 3.3.10 and 3.3.13.)

Problem 3.3.15. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables that take values ˙3;˙4; : : : with probabilities

Pf�1 D ˙xg D c

2x2 ln x
; x D 3; 4; : : : ;

where the normalizing constant c is given by

c D
� 1X
xD3

1

x2 ln x

��1
:

Prove that in this case Ej�1j D 1, but condition .��/ from Problem 3.3.13 holds

and it is possible to take an � 0, i.e., with this choice one has Sn
n

P! 0.

Remark. As the random variables �1; �2; : : : do not possess finite first moments
(Ej�i j D 1), it is not possible to formulate the law of large numbers in the sense of
Khinchin (n�1Sn ! m, where m D E�1—see [ P §3.3, Theorem 2]). Nevertheless
the random variables �1; �2; : : : exhibit stability in the sense of Kolmogorov (see
Problem 3.3.13), in that

Sn

n

P! em .D 0/;

where em D eE�1 is the generalized expected value, which was defined by
A. N. Kolmogorov (see [66, Chap. VI., §4]) by the formula

eE�1 D lim
n!1 E

�
I.j�1j � n/�1

�
:

Later A. N. Kolmogorov called this generalized expected value the “A-integral”. (It
is common in analysis to say that the function f D f .x/, x 2 R, isA-integrable, if:

(i) f belongs to the space L1 in weak sense (i.e., limn n�fx W jf .x/j > ng ! 0);
and

(ii) The limit limn

R
fxWjf .x/j�ng f .x/ �.dx/ exists, where � is the Lebesgue

measure on .R;B.R//.
Usually this integral is denoted by .A/

R
f .x/ �.dx/. One must be aware that

many of the usual properties of the Lebesgue integral—the additivity property, for
example—may not hold for the A-integral.)

Problem 3.3.16. Let �1; �2; : : : be a sequence of independent random variables
(with finite expected values), such that

1

n1Cı
nX
iD1

Ej�i j1Cı ! 0 as n ! 1 ;



194 3 Topology and Convergence in Spaces of Probability Measures...

for some ı 2 .0; 1/. Prove that this “.1 C ı/-condition” guarantees that the law of
large numbers is in force, i.e.,

1

n

nX
iD1
.�i � E�i /

P! 0 as n ! 1:

Problem 3.3.17. (Restatement of [ P §3.3, Theorem 3] for the case of non-
identically distributed random variables.) By using the continuity theorem ([ P §3.3,
Theorem 1]) and the method of characteristic functions, the central limit theorem
was established in Theorem 3 in the case of independent and identically distributed
random variables. By using the same method, prove the central limit theorem for
the case of independent but not necessarily identically distributed random variables
by using the following scheme.

Let A1;A2; : : : be a sequence independent events, chosen so that P.An/ D 1=n

(for examples of such events, see Problem 2.4.21). Setting � D IAn and Sn D
�1 C : : :C �n, prove that

ESn D
X
k�n

1

k
.
 ln n as n ! 1/;

DSn D
X
k�n

1

k

�
1 � 1

k

�
.
 ln n as n ! 1/:

Next, consider the characteristic functions 'n.t/ of the random variables Sn�ESnp
DSn

,

n � 1, and prove that 'n.t/ ! e�t 2=2. Finally, conclude that the central limit
theorem ([ P §3.3, Theorem 1]) holds: as n ! 1 one has

P
	
Sn � ESnp

DSn
� x



! ˚.x/; x 2 R:

Problem 3.3.18. As a supplement to inequality [ P §3.3, (4)] from [ P §3.3,
Lemma 3], show that the following double-sided inequality holds for any a > 0:

.1 � sin 1/
Z

jxj�1=a
dF.x/ � 1

a

Z a

0

Œ1 � Re '.t/� dt � 2

Z

jxj�p
1=a

dF.x/C a

2
:

Hint. To prove the right inequality, write 1 � Re '.t/ in the form

1 � Re '.t/ D
Z

R

.1 � cos tx/ dF.x/ D

D
Z

jxj�p
1=a

.1 � cos tx/ dF.x/C
Z

jxj<p
1=a

.1 � cos tx/ dF.x/;

estimate the above integrals in the obvious way, and, just as in Lemma 3, use
Fubini’s theorem.
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Problem 3.3.19. Let .�n/n�1 be a sequence of independent random variables,
distributed according to the Cauchy law with density

�


.�2 C x2/
; � > 0; x 2 R:

Prove that the distributionsFn of the random variables 1
n

maxi�n �i converge weakly
to the Fréchet distribution with parameter ˛ D 1 (see Problem 2.8.48), i.e., the
distribution of a random variable of the form 1=Tc, where Tc has exponential
distribution with parameter c D �=
:

P
n 1
Tc

� x
o

D e�c=x; x > 0:

Problem 3.3.20. (Continuity theorem for discrete random variables.) Let
�; �1; �2; : : : be a sequence of random variables taking integer values k D 0; 1; 2; : : :

and let

G.s/ D
1X
kD0

Pf� D kgsk and Gn.s/ D
1X
kD0

Pf�n D kgsk

be the generating functions, respectively, of the variables � and �n, n � 1.
Prove that

lim
n

Pf�n D kg D Pf� D kg; k D 0; 1; 2; : : : ;

if and only if
lim
n
Gn.s/ D G.s/; s 2 Œ0; 1/:

Problem 3.3.21. Prove the statement in Problem 2.10.35 by using the method of
characteristic functions.

Hint. The characteristic function of the random variable U , which is uniformly
distributed in the interval Œ�1; 1�, is the function sin t

t
.

3.4 The Central Limit Theorem for Sums of Independent
Random Variables I. Lindeberg’s Condition

Problem 3.4.1. Let �1; �2; : : : be a sequence of independent and identically dis-
tributed random variables with E�21 < 1. Prove that (comp. with Problem 2.10.53)

max.j�1j; : : : ; j�nj/p
n

d�! 0 as n ! 1 :
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Hint. Use the relation

P
	

max.j�1j; : : : ; j�nj/p
n

� "



D �

P
˚
�21 � n"2

��n

and the fact that n"2Pf�1 > n"g ! 0 as n ! 1.

Problem 3.4.2. Give a direct proof of the fact that in the Bernoulli scheme the
variable supx jFTn.x/ � ˚.x/j has order 1p

n
as n ! 1.

Problem 3.4.3. Let X1;X2; : : : be any infinite sequence of exchangeable random
variables (see Problem 2.5.4) with EXn D 0, EX2

n D 1, n � 1, and let

cov.X1;X2/ D cov.X2
1 ; X

2
2 /: .�/

Prove that the central limit theorem holds for any such sequence, i.e.,

1p
n

nX
iD1

Xi
d�! N .0; 1/: .��/

Conversely, if EX2
n < 1, n � 1, then .��/ implies .�/.

Problem 3.4.4. (a) (The local limit theorem for random variables on a lattice.) Let
�1; �2; : : : be independent and identically distributed random variables with mean
value � D E�1 and with dispersion �2 D D�1. Set Sn D �1 C : : :C �n, n � 1, and
suppose that the variables �1; �2; : : : take values on a lattice of step-size h > 0, i.e.,
take the values a C hk, k D 0;˙1;˙2; : : :, for some h > 0.

Prove that as n ! 1 one has

sup
k

ˇ̌
ˇ̌
p
n

h
PfSn D anC hkg � 1p

2
�
exp

(
� .hk C an � n�/2

2�2n

) ˇ̌
ˇ̌ ! 0:

(Comp. with the local limit theorem in [ P §2.6].)
Hint. The proof can be carried out with the following line of reasoning, which

involves characteristic functions. By Problem 2.12.9 one can write

PfSn D anC hkg D Pf.Sn � an/h�1 D kg D 1

2


Z 


�

e�iuke

iuna
h

h
'
�u

h

�in
du;

where '.u/ stands for the characteristic function of the variable �1. It is clear that

e�z2=2 D 1p
2


Z 1

�1
eiuze�u2=2du;
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and, therefore,

2


ˇ̌
ˇ̌
p
n�

n
PfSn D anC hkg � 1

2

e�z2=2

ˇ̌
ˇ̌ �

�
Z

jt j�

p
n�

h

ˇ̌
ˇ
h
'
� t

�
p
n

�in � e�t 2=2
ˇ̌
ˇ dt C

Z

jt j>

p
n�

h

e�t 2=2 dt:

The expression in the right side does not depend on k and it only remains to show
that as n ! 1 this expression converges to 0.

(b) (The local limit theorem for random variables with density.) Let �1; �2; : : : be
independent and identically distributed random variables with mean value � D E�1
and dispersion �2 D D�1. Suppose that the characteristic function ' D '.t/ of the
variable �1 is integrable and, consequently, �1 admits a probability density given by

f .x/ D 1

2


Z 1

�1
e�i tx'.t/ dt

(see [ P §2.12, Theorem 3]).
Let fn D fn.x/ denote the probability density function of the variable Sn D

�1 C : : :C �n, n � 1. Prove that as n ! 1 one has

sup
x

ˇ̌
ˇ̌pnfn.x/ � 1p

2
�
exp

n
� .x � n�/2

2�2n

oˇ̌ˇ̌ ! 0:

Hint. Follow the argument used in the case of lattice-valued random variables.

Problem 3.4.5. Let X1;X2; : : : be independent and identically distributed random
variables with EX1 D 0 and EX2

1 D 1, and let d1; d2; : : : be any sequence of non-
negative constants, such that dn D o.Dn/, where D2

n D Pn
kD1 d 2k . Prove that the

“weighted sequence” d1X1; d2X2; : : : satisfies the central limit theorem:

1

Dn

nX
kD1

dkXk
d�!N .0; 1/:

Problem 3.4.6. Let �1; �2; : : : be independent and identically distributed random
variables with E�1 D 0 and E�21 D 1 and suppose that .�n/n�1 is some sequence of

random variables with values in the set f1; 2; : : : g, chosen so that �n=n
P�! c, where

c > 0 is some fixed constant. Setting Sn D �1 C : : :C �n, prove that

Law
�
��1=2
n S�n

� ! ˚;

i.e., ��1=2
n S�n

d�! �, where � 
 N .0; 1/. (Note that the sequences .�n/n�1 and
.�n/n�1 are not assumed to be independent.)
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Problem 3.4.7. Let �1; �2; : : : be independent and identically distributed random
variables with E�1 D 0 and E�21 D 1. Prove that

Law
�
n�1=2 max

1�m�n Sm
�

! Law.j�j/; where � 
 N .0; 1/;

in other words, for any x > 0 one has

P
n
n�1=2 max

1�m�n Sm � x
o

!
r
2




Z x

0

e�y2=2 dy
�
D 1p

2
erf.x/

�
:

Hint. First prove the statement for symmetric Bernoulli random variables
�1; �2; : : : with Pf�n D ˙1g D 1=2, and then use – or, better yet, prove, which
is non-trivial – the fact that the limiting distribution would be the same for any
sequence �1; �2; : : : with the specified properties. (The independence of the limiting
distribution from the particular choice of the independent and identically distributed
random variables �1; �2; : : : , with E�n D 0, E�2n D 1, is known as “invariance
principle”; see, for example, [10] and [17].)

Problem 3.4.8. In the context of the previous problem (and hint) prove that

P
n
n�1=2 max

1�m�n jSmj � x
o

! H.x/; x > 0 ;

where

H.x/ D 4




1X
kD0

.�1/k
2k C 1

exp

(
� .2k C 1/2
2

8x2

)
:

Problem 3.4.9. Let X1;X2; : : : be independent random variables with

PfXn D ˙n˛g D 1

2nˇ
; PfXn D 0g D 1 � 1

nˇ
; where 2˛ > ˇ � 1.

Prove that in this case the Lindeberg condition holds if and only if 0 � ˇ < 1.

Problem 3.4.10. Let X1;X2; : : : be independent random variables chosen so that
jXnj � Cn (P-a. e.) and let Cn D o.Dn/, where

D2
n D

nX
kD1

E.Xk � EXk/2 ! 1 :

Prove that

Sn � ESn
Dn

d! N .0; 1/; where Sn D X1 C � � � CXn .
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Problem 3.4.11. LetX1;X2; : : : be any sequence of independent random variables
with EXn D 0 and EX2

n D �2n . In addition, suppose that this sequence satisfies the
central limit theorem and has the property

E

 
D�1=2
n

nX
iD1

Xi

!k
! .2k/Š

2kkŠ
for some k � 1 .

Prove that Lindeberg’s condition of order k holds, i.e.,

nX
jD1

Z

fjxj>"g
jxjk dFj .x/ D o.Dk

n/; " > 0 :

Note that the usual “Lindeberg condition” is of order k D 2—see [ P §3.4, (1)].

Problem 3.4.12. Let X D X.�/ and Y D Y.�/ be two independent random
variables having Poisson distribution with parameters, respectively, � > 0 and
� > 0. Prove that

.X.�/ � �/ � .Y.�/ � �/p
X.�/C Y.�/

d! N .0; 1/ as � ! 1, � ! 1.

Problem 3.4.13. Given any n � 1, suppose that the random vector

.X
.n/
1 ; : : : ; X

.n/
nC1/

is uniformly distributed on the unit sphere in RnC1. Prove the following statement,
due to H. Poincaré: for every x 2 R,

lim
n!1 P

np
nX

.n/
nC1 � x

o
D 1p

2


Z x

�1
e�u2=2 du:

Problem 3.4.14. Let �1; �2; : : : be a sequence of independent and N .0; 1/-
distributed random variables. Setting Sn D �1 C : : : C �n, n � 1, find the limiting
probability distribution (as n ! 1) of the random variables

1

n

nX
kD1

jSk�1j .�2k � 1/; n � 1:

Problem 3.4.15. Let �1; �2; : : : be a symmetric Bernoulli scheme (i.e., a sequence
of independent and identically distributed random variables with Pf�1 D 1g D
Pf�1 D �1g D 1=2) and let S0 D 0 and Sk D �1 C : : :C �k , k � 1.
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Define the continuous processes X.2n/ D .X
.2n/
t /0�t�1 so that

X
.2n/
t D S2ntp

2n
;

where, given any u � 0, Su is defined by way of linear interpolation from the nearest
integer values.

Hint. Prove the following—difficult but important—statements:
(a) The distributions P2n D Law.X.2n/

t ; 0 � t � 1/ converge (in terms of finite
dimensional distributions and in terms of the weak convergence of distributions on
the metric space C , endowed with the uniform distance) to the distribution law P D
Law.Bt ; 0 � t � 1/ of the Brownian motion B D .Bt /0�t�1. (The statement about
the weak convergence in C is a special case of the Donsker–Prokhorov invariance
principle—see [ P §7.8, 1 ].)

(b) The conditional distributions Q2n D Law.X.2n/
t ; 0 � t � 1 jX2n

1 / converge
(in the same sense as in (a)) to the distribution Q D Law.Bı

t ; 0 � t � 1/ of the
Brownian bridge Bı D .Bı

t /0�t�1.
Hint. Use the same line of reasoning as in the derivation of Kolmogorov’s

limiting distribution in [ P §3.13]. For more details see the books [10] and [17].

Problem 3.4.16. Conclude from the results in the previous problem (and compare
these results with the statements in Problems 3.4.7 and 3.4.8) the following limiting
relations: for any x > 0 one has:

.a1/ P
	

1p
2n

max
0�k�2n Sk � x



! P

n
max
0�t�1Bt � x

o
. D PfjB1j � xg/I

.a2/ P
	

1p
2n

max
0�k�2n jSkj � x



! P

n
max
0�t�1 jBt j � x

o
I

and

.b1/ P
�

1p
2n

max
0�k�2n Sk � x jS2n D 0

�
! P

n
max
0�t�1B

ı
t � x

o
I

.b2/ P
�

1p
2n

max
0�k�2n

jSkj � x jS2n D 0

�
! P

n
max
0�t�1 jBı

t j � x
o
:

Problem 3.4.17. As a continuation of Problems 3.4.15 and 3.4.16, verify the
following relations:

.a/ P
	

1p
2n

h
max
0�k�2n Sk � min

0�k�2n Sk
i

� x



! P

n
max
0�t�1Bt � min

0�t�1 Bt � x
o
I
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and

.b/ P
�

1p
2n

h
max
0�k�2n Sk � min

0�k�2n Sk
i

� x
ˇ̌
ˇS2n D 0

�

! P
n

max
0�t�1 B

ı
t � min

0�t�1B
ı
t � x

o
:

Problem 3.4.18. Assuming that N 2 Œ0;1/ and � 2 .0;1/, prove that

lim
n!1 e��n X

k�nN

.�n/k

kŠ
D

8̂
<̂
ˆ̂:

1; if N > �;

1=2; if N D �;

0; if N < �:

Show also that

lim
n!1

� X
k�nN

.�n/k

kŠ

�1=n
D
(
e�; if N � �;

e�N ln N
� CN ; if N > � :

Hint. Let .�n/n�1 be any sequence of independent Poisson random variables with
expected value �, i.e., Pf�n D kg D e���k=kŠ, k � 0. Convince yourself that

P
n�1 C : : :C �n

n
� N

o
D e�n� X

k�nN

.n�/k

kŠ
;

and then use the central limit theorem.

Problem 3.4.19. Prove that

1

nŠ

Z nC1

0

xne�x dx ! 1

2
as n ! 1;

and, more generally, that

lim
n

1

	 .nC 1/

Z y
p
nC1C.nC1/

0

xne�x dx D ˚.y/; y � 0:

Show also that

1C nC 1

1Š
C .nC 1/2

2Š
C : : :C .nC 1/n

nŠ

 1

2
enC1 as n ! 1:

Hint. Use the result from Problem 2.8.80 and the statement in the previous
problem (in the case N D �).
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Problem 3.4.20. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables such that the expected value � D E�1 is well defined
and �2 D D�1 < 1. Setting S0 D 0 and Sn D �1 C : : : C �n, prove that the
sequence of partial maxima Mn D max.S0; S1; : : : ; Sn/, n � 0, satisfies the central
limit theorem: if 0 < � < 1, then

lim
n

P
	
Mn � n�

�
p
n

� x



D ˚.x/; x 2 R;

where ˚.x/ is the distribution function of the standard normal distribution.

Problem 3.4.21. Let �1; �n; : : : be any sequence of independent and identically
distributed random variables with E�1 D 0 and E�21 D �2. Set Sn D �1 C : : :C �n,
n � 1, and let fNt; t � 0g be any family of random variables with values in the set

f1; 2; : : :g, such that Nt=t
P! � as t ! 1, 0 < � < 1.

Prove the following version of the central limit theorem (due to F. J. Anscombe):
as t ! 1 one has

P
	
SNt

�
p
Nt

� x



! ˚.x/ and P

	
SNt

�
p
�

p
t

� x



! ˚.x/ :

Hint. For the sake of simplicity set � D 1 and let n0 D b�tc. The expression
SNt =

p
Nt can now be written in the form

SNtp
Nt

D
�
Sn0p
n0

C SNt � Sn0p
n0

�r
n0

Nt
:

Since P
˚
Sn0=

p
n0 � x

� ! ˚.x/ and n0=Nt
P! 1 as t ! 1, it only remains

to show that .SNt � Sn0/=
p
n0

P! 0. For that purpose it is enough to write the
probability PfjSNt � Sn0 j > "

p
n0g as the sum

PfjSNt � Sn0 j > "
p
n0;Nt 2 Œn1; n2�g C PfjSNt � Sn0 j > "

p
n0;Nt 62 Œn1; n2�g;

with n1 D bn0.1 � "3/c C 1, n2 D bn0.1 C "3/c. The convergence of the
above probabilities to 0 can be established by using Kolmogorov’s inequality (see
[ P §4.2]).

Problem 3.4.22. (On the convergence of moments in the central limit theorem.)
Let �1; �2; : : : be any sequence of independent and identically distributed random
variables with E�1 D 0 and E�21 D �2 < 1. According to [ P §3.3, Theorem 3]
and part (b) of [ P §3.4, Theorem 1], one has

Sn

�
p
n

d! N;

where N is a standard normal (N .0; 1/) random variable.
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Prove that if Ej�1jr < 1, for some r � 2, then for any 0 < p � r the following
convergence of moments takes place

E

ˇ̌
ˇ̌ Sn
�

p
n

ˇ̌
ˇ̌
p

! EjN jp:

Hint. Prove that the family of random variables
nˇ̌
ˇ Sn
�

p
n

ˇ̌
ˇ
r W n � 1

o
is uniformly

integrable and then use the statement in part (b) of Problem 2.10.54.

Problem 3.4.23. Let .�n/n�1 be a sequence of independent and identically dis-
tributed standard normal random variables (i.e., �n 
 N .0; 1/) and suppose that
the random variable � 
 N .0; 1/ is independent from the sequence .�n/n�1.

Prove that the limit

lim
n

E
ˇ̌
ˇ�1 C : : :C �np

n
� �

ˇ̌
ˇ

exists and equals 2=
p

 .

Hint. Convince yourself that the family of random variables fSn=pn � �:
n � 1g, where Sn D �1 C : : :C �n, is uniformly integrable.

Problem 3.4.24. Let P and Q be two probability measures on .˝;F /, chosen so
that Q is absolutely continuous with respect to P (Q � P), and suppose that,
relative to P, X1;X2; : : : is a sequence of independent and identically distributed
random variables withm D EPXi , �2 D EP.Xi�m/2, where EP means expectation
with respect to P.

According to [ P §3.3, Theorem 3], the central limit theorem holds: as n ! 1
one has

P
	

1

�
p
n

nX
iD1
.Xi �m/ � x



! ˚.x/; x 2 R;

where ˚.x/ D 1p
2


R x
�1 e�y2=2 dy.

Now consider the measure Q. Even if Q � P, the sequence X1;X2; : : : will
not, in general, represent a sequence of independent random variables relative to Q.
Prove that, nevertheless, the central limit theorem still holds in the following form,
which is due to A. Rényi: as n ! 1 one has

Q
	

1

�
p
n

nX
iD1
.Xi �m/ � x



! ˚.x/; x 2 R:

Hint. One has to prove that if f D f .x/ is some bounded and continuous
function, then

EQf .bSn/ ! EPf .N.0; 1//;
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where bSn D 1

�
p
n

Pn
iD1.Xi � m/ and N.0; 1/ is a standard normal (N .0; 1/)

random variable. For that purpose, consider the Radon–Nikodym density D D dQ
dP

and the random variables Dk D EP.D j Fk/, where Fk D �.X1; : : : ; Xk/, and
write EQf .bSn/ in the following form

EQf .bSn/ D EPŒ.D �Dk/f .bSn/�C EPŒDkf .bSn/�:

Then prove that limk supn jEPŒ.D �Dk/f .bSn/�j D 0 and

EPŒDkf .bSn/� ! EPf .N / as n ! 1, for every k � 1.

Problem 3.4.25. Let �1; �2; : : : be a sequence of independent and identically dis-
tributed random variables, such that

Pf�1 > xg D Pf�1 < �xg; x 2 R; and Pfj�1j > xg D x�2; x � 1:

Prove that as n ! 1

P
	

Snp
n ln n

� x



! ˚.x/; x 2 R;

where Sn D �1 C : : :C �n.

Remark. This problem shows that, after a suitable normalization, the distribution
of the sums Sn may converge to the standard normal distribution even if E�21 D 1.

Hint. Consider the random variables �nk D �kI.j�kj � p
n ln lnn/ and convince

yourself that:

(i)
nX

kD1
Pf�nk 6D �kg ! 0 as n ! 1;

(ii) E�2nk 
 ln n as n ! 1;
(iii) by Lindeberg’s Theorem (Theorem 1) one has

1p
n ln n

nX
kD1

�nk
d! N .0; 1/I

(iv) P
n
Sn 6D

nX
kD1

�nk

o
! 0 as n ! 1.
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3.5 The Central Limit Theorem for Sums of Independent
Random Variables II. Non-classical Conditions

Problem 3.5.1. Prove formula [ P §3.5, (5)].
Hint. By using the relations

Z

R
x2 dFnk.x/ < 1 and

Z

R
x2 d˚nk.x/ < 1;

conclude that the integrals in the left and the right sides of [ P §3.5, (5)] are finite
and then use the relation

Z 1

�1

�
eitx � i tx C t2x2

2

�
d.Fnk � ˚nk/ D

D lim
a!1

�
eitx � i tx C t2x2

2

��
Fnk.x/ � ˚nk.x/

�ˇ̌ˇ
a

�a�

� i t

Z 1

�1
.eitx � 1 � i tx/ŒFnk.x/ � ˚nk.x/� dx:

Problem 3.5.2. Verify the relations [ P §3.5, (10) and (12)].

Problem 3.5.3. LetN D .Nt/t�0 be the renewal process introduced in [ P §2.9, 4 ]
(i.e., Nt D P1

nD1 I.Tn � t/, Tn D �1 C � � � C �n, where �1; �2; : : : is a sequence of
independent and identically distributed positive random variables). Assuming that
� D E�1 < 1 and 0 < D�1 < 1, prove that the Central Limit Theorem holds:

Nt � t��1
p
t��3D�1

d�! N.0; 1/;

where N.0; 1/ is a standard normal random variable.

3.6 Infinitely Divisible and Stable Distributions

Problem 3.6.1. Prove that if �n
d! � and �n

d! �, then �
dD �.

Problem 3.6.2. Prove that if '1 and '2 are two infinitely divisible characteristic
functions, then '1 � '2 is also an infinitely divisible characteristic function.

Problem 3.6.3. Let 'n D 'n.t/, n � 1, be infinitely divisible characteristic
functions and suppose that there is a characteristic function ' D '.t/ for which
one can claim that 'n.t/ ! '.t/, for each t 2 R. Prove that '.t/ must be infinitely
divisible.
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Hint. Use the fact that if 'n is infinitely divisible, then one can find some
independent and identically distributed random variables �1; : : : ; �n, such that Sn D
�1 C � � � C �n has characteristic function 'n and Sn

d! T , where T is infinitely
divisible.

Problem 3.6.4. Prove that the characteristic function of an infinitely divisible
distribution cannot be equal to 0 (see also Problem 3.6.12).

Hint. The required statement follows directly from the Kolmogorov–Lévy–
Khinchin formula, but one can give an independent proof by using the following
argument: if '.t/ is the characteristic function of some infinitely divisible distri-
bution, then for every n � 1 one can find a characteristic function 'n.t/, such
that '.t/ D .'n.t//

n, and, setting  n.t/ D j'n.t/j2, prove that the function
 .t/ D limn  n.t/ must be identically 1.

Problem 3.6.5. Prove that the gamma-distribution is infinitely divisible but is not
stable.

Hint. The proof can be constructed by analogy to the following line of rea-
soning. A random variables �, which is distributed according to the Poisson law
Pf� D kg D e�k=kŠ, must be infinitely divisible (see Problem 2.8.3). However,
such a random variable does not have a stable distribution. Indeed, assuming that

�1 C �2
dD a�C b, where a > 0, b 2 R, and �1 and �2 are two independent copies of

�, argue that it must be that a D 1 and b D 0. This means that �1 C �2
dD �, which

is not possible.

Problem 3.6.6. Prove that for a stable random variable � one must have Ej�jr <1,
for all r 2 .0; ˛/ and all 0 < ˛ < 2.

Hint. By using the Lévy–Khinchin representation of the characteristic function
'.t/ of the stable random variable �, conclude that there exists some ı > 0, such
that for any t 2 .0; ı/ and any ˛ < 2 one has Re '.t/ � 1 � cjt j˛ , where c > 0. By
[ P §3.3, Lemma 3], for ˛ 2 .0; ı/ one has

P
n
j�j � 1

a

o
� cK

˛ C 1
a˛;

and therefore

Pfj�jr � ng � cK

˛ C 1
n�˛=r ; Ej�jr � 1C

1X
nD1

Pfj�jr � ng < 1;

if r 2 .0; ˛/ and 0 < ˛ < 2.

Problem 3.6.7. Prove that if � is a stable random variable with parameter 0 < ˛ �
1, then its characteristic function '.t/ cannot be differentiable at t D 0.
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Problem 3.6.8. Give a direct proof of the fact that the function e�d jt j˛ is a
characteristic function d � 0 and 0 < ˛ � 2, but not if d > 0 and ˛ > 2.

Problem 3.6.9. Let .bn/n�1 be any sequence of real numbers, chosen so that for all
jt j < ı and ı > 0 the limit lim

n
eitbn exists. Prove that lim

n
jbnj < 1.

Hint. The statement can be proved by contradiction. Let limn bn D C1.
Switching, if necessary, to a subsequence, one can claim that bn ! 1 as n ! 1.
Then, setting h.t/ D limn e

itbn for t 2 Œ�ı; ı�, one can write for any Œ˛; ˇ� � Œ�ı; ı�
Z ı

�ı
IŒ˛;ˇ�.t/h.t/ dt D lim

n

Z ı

�ı
IŒ˛;ˇ�.t/e

itbn dt D 0:

By using the suitable sets principle (see [ P §2.2]), it is possible to conclude thatR ı
�ı IA.t/h.t/ dt D 0, for every Borel set A 2 B.Œ�ı; ı�/. Consequently, one must

have h.t/ D 0 for any t 2 Œ�ı; ı�. At the same time, since jeitbn j D 1, one must
have jh.t/j D 1, for any t 2 Œ�ı; ı�. This contradiction shows that limn jbnj < 1.

Problem 3.6.10. Prove that the binomial, the uniform and the triangular distribu-
tions are not infinitely divisible. (Recall that the triangular distribution on .�1; 1/
has density f .x/ D .1 � jxj/I.�1;1/.x/.)

Prove the following more general statement: a non-degenerate distribution with
finite support cannot be infinitely divisible.

Problem 3.6.11. Suppose that the distribution function F and its characteristic
function ' admit the representationsF D F .n/�� � ��F .n/ (n times) and ' D Œ'.n/�n,
for some distribution functions F .n/ and their respective characteristic functions
'.n/, n � 1. Prove that it is possible to find a (sufficiently “rich”) probability space
.˝;F ;P/ and random variables T and .�nk/k�n, n � 1, defined on that space (T has

distribution F , while �.n/1 ; : : : ; �
.n/
n are independent and identically distributed with

law F .n/) and such that T
dD �

.n/
1 C � � � C �

.n/
n , n � 1.

Problem 3.6.12. Give examples of random variables that are not infinitely divisi-
ble, and yet their characteristic functions never vanish (see Problem 3.6.4).

Problem 3.6.13. Prove that:
(a) The function ' D '.t/ is a characteristic function of an infinitely divisible

distribution if and only if for every n � 1 one can claim that the nth root
'1=n.t/ D e

1
n ln'.t/ (here ln stands for the principle value of the logarithmic function)

is a characteristic function.
(b) The product of finitely many characteristic functions associated with in-

finitely divisible distributions is an infinitely divisible characteristic function.
(c) If the characteristic functions 'n.t/, n � 1, associated with some infinitely

divisible distributions, converge in point-wise sense to the function '.t/, which
happens to be characteristic function, then '.t/ must be the characteristic of some
infinitely divisible distribution.
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Problem 3.6.14. By using the results established in the previous problem and the
fact that

'.t/ D expf�.eitu � 1/C i tˇg; � > 0; u 2 R; ˇ 2 R;

is known to be a characteristic function of an infinitely divisible distribution law (of
Poisson type), prove that the following functions (studied by B. de Finetti) have the
same property:

'.t/ D exp

	 kX
jD1

Œ�j .e
ituj � 1/C itˇj �




and

'.t/ D exp

	
itˇ C

Z 1

�1
.eitu � 1/ dG.u/



;

where G D G.u/ is some bounded and increasing function.

Problem 3.6.15. Let ' D '.t/ be the characteristic function of some distribution
that has a finite second moment. Prove that '.t/ can be a characteristic function of an
infinitely divisible distribution law if and only if it admits the so-called Kolmogorov
representation:

'.t/ D exp .t/

with

 .t/ D i tb C
Z 1

�1
.eitu � 1 � i tu/ 1

u2
dG.u/;

where b 2 R and G D G.u/ is a non-decreasing and left-continuous function with
G.�1/ D 0 and G.1/ < 1 (comp. with de Finetti’s function from the previous
problem).

Problem 3.6.16. Prove that if '.t/ is the characteristic function of some infinitely
divisible distribution, then for every � � 0 the function '�.t/ is characteristic.

Problem 3.6.17. (On the Kolmogorv–Lévy–Khinchin representation.) Let h D
h.x/ be a cutoff function, defined for x 2 R (i.e, a bounded and continuous function
chosen so that h.x/ D x in some neighborhood of x D 0).

Prove that:
(a) The Kolmogorov-Lévy-Khinchin representation [ P §3.6, (2)] can be re-

written in the form

'.t/ D exp h.t/
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with

 h.t/ D i tb � t2c

2
C
Z 1

�1
.eitx � 1 � i th.x// F.dx/;

where b D b.h/ 2 R, c � 0 and F.dx/ is a measure on .R;B.R// with F.f0g/ D 0

and
R
.x2 ^ 1/ F.dx/ < 1.

(b) For two different cutoff functions h and h0 the coefficients b.h/ and b.h0/ are
linked through the relation

b.h0/ D b.h/C
Z
.h0.x/ � h.x// F.dx/:

(c) If '.t/ corresponds to a distribution that has a finite second moment
(comp. with Problem 3.6.15), then

R1
�1 x2 F.dx/ < 1.

Problem 3.6.18. Prove that the probability distribution with density

f .x/ D 1p
2
x3

e�1=.2x/; x > 0;

is stable for ˛ D 1
2
, ˇ D 0 and � D �1 (see formula [ P §3.6, (10)]).

Problem 3.6.19. One says that random variable �m has generalized Poisson distri-
bution with parameter �.fxmg/ > 0, if

Pf�m D kxmg D e��.fxmg/�k.fxmg/
kŠ

; k D 0; 1; 2; : : : ;

where xm 2 R n f0g.
Let �1; : : : ; �n be n mutually independent random variables that share the above

distribution. Let � D �.dx/ denote the measure on Rnf0g which is supported on the
set fxm W m D 1; : : : ; ng, consisting of n different points and let �.fxmg/ denote the
probability mass of the point xm. The probability distribution of the random variable
Tn D �1 C : : :C �n is known as the compound Poisson distribution.

Prove that the characteristic function 'Tn.t/ of such a random variable is
given by:

'Tn.t/ D exp

	 Z

Rnf0g
.eitx � 1/ �.dx/



:

(It is clear from the above formula that the compound Poisson distribution is
infinitely divisible. In conjunction with the Kolmogorov–Lévy–Khinchin formula
[ P §3.6, (2)] this illustrates the “generating role” that this distribution plays in the
class of all infinitely divisible distributions. Formally this property can be stated as
follows: every infinitely divisible distribution is a .weak/ limit of some sequence of
compound Poisson distributions.)

Problem 3.6.20. On the probability space .˝;F ;P/ consider the observation
scheme consisting of the events A.n/ D .Ank; 1 � k � n/, n � 1, chosen so
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that for every n the events An1; : : : ; Ann are independent. Let

lim
n

max
1�k�nP.Ank/ D 0

and

lim
n

nX
kD1

P.Ank/ D �; � > 0:

Prove the “rare events law:” the sequence of random variables �.n/ D Pn
kD1 I.Ank/

converges in distribution to a random variable � that has Poisson distribution with
parameter � > 0.

Problem 3.6.21. Let X and Y be any two independent random variables, dis-
tributed with Poisson law of parameter � > 0. Find the characteristic function '.t/
of the random variable X � Y which is often referred to as a double-sided Poisson
random variable. Prove that the probability distribution of the random variableX�Y
is the compound Poisson distribution (see Problems 3.6.19 and 2.8.3).

Problem 3.6.22. Let �.n/ D .�nk; 1 � k � n/, n � 1, be an observation series of
random variables, such that for any n the variables �n1; : : : ; �nn are independent. Let
'nk D 'nk.t/ denote the characteristic functions of the random variables �nk . Prove
that the following conditions are equivalent:

(a) limn max1�k�n Pfj�nkj > "g D 0 (limiting, or asymptotic, negligibility of the
series �.n/, n � 1);

(b)limn max1�k�n j1� 'nk.t/j D 0 for every t 2 R.

Problem 3.6.23. The random variable � is said to be distributed according to the
(continuous) Pareto law (with parameters � > 0, b > 0), if its density is given by

f�;b.x/ D �b�

x�C1 I.x � b/:

Prove that this distribution is infinitely divisible.

Remark. The discrete Pareto Law is defined in Problem 2.8.85.

Problem 3.6.24. The random variable � with values in .0;1/ is said to have a
logistic distribution with parameters .�; �/, where � 2 R and � > 0, if

Pf� � xg D 1

1C e�.x��/=� ; x > 0:

Prove that this distribution is infinitely divisible.
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3.7 Metrizability of the Weak Convergence

Problem 3.7.1. Prove that, in the case of the space E D R, the Lévy–Prokhorov
distance L.P; eP / between the distribution laws P and eP is not smaller than the
Lévy distanceL.F;eF / between the distribution functionsF and eF , associated with
the laws P and eP (see Problem 3.1.4). By constructing appropriate examples, prove
that the inequality between these two metrics can be strict.

Hint. To prove that L.F;eF / � L.P; eP /, it is enough to show that

L.F;eF / D inff" > 0 W P.D/ � eP .D"/C " and eP.D/ � P.D"/C "

for all sets D of the form .�1; x�, x 2 Rg
and

L.P; eP / D inff" > 0 W P.D/ � eP .D"/C " and eP .D/ � P.D"/C "

for all closed sets D � Rg.

In order to obtain the strict inequality, take P D ı0 and eP D 1
2
.ı�1 C ı1/, where ıa

is the measure concentrated at the point a:

ıa.A/ D
(
1; if a 2 A;
0; if a 62 A:

In this case L.F;eF / D 1
2

and L.P; eP / D 1—prove these two identities.

Problem 3.7.2. Prove that formula [ P §3.7, (19)] defines a metric in the space BL.
Hint. To prove that kP � eP k�

BL D 0 ) P D eP (the remaining properties of
the metric are easy to verify), given any closed set A and any " > 0, consider the
function f "

A.x/, defined by formula [ P §3.7, (14)]. Since as " # 0 one has

Z
f "
A.x/ P.dx/ ! P.A/ and

Z
f "
A.x/

eP .dx/ ! eP .A/;

then P.A/ D eP .A/ for every closed set A. Finally, consider the class M D fA 2
B.E/ W P.A/ D eP .A/g and by using the suitable sets principle and the 
-�-
systems from [ P §2.2], conclude that M D B.E/.

Problem 3.7.3. Prove the inequalities [ P §3.7, (20), (21) and (22)].
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Problem 3.7.4. Let F D F.x/ and G D G.x/, x 2 R, be any two distribution
functions and suppose that Pc and Qc are the intersecting points of their graphs
with the graph of the line x C y D c. Prove that the Lévy distance L.F;G/ (see
Problem 3.1.4) can be expressed as

L.F;G/ D sup
c

PcQcp
2
;

where PcQc is the length of the segment connecting the points Pc and Qc.

Problem 3.7.5. Prove that the space of all distribution functions is complete for the
Lévy metric.

Problem 3.7.6. Consider the Kolmogorov distance between the distribution func-
tions F and eF , which is given by

K.F;eF / D sup
x

jF.x/ � eF .x/j;

and let L.F;eF / be the Lévy distance from Problem 3.7.4. Prove that

L.F;eF / � K.F;eF /

and that, if the distribution function eF is absolutely continuous, then

K.F;eF / �
�
1C sup

x

jeF 0.x/j
�
L.F;eF /:

Problem 3.7.7. LetX and eX be two random variables defined on one and the same
probability space and let F and eF be their respective distribution functions. Prove
that the Lévy distance L.F;eF / is subject to the following inequalities:

L.F;eF / � d C PfjX � eX j > d g; 8 d > 0;

and
L.F;eF / � .c C 1/e

c
cC1 .EjX � eX jc/ 1

cC1 ; 8 c � 1:

Problem 3.7.8. By using the results in Problems 3.7.6 and 3.7.7, prove that if X
and eX are two random variables defined on one and the same probability space, if
F and eF denote their respective distribution functions, and if ˚ D ˚.x/ stands
for the distribution function of the standard normal law N .0; 1/, then the following
inequality holds for any � > 0:

sup
x

ˇ̌
ˇ̌F.x/�˚

�
x

�

�ˇ̌
ˇ̌ �

�
1C 1p

2
�2

�
sup
x

ˇ̌
ˇ̌eF .x/�˚

�
x

�

�ˇ̌
ˇ̌C2.EjX�eX j2/1=2

�
:
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3.8 The Connection Between Almost Sure Convergence
and Weak Convergence of Probability Measures
(the “Common Probability Space” Method)

Problem 3.8.1. Prove that if E is a separable metric space with metric �.�; �/, and
X.!/ and Y.!/ are any two random elements inE , defined on the probability space
.˝;F ;P/, then one can claim that �.X.!/; Y.!// is a real random variable on
.˝;F ;P/.

Hint. Let fz1; z2; : : : g be any countable and everywhere dense subset ofE . Prove
that for every a > 0

f! W �.X.!/; Y.!// < ag D

D
1\
nD1

[
mD1

�	
! W �.X.!/; zm/ < 1

n



\
	
! W �.Y.!/; zm/ < a � 1

n


�
;

and, by using [ P §2.4, Lemma 1], conclude that �.X.!/; Y.!// must be a F -
measurable function on ˝ .

Problem 3.8.2. Prove, that the function dP.X; Y /, as defined in [ P §3.8, (2)], is a
metric in the space of random elements in E .

Hint. The statement in the previous problem shows that the set f�.X; Y / < "g
is measurable, and therefore dP.X; Y / is a well-defined random variable. The proof
of the fact that dP.X; Y / actually represents a metric is straight-forward.

Problem 3.8.3. Prove the implication [ P §3.8, (5)].

Problem 3.8.4. Setting h D fx 2 E W h.x/ is not �-continuous at the point xg,
prove that h 2 E .

Hint. Let fa1; a2; : : : g be any countable and everywhere dense subset of E . In
order to prove that n 2 E , it is enough to establish the following representation

n D
1[
nD1

1\
mD1

1[
kD1

An;m;k ;

where the sets

An;m;k D

8̂
<
:̂
B1=m.ak/; if one can find y; z 2 B1=m.ak/

so that jh.y/ � h.z/j > 1
n
;

¿ otherwise

all belong to E .
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Problem 3.8.5. Suppose that .�; �/ and . Q�; Q�/ are two identically distributed pairs

of random variables, i.e., .�; �/
dD . Q�; Q�/, with Ej�j < 1. Prove that E.� j �/ dD

E. Q� j Q�/.
Problem 3.8.6. Let � and � be any two random elements (defined on a sufficiently
rich probability space) which take values in the Borel space .E;E / (see [ P §2.7,
Definition 9]). Prove that one can find a measurable function f D f .x; y/, defined
on E � Œ0; 1� and taking values in E , and also a random variable ˛, which is
uniformly distributed in the interval Œ0; 1�, so that the following representation holds
with probability 1

� D f .�; ˛/:

Problem 3.8.7. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with E�1 D 0, E�21 < 1 and let Xn D Pn

kD1 �k ,
n � 1. Prove the following result (known as Skorokhod’s embedding): there is a
probability space .e̋ ; eF ;eP/, on which one can construct a Brownian motion eB D
.eBt/t�0 and a sequence of stopping timese� D .e�k/k�0 with 0 De�0 �e�1 � : : :, so
that

.Xn/n�1
dD .eB Q�n/n�1

and eE.�n � �n�1/ D E�21 , n � 1. (As usual, the symbol “
dD” is understood to mean

“identity in distribution”.)

Problem 3.8.8. Let F D F.x/ be a distribution function on R and define its inverse
F�1.u/, 0 � u � 1, by

F�1.u/ D
(

inffx W F.x/ > ug; u < 1;

1; u D 1:

Prove that:
(a) fxIF.x/ > ug � fxIF�1.u/ � xg � fxIF.x/ � ug;
(b) F.F�1.u// � u, F�1.F.x// � x;
(c) if the function F D F.x/ is continuous, then F �1.u/ D inffxIF.x/ �

ug, F�1.u/ D maxfxIF.x/ D ug, F.F �1.u// � u, and fxIF.x/ > ug D
fxIF�1.u/ < xg;

(d) inffxIF.x/ � ug D supfxIF.x/ < ug.

Remark. In Statistics the function Q.u/ D F�1.u/ is known as the quantile
function of the distribution F .

Problem 3.8.9. Let F D F.x/ be any distribution function and let F�1 D F �1.u/
be its inverse.

Prove that if U is any random variable which is uniformly distributed on Œ0; 1�,
then the distribution of the random variable F �1.U / is precisely F , i.e.,

PfF�1.U / � xg D F.x/:
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In addition, prove that if the distribution function F D F.x/, associated with the
random variableX , happens to be continuous, then the random variable F.X/must
be uniformly distributed in Œ0; 1�.

Remark. If C.u/ D PfU � ug is the distribution function of the random
variablesU , which is uniformly distributed in Œ0; 1�, then one must haveC.F.x// D
F.x/—see Problem 3.8.12.

Problem 3.8.10. Let F.x; y/ be the distribution function of the pair of random
variables .�; �/ and let F1.x/ D Pf� � xg and F2.y/ D Pf� � yg be the
distribution functions of � and �. Prove the Fréchet–Hoeffding inequality:

max.F1.x/C F2.y/ � 1; 0/ � F.x; y/ � min.F1.x/; F2.y//; for all x; y 2 R:

Problem 3.8.11. Let .U; V / be some random vector in Œ0; 1�2 with distribution
function

C.u; v/ D PfU � u; V � vg;
and suppose that U and V are both uniformly distributed in Œ0; 1�. Let F1.x/ and
F2.y/, x; y 2 R, be any two continuous distribution functions.

Prove that the function

F.x; y/ D C.F1.x/; F2.y//; x; y 2 R; .�/
is a bi-variate distribution function with marginal distributions F1.x/ and F2.y/.

Remark. For a given bi-variate distribution function F.x; y/, with marginal
distributions F1.x/ and F2.y/, x; y 2 R, it is interesting to know how to construct
the functionC.u; v/ so that property (�) holds. Functions that share this property and
can be written as bi-variate distributions of the form PfU � u; V � vg, for some
random variables U and V that take values in Œ0; 1�, were introduced by A. Sklar
in 1959 under the name copula. His work [122] contains existence and uniqueness
results for such functions. The next problem provides an example.

Problem 3.8.12. Consider the bi-variate distribution function

F.x; y/ D max.x C y � 1; 0/;

where 0 � x; y � 1.
Prove that the associated marginal distribution functions, F1.x/ and F2.y/, give

the uniform distribution on Œ0; 1�.
Show also that for the copula

C.u; v/ D max.u C v � 1; 0/; 0 � u; v � 1;

one must have
F.x; y/ D C.F1.x/; F2.y//:

Remark. Compare the statement in this problem with the one in Problem 3.8.9.
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Problem 3.8.13. Suppose that the random variables � and �1; �2; : : : are chosen so
that �n � 0 and Law.�n/ ! Law.�/. Prove that

E� � lim
n

E�n:

Hint. Use [ P §3.8, Theorem 1] and [ P §2.6, Theorem 2] (Fatou’s Lemma).

3.9 The Variation Distance Between Probability Measures.
The Kakutani-Hellinger Distance and the Hellinger
Integral. Applications to Absolute Continuity
and Singularity of Probability Measures

Problem 3.9.1. Adopting the notation introduced in [ P §3.9, Lemma 2], set

P ^ eP D EQ.z ^ Qz/;

where z ^ Qz D min.z; Qz/. Prove that

kP � eP k D 2.1� P ^ eP /

and conclude that Er .P; eP / D P ^ eP (for the definition of Er .P;eP / see
[ P §3.9, 1 ]).

Hint. Use the relation a ^ b D 1
2
.a C b � ja � bj/.

Problem 3.9.2. Let P , Pn, n � 1, be probability measures on .R;B.R// with
densities (relative to the Lebesgue measure) p.x/, pn.x/, n � 1, and suppose that
pn.x/ ! p.x/ for Lebesgue-almost every x. Prove that

kP � Pnk D
Z 1

�1
jp.x/ � pn.x/j dx ! 0 as n ! 1 :

Hint. Consider the inequality

Z 1

�1
jpn.x/ � p.x/j dx �

Z

fjxj�ag
jpn.x/ � p.x/j dx C

Z

fjxj>ag
p.x/ dx

C
Z

fjxj>ag
pn.x/ dx;
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where a > 0 is chosen so that
R

fjxj�ag p.x/ dx > 1 � " for every " > 0. By Fatou’s
lemma

lim
n

Z

fjxj�ag
pn.x/ dx � 1 � ":

Problem 3.9.3. Let P and eP be any two probability measures. The Kullback
informationK.P; eP /, which measures the “divergence” of eP from P , is defined as

K.P;eP / D
8<
:
E
h
ln dP

deP
i
; if P � eP ;

1 otherwise.

Prove that

K.P;eP / � �2 ln.1� �2.P;eP // � 2�2.P; eP /;
where �.P; eP / is the Kakutani–Hellinger distance between the measures P and eP .

Hint. The second inequality follows from the relation � ln.1� x/ � x, 0 � x �
1. To prove the first inequality, show that

�2 ln.1 � �2.P;eP // D �2 lnEP

rez
z
;

and then conclude from Jensen’s inequality that

�2 lnEP

rez
z

� K.P;eP /:

Problem 3.9.4. Prove formulas [ P §3.9, (11) and (12)].

Problem 3.9.5. Prove the two inequalities in [ P §3.9, (24)].

Hint. With Q D 1
2
.P C eP /, z D dP

dQ
, andez D deP

dQ
, setting y D z � 1, one finds

thatez D 2 � z D 1 � y and that [ P §3.9, (24)] can be written in the form

2.1C EQf .y// � 2EQjyj �
q
c˛.1 � EQf .y// ;

where f .y/ D .1C y/˛.1 � y/1�˛ , y 2 Œ�1; 1�. By analyzing the functions f 0.y/
and f 00.y/ on the interval .�1; 1/, one can prove that:

(a) f D f .y/ is concave on Œ�1; 1� and f .y/ � 1 � jyj;
(b) f .y/ � 1C f 0.0/y �ec˛y2, y 2 Œ�1; 1�, withec˛ D ˛.1 � ˛/=4.
Finally, the first inequality can be deduced from (a), while the second one can be

deduced from (b).
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Problem 3.9.6. Let P;eP ;Q be probability measures on .R;B.R// and let P �Q
and eP �Q stand for the respective convolutions (see [ P §2.8, 4 ]). Show, that

kP �Q � eP �Qk � kP � eP k:

Hint. Use [ P §3.9, Lemma 1].

Problem 3.9.7. Prove the relations (30) from [ P §3.9, Example 2].
Hint. By using straight-forward calculation, prove that

H

�
1

2
IP;eP

�
D exp

	
� 1

2

1X
kD1

�p
�k �

q
e�k
�2


and then use [ P §3.9, Theorems 2 and 3].

Problem 3.9.8. Let � and � be any two random elements on .˝;F ;P/ with values
in the measurable space .E;E /. Prove that

jPf� 2 Ag � Pf� 2 Agj � P.� ¤ �/; A 2 E :

Hint. Use the relation

jI.� 2 A/ � I.� 2 A/j D jI.� 2 A/� I.� 2 A/jI.� 6D �/:

Problem 3.9.9. The Hellinger integral of order ˛ for the measures P and eP is
defined by (see formula [ P §3.9, (20)])

H.˛IP; eP / D
Z

˝

.dP /˛.deP/1�˛:

A useful tool in the study of many statistical experiments is what is known as the
Hellinger transformationH.˛I E /, which is defined as follows:

Consider the statistical experiment E D .˝;F IP0; P1; : : : ; Pk/, which con-
sists of the measurable space .˝;F / and the finite family of probability mea-
sures P0; P1; : : : ; Pk defined on that space.

In symbolic form the Hellinger transformation H.˛I E / of the experiment E is
defined by the formula:

H.˛I E / D
Z

˝

.dP0/
˛0 : : : .dPk/

˛k ; .�/

where ˛ D .˛0; : : : ; ˛k/ belongs to the symplex

˙kC1 D
(
˛ D .˛0; : : : ; ˛k/ W ˛i � 0;

kX
iD0

˛i D 1

)
:
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Similarly to the case k D 1, give meaning to the “integral” in .�/ (by using
the concept of “dominating measures”) and prove the corresponding analog of
Lemma 3.

Problem 3.9.10. Let .˙k;B.˙k// denote the simplex

˙k D
(
x D .x1; : : : ; xk/ W xi � 0;

kX
iD0

xi D 1

)
;

equipped with the associated Borel �-algebra B.˙k/.
Let � D �.dx/ be any measure on .˙k;B.˙k//, such that �.˙k/ < 1 and

Z

˙k

xi �.dx/ D 1; i D 1; : : : ; k:

(In the theory of statistical experiments measures, �, with the above properties are
known as standard measures.)

In Mathematical Analysis the Hellinger transformation, H.˛I�/, of the mea-
sure � is defined by the formula

H.˛I�/ D
Z

˙k

x
˛1
1 : : : x

˛k
k �.dx/;

for all ˛ 2 ˙k .
Prove the following statements:
(a) If �1 and �2 are two standard measures, such that H.˛I�1/ D H.˛I�2/, for

all ˛ 2 ˙k , then one must have �1 D �2.
(b) The sequence of standard measure �n converges weakly to the standard

measure � if and only if H.˛I�n/ ! H.˛I�/ as n ! 1, for all ˛ 2 ˙k .
Let E D .˝;F IP0; P1; : : : ; Pk/ be some statistical experiment, let Q be some

probability measure that dominates the measures P0; P1; : : : ; Pk , and let

fi D dPi

dQ
; i D 0; 1; : : : ; k:

Setting

�.A/ D Q
˚
! W .f0.!/; : : : ; fk.!// 2 A�; A 2 B.˙kC1/;

prove that� is a standard probability measure on the space .˙k;B.˙k// that shares
the property

H.˛I E / D H.˛I�/:
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Problem 3.9.11. Let E D .˝;F W P0; P1; : : : ; Pk/ be some statistical experiment,
suppose that the measure P0 dominates the measures P1; : : : ; Pk , and let

zi D dPi

dP0
; i D 1; : : : ; k:

In probability theory, the Mellin transformation of the experiment E is defined as a
function of the argument ˇ 2 k given by

M.ˇI E / D
Z

˝

zˇ11 : : : z
ˇk
k P0.d!/ .D E0z

ˇ1
1 : : : z

ˇk
k /;

where

k D
	
ˇ D .ˇ1; : : : ; ˇk/ W 0 � ˇi < 1;

kX
iD1

ˇi < 1



:

In mathematical analysis, the Mellin transformation M.ˇI �/ of the measure � is
defined somewhat differently. Specifically, if

RkC D fx D .x1; : : : ; xk/ W xi � 0; i D 1; : : : ; kg;

and � is a probability measure on .RkC;B.RkC//, chosen so that

Z

Rk
C

xi �.dx/ � 1

(a measures � on RkC with this property is commonly referred to as standard
measure), then one sets

M.ˇI �/ D
Z

Rk
C

x
ˇ1
1 : : : x

ˇk
k �.dx/;

where ˇ D .ˇ1; : : : ; ˇk/ 2 k .
Prove that:
(a) if �1 and �2 are any two standard measures for which M.ˇI �1/ D M.ˇI �2/

for all ˇ 2 k , then �1 D �2;
(b) the sequence of standard measures .�n/ converges weakly to the standard

measure � if and only if

M.ˇI �n/ ! M.ˇI �/; for all ˇ 2 kI

(c)

M.ˇI E / D M.ˇI �/:
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Problem 3.9.12. Prove that if ˛ D .˛0; : : : ; ˛k/ 2 ˙kC1 and ˛0 > 0, then

H.˛I E / D M.ˇI E /;

where .ˇ1; : : : ; ˇk/ D .˛1; : : : ; ˛k/.
Convince yourself that if ˛ D .˛0; : : : ; ˛k/ 2 ˙kC1, with ˛0 > 0, andLi D ln zi ,

i D 1; : : : ; k, then

H.˛I E / D E0 exp

	 kX
iD1

˛iLi



;

i.e., the Hellinger transformation H.˛I E / coincides with the Laplace transforma-
tion of the vector .L1; : : : ; Lk/ with respect to the measure P0.

Problem 3.9.13. Suppose that P D kpij k,1 � i; j � N < 1, is a stochastic
matrix (see [ P §1.12]). The variable

D.P/ D 1

2
sup
i;j

NX
kD1

jpik � pjkj

is known as the Dobrushin ergodicity coefficient of the matrix P .
Prove that:
(a) D.P/ D supi;j kpi � � pj �k;
(b) D.P/ D 1 � infi;j

P1
kD1.pik ^ pjk/;

(c) if P and Q are any two stochastic matrices of the same dimension, then

D.PQ/ � D.P/D.Q/I

(d) if � D .�1; : : : ; �N / and � D .�1; : : : ; �N / are any two distributions, then

k�Pn � �P nk � k� � �k .D.P //n:

Problem 3.9.14. Suppose that � and � are two random variables with probability
distributions P andQ. Show the coupling inequality:

Pf� D �g � 1 � 1

2
kP �Qk

and compare this relation with the statement in Problem 3.9.8. In particular, if � and
� are two random variables with densities p.x/ and q.x/, then

Pf� D �g � 1 � 1

2

Z

R

jp.x/ � q.x/j dx:

Give examples in which the above inequality turns into equality.
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Problem 3.9.15. Let X D .Xn/n�0 and Y D .Yn/n�0 be any two random se-
quences, defined on some probability space .˝;F ;P/. Let � be a random moment,
such that Xn.!/ D Yn.!/ for all n � �.!/ (the moment � is sometimes referred to
as the coupling time). Letting Pn and Qn denote the probability distributions of the
variablesXn and Yn, prove the coupling inequality:

1

2
kPn �Qnk � Pf� � ng:

Problem 3.9.16. Let f D f .x/ and g D g.x/ be any two probability densities on
.R;B.R//. Prove that:

(a)
Z

jf .x/ � g.x/j dx D 2

Z
.f .x/ � g.x//C dx D 2

Z
.g.x/ � f .x//C dx;

(b)

�Z p
f .x/g.x/ dx

�2
� 2

Z
min.f .x/; g.x// dx;

(c)
R jf .x/ � g.x/j dx � p

2K.f; g/, where K.f; g/ D R
f .x/ ln f .x/

g.x/
dx is

Kullback’s information (see Problem 3.9.3) and the probability distribution Pf ,
associated with the density f , is assumed to be absolutely continuous with respect
to the distribution Pg , associated with the density g;

(d)
Z

min.f .x/; g.x// dx � 1

2
e�K.f;g/.

Problem 3.9.17. Suppose that the random vector X D .X1; : : : ; Xk/ is uniformly
distributed inside the set

Tk D
(
x D .x1; : : : ; xk/; xi � 0;

kX
iD1

xi � 1

)
:

Prove that the probability density of the random vector X is given by the formula

f .x/ D kŠ ; x 2 Tk:

Problem 3.9.18. Let X and Y be any two random variables with EX2 < 1 and
EY 2 < 1, let cov.X; Y / D E.X � EX/.Y � EY /, and let F.x; y/, F1.x/,
and F2.y/ denote, respectively, the distribution functions of the random elements
.X; Y /, X , and Y .

Prove the Hoeffding formula:

cov.X; Y / D
“ �

F.x; y/ � F1.x/F2.y/
�
dx dy:
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3.10 Contiguity (Proximity) and Full Asymptotic Separation
of Probability Measures

Problem 3.10.1. LetPn D Pn
1 �� � ��Pn

n and eP n D eP n
1�� � ��eP n

n, n � 1, wherePn
k

and eP n
k are Gaussian measures with parameters .ank; 1/ and . Qank; 1/. Find conditions

for .ank/ and . Qank/ that ensure the relations .ePn/ C .P n/ and .eP n/ C .P n/.
Hint. Use direct calculation to show that

H.˛IPn;ePn/ D exp

	
� ˛.1 � ˛/

2

nX
kD1

.˛nk � ęnk/2



and take into account the relations [ P §3.10, (11) and (12)].

Problem 3.10.2. Let Pn D Pn
1 � � � � � Pn

n and eP n D eP n
1 � � � � � eP n

n, where Pn
k

and eP n
k are probability measures on .R;B.R//, such that Pn

k .dx/ D IŒ0;1�.x/ dx

and eP n
k.dx/ D IŒan;1Can�.x/ dx, for some choice of 0 � an � 1. Prove that

H.˛IPn
k ;
eP n
k/ D 1 � an and

.ePn/ C .P n/ ” .P n/ C .ePn/ ” lim
n
nan D 0;

.eP n/4.P n/ ” lim
n
nan D 1:

Problem 3.10.3. Consider the structure .˝;F ; .Fn/n�0/, which consists of a
measurable space .˝;F / and a flow of �-algebras .Fn/n�0, chosen so that F0 �
F1 � � � � � F . Set F D �.

S
n

Fn/, suppose that P and eP are two probability

measures on .˝;F /, and denote by Pn D P jFn and eP n D eP jFn their respective
restrictions to Fn. Prove that

.Pn/ C .Pn/ ” P � P;

.eP n/ CB .Pn/ ” eP 
 P;

.eP n/ C .Pn/ ” eP ? P:

Problem 3.10.4. Consider the probability space .˝;F ;P/, in which ˝ D
f�1; 1g1 is the space of binary sequences ! D .!1; !2; : : :/ and the probability
measure P is chosen so that Pf! W .!1; : : : ; !n/ D .a1; : : : ; an/g D 2�n, for every
ai D ˙1, i D 1; : : : ; n. Given any n � 1, let "n.!/ D !n. (In particular, under the
measure P, the sequence " D ."1; "2; : : :/ is a sequence of independent Bernoulli
random variables with Pf"n D 1g D Pf"n D �1g D 1

2
.)

Next, define the sequence S D .Sn/n�0 according to the recursive rule S0 D 1

and Sn D Sn�1.1 C �n/, where �n D �n C �n"n, �n > 0, �n > �n � 1. (In the
context of financial mathematics the random variable Sn > 0 is usually interpreted
as “the price” of a given security in period n—see [ P §7.11].)
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Let Pn D PjFn, where Fn D �."1; : : : ; "n/. On the probability space .˝;F /

one can define a new measure eP in such a way that under eP the random variables
"1; "2; : : : are again independent, but also share the property

ePf"n D 1g D 1

2
.1C bn/; ePf"n D �1g D 1

2
.1 � bn/; where bn D ��n

�n
:

Prove that the sequence S D .Sn/n�0 forms a martingale relative to the measureeP
(see [ P §1.11] and [ P §7.1]).

Setting Pn D PjFn, prove that

H.˛IePn;Pn/ D
nY

kD1


.1C bk/

˛ C .1 � bk/
˛

2

�
:

Finally, by using [ P §3.10, Theorem 1] conclude that

.Pn/ C .ePn/ ,
1X
kD1

b2k < 1:

(In the context of “large” financial markets the previous statement implies that

the condition
P1

kD1
�
�k
�k

�2
< 1 is necessary and sufficient for the absence of

asymptotic arbitrage—for more details see § 3, Chap. VI, in the book [120].)

Problem 3.10.5. Suppose that, unlike the security-pricing model discussed in the
previous problem, one sets S0 D 1 and Sn D eh1C:::Chn , n � 1, where hk D
�k C �k"k, for some �k > 0 and some sequence ."1; "2; : : :/ of independent and
identically distributed Gaussian (N .0; 1/) random variables.

With Fn D �."1; : : : ; "n/ and Pn D PjFn, n � 1, prove that the sequence
.Sn/n�0 forms a martingale (see [ P §7.11]) relative to the measure eP, which is
defined byePjFn D ePn, where dePn D zn dPn with

zn D exp

	
�

nX
kD1

�
�k

�k
C �k

2

�
"k C 1

2

nX
kD1

�
�k

�k
C �k

2

�2

:

Show also that

H.˛IePn;Pn/ D exp

	
� ˛.1 � ˛/

2

nX
kD1

�
�k

�k
C �k

2

�2


and

.Pn/ C .ePn/ ,
nX

kD1

�
�k

�k
C �k

2

�2
< 1:
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(The condition
Pn

kD1
�
�k
�k

C �k
2

�2
guarantees the absence of asymptotic arbitrage

in this financial market—see § 3c, Chap. VI, in the book [120].)

3.11 Rate of Convergence in the Central Limit Theorem

Problem 3.11.1. Prove the inequalities in [ P §3.11, (8)].

Problem 3.11.2. Let �1; �2; : : : be a sequence of independent and identically
distributed random variables with E�k D 0, D�k D �2 and Ej�1j3 < 1. The
following non-uniform estimate is well known:

jFn.x/ � ˚.x/j � CEj�1j3
�3

p
n

� 1

.1C jxj/3 for all � 1 < x < 1:

Prove this result at least in the case of Bernoulli random variables. (The statements
in this problem and in Problems 3.11.5–3.11.7 bellow are discussed, for example,
in the book [94].)

Problem 3.11.3. Let .�k/k�1 be a sequence of independent and identically dis-
tributed random variables that take two values ˙1 with equal probability (1=2).
Setting '2.t/ D Eeit�1 D 1

2
.eit C e�i t / and Sk D �1 C � � � C �k , show, following

Laplace, that

PfS2n D 0g D 1




Z 


0

'n2 .t/ dt 
 1p

n

as n ! 1:

Problem 3.11.4. Let .�k/k�1 be a sequence of independent and identically dis-
tributed random variables, taking 2a C 1 integer values 0;˙1; : : : ;˙a, and set
'2aC1.t/ D Eeit�1 D 1

1C2a .1C 2
Pa

kD1 cos tk/.
Just as in the previous problem, prove—again, following Laplace—that

PfSn D 0g D 1




Z 


0

'n2aC1.t/ dt 

p
3p

2
.aC 1/n
as n ! 1:

In particular, for a D 1, i.e., in the special case where �k takes the values �1; 0; 1,
one must have

PfSn D 0g 

p
3

2
p

n

as n ! 1:
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Problem 3.11.5. Prove that if F D F.x/ and G D G.x/ are two distribution
functions, associated with two integer-valued random variables, and if f .t/ and
g.t/ denote their respective characteristic functions, then

sup
x

jF.x/ �G.x/j � 1

4

Z 


�


ˇ̌
ˇ̌f .t/ � g.t/

t

ˇ̌
ˇ̌ dt:

Problem 3.11.6. Prove that if F and G are two distribution functions, f .t/ and
g.t/ are their respective characteristic functions, and L.F;G/ is the Lévy distance
between F and G (see Problem 3.1.4), then for every T � 2 one must have

L.F;G/ � 1




Z T

0

ˇ̌
ˇ̌f .t/ � g.t/

t

ˇ̌
ˇ̌ dt C 2e

lnT

T
:

Problem 3.11.7. Let Fn.x/ be the distribution function of the normalized sum
1

�
p
n

Pn
iD1 �i of some finite collection of independent and identically distributed

random variables, such that E�i D 0, E�2i D �2 > 0 and Ej�i j3 D ˇ3 < 1. Setting
� D ˇ3

�3
, prove that

lim
n

inf
.ea;e�/

p
n

ˇ̌
ˇ̌Fn.x/� ˚

�
x �ea
e�

�ˇ̌
ˇ̌ � �p

2

:

3.12 Rate of Convergence in the Poisson Limit Theorem

Problem 3.12.1. Prove that with �k D � ln.1�pk/ the variation distance kB.pk/�
˘.�k/k satisfies the relation

kB.pk/�˘.�k/k D 2.1� e��k � �ke��k / .� �2k/

and, therefore, kB �˘k � Pn
kD1 �2k:

Hint. The inequality kB.pk/�˘.�k/k � �2k follows from the formula

kB.pk/�˘.�k/k Dj.1� pk/� e��k j C jpk � �ke
��k jC

C e��k
1X
iD2

�ik
i Š

D 2.1� e��k � �ke
��k /

and the fact that 2.1� e�x � xe�x/ � x2, for x � 0.

Problem 3.12.2. Prove the relations [ P §3.12, (9) and (10)].



3.12 Rate of Convergence in the Poisson Limit Theorem 227

Problem 3.12.3. Let �1; : : : ; �n be independent Bernoulli random variables that
take the values 1 and 0 with probabilities Pf�k D 1g D pk , Pf�k D 0g D 1 � pk ,
1 � k � n. Given any 0 � t � 1 and � > 0, set �0 D 0,

Sn.t/ D
bntcX
kD0

�k;

P
.n/

k .t/ D PfSn.t/ D kg; 
k.t/ D .�t/ke��t

kŠ
; k D 0; 1; 2; : : : ;

and

An.t/ D
bntcX
kD0

pk .D ESn.t//:

Prove that the probabilities P .n/

k .t/ and 
k.t/ satisfy the following relations:

P
.n/
0 .t/ D 1 �

Z t

0

P
.n/
0 .s�/ dAn.s/;

P
.n/

k .t/ D �
Z t

0

�
P
.n/

k .s�/ � P .n/

k�1.s�/
�
dAn.s/; k � 1;

.�/

and


0.t/ D
Z t

0


0.s�/ d.�s/;


k.t/ D
Z t

0

�

k.s�/ � 
k�1.s�/

�
d.�s/; k � 1:

.��/

Problem 3.12.4. By using the relations .�/ and .��/ in the previous problem, prove
that 1X

kD0

ˇ̌
P
.n/

k .t/ � 
k.t/
ˇ̌ � 2

Z t

0

1X
kD0

ˇ̌
P
.n/

k .s�/ � 
k.s�/
ˇ̌
d.�s/

C.2C 4An.t// max
0�s�t jAn.s/� �sj: .���/

Problem 3.12.5. By using the Gronwall–Bellman inequality (see Problem 2.6.51)
and the notation adopted in Problem 3.12.3, conclude from .���/ that

1X
kD0

ˇ̌
P
.n/

k .t/ � 
k.t/
ˇ̌ � e2�t C .2C 4An.t// max

0�s�t jAn.s/ � �sj:
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Then conclude from the last relation that

1X
kD0

ˇ̌
PfSn.1/ D kg � 
k.1/

ˇ̌ �
�
2C 4

nX
kD1

pk

�
e2� min

i
sup
0�s�1

ˇ̌
ˇ̌

bnscX
kD0

pik � �s
ˇ̌
ˇ̌;

where the min is taken with respect to all permutations i D .i1; : : : ; in/ of the
numbers .1; : : : ; n/ and pi0 D 0.

By using the above inequality, prove that if
Pn

kD1 pk D � then

1X
kD0

ˇ̌
ˇ̌P
	 nX
lD1

�l D k



� �ke��

kŠ

ˇ̌
ˇ̌ � C.�/min

i
sup
0�s�1

ˇ̌
ˇ̌

bnscX
kD0

pik ��s
ˇ̌
ˇ̌ � C.�/ max

1�k�n
pk;

where C.�/ D .2C 4�/e2�.

3.13 The Fundamental Theorems of Mathematical Statistics

Problem 3.13.1. Prove formula [ P §3.13, (18)].

Problem 3.13.2. By using the notation adopted in [ P §3.13, 4 ], prove that the

convergenceP .N/ w! P (in .D;D ; �/) implies the convergence f .X.N//
d! f .X/.

Problem 3.13.3. Verify the implication [ P §3.13, (22)].

Problem 3.13.4. Let �1; �2 : : : and �1; �2; : : : be two sequences of independent
and identically distributed random variables with continuous distribution functions,
respectively, F D F.x/ and G D G.x/. Consider the empirical distribution
functions

FN .xI!/ D 1

N

NX
kD1

I.�k.!/ � x/ and GN.xI!/ D 1

N

NX
kD1

I.�k.!/ � x/

and set
DN;M .!/ D sup

x

jFN .xI!/ �GM.xI!/j

and
DC
N;M .!/ D sup

x

.FN .xI!/ �GM.xI!//:

In the case of two samples, of the type described above, it is well known that

lim
N;M!1 P

	r
NM

N CM
DN;M .!/ � y



D K.y/; y > 0; .�/

whereK D K.y/ denotes the Kolmogorov distribution (see [ P §3.13, 5 ]).
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By following the ideas on which the proof of [ P §3.13, (25)] is based, sketch the
main steps in the proof of .�/ and the proof of [ P §3.13, (27) and (28)].

Problem 3.13.5. Consider the “omega-square statistics”

!2N .!/ D
Z 1

�1
jFN .xI!/ � F.x/j2 dF.x/; .��/

associated with the continuous distribution function F D F.x/. Prove that,
similarly to the statisticsDN.!/ andDC

N .!/, the distribution of the statistics !2N .!/
is one and the same for all continuous distribution functions F D F.x/. Show also
that

E!2N .!/ D 1

6N
; D!2N .!/ D 4N � 3

180N 3
:

Problem 3.13.6. Let �1; �2; : : : be a sequence of independent and identically dis-
tributed random variables, chosen so that E�1 D 0 and D�1 D 1. Setting

Rn D max
k�n

�
Sk � k

n
Sn

�
� min

k�n

�
Sk � k

n
Sn

�
;

prove that

Rnp
n

dD max
ftDk=nWkD0;1;:::;ng

jBt � tB1j � min
ftDk=nWkD0;1;:::;ng

jBt � tB1j

dD max
ftDk=nWkD0;1;:::;ng

Bı
t � min

ftDk=nWkD0;1;:::;ng
Bı
t ;

whereB D .Bt /t�1 is a Brownian motion,Bı D .Bı
t /t�1 is a Brownian bridge and,

as usual, “
dD” stands for “identity in distribution.”

Show also that

ERn 

q



2
n and DRn 


�

2

6
� 


2

�
n:

(Comp. with Problem 2.13.48.)

Problem 3.13.7. Let F D F.x/ and G D G.x/ be any two distribution functions,
let F �1.t/ D inffx W F.x/ > tg and G�1.t/ D inffx W G.x/ > tg, let F2 stand for
the space of all distribution functions F with

R1
�1 x2 dF.x/ < 1, and let

d2.F;G/ D
�Z 1

0

jF�1.t/ �G�1.t/j2 dt
�1=2

; F; G 2 F2:

(a) Prove that the function d2 D d2.F;G/, which is known as the Wasserstein
metric, is indeed a metric and the space F2 is complete for the metric d2.
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(b) Let �1; : : : ; �n be independent and identically distributed random variables,
which share one and the same distribution function F 2 F2, and let bF n be the
empirical distribution function associated with the sample �1; : : : ; �n. Prove that one
has (P-a. e.)

d2.F;bF n/ ! 0 as n ! 1:

(c) Prove that for any F;G 2 F2 the following (coupling-type) relation is in force

d2.F;G/ D inf E.� � �/2;

where the inf is taken over all possible pairs of random variables .�; �/, chosen so
that � has distribution function F 2 F2 and � has distribution functionG 2 F2.

Problem 3.13.8. Let F1 stand for the space of all distribution functions F withR1
�1 jxj dF.x/ < 1 and let

d1.F;G/ D
Z 1

0

jF�1.t/ �G�1.t/j dt; F; G 2 F1:

(a) Prove that the function d1 D d1.F;G/, which is known as the Dobrushin
metric, is indeed a metric and the space F1 is complete for the metric d1.

(b) Prove that if F;F1; F2; : : : 2 F1, then d1.F; Fn/ ! 0 as n ! 1 if and only if
Fn ) F and

R jxj dFn.x/ ! R jxj dF.x/ (the symbol “)” stands for “converges
essentially” —see [ P §3.1]).

(c) Prove that for any F;G 2 F1 the following (coupling-type) relation is in force

d1.F;G/ D inf Ej� � �j;

where the infimum is taken over all possible pairs of random variables .�; �/, chosen
so that � has distribution function F 2 F1 and � has distribution function G 2 F1.

(d) Let �1; : : : ; �n be independent and identically distributed random variables,
which share one and the same distribution function F 2 F1 and let bF n is the
empirical distribution function associated with the sample �1; : : : ; �n. Prove that one
has (P-a. e.)

d1.F;bF n/ ! 0 as n ! 1:

Problem 3.13.9. Let F D F.x/, x 2 R, be the distribution function of some
random variableX and let F�1 D F�1.u/, u 2 Œ0; 1�, be the inverse of F , as defined
in Problem 3.8.8. Given any 0 < p < 1, the quantity ~p D F �1.p/ is known
as the p-quantile of the random variable X , or, equivalently, of the distribution
function F D F.x/. (The quantity F�1.1=2/ is often referred as the “median,”
whileF�1.1=4/ andF �1.3=4/ are commonly referred to, respectively, as the “lower
quantile” and the “upper quantile”.)

Give the conditions under which the p-quantile ~p can be characterized as the
unique root of the equation F.x/ D p.
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Problem 3.13.10. Let X1; : : : ; Xn; : : : be independent and identically distributed
random variables, which share one and the same distribution function F D F.x/,
and let

bF n.x/ D Fn.xI!/ D 1
n

nX
kD1

I.Xk.!/ � x/

be the empirical distribution function constructed from the sample X1; : : : ; Xn (see
formula [ P §3.13, (1)] ).

Prove that if bX.n/
1 ; : : : ;

bX.n/
n are the ordered statistics constructed from the

observationsX1; : : : ; Xn (in Problems 1.12.8 and 2.8.19 these statistics are denoted
byX.n/

1 ; : : : ; X
.n/
n ), then the empirical distribution function bF n D bF n.x/ admits the

following representation:

bF n.x/ D

8
ˆ̂<
ˆ̂:

0; if x < bX.n/
1 ;

k=n; if bX.n/

k � x < bX.n/

kC1; k D 1; : : : ; n � 1;

1; if x � bX.n/
n :

Problem 3.13.11. Let everything be as in the previous problem, let ~p be the p-
quantile of the distribution function F D F.x/ and let b~p.n/ D bF�1

n .p/ be the
p-quantile of the distribution bF n D bF n.x/. Prove that if ~p is the unique value with
the property F.~p�/ � p � F.~p/, then as n ! 1 one has

b~p.n/ ! ~p .P-a. e./:

Hint. Notice thatb~p.n/ D bX.n/

dnpe and convince yourself that for every " > 0 one
has

P
n

lim bX.n/

dnpe > ~p � ı
o

D P
n

limbX.n/

dnpe < ~p C ı
o

D 1;

where, just as before, dxe stands for the smallest integer that is greater than or equal
to x.

Problem 3.13.12. Let X1;X2; : : : be independent and identically distributed ran-
dom variables that share one and the same continuous distribution function F D
F.x/. In addition, suppose that the following conditions hold: for any given 0 <
p < 1 the equation F.x/ D p has unique solution ~p; the derivative F 0.x/ exists

and is continuous at the point x D ~p and, furthermore, F 0.~p/ > 0. Let bX.n/

dnpe
denote the p-quantile in the sample.
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Prove that as n ! 1 the random variables
p
n.bX.n/

dnpe � ~p/ converge in
distribution to a Gaussian random variable N that has zero mean and dispersion
p.1 � p/.F 0.~p//2, i.e.,

p
n
�bX.n/

dnpe � ~p

�
law! N:

Hint. Suppose that the random variables �1; : : : ; �n are independent and uni-
formly distributed in the interval Œ0; 1�, and letb�.n/1 ; : : : ;b�.1/n denote the associated
ordered statistics. In order to prove the required statement, notice first that the
variables bX.n/

dnpe � ~p and F �1.b�.n/dnpe/ � F�1.p/ coincide in distribution, and then
use the statement in [ P §3.13, Lemma 2] and the Central Limit Theorem in terms
of Lindeberg’s conditions (see [ P §3.4, Theorem 1]).



Chapter 4
Sequences and Sums of Independent Random
Variables

4.1 0–1 Laws

Problem 4.1.1. Prove the Corollary to Theorem 1 in [ P §4.1].
Hint. Use the fact that the distribution function of the variable � takes only the

values 0 and 1.

Problem 4.1.2. Prove that if .�n/n�1 is some sequence of independent random
variables, then the random variables lim �n and lim �n are degenerate (i.e., have
vanishing dispersion).

Hint. Show first that lim �n and lim �n are X -measurable, where X is the
associated tail �-algebra

Problem 4.1.3. Let .�n/n�1 be any sequence of independent random variables,
let Sn D �1 C : : : C �n and suppose that the constants bn are chosen so that
0 < bn " 1. Prove that the random variables lim Sn

bn
and lim Sn

bn
are degenerate (i.e.,

have vanishing dispersion).
Hint. Fix some integer N in the set f1; 2; : : :g and set

eSn D
(

0; n � N;

Sn � SN ; n > N:

By using the property limn
Sn
bn

D limn
eSn
bn

conclude that the variable limn
Sn
bn

must
be measurable for

T1
nDN Fn and, therefore, since N is arbitrarily chosen, must be

measurable also for X .

Problem 4.1.4. Let Sn D �1 C : : : C �n, n � 1, and X .S/ D T

F1
n .S/,

F1
n .S/ D �f!WSn; SnC1; : : :g. Prove that all events in the tail �-algebra X .S/

are trivial.

Problem 4.1.5. Let .�n/n�1 be any sequence of random variables. Prove that
flim �n � cg � limf�n � cg for every constant c.
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Hint. It is enough to notice that

lim
n

f�n � cg D f! W �n.!/ � c i.o.g:

Problem 4.1.6. Give examples of tail events A (i.e., events in the �-algebra X D
T1
nD1F1

n , where F1
n D �.�n; �nC1; : : :/, for some sequence of random variables

.�n/n�1) that have the property 0 < P.A/ < 1.

Problem 4.1.7. Let �1; �2; : : : be any sequence of independent random variables
with E�n D 0 and E�2n D 1, n � 1, for which the central limit theorem holds, i.e.,
PfSn=pn � xg ! ˚.x/, x 2 R, where Sn D �1 C : : :C �n). Prove that

lim
n!1n�1=2Sn D C1 (P-a. e.).

In particular, this property must hold when �1; �2; : : : are independent and identically
distributed with E�1 D 0 and E�21 D 1.

Problem 4.1.8. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with Ej�1j > 0. Prove that

lim
n!1

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

kD1
�k

ˇ

ˇ

ˇ

ˇ

ˇ

D C1 (P-a. e.).

Problem 4.1.9. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with E�1 D 0 and Ej�1j > 0 and let Sn D �1C: : :C�n.
Prove that (P-a. e.)

lim
n!1 n�1=2Sn D C1 and lim

n!1
n�1=2Sn D �1 :

(Comp. with the statements in Theorem 2 and Problem 4.1.7.)

Problem 4.1.10. Let F1;F2; : : : be any sequence of independent �-algebras and

let G D T1
nD1 �

�

S

j�n Fj

�

. Prove that every set G 2 G satisfies the “zero-one”

law: P.G/ is either 0 or 1.

Problem 4.1.11. Let A1;A2; : : : be some sequence of independent random events,
chosen so that P.An/ < 1, n � 1, and P

�S1
nD1 An

� D 1. Show that P.limAn/ D 1.

Problem 4.1.12. Let A1;A2; : : : be any sequence of independent random events
and let pn D P.An/, n � 1. The “zero-one” law implies that the probabilities
P.limAn/ and P.limAn/ must equal either zero or one. Give conditions, expressed
in terms of the probabilities pn, n � 1, which guarantee that: (a) P.limAn/ D 0;
(b) P.limAn/ D 1; (c) P.limAn/ D 0; and (d) P.limAn/ D 1.

Problem 4.1.13. Let �1; �2; : : : be any sequence of non-degenerate and identically
distributed random variables and let Sn D �1 C : : :C �n. Prove that:

(a) PfSn 2 A i.o.g D 0 or 1 for every Borel set A 2 B.R/.
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(b) Only the following two relations are possible: either limSn D 1 (P-a. e.), or
limSn D �1 (P-a. e.); furthermore,

P
˚

limSn D 1g D 1; if
1

X

nD1

1

n
PfSn > 0g D 1;

P
˚

limSn D �1g D 1; if
1

X

nD1

1

n
PfSn > 0g < 1:

(c) If the distribution of the variables �n is symmetric, then limSn D 1 and
limSn D �1 (P-a. e.).

Problem 4.1.14. According to the corollary to [ P §4.1, Theorem 1], every random
variable �, which is measurable for the tail �-algebra X , associated with some
sequence of independent (say, relative to some measure P) random variables
�1; �2; : : :, must be constant P-a. e., i.e., Pf� D CPg D 1, for some constant CP.
Let Q be another probability measure, relative to which the variables �1; �2; : : : are
also independent. Then it must be the case that Qf� D CQg D 1, for some constant
CQ. Can one claim that the constant CQ must coincide with the constant CP?

Problem 4.1.15. Let Sm D �1C: : :C�m,m � 1, where �1; �2; : : : is some sequence
of independent Bernoulli random variables, such that Pf�i D 1g D Pf�i D �1g D
1=2, i � 1. Let �0 D inffn � 1 W Sn D 0g, with the understanding that �0 D 1
if Sn 6D 0 for all n � 1. Prove that the random walk .Sm/m�0, which starts from 0

(S0 D 0), is recurrent, in that Pf�0 < 1g D 1. By using this property argue that
PfSn D 0 i.o. g D 1.

Hint. Use the result established in Problem 1.5.7, according to which

PfS1 : : : S2m 6D 0g D
�

1

2

�2m

Cm
2m ; for everym � 1:

Problem 4.1.16. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with Ej�i j < 1. Assuming that E�i D 0 and setting
Sn D �1 C : : :C �n, n � 1, prove that one has (P-a. e.)

lim
n!1

jSnj < 1 :

Problem 4.1.17. Let X D .X1;X2; : : :/ be any infinite sequence of exchangeable
random variables (for the definition of “exchangeable,” see Problem 2.5.4), let
Xn D �.Xn;XnC1; : : :/ and let X D T

n Xn be the “tail” �-algebra, associated
with the sequence X . Prove that for every bounded Borel function g D g.x/ one
must have (P-a. e.)

EŒg.X1/ j X � D EŒg.X1/ j X2� :
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Show also that the random variables X1;X2; : : : are conditionally independent
relative to the “tail” �-algebra X .

Problem 4.1.18. Let .X1; : : : ; XN / be any Gaussian vector of exchangeable ran-
dom variables. Prove that there is a vector ."1; : : : ; "N /, of independent standard
normal random variables ("i � N .0; 1/), for which one can write

Xn
lawD a C b"n C c

N
X

iD1
"i ; 1 � n � N ;

for some choice of the constants a, b and c.

Problem 4.1.19. Let .X1;X2; : : :/ be any infinite Gaussian sequence of exchange-
able random variables. Prove that one can find a sequence ."0; "1; : : :/, that
consists of independent and identically distributed Gaussian random variables "i �
N .0; 1/, i � 0, so that

Xn
lawD aC b"0 C c"n; n � 1:

Problem 4.1.20. Let �1; �2; : : : be any sequence of independent random variables
with exponential distribution Pf�i > xg D e�x , x � 0. Consider the event An D
f�n � h.n/g, n � 1, where h.n/ is any of the functions .c ln n/, .lnnC c ln ln n/, or
.lnnC ln ln nC c ln ln lnn/.

Prove that

P.An i.o. / D
(

0; if c > 1;

1; if c � 1:

Hint. Use the Borel–Cantelli lemma.

Problem 4.1.21. Let �1; �2; : : : be any sequence of independent and identically
distributed Bernoulli random variables with Pf�n D 1g D Pf�n D 0g D 1=2,
n � 1. Consider the the events

An D f�nC1 D 1; : : : ; �nCŒlog2 log2 n� D 1g ; n � 4 :

(a) Prove that P.An i.o. / D 1.
Hint. Consider first the sequence the events A2m , m � 2.

(b) Calculate the probability P.Bn i.o. /, where

Bn D f�nC1 D 1; : : : ; �nCŒlog2 n� D 1g; n � 2 :

Problem 4.1.22. Let A1;A2; : : : be some sequence of independent events and let

B�x D
(

!I lim
n

1

n

n
X

kD1
IAk � x

)

; x 2 R :
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Prove that for every x 2 R one has

P.B�x/ D 0 or 1:

4.2 Convergence of Series of Random Variables

Problem 4.2.1. Let �1; �2; : : : be any sequence of independent random variables
and let Sn D �1 C : : :C �n. By using the “three series theorem” prove that:

(a) If
P

�2n < 1 (P-a. e.), then the series
P

�n converges with Probability 1 if
and only if the series E�i I.j�i j � 1/ converges.

(b) If the series
P

�n converges (P-a. e.), then
P

�2n < 1 (P-a. e.), if and only if
X

.Ej�njI.j�nj � 1//2 < 1 :

Problem 4.2.2. Let �1; �2; : : : be any sequence of independent random variables.
Prove that

P

�2n < 1 (P-a. e.), if and only if

X

E

"

�2n
1C �2n

#

< 1 :

Hint. Use the “three series theorem” and notice that

X

E

"

�2n
1C �2n

#

< 1 ”
�

X

E�2nI.j�nj � 1/ < 1
X

Pfj�nj > 1g < 1
	

:

Problem 4.2.3. Let �1; �2; : : : be any sequence of independent random variables.
Prove that the following three conditions are equivalent:

1. The series
P

�n converges with Probability 1.
2. Series

P

�n converges in probability.
3. Series

P

�n converges in distribution.
Hint. Consider proving the implications .1/ ) .3/ ) .2/ ) .1/. The first

implication follows from [ P §2.10, Theorem 2]. The implication .3/ ) .2/ can be
proved by contradiction by using the Prokhorov Theorem. To prove the implication
.2/ ) .1/, show first that the following inequality holds for arbitrary m < n and
C > 0:

P
n

max
m�k�n

jSk � Smj > 2C
o

� 2 max
m�k�n

PfjSn � Skj > C g :

If the series
P

�n converges in probability, then for every " > 0 one can find an
integerm 2 N D f1; 2; : : :g, so that the following inequality holds for every n � m:
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max
m�k�nPfjSn � Skj > "g < ":

Finally, conclude from the last relation that the series
P

�n converges with
Probability 1.

Problem 4.2.4. By providing appropriate examples, prove that, in general,
in [ P §4.2, Theorems 1 and 2] one cannot remove the uniform boundedness
requirement, i.e., the condition: for every given n � 1 one has Pfj�nj � cng D 1 for
some appropriate constant cn > 0.

Hint. Consider the sequence of independent random variables �1; �2; : : : chosen
so that

Pf�n D 0g D 1 � 2

n2
; Pf�n D ng D Pf�n D �ng D 1

n2
; n � 1 :

Problem 4.2.5. Let �1; : : : ; �n be independent and identically distributed random
variables with E�1 D 0 and E�21 < 1, and let Sk D �1 C : : : C �k , k � n.
Prove the following one-sided analog (due to A. V. Marshall) of the Kolmogorov’s
inequality [ P §4.2, (2)]:

P
n

max
1�k�n

Sk � "
o

� ES2n
"2 C ES2n

; " � 0:

Problem 4.2.6. Let �1; �2; : : : be any sequence of random variables. Prove that if
P

n�1 Ej�nj < 1, then the series
P

n�1 �n converges absolutely with Probability 1.

Problem 4.2.7. Let �1; �2; : : : be any sequence of independent and symmetrically
distributed random variables. Prove that

E

"

�
X

n

�n

�2 ^ 1
#

�
X

n

E.�2n ^ 1/:

Problem 4.2.8. Let �1; �2; : : : be any sequence of independent random variables
with finite second moments. Prove that the series

P

�n converges in L2 if and only
if the series

P

E�n and
P

D�n both converge.

Problem 4.2.9. Let �1; �2; : : : be any sequence of independent random variables
and suppose that the series

P

�n converges (P-a. e). Prove that the value of the
sum

P

�n does not depend on the order of summation (P-a. e.) if and only if
P jE.�nI j�nj � 1/j < 1.

Problem 4.2.10. Let �1; �2; : : : be any sequence of independent random variables
with E�n D 0, n � 1, and suppose that
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1
X

nD1
EŒ�2nI.j�nj � 1/C j�njI.j�nj > 1/� < 1 :

Prove that the series
P1

nD1 �n converges (P-a. e.).

Problem 4.2.11. Let A1;A2; : : : be any sequence of independent events
with P.An/ > 0, n � 1, and suppose that

P1
nD1 P.An/ D 1. Show that

n
X

jD1
I.Aj /

.
n

X

jD1
P.Aj / ! 1 as n ! 1 (P-a. e.):

Problem 4.2.12. Let �1; �2; : : : be any sequence of independent random variables
with mean values E�n and dispersions �2n , chosen so that lim

n
E�n D c and

P1
nD1 ��2

n D 1. Prove that

n
X

jD1

�j

�2j

.
n

X

jD1

1

�2j
! c as n ! 1 (P-a. e.):

Problem 4.2.13. Let �1; �2; : : : be any sequence of independent and identically
exponentially distributed random variables, so that Pf�1 > xg D e��, x � 0.

Prove that if the positive numbers an, n � 1, are chosen so that the series
P

n�1 an converges, then the series
P

n�1 an�n converges with Probability 1 and
also in Lp-sense for every p � 1.

Problem 4.2.14. Let .T1; T2; : : :/ be the moments of jumps for some Poisson
process (see [ P §7.10]) and let ˛ 2 .0; 1/. Prove that the series

P1
iD1 T

�1=˛
i

converges with Probability 1.

Problem 4.2.15. Let �1; �2; : : : be any sequence of independent random variables,
chosen so that �n is uniformly distributed in


� 1
n
; 1
n

�

, n � 1. Prove that (P-a.e.):
(a) the series

P

n �n converges;
(b)

P

n j�nj D C1.
Hint. Use the two-series and three-series theorems of A. Khinchin and A. N. Kol-

mogorov ([ P §4.2, Theorem 2] and [ P §4.2, Theorem 3]).

Problem 4.2.16. The three-series theorem ([ P §4.2, Theorem 3]) guarantees that,
if �1; �2; : : : is any sequence of independent random variables, then the series
P

n�1 �n converges (P-a. e.), if one can find a constant c > 0, for which the
following three series happen converge (with �cn D �nI.j�nj � c/):

X

n�1 E�cn ;
X

n�1 D�cn;
X

n�1 Pfj�nj > cg :
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By using appropriate examples, prove that if any one of the above series fails to
converge for some c > 0, then the convergence (P-a. e.) of the series

P

n�1 �n may
not hold.

Problem 4.2.17. Let �1; �2; : : : be any sequence of random variables, chosen so
that

P1
kD1 Ej�kjr < 1, for some r > 0. Prove that �n ! 0 as n ! 1 with

Probability 1.

Problem 4.2.18. Let �1; �2; : : : be any sequence of independent Bernoulli random
variables with Pf�k D 1g D Pf�k D �1g D 1

2
, k � 1. Prove that the random

variable
P1

kD1
�k
2k

is well defined (P-a.e.) and is uniformly distributed in Œ�1; 1�.
Problem 4.2.19. Let �1; �2; : : : be any sequence of independent and symmetrically
distributed random variables. Prove that the following conditions are equivalent:

1. The series
P

�n converges with Probability 1.
2.

P

�2n < 1, P-a. e.
3.

P

E.�2n ^ 1/ < 1.

Problem 4.2.20. Let � be any random variable and let � denote its symmetrization,
i.e., � D � � e� , where e� is independent of � and has the same distribution as �.
(We suppose that the probability space is sufficiently rich to support both e� and �.)
Let � D �.�/ denote the median of the random variable �, defined by max.Pf� >
�g;Pf� < �g/ � 1

2
(comp. with Problem 1.4.23). Prove that for every a � 0 one

Pfj� � �j > ag � 2Pfj�j > ag � 4P
n

j�j > a

2

o

:

Problem 4.2.21. Let �1; �2; : : : be any sequence of independent random variables
with

Pf�n D 1g D 2�n ; Pf�n D 0g D 1 � 2�n :

Prove that the series
P1

nD1 �n converges with Probability 1 and the following
relations hold:

P

( 1
X

nD1
�n D 0

)

D
1
Y

nD1
.1 � 2�n/ > 0

and

P

( 1
X

nD1
�n D 1

)

D
1

X

nD1

2�n

1 � 2�n �
1
Y

nD1
.1 � 2�n/:

Problem 4.2.22. Suppose that �1; �2; : : : is some sequence of independent random
variables and let Sm D �1 C : : : �m, m � 1. Prove Etemadi’s inequality: for every
" > 0 and every integer n � 1 one has
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P
n

max
1�m�n jSmj > 4"

o

� 4 max
1�m�nPfjSmj > "g:

(This inequality may be used in the proof of the implication .2/ ) .1/ in
Problem 4.2.3.)

Problem 4.2.23. Let �1; : : : ; �n be independent random variables with E�k D 0,
chosen so that for any given h > 0 one has Eeh�k < 1, k D 1; : : : ; n. Setting
Sk D �1 C : : : C �k , 1 � k � n, prove the exponential analog of Kolomogorov
inequality: for every " > 0 one has

P
n

max
1�k�n Sk � "

o

� e�h"EehSn :

Hint. Just as in the proof of the (usual) Kolomogorov inequality, one must
introduce the sets A D fmax1�k�n Sk � "g and Ak D fSi < "; 1 � i � k�1; Sk �
"g, 1 � k � n, and, by using Jensen’s inequality, establish the following relations:

EehSn � EehSnIA D
n

X

kD1
EeSnIAk � : : : � eh"P.A/:

Problem 4.2.24. Let Y be a random variable and let .Yn/n�1 be a sequence random

variables, such that Yn
d! Y as n ! 1 (“

d!” means convergence in distribution). In
addition, suppose that fNt I t � 0g is some family of positive integer-valued random

variables, which are independent of .Yn/n�1, and are such thatNt
P! 1 as t ! 1.

Prove that YNt
d! Y as t ! 1.

Hint. Use the method of characteristic functions.

Problem 4.2.25. Let Y be a random variable, let .Yn/n�1 be some sequence of
random variables, chosen so that

Yn ! Y as n ! 1 .P-a. e./ ;

and let fNt; t � 0g be some family of positive integer-valued random variables.
(Unlike in Problem 4.2.24, the independence between .Yn/n�1 and fNt; t � 0g is no
longer assumed.)

Prove the following properties:
(a) If Nt ! 1 (P-a. e.), then YNt ! Y as t ! 1 P-a. e.
(b) If Nt ! N (P-a. e.), then YNt ! YN as t ! 1, P-a. e.

(c) If Nt
P! 1, then YNt

P! Y as t ! 1.
Hint. For the proof of (c), use the fact that a sequence that converges in

probability must contain a sub-sequence that converges almost surely.
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Problem 4.2.26. Let �1; �2; : : : be any sequence of independent Bernoulli random
variables with Pf�n D ˙1g D 1=2, n � 1. Prove that the random variable X D
P1

nD1
�n
n

is well defined and its distribution function admits a probability density.

Problem 4.2.27. Let �1; �2; : : : be some sequence of independent Bernoulli random
variables with Pf�n D 0g D Pf�n D 1g D 1=2, n � 1. Let an > 0, bn > 0,
an C bn D 1, n � 1, and let

Xn D 2a�nn b
1��n
n :

Prove that the following statements are equivalent:
1.

Q1
nD1 Xn converges almost surely (i.e., limN

QN
nD1 Xn exists and does not

vanish almost surely);
2.

Q1
nD1.2 � Xn/ converges almost surely;

3.
Q1
nD1 anbn converges.

Hint. To prove that .3/ ) .1/, consider the quantities E lnXn and D lnXn and
use the Three-Series Theorem.

Problem 4.2.28. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with (Cauchy) density f .x/ D 1

�.1Cx2/ , x 2 R. Prove

that there is no constantm for which the property 1
n

Pn
iD1 �i

P! m can hold.

Problem 4.2.29. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with E�i D � and D�i < 1. Prove that

1

C 2
n

X

1�i<j�n
�i �j

P! � as n ! 1 ;

where, as usual, C 2
n stands for the number of combinations n choose 2 (D n.n �

1/=2).

Problem 4.2.30. Let �1; �2; : : : be any sequence of independent Bernoulli random
variables with Pf�n D 0g D Pf�n D 1g D 1=2, n � 1. Given any n � 1, let
Zn denote the length of the maximal block inside the set of values �n; : : : ; �n, that
contains only 1’s. Prove that

lim
n

Zn

ln n
D 1 .P-a. e./:

Hint. Prove that with Probability 1 limn Zn= lnn � 1 and limn Zn= lnn � 1.

Problem 4.2.31. Let �1; �2; : : : be any sequence of independent Bernoulli random
variables with Pf�n D 1g D pn and Pf�n D 0g D 1 � pn, n � 1.

(a) Prove that if
P1

kD1 pkpkC1 < 1, then the series
P1

kD1 �k�kC1 converges
with Probability 1.
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(b) Prove the Persi Diaconis Theorem: if pn D 1=n for any n � 1, then the
random variable S D P1

nD1 �n�nC1 has Poisson distribution of parameter � D 1.

4.3 The Strong Law of Large Numbers

Problem 4.3.1. Prove that E�2 < 1 if and only if
P1

nD1 nPfj�j > ng < 1.
Hint. Prove that

1
X

nD1
nPfj�j > ng � E�2 � 1C 4

1
X

nD1
nPfj�j > ng:

Problem 4.3.2. Assuming that �1; �2; : : : is some sequence of independent and
identically distributed random variables, prove the Marcinkiewicz–Zygmund strong
law of large numbers: if Ej�1j˛ < 1, for some 0 < ˛ < 1, then Sn

n1=˛
! 0 (P-a. e.),

and if Ej�1jˇ < 1 for some 1 � ˇ < 2, then Sn�nE�1
n1=ˇ

! 0 (P-a. e.).

Problem 4.3.3. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with Ej�1j D 1. Prove that the following relation
holds for any sequence of real numbers .an/n�1:

lim
n

ˇ

ˇ

ˇ

Sn

n
� an

ˇ

ˇ

ˇ D 1 .P-a. e./:

Problem 4.3.4. Can one claim that all rational numbers in the interval Œ0; 1/ are
normal, in the context of Example 2 in [ P §4.3, 4 ]?

Problem 4.3.5. Consider the decimal expansions ! D 0:!1!2 : : : of the num-
bers ! 2 Œ0; 1/.

(a) Formulate the decimal-expansions analog of the strong law of large numbers,
formulated in [ P §4.3, 4 ] for binary expansions.

(b) In terms of decimal expansions, are the rational numbers normal, in the sense
that 1

n

Pn
kD1 I.�k.!/ D i/ ! 1

10
(P-a. e.) as n ! 1, for any i D 0; 1; : : : ; 9?

(c) Prove the Champernowne’s proposition: the number

! D 0:123456789101112 : : : ;

where the (decimal) expansion consists of all positive integers (written as decimals)
arranged in an increasing order, is normal, as a decimal expansion—see [ P §4.3,
Example 2].
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Problem 4.3.6. (N. Etemadi) Prove that the statement in [ P §4.3, Theorem 3]
remains in force even if the “independence” of the random variables �1; �2; : : : is
replaced with “pairwise independence”.

Problem 4.3.7. Prove that under the conditions in [ P §4.3, Theorem 3] one can

also claim convergence in the first-order mean: E
ˇ

ˇ

ˇ

Sn
n

�m
ˇ

ˇ

ˇ ! 0 as n ! 1.

Problem 4.3.8. Let �1; �2; : : : be independent and identically distributed random
variables with Ej�1j2 < 1. Prove that

nPfj�1j � "
p
ng ! 0 and

1p
n

max
k�n

j�k j P! 0:

(Comp. with Problem 2.10.41.)

Problem 4.3.9. Construct a sequence of independent random variables

�1; �2; : : : ;

with the property that limn!1 1
n
.�1 C � � � C �n/ exists as a “limit in probability” but

not as a “limit almost surely”.
Hint. Consider the independent random variables �1; �2; : : :, chosen so that

Pf�n D 0g D 1 � 1

n ln n
; Pf�n D ˙ng D 1

2n ln n
:

By using the second Borel–Cantelli lemma, in conjunction with the fact that ES2n �
n2= lnn and that

P1
nD1 Pfj�nj � ng D 1, conclude that Pfj�nj � n i.o. g D 1.

Problem 4.3.10. Let �1; �2; : : : be a sequence of independent random variables,
chosen so that Pf�n D ˙nag D 1=2. Prove that this sequence satisfies the strong
law of large numbers if and only if a < 1=2.

Problem 4.3.11. Prove that the Kolmogorov strong law of large numbers
(Theorem 3) can be formulated in the following equivalent form: for any sequence
of independent and identically distributed random variables �1; �2; : : : one has

Ej�1j < 1 ” n�1Sn ! E�1 (P-a. e.) ,

Ej�1j D 1 ” limn�1Sn D C1 (P-a. e.) .

In addition, prove that the first relation remains valid even if “independent” is
replaced by “pair-wise independent”.
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Problem 4.3.12. Let �1; �2; : : : be independent and identically distributed random
variables. Prove that

E sup
n

ˇ

ˇ

ˇ

�n

n

ˇ

ˇ

ˇ < 1 ” Ej�1j lnCj�1j < 1 :

Problem 4.3.13. Let �1; �2; : : : be independent and identically distributed random
variables and let Sn D �1 C � � � C �n, n � 1. Prove that for any given ˛ 2 .0; 1=2�

one of the following properties holds:
(a) n�˛Sn ! 1 (P-a. e.);
(b) n�˛Sn ! �1 (P-a. e.);
(c) lim n�˛Sn D 1, lim n�˛Sn D �1 (P-a. e.).

Problem 4.3.14. Let �1; �2; : : : be independent and identically distributed random
variables and let S0 D 0 and Sn D �1 C : : :C �n, n � 1. Prove that:

(a) If " > 0 then

1
X

nD1
PfjSnj � n"g < 1 ” E�1 D 0; E�21 < 1:

(b) If E�1 < 0, then for any p > 1 one has

E.sup
n�0

Sn/
p�1 < 1 ” E.�C

1 /
p < 1:

(c) If E�1 D 0 and 1 < p � 2, then there is a constant Cp , for which the
following relations are in force:

1
X

nD1
P

n

max
k�n

Sk � n
o

� CpEj�1jp;
1

X

nD1
P

n

max
k�n

jSkj � n
o

� 2CpEj�1jp:

(d) If E�1 D 0, E�21 < 1 and M."/ D supn�0.Sn � n"/, " > 0, then

lim
"!1 "M."/ D �2=2:

Problem 4.3.15. (On [ P §4.3, Theorem 2].) Let �1; �2; : : : be independent random
variables, chosen so that

Pf�n D 1g D Pf�n D �1g D 1

2
.1� 2�n/ ;

Pf�n D 2ng D Pf�n D �2ng D 2�.nC1/ :
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Prove that
P1

nD1
D�n
n2

D 1 (comp. with [ P §4.3, (3)]), but nevertheless one has
(P-a. e.)

�1 C : : :C �n

n
! 0 ;

i.e., the strong law of large numbers holds, in that [ P §4.3, (4)] holds (notice that
E�n D 0, n � 1).

Problem 4.3.16. Let �1; �2; : : : be independent and identically distributed random
variables with Ej�1j D 1. Prove that at least one of the following two properties
must be satisfied:

P

(

lim
n

1

n

n
X

kD1
�k D C1

)

D 1 or P

(

lim
n

1

n

n
X

kD1
�k D �1

)

D 1:

Problem 4.3.17. As a generalization of the Kolomogorov strong law of large
numbers [ P §4.3, Theorem 2] prove the following result, which is due to M. Loève:
if �1; �2; : : : are independent random variables, chosen so that

1
X

nD1

Ej�nj˛n
n˛n

< 1 ;

where 0 < ˛n � 2, and, moreover, E�n D 0 for 1 � ˛n � 2, then 1
n

Pn
iD1 �n ! 0

almost everywhere.

Problem 4.3.18. Give an example of a sequence �1; �2; : : : of independent random
variables such that E�n D 0, n � 1, and

1

n

n
X

iD1
�i ! �1 .P-a. e./:

Hint. Choose, for example, the random variables �n so that Pf�n D �ng D
1 � n�2 and Pf�n D n3 � ng D n�2, n � 1.

Problem 4.3.19. Let �1; �2; : : : be any sequence of independent random variables,
such that E�k D 0, k � 1. Setting

�
.n/

k D
(

�k; if j�kj � n;

0; if j�kj > n ;
prove the following version of the law of large numbers, which is due to A. N. Kol-
mogorov: in order to claim that

1

n

n
X

kD1
�k

P! 0 as n ! 1 ;
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it is necessary and sufficient that the following relations hold as n ! 1,

n
X

kD1
Pfj�kj > ng ! 0;

1

n

n
X

kD1
E�.n/k ! 0;

1

n2

n
X

kD1
D�.n/k ! 0:

By using appropriate examples, prove that the last condition (as a necessary
condition) cannot be replaced by the condition

1

n2

n
X

kD1
E.�.n/k /2 ! 0 :

Problem 4.3.20. Let N D .Nt/t�0 be the renewal process from Example 4 in
[ P §4.3, 4 ], i.e., Nt D P1

nD1 I.Tn � t/, where Tn D �1 C : : :C �n and .�n/n�1 is
some sequence of independent and identically distributed random variables, chosen
so that E�1 D �, 0 < � < 1. By the strong law of large numbers, one has Nt

t
! 1

�

as t ! 1 (P-a. e.). Prove that

E
�

Nt

t

�r

! 1

�r
as t ! 1 ; for every r > 0 ;

and notice that these results remain valid even with � D 1, in which case 1=� D 0.

Problem 4.3.21. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables, set Sn D �1 C : : : C �n, and let fNt; t � 0g be any
family of random variables that take values in the set f1; 2; : : :g and are chosen so
that Nt ! 1 as t ! 1, (P-a. e.).

Prove that:
(a) If Ej�1jr < 1, r > 0, then

�Nt
.Nt/1=r

! 0 as t ! 1 .P-a. e./;

and if, moreover,Nt=t ! � (P-a. e.), for some 0 < � < 1, then

�Nt
t1=r

! 0 as t ! 1 .P-a. e./:
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(b) If Ej�1jr < 1 for some 0 < r < 2, with the understanding that E�1 D 0 if
1 � r < 2, then

SNt
.Nt /1=r

! 0 as t ! 1 .P-a. e./:

and if, in addition, Nt=t ! � (P-a. e.) , for some 0 < � < 1, then

SNt
t1=r

! 0 as t ! 1 .P-a. e./ :

(c) If Ej�1j < 1 and E�1 D �, then

SNt
Nt

! � as t ! 1 .P-a. e./ :

and if, in addition, Nt=t ! � (P-a. e.), where 0 < � < 1, then

SNt
t

! �� as t ! 1 .P-a. e./ :

Hint. To prove (a), use the Borel–Cantelli lemma, in conjunction with the result
established in Problem 4.2.25(a). To prove (b), use Marcinkiewicz-Zygmund’s
strong law of large numbers, established in Problem 4.3.2. To prove (c), use
Kolmogorov’s strong law of large numbers [ P §4.3, Theorem 3] and recall the
statement in Problem 4.2.25(a).

Problem 4.3.22. Let f D f .x/ be any bounded and continuous function defined
on .0;1/. Prove that for every a > 0 and every x > 0 one must have

lim
n!1

1
X

kD1
f

�

x C k

n

�

e�an .an/k

kŠ
D f .x C a/ :

Problem 4.3.23. Let �1; �2; : : : be independent and identically distributed random
variables, chosen so that Ej�1j < 1 and E�1 D �. Prove that as n ! 1 one has:

.a/
ln n

n

n
X

kD2

�k

ln k
! � .P-a. e./ I

.b/ n˛�1
n

X

kD1

�k

k˛
! � .P-a. e./; for any 0 < ˛ < 1:
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4.4 The Law of the Iterated Logarithm

Problem 4.4.1. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with �n � N .0; 1/. Prove that:

.a/ P

(

lim
�np
2 lnn

D 1

)

D 1I

.b/ Pf�n > an i.o.g D
(

0; if
P

n Pf�1 > ang < 1;

1; if
P

n Pf�1 > ang D 1:

Hint. (a) Given some fixed c > 0 and setting An D f�n > c
p
2 lnng, by using

[ P §4.4, (10)] one can show that

P.An/ � n�c2

c
p
4� ln n

:

The required statement then follows from the Borel–Cantelli Lemma (
P

P.An/ <
1 for c > 1 and

P

P.An/ D 1 for 0 < c < 1), in conjunction with the
implications [ P §4.4, (3) and (4)].

Problem 4.4.2. Let �1; �2; : : : be any sequence of independent random variables,
which are identically distributed with Poisson law of parameter � > 0. Prove that
(independently of �) one has

P
�

lim
�n ln lnn

lnn
D 1



D 1:

Hint. Consider the event An D f�n > c'ng, where c > 0 and 'n D ln n
ln ln n , and

notice that
P

P.An/ < 1 for c > 1, and
P

P.An/ D 1 for 0 < c < 1. Then use
the Borel–Cantelli Lemma and the implications [ P §4.4, (3) and (4)].

Problem 4.4.3. Let �1; �2; : : : be a sequence of independent and identically dis-
tributed random variables with

Eeit�1 D e�jt j˛ ; 0 < ˛ < 2

(comp. with [ P §3.6, 4 ]). Prove that

P
�

lim
ˇ

ˇ

ˇ

Sn

n1=˛

ˇ

ˇ

ˇ

1
ln lnn D e1=˛



D 1:

Problem 4.4.4. Let �1; �2; : : : be any sequence of Bernoulli random variables with
Pf�n D ˙1g D 1=2 and let Sn D �1 C : : : C �n. Prove the following result, which
is due to G. H. Hardy and J. E. Littlewood:

lim
n

jSnjp
2n ln n

� 1 with Probability 1 :
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Hint. By showing that

PfSn � ag � e�haEehSn ; for a > 0, h > 0 ;

and that coshh � exp
˚

h2

2

�

, conclude that

PfSn � ag � exp

�

� a
2

2n



:

Finally, set a D 1 C ", " > 0, and use the Borel–Cantelli Lemma. (See also
the bibliographical notes for [ P Chap. 4] and [ P Chap. 7] at the end of the book
“Probability-2”).

Problem 4.4.5. Prove the following generalization of the inequality [ P §4.4, (9)].
Let �1; : : : ; �n be independent random variables and set S0 D 0 and Sk D �1C : : :C
�k , k � n. Then for every real a one has (Lévy’s inequality):

P
n

max
0�k�n

ŒSk C �.Sn � Sk/� > a
o

� 2PfSn > ag;

where �.�/ stands for the median of the random variable �, i.e., the constant defined
by the relation

max.Pf� > �.�/g;Pf� < �.�/g/ � 1

2
:

(For the various definitions of the notion of “median,” see Problem 1.4.23.)
Hint. Let

	 D inff0 � k � n W Sk C �.Sn � Sk/ > ag;
with the understanding that inf ¿ D nC 1, and prove that

PfSn > ag � 1

2

n
X

kD0
Pf	 D kg D 1

2
P

n

max
0�k�nŒSk � �.Sn � Sk/� > a

o

:

Problem 4.4.6. Let �1; : : : ; �n be independent random variables with E�i D 0, 1 �
i � n and let Sk D �1 C : : :C �k . Prove that

P
n

max
1�k�n Sk > a

o

� 2PfSn � " � EjSnjg for all a > 0.

Problem 4.4.7. Let �1; : : : ; �n be independent and identically distributed random
variables, such that E�i D 0, �2 D E�2i < 1, and j�i j � c (P-a. e.), i � n. Setting
Sn D �1 C � � � C �n, prove that

EexSn � expf2�1nx2�2.1C xc/g for every 0 � x � 2c�1 .
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Prove under the same assumptions that if .an/ is some sequence of real numbers,
chosen so that an=

p
n ! 1 and an D o.n/ as n ! 1, then for every " > 0 and

for all sufficiently large n one has

PfSn > ang > exp

(

� a2n
2n�2

.1C "/

)

:

Problem 4.4.8. Let �1; : : : ; �n be independent and identically distributed random
variables, such that E�i D 0 and j�i j � c (P-a. e.), i � n. Setting Sn D �1C : : :C�n
andDn D Pn

iD1 D�i , prove the Prokhorov inequality:

PfSn � ag � exp

(

� a

2c
arcsin

ac

2Dn

)

; a 2 R :

Problem 4.4.9. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables, such that Ej�nj˛ D 1, for some ˛ < 2. Prove that

lim
jSnj
n1=˛

D 1 .P-a.s./

(and that, consequently, the law of the iterated logarithm does not hold for this
particular sequence).

Problem 4.4.10. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with E�n D 0 and E�2n D 1. Setting Sn D �1C: : :C�n,
n � 1, prove that with Probability 1 the collection of all limiting points of the

sequence
�

Snp
2n ln ln n

�

n�1 coincides with the interval Œ�1; 1�.
Problem 4.4.11. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables, all having normal distribution N .m; �2/. Setting

mn D 1

n

n
X

iD1
�i

and using the result in the previous problem, prove that with Probability 1 the

collection of limiting points of the sequence
�p

n mn�mp
2n ln ln n

�

n�1 coincides with the

interval Œ��; ��.
Problem 4.4.12. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables that share one and the same continuous distribution
function F.x/, x 2 R, and let

Fn.xI!/ D 1

n

n
X

kD1
I.�k.!/ � x/ ; x 2 R ; n � 1 ;

be the associated sequence of empirical distribution functions.
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Prove that with Probability 1

lim
n

p
n supx jFn.xI!/ � F.x/jp

2 ln lnn
D sup

x

p

F.x/.1 � F.x// :

Problem 4.4.13. Let �1; �2; : : : be any sequence of independent and identically dis-
tributed random variables with exponential distribution, chosen so that Pf�i >xg D
e�x , x � 0. By using the argument of the Borel–Cantelli lemma (see also
Problem 4.1.20), prove that with Probability 1

lim
�n

lnn
D 1; lim

�n � ln n

ln lnn
D 1; and lim

�n � lnn � ln lnn

ln ln lnn
D 1 :

How will this result change if Pf�i > xg D e��x , x � 0, for some � > 0?

Problem 4.4.14. Let everything be as in the previous Problem (with Pf�i > xg D
e��x , x � 0, � > 0). Setting Mn D max.�1; : : : ; �n/, prove that

lim
Mn

� lnn
D lim

�n

� lnn
.P-a. e.):

Problem 4.4.15. Let �1; : : : ; �n be independent random variables and set S0 D 0

and Sk D �1 C � � � C �k , k � n. Prove that:
(a) (As a continuation of Problem 4.4.5)

P
n

max
1�k�n jSk C �.Sn � Sk/j � a

o

� 2PfjSnj � ag;

where �.�/ stands for the median of the random variable �.
(b) If �1; : : : ; �n are identically distributed and symmetric, then

1 � e�nPfj�1j>xg � P
n

max
1�k�n j�kj > x

o

� 2PfjSnj > xg:

Problem 4.4.16. Let �1; : : : ; �n be independent random variables and set Sk D �1C
: : :C �k , 1 � k � n. Prove the Skorokhod inequality: for every " > 0 one has

P
n

max
1�k�n jSkj � 2"

o

� inf
1�k�nPfjSn � Skj < "g � PfjSnj � "g:

Hint. Consider the stopping time 	 D inff1 � k � n W jSkj � 2"g (with
the understanding that inf ¿ D n C 1) and use the idea outlined in the hint for
Problem 4.4.5.

Problem 4.4.17. Let �1; : : : ; �n be some random variables and set Sk D �1 C : : :C
�k , 1 � k � n. Prove that for every " � 0 one has
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P
n

max
1�k�n j�kj � "

o

� 2P
n

max
1�k�n jSkj � "

2

o

;

and if, furthermore, the random variables �1; : : : ; �n are independent and have
symmetric distributions, then for every " � 0 one has

P
n

max
1�k�n j�k j � "

o

� 2P
n

jSnj � "

2

o

:

4.5 Rate of Convergence in the Strong Law
of Large Numbers

Problem 4.5.1. Prove the inequalities [ P §4.5, (8) and (20)].
Hint. Sete� D �� and convince yourself that

eH.a/ D sup
�2R

Œa� �  .�/� D H.�a/:

In addition, use the inequality [ P §4.5, (7)].

Problem 4.5.2. Consider the set 
 defined in [ P §4.5, (5)] and verify the claim
that in the interior of the set 
 the function  .�/ is convex (in fact, strictly convex,
if the random variable � is non-degenerate) and infinitely differentiable.

Hint. Setting �� D inf�2
 � and �� D sup�2
 �, prove that (under the
assumption [ P §4.5, (3)])

�1 � �� < 0 < �� � 1 :

Then prove that the function '.�/ D Ee�� is infinitely differentiable on the interval
.��; ��/. The convexity of the function  .�/ D ln'.�/ follows from the Hölder
inequality.

Problem 4.5.3. Assuming that the random variable � is non-degenerate, prove that
the functionH.a/ is differentiable on the entire real line and is also convex.

Problem 4.5.4. Prove the following inversion formula for the Cramér transform:

 .�/ D sup
a
Œ�a �H.a/� ;

for all �, except, perhaps, at the endpoints of the the set 
 D f�W .�/ < 1g.

Problem 4.5.5. Let Sn D �1C : : :C �n, where �1; : : : ; �n, n � 1, are assumed to be
independent and identically distributed simple random variables with E�1 < 0 and
Pf�1 > 0g > 0. Let '.�/ D Ee��1 and let inf� '.�/ D � (0 < � < 1).
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Prove the Chernoff theorem:

lim
n

1

n
ln PfSn � 0g D ln �: .�/

Problem 4.5.6. By using .�/, prove that in the Bernoullian case (i.e., when
Pf�1 D 1g D p and Pf�1 D 0g D q), with p < x < 1, one has

lim
n

1

n
ln PfSn � nxg D �H.x/ ; .��/

where (comp. with the notation in [ P §1.6])

H.x/ D x ln
x

p
C .1 � x/ ln

1 � x
1 � p

:

Problem 4.5.7. Let �1; �2; : : : be independent and identically distributed random
variables with E�1 D 0 and D�1 D 1 and let Sn D �1 C : : : C �n, n � 1. Let
.xn/n�1 be some sequence of real numbers, chosen so that xn ! 1 and xnp

n
! 0

as n ! 1.
Prove that

PfSn � xn
p
ng D e� x2n

2 .1Cyn/ ;

where yn ! 0, n ! 1.

Problem 4.5.8. By using .��/, conclude that in the Bernoullian case (i.e., when
Pf�1 D 1g D p and Pf�1 D 0g D q) one can claim that:

(a) For p < x < 1 and for xn D n.x � p/ one has

PfSn � np C xng D exp

(

� nH
�

p C xn

n

�

.1C o.1//

)

: .���/

(b) For xn D an
p
npq, with an ! 1 and anp

n
! 0, one has

PfSn � np C xng D exp

(

� x2n
2npq

.1C o.1//

)

: .����/

Compare the relations .���/ and .����/ and then compare these two relations with
the respective results in [ P §1.6].

Problem 4.5.9. Let �1; �2; : : : be any sequence of independent random variables, all
distributed according to the Cauchy law with density f .x/ D 1

�.1Cx2/ , x 2 R. Prove
that

lim
n

P

(

1

n
max
1�k�n �k < x

)

D e� 1
�x :
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Problem 4.5.10. Let �1; �2; : : : be independent and identically distributed random
variables with Ej�1j < 1. Prove that

lim
n

1

n
E

�

max
1�k�n

j�kj
�

D 0 :

(Comp. with the statement in Problem 4.3.8.)

Problem 4.5.11. Suppose that � is some random variable chosen so that E� D 0

and a � � � b, for some constants a and b. Show that the moment generating
function of � satisfies the relation

Eeh� � e
1
8 h

2.b�a/2 for all h > 0 :

Hint. Use the fact that the function x Ý ehx is convex.

Problem 4.5.12. Let �1; : : : ; �n be independent and identically distributed
Bernoulli random variables with Pf�i D 1g D p, Pf�i D 0g D q, p C q D 1, and
let Sn D �1 C : : :C �n. Prove the Chernoff inequalities: for any x � 0 one has

PfSn � np � nxg � e�2nx2 ;

PfjSn � npj � nxg � 2e�2nx2 :

Hint. Just as in many of the following problems, here one must use the relation

PfSn � yg � e�hyEehSn ; y � 0; h � 0 ;

which is often referred to as the Bernstein inequality.

Problem 4.5.13. Prove that, in the setting of the previous problem, the following
stronger result, known as “the maximal inequalities” is in force:

P
n

max
1�k�n

.Sk � kp/ � nx
o

� e�2nx2 ;

P
n

max
1�k�n jSk � kpj � nx

o

� 2e�2nx2 :

Hint. Use the exponential analog of the Kolmogorov inequality

P
n

max
1�k�n.Sk � kp/ � "

o

� e�h"Eeh.Sn�np/

(see Problem 4.2.23).
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Problem 4.5.14. Let �1; : : : ; �n be independent (but not necessarily identically
distributed) random variables with values in the interval Œ0; 1� and let Sn D �1 C
: : : C �n. Setting p D ESn

n
and q D 1 � p, prove that, for every 0 � x < q, the

following inequality is in force

PfSn � ESn � nxg � en .x/;

where

 .x/ D ln

��

p

p C x

�pCx�
q

q � x

�q�x	

:

Hint. First, use the inequalities

ehyPfSn � yg � EehSn D EehSn�1Eeh�n

� EehSn�1 .1 � p C peh/ � : : : � .1 � p C peh/n;

and then choose h > 0 accordingly.

Problem 4.5.15. Let everything be as in the previous problem, prove the Ho-
effding inequality, which is a generalization of the Chernoff inequality from
Problem 4.5.12: for any x � 0 one has

PfSn � ESn � nxg � e�2nx2 ;

PfjSn � ESnj � nxg � 2e�2nx2 :

Hint. Use the result established in the previous problem and remark that
 .x/ � �2x2.
Problem 4.5.16. Let �1; : : : ; �n be independent random variables with values in the
interval Œ0; 1�. Prove that for every " > 0 the following inequalities are in force:

PfSn � .1 � "/ESng � exp

�

�1
2
"2ESn



;

PfSn � .1C "/ESng � exp
˚ � Œ.1C "/ ln.1C "/� "�ESn

�

�

� e
� "2ESn
2.1C"=3/

�

:

Hint. For the proof of the first inequality use the result from Problem 4.5.14 and
remark that  .�xp/ � �px2=2, 0 � x < 1. For the proof of the second inequality
use the hint for Problem 4.5.14, which implies the relation

PfSn � ESn � nxg � 


e�.pCx/h.1 � p C peh/
�n
:

Problem 4.5.17. Let �1; : : : ; �n be independent random variables, chosen so that
ai � �i � bi , for some constants ai and bi , i D 1; : : : ; n. As a generalization of the
Hoeffding inequality from Problem 4.5.15, prove that, for any x � 0, one has
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PfSn � ESn � xg � e�2x2 Pn
kD1.bk�ak/2 ;

PfjSn � ESnj � xg � 2e�2x2 Pn
kD1.bk�ak/2 :

Hint. First, use the inequality established in Problem 4.5.11 to derive the
estimates

PfSn � ESn � xg � e�hxEeh.Sn�ESn/ � e�hxC 1
8 h

2
Pn
kD1.bk�ak/2 ;

and then choose h accordingly.

Problem 4.5.18. (“Large deviations.”) Let .�n/n�1 be any sequence of independent
standard Gaussian random variables (i.e., Law.�n/ D N .0; 1/) and let Sn D �1 C
: : :C �n. Prove that for any set A 2 B.R/

lim
n!1

1

n
ln P

(

Sn

n
2 A

)

D � ess inf

(

x2

2
W x 2 A

)

:

(Given any real Borel function f .x/ defined on .R;B.R//, by definition,
ess inf ff .x/ W x 2 Ag is understood as supfc 2 R W �fx 2 A W f .x/ < cg D 0g,
where � is the Lebesgue measure—comp. with the definition of essential supremum
in Remark 3 in [ P §2.10].)

Hint. The following relation “nearly holds” for a “very large” n:

P

(

Sn

n
2 A

)

D
r

n

2�

Z

A

e�nx2=2 dx :

Problem 4.5.19. Let � D .�1; : : : ; �n/ be some Gaussian vector, such that E�i D 0,
i D 1; : : : ; n. Prove that

lim
r!1

1

�2
ln P

n

max
1�i�n �i � r

o

D � 1

2�2
:

Hint. Setting � D max1�i�n.E�2i /1=2, show that, for every r � 0,

P
n

max
1�i�n �i � E max

1�i�n �i C �r
o

� e�r2=2 ;

and then check that

P
n

max
1�i�n �i � r

o

� 1 � ˚
� r

�i

�

� expf�r2=.2�2i /gp
2�.1C r=�i /

;

for every 1 � i � n.





Chapter 5
Stationary (in Strict Sense) Random Sequences
and Ergodic Theory

5.1 Stationary (in Strict Sense) Random Sequences:
Measure-Preserving Transformations

Problem 5.1.1. Let T be any measure preserving transformation acting on the
sample space ˝ and let � D �.!/, ! 2 ˝ , be any random variable, chosen so
that the expected value E�.!/ exists. Prove that E�.!/ D E�.T!/.

Hint. If � D IA, A 2 F , then the identity E�.!/ D E�.T .!// follows from
the definition of a “measure-preserving transformation.” By linearity, this property
extends for all random variables � of the form

Pn
kD1 �kIAk

, Ak 2 F . In addition,
for � � 0, one has to use the construction of the expected value as an “integral,”
in conjunction with the monotone convergence theorem. For a general �, use the
representation � D �C� ��.

Problem 5.1.2. Prove that the transformation T , from [ P §5.1, Examples 1 and 2]
is measure-preserving.1

Hint. (Example 2) The identity P.A/ D P.T �1.A// is trivial for sets A of the
form A D Œa; b/ � Œ0; 1/. For the general case, consider the system

M D fA 2 B.Œ0; 1�/ W P.A/ D P.T �1.A//g
and, by using “the suitable sets method,” prove that M D B.Œ0; 1//.

Problem 5.1.3. Let ˝ D Œ0; 1/, let F D B.Œ0; 1//, and let P be any probability
measure on .˝; F /, chosen so that the associated distribution function on Œ0; 1/ is
continuous. Prove that the transformations T x D �x, 0 < � < 1, and T x D x2 are
not measure-preserving.

Hint. Due to the continuity assumption, it is possible to find some points
a; b 2 .0; 1/, such that

1It is assumed throughout the entire chapter that the probability space .˝; F ; P/ is complete.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics,
DOI 10.1007/978-1-4614-3688-1 5,
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P.Œ0; a// D 1

3
; P.Œ0; b// D 2

3
:

By using this property one can easily show that the transformations T x D �x,
0 < � < 1, and T x D x2 are not measure-preserving.

Problem 5.1.4. Let ˝ denote the space of all real sequences of the form

! D .: : : ; !�1; !0; !1; : : :/ ;

let F denote the �-algebra generated by all cylinder sets

f!W .!k; : : : ; !kCn�1/ 2 Bng;
for all possible choices of n D 1; 2; : : :, k D 0; ˙1; ˙2; : : :, and Bn 2 B.Rn/.
Given some probability measure P on .˝; F /, prove that the double sided
transformation T , defined by

T .: : : ; !�1; !0; !1; : : :/ D .: : : ; !0; !1; !2; : : :/;

is a measure-preserving if and only if

Pf!W .!0; : : : ; !n�1/ 2 Bng D Pf!W .!k; : : : ; !kCn�1/ 2 Bng
for all n D 1; 2; : : :, all k D 0; ˙1; ˙2; : : :, and all Bn 2 B.Rn/.

Problem 5.1.5. Let �0; �1; : : : be a stationary sequence of random elements with
values in the Borel space S (see [ P §2.7, Definition 9]). Prove that one can
construct (perhaps on some enlargement of the underlying probability space)
random elements ��1; ��2; : : :, with values in S , so that the double-sided sequence
: : : ; ��1; �0; �1; : : : is stationary.

Problem 5.1.6. Let .˝; F ; P/ be any probability space, let T be any measurable
transformation of ˝ , and let E be any �-system of subsets of ˝ that generates F
(i.e., �.E / D F ). Prove that if the identity P.T �1A/ D P.A/ holds for all A 2 E ,
then it must hold for all A 2 F .

Problem 5.1.7. Let T be any measure-preserving transformation on .˝; F ; P/ and
let G be any sub-�-algebra of F . Prove that the following relation must hold for
every A 2 F :

P.A j G /.T!/ D P.T �1A j T �1G /.!/ (P-a. e.). .�/

In particular, if ˝ is taken to be the space R1 of all real sequences of the form
! D .!0; !1; : : :/, if �k.!/ D !k , k � 0, is the associated family of coordinate maps
on R1, and if T denotes the shift-transformation on R1, given by T .!0; !1; : : :/ D
.!1; !2; : : :/ (i.e., �k.T!/ D !kC1, k � 0), then .�/ can be written as

P.A j �n/.T!/ D P.T �1A j �nC1/.!/ (P-a. e.).
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Problem 5.1.8. Let T be any measurable transformation acting on .˝; F / and
let P stand for the collection of all probability measures, P, on .˝; F / with the
property that T is P-measure preserving. Prove that:

(a) The set of measures P is convex.
(b) The transformation T is an ergodic transformation of the measure P if and

only if P is an extremal element of the set P (i.e., P cannot be written as P D
�1P1 C�2P2, for some �1 > 0 and �2 > 0 with �1 C�2 D 1 and some P1; P2 2 P
with P1 ¤ P2).

Problem 5.1.9. Let T be any measure preserving transformation acting on the
probability space .˝; F ; P/ and let � D �.!/, ! 2 ˝ , be any random variable on
that space. Prove that � D �.!/ is almost invariant under T (i.e., �.!/ D �.T!/ (P-
a. e.)) if and only if for any bounded and F ˝ B.R/-measurable functions G.!; x/

one can write

EG.!; �.!// D EG.T!; �.!//:

Hint. Consider first functions G.!; x/ of the form G1.!/G2.x/.

5.2 Ergodicity and Mixing

Problem 5.2.1. Prove that the random variable � is invariant if and only if it is
J -measurable.

Problem 5.2.2. Prove that the set A is almost invariant if and only if P.T �1A n
A/ D 0. Show also that if the random variable X is almost invariant (i.e.,
X.!/ D X.T!/ (P-a. e.)), then one can find an (everywhere) invariant random
variable eX D eX.!/ (i.e., eX.!/ D eX.T!/ for all ! 2 ˝) with the property
PfX.!/ D eX.!/g D 1.

Problem 5.2.3. Prove that the transformation T represents mixing if and only if for
any two random variables � and �, with E�2 < 1 and E�2 < 1, one has

E�.T n!/�.!/ ! E�.!/ E�.!/ as n ! 1 : .�/

Hint. If � D IA and � D IB , then .�/ is precisely the mixing property. Each of
the variables � and � is in L2 and can be approximated (in the metric of L2) with any
precision by linear combinations of indicator functions. The required convergence
of the expected values then follows easily from the mixing property.

Problem 5.2.4. Give an example of a measure preserving ergodic transformation
which is not mixing.

Hint. Take ˝ D fa; bg, set P.fag/ D P.fbg/ D 1=2, and consider the
transformation T , given by Ta D b and T b D a.
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Problem 5.2.5. Let T be a measure preserving transformation acting on .˝; F ; P/

and let F D �.A /, where A is some algebra of sub-sets of ˝ . Suppose that in
[ P §5.2, Definition 4] one assumes that

lim
n!1 P.A \ T �nB/ D P.A/ P.B/

only for sets A and B that are chosen from A . Prove that the above property will
then be satisfied for all sets A and B that belong to F D �.A / (and, as a result,
one can claim that T represents mixing).

Show also that this statement remains valid if A is required to be a �-system and
F D �.A /.

Problem 5.2.6. Let .˝; F / D .R1; B.R1// and suppose that T is the usual
shift-transformation on ˝ , given by T .x1; x2; : : :/ D .x2; x3; : : :/, for any ! D
.x1; x2; : : :/. Prove that any event from F D B.R1/ that is invariant under T

must be a “tail” event; in other words, the entire �-algebra J , which comprises
all T -invariant sets, is included in the “tail” �-algebra X D T

F1
n , where

F1
n D �.! W xn; xnC1; : : :/. Give examples of tail events which are not T -invariant.

Problem 5.2.7. By providing appropriate examples of measure-preserving trans-
formations T , acting on .˝; F ; P/, prove that: (a) A 2 F does not entail TA 2 F ;
(b) one cannot conclude from A 2 F and TA 2 F that P.A/ D P.TA/.

5.3 Ergodic Theorems

Problem 5.3.1. Let � D .�1; �2; : : :/ be some stationary Gaussian sequence with
E�n D 0 and with covariance function R.n/ D E�kCn�k . Prove that the condition
R.n/ ! 0 is sufficient for claiming that the measure preserving transformation,
associated with the sequence �, represents mixing (and is therefore ergodic).

Hint. If A D f! W .�1; �2; : : :/ 2 A0g, B D f! W .�1; �2; : : :/ 2 B0g and Bn D
f! W .�n; �nC1; : : :/ 2 B0g, then one must show that

P.A \ Bn/ ! P.A/P.B/ as n ! 1:

The proof can then be established with the following line of reasoning:

1. Given any " > 0, find a number m 2 N D f1; 2; : : :g and sets eA0 2 B.Rm/

and eB0 2 B.Rm/, such that P.A 4 eA/ < " and P.B 4 eB/ < ", where eA D f! W
.�1; : : : ; �m/ 2 eA0g and eB D f! W .�1; : : : ; �m/ 2 eB0g.

2. Then choose some open sets A0 2 B.Rm/ and B0 2 B.Rm/, so that for the
sets

A D
n
! W .�1; : : : ; �m/ 2 A0

o
and B D

n
! W .�1; : : : ; �m/ 2 B0

o

one has
P.eA 4 A/ < " and P.eB 4 B/ < ":

This would then imply that P.A 4 A/ < 2" and P.B 4 B/ < 2".
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3. The sets Bn D f! W .�n; : : : ; �nCm�1/ 2 B0g have the property P.Bn 4 Bn/

< 2".
4. Let P stand for the probability distribution of the vector .�1; : : : ; �m/ and let

Qn be the distribution of the vector .�1; : : : ; �m; �n; : : : ; �nCm�1/. Then

R.n/ ! 0 ) Qn

w! P ˝ P as n ! 1:

5. In conjunction with [ P §3.1, Theorem 1], (iv) gives

lim n P.A 4 Bn/ � P.A/P.B/ ;

which, taking into account the relations (see above) P.A 4 A/ < 2" and
P.Bn 4 Bn/ < 2 ", gives

lim n P.A \ Bn/ � .P.A/ � 2"/.P.B/ � 2"/ � 4";

which, taking into account that " > 0 is arbitrarily chosen, gives

lim n P.A \ Bn/ � P.A/P.B/:

6. In analogous fashion one can prove that

lim n P.A \ Bn/ � P.A/P.B/

(instead of the open sets A0 and B0 one must choose closed sets).

Problem 5.3.2. Prove that for any sequence � D .�1; �2; : : :/ that consists of
independent and identically distributed random variables, one can claim that the
associated measure preserving transformation represents mixing.

Hint. (Observe that the ergodicity of the sequence � follows from the “zero-one
law.”) The proof of the mixing-property can be established with the following line
of reasoning:

1. Define the sets

A D f! W .�1; �2; : : :/ 2 A0g and B D f! W .�1; �2; : : :/ 2 B0g;
for some choice of A0; B0 2 B.R1/. Given any " > 0, it is possible to find an
integer m 2 N D f1; 2; : : :g and a set eA0 2 B.Rm/, so that P.A 4 eA/ < " for
eA D f! W .�1; : : : ; �m/ 2 eA0g.

2. Define the sets

Bn D f! W .�n; �nC1; : : :/ 2 B0g ; n � 1;

and observe that for any n > m

P.eA \ Bn/ D P.eA/P.Bn/ D P.eA/P.B/:
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3. Finally, prove that jP.A \ Bn/ � P.A/P.Bn/j � 2" and that

P.A \ Bn/ ! P.A/P.B/ as n ! 1:

Problem 5.3.3. Prove that the stationary sequence � D .�1; �2; : : :/ is ergodic if
and only if for every k D 1; 2; : : : and every B 2 B.Rk/ one has

1

n

nX

iD1

IB.�i ; : : : ; �iCk�1/ ! Pf.�1; : : : ; �k/ 2 Bg as n ! 1 .P-a. e./:

Hint. To prove the necessity part, let Q denote the distribution (on R1) of the
sequence � D .�1; �2; : : :/ and let T stand for the shift

R1 3 x D .x1; x2; : : :/ Ý T .x/ D .x2; x3; : : :/ 2 R1:

In addition, given any k D 1; 2; : : : and any B 2 B.Rk/, define the function R1 3
x D .x1; x2; : : :/ Ý f .x/ D I..x1; : : : ; xk/ 2 B/ 2 R, and then apply to that
function the Birkhoff–Khinchin ergodic theorem.

In order to establish the sufficiency part, one has to prove that the transformation
T , introduced above, is ergodic; in other words, the measure of any set from the
associated collection J (i.e., any invariant set) is either 0 or 1.

The property

1

n

nX

iD1

I..�1; : : : ; �k/ 2 B/ ! Pf.�1; : : : ; �k/ 2 Bg as n ! 1 .P-a. e./

translates into the claim that for every set A 2 B.R1/, of the form
f.x1; : : : ; xk/ 2 Bg, for some B 2 B.Rk/, one must have

1

n

nX

iD1

IA.T i x/ ! Q.A/ as n ! 1 .Q-a. e./:

In conjunction with the Birkhoff–Khinchin ergodic theorem, the last relation yields
the identity EQ.IA j J / D EQIA (Q-a. e.), which, in turn, implies that the sets A of
the form f.x1; : : : ; xk/ 2 Bg, for some choice of B 2 B.Rk/, do not depend on J .
By using the “suitable sets” method, one can then conclude that the collection of
sets

M D fA 2 B.R1/ W A is independent from J g
coincides with B.R1/. Finally, one can conclude that J does not depend on J
and, therefore, the Q-measure of every invariant set is either 0 or 1. This proves the
ergodicity of the transformation T , and, therefore, the ergodicity of the sequence �.
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Problem 5.3.4. Suppose that T is some measure-preserving transformation on
.˝; F /, under two different measures, P and P. Prove that if, in addition, T happens
to be ergodic relative to both P and P, then either P D P or P ? P.

Problem 5.3.5. Let T be any measure preserving transformation on the space
.˝; F ; P/, let A be any algebra of sub-sets of ˝ , chosen so that �.A / D F ,
and let

I
.n/
A D 1

n

n�1X

kD0

IA.T k!/; A 2 A :

Prove that the transformation T is ergodic if and only if at least one of the following
conditions holds:

1. I
.n/
A

P�! P.A/ for every A 2 A ;
2. limn

1
n

Pn�1
kD0 P.A \ T �kB/ D P.A/ P.B/ for all A; B 2 A ;

3. I
.n/
A

P�! P.A/ for every A 2 F .

Problem 5.3.6. Suppose that T is some measure-preserving transformation on
.˝; F ; P/. Prove that T is ergodic (for the measure P) if and only if there is no
measure P ¤ P, defined on .˝; F /, that has the property P � P, and is such that
the transformation T is measure-preserving for P.

Problem 5.3.7. (Bernoulli shifts.) Let S be any finite set (say, S D f1; : : : ; N g),
let ˝ D S1 be the space of all sequences of the form ! D .!0; !1; : : :/, !i 2 S ,
and let �k , k � 0, be the canonical coordinate maps on S1, given by �k.!/ D !k ,
! 2 ˝ D S1. Define the shift transformation T .!0; !1; : : :/ D .!1; !2; : : :/. The
same transformation can be defined in terms of the coordinate maps through the
relations �k.T!/ D !kC1, k � 0. Assume that to every i 2 f1; 2; : : : ; N g one can
attach a non-negative number, pi , so that

PN
iD1 pi D 1 (i.e., the list .p1; : : : ; pN /

represents a probability distribution on ˝). With the help of this distribution it is
possible to define a measure P on .S1; B.S1// (see [ P §2.3]), so that

Pf!W .!1; : : : ; !k/ D .u1; : : : ; uk/g D pu1 : : : puk
:

In other words, the probability measure P can be defined in such a way that the
random variables �0.!/; �1.!/; : : : become independent. It is common to refer to
the shift transformation T as the Bernoulli shift or the Bernoulli transformation
relative to the measure P.

Prove that the Bernoulli transformation, as described above, has the mixing
property.

Problem 5.3.8. Let T be a some measure-preserving transformation on .˝; F ; P/.
Setting T �nF D fT �nAW A 2 F g, we say that the �-algebra

F�1 D
1\

nD1

T �nF
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is trivial (or P-trivial), if the P-measure of every set from F�1 is either 0 or 1.
If the transformation T is such that the associated �-algebra F�1 is trivial, then
we say that T is “Kolmogorov transformation.” Prove that every Kolmogorov
transformation is ergodic and, furthermore, has the mixing property.

Problem 5.3.9. Let 1 � p < 1, let T be any measure-preserving transforma-
tion acting on .˝; F ; P/, and let �.!/ be any random variable from the space
Lp.˝; F ; P/.

Prove the von Neumann ergodic theorem for Lp.˝; F ; P/: one can construct a
random variable, �.!/, on .˝; F ; P/, for which

E

ˇ
ˇ
ˇ
ˇ
ˇ

1

n

n�1X

kD0

�.T k!/ � �.!/

ˇ
ˇ
ˇ
ˇ
ˇ

p

! 0 as n ! 1:

Problem 5.3.10. The Borel normal numbers theorem claims that (see [ P §4.3,
Example 2]) the proportion of zeroes, or of ones, in the binary expansion of
! 2 Œ0; 1/ converges almost surely, relative to the Lebesgue measure on Œ0; 1/, to
1=2. Prove this result by introducing the transformation T W Œ0; 1/ ! Œ0; 1/, given by

T .!/ D 2! .mod 1/;

and by using the ergodic theorem—[ P §5.3, Theorem 1].

Problem 5.3.11. Let everything be as in Problem 5.3.10 and let ! 2 Œ0; 1/.
Consider the transformation T W Œ0; 1/ ! Œ0; 1/, given by

T .!/ D
8
<

:

0; if ! D 0;n
1
!

o
; if ! ¤ 0;

where fxg denotes the fractional part of the number x.
The so called Gauss measure on the interval Œ0; 1/ is defined as

P.A/ D 1

ln 2

Z

A

dx

1 C x
; A 2 B.Œ0; 1//:

Prove that the transformation T preserves the Gauss measure P .

Problem 5.3.12. By providing appropriate examples, prove that the Poincaré
“reversibility” theorem (see [ P §5.1, 3 ]) may not hold for measurable spaces with
infinite measures.



Chapter 6
Stationary (in Broad Sense) Random
Sequences: L2-theory

6.1 Spectral Representation of Covariance Functions

Problem 6.1.1. By using [ P §6.1, (11)], prove the relation [ P §6.1, (12)].
Hint. The required statement can be established by using appropriate values for

ti and ai . For instance, with m D 2, t1 D 0 and t2 D n, it is easy to prove that

.ja1j2 C ja2j2/R.0/C a1a2R.�n/C a1a2R.n/ � 0:

Setting a1 D a2 D 1 and a1 D 1, a2 D i above, and taking into account the
property R.0/ 2 R, one finds that R.n/ C R.�n/ 2 R and i.R.n/ � R.�n/ 2 R,
and, therefore,R.�n/ D R.n/.

Problem 6.1.2. Prove that if all zeroes of the polynomialQ.z/, defined in [ P §6.1,
(27)], happen to be outside of the unit disk, then the auto-regression equation
[ P §6.1, (24)] admits unique stationary solution, which can be written in the form
of one-sided moving average.

Problem 6.1.3. In the context of [ P §6.1], prove that the spectral functions for the
sequences (22) and (24) have densities given by, respectively, (23) and (29).

Hint. The formula in (23) may be established as follows: prove first thatR.n/ DPp

kD0 anCkak and after that verify the relation R.n/ D R �
�� e

i�nf .�/ d�, where
f .�/ is given by (23). (It is useful to keep in mind that

R �
�� e

i�n d� D 2�ın0, where
ın0 is the usual Kronecker symbol.)

Problem 6.1.4. Prove that if
PC1

nD�1 jR.n/j2 < 1, then the spectral function
F.�/ has density f .�/, given by

f .�/ D 1

2�

1X

nD�1
e�i�nR.n/;

where the series converges in the complex spaceL2 D L2.Œ��; �/;B.Œ��; �//; �/,
� being the usual Lebesgue measure.
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Hint. Use the fact that
n

1p
2�
ei�n; n D 0;˙1;˙2; : : :

o
is an orthonormal system

in the space L2.Œ��; �/;B.Œ��; �//; �/.

Problem 6.1.5. Let .�n/n�0 be any stationary Gauss-Markov sequence with van-
ishing mean. Prove that the associated covariance function, R.n/, admits the
representation

R.n/ D �2�n;

for some 0 < � � 1.

Problem 6.1.6. Let N D .Nt/t�0 be a Poisson process (see [ P §7.10]) of param-
eter � > 0. Define the (continuous-time) process �t D � � .�1/Nt , where �
is some random variable, which is independent from N , and is chosen so that
Pf� D 1g D Pf� D �1g D 1

2
. Prove that E�t D 0 and E�s�t D e�2�jt�sj, s; t � 0.

Problem 6.1.7. Consider the sequence .�n/n�0 defined as

�n D
NX

kD1
ak cos.bkn � �k/;

where ak; bk > 0, for k D 1; : : : ; N , are given constants, and �1; : : : ; �N are
independent random variables that are uniformly distributed in .0; 2�/. Prove that
.�n/n�0 is a stationary sequence.

Problem 6.1.8. Let �n D cosn', n � 1, for some random variable ', that is
uniformly distributed on Œ��; ��. Prove that the sequence .�n/n�1 is stationary in
broad sense, but is not stationary in strict sense.

Problem 6.1.9. Consider the one-sided moving average model of orderp (MA(p)):

�n D a0"n C a1"n�1 C : : :C ap"n�p;

where n D 0;˙1; : : : and " D ."n/ is a white noise sequence (see [ P §6.1,
Example 3]). Compute the dispersion D�n and the covariance cov.�n; �nCk/.

Problem 6.1.10. Consider the auto-regression model of order 1 (AR(1))

�n D ˛0 C ˛1�n�1 C �"n; n � 1

(comp. with formula [ P §6.1, (25)]) with white noise " D ."n/ and suppose that
j˛1j < 1. Prove that if Ej�0j < 1, then

E�n D ˛n1E�0 C ˛0.1 � ˛n1 /

1 � ˛1
! ˛0

1 � ˛1 as n ! 1I

if, furthermore, D�0 < 1, then

D�n D ˛2n1 D�0 C �2.1 � ˛2n1 /
1 � ˛21

! �2

1 � ˛21
as n ! 1;
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and

cov.�n; �nCk/ ! �2˛k1

1 � ˛21
:

Problem 6.1.11. In the setting of the previous problem, suppose that �0 is normally

distributed with law N
�

˛0
1�˛1 ;

�2

1�˛21

�
. Prove that the Gaussian sequence � D

.�n/n�0 is both strictly and broadly stationary, with

E�n D ˛0

1 � ˛1 ; D�n D �2

1 � ˛21
and cov.�n; �nCk/ D �2˛21

1 � ˛21
:

6.2 Orthogonal Stochastic Measures and Stochastic Integrals

Problem 6.2.1. Prove the equivalence of conditions [ P §6.2, (5) and (6)].
Hint. To prove the implication .5/ ) .6/, take�n # ¿,�n 2 E0,Dn D E n�n,

D0 D ¿; then E D P1
kD1.Dk n Dk�1/ and [ P §6.2, (5)] implies that Z.�n/ D

Z.E/�Z.Dn/
H2

! 0.

Problem 6.2.2. Consider the function f 2 L2. By using the results from
[ P Chap. 2] (specifically, [ P §2.4, Theorem 1], the Corollary to [ P §2.6,
Theorem 3], and Problem 2.3.8), prove that there is a sequence, .fn/n�1, that
consists of functions of the form specified in [ P §6.2, (10)], and is such that
kf � fnk ! 0 as n ! 1.

Hint. The proof may be established with the following argument. Given any
" > 0, one can construct the simple function g.�/ D Pp

kD1 fkIBk .�/, where
Bk 2 E and fk 2 C , in such a way that kf � gkL2 < "=2. Then construct the
sets �k 2 E0, so that the quantities m.�k 4Bk/, k D 1; : : : ; p, are as small as
needed. Finally, the function h.�/ D Pp

kD1 fkI�k .�/ has the form specified in
[ P §6.2, (10)] and, furthermore, can be chosen so that kf � hkL2 < ".
Problem 6.2.3. Assuming that Z.�/ is some orthogonal stochastic measure, with
structural functionm.�/, verify the following relations:

EjZ.�1/�Z.�2/j2 D m.�14�2/;

Z.�1 n�2/ D Z.�1/�Z.�1 \�2/ .P-a. e./;

Z.�14�2/ D Z.�1/CZ.�2/� 2Z.�1 \�2/ .P-a. e./:

Problem 6.2.4. Let � D .�n/, with E�n D 0, be any stationary sequence with
correlation function R.n/, and with spectral measure F.d�/. Setting Sn D �1 C
: : :C �n, prove that the dispersion DSn can be written in the form:

DSn D
X

jkj<n
.n � jkj/R.k/ or DSn D

Z �

��

 
sin n�

2

sin �
2

!2

F.d�/:
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Problem 6.2.5. Suppose that f .�/ is a spectral density (i.e., for some spectral
measure F one can write F.d�/ D f .�/ d�), which is continuous at � D 0.
By using the second formula for the dispersion DSn, established in the previous
problem, prove that

DSn D 2�f .0/ � nC o.n/:

(The kernel
�

sin.n�=2/
sin.�=2/

�2
is known as the Fejér’s kernel—see [ P §6.4, 2 ].)

6.3 Spectral Representations of Stationary (in Broad Sense)
Sequences

Problem 6.3.1. In the notation adopted in the proof of [ P §6.3, Theorem 1], prove

that L20.F / D L2.F /.
Hint. According to Problem 6.2.2, every function f .�/ 2 L2.F / can be

approximated arbitrarily closely in the norm of L2.F / with functions of the form
g.�/ D Pp

kD1 fkIBk .�/, where Bk 2 A , A being the algebra comprised of all
finite unions of intervals of the form Œa; b/, �� � a < b < � . Consequently, it is
enough to prove only that every function IŒa;b/.�/ can be approximated with linear
combinations of functions of the form en.�/ D ei�n, n D 0;˙1;˙2; : : : . However,
a function of the form IŒa;b/.�/ can be approximated with continuous functions,
which, in turn, can be approximated with linear combinations of functions of the
form en.�/, n D 0;˙1;˙2; : : : (the Weierstrass–Stone theorem).

Problem 6.3.2. Let � D .�n/ be any stationary sequence, such that, for some fixed
N , one can claim that �nCN .!/ D �n.!/, ! 2 ˝ , for all n 2 Z D f0;˙1;˙2; : : :g.
Prove that the spectral representation of any such sequence comes down to the
representation [ P §6.1, (13)].

Hint. Since R.N/ D R.0/, one can claim that the spectral measure F is piece-
wise constant on Œ��; �/ and has jumps at the points

�k D 2�k

N
C 2�pk; k D 1; : : : ; N;

where the integers pk are chosen so that �k 2 Œ��; �/. As a result, the spectral
representation of � must have of the form:

�n D
Z

Œ��;�/
ei�n Z.d�/ D

NX

kD1
ei�knZ.f�kg/:

Problem 6.3.3. Let � D .�n/ be any stationary sequence, chosen so that E�n D 0

and

1

N 2

N�1X

kD0

N�1X

lD0
R.k � l/ D 1

N

X

jkj�N�1
R.k/

h
1 � jkj

N

i
� CN�˛;
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for some constants C > 0 and ˛ > 0. By using the Borel–Cantelli lemma, prove
that

1

N

NX

kD0
�k ! 0 as N ! 1 .P-a. e./:

Problem 6.3.4. Suppose that the spectral density f�.�/ of the sequence � D .�m/

is rational, in that

f�.�/ D 1

2�

jPn�1.e�i�/j
jQn.e�i�/j ;

where Pn�1.z/ D a0 C a1z C � � � C an�1zn�1 andQn.z/ D 1C b1z C � � � C bnzn are
given polynomials. In addition, suppose that Qn has no roots on the unit circle.

Prove that one can construct a white noise sequence " D ."m/, m 2 Z, in
such a way that the sequence .�m/ is a component of the n-dimensional sequence
.�1m; : : : ; �

n
m/ (i.e., �1m D �m), which is determined by the relations

�imC1 D �iC1m C ˇi"mC1; i D 1; : : : ; n � 1;

�nmC1 D �
n�1X

jD0
bn�j �jC1

m C ˇn"mC1;

where ˇ1 D a0 and ˇi D ai�1 �Pi�1
kD1 ˇkbi�k , i > 1.

Problem 6.3.5. One says that the stationary (in strict sense) sequence � D .�n/

satisfies the strong mixing condition if

˛n.�/ D sup
A2F0

�1

.�/;B2F1

n .�/

jP.AB/� P.A/P.B/j ! 0 as n ! 1;

where F n�1.�/ D �.: : : ��1; �0/ and F1
n .�/ D �.�n; �nC1; : : :/. (Comp. with

Problem 2.8.7.)
Prove that if X and Y are two bounded (jX j � C1 and jY j � C2) random

variables, that are measurable, respectively, for F n�1.�/ and F1
n .�/, then

jEXY � EX EY j � 4C1C2˛n.�/:

Problem 6.3.6. Let � D .�m/�1<m<1 be any stationary Gaussian sequence,
and let

	�
n .�/ D supX;Y EXY;

the supremum being taken over all random variables X and Y , with EjX j2 D
EjY j2 D 1, chosen from the closed linear manifolds Ln�1.�/ and L1

n .�/, that are
generated, respectively, by the families .�m/m�0 and .�m/m�n.

Prove the Kolmogorov–Rozanov inequality:

˛n.�/ � 	�
n .�/ � 2�˛n.�/:

(Comp. with the inequalities in Problem 2.8.7.)
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Problem 6.3.7. Suppose that � D .�n/ is some stationary Gaussian sequence, that
has a continuous spectral density, f .�/, which is uniformly bounded from below by
some positive constant, i.e., f .�/ > C > 0, � 2 Œ��; ��. By using the inequalities
established in the previous problem, prove that the sequence � must have the strong
mixing property.

Problem 6.3.8. By considering sequences � D .�n/, of the form

�n D A cos.�nC 
/;

for an appropriate choice of the constant A 6D 0 and the independent random
variables � and 
 , prove that a stationary in broad sense sequence may have periodic
sample paths and non-periodic covariance function.

6.4 Statistical Estimates of Covariance Functions
and Spectral Densities

Problem 6.4.1. Consider the estimation scheme [ P §6.4, (15)] and suppose that
"n � N .0; 1/. Prove that for every fixed n one must have

.N � jnj/DbRN.nI �/ ! 2�

Z �

��
.1C e2in�/f 2.�/ d� as N ! 1:

Hint. By using the assumption that "n is Gaussian for every fixed n � 0, argue
that

.N � n/DbRN .nI �/ D 2�

Z �

��

Z �

��
Œ1C ein.�C�/�˚N�n.� � �/f .�/f .�/ d� d�;

where˚N�n.�/ is the associated Fejér kernel. The required result then follows from
the above relation.

Problem 6.4.2. Prove formula [ P §6.4, (16)] and its generalization:

lim
N!1 cov. OfN .�I �/; OfN .�I �// D

8
ˆ̂
<

ˆ̂
:

2f 2.0/; � D � D 0;˙�;
f 2.�/; � D � ¤ 0;˙�;
0; � ¤ �:

Problem 6.4.3. Consider the first-order autoregressive model AR(1)

�n D 
�n�1 C �"n; n � 1; �0 D 0;

in which " D ."n/ is a Gaussian white noise sequence (comp. with [ P §6.1, (25)]
and with the model discussed in Problem 6.1.10). Suppose that in this model � >
0 is a known parameter, while 
 2 R is some unknown parameter, that must be
estimated from the observations �1; �2; : : : .
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Let O
n D arg maxp
.x1; : : : ; xn/ be the maximum likelihood estimate of the
parameter 
 , obtained from the joint probability density of �1; : : : ; �n, namely

p
.x1; : : : ; xn/ D 1

.
p
2� �/n

exp

(

� 1

2�2

nX

kD1
.xk � 
xk�1/2

)

:

Prove that

O
n D
Pn

kD1 Xk�1Xk
Pn

kD1 X2
k�1

:

Problem 6.4.4. Consider the Fisher Information

In.
/ D E


�

� @2 lnp
.�1; : : : ; �n/

@
2

�

for the AR(1) model from Problem 6.4.3, E
 stands for the averaging operation,
under the distribution P
 , of the sequence �1; �2; : : : .

Prove that
(a) In.
/ D E


Pn
kD1 �2k�1;

(b) as n ! 1, one has

In.
/ �

8
ˆ̂
<

ˆ̂
:

n
1�
2 ; j
 j < 1;
n2

2
; j
 j D 1;

2n

.
2�1/2 ; j
 j > 1:

Problem 6.4.5. In the context of the AR(1) model discussed in Problems 6.4.3 and
6.4.4, prove that the maximum likelihood estimate, O
n, has the following asymptotic
properties:

lim
n

Pn
˚p
In.
/ . O
n � 
/ � x

� D

8
ˆ̂
<

ˆ̂
:

˚.x/; j
 j < 1;
H
.1/


 .x/; j
 j D 1;

Ch.x/; j
 j > 1;

where ˚.x/ is the distribution function of the standard normal law and H.1/


 .x/ is
the distribution function of the random variable


 � B2
1 � 1

2
p
2
R 1
0
B2
s ds

;
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where B D .Bs/0�s�1 is a standard Brownian motion (see [ P §2.13]) and Ch.x/
is the distribution function of the Cauchy distribution law with density 1

�.1Cx2/ (see
[ P §2.3, Table 3]).

Problem 6.4.6. As a continuation of the previous problem, prove that

lim
n

P


8
<

:

v
u
u
t

nX

kD1
�2k�1 . O
n � 
/ � x

9
=

;
D
(
˚.x/; j
 j 6D 1;

H
.2/


 .x/; j
 j D 1;

whereH.2/


 .x/ denotes the distribution function of the random variable


 � B2
1 � 1

2

qR 1
0
B2
s ds

:

Thus, if . O
n�
/ is normalized not by the Fisher information, but by the random vari-

able
�Pn

kD1 �2k�1
�1=2

, then one would end-up with only two probability distributions
instead of three.

Problem 6.4.7. Prove that the maximum likelihood estimate, O
n, from Problem
6.4.3 is uniformly asymptotically consistent on average:

sup
 E
 j O
n � 
 j ! 0 as n ! 1:

6.5 Wold Decomposition

Problem 6.5.1. Prove that any stationary sequence with discrete spectrum (i.e.,
with spectral function F.�/ that is piece-wise constant) must be singular.

Hint. If �n, n 2 Z D f0;˙1;˙2; : : : g, is one such sequence, then one can write

�n D
1X

kD�1
zke

i�kn;

with zk D Z.f�kg/, k 2 Z, being orthogonal random variables with Ezk D 0

and Ejzkj2 D �2k . Consequently, the spectral function can be written in the form
F.�/ D P

fkW�k��g �2k , where
P1

kD�1 �2k < 1. Thus, one must show that H.�/ D
S.�/, where H.�/ is the closed linear sub-space of H2, generated by the random
variables � D .: : : ; �n�1; �n; : : : /, and S.�/ D T1

nD�1Hn.�/, where eachHn.�/ is
generated by the family �n D .: : : ; �n�1; �n/.

In order to prove thatH.�/ D S.�/, it is enough to prove that �n 2 S.�/, for every
n 2 Z. However, due to the stationarity, it is enough to prove only that �0 2 S.�/,
i.e., for every integer N 2 Z and every ı > 0, one can find some � 2 HN.�/ with
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k�0 � �kH2 < ı. Thus, it would be enough to show that one can take � D �n, for
some appropriate choice of n � N . For that purpose, given an arbitrary ı > 0, one
can chooseM so that

P
jkj>M �2k < ı=2, then prove that

k�n � �0kH2 � 2

3
ı C

X

jkj�M
�2k jei�kn � 1j;

and, finally, prove that, for any N 2 Z and any " > 0, there is an integer n � N ,
with jei�kn � 1j < ", for jkj � M .

Problem 6.5.2. Let �2n D Ej�n �b�nj2, whereb�n D bE.�n jH0.�//. Prove that if
�2n D 0, for some fixed n � 1, then the sequence � must be singular. If, furthermore,
�2n ! R.0/ as n ! 1, then � must be also regular.

Problem 6.5.3. Prove that the (automatically stationary) sequence � D .�n/, of the
form �n D ein' , for some random variable ', which is uniformly distributed on
Œ0; 2��, must be regular. Find the linear estimate,b�n, of the variable �n and prove
that the non-linear estimate

Q�n D
� �0

��1

�n

gives an error-free forecast for �n, based on the “past history” �0 D .: : : ; ��1; �0/,
i.e.,

Ej Q�n � �nj2 D 0; n � 1:

Hint. To prove the regularity of the sequence � D .�n/, convince yourself that
"n D �k=

p
2� represents a white noise sequence, and, therefore the representation

�n D p
2�"n is of the same form as in [ P §6.5, (3)].

Problem 6.5.4. Prove that the decomposition [ P §6.5, (1)] into a regular and a
singular components is unique.

6.6 Extrapolation, Interpolation and Filtartion

Problem 6.6.1. Prove that the assertion of [ P §6.6, Theorem 1] remains valid even
without the assumption that ˚.z/ has radius of convergence r > 1, while all zeroes
of ˚.z/ are in the domain jzj > 1.

Problem 6.6.2. Prove that, for a regular process, the function ˚.z/, which appears
in [ P §6.6, (4)], may be written in the form

˚.z/ D p
2� exp

(
1

2
c0 C

1X

kD1
ckzk

)

; jzj < 1;
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where

ck D 1

2�

Z �

��
eik� lnf .�/ d�:

Conclude from the above relation that the error in the one-step forecast �21 D Ej O�1�
�1j2 is given by the Szegö-Kolmogorov formula:

�21 D 2� exp

(
1

2�

Z �

��
ln f .�/ d�

)

:

Hint. The Szegö-Kolmogorov formula may be established with the following
line of reasoning:

(i) First, prove that

�21 D k�1 �b�1k2H2 D
Z 1

�1
jei� �b'1.�/j2f .�/ d�; .�/

where b'1.�/ is given by [ P §6.6, (7)]. In conjunction with the notation adopted
in [ P §6.6, Theorem 1], taking into account .�/, and the fact that f .�/ D
1
2�

j˚.e�i�/j2, one can show that �21 D jb0j2.
(ii) From the first part of the problem,

˚.z/ D
1X

kD0
bkzk D p

2� exp

(
1

2
c0 C

1X

kD1
ckzk

)

;

which shows that b0 D p
2� expf 1

2
c0g, and, consequently, that

�21 D 2� exp

�
1

2
c0

�

D 2� exp

�
1

2�

Z �

��
ln f .�/ d�

�

:

Problem 6.6.3. Prove [ P §6.6, Theorem 2] without assuming that [ P §6.6, (22)]
is in force.

Problem 6.6.4. Suppose that the signal 
 and the noise � are uncorrelated and have
spectral densities

f
.�/ D 1

2�
� 1

j1C b1e�i�j2 and f�.�/ D 1

2�
� 1

j1C b2e�i�j2 :

By using [ P §6.6, Theorem 3], find the estimate, Q
nCm, of the variable 
nCm, from
the observations �k , k � n, where �k D 
k C �k . Solve the same problem for the
spectral densities

f
.�/ D 1

2�
j2C e�i�j2 and f�.�/ D 1

2�
:



6.7 The Kalman-Bucy Filter and Its Generalizations 277

6.7 The Kalman-Bucy Filter and Its Generalizations

Problem 6.7.1. Prove that in the observation scheme [ P §6.7, (1)] the vectors mn

and 
n �mn are uncorrelated:

EŒm�
n.
n �mn/� D 0:

Problem 6.7.2. Suppose that in the observation scheme [ P §6.7, (1)–(2)] the
variable �0 and all coefficients, except, perhaps, a0.n; �/ and A0.n; �/, are chosen
to be “event independent,” i.e., independent of �. Prove that the conditional
covariance �n is also “event-independent,” in that �n D E�n.

Problem 6.7.3. Prove that the solution to the system [ P §6.7, (22)] is given by
formula [ P §6.7, (23)].

Problem 6.7.4. Let .
; �/ D .
n; �n/ be a Gaussian sequence, which is subject to
the following special case of the observation scheme [ P §6.7, (1)]:


nC1 D a
n C b"1.nC 1/ and �nC1 D A
n C B"2.nC 1/:

Prove that if A ¤ 0, b ¤ 0 and B ¤ 0, then the limiting error of the filtration
� D limn!1 �n exists, and is given by the positive root of the equation

�2 C
	
B2.1 � a2/

A2
� b2




� � b2B2

A2
D 0:

Hint. By using formula [ P §6.7, (8)], one can show that

�nC1 D b2 C a2c2 � a2c2

c2 C �n
;

where c2 D .B
A
/2. In other words, �nC1 D f .�n/, with f .x/ D b2 C a2c2 � a2c2

c2Cx ,
x � 0. Furthermore, it is easy to see that f .x/ is non-decreasing and bounded. From
this property one can conclude that lim �n ( D � ) exists and satisfies the following
equation

�2 C Œc2.1 � a2/� b2�� � b2c2 D 0;

which, due to the Viète formula, can have only one positive root.

Problem 6.7.5. (Interpolation; [80, 13.3].) Let .
; �/ be a partially observable
sequence, which is subject to the recursive relations [ P §6.7, (1) and (2)]. Suppose
that the conditional distribution of the vector 
m, namely

�a.m;m/ D P
�

m � a j F �

m

�
;

is normal.
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(a) Prove that for any n � m the conditional distribution

�a.m; n/ D P.
m � a j F �
n /

is also normal, i.e., �a.m; n/ � N ..m; n/; �.m; n//.
(b) Find the interpolation estimate, .m; n/, of 
m from F

�
n . Find also the matrix

�.m; n/.

Problem 6.7.6. (Extrapolation; [80, 13.4].) Suppose that in the relations [ P §6.7,
(1) and (2)] one has

a0.n; �/ D a0.n/C a2.n/�n; a1.n; �/ D a1.n/;

A0.n; �/ D A0.n/C A2.n/�n; A1.n; �/ D A1.n/:

(a) Prove that, with the above choice, one can claim that the distribution
�a;b.m; n/ D P.
n � a; �n � b j F �

m/, n � m, is normal.
(b) Find the extrapolation estimates

E.
n j F �
m/ and E.�n j F �

m/; n � m:

Problem 6.7.7. (Optimal control; [80, 14.3].) Consider some “controlled” and
partially observable system .
n; �n/0�n�N , where


nC1 D un C 
n C b"1.nC 1/;

�nC1 D 
n C "2.nC 1/:

The “control” un is F
�
n -measurable and such that Eu2n < 1, for all 0 � n � N � 1.

The variables "1.n/ and "2.n/, n D 1; : : : ; N , are chosen as in [ P §6.7, (1) and (2)]
and �0 D 0, 
0 � N .m; �/.

We say that the “control” u� D .u�
0 ; : : : ; u

�
N�1/ is optimal if V.u�/ D sup

u
V.u/,

where

V.u/ D E

"
N�1X

nD0
.
2n C u2n/C 
2N

#

:

Prove that the optimal control exists and is given by

u�
n D �Œ1C PnC1�˚PnC1m�

n; n D 0; : : : ; N � 1;

where

a˚ D
(
a�1; a ¤ 0;

0; a D 0;
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and the quantities .Pn/0�n�N are defined recursively through the relation

Pn D 1C PnC1 � P2
nC1Œ1C PnC1�˚; PN D 1;

while .m�
n/ is defined by the relation

m�
nC1 D u�

n C ��
n .1C ��

n /
C.�nC1 �m�

n/; 0 � n � N � 1;

with m�
0 D m and with

��
nC1 D ��

n C 1 � .��
n /
2.1C ��

n /
˚; 0 � n � N � 1;

where we suppose that ��
0 D � .

Problem 6.7.8. (Nonlinear filtering and the “change-point” detection problem—
see [117].) Typically, in statistical control—and especially in quality control—one
encounters quantities whose probabilistic nature changes abruptly at some random
moment 
 . This moment represents “the change-point,” say, in a particular pro-
duction process. In what follows we will describe the Bayesian formulation of the
problem of early detection of “the change-point,” and will address questions related
to the construction of sufficient statistics for this quantity.

Let .˝;F / be some measurable space, let fP� I � 2 Œ0; 1�g be some family of
probability measures on .˝;F /, let 
 be some random variable on .˝;F /, which
takes values in the space of integersN D f0; 1; 2; : : :g, and, finally, letX1;X2; : : : be
some sequence of observable random variables, defined on .˝;F /. Next, suppose
that the following relations are in force:

(i) P�f
 D 0g D � , P�f
 D kg D .1 � �/pk , where pk � 0,
P1

kD1 pk D 1.
(ii) For every � 2 Œ0; 1� and every n � 1 one has

P�fX1 � x1; : : : ; Xn � xng D �P1fX1 � x1; : : : ; Xn � xng

C.1 � �/

n�1X

kD0
pkC1P0fX1 � x1; : : : ; Xk � xkgP1fXkC1 � xkC1; : : : ; Xn � xng

C.1 � �/.pnC1 C pnC2 C : : :/P0fX1 � x1; : : : ; Xn � xng; xk 2 R:
(iii) Pj fX1 � x1; : : : ; Xn � xng D Qn

kD1 Pj fXk � xkg, j D 0; 1.

The practical meaning of the relations (i)–(iii) can be summarized as follows. If 
 D
0 or 
 D 1, then “the change-point” has taken place before the observation process
has begun. In this case, the variables X1;X2; : : : are all associated with the already
“changed” production process and are independent and identically distributed, with
distribution functionF1.x/ D P1fX1 � xg. If 
 > n, i.e., the “change-point” occurs
after the n-th observation, then the random variablesX1; : : : ; Xn are associated with
the “normal” production process and are independent and identically distributed,
with distribution function F0.x/ D P0fX1 � xg. If 
 D k, for some 1 < k �
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n, then X1; : : : ; Xk�1 are independent and identically distributed with distribution
function F0.x/, while Xk; : : : ; Xn are also independent and identically distributed,
but with distribution function F1.x/. We suppose that F0.x/ 6	 F1.x/.

Let f0.x/ and f1.x/ stand for the densities of the distributions F0.x/ and F1.x/,
with respect to some distribution, say, .F0.x/C F1.x//=2, relative to which F0.x/
and F1.x/) are both absolutely continuous.

Let � denote the moment at which the “change-point” is declared. We suppose
that � is a Markov moment relative to .Fn/n�0, where F0 D f¿;˝g and Fn D
�.X1; : : : ; Xn/. Essentially, � represents a guess and the quality of this guess will be
measured in terms of the quantities: P�f� < 
g, which is the probability for “false
alarm,” and E�.��
/C, which is the expected delay in detecting the “change-point,”
when the “alarm” is real, in that � � 
 .

One would like to construct a moment � that minimizes simultaneously the
probability for “false alarm” and the expected delay in detection. But since such
a moment does not exist (except for some trivial situations), we introduce the
“Bayesian” risk (below we suppose that c > 0 is some appropriately chosen
constant)

R�.�/ D P�f� < 
g C c E�.� � 
/C;

and say that the moment �� is optimal, if, for any � 2 Œ0; 1�, one can claim
that P�f�� < 1g D 1 and that R�.��/ � R�.�/, for every P� -finite Markov
moment � .

According to Problem 8.9.8, a moment �� with the above properties exists and,
in the special case where pk D .1 � p/k�1p, 0 < p � 1, k � 1, can be expressed
as:

�� D inffn � 0 W �n � Ag;
where the constant A, which, in general, may depend on c and p, is the “alarm-
trigger” threshold, while �n is the posterior probability for the “change-point” to
occur no later than the n-th observation:

�n D P�.
 � n j Fn/; n � 0; �0 D �:

(a) Prove that the posterior probabilities �n, n � 0, are subject to the following
recursive relations:

�nC1 D �nf1.XnC1/C p.1 � �n/f1.XnC1/
�nf1.XnC1/C p.1 � �n/f1.XnC1/C .1 � �/.1 � �n/f0.XnC1/

:

(b) Prove that if 'n D �n=.1� �n/, then

'nC1 D .p C 'n/
f1.XnC1/

.1 � p/f0.XnC1/
:
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(c) Setting ' D 'n.p/, � D 0 and  D limp#0 'n.p/=p, prove that

 nC1 D .1C  n/
f1.XnC1/
f0.XnC1/

;  0 D 0:

Remark. If we set 
n D I.
 � n/, then �n D E�.
n j Fn/ is the mean-square
optimal estimate of 
n from the observations X1; : : : ; Xn. From (a), (b) and (c) one
can conclude that the statistics �n, 'n and  n are governed by nonlinear recursive
relations, which are said to define the nonlinear filter (for the problem of estimating
the values .
n/n�0 from the observationsX1; : : : ; Xn).

(d) Prove that each of the sequences .�n/n�0, .'n/n�0 and . n/n�0 constitutes a
Markov chain.





Chapter 7
Martingale Sequences

7.1 The Notion of Martingale and Related Concepts

Problem 7.1.1. Show the equivalence of conditions [ P §7.1, (2) and (3)].
Hint. The proof can be established by contradiction.

Problem 7.1.2. Let � and � be two Markov times. Show that �C� , �_� and �^�
are also Markov times, and, if �.!/ � �.!/ for all ! 2 ˝ , then F� � F� . Does
this property still hold if � � � only with Probability 1?

Hint. If �.!/ � �.!/ for all ! 2 ˝ , then, for every A 2 F� , one has

A \ f� D ng D A \ f� � ng \ f� D ng 2 Fn;

and therefore A 2 F� .

Problem 7.1.3. Prove that � and X� are both F� -measurable.

Problem 7.1.4. Let Y D .Yn;Fn/ be a martingale (submartingale) and let
V D .Vn;Fn�1/ be some predictable sequence, for which one can claim that all
random variables .V Y /n, n � 0, are integrable. Prove that V Y is a martingale
(submartingale).

Problem 7.1.5. Let G1 � G2 � : : : be any non-increasing sequence of �-algebras,
and suppose that � is some integrable random variable. Setting Xn D E.� j Gn/,
prove that the sequence .Xn/n�1, forms a reverse martingale, i.e.,

E.Xn jXnC1; XnC2; : : : / D XnC1 .P-a. e./ ; for every n � 1:

Problem 7.1.6. Let �1; �2; : : : be any sequence of independent random variables,
chosen so that Pf�i D 0g D Pf�i D 2g D 1

2
, and let Xn D Qn

iD1 �i . Prove that it is
not possible to find an integrable random variable �, and a non-decreasing family of
�-algebras .Fn/, so that one can write: Xn D E.� j Fn/ (P-a. e.), for every n � 1.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics,
DOI 10.1007/978-1-4614-3688-1 7,
© Springer Science+Business Media New York 2012
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Conclude that there are martingales that cannot be expressed as .E.� j Fn//n�1, for
some appropriate choice of � and .Fn/n�1 (comp. with [ P §1.11, Example 3]).

Hint. The proof can be established by contradiction.

Problem 7.1.7. (a) Let �1; �2; : : : be any sequence of independent random variables
with Ej�nj < 1 and E�n D 0, n � 1. Prove that, for every fixed k � 1, the sequence

X.k/
n D

X

1�i1<���<ik�n
�i1 : : : �ik ; n D k; k C 1; : : :

forms a martingale.
(b) Let �1; �2; : : : be any sequence of integrable random variables, for which

E.�nC1 j �1; : : : ; �n/ D �1 C � � � C �n

n
; n � 1:

Prove that the sequence Xn D 1
n
.�1 C � � � C �n/, n � 1, forms a martingale.

Problem 7.1.8. Give an example of a martingale X D .Xn;Fn/n�1, for which the
family fX1;X2; : : :g is not uniformly integrable.

Problem 7.1.9. Let X D .Xn/n�0 be a Markov chain ([ P §8.1]) with countable
state-space E D fi; j; : : : g and with transition probabilities pij . Let  D  .x/,
x 2 E , be any bounded function with the property that, for some � > 0, one has

X

j2E pij  .j / � � .i/ ; for any i 2 E:

(A function  with the above properties is said to be �-excessive, or �-harmonic.)
Prove that the sequence .��n .Xn//n�0 forms a supermartingale.

Problem 7.1.10. Let �1; �2; : : : be any sequence of stopping times, chosen so that
either �n # � , or �n " � , in point-wise sense. Prove that � must be a stopping time
in either case.

Problem 7.1.11. Prove that if � and � are stopping times, then

F�^� D F� \ F� and F�_� D �.F� [ F� /:

Problem 7.1.12. Let � be any (finite) stopping time, and let �1; �2; : : : be any
sequence of stopping times. Prove that if �n " 1, then

F�^�n " F� ;

and, if �n # � , then F� D T
n F�n .
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Problem 7.1.13. Let �1; �2; : : : be any sequence of independent standard normal
random variables (�n � N .0; 1/) and let Sn D �1 C : : :C �n, n � 1. Prove that the
sequence .Xn/n�1, given by

Xn D 1p
nC 1

exp

�
S2n

2.nC 1/

�

;

is a martingale relative to the filtration .F �
n /n�1, with F

�
n D �.�1; : : : ; �n/.

Problem 7.1.14. Let X D .Xn;Fn/n�0 be any stochastic sequence, set �Xn D
Xn � Xn�1, n � 1, and let �.!I fng 	 dx/ D P.�Xn 2 dx j Fn�1/.!/ be any
regular version of the respective conditional expectation. Given any u 2 R, set

A.u/0 D 0 and A.u/n D
X

1�k�n
.eiux � 1/�.0I fkg 	 dx/ ; n � 1:

Prove that the processM.u/ D .Mn.u/;Fn/, n � 1, with

Mn.u/ D eiuXn �
nX

kD1
eiuXk�1�A.u/k ;

is a martingale.

Problem 7.1.15. With the notation adopted in the previous problem, given any u 2
R, set

G.u/0 D 0 and G.u/n D
Y

1�k�n

Z

eiux �.!I fkg 	 dx/; n � 1 ;

and suppose that G.u/n > 0, n � 1. Prove that the (complex-valued) sequence
�
eiuXn

G.u/n

�

n�0
;

i.e., the sequence
�

eiuXn
Qn
kD1 E.eiu�Xk j Fk�1/

�

n�1
;

is a martingale.

Problem 7.1.16. Let X D .Xn;Fn/n�0 be any stochastic sequence, chosen so that
j�Xnj � c (P-a. e.), for some constant c > 0 and for all n � 1, where �Xn D
Xn �Xn�1. Consider the (real-valued) sequence Y D .Yn;Fn/n�1, given by

Yn D eXn
Qn
iD1 E.e�Xi j Fi�1/

;

and prove that Y D .Yn;Fn/n�1 is a martingale (comp. with Problem 7.1.15.)
Will this property hold without the requirement for the variables �Xn to be

uniformly bounded?
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Problem 7.1.17. Let �1; : : : ; �n be independent and normally distributed (N .0; 1/)
random variables, and let S0 D 0 and Sk D �1 C : : : C �k , 1 � k � n. Let
˚.x/ D Pf�1 � xg, let Fk D �.�1; : : : ; �k/, 1 � k � n, and let F0 D f¿;˝g.
Prove that, for every a 2 R, the sequence X D .Xk;Fk/0�k�n, given by

Xk D ˚

�
a � Skp
n � k

�

;

is a martingale.

Problem 7.1.18. Let �1; : : : ; �n be independent and identically distributed random
variables, whose distribution is symmetric. Set S0 D 0 and Sk D �1 C : : : C �k ,
1 � k � n. Let F.xI k/ D PfSk � xg. As a generalization of the result stated in
the previous problem, prove that the sequence X D .Xk;Fk/0�k�n, given by

Xk D F.a � Sk; n � k/ and Fk D �.�1; : : : ; �k/ ;

is a martingale. (An application of this property can be found in Problem 7.2.12.)

Problem 7.1.19. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with (shared) distribution function F D F.x/, x 2 R,
and let

Fn.xI!/ D 1

n

nX

kD1
I.�k.!/ � x/ ; x 2 R ; n � 1 ;

be the associated sequence of empirical distribution functions (see [ P §3.13]).
By using the result in Problem 7.1.5, prove that, for every fixed x 2 R, the
sequence .Yn.x/;Gn.x//n�1, given by Yn.x/ D Fn.xI!/ � F.x/, Gn.x/ D
�.Yn.x/; YnC1.x/; : : :/, is a martingale.

Problem 7.1.20. Suppose that X D .Xn;Fn/n�0 and Y D .Yn;Fn/n�0 are two
submartingales.

(a) Prove that X _ Y D .Xn _ Yn;Fn/n�0 is also a submartingale.
(b) Can one claim that the following two sequences are submartingales:

X C Y D .Xn C Yn;Fn/n�0; XY D .XnYn;Fn/n�0‹

If yes, explain under what conditions, if not, explain why?
(c) Answer the analogous questions in the case where X and Y are martingales

and also in the case where X and Y are supermartingales.

Problem 7.1.21. Let �1; �2; : : : be any infinite sequence of exchangeable random
variables (i.e., random variables with the property that, for every n � 1, the
probability distribution of the vector .�1; : : : ; �n/ coincides with the probability
distribution of the vector .��1 ; : : : ; ��n/, for any permutation, .�1; : : : ; �n/, of the set
.1; : : : ; n/—for an equivalent definition see Problem 2.5.4). Suppose that E�1 < 1,

Sn D �1 C : : :C �n and let Gn D �
�
Sn
n
;
SnC1

nC1 ; : : :
�

.
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As a generalization of [ P §1.11, Example 4], prove that one has

E
�
Sn

n
j GnC1

�

D SnC1
nC 1

.P-a. e./ ; n � 1 ;

i.e., the sequence
�
Sn
n
;Gn

	
n�1 forms a reverse martingale.

Problem 7.1.22. Prove that any reverse martingale is automatically uniformly
integrable.

Problem 7.1.23. The �-algebra F� , associated with the Markov time � , is defined
as the collection of sets

fA 2 F W A \ f� D ng 2 Fn for all n � 0g:

Why can’t one define this �-algebra as F�
defD �.Fn W n � �/?

Problem 7.1.24. If X D .Xn;Fn/n�1 is a martingale, then, for every sub-
sequence, .nk/ � .n/, one can claim that .Xnk ;Fnk /k�1 is also a martingale. By
providing appropriate examples, prove that, in general, this property may not hold
for local martingales.

Problem 7.1.25. In martingale theory, a uniformly integrable supermartingale
˘ D .˘n;Fn/n�0, with the property ˘n.!/ ! 0 as n ! 1, for every ! 2 ˝

(point-wise convergence to 0), is called potential.
Suppose that ˘ D .˘n;Fn/n�0 is a potential and let F�1 D F0. Prove that

there is a unique predictable and non-decreasing sequence A D .An;Fn�1/n�0,
starting from 0, i.e., with A0 D 0, for which one can write

˘n D E.A1 � An j Fn/ ; n � 0:

Problem 7.1.26. Let X D .Xn;Fn/n�0 be a supermartingale. Prove that the
following conditions are equivalent:

(i) There is a submartingale, Y D .Yn;Fn/n�0, for which one can claim that
Xn � Yn (P-a. e.), for all n � 0;

(ii) There is a unique Riesz decomposition of the form:

Xn D Mn C˘n ; n � 0 ;

in which M D .Mn;Fn/n�0 is a martingale and ˘ D .˘n;Fn/n�0 is a potential.

Problem 7.1.27. Let X D .Xn;Fn/n�0 be any submartingale. Prove that one can
find a non-negative martingale,M D .Mn;Fn/n�0, with the following properties:

XC
n � Mn; n � 0; and sup

n

EXC
n D sup

n

EMn:

Hint. Use the fact that XC D .XC
n ;Fn/n�0 is also a submartingale and set

Mn D limm!1 E.XC
nCm j Fn/.
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Problem 7.1.28. Suppose that the probability space .˝;F ;P/ is endowed with
the filtration F D .Fn/n�0, let � and � be any two Markov times (for F ) with the
property �.!/ � �.!/ for every ! 2 ˝ , and let An D f! W �.!/ < n � �.!/g,
n � 1. Prove that An 2 Fn�1 for every n � 1. In other words, the sequence
.Xn/n�1, given by

Xn D
(
1; if �.!/ < n � �.!/,

0 otherwise,

is predictable, in that Xn is Fn�1-measurable for every n � 1.

Problem 7.1.29. (On [ P §7.1, Theorem 2].) Let X D .Xn;Fn/n�0 be any
submartingale with Doob-decomposition Xn D mn C An, n � 0, where A0 D 0

and thereforem0 D X0. Prove that if fX0;X1; : : :g is a uniformly integrable family,
then EA1 < 1 and the family fm0;m1; : : :g is also uniformly integrable.

Problem 7.1.30. Suppose that M D .Mn;Fn/n�0 is a square integrable martin-
gale. Prove that

sup
n

EM2
n < 1 ”

X

k�1
E.Mk �Mk�1/2 < 1:

Problem 7.1.31. Let � D �.!/ be any Markov time for the filtration .Fn/n�0 and
suppose that f D f .n/ is a non-decreasing function of n 2 N D f0; 1; 2; : : :g,
chosen so that f .n/ � n. Prove thate�.!/ D f .�.!// is also a Markov time.

Problem 7.1.32. Consider the sequence X D .Xn;Fn/ and suppose that this
sequence is a martingale with respect to the probability measure P. Then suppose
that Q is another probability measure that is equivalent to P (Q � P). Prove by way
of example that the sequence X D .Xn;Fn/ is not necessarily a martingale relative
to the measure Q.

Problem 7.1.33. According to [ P §7.1, Example 5], if X D .Xn;Fn/ is a
submartingale and g D g.x/ is some convex and non-decreasing function with
the property Ejg.Xn/j < 1, n � 0, then the sequence .g.Xn/;Fn/ is also a
submartingale. Give an example of a submartingale .Xn/ and a function g D g.x/,
which is convex but fails to be non-decreasing, for which .g.Xn/;Fn/ is not a
submartingale.

7.2 Invariance of the Martingale Property Under Random
Time-Change

Problem 7.2.1. Prove that [ P §7.2, Theorem 1] remains valid in the case of
submartingales, provided that condition [ P §7.2, (4)] is replaced with

lim
n!1

Z

f�2>ng
XC
n d P D 0:
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Hint. The proof is essentially the same as in [ P §7.2, Theorem 1]. One only has
to notice that the relation Xm � XC

m implies the following chain of inequalities:

Z

B\f�2�ng
X�2 d P � lim

m!1


 Z

B\f�2�ng
Xn d P �

Z

B\f�2>mg
Xm d P

�

�
Z

B\f�2�ng
Xn d P � lim

m!1

Z

B\f�2>mg
XC
m d P:

Problem 7.2.2. Let X D .Xn;Fn/n�0 be any square integrable martingale, with
EX0 D 0, let � be a stopping time, and suppose that

lim
n!1

Z

f�>ng
X2
n d P D 0:

Prove that

EX2
� D EhXi�

 

D E
�X

jD0
.�Xj /

2

!

;

where�X0 D X0, �Xj D Xj �Xj�1, j � 1.
Hint. In order to prove the inequality

EX2
� � E

�X

jD0
.�Xj /

2 ;

use [ P §7.2, Theorem 1] and Fatou’s lemma (E limN X
2
�^N � limN ES2�^N ). To

prove the inequality in the opposite direction, observe that

EX2
� � EX2

�^N D E
�^NX

jD0
.�Xj /

2 ;

and use Fatou’s lemma again.

Problem 7.2.3. Prove that for every martingale, or, for every non-negative sub-
martingale,X D .Xn;Fn/n�0, and for every stopping time � , one has

EjX� j � lim
n!1 EjXnj:

Hint. Use the fact that jX j is a submartingale and that, by [ P §7.2, Theorem 1],
EjX�^N j � EjXN j, for everyN � 1. Consequently, limN EjX�^N j � limN EjXN j.
The proof can now be completed by using Fatou’s lemma.

Problem 7.2.4. LetX D .Xn;Fn/n�0 be a supermartingale, and suppose that there
is a random variable �, with Ej�j < 1, for which one can write Xn � E.� j Fn/
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(P-a. e.), for every n � 0. Prove that if �1 and �2 are two stopping times with Pf�1 �
�2g D 1, then

X�1 � E.X�2 j F�1/ .P-a. e./:

Hint. By using the result from [ P §7.2, Theorem 1], verify the relations
EjX�1 j < 1, EjX�2 j < 1 and

lim
n

Z

f�2>ng
jXnj dP D 0:

Problem 7.2.5. Let �1; �2; : : : be any sequence of independent random variables
with Pf�i D 1g D Pf�i D �1g D 1=2, and let a and b be any two positive numbers
with b > a. Given any n � 1, set

Xn D a

nX

kD1
I.�k D C1/� b

nX

kD1
I.�k D �1/

and let
� D inffn � 1WXn � �rg; r > 0:

Prove that Ee�� < 1, for � � ˛0, and that Ee�� D 1, for � > ˛0, where

˛0 D b

a C b
ln

2b

a C b
C a

aC b
ln

2a

aC b
:

Problem 7.2.6. Suppose that �1; �2; : : : is some sequence of independent random
variables with E�i D 0 and D�i D �2i , and let Sn D �1 C � � � C �n and

F
�
n D �f�1; : : : ; �ng, for n � 1. Prove the following generalization of Wald’s

identities [ P §7.2, (13) and (14)]: if E
P�

jD1 Ej�j j < 1, then ES� D 0, and, if
E
P�

jD1 E�2j < 1, then

ES2� D E
�X

jD1
�2j D E

�X

jD1
�2j :

Problem 7.2.7. Let X D .Xn;Fn/n�1 be a square integrable martingale and let �
be any stopping time for .Fn/. Prove that

EX2
� � E

�X

nD1
.�Xn/

2:

In addition, prove that if

lim
n!1

E.X2
nI.� > n// < 1 ; or lim

n!1
E.jXnjI.� > n// D 0 ;

then E.�X�/2 D E
P�

nD1 X2
n .
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Problem 7.2.8. Let X D .Xn;Fn/n�1 be any submartingale and let �1 � �2 � : : :

be stopping times for .Fn/, such that the expectations EX�m are well defined and

lim
n!1

E.XC
n I.�m > n// D 0 ; m � 1:

Prove that the sequence .X�m;F�m/m�1 is a submartingale. (As usual, we define
F�m D fA 2 F WA \ f�m D j g 2 Fj ; j � 1g.)

Problem 7.2.9. Let X D .Xn;Fn/n�0 be a non-negative supermartingale and let
�0 � �1 � : : : be stopping times for .Fn/. Show that the sequence .X�n ;Fn/n�0 is
also a supermartingale.

Problem 7.2.10. As an extension of the elementary theorem in renewal theory—
see [ P §7.2, 4 ]—prove that (under the assumption D�1 < 1 and with the notation
a D .E�1/�1) one must have

DNt
t

! a3D�1 as t ! 1:

Furthermore, the central limit theorem holds:

P
�
Nt � at
p
a3D�1 t

� x

�

! ˚.x/ as t ! 1:

Problem 7.2.11. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables, let Sn D �1 C : : :C �n, n � 1, and let

� D inffn � 1 W Sn > 0g
(as usual, we set � D 1, if Sn � 0 for all n � 1).

Prove that if E�1 D 0 then E� D 1.

Problem 7.2.12. By using the martingale property of the sequence X D
.Xk;Fk/0�k�n from Problem 7.1.18, and also the property EX0 D EX�a (see
[ P §7.2, Corollary 1]), where �a D minf0 � k � n W Sk > ag, a > 0 (with the
understanding that �a D n C 1, if Sk � a for all 0 � k � n), prove the inequality
(see [ P §4.4, Lemma 1])

P
n

max
0�k�n

Sk > a
o

� 2PfSn > ag:

Problem 7.2.13. As an extension of the statements in [ P §7.2, Theorems 1 and 2],
prove the following result: Consider the martingaleX D .Xn;Fn/ and let � be any
stopping time with Pf� <1g Da, for which EjX� j<1 and limn!1 EŒ jXnjI.� >
n/	 D 0. Then:

lim
n!1 EŒ jX� jI.� > n/	 D 0I
EjX� � X�^nj ! 0 as n ! 1I

and EX� D EX0.
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Problem 7.2.14. (On [ P §7.2, Theorems 1 and 2].) Suppose that �1 and �2 are
two finite stopping times with Pf�1 � �2g D 1, and let X D .Xn/n�0 be some
martingale (all defined on the same probability space). Prove that if

E sup
n��2

jXnj < 1 ; .
/

then E.X�2 j F�1/ D X�1 (P-a. e.).
Hint. Use the fact that condition .
/ implies that the family of random variables

fjX�2^0j; jX�2^1j; : : :g is uniformly integrable.

Problem 7.2.15. In the context of [ P §7.2, Example 1], consider the stopping time
� defined in [ P §7.2, (16)], and prove that E�p < 1, for every p � 1.

Problem 7.2.16. Give an example of a martingale X D .Xn;Fn/n�0, and a
stopping time � , with the property that (see [ P §7.2, Theorem 1]) the condition

lim
n

Z

f�>ng
jXnj dP D 0

holds, but the condition EjX� j < 1 fails, i.e., EjX� j D 1.

Problem 7.2.17. Let M D .Mn;Fn/n�0 be any martingale and, given any N � 1,
set �N D inffm � 0 W jMmj � N g, with the understanding that inf ¿ D 1. Prove
that the martingaleM is uniformly integrable if and only if

lim
N

EjM�N jI.�N < 1/ D 0:

Problem 7.2.18. (On [ P §7.2, Examples 1 and 2].) Let �1; �2; : : : be any sequence
of independent and symmetric Bernoulli random variables (Pf�i D 1g D Pf�i D
�1g D 1=2, for i � 1). Consider the stopping time

� D inffn � 0 W Sn D 1g;
where S0 D 0 and Sn D �1 C : : :C �n (as usual, we suppose that inf ¿ D 1).

(a) Prove that, for every � 2 R, the sequence .X�
n /n�0, given by

X�
n D e�Sn

.cosh�/n
;

forms a martingale. By using this property, prove that Pf� < 1g D 1, E� D 1
and

E.cosh�/�� D e��a ; for every � � 0

(comp. with [ P §7.2, (18)]).
(b) With ˛ D 1= cosh�, the above formula implies that

E˛� D
X

n�1
˛nPf� D ng D 1

˛

h
1 �

p
1 � ˛2

i
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(see also Problem 8.8.19). By using the last relation, prove that

Pf� D 2n � 1g D .�1/nC1Cn
1=2 ;

where

Cn
X D X.X � 1/ : : : .X � nC 1/

nŠ

(see Problem 1.2.22).
(c) Let I D inffSn W n � �g. Prove that for every k � 0 one has

PfI � �kg D 1

k C 1
:

(d) Let �k D inffn � 0 W Sn D 1 or Sn D �kg. Show that �k ! � (P-a. e.)
and S�k ! S� as k ! 1 (P-a. e.), and yet ES�k 6! ES� (in fact, ES�k D 0, while
ES� D 1). Explain why the convergence of the expected values does not hold (ES�k
does not converge to ES� as k ! 1), in spite of the fact that S�k ! S� (P-a. e.).

Problem 7.2.19. The argument of [ P §7.2, Theorem 2] is based on the assumption
that the expectation of the stopping time � is finite (i.e., E� < 1). Prove that if, for
some 0 < " < 1 and some integer N , one can write

P.� � nCN j Fn/ > " (P-a. e.) for every n � 1 ;

then one can claim E� < 1.
Hint. Show by induction that Pf� � kN g � .1 � "/k , k � 1.

Problem 7.2.20. Let m.t/ denote the renewal function, introduced in [ P §7.2, 4 ].
The elementary theorem of renewal theory says thatm.t/=t ! 1=
 as t ! 1. The
next two statements refine this claim further.

(a) Suppose that the renewal process N D .Nt/t�0 lives on a lattice of size d ,
i.e., for some fixed d > 0 one can claim that the the distribution of the random
variable �1 is supported by the set f0; d; 2d; : : :g. Then (Kolmogorov, 1936)

1X

kD1
PfTk D nd g ! d



as n ! 1:

(b) If there is no d > 0, for which one can claim that the renewal process N D
.Nt/t�0 lives on a lattice of size d , then (Blackwell, 1948)

1X

kD1
Pft < Tk � t C hg ! h



as t ! 1 ; .
/

for every h > 0. (Note that the sum in .
/ givesm.t C h/ �m.t/.)
Argue that the above two statements are plausible, or, better yet, just prove them.
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Hint. With regard to (a), one must become familiar with the proof [ P §8.6,
Theorem 2].

Problem 7.2.21. Let �1; �2; : : : be any sequence of independent Bernoulli random
variables, with Pf�i D 1g D p, Pf�i D �1g D q, p C q D 1, i � 1. Given some
integers x, a and b, with a � 0 � b, set Sn.x/ D x C �1 C : : :C �n and let

�a.x/ D inffn � 0 W Sn.x/ � ag;
�b.x/ D inffn � 0 W Sn.x/ � bg;
�ba .x/ D inffn � 0 W Sn.x/ � a or Sn.x/ � bg:

Prove that:

Pf�a.x/ < 1g D
(
1; if p � q and x > a;

.q=p/x�a; if p > q and x > aI

Pf�b.x/ < 1g D
(
1; if p � q and x < b;

.p=q/b�x; if p < q and x < bI

Pf�ba .x/ < 1g D 1; a � x � bI
and that for a � x � b

E �ba .x/ D x � a

q � p
� b � a

q � p



.q=p/x � .q=p/a

.q=p/b � .q=p/a
�

; if p 6D q;

E �ba .x/ D .b � a/.x � a/; if p D q D 1=2:

Problem 7.2.22. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables, with values in the set f�1; 0; 1; : : :g, and with expected
value 
 < 0. Let S0 D 1, Sn D 1C �1 C : : : C �n, n � 1, and let � D inffn � 1 W
Sn D 0g. Prove that E � D 1

j
j .

7.3 Fundamental Inequalities

Problem 7.3.1. Let X D .Xn;Fn/n�0 be any non-negative submartingale and let
V D .Vn;Fn�1/n�0 be any predictable sequence (as usual, we set F�1 D F0),
with 0 � VnC1 � Vn � C (P-a. e.), where C is some constant. Prove the following
generalization of the inequality in [ P §7.3, (1)]: for every fixed � > 0, one has

�P
n

max
0�k�n VkXk � �

o
C
Z

max0�k�n VkXk<�

VnXn d P �
nX

kD0
EVk�Xk ;

with the understanding that �X0 D X0.



7.3 Fundamental Inequalities 295

Problem 7.3.2. Prove the following result, known as Krickeberg’s decomposition:
every martingale X D .Xn;Fn/n�0, that has the property sup EjXnj < 1, can be
written as the difference between two non-negative martingales.

Problem 7.3.3. Let �1; �2; : : : be any sequence of independent random variables,
let Sn D �1 C � � � C �n, and let Sm;n D Pn

jDmC1 �j . Prove the following relation,
which is known as the Ottaviani inequality,

P
n

max
1�j�n jSj j > 2t

o
� PfjSnj > tg

min1�j�n PfjSj;nj � tg ; t > 0 ;

and conclude that (under the assumption E�i D 0, for i � 1) one must have
Z 1

0

P
n

max
1�j�n jSj j > 2t

o
dt � 2EjSnj C 2

Z 1

2EjSnj
PfjSnj > tg dt: .
/

Hint. To establish the Ottaviani inequality, let A D ˚
max1�k�n jSkj � 2t

�
, and

let

Ak D fjSi j < 2t; i D 1; : : : ; k � 1I jSkj � 2tg ; for 1 � k � n:

Then A D Pn
kD1 Ak , and one can show that for any t > 0

P.A/
h

min
1�j�nPfjSj;nj � tg

i
D .P.A1/C � � � C P.An//

h
min
1�j�nPfjSj;nj � tg

i

� P.A1 \ fjSnj > tg/C � � � C P.An \ fjSnj > tg/ � P fjSnj > tg :
In order to establish .
/ (under the assumption E�i D 0, for i � 1), one only has

to show that
Z 1

0

P
n

max
1�j�n jSj j > 2t

o
dt

�
Z 2EjSnj

0

dt C
Z 1

2EjSnj
PfjSnj > tg

1 � max1�j�n PfjSj;nj > tg dt;

and that for t � 2EjSnj
1� max

1�j�nPfjSj;nj > tg � 1 � max
1�j�nPfjSj;n > 2EjSnjg

� 1 � max
1�j�n

EjSj;nj
2EjSnj � 1 � 1

2
D 1

2
:

Problem 7.3.4. Let �1; �2; : : : be any sequence of independent random variables,
with E�i D 0, i � 1. By using .
/ in Problem 7.3.3, prove that following stronger
version of the inequality in [ P §7.3, (10)]:

ES�
n � 8EjSnj:
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Problem 7.3.5. Prove the formula in [ P §7.3, (16)].

Problem 7.3.6. Prove the inequality in [ P §7.3, (19)].

Problem 7.3.7. Consider the �-algebras F0; : : : ;Fn with F0 � F1 � � � � � Fn,
and let the events Ak 2 Fk , k D 1; : : : ; n, be arbitrarily chosen. By using [ P §7.3,
(22)], prove Dvoretzky’s inequality:

P

(
n[

kD1
Ak

)

� �C P

(
nX

kD1
P.Ak j Fk�1/ > �

)

; for every � > 0:

Hint. Define Xk D IAk , k D 1; : : : ; n, and notice that

X�
n D max

1�k�n
jIAk j D ISn

kD1 Ak
:

If Bn D Pn
kD1 P.Ak j Fk�1/, then [ P §7.3, (22)] implies that

PfX�
N � 1g � E.Bn ^ "/C PfBn � "g ;

from where the required inequality easily follows.

Problem 7.3.8. Let X D .Xn/n�1 be any square integrable martingale, and let
.bn/n�1 be any non-decreasing sequence of positive real numbers. Prove Hájek–
Rényi’s inequalitiy:

P
�

max
1�k�n

ˇ
ˇ
ˇ
Xk

bk

ˇ
ˇ
ˇ � �

�

� 1

�2

nX

kD1

E.�Xk/2

b2n
; �Xk D Xk � Xk�1 ; X0 D 0:

Problem 7.3.9. Let X D .Xn/n�1 be any submartingale and let g.x/ be any
increasing function, which is non-negative and convex. Prove that, for every
positive h, and for every real x, one has

P
n

max
1�k�nXk � x

o
� Eg.hXn/

g.hx/
:

In particular, one has the following exponential analog of Doob’s inequality:

P
n

max
1�k�n

Xk � x
o

� e�hx EehXn :

(Comp. this result with the exponential analog of Kolmogorov’s inequality, estab-
lished in Problem 4.2.23.)

Problem 7.3.10. Let �1; �2; : : : be independent random variables, with E�n D 0

and E�2n D 1, for n � 1, and let � D inffn � 1WPn
iD1 �i > 0g, with the

understanding that inf ¿ D 1. Prove, that E�1=2 < 1.
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Problem 7.3.11. Let � D .�n/n�1 be any martingale difference. Prove that, for
every 1 < p � 2, one can find a constant Cp, for which the following inequality is
in force:

E sup
n�1

ˇ
ˇ
ˇ

nX

jD1
�j

ˇ
ˇ
ˇ
p � Cp

1X

jD1
Ej�j jp:

Problem 7.3.12. Let X D .Xn/n�1 be any martingale, with EXn D 0 and EX2
n <

1 D 1, for any n � 1. As a generalization of the inequality established in Prob-
lem 4.2.5, prove that, for every fixed n � 1, one has

P
n

max
1�k�n

Xk � "
o

� EX2
n

"2 C EX2
n

; for every " � 0:

Problem 7.3.13. Let �1; �2; : : : be any sequence of independent random variables,
with Pf�n D 1g D p and Pf�n D �1g D q, where p C q D 1, 0 < p < 1, and let
S0 D 0, Sn D �1 C : : :C �n.

Prove that the sequence ..q=p/Sn/n�0 is a martingale and, if p < q, then the
following maximal inequality is in force:

P

(

sup
n�0

Sn � k

)

�
�
p

q

�k
:

(Note that the above inequality is trivial if p � q.)
In addition, prove that when p < q one has

E sup
n�0

Sn � p

q � p
:

In fact, the above relations are actually identities, which shows that, for p <

q, the random variable supn�0 Sn has geometric distribution (see [ P §2.3,
Table 2]), i.e.,

P

(

sup
n�0

Sn D k

)

D
�
p

q

�k�

1 � p

q

�

; k D 0; 1; 2; : : : :

Problem 7.3.14. Let M D .Mk;Fk/0�k�n be a martingale that starts from 0,
i.e., M0 D 0, and is such that �ak � �Mk � 1 � ak , for k D 1; : : : ; n,
where �Mk D Mk � Mk�1 and ak 2 Œ0; 1	. As a generalization of the result
established in Problem 4.5.14, prove that, for every 0 � x < q, with q D 1� p and
p D 1

n

Pn
kD1 ak , one has

PfMn � nxg � en .x/

where  .x/ D ln


�
p

pCx
�pCx �

q

q�x
�q�x�

.
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Hint. Use the reasoning mentioned in the hint to Problem 4.5.14, and take into
account the fact that

EehMn D E

ehMn�1E

�
eh�Mn j Fn�1

	�

� E

ehMn�1

�
.1 � an/e�han C ane

h.1�an/	�:

Problem 7.3.15. Let M D .Mk;Fk/k�0 be a martingale with M0 D 0, chosen so
that for some non-negative constants ak and bk one has

�ak � �Mk � bk ; k � 1 ;

where�Mk D Mk �Mk�1.
(a) Prove that, for every x � 0 and every n � 1, one has

PfMn � xg � exp

�

� 2x2
Pn

kD1.ak C bk/2

�

;

PfMn � �xg � exp

�

� 2x2
Pn

kD1.ak C bk/2

�

;

which, obviously, implies that

PfjMnj � xg �2 exp

�

� 2x2
Pn

kD1.ak C bk/2

�

:

(Comp. with the respective inequalities in [ P §1.6] and [ P §4.5].)
(b) Prove that if ak D a and bk D b, for all k � 1 (and, therefore, �a � �Mk �

b, k � 1), then the following maximal inequalities is in force: for every ˇ > 0 and
every x > 0 one has

PfMn � ˇn � x for some ng � exp

�

� 8xˇ

.aC b/2

�

I .
/

furthermore, for every ˇ > 0 and every integerm � 1, one has

PfMn � ˇn for some n � mg � exp

�

� 2mˇ2

.aC b/2

�

;

PfMn � �ˇn for some n � mg � exp

�

� 2mˇ2

.a C b/2

�

:

(

)

(Comp. with the inequalities in [ P §4.5].)
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Remark. The inequalities in (a) are known as Hoeffding–Azuma’s inequalities.
The generalization given in (b) is due to S. M. Ross and can be found in the book
[107].

Hint. (a) Given any c > 0, one can write

PfMn � xg � e�cxEecMn :

Setting Vn D ecMn , we have Vn D Vn�1ec�Mn , so that

E.Vn jMn�1/ D Vn�1E
�
ec�Mn jMn�1

	
:

Iterating over n and using the assumption �ak � �Mk � bk, one can show that

PfMn � xg � e�cx
nY

kD1

bke
�cak C ake

�cbk
ak C bk

� e�cx
nY

kD1
exp

nc2

8
.ak C bk/

2
o
:

Consequently,

PfMn � xg � exp

�

� cx C c2
nX

kD1

.ak C bk/
2

8

�

;

and, since c > 0 is arbitrary, one can claim that

PfMn � xg � min
c>0

exp

�

� cx C c2
nX

kD1

.ak C bk/
2

8

�

D exp

�

� 2x2
Pn

kD1.ak C bk/2

�

:

(b) To prove .
/, introduce the variables

Vn D expfc .Mn � x � ˇn/g ; n � 0 ;

and notice that, with c D 8ˇ=.a C b/2, the sequence .Vn/n�0 is a non-negative
supermartingale. Consequently, for every finite Markov time �.K/ (� K), one must
have

EV�.K/ � EV0 D e�8xˇ=.aCb/2 :

With �.K/ D minfn W Mn � x C ˇn n D Kg, this yields PfM�.K/ � x C
ˇ�.K/ D PfV�.K/ � 1g � EV�.K/ � EV0, and, as a result,

PfMn � x C ˇn for some n � Kg � exp

� �8xˇ
.aC b/2

�

:
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Taking K ! 1 gives the inequality in .
/, from which .

/ obtains with the
following manipulation:

PfMn � ˇn for some n � mg �

� P
n
Mn � mˇ

2
C nˇ

2
for some n

o

� exp
n
�8.mˇ=2/.ˇ=2/

.a C b/2

o
D exp

n
� 2mˇ2

.aC b/2

o
:

Problem 7.3.16. LetM D .Mn;Fn/n�0 be any martingale and, given some � > 0,
let � D inffn � 0 W jMnj > �g, with the understanding inf ¿ D 1. Prove that

Pf� < 1g � ��1kM k1 ;

where kM k1 D supn EjMnj.
Problem 7.3.17. With the notation adopted in the previous problem, prove that

1X

kD0
EjMk �Mk�1j2I.� > k/ � 2�kM k1 ;

whereM�1 D 0.

Problem 7.3.18. Let M D .Mn;Fn/n�0 be any martingale with M0 D 0,
and let ŒM 	 D .ŒM 	n;Fn/n�1, stand for its quadratic variation, i.e., ŒM 	n DPn

kD1.�Mk/
2, where �Mk D Mk �Mk�1. Prove that

E sup
n

jMnj < 1 ” EŒM 	1=21 < 1 : .
/

Remark. The well known Burkholder–Davis–Gundi inequalities

ApkŒM 	1=21 kp � kM �1kp � BpkŒM 	1=21 kp ; p � 1;

in which M �1 D supn jMnj and Ap and Bp are universal constants (comp. with
[ P §7.3, (27), (30)]; see also [79]), can be viewed as an “Lp-refinement” of the
property .
/.
Problem 7.3.19. LetM D .Mk;Fk/k�1 be any martingale. Prove the Burkholder’s
inequality: for every r � 2 there is a universal constant Br , such that

EjMnjr � Br

�

E

 nX

kD1
E
�
.�Mk/

2 j Fk�1
	
�r=2

C E sup
1�k�n

j�Mkjr
�

;

where�Mk D Mk �Mk�1, k � 1, with M0 D 0.
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Problem 7.3.20. (Moment inequalities I.) Let �1; �2; : : : be any sequence of inde-
pendent and identically distributed random variables with E�1 D 0 and Ej�1jr < 1,
for some r � 1, and let Sn D �1C: : :C�n, n � 1. Due to the second Marcinkiewicz-
Zygmund inequality (see [ P §7.3, (26)]),

EjSnjr � BrE
� nX

iD1
�2i

�r=2
;

for some universal constant Br .
By using Minkowski’s inequality (see [ P §2.6]) with r � 2, and the cr -inequality

from Problem 2.6.72 with r < 2, prove that

EjSnjr � Br

(
nEj�1jr ; 1 � r � 2 ;

nr=2Ej�1jr ; r > 2:

In particular, with r � 2 the last relation gives the inequality

En�1=2jSnjr � BrEj�1jr :

In conjunction with the result from Problem 3.4.22, one must have limn En�1=2jSnjr
! EjZjr , where Z � N .0; �2/, �2 D E�21 .

Problem 7.3.21. (Moments inequalities II.) Let �1; �2; : : : be any sequence of
independent and identically distributed random variables, and let S0 D 0 and
Sn D �1 C : : : C �n, n � 1. Let � be any Markov time, relative to the filtration
.F S

n /n�0, defined by F S
0 D f¿;˝g and F S

n D �.S1; : : : ; Sn/, n � 1. Prove that:
(a) If 0 < r � 1 and Ej�1jr < 1, then

EjS� jr � Ej�1jrE�:

(b) If 1 � r � 2 and Ej�1jr < 1, E�1 D 0, then

EjS� jr � BrEj�1jrE�:

(c) If r > 2 and Ej�1jr < 1, E�1 D 0, then

EjS� jr � Br

.E�21 /

r=2E�r=2 C Ej�1jrE�
� � 2BrEj�1jrE�r=2 ;

where Br is an universal constant, that depends only on r .
Hint. In all cases one must prove the required inequalities first for the “cut-off”

(finite) times � ^ n, n � 1, and then pass to the limit as n ! 1.

Problem 7.3.22. Let �1; : : : ; �n be independent random variables. Prove the
Marcinkiewicz-Zygmund inequality: for every r > 0 and every n � 1, one can
find a constant, Br , which is universal, in that it depends only on r , so that one can
write (comp. with the second inequality in [ P §7.3, (26)])
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E

ˇ
ˇ
ˇ
ˇ

nX

jD1
�j

ˇ
ˇ
ˇ
ˇ

2r

� Br n
r�1

nX

jD1
Ej�j j2r :

Hint. It is enough to consider only the (much simpler) case where r � 1 is an
integer.

Problem 7.3.23. Let .�n/n�1 be any orthonormal sequence of random variables in
L2 (i.e., E�i �j D 0, for i 6D j and E�2i D 1 for all i � 1). Prove Rademacher-
Menshov’s maximal inequality: for any sequence of real numbers .cn/n�1 and for
any integer n � 1, one has

E max
1�k�n

� kX

jD1
cj �j

�2
� ln2.4n/

nX

jD1
c2j :

Problem 7.3.24. Let .�n/n�1 be any orthonormal sequence of random variables in
L2, and let .cn/n�1 be any sequence real numbers with

1X

kD1
c2k ln2 k < 1:

Prove that the series
P1

kD1 ck�k converges with Probability 1.
Hint. Use the result from the previous problem.

Problem 7.3.25. (On the extremality of the class of Bernoulli random variables:
Part I.) Let �1; : : : ; �n be independent Bernoulli random variables with Pf�i D 1g D
Pf�i D �1g D 1=2.

(a) Prove that, with p D 2m and m � 1, the second Khinchin inequality in
[ P §7.3, (25)] can be written in the form: for every n � 1 and every family,
X1; : : : ; Xn, of independent standard normal .N .0; 1// random variables, one has

E

ˇ
ˇ
ˇ
ˇ

nX

kD1
ak�k

ˇ
ˇ
ˇ
ˇ

2m

� E

ˇ
ˇ
ˇ
ˇ

nX

kD1
akXk

ˇ
ˇ
ˇ
ˇ

2m

:

(b) Let ˙n denote the class of independent and identically distributed symmetric
random variables X1; : : : ; Xn, with DXi D 1, i D 1; : : : ; n. Prove that, for every
n � 1 and everym � 1, one has

E

ˇ
ˇ
ˇ
ˇ

nX

kD1
ak�k

ˇ
ˇ
ˇ
ˇ

2m

D inf
.X1;:::;Xn/2˙n

E

ˇ
ˇ
ˇ
ˇ

nX

kD1
akXk

ˇ
ˇ
ˇ
ˇ

2m

:
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Hint. (a) It is enough to prove that

E

ˇ
ˇ
ˇ
ˇ

nX

kD1
ak�k

ˇ
ˇ
ˇ
ˇ

2m

D
X

k1C:::CknDm
ki�0

.2m/Š

.2k1/Š : : : .2kn/Š
ja1j2k1 : : : janj2kn ;

E

ˇ
ˇ
ˇ
ˇ

nX

kD1
akXk

ˇ
ˇ
ˇ
ˇ

2m

D .2m/Š

2mmŠ

X

k1C:::CknDm
ki�0

mŠ

k1Š : : : knŠ
ja1j2k1 : : : janj2kn;

and that 2mk1Š : : : knŠ � .2k1/Š : : : .2kn/Š, if k1 C : : : C kn D m and ki � 0. (Note
that .2m/Š

2mmŠ
D .2m � 1/ŠŠ D EX2m

1 —see Problem 2.8.9.)
(b) With m D 1, the required inequality is obvious. In the case m � 2, one must

prove first that the function '.t/ D Ejx C p
t�1j2m is convex in the domain t � 0.

Next, by using Jensen’s inequality for the associated conditional expectations,
prove that, if the sequences .�1; : : : ; �n/ and .X1; : : : ; Xn/ are independent, then
the following inequality must be in force

E

ˇ
ˇ
ˇ
ˇ

nX

kD1
ak�k

ˇ
ˇ
ˇ
ˇ

2m

� E

ˇ
ˇ
ˇ
ˇ

nX

kD1
ak�kjXkj

ˇ
ˇ
ˇ
ˇ

2m

:

Finally, prove that

.�1jX1j; : : : ; �njXnj/ lawD .X1; : : : ; Xn/:

Problem 7.3.26. (On the extremality of the class of Bernoulli random variables:
Part II.) Let X1; : : : ; Xn be independent random variables, such that Pf0 � Xi �
1g D 1 and EXi D pi , i D 1; : : : ; n. In addition, let �1; : : : ; �n be independent
and identically distributed Bernoulli random variables with Pf�i D 1g D p and
Pf�i D 0g D 1 � p, where p D .p1 C : : : C pn/=n. Prove the Bentkus inequality:
for every n � 1 and every x D 0; 1; 2; : : :, one has

PfX1 C : : :CXn � xg � e Pf�1 C : : :C �n � xg;

where e D 2:718 : : : .
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7.4 Convergence Theorems for Submartingales
and Martingales

Problem 7.4.1. Let fGn; n � 1g be some non-increasing family of �-algebras (i.e.,
G1 � G2 � : : : ), let G1 D T

Gn, and let � be a some integrable random variable.
Prove the following analog of [ P §7.4, Theorem 3]:

E.� j Gn/ ! E.� j G1/ as n ! 1 .P-a. e. and in L1-sense/:

Hint. Let ˇn.a; b/ denote the number downcrossings of the interval .a; b/ for
the sequenceM D .Mk/1�k�n, given by Mk D E.� j Gk/. Show first that

Eˇ1.a; b/ � Ej�j C jaj
b � a

< 1 ;

and conclude that ˇ1.a; b/ < 1 (P-a. e.). The rest of the proof is similar to the
proofs of [ P §7.4, Theorems 1 and 3].

Problem 7.4.2. Let �1; �2; : : : be any sequence independent and identically dis-
tributed random variables with Ej�1j < 1 and E�1 D m and let Sn D �1 C � � � C �n,
n � 1. Prove that (see Problem 2.7.2)

E.�1 jSn; SnC1; : : : / D E.�1 jSn/ D Sn

n
.P-a. e./ ; n � 1:

By using the result from Problem 7.4.1, prove the strong law of large numbers: as
n ! 1 one has

Sn

n
! m .P-a. e. and in L1-sense/:

Hint. Given any B 2 �.Sn; SnC1; : : : /, show that EIB�1 D EIB�i , i � n, and
conclude that

E.Sn jSn; SnC1; : : : / D nE.�1 jSn; SnC1; : : : / I

in particular, E.�1 jSn; SnC1; : : : / D Sn
n

(P-a. e.). In order to prove that Sn
n

! m

(P-a. e. and in L1-sense), consider the �-algebra X .s/ D T1
nD1 �.Sn; SnC1; : : : /

and, using the result from Problem 7.4.1, conclude that Sn
n

! E.�1 j X .s// (P-a. e.
and in L1-sense). Finally, use the fact that the events A 2 X .s/ obey the Hewitt–
Savage 0-1 law ([ P §2.1, Theorem 3]).

Problem 7.4.3. Prove the following result, which combines H. Lebesgue’s dom-
inated convergence theorem and P. Lévy’s theorem. Let .�n/n�1 be any sequence
of random variables, such that �n ! � (P-a. e.) and j�nj � �, for some random
variable �with E� < 1. Let .Fm/m�1 be any non-decreasing family of �-algebras,
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and let F1 D �.
S

Fm/. Then one has (P-a. e.)

lim
m!1
n!1

E.�n j Fm/ D E.� j F1/:

Hint. Use Lebesgue’s dominated convergence theorem ([ P §2.6, Theorem 3])
and P. Lévy’s theorem ([ P §7.4, Theorem 3]) to estimate, for large n and m, the
terms in the right side of the representation:

E.�n j Fm/� E.� j F1/

D ŒE.�n j Fm/� E.� j Fm/	C ŒE.� j Fm/� E.� j F1/	:

Problem 7.4.4. Prove formula [ P §7.4, (12)].
Hint. Notice first that the system fH1.x/; : : : ;Hn.x/g is a basis in the space

of functions that are measurable for Fn D �.H1; : : : ;Hn/. As Fn has finitely
many elements, every function that is measurable for Fn is automatically simple
(see [ P §2.4, Lemma 3]). As a result, formula [ P §7.4, (12)] must hold for some
constants a1 : : : ; an. The fact that ak D .f;Hk/ follows from the orthonormality of
the basis fH1.x/; : : : ;Hn.x/g.

Problem 7.4.5. Let ˝ D Œ0; 1/, F D B.Œ0; 1//, let P stand for the Lebesgue
measure, and suppose that the function f D f .x/ belongs to L1. Prove that
fn.x/ ! f .x/ (P-a. e.), for

fn.x/ D 2n
Z .kC1/2�n

k2�n

f .y/ dy; k 2�n � x < .k C 1/2�n:

Hint. The main step in the proof is to show that .fn.x/;Fn/n�1, with Fn D
�.Œj 2�n; .j C 1/2�n/	; j D 0; 1; : : : ; 2n � 1/, forms a martingale. The result from
[ P §7.4, Theorem 1] will then conclude the proof.

Problem 7.4.6. Let ˝ D Œ0; 1/, F D B.Œ0; 1//, let P stand for the Lebesgue
measure and suppose that the function f D f .x/ belongs to L1. Assuming that the
function f D f .x/ is extened to the interval Œ0; 2/ by periodicity in the obvious
way, and setting

fn.x/ D
2nX

iD1
2�nf .x C i2�n/ ;

prove that

fn.x/ ! f .x/ .P-a. e./:

Hint. Just as in the previous Problem, the key step is to show that the sequence
.fn.x/;Fn/n�1, with analogously defined �-algebras .Fn/n�1, forms a martingale.
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Problem 7.4.7. Prove that [ P §7.4, Theorem 1] remains valid for generalized
submartingalesX D .Xn;Fn/, for which

inf
m

sup
n�m

E.XC
n j Fm/ < 1 .P-a. e./:

Problem 7.4.8. Let .an/n�1 be some sequence of real numbers with the property:
for some ı > 0, one can claim that the limit limn e

itan exists for any t 2 .�ı; ı/.
Prove that limn an also exists and is finite.

Hint. The existence of limn e
itan for every t 2 .�ı; ı/ is tantamount to the

existence of limn e
itan for all t 2 R. Thus, it suffices to prove that the function

f .t/ D limn e
itan can be written in the form eitc , for some finite constant c. This

last property can be derived from the following properties of the function f .t/:

(i) jf .t/j D 1, t 2 R;
(ii) f .t1 C t2/ D f .t1/f .t2/, t1; t2 2 R;

(iii) the set of continuity points for the function f .t/ is everywhere dense in R.

Problem 7.4.9. Let F D F.x/, x 2 R, be some distribution function, and let
˛ 2 .0; 1/ be chosen so that, for some � 2 R, one can write F.�/ D ˛. Define the
sequence of random variables X1;X2; : : : according to the following rule (known
as the Robbins–Monro procedure):

XnC1 D Xn � n�1.Yn � ˛/ ;

where Y1; Y2; : : : are random variables, defined in such a way that

P.Yn D y jX1; : : : ; XnIY1; : : : ; Yn�1/ D
(
F.Xn/; if y D 1,

1 � F.Xn/; if y D 0 ,

with the understanding that, for n D 1, the conditional probability in the left side is
to be replaced by P.Y1 D y/.

Prove the following result from stochastic approximation theory: in the Robbins–
Monro procedure one has EjXn � � j2 ! 0 as n ! 1.

Problem 7.4.10. Let X D .Xn;Fn/n�1 be a submartingale, for which one can
claim that

E.X�I.� < 1// ¤ 1 ;

for every stopping time � . Prove that the limit lim
n
Xn exists with probability 1.

Problem 7.4.11. Let X D .Xn;Fn/n�1 be a martingale and let
F1 D �.

S1
nD1 Fn/. Prove that if the sequence .Xn/n�1 is uniformly integrable,

then the limit X1 D lim
n
Xn exists (P-a. e.), and the “closed” sequence

X D .Xn;Fn/1�n�1 is a martingale.
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Problem 7.4.12. Suppose that X D .Xn;Fn/n�1 is a submartingale and let
F1 D �

�S1
nD1Fn

	
. Prove that if the sequence .XC

n /n�1 is uniformly integrable,
then the limit X1 D limn Xn exists (P-a. e.), and the “closed” sequence X D
.Xn;Fn/1�n�1 is a submartingale.

Problem 7.4.13. [ P §7.4, Corollary 1 to Theorem 1] states that, for any non-
negative supermartingale X , one can claim the limit X1 D limXn exists and is
finite that with probability 1. Prove that the following properties are also in force:

(a) E.X1 j Fn/ � Xn (P-a. e.), n � 1;
(b) EX1 � limn EXn;
(c) E.X� j F� / � X�^� for arbitrary stopping times � and � ;
(d) Eg.X1/ D limn Eg.Xn/, for any continuous function g D g.x/, x � 0,

with g.x/

x
! 0 as x ! 1;

(e) if g.x/ > g.0/ D 0 for all x > 0, then

X1 D 0 , lim
n

Eg.Xn/ D 0I

(f) for every given 0 < p < 1, one has

PfX1 D 0g D 1 , lim
n

EXp
n D 0:

Problem 7.4.14. In P. Lévy’s convergence theorem ([ P §7.4, Theorem 3]) it is
assumed that Ej�j < 1. Prove by way of example that the requirement for E� to
exist (min.E�C;E��/ < 1) alone, in other words, without insisting that E�C C
E�� < 1, cannot guarantee the convergence E.� j Fn/ ! E.� j F / (P-a. e.).

Problem 7.4.15. If X D .Xn;Fn/n�1 is a martingale with supn EjXnj < 1, then,
according to [ P §7.4, Theorem 1], limXn must exist with Probability 1. Give an
example of a martingale X , for which supn EjXnj D 1 and limXn does not exist
with Probability 1.

Problem 7.4.16. Give an example of a martingale, .Xn/n�0, for which one has
Xn ! �1 as n ! 1 with Probability 1.

Problem 7.4.17. According to [ P §7.4, Theorem 2], given any uniformly in-
tegrable submartingale (supermartingale) X D .Xn;Fn/n�1, one can find a
“terminal” random variable X1, such that Xn ! X1 (P-a. e.). Give an example
of a submartingale (supermartingale) for which the “terminal” variable X1, with
Xn ! X1 (P-a. e.), exists, but the sequence .Xn/n�1 is not uniformly integrable.

Problem 7.4.18. Prove that any martingale,X D .Xn/n�0, that has the property

sup
n

E.jXnj lnC jXnj/ < 1;

must be a Lévy martingale.
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Problem 7.4.19. Give an example of a non-negative martingale,

X � .Xn;Fn/n�1 ;

such that EXn D 1 for all n � 1, Xn.!/ ! 0 as n ! 1 for any !, and yet
E supn Xn D 1.

Problem 7.4.20. Assuming that X D .Xn;Fn/n�1 is a uniformly integrable
submartingale, prove that, for any Markov time � , one has

E.X1 j F� / � X� .P-a. e./ ;

where X1 stands for limXn, which, according to Problem 7.4.12, exists with
Probability 1.

Problem 7.4.21. (On [ P §7.4, Theorem 1].) Give an example of a supermartingale,
X D .Xn;Fn/n�1, which satisfies the condition supn EjXnj < 1, and, therefore,
limXn ( D X1) exists with Probability 1, and yet Xn 6! X1 in L1.

Problem 7.4.22. Argue that, given any square integrable martingale, M D
.Mn;Fn/n�1, the condition

X

k�1
E.Mk �Mk�1/2 < 1 ;

or, equivalently, EhM i1 < 1, where hM i1 D limnhM in, guarantees the

convergence Mn ! M1 (P-a. e.), and also the convergence Mn

L1!M1, for some
random variableM1, with EM21 < 1.

Problem 7.4.23. Let X D .Xn;Fn/n�0 be any submartingale. By the very defini-
tion of submartingale, one must have EjXnj < 1, for every n � 0. Sometimes this
condition is relaxed, by requiring only that EX�

n < 1, for n � 0. Which of the
properties of the general class of submartingales, listed in [ P §7.4, 2–4 ], remain
valid under this weaker notion of submartingale?

Problem 7.4.24. Suppose that X D .Xn;Fn/n�0 is a supermartingale, i.e., Xn is
Fn-measurable, EjXnj < 1 and E.XnC1 j Fn/ � Xn, for n � 0. According to
[ P §7.4, Theorem 1], if supn EjXnj < 1, then one can claim that with Probability 1
the limit limn Xn D X1 exists and EjX1j < 1.

Notice, however, that the condition E.XnC1 j Fn/ � Xn is meaningful even with-
out the requirement EjXnC1j < 1, as the conditional expectation E.XnC1 j Fn/

would be well defined if, for example,XnC1 � 0, although in this case E.XnC1 j Fn/

may take the value C1 on some non-negligible set.
In lieu with the last observation, we say that X D .Xn;Fn/n�0 is a non-negative

supermartingale sequence, if, for every n � 0, one can claim that Xn is Fn-
measurable, PfXn � 0g D 1 and

E.XnC1 j Fn/ � Xn (P-a. e.):
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Prove that for any non-negative supermartingale sequence,

X D .Xn;Fn/n�0 ;

the limit limn Xn ( D X1) exists with Probability 1 and, furthermore, if PfX0 <
1g D 1, then PfX1 < 1g D 1.

Hint. The proof is analogous to the proof of [ P §7.4, Theorem 1] and hinges
on the estimate (37) from [ P §7.3, Theorem 5] for the number of up-crossings of a
given interval.

Problem 7.4.25. (Continuation of Problem 2.2.15.) As was shown in Prob-
lem 2.2.15, the following relation between �-algebras does not hold in general:

\

n

�.G ;En/ D �
�
G ;
\

n

En
�
:

Show, however, that the last relation is guaranteed by the following condition:

the � -algebras G and E1 are conditionally independent, relative to the � -algebra En, for
every n > 1, i.e., one has (P-a. e.)

P.A\ B j En/ D P.A j En/P.B j En/ ;

for any A 2 G and B 2 E1.

Hint. It is enough to show that, for every G _E1-measurable and bounded random
variable X , one has (P-a. e.)

E
�
X
ˇ
ˇ
ˇ
\

n

.G _ En/
�

D E
�
X
ˇ
ˇ
ˇG _

\

n

En
�
:

Furthermore, it would be enough to consider only random variables X of the form

X D X1X2 ;

where the bounded variables X1 and X2 are such that X1 is E1-measurable and X2
is E2-measurable. Finally, use the L1-convergence established in Problem 7.4.1, in
conjunction with the conditional independence established above.

Problem 7.4.26. Let �1; �2; : : : be independent non-negative random variables, with
E�1 � 1 and Pf�1 D 1g < 1. For Mn D �1 : : : �n, n � 1, prove that Mn ! 0 as
n ! 1 (P-a. e.).

Hint. Use the fact that the sequence .Mn/n�1 forms a non-negative supermartin-
gale.

Problem 7.4.27. Let .˝; .Fi /i�0;P/ be any filtered probability space with F0 D
f¿;˝g, and let �1; �2; : : : be any sequence of random variables, chosen so that each
�i is Fi -measurable. Assuming that supi E j�i j˛ < 1, for some ˛ 2 .1; 2	, prove
that
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1

n

nX

iD1
.�i � E.�i j Fi�1//

a.s.; L˛�! 0:

(Comp. with the law of large numbers, established in [ P §4.3] and the ergodic
theorems of [ P §5.3].)

7.5 On the Sets of Convergence of Submartingales
and Martingales

Problem 7.5.1. Prove that any submartingale, X D .Xn;Fn/, that satisfies the
condition E supn jXnj < 1, must belong to the class CC.

Problem 7.5.2. Prove that [ P §7.5, Theorems 1 and 2] remain valid for generalized
submartingales.

Problem 7.5.3. Prove that, for any generalized submartingale, X D .Xn;Fn/, up
to a P-negligible set, one has the inclusion:

n
inf
m

sup
n�m

E.XC
n j Fm/ < 1

o
� fXn converges g:

Problem 7.5.4. Prove that the corollary to [ P §7.5, Theorem 1] remains valid for
generalized submartingales.

Problem 7.5.5. Prove that any generalized submartingale from the class CC is
automatically a local submartingale.

Problem 7.5.6. Consider the sequence an > 0, n � 1, and let bn D Pn
kD1 ak .

Prove that
P1

nD1
an
b2n
< 1.

Hint. Consider separately the cases:
P1

nD1 an < 1 and
P1

nD1 an D 1.

Problem 7.5.7. Let �0; �1; �2; : : : be any sequence of uniformly bounded ran-
dom variables, i.e., j�nj � c, for n � 1. Prove that the series

P
n�0 �n andP

n�1 E.�n j �1; : : : ; �n�1/ either simultaneously converge or simultaneously diverge
(P-a. e.).

Problem 7.5.8. Let X D .Xn/n�0 be any martingale, with the property �Xn D
Xn�Xn�1 � c (P-a. e.), for some constant c < 1 (�X0 D X0/. Prove that the sets
fXn converges g and

˚
supn Xn < 1�

can differ only with a P-negligible set.

Problem 7.5.9. Let X D .Xn;Fn/n�0 be any martingale, with

supn�0 EjXnj < 1:

Prove that
P

n�1.�Xn/2 < 1 (P-a. e.). (Comp. with Problem 7.3.18.)
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Problem 7.5.10. Let X D .Xn;Fn/n�0 be any martingale, with

E supn�1 j�Xnj < 1:

Prove that, up to a P-negligible set,

nX

n�1.�Xn/
2 < 1

o
� fXn converges g:

In particular, if E.
P

n�1.�Xn/2/1=2 < 1, then one can claim that the sequence
.Xn/n�0 converges with Probability 1.

Problem 7.5.11. Let X D .Xn;Fn/n�0 be any martingale with

supn�0 EjXnj < 1 ;

and let Y D .Yn;Fn�1/n�1 be any predictable sequence with

supn�1 jYnj < 1 (P-a. e.):

Prove that the series
P1

nD1 Yn�Xn converges (P-a. e.).

Problem 7.5.12. Consider the martingale X D .Xn;Fn/n�0, chosen so that
sup� E.j�X� jI.� < 1// < 1, the sup being taken over all finite stopping times � .

Prove that, up to a P-negligible set, one has

nX

n�1.�Xn/
2 < 1

o
� fXn ! 1g:

Problem 7.5.13. Let M D .Mn;Fn/ be any square-integrable martingale. Prove
that, for almost every ! from the set fhM i1 D 1g, one has

lim
n!1

Mn

hM in D 0 :

7.6 Absolute Continuity and Singularity of Probability
Distributions on Measurable Spaces with Filtrations

Problem 7.6.1. Prove the inequality in [ P §7.6, (6)].

Problem 7.6.2. LetePn � Pn, for n � 1. Prove that:

eP � P ” ePfz1 < 1g D Pfz1 > 0g D 1I
eP ? P ” ePfz1 D 1g D 1 or Pfz1 D 0g D 1:
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Problem 7.6.3. LetePn � Pn, n � 1, suppose that � is a stopping time (relative to
the filtration .Fn/), and let eP� D eP j F� and P� D P j F� denote, respectively, the
restrictions of the measures eP and P to the �-algebra F� . Prove that eP� � P� if
and only if f� D 1g D fz1 < 1g (eP-a. e.). In particular, this result implies that, if
Pf� < 1g D 1, theneP� � P� .

Problem 7.6.4. Prove the “conversion formulas” [ P §7.6, (21) and (22)].
Hint. Show directly that, for every A 2 Fn�1, one has

E

IAeE.� j Fn�1/zn�1

� D EŒIA � zn	:

As for the proof of the second formula, it is enough to notice that

ePfzn�1 D 0g D 0 :

Problem 7.6.5. Prove the estimates in [ P §7.6, (28), (29) and (32)].

Problem 7.6.6. Prove the relation [ P §7.6, (34)].

Problem 7.6.7. Suppose that the sequences

� D .�1; �2; : : : / and Q� D . Q�1; Q�2; : : : / ;

introduced in [ P §7.6, 2 ], consist of independent and identically distributed random
variables.

(a) Prove that if PQ�1 � P�1 , then eP � P if and only if the measures PQ�1 and P�1
coincide. Furthermore, if PQ�1 � P�1 and PQ�1 ¤ P�1 , then eP ? P .

(b) Prove that if PQ�1 � P�1 , then the following dichotomy is in force: one has

either eP D P or eP ? P (comp. with the Kakutani Dichotomy Theorem—[ P §6.7,
Theorem 3].

Problem 7.6.8. Let P andeP be any two probability measures on the filtered space

.˝;F ; .Fn/n�1/. Let eP
loc� P (i.e., ePn � Pn, for all n � 1, where ePn D eP j Fn

and Pn D P j Fn), and let zn D dePn
dPn

, for n � 1.
Prove that if � is a Markov time, then, on the set f� < 1g, one has (P-a. e.)

eP� � P� and
deP�
dP�

D z� :

Problem 7.6.9. Prove that eP
loc� P if and only if one can find an increasing

sequence of stopping times, .�n/n�1, with Pflim �n D 1g D 1, and with the
propertyeP�n � P�n , for n � 1.

Problem 7.6.10. LeteP
loc� P and let zn D dePn

dPn
, for n � 1. Prove that
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eP
n

inf
n

zn > 0
o

D 1:

Problem 7.6.11. LeteP
loc� P, zn D dePn

dPn
, for n � 1, and let F1 D �.

S
Fn/. Prove

that the following conditions are equivalent:

(i) eP1 � P1, whereeP1 D eP j F1 and P1 D P j F1;
(ii) ePfsupn zn < 1g D 1;

(iii) the martingale .zn;Fn/n�1 is uniformly integrable.

Problem 7.6.12. Let .˝;F ;P/ be any probability space and let G be any separa-
ble �-sub-algebra inside F , which is generated by the sets fGn; n � 1g, all included
in F . Let Gn D �.G1; : : : ; Gn/ and let Dn be the smallest partition of ˝ , which is
generated by Gn.

Let Q be any measure on .˝;F / and set

Xn.!/ D
X

A2Dn

Q.A/
P.A/

IA.!/

(with the understanding that 0=0 D 0).
Prove that:
(a) The sequence .Xn;Gn/n�1 forms a supermartingale (relative to the measure

P).
(b) If Q � P, then the sequence .Xn;Gn/n�1 must be a martingale.

Problem 7.6.13. As a continuation of the pervious problem, prove that, if Q �
P, then one can find a G -measurable random variable, X1 D X1.!/, for which

Xn
L1! X1, Xn D E.X1 j Gn/ (P-a. e.) and, for every A 2 G , one can claim that

Q.A/ D
Z

X1 dP:

This is nothing but a special version of the Radon-Nikodym theorem from
[ P §2.6], stated for separable �-sub-algebras G � F .

Problem 7.6.14. (On the Kakutani dichotomy.) Let ˛1; ˛2; : : : be any sequence
of non-negative and independent random variables, with E˛i D 1, and let zn DQn
kD1 ˛k , z0 D 1.
Prove that:
(a) The sequence .zn/n�0 is a non-negative martingale.
(b) The limit limn zn ( D z1) exists with probability 1.
(c) The following conditions are equivalent:

.i/ Ez1 D 1I .ii/ zn
L1!z1I

.iii/ the family .zn/n is uniformly integrableI
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.iv/
1X

nD1
.1 � E

p
˛n / < 1I .v/

1Y

nD1
E

p
˛n > 0:

7.7 On the Asymptotics of the Probability for a Random
Walk to Exit on a Curvilinear Boundary

Problem 7.7.1. Prove that the sequence defined in [ P §7.7, (4)] is a martingale.
Can one make this claim without the condition j˛nj � c (P-a. e.), for n � 1?

Problem 7.7.2. Prove the formula in [ P §7.7, (13)].
Hint. It is enough to write the expression EzP

n in the form

EzP
n D

nY

kD2
E

 

p exp

(

˛k�k � 1

2
˛2k

)!

;

and use the fact that all �i are normally (N .0; 1/) distributed.

Problem 7.7.3. Prove the formula in [ P §7.7, (17)].

Problem 7.7.4. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables, and let Sn D �1 C : : : C �n, for n � 1. Given any
constant c > 0, set

�.�0/ D inffn � 1 W Sn � 0g and �.>c/ D inffn � 1 W Sn > cg;
with the understanding that inf ¿ D 1. Prove that:

(a) Pf�.�0/ < 1g D 1 , PflimSn D 1g D 1;
(b) .E�.�0/ < 1/ , .E�.>c/ < 1 for all c > 0).

Problem 7.7.5. Assume the notation introduced in previous problem, and set

�.>0/ D inffn � 1 W Sn > 0g; �.�0/ D inffn � 1 W Sn � 0g;
and

�.<0/ D inffn � 1 W Sn < 0g:
Prove that

E�.�0/ D 1

Pf�.<0/ D 1g and E�.>0/ D 1

Pf�.�0/ D 1g :

Problem 7.7.6. Let �1; �2; : : : be any sequence of independent and identically

distributed random variables with Ej�1j > 0, chosen so that Sn
n

P! 0, where
Sn D �1 C : : :C �n.
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Prove that the Markov times �.�0/ and �.�0/, defined in the previous problem, are
finite, and that limSn D 1 and limSn D �1, both with Probability 1.

Problem 7.7.7. Let everything be as in the previous problem. Prove that Sn ! 1
with Probability 1 if and only if one can find a stopping time � (relative to the
filtration .F �

n /n�1, with F
�
n D �.�1; : : : ; �n/), for which E� < 1 and ES� > 0.

Problem 7.7.8. Let .˝;F ; .Fn/n�0;P/ be some filtered probability space, and let
h D .hn/n�1 be some sequence of the form

hn D 
n C �n�n ; n � 1;

where 
n 2 R and �n > 0 are Fn�1-measurable random variables and � D
.�n;Fn/n�0 is some stochastic sequence of independent and normally distributed
(N .0; 1/) random variables. Prove that the sequence h D .hn;Fn/n�1 is condi-
tionally Gaussian, i.e.,

Law.hn j Fn�1I P/ D N .
n; �
2
n/ .P-a. e./:

Setting

Zn D exp

�

�
nX

kD1


k

�k
�k � 1

2

nX

kD1

�

k

�k

�2�

; n � 1;

prove that the following properties hold:
(a) The sequenceZn D .Zn/n�1 is a martingale relative to the measure P.
(b) If

E exp

�
1

2

1X

kD1

�

k

�k

�2�

< 1 (Novikov’s condition)

and

Z1 D exp

�

�
1X

kD1


k

�k
�k � 1

2

1X

kD1

�

k

�k

�2�

;

then Zn D .Zn/n�1 is a uniformly integrable martingale, Z1 D limZn with
probability 1, and Zn D E.Z1 j Fn/ (P-a. e.), for any n � 1.

Problem 7.7.9. Adopting the notation introduced in the previous problem, let F D
�.
S

Fn/, and leteP be the probability measure defined by

eP.d!/ D Z1 P.d!/:

Prove that if EZ1 D 1, then one can claim that

Law.hn j Fn�1IeP/ D N .0; �2n/ (eP-a. e.):
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If, furthermore, �2n D �2n.!/ is independent from !, then

Law.hn jeP/ D N .0; �2n/ ;

and the random variables h1; h2; : : : are independent, relative to the measureeP.

Problem 7.7.10. Let 
k , �k , �k and hk , for k � 1, be as in Problem 7.7.8, let
Hn D h1 C : : :C hn, n � 1, and let Xn D eHn .

Prove that if


k C �2k
2

D 0 (P-a. e.) for k � 1;

then the sequence X D .Xn;Fn/n�1 is a martingale.
Now suppose that, for some k � 1, the above condition fails, and set

Z1 D exp

�

�
1X

kD1

�

k

�k
C �k

2

�

�k � 1

2

1X

kD1

�

k

�k
C �k

2

�2�

:

Assuming that EZ1 D 1, define the measure

eP.d!/ D Z1 P.d!/;

and let F D �.
S

Fn/.
Prove that relative to the measureeP the sequence .Xn;Fn/n�1, with Xn D eHn ,

is a martingale.

7.8 The Central Limit Theorem for Sums of Dependent
Random Variables

Problem 7.8.1. Consider the random variables �n D �n C n, n � 1, and suppose

that �n
d! � and n

d! 0. Prove that �n
d! �.

Problem 7.8.2. Let .�n."//, n � 1, be some family of random variables, which is

parameterized by " > 0, and suppose that �n."/
P�! 0 as n ! 1, for every " > 0.

By using, for example, the result in Problem 2.10.11, prove that one can construct

the sequence "n # 0 in such a way that �n."n/
P�! 0.

Hint. Choose the sequence "n # 0 so that Pfj�n."/j � 2�ng � 2�n, n � 1.

Problem 7.8.3. Consider the complex-valued random variables .˛nk/, 1 � k � n,
n � 1, chosen so that for some constant C > 0 and for some positive sequence
.an/n�1, with an # 0, one has for every n � 1:

nX

kD1
j˛nk j � C and j˛nk j � an ; for 1 � k � n ; (P-a. e.):
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Prove that

lim
n!1

nY

kD1
.1C ˛nk /e

�˛nk D 1 (P-a. e.):

Problem 7.8.4. Prove the statement formulated in Remark 2, following [ P §7.8,
Theorem 1].

Problem 7.8.5. Prove the statement formulated in the remark following the lemma
in [ P §7.8, 4 ].

Problem 7.8.6. Prove [ P §7.8, Theorem 3].

Problem 7.8.7. Prove [ P §7.8, Theorem 5].

Problem 7.8.8. Assuming that � D .�n/�1<n<1 is some sequence of independent
and identically distributed random variables, with E�n D 0 and D�n < 1, consider
the sequence � D .�n/n�1, given by

�n D
1X

jD�1
cn�j �j ; with

1X

jD�1
jcj j2 < 1;

and suppose that
D2
n D E.�1 C : : :C �n/

2 ! 1:

Prove the following central limit theorem:

P
�
�1 C : : :C �n

Dn

� x

�

! 1p
2�

Z x

�1
e�t 2=2 dt:

Problem 7.8.9. Let .˝n;F n; .F n
k /0�k�n;Pn/, n � 1, be some sequence of filtered

probability spaces and suppose that, given any n � 1, the random variables �n D
.�nk /1�k�n are chosen so that each �nk is F n

k -measurable.
Let 
 be any infinitely divisible distribution on .R;B.R//, with characteristics

.b; c; F / (see Problem 3.6.17 and the continuous cutoff function h D h.x/ in that
problem).

Consider the sequence of probability distributions associated with the random
variablesZn D Pn

kD1 �nk , n� 1, and prove that in order to guarantee the weak con-
vergence of that sequence (of distributions) to some infinitely divisible distribution

, it is enought to require that the following conditions hold:

sup
1�k�n

Pn
n
j�nk j > " j F n

k�1
o

P! 0; " > 0;

X

1�k�n
EnŒh.�nk / j F n

k�1	
P! b;
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X

1�k�n

�
En

h2.�nk / j F n

k�1
� � �

EnŒh.�nk / j F n
k�1	

	2
�

P!ec;

X

1�k�n
EnŒg.�nk / j F n

k�1	
P! F.g/; g 2 G1;

whereec D c C R
h2.x/ F.dx/, G1 D fgg stands for the class of functions of the

form ga.x/ D .ajxj � 1/C ^ 1 for various choices of the rational number a, and
F.g/ D R

g.x/ F.dx/.

Problem 7.8.10. Let �0; �1; �2; : : : be some stationary in strict sense sequence with
E�0 D 0. Let (comp. with Problem 6.3.5)

˛k D sup jP.A \ B/ � P.A/P.B/j ; k � 1 ;

where the supremum is taken over all sets

A 2 F0 D �.�0/ ; B 2 F1
k D �.�k; �kC1; : : :/ :

Prove that if the strong mixing coefficients, ˛k , k � 1, are such that, for some
p > 2, one has

X

k�1
˛
p�2
p

k < 1 and Ej�0jp < 1 ;

then the joint distribution, Pn
t1;:::;tk

, of the variablesXn
t1
; : : : ; Xn

tk
, given by

Xn
t D 1p

n

bntcX

kD1
�k; t � 0 ;

converges weakly to the distribution, Pt1;:::;tk , of the variables .
p
cBt1 ; : : : ;

p
cBtk /,

where B D .Bt /t�0 is a Brownian motion process and the constant c is given by

c D E�20 C 2
X

k�1
E�2k :

7.9 Discrete Version of the Itô Formula

Problem 7.9.1. Prove the formula in [ P §7.9, (15)].

Problem 7.9.2. Based on the central limit theorem for the random walk S D
.Sn/n�0, establish the following formula
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EjSnj �
r
2

�
n ; n ! 1:

(Comp. with the hint to Problem 1.9.3.)

Remark. In formulas (17) and (18) in [ P §7.9, Example 2] one can actually
replace 2� in the denominator with �=2.

Problem 7.9.3. Prove the formula in [ P §7.9, (22)].

Problem 7.9.4. Formula [ P §7.9, (24)] remains valid for every function F 2 C2.
Try to prove this claim.

Problem 7.9.5. Generalize formula [ P §7.9, (11)] for the case where the func-
tion F.Xk/ is replaced by a non-homogeneous vector function of the form
F.k;X1

k ; : : : ; X
d
k /.

Problem 7.9.6. Setting f .x/ D F 0.x/, consider the following trivial identity,
which may be viewed as a discrete version of the Itô formula:

F.Xn/ D F.X0/C
nX

kD1
f .Xk�1/�Xk C

nX

kD1
ŒF .Xk/ � F.Xk�1/ � f .Xk�1/�Xk	 ;

Outline the reasoning which, starting from the last relation, allows one to obtain the
discrete version of the Itô formula (formula [ P §7.9, (24)]), for twice continuously
differentiable functions F D F.x/.

Problem 7.9.7. Generalize the identity in the previous problem for the case where
the function F.Xk/ is replaced by a non-homogeneous vector function of the form
F.k;X1

k ; : : : ; X
d
k /.

Problem 7.9.8. (Discrete version of Tanaka formula; see Problem 1.9.3.) Consider
some symmetric Bernoulli scheme (i.e., a sequence of independent and identically
distributed random variables), �1; �2; : : :, with Pf�n D C1g D Pf�n D �1g D 1=2,
n � 1, and let S0 D 0 and Sn D �1 C : : : C �n, for n � 1. Given any x 2 Z D
f0;˙1;˙2; : : :g, let

Nn.x/ D #fk; 0 � k � n W Sk D xg
be the number of the integers 0 � k � n, for which Sk D x.

Prove the following discrete analog of Tanaka formula:

jSn � xj D jxj C
nX

kD1
sign.Sk�1 � x/�Sk CNn�1.x/:

Remark. If B D .Bt /t�0 is a Brownian motion, then the renowned Tanaka
formula gives

jBt � xj D jxj C
Z t

0

sign.Bs � x/ dBs CNt.x/;
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where N.x/ D .Nt.x//t�0 is the local time of the Brownian motion B at level
x 2 R. Recall that, originally, P. Lévy defined the local time Nt.x/ as (see, for
example, [12] and [103]):

Nt.x/ D lim
"#0

1

2"

Z t

0

I.x � " < Bs < x C "/ ds:

7.10 The Probability for Ruin in Insurance. Martingale
Approach

Problem 7.10.1. Prove that, under assumption A in [ P §7.10, 2 ], the processN D
.Nt/t�0 has independent increments.

Problem 7.10.2. Prove that the process X D .Xt /t�0, defined [ P §7.10, 1 ], also
has independent increments.

Problem 7.10.3. Consider the Cramér-Lundberg model, and formulate the analog
of the Theorem in [ P §7.10, 3 ], for the case where the variables �i , i D 1; 2; : : : ,
are independent and distributed with geometric law, i.e., Pf�i D kg D qk�1p,
k � 1.

Problem 7.10.4. Let N D .Nt /t�0 be a Poisson process of parameter �—
see [ P §7.10, (3)]. Prove the following “Markov property:” for every choice of
0 D t0 < t1 < : : : < tn and 0 � k1 � k2 � : : : � kn, one has

P.Ntn D kn jNt1 D k1; : : : ; Ntn�1 D kn�1/ D P.Ntn D kn jNtn�1 D kn�1/:

Problem 7.10.5. LetN D .Nt/t�0 be a standard (i.e., of parameter � D 1) Poisson
process, and suppose that �.t/ is some non-decreasing and continuous function,
with �.0/ D 0. Then consider the process N ı � D .N�.t//t�0. Describe the
properties of this process (finite dimensional distributions, moments, etc.).

Problem 7.10.6. Let .T1; : : : ; Tn/ denote the times of the first n jumps of a given
Poisson process, let .X1; : : : ; Xn/ be independent and identically distributed random
variables, which are uniformly distributed on the interval Œ0; t 	, and, finally, let
.X.1/; : : : ; X.n// denote the order statistics of the variables .X1; : : : ; Xn/. Prove that

Law.T1; : : : ; Tn jNt D n/ D Law.X.1/; : : : ; X.n//;

i.e., the conditional distribution of the vector .T1; : : : ; Tn/, given the event Nt D n,
coincides with distribution of the vector .X.1/; : : : ; X.n//.

Problem 7.10.7. Convince yourself that, if .Nt/t�0 is a Poisson process, then for
any s < t one can write
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P.Ns D m jNt D n/ D
(

Cm
n .s=t/

m.1 � s=t/n�m; m � n;

0; m > n:

Problem 7.10.8. It is an elementary matter to check that, if X1 and X2 are
two independent random variables that have Poisson distribution with parameters,
respectively, �1 and �2, then X1 C X2 also has Poisson distribution (and with
parameters �1 C �2). Prove the converse statement (due to D. Raikov): if X1 and
X2 are any two independent and non-degenerate random variables, for which one
can claim that X1 C X2 is distributed with Poisson law, then X1 and X2 also must
be distributed with Poisson law.

Problem 7.10.9. Suppose that N D .Nt/t�0 is a standard Poisson process, which
is independent from the positive random variable � , and then consider the “hybrid”
process eN D .eN t/t�0, given by eN t D Nt� . Prove the following properties:

(a) Strong law of large numbers:

Nt

t
! � as t ! 1 .P-a.e./

(comp. with Example 4 in [ P §4.3, 4 ]).
(b) Central limit theorem:

P
�
Nt � � tp

� t
� x

�

! ˚.x/ as t ! 1:

(c) If D� < 1, then

Nt � ENtp
DNt

! � � E�p
D�

:

Problem 7.10.10. Prove that, for a given u > 0, the “ruin function”

 .u/ D P
n

inf
t�0 Xt � 0

o
. D PfT < 1g/

may be written in the form

 .u/ D P
n

sup
n�1

Yn � u
o
;

where Yn D Pn
iD1.�i � c�i /.

In addition, prove that the estimate  .u/ � e�Ru, which, under appropri-
ate assumptions, was derived in [ P §7.10] by using “martingale” methods, can
be established by using more elementary tools. Specifically, setting  n.u/ D
P
n

max1�k�n Yk � u
o
, n � 1, prove first that  1.u/ � e�Ru, and then prove by

induction that  n.u/ � e�Ru, for any n > 1, so that  .u/ D lim n.u/ � e�Ru.
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Problem 7.10.11. The time of ruin, T , was defined by the formula T D infft � 0 W
Xt � 0g. Alternatively, the time of ruin may be defined as eT D infft � 0 W Xt < 0g.
Explain how the results established in [ P §7.10] would change if the time T is to be
replaced by the time eT .

Problem 7.10.12. As a generalization of the (homogeneous) Poisson process, that
was introduced in [ P §7.10, 2 ], consider the non-homogeneous Poisson process
N D .Nt /t�0, defined as:

Nt D
X

i�1
I.Ti � t/ ;

where Ti D �1C: : :C�i and the random variables �i are independent and identically
distributed with

Pf�i � tg D 1 � exp

�

�
Z t

0

�.s/ ds

�

:

The function �.t/ above, which is known as the intensity function of the processN ,
is assumed to satisfy: �.t/ � 0,

R t
0 �.s/ ds < 1 and

R1
0 �.s/ ds D 1. Prove that

PfNt < kg D PfTk > tg D
k�1X

iD0
exp

�

�
Z t

0

�.s/ ds

�
�R t

0
�.s/ ds

�k

kŠ
:

Problem 7.10.13. Let N D .Nt/t�0 be the non-homogeneous Poisson process
defined in Problem 7.10.12 above, let .�n/n�0 be a sequence of independent and
identically distributed random variables, which are also independent from N , and,
finally, let g D g.t; x/ be some non-negative function on R 	 R. Prove the

Campbell formula:

E
1X

nD1
g.Tn; �n/I.Tn � t/ D

Z T

0

EŒg.s; �1/	�.s/ ds:

Problem 7.10.14. LetN D .Nt/t�0 be a homogeneous Poisson process, defined by
N0 D 0 andNt D P

n I.Tn � t/, for t > 0, the random variables �nC1 D TnC1�Tn
(n � 1, T0 D 0) being independent and identically distributed, with law

Pf�nC1 � xg D e��x ; x � 0:

Setting Ut D t � TNt and Vt D TNtC1, prove that

PfUt � u; Vt � vg D
h
Ifu�tg C Ifu<tg.1 � e��u/

i
.1 � e��v/:

(In particular, for any fixed t > 0, the variables Ut and Vt are independent, and Vt is
exponentially distributed with parameter �.) Find the probability PfTNtC1 � TNt �
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xg, and prove that PfTNtC1 � TNt � xg 6D e��x (D PfTnC1 � Tn � xg). Prove
that, as t ! 1, the distribution of TNtC1�TNt converges weakly to the distribution
law of the sum of two independent exponentially distributed random variables of
the same parameter �.

7.11 On the Fundamental Theorem of Financial
Mathematics: Martingale Characterization
of the Absence of Arbitrage

Problem 7.11.1. Prove that with N D 1 the no-arbitrage condition is equivalent to
the inequality [ P §7.11, (18)]. (It is assumed that Pf�S1 D 0g < 1.)

Problem 7.11.2. Prove that in the proof of Lemma 1 in [ P §7.11, 4 ] condition (19)
makes case (2) impossible.

Problem 7.11.3. Prove that the measure eP from Example 1 in [ P §7.11, 5 ] is a
martingale measure and that this measure is unique in the class M.P/.

Problem 7.11.4. Investigate the uniqueness of the martingale measure constructed
in Example 2 in [ P §7.11, 5 ].

Problem 7.11.5. Prove that in the .B; S/-model the assumption jM.P/j D 1 implies
that the variables Sn

Bn
, 1 � n � N , are “conditionally bi-valued.”

Problem 7.11.6. According to Remark 1, following [ P §7.11, Theorem 1], the
First Fundamental Theorem remains valid for any N < 1 and any d < 1. Prove
by way of example that if d D 1, then it could happen that the market is free of
arbitrage and yet no martingale measure exists.

Problem 7.11.7. In addition to [ P §7.11, Definition 1], we say that the .B; S/-
market is free of arbitrage in weak sense, if, for every self-financing portfolio
� D .ˇ; �/, with X�

0 D 0 and X�
n � 0 (P-a. e.), for n � N , one has X�

N D 0

(P-a. e.). We say that the .B; S/-market is arbitrage-free in strong sense if, for every
self-financing portfolio � , with X�

0 D 0 and X�
N � 0 (P-a. e.), one has X�

n D 0

(P-a. e.), for 0 � n � N .
Assuming that all assumptions in [ P §7.11, Theorem 1] are in force, prove that

the following conditions are equivalent:

(i) The .B; S/-market is free of arbitrage.
(ii) The .B; S/-market is free of arbitrage in weak sense.

(iii) The .B; S/-market is free of arbitrage in strong sense.

Problem 7.11.8. Just as in [ P §7.11, Theorem 1], consider the family of all
martingale measures:

M.P/ D feP � P WS=B is aeP-martingaleg
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and let

Mloc.P/ D feP � P WS=B is aeP-local martingaleg;

Mb.P/ D feP � P WeP 2 M.P/ and
deP
dP

.!/ � C.eP/ (eP-a. e.) for some

constant C.eP/g.

Prove that, in the setting of [ P §7.11, Theorem 1], the following conditions are
equivalent:

(i) M.P/ 6D ¿I (ii) Mloc.P/ 6D ¿I (iii) Mb.P/ 6D ¿:

7.12 Hedging of Financial Contracts in Arbitrage-Free
Markets

Problem 7.12.1. Find the price, C.fN I P/, of a standard call option with payoff
fN D .SN �K/C, in the .B; S/-market described in Example 2 in [ P §7.11, 5 ].

Problem 7.12.2. Prove the inequality in [ P §7.12, (10)] in the opposite direction.

Problem 7.12.3. Prove formulas [ P §7.12, (12) and (13)].

Problem 7.12.4. Give a detailed derivation of formula [ P §7.12, (23)].

Problem 7.12.5. Prove formulas [ P §7.12, (25) and (28)].

Problem 7.12.6. Give a detailed derivation of formula [ P §7.12, (32)].

Problem 7.12.7. Consider the one-period version of the CRR-model formulated in
(17) in [ P §7.12, 7 ]:

B1 D B0.1C r/ ; S1 D S0.1C �/ ;

where we suppose that � takes two values, a and b, chosen so that �1 < a < r < b.
Now suppose that � is uniformly distributed in the interval Œa; b	 (with the same

choice for a and b) and consider the period 1 payofff .S1/ D f .S0.1C�//, for some
convex-down and continuous payoff function f D f .x/, x 2 ŒS0 .1Ca/; S0 .1Cb/	
(here we suppose that S0 D const). Prove that the upper hedging price:

bC.f I P/ D inffx W 9� , X�
0 D x and X�

1 � f .S0.1C �// 8� 2 Œa; b	g;

coincides with the upper hedging price in [ P §7.12, (19)], with N D 1 and
with Pf� D bg D p and Pf� D ag D 1 � p, 0 < p < 1, so that

bC.f I P/ D r � a

b � a
� f .S0.1C b//

1C r
C b � r

b � a � f .S0.1C a//

1C r
:
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Problem 7.12.8. (The Black–Scholes formula.) As a generalization of the discrete-
time .B; S/-market B D .Bn/0�n�N and S D .Sn/0�n�N—see [ P §7.12, 2 ]—
consider the continuous-time .B; S/-market model

Bt D B0e
�rt and St D S0e


tC�Wt ; 0 � t � T ; .
/

in which 
; � 2 R and r > 0 are exogenously specified constants and W D
.Wt/0�t�T is exogenously specified Brownian motion. Analogously to [ P §7.12,
(1)], for a given strike-price K > 0, consider an European-style call-option with
termination payoff fT D .ST � K/C � maxŒST � K; 0	 and suppose that in (*)
the constant 
 is chosen to be 
 D r � 1

2
�2. Under these conditions, prove that the

following properties:
(a) The process . St

Bt
/0�t�T is a martingale.

(b) The “fair” price of the call option, C.fT I P/, defined as

C.fT I P/ D B0E
fT

BT
;

can be computed according to the Black–Scholes formula:

C.fT I P/ D S0 ˚

0

@
ln S0

k
C T

�
r C �2

2

�

�
p
T

1

A �K e�rT ˚

0

@
ln S0

k
C T

�
r � �2

2

�

�
p
T

1

A ;

where ˚.x/ D 1p
2�

R x
�1 e�y2=2dy, x 2 R.

Hint. Prove that C.fT I P/ D e�rTE.a eb ��b2=2 �K/C, where a D S0e
rT , b D

�
p
T and � 2 N .0; 1/. By using direct calculation prove that

E.a eb ��b2=2 �K/C D a˚

 
ln a

k
C 1

2
b2

b

!

�K ˚
 

ln a
k

� 1
2
b2

b

!

:

7.13 The Optimal Stopping Problem: Martingale Approach

Problem 7.13.1. Prove that the random variable �.!/ D sup˛2A0
�˛.!/, intro-

duced in the proof of the Lemma in [ P §7.13, 3 ], satisfies conditions (a) and (b) in
the definition of essential supremum (see [ P §7.13, 3 ]).

Hint. If ˛ … A0, consider the expression E max.�.!/; �˛.!//.

Problem 7.13.2. Prove that the variable �.!/ D tan Q�.!/, introduced at the end
of the proof of the Lemma in [ P §7.13, 3 ], satisfies conditions (a) and (b) in the
definition of essential supremum (see [ P §7.13, 3 ]).
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Problem 7.13.3. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables with Ej�1j < 1. Consider the optimal stopping
problem within the class M1

1 D f� W 1 � � < 1g:

V � D sup
�2M1

1

E
�

max
i�� �i � c�

�
;

and let �� D inffn � 1W �n � A�g, where A� stands for the unique root of the
equation E.�1 � A�/ D c, with the understanding that inf ¿ D 1. Prove that if
Pf�� < 1g D 1, then the time �� is optimal in the class of all finite stopping times

� , for which E
�

maxi�� �i � c�
�

exists. Show also that V � D A�.

Problem 7.13.4. In addition to the notation introduced in [ P §7.13, 1 ] and
[ P §7.13, 2 ], let

M1
n D f� Wn � � < 1g;

V1
n D sup

�2M1

n

Ef� ;

v1
n D ess sup

�2M1

n

E.f� j Fn/;

�1
n D inffk � nW v1

n D fng;
and assume that

E sup f �
n < 1:

Prove that the following statements can be made for the limiting random variables
Qvn D limN!1 vNn :

(a) For every � 2 M1
n , one has

Qvn � E.f� j Fn/:

(b) If �1
n 2 M1

n , then

Qvn D E.f�1

n
j Fn/;

Qvn D v1
n .D ess sup

�2M1

n

E.f� j Fn//:

Problem 7.13.5. Adopt the notation introduced in the previous problem and let
�1
n 2 M1

n . By using (a) and (b) in the previous problem, conclude that the time
�1
n is optimal, in the sense that

ess sup
�2M1

n

E.f� j Fn/ D E.f�1

n
j Fn/ .P-a. e./
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and
sup

�2M1

n

Ef� D Ef�1

n
;

i.e., V1
n D Ef�1

n
.

Problem 7.13.6. Suppose that the family of random variables ˙ D f�˛.!/I˛ 2
Ag, defined on some probability space .˝;F ;P/, is chosen so that, for some fixed
constantC , one has Ej�˛j � C for all ˛ 2 A. In addition, suppose that the family˙
is “sufficiently rich,” in the sense that: if �˛1 2 ˙ and �˛2 2 ˙ , for some ˛1; ˛2 2 A,
then

� D �˛1IA C �˛2IA 2 ˙
for every A 2 F . (A family ˙ with these properties is said to admit needle
variations.) Setting

Q.A/ D sup
˛2A

E�˛IA ; A 2 F ;

prove that:
(a) The set function Q D Q.�/ is �-additive.
(b) Q � P.
(c) The Radon-Nikodym derivative dQ

dP is given by

dQ
dP

D ess sup
˛2A

�˛ .P-a. e./:

(In particular, (c) above may be viewed as a proof of the fact that the essential
supremum of a family of random variables that admits needle variations must be
finite.)

Prove that the statement (a), (b) and (c) above remain valid if the condition
Ej�˛j � C , ˛ 2 A, is replaced with E��̨ < 1, ˛ 2 A.

Problem 7.13.7. Let M1
n D f� W n � � < 1g. Prove that if �1; �2 2 M1

n and
A 2 Fn, then the time � D �1IA C �2IA belongs to M1

n .

Problem 7.13.8. Let .˝;F ; .Fn/n�0;P/ be any filtered probability space, and let
fn be any Fn-measurable random variable with Ef �

n < 1, for n � 0. Prove that,
for every fixed n � 0, the family of random variables fE.f� j Fn/I � 2 M1

n g admits
needle variations.





Chapter 8
Sequences of Random Variables that Form
Markov Chains

8.1 Definitions and Basic Properties

Problem 8.1.1. Prove the statements formulated as Problems 1a, 1b and 1c in the
proof of [ P §8.1, Theorem 1].

Problem 8.1.2. Prove that in [ P §8.1, Theorem 2] the function ! ! PnC1.B �
Xn.!// is Fn-measurable.

Problem 8.1.3. By using [ P §2.2, Lemma 3], prove the relations [ P §8.1,
(11) and (12)].

Problem 8.1.4. Prove the relations [ P §8.1, (20) and (27)].

Problem 8.1.5. Prove the identity in [ P §8.1, (33)].

Problem 8.1.6. Prove the relations (i), (ii) and (iii), formulated at the end of
[ P §8.1, 8 ].

Problem 8.1.7. Can one conclude from the Markov property [ P §8.1, (3)] that for
any choice of the sets B0;B1; : : : ; Bn; B 2 E , with PfX0 2 B0;X1 2 B1; : : : ; Xn 2
Bng > 0, one must have:

P.XnC1 2 B jX0 2 B0;X1 2 B1; : : : ; Xn 2 Bn/ D P.XnC1 2 B jXn 2 Bn/ ?

Problem 8.1.8. Consider a cylindrical piece of chalk of length 1. Suppose that
the piece is broken “randomly” into two pieces. Then the left piece is broken at
“random” into two pieces—and so on. LetXn denote the length of the left piece after
the nth breaking, with the understanding that X0 D 1, and let Fn D �.X1; : : : ; Xn/.
Thus, the conditional distribution of XnC1 given Xn D x must be uniform on Œ0; x�.

Prove that the sequence .Xn/n�0 forms a homogeneous Markov chain. In
addition, prove that for every ˛ > �1 the sequence

Mn D .1C ˛/nX˛
n ; n � 0;

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics,
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forms a non-negative martingale. Prove that with Probability 1 for every 0 < p < e
one has

lim
n
pnXn D 0;

and for every p > e one has
lim
n
pnXn D 1:

(Given that “on average” every piece is broken in half, one may expect that Xn
would converge to 0 as 2�n. However, the property limn p

nXn D 0 (P-a. e.) implies
that Xn converges to 0 much faster—“almost” as e�n.)

Problem 8.1.9. Let �1; �2; : : : be any sequence of independent and identically
distributed random variables, which can be associated with a Bernoulli scheme, i.e.,
Pf�n D 1g D Pf�n D �1g D 1

2
, n � 1, and let S0 D 0, Sn D �1 C � � � C �n and

Mn D maxfSk W 0 � k � ng, n � 1.
(a) Do the sequences .jSnj/n�0, .jMnj/n�0 and .Mn � Sn/n�0 represent Markov

chains?
(b) Are these sequences going to be Markov chains if S0 D x 6D 0 and Sn D

x C �1 C : : :C �n?

Problem 8.1.10. Consider the Markov chain .Xn/n�0, with state space E D
f�1; 0; 1g, and suppose that pij > 0, for i; j 2 E . Give necessary and sufficient
conditions for the sequence .jXnj/n�0 to be a Markov chain.

Problem 8.1.11. Give an example of a sequence of random variables X D
.Xn/n�0, which is not a Markov chain, but for which the Chapman–Kolmogorov
equation nevertheless holds.

Problem 8.1.12. Suppose that the sequenceX D .Xn/n�0 forms a Markov chain in
broad sense, and let Yn D XnC1 �Xn, for n � 0. Prove that the sequence .X; Y / D
..Xn/n�0; .Yn/n�0/ is also a Markov chain. Does any of the following sequences
represent a Markov chain: .Xn;XnC1/n�0, .X2n/n�0, .XnCk/n�0 for k � 1?

Problem 8.1.13. We say that a sequence of random variables X D .Xn/n�0, in
which every Xn takes values in some countable set E , forms a Markov chain of
order r � 1, if

P.XnC1 D inC1 jX0 D i0; : : : ; Xn D in/ D
D P.XnC1 D inC1 jXn�rC1 D in�rC1; : : : ; Xn D in/;

for all i0; : : : ; inC1, n � r .
Assuming that X D .Xn/n�0 is a Markov chain of order r � 1, let eXn D

.Xn;XnC1; : : : ; XnCr�1/, n � 0. Prove that the sequence eX D .eXn/n�0 represents
a canonical (i.e., of order r D 1) Markov chain.
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Problem 8.1.14. (Random walk on groups.) Let G be some finite group, endowed
with binary operation ˚ , so that the usual group properties hold:

(i) x; y 2 G implies x ˚ y 2 G;
(ii) if x; y; z 2 G, then x ˚ .y ˚ z/ D .x ˚ y/˚ z;
(iii) there is a unique e 2 G, such that x ˚ e D e ˚ x D x, for all x 2 G;
(iv) given any x 2 G, there is an inverse �x 2 G, which is characterized by the

property x ˚ .�x/ D .�x/˚ x D e.

Let �0; �1; �2; : : : be any sequence random elements in G, which are identically
distributed with law Q.g/ D Pf�n D gg, g 2 G, n � 0.

Prove that the random walk X D .Xn/n�0, given by Xn D �0 ˚ �1 ˚ : : : ˚ �n,
forms a Markov chain and give the respective transition probability matrix.

Problem 8.1.15. (Random walk on a circle.) Let �1; �2; : : : be any sequence of
independent random variables that are identically distributed in the interval Œ0; 1�,
with a (common) continuous probability density f .x/. For a fixed x 2 Œ0; 1/,
consider the sequence X D .Xn/n�0, given by X0 D x and

Xn D x C �1 C : : :C �n .mod 1/:

Prove that X D .Xn/n�0 is a Markov chain with state space E D Œ0; 1/. Find the
transition function for this Markov chain.

Problem 8.1.16. Suppose that X D .Xn/n�0 and Y D .Yn/n�0 are two inde-
pendent Markov chains, defined on the same probability space .˝;F ;P/, taking
values in the same countable space E D fi; j; : : :g, and sharing the same transition
probability matrix. Prove that, for any choice of the initial values, X0 D x 2 E and
Y0 D y 2 E , the sequence .X; Y / D .Xn; Yn/n�0 forms a Markov chain. Find the
transition probability matrix for this Markov chain.

Problem 8.1.17. Let X1;X2; : : : be any sequence of independent and identically
distributed non-negative random variables, that share a common continuous distri-
bution function. Define the record moments:

R1 D 1; Rk D inffn � Rk�1 W Xn � max.X1; : : : ; Xn�1/g; k � 2;

and prove that R D .Rk/k�1 is a Markov chain. Find the transition probability
matrix for this Markov chain.

Problem 8.1.18. Let X1;X2; : : : be some sequence of independent and identically
distributed non-negative random variables that share the same discrete range of
values. Assuming that the record times R D .Rk/k�1 are defined as in the previous
problem, prove that the associated sequence of record values V D .Vk/k�1, with
Vk D XRk

, forms a Markov chain. Find the transition probability matrix for this
Markov chain.
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Problem 8.1.19. (Time reversibility for Markov chains.) Suppose that X D
.Xn/0�n�N is some irreducible Markov chain with a countable state space E ,
with transition probability matrix P D kpij k, and with invariant initial distribution
q D .qi /, such that qi > 0 for all i 2 E (for the definition of invariant distribution
see [ P §8.3, 1 ]).

Next, consider the sequence eX.N/ D .eXn/0�n�N , given by eXn D XN�n,
which is nothing but the sequence X in reverse time. Setting eP D kepijk, where
epij D pji , prove that the matrix eP is stochastic. In addition, prove that eX.N/

is a Markov chain with transition matrix eP .

Remark. The Markov property comes down to saying that, conditioned to the
“present”, the “past” and the “future” are independent—see [ P §8.1, (7)]. Because
of this symmetry between past and future, one is lead to suspect that the Markov
property of the sequence X D .Xn/0�n�N may be preserved under time reversal,
provided that in reverse time the initial distribution is chosen in a certain way. The
statement in this problem makes this idea precise: the Markov property is preserved
under time-reversal, possibly with a different transition probability matrix, provided
that the initial distribution is chosen to be the invariant one.

Problem 8.1.20. (Reversible Markov Chains.) Let X D .Xn/n�0 be any Markov
chain with countable state space E , with transition probability matrix P D kpijk,
and with invariant distribution q D .qi /. We say that the .q; P /-Markov chain X D
.Xn/n�0 is reversible (see, for example, [22]) if, for every N � 1, the sequence
eX.N/ D .eXn/0�n�N , given by eXn D XN�n, is also a .q; P /-Markov chain.

Prove that an irreducible .q; P /-Markov chain is reversable if and only if the
following condition holds:

qipij D qjpj i ; for all i; j 2 E:
Convince yourself that, if the distribution � D .�i / (�i � 0,

P

�i D 1) and the
matrix P satisfy the balance equation

�ipij D �jpj i ; i; j 2 E;
then � D .�i / coincides with the invariant distribution q D .qi /.

Problem 8.1.21. Consider the Ehrenfests’ model (see [ P §8.8, 3 ]) with stationary
distribution qi D C i

N .1=2/
N , i D 0; 1; : : : ; N , and prove that the following balance

equation is satified:

qipi;iC1 D qiC1piC1;i :

(Note that in this model pij D 0, if ji � j j > 1.)

Problem 8.1.22. Prove that a Markov chain with transition probability matrix

P D
0

@

0 2=3 1=3

1=3 0 2=3

2=3 1=3 0

1

A
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has invariant distribution q D .1=3; 1=3; 1=3/. Convince yourself that, for any
N � 1, the sequence eX.N/ D .XN�n/0�n�N forms a Markov chain with transition
probability matrix eP , which is simply the transpose of P . Argue that the chain
X D .Xn/n�0 is not reversible and give the intuition behind this feature.

Problem 8.1.23. Let X D .Xn/n�0 be any stationary (in strict sense) and non-
negative Gaussian sequence. Prove that this sequence has the Markov property if
and only if the covariance cov.Xn;XnCm/, m; n � 0, has the form:

cov.Xn;XnCm/ D �2�m;

for some choice of � > 0 and �1 � � � 1.

8.2 The Strong and the Generalized Markov Properties

Problem 8.2.1. Prove that the function .x/ D ExH , introduced in the Remark in
[ P §8.2, 1 ] is E -measurable.

Problem 8.2.2. Prove the relation in [ P §8.2, (12)].

Problem 8.2.3. Prove the relation in [ P §8.2, (13)].

Problem 8.2.4. Are the random variablesXn �X�^n and X�^n, from the Example
in [ P §8.2, 3 ], independent?

Problem 8.2.5. Prove the formula in [ P §8.2, (23)]

Problem 8.2.6. Suppose that the space E is at most countable, let .˝;F / D
.E1;E 1/, and let �nW˝ ! ˝ , n � 1, denote the usual shift operators

�n.!/ D .xn; xnC1; : : :/; ! D .x0; x1; : : :/:

Let X D .Xn.!//n�0 be the canonical coordinate process on ˝ , defined as
Xn.!/ D xn, ! D .x0; x1; : : :/, for n � 0.

Given any F -measurable function H D H.!/, set (see [ P §8.2, (1)])

.H ı �n/.!/ D H.�n.!//; n � 1;

and, given any B 2 F , set (comp. with [ P §5.1, Definition 2])

��1
n .B/ D f! W �n.!/ 2 Bg; n � 1:

With the above definitions in mind, prove the following properties:
(a) For any m � 0 and n � 1, one has

Xm ı �n D XmCn

i.e., .Xm ı �n/.!/ D XmCn.!/.
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(b) For anym � 0 and n � 1, one has

��1
n fXm 2 Ag D fXm ı �n 2 Ag D fXmCn 2 Ag

i.e., for every A 2 E ,

��1
n f! W Xm.!/ 2 Ag D f! W .Xm ı �n/.!/ 2 Ag D f! W XmCn.!/ 2 AgI

and, more generally,

��1
n fX0 2 A0; : : : ; Xm 2 Amg D fX0 ı �n 2 A0; : : : ; Xm ı �n 2 Amg

D fXn 2 A0; : : : ; XmCn 2 Amg:

In addition, prove that

��1
n .Fm/ D �.Xn; : : : ; XmCn/; .�/

with the obvious meaning of the symbols ��1
n .Fm/ and �.Xn; : : : ; XmCn/ (explain).

Problem 8.2.7. Adopt the notation introduced in Problem 8.2.6, H D H.!/ be
any F -measurable function on .˝;F /, and let A 2 B.R/. Prove that

.H ı �n/�1.A/ D ��1
n .H�1.A//: .��/

Problem 8.2.8. Adopt the notation introduced in Problem 8.2.6 and let � D �.!/

be some stopping time (i.e., a finite Markov moment) on .˝;F ; .Fk/k�0/, where
Fk D �.X0;X1; : : : ; Xk/, k � 0. Based on .��/ and .�/ in Problems 8.2.7
and 8.2.6, prove that, for any given n � 0, the moment nC � ı �n is also a stopping
time, i.e, f! W nC .� ı �n/.!/ D mg 2 Fm, for everym � n.

Warning: Problems 8.2.9–8.2.21 below assume the notation and the terminology
introduced in Problems 8.2.6 and 8.2.8.

Problem 8.2.9. Let � D �.!/ be any stopping time on .˝;F ; .Fk/k�0/ and let
H D H.!/ be any F -measurable function on ˝ . The symbol .H ı �� /.!/ is
understood as the function H.��.!/.!//, i.e., H.�n.!//, for ! 2 f! W �.!/ D ng.
As a generalization of Problem 8.2.8, prove that � C � ı �� is also a stopping time.

Problem 8.2.10. Given any two stopping times, � and � , on .˝;F ; .Fk/k�0/,
the random variable X� ı �� will be understood as X�.�� .!//.�� .!//, i.e., as
X�.�n.!//.�n.!//, for ! 2 f! W �.!/ D ng, for any n � 0. As a generalization
of the propertyXm ı �n D XmCn from Problem 8.2.6, prove that

X� ı �� D X�ı��C� :



8.2 The Strong and the Generalized Markov Properties 335

Problem 8.2.11. Given any set B 2 E , let

�B.!/ D inffn � 0 W Xn.!/ 2 Bg and �B.!/ D inffn > 0 W Xn.!/ 2 Bg

denote, respectively, the time of the first and the time of the first after time 0 visit of
the sequence X to the set B . Suppose that the times �B.!/ and �B.!/ are finite for
all ! 2 ˝ , and let 	 D 	.!/ be any stopping time on .˝;F ; .Fk/k�0/.

Prove that �B and �B are stopping times and, furthermore,

	 C �B ı �	 D inffn � 	 W Xn 2 Bg; 	 C �B ı �	 D inffn > � W Xn 2 Bg:

Argue that, after appropriate change in the respective definitions, the above relations
remain valid even in the case where the stopping times 	 , �B and �B may take
infinite values and the sets in the right sides may be empty.

Problem 8.2.12. Let � and � be any two Markov times. Prove that 
 D � ı �� C� ,
with the understanding that 
 D 1 on the set f� D 1g, is also a Markov time.

Problem 8.2.13. Prove that the strong Markov property [ P §8.2, (7)], from
[ P §8.2, Theorem 2], remains valid for every Markov time � � 1, and can be
expressed as

E� ŒI.� < 1/.H ı �� / j FX
� � D I.� < 1/EX�H .P� -a. e./:

(Recall thatH is a bounded and non-negative F -measurable function and EX�H is
a random variable of the form  .X� /, where  .x/ D ExH .)

In addition, prove that, if K D K.!/ is some F� -measurable function and H
andK are either bounded or non-negative, then, for every Markov time � � 1, one
has

E� Œ.I.� < 1/K/.H ı �� /� D E� Œ.I.� < 1/K/EX�H�:

Problem 8.2.14. Prove that the sequence .X�^n;Px/n�0, x 2 E , introduced in
[ P §8.2, 3 ], is a Markov chain. Does this property hold for an arbitrary Markov
chain (with countable state space) and for an arbitrary Markov time of the form
� D inffn � 0 W Xn 2 Ag, for some choice of the set A � E (comp. with [ P §8.2,
(15)])?

Problem 8.2.15. Let h D h.x/ be a non-negative function and let H.x/ D
.Uh/.x/ be the potential of h (see Sect. A.7). Prove that H.x/ is the minimal
solution of the equation V.x/ D h.x/ C T V.x/, within the class of non-negative
functions V D V.x/.

Problem 8.2.16. Given any yı 2 E , prove that the Green function G.x; yı/ is the
minimal non-negative solution to the system

V.x/ D
(

1C T V.x/; x D yı;
T V .x/; x 6D yı:
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Problem 8.2.17. Prove that if � and � are any two Markov times and Tn, n � 0,
are the transition operators associated with X D .Xn/n�0, then:

T�T� D T�C�ı�� :

Hint. Use the strong Markov property and the identity X� ı �� D X�ı��C� ,
established in Problem 8.2.10.

Problem 8.2.18. Given any domainD 2 E , let

�.D/ D inffn � 0 W Xn 2 Dg and �.D/ D inffn > 0 W Xn 2 Dg:

Prove that

X�.D/ D X�.D/ı�1 on f�.D/ < 1g;
T�.D/ D T T�.D/:

Problem 8.2.19. With the notation introduced in the previous two problems, let
g � 0 and VD.x/ D T�.D/g.x/. Prove that VD.x/ is the smallest non-negative
solution to the system

V.x/ D
(

g.x/; x 2 D;
T V.x/; x 62 D:

In particular, if g � 1, then the function VD.x/ D Pxf�.D/ < 1g is the smallest
non-negative solution to the system

V.x/ D
(

1; x 2 D;
T V.x/; x 62 D:

Problem 8.2.20. By using the strong Markov property, prove that the function
mD.x/ D Ex�.D/ solves the system:

V.x/ D
(

0; x 2 D;
1C T V.x/; x 62 D:

In addition, prove that mD.x/ is the smallest non-negative solution to the above
system.

Problem 8.2.21. Prove that any non-negative excessive function f D f .x/ admits
the Riesz decomposition:

f .x/ D Qf .x/C U Qh.x/;
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in which
Qf .x/ D lim

n
.Tnf /.x/;

is a harmonic function and U Qh.x/ is the potential of the function

Qh.x/ D f .x/ � Tf .x/:

Problem 8.2.22. Let X D .Xn/n�1 and Y D .Yn/n�1 be any two independent
Markov chains, with the same state space E D f1; 2g and the same transition
probability matrix

�

˛ 1�˛
1�ˇ ˇ

�

, for some choice of ˛; ˇ 2 .0; 1/. Let � D inffn �
0 W Xn D Yng (with inf ¿ D 1) be the time of the first meeting between X and Y .
Find the probability distribution of the time � .

Problem 8.2.23. Let X D .Xn;Fn/n�0 be any stochastic sequence and let B 2
B.R/. As was already established, the random variables �B D inffn � 0 W Xn 2 Bg
and �B D inffn > 0 W Xn 2 Bg (with inf ¿ D 1) are Markov times. Prove that, for
any fixed integerN � 0, the last visit of B between times 0 and N , i.e., the random
variable

	B D supf0 � n � N W Xn 2 Bg with (sup ¿ D 0)

is not a Markov time.

Problem 8.2.24. Prove that the statements in Theorems 1 and 2 in [ P §8.2] remain
valid if the requirement for the function H D H.!/ to be bounded is replaced by
the requirement that this function is non-negative.

Problem 8.2.25. Let X D .Xn;Fn/n�0 be any Markov sequence and let � be any
Markov time. Prove that the random sequence X D .Xn;F n/n�0, with

Xn D XnC� and F n D FnC� ;

is also a Markov sequence, which, in fact, has the same transition function as the
sequence X . (This fact may be seen as the simplest form of the strong Markov
property.)

Problem 8.2.26. Let .X1;X2; : : :/ be any sequence of independent and identically
distributed random variables, with common distribution function F D F.x/. Set
F0 D f¿;˝g, Fn D �.X1; : : : ; Xn/, n � 1, let � be any Markov time for .Fn/n�0,
and let A 2 F� .

Assuming that � is globally bounded, i.e, 0 � �.!/ � T < 1, for ! 2 ˝ , prove
that:

(a) The variables IA;X1C� ; X2C� ; : : : are independent.
(b) The variables XnC� share the same distribution function F D F.x/, i.e.,

Law.XnC� / D Law.X1/, n � 1.

(One consequence from (a) and (b) above is that the probabilistic structure of
the sequence .X1C� ; X2C� ; : : :/ is the same as the probabilistic structure of the
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sequence .X1;X2; : : :/, i.e., Law.X1C� ; X2C� ; : : :/ D Law.X1;X2; : : :/; plainly, the
distribution of the sequence .Xn/n�1 is invariant under the random shift nÝnC�).

Suppose now that � is any, i.e., not necessarily bounded, Markov time, with 0 �
� � 1. Prove that, in this case, property (a) can be written in the form:

P.A\ f� < 1gIX1C� � x1; : : : ; XnC� � xn/

D P.A \ f� < 1g/F.x1/ : : : F .xn/;

which relation must hold for all n � 1 and xn 2 R.
Hint. It is enough to notice that

P.A \ f� < 1gIX1C� � x1; : : : ; XnC� � xn/ D

D
1
X

kD0
P.A \ f� D kgIX1Ck � x1; : : : ; XnCk � xn/;

where the events A \ f� D kg and fX1Ck � x1; : : : ; XnCk � xng are independent.

8.3 Limiting, Ergodic and Stationary Distributions
of Markov Chains

Problem 8.3.1. Give examples of Markov chains for which the limit �j D
limn p

.n/
ij exists and

(a) Does not depend on the initial state i .
(b) Does depend on the initial state i .

Problem 8.3.2. Give examples of ergodic and non-ergodic chains.

Problem 8.3.3. Give an example of a Markov chain that has a non-ergodic
stationary distribution.

Problem 8.3.4. Give an example of a transition probability matrix for which any
probability distribution on the respective state space is a stationary distribution.

8.4 Markov Chain State Classification Based
on the Transition Probability Matrix

Problem 8.4.1. Formulate the notions of “essential” and “inessential” states (see
[ P §8.4, 1 ]) in terms of the transition probabilities p.n/ij , i; j 2 E , n � 1.
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Problem 8.4.2. Let P be the transition probability matrix for some irreducible
Markov chain, and suppose that P has the additional property that P2 D P . Describe
the structure of the matrix P .

Problem 8.4.3. Let P denote the transition probability matrix for some finite
Markov chain X D .Xn/n�0. Suppose that �1; �2; : : : is some sequence of inde-
pendent and identically distributed non-negative integer-valued random variables,
which are also independent from X . Let �0 D 0 and �n D �1 C � � � C �n, n � 1.
Prove that the sequence eX D .eXn/n�0, given by eXn D X�n is a Markov chain
and find the transition probability matrix eP for this chain. Prove that if the states i
and j communicate for the chain X , then these two states must communicate also
for the chain eX .

Problem 8.4.4. Consider the Markov chain X D .Xn/n�0, with state space E D
f0; 1g, and suppose that its transition probability matrix is given by P D �

˛ 1�˛
1�ˇ ˇ

�

,
for some choice of ˛; ˇ 2 .0; 1/. Then define the Markov moment


 D inffn � 1WXn�1 D Xn D 0g

and prove that

E0
 D 2 � .˛ C ˇ/

˛.1 � ˇ/ :

Problem 8.4.5. Consider the Markov chain with state-space E D f1; 2; 3g and
transition probability matrix

P D
0

@

˛ 1 � ˛ 0

0 ˇ 1 � ˇ

1 � 	 0 	

1

A ;

where ˛; ˇ; 	 2 .0; 1/. Prove that this Markov chain is irreducible. What can be said
about the existence of a stationary distribution for this Markov chain?

Problem 8.4.6. Explain whether it may be possible for all states of a given Markov
chain to be inessential in each of the following two cases:

1. The state space is finite.
2. The state space is countably infinite.

8.5 Markov Chain State Classification Based
on the Asymptotics of the Transition Probabilities

Problem 8.5.1. Prove that an irreducible Markov chain, with state space
f0; 1; 2; : : : g and with transition probabilities pi;j , is transient if and only if the
system of equations uj D P

i uipij , j D 0; 1; : : : ; admits a bounded solution uj ,
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j D 0; 1; : : :, which is not constant (i.e.,
ˇ

ˇuj
ˇ

ˇ < const, for all j , and ui 6D uj , for at
least one pair .i; j /).

Problem 8.5.2. Prove that, in order for an irreducible Markov chain, with state
space f0; 1; 2; : : :g and with transition probabilitiespi;j , to be recurrent, it is enough
to establish the existence of a sequence .u0; u1; : : :/, with limi!1 ui D 1, for which
uj � P

i uipij , for all j ¤ 0.

Problem 8.5.3. Prove that an irreducible Markov chain, with state space
f0; 1; 2; : : :g and with transition probabilities pi;j , is positive recurrent if and
only if the system of equations uj D P

i uipij , j D 0; 1; : : : ; admits a solution uj ,
j D 0; 1; : : : ; with 0 <

P

j

ˇ

ˇuj
ˇ

ˇ < 1.

Problem 8.5.4. Consider a Markov chain with state space f0; 1; : : :g and with
transition probabilities

p00 D r0; p01 D p0 > 0;

pij D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

pi > 0; j D i C 1;

ri � 0; j D i;

qi > 0; j D i � 1;
0 in all other cases:

Setting �0 D 1 and �m D q1:::qm
p1:::pm

, prove the following statements:

the chain is recurrent ”
X

�m D 1I

the chain is transient ”
X

�m < 1I

the chain is positive recurrent ”
X

�m D 1;
X 1

pm�m
< 1I

the chain is null recurrent ”
X

�m D 1;
X 1

pm�m
D 1:

Problem 8.5.5. Prove that

fik � fij fjk;

sup
n

p
.n/
ij � fij �

1
X

nD1
p
.n/
ij :

Problem 8.5.6. Prove that, for any Markov chain with countable state space, the
Cesàro limits of the n-step transition probabilities p.n/ij always exist, and one has

lim
n

1

n

n
X

kD1
p
.k/
ij D fij

�j
:
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Problem 8.5.7. Let 1; 2; : : : be any sequence of independent and identically
distributed random variables, with Pfk D j g D pj , j D 0; 1; : : : ; and suppose
that the Markov chain �0; �1; : : : is chosen so that �kC1 D .�k/

C C kC1, k � 0.
Compute the transition probabilities for this Markov chain and prove that, if p0 > 0
and p0 C p1 < 1, then the chain would be recursive if and only if

P

k kpk � 1.

Problem 8.5.8. Let �i D inffn > 0 W Xn D ig (with inf ¿ D 1) and then define
�ni recursively through the relations:

�ni D
(

�n�1
i C �i ı ��n�1

i
; if �n�1

i < 1;

1; if �n�1
i D 1:

Prove that

Pi f�ni < 1g D .Pi f�i < 1g/n . D f n
i i /:

Problem 8.5.9. Let Nfig denote the number of visits of a particular Markov chain
to the state i .

(a) Prove that

EiNfig D 1

1 � Pi f�i < 1g
�

D 1

1 � fii

�

:

(b) Reformulate the criteria for recurrence and transience of the state i 2 E from
[ P §8.5, Theorem 1] in terms of the average number of visits EiNfig.

(c) Prove that

EiNfj g D Pi f�j < 1g � EiNfig:

Problem 8.5.10. (Necessary and sufficient condition for transience.) Let X D
.Xn/n�0 be some irreducible Markov chain with countable state space E and
transition probability matrix kpxyk. Prove that the chain X is transient if and only
if there is a nontrivial and bounded functions f D f .x/ and a state xı 2 E , for
which one can claim that

f .x/ D
X

y 6Dxı

pxyf .y/; x 6D xı ;

(harmonicity on the set E n fxıg).

Problem 8.5.11. (Sufficient condition for transience.) Let X D .Xn/n�0 be some
irreducible Markov chain with countable state space E . Suppose that there is a
bounded function f D f .x/, such that, for some set B � R, one has

f .xı/ < h.x/; for some xı 2 B and all x 2 B;
and

X

y2E
pxyf .y/ � f .x/; x 2 B . D E n B/

(superharmonicity on the set B).
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Prove that if the above condition holds, then the chain must be transient.

Problem 8.5.12. (Sufficient condition for recurrence.) Let X D .Xn/n�0 be some
irreducible Markov chain with countable state space E . Suppose that there is a
function h D h.x/, x 2 E , with the property that, for any constant c, one can
claim that the set Bc D fx W h.x/ < cg is finite and, for some finite set A � R,
one has

X

y2E
pxyh.y/ � h.x/; x 2 A

(superharmonicity on the A ( D E n A)).
Prove that the chain X is recurrent.

Problem 8.5.13. Prove that the sufficient condition formulated in the previous
problem is also necessary.

Problem 8.5.14. Let .�n/n�1 be any sequence of independent and identically
distributed random variables, and let X D .Xn/n�1 be the random walk defined
as X0 D 0 and Xn D �1 C : : : C �n, for n � 1. Let U.B/ D ENB denote the
expected number of the visits, NB D P

n�0 IB.Xn/, of the random walk X to the
setB . The set functionU. � / is called potential-measure (in this case, for the starting
point x D 0)—see Sect. A.7.

Analogously to the definitions of transience and recurrence for Markov chains
with countable state spaces (see Definitions 1 and 2 in [ P §8.5, 2 ]), we will say
that the random walk X , which, in general, lives in the space R, is recurrent if

U.I / D 1;

and will say that it is transient if

U.I / < 1;

for every finite interval I � R.
Assuming that the expectation E�1 is well defined, prove that one of the following

three properties always holds:

1. Xn ! 1 (P–a. e.) and the random walk X is transient;

2. Xn ! �1 (P–a. e.) and the random walk X is transient;

3. limXn D �1, limXn D C1, i.e., the random walk oscillates between �1
and C1, in which case transience and recurrence are both possible.

Problem 8.5.15. Let everything be as in Problem 8.5.14 and again suppose that the
expectation � D E�1 is well defined. Prove that:

1. If 0 < � � 1, then Xn ! 1 (P-a. e.).

2. If �1 � � < 0, then Xn ! �1 (P-a. e.).

3. If � D 0, then limXn D �1, limXn D C1 and the random walk is
recurrent.
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Problem 8.5.16. Prove that a necessary and sufficient condition for the random
walk X D .Xn/n�0 to be transient is that jXnj ! 1 as n ! 1 with probability 1.

Problem 8.5.17. Consider the Markov chain X D .Xn/n�0 with transition proba-
bilities pij , i; j 2 E D f0;˙1;˙2; : : :g, chosen so that pij D 0 if ji � j j > 1, i.e.,
for every i 2 E one has

pi;i�1 C pii C pi;iC1 D 1;

all probabilities in the left side being strictly positive.
Prove that any such chain must be irreducible and aperiodic. Under what

conditions for the transition probabilities .pii ; pi;i�1; pi;iC1I i 2 E/, is the Markov
chain X transient, recurrent, positive recurrent and null-recurrent (comp. with
Problem 8.5.4)?

Hint. Write down the recursive rule that governs the probabilities V.i/ D
Pi f�j ı D 1g, i 2 E , for any fixed j ı.

Problem 8.5.18. (On the probability for degeneracy in the Galton–Watson model.)
In their study of the extinction of family names in England, in the late nineteenth
century F. Galton and H. W. Watson proposed the following model, which carries
their names:

Let �0; �1; �2; : : : be some sequence of random variables that take values in N D
f0; 1; 2; : : :g and can be written as random sums of random variables:

�nC1 D 
.n/
1 C : : :C 

.n/

�n
; n � 0:

(Comp. with [ P §1.12, Example 4].) Suppose further, that the family f.n/i ; i � 1;

n � 0g is comprised of independent random variables, every one of which is
distributed as the random variable , chosen so that Pf D kg D pk , k � 0,
and

P1
kD0 pk D 1. In this model, each �n represents “the number of parents” in

the nth-generation on the family tree, while each .n/i represents the “the number
of offsprings,” produced by the i th parent. Thus, �nC1 is exactly the number of
offsprings that comprise the .n C 1/st generation, with the understanding that if
�n D 0, then �k D 0 for all k > n.

Let � D inffn � 0 W �n D 0g denote the time of extinction for the family, with
the understanding � D 1, if �n > 0 for all n � 0. The main question is how to
calculate the probability for extinction in finite time, namely the probability

q D Pf� < 1g:

It turns out that the most efficient method for calculating the above probability is
the method of generating functions (see Problem 2.6.28). Consider the generating
functions g.s/ D Es � P1

kD0 pksk , jsj � 1, and fn.s/ D Es�n , n � 1, and prove
the following properties of the Galton–Watson model:
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(a) fn.s/ D fn�1.g.s// D fn�2.g.g.s// D : : : D f0.g
.n/.s//, where g.n/.s/ D

.g ı : : : ı g/.s/ (n times);
(b) if �0 D 1, then f0.s/ D s and fn.s/ D g.n/.s/ D g.fn�1.s//;
(c) fn.0/ D Pf�n D 0g;
(d) f�n D 0g � f�nC1 D 0g;
(e) Pf� < 1g D P

�S1
nD1f�n D 0g� D limN!1 Pf�N D 0g D

limN!1 fN .0/;
(f) if q D Pf� < 1g, then q is one of the roots of equation x D g.x/, 0 � x � 1.

Problem 8.5.19. (Continuation of Problem 8.5.18.) Let g.s/ D Es be the gener-
ating function of the random variable , which takes values in the set f0; 1; 2; : : :g.
Prove that:

(a) The function g D g.s/ is non-decreasing and convex on Œ0; 1�.
(b) If Pf D 0g < 1, then the function g D g.s/ is strictly increasing.
(c) If Pf � 1g < 1, then the function g D g.s/ is strictly convex.
(d) If Pf � 1g < 1 and E � 1, then the equation x D g.x/, 0 � x � 1, has

unique solution q 2 Œ0; 1�.
(e) If Pf � 1g < 1 and E > 1, then the equation x D g.x/, 0 � x � 1, has

two solutions: x D 1 and x D q 2 .0; 1/.
Hint. Show that g0.x/ � 0 and g00.x/ � 0, x 2 Œ0; 1�, and consider separately

the graphs of the function g D g.x/ in the case E � 1 and in the case E > 1.

Problem 8.5.20. (Continuation of Problems 8.5.18 and 8.5.19.) Consider the
Galton–Watson model with E > 1 and prove that the probability for extinction
q D Pf� < 1g can be identified with the only root of the equation x D g.x/ that
is located strictly between 0 and 1, i.e.,

E > 1 ) 0 < Pf� < 1g < 1:

If E � 1 and p1 6D 1, then the probability for extinction occurs with probability 1,
i.e.,

E � 1 ) Pf� < 1g D 1:

Problem 8.5.21. Consider the Galton–Watson model with p1<1. Prove that for
every fixed k� 1 one has Pf�n D k i.o.g D 0. Conclude that P flimn �n 2
f0;1gg D 1.

Problem 8.5.22. Consider the Markov chainX D .Xn/n�0, with countably infinite
state space E D f1; 2; : : :g, and suppose that all states are inessential. Prove that
each of the following conditions is necessary and sufficient for the chain to be
irreducible and recurrent:

(a) fij D 1 for all i; j 2 E (i.e., Pi f�.j / < 1g D 1, where �.j / D inffn > 0 W
Xn D j g).
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(b) Every finite and non-negative function h D h.i/, i 2 E , which is excessive
for the chain X (i.e., h.i/ � P

j2E pij h.j /, i 2 E , where pij are the transition
probabilities for X ), must be a constant.

Hint. The necessity of (b) is established in Sect. A.7 in the Appendix. To
establish the sufficiency, prove that for any i; j 2 E one must have

fij D pij C
X

k 6Dj
pikfkj ;

and conclude that if all excessive functions are constants, then fij D 1 for all i; j 2
E , which, according to (a), is equivalent to the claim that the chain is irreducible
and recurrent.

8.6-7 On the Limiting, Stationary, and Ergodic Distributions
of Markov Chains with at Most Countable State Space

Problem 8.6-7.1. Describe the limiting, stationary and ergodic distributions of the
Markov chain with transition probability matrix

P D

0

B

B

@

1=2 0 1=2 0

0 0 0 1

1=4 1=2 1=4 0

0 1=2 1=2 0

1

C

C

A

:

Problem 8.6-7.2. Let P D kpij k be somem	m-matrix (m < 1), which is doubly-
stochastic (i.e.,

Pm
jD1 pij D 1, for i D 1; : : : ; m, and

Pm
iD1 pij D 1, for j D

1; : : : ; m). Prove that the uniform distribution Q D .1=m; : : : ; 1=m/ is stationary
for the associated Markov chain.

Problem 8.6-7.3. Let X D .Xn/n�0 be some Markov chain with state space E D
f0; 1g and with transition probability matrix P D �

˛ 1�˛
1�ˇ ˇ

�

, for some choice of
0 < ˛ < 1 and 0 < ˇ < 1.

Prove that:
(a)

Pn D 1

2 � .˛ C ˇ/

�

1 � ˇ 1 � ˛

1 � ˇ 1 � ˛

�

C .˛ C ˇ � 1/n
2 � .˛ C ˇ/

�

1� ˛ �.1 � ˛/

�.1 � ˇ/ 1 � ˇ
�

I

(b) if the initial distribution is � D .�.0/; �.1//, then

PxfXn D 0g D 1 � ˇ

2 � .˛ C ˇ/
C .˛ C ˇ � 1/n

�

�.0/� 1 � ˇ
2 � .˛ C ˇ/

�

:
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Problem 8.6-7.4. (Continuation of Problem 8.6-7.3.) Find the stationary distribu-
tion, �ı, of the Markov chain X and calculate the covariance

cov�ı.Xn;XnC1/ D E�ıXnXnC1 � E�ıXn E�ıXnC1:

Setting Sn D X1 C � � � CXn, prove that

E�ıSn D n.1 � ˛/

2 � .˛ C ˇ/
and D�ıSn � c n;

where c is some constant.
Finally, prove that almost surely (with respect to any of the measures P0, P1 and

P�ı ) one has
Sn

n
! 1 � ˛

2 � .˛ C ˇ/
as n ! 1:

Problem 8.6-7.5. Let P D kpij k be a transition probability matrix (i; j 2 E D
f0; 1; 2; : : :g), chosen so that for any i 2 E n f0g one has pi;iC1 D pi and pi;0 D
1 � pi , for some 0 < pi < 1, and for i D 0 2 E one has pi;0 D 1.

Prove that all states of the associated Markov chain would be recurrent if and
only if limn

Qn
jD1 pj D 0 (or, equivalently,

P1
jD1.1 � pj / D 1).

Show also, that, if all states are recurrent, then all states can be claimed to be
positive recurrent if and only if

1
X

kD1

k
Y

jD1
pj < 1:

Problem 8.6-7.6. Prove that if X D .Xk/k�0 is some irreducible and positive
recurrent Markov chain, with invariant distribution �ı, then, for every fixed x 2 E ,
one has (P� -a. e. for every initial distribution �)

1

n

n�1
X

kD0
Ifxg.Xk/ ! �ı.x/ as n ! 1;

and
1

n

n�1
X

kD0
p.k/yx ! �ı.x/ as n ! 1; for every y 2 E .

(comp. with the law of large numbers from [ P §1.12].)
In addition, prove that if the chain is irreducible and null recurrent, then one has

(P� -a. e., for every initial distribution �)

1

n

n�1
X

kD0
Ifxg.Xk/ ! 0 as n ! 1;

and
1

n

n�1
X

kD0
p.k/yx ! 0 as n ! 1; for every y 2 E .
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Problem 8.6-7.7. Consider the Markov chainX D .Xn/n�0, with finite state space
E D f0; 1; : : : ; N g, and suppose that this chain is also a martingale. Prove that:

(a) The states f0g and fN g must be absorbing (i.e., p0;0 D pN;N D 1).

(b) If �.x/ D inffn � 0 W Xn D xg, then Pxf�.N / < �.0/g D x=N .

8.8 Simple Random Walks as Markov Chains

Problem 8.8.1. Prove Stirling’s formula (nŠ 
 p
2� nnC1=2e�n) by using the

following argument ([9, Problem 27.18]). Let Sn D X1 C : : : C Xn, n � 1, where
X1;X2; : : : are independent random variables, all distributed with Poisson law of
parameter � D 1. Then:

(a) E

 

Sn � np
n

!�
D e�n

n
X

kD0

 

n � kp
n

!

nk

kŠ
D nnC1=2e�n

nŠ
;

(b) Law

" 

Sn � np
n

!�#
! LawŒN��,

where N is some standard normal random variable;

(c) E

" 

Sn � np
n

!�#
! EN� D 1p

2�
;

(d) nŠ 
 p
2� nnC1=2e�n.

Problem 8.8.2. Prove the Markov property in [ P §8.8, (28)].

Problem 8.8.3. Prove the formula in [ P §8.8, (30)].

Problem 8.8.4. Consider the Markov chain in the Ehrenfests’ model and prove that
all states in that chain are recurrent.

Problem 8.8.5. Verify the formulas [ P §8.8, (31) and (32)].

Problem 8.8.6. Consider the simple random walk on Z D f0;˙1;˙2; : : :g, with

px;xC1 D p, px;x�1 D 1 � p, and prove that the function f .x/ D
�

1�p
p

	x

, x 2 Z,

is harmonic.

Problem 8.8.7. Let �1; : : : ; �n be independent and identically distributed random
variables and let Sk D �1 C : : :C �k , k � n. Prove that

X

k�n I.Sk > 0/
dD min




1 � k � n W Sk D max
j�n Sj

�

;
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where
dD stands for “identity in distribution.” (This result, which is due to E. Sparre

Andersen, clarifies why, in the Bernoulli scheme, the law of the time spent on the
positive axis and the law of the location of the maximum are asymptotically the
same as the arc-sine law—see [ P §1.10] and Problems 1.10.4 and 1.10.5.)

Problem 8.8.8. Let �1; �2; : : : be a sequence independent Bernoulli random vari-
ables with Pf�n D 1g D Pf�m D �1g D 1=2, n � 1. Setting S0 D 0 and
Sn D �1 C : : :C �n, prove that if � is any stopping time and

Sn D Sn^� � .Sn � Sn^�/ D
(

Sn; n � �;

2S� � Sn; n > �;

then .Sn/n�0
dD .Sn/n�0, i.e., the distribution laws of the sequences .Sn/n�0

and .Sn/n�0 coincide. (This result is known as André’s reflection principle for
the symmetric random walk .Sn/n�0—comp. with other versions of the reflection
principle described in [ P §1.10].)

Problem 8.8.9. Suppose that X D .Xn/n�0 is a random walk on the lattice Zd ,
defined by: X0 D 0 and

Xn D �1 C : : :C �n; for n � 1; and Pf�i D eg D 1

2d
;

where the vector e D .e1; : : : ; ed / 2 Rd is chosen so that ei D 0;�1;C1 and
jej � je1j C : : :C jed j D 1.

Prove the following multivariate analog of the Central Limit Theorem, in which
A stands for any open ball in Rd centered at the origin 0 D .0; : : : ; 0/:

lim
n

P



Xnp
n

2 A
�

D
Z

A

�

d

2�

�d

e� d jxj

2

2 dx1 : : : dxd :

Hint. Prove first that the characteristic function '.t/ D Eei.t;�1/, t D .t1; : : : ; td /,
is given by the formula '.t/ D d�1Pd

jD1 cos.tj /, and then use the multivariate
version of the continuity theorem (see [ P §3.3, Theorem 1]) and Problem 3.3.5).

Problem 8.8.10. LetX D .Xn/n�0 be the random walk introduced in Problem 8.8.9
and let Nn D Pn�1

kD0 I.Xk D 0/ be the number of moments k 2 f0; 1; : : : ; n � 1g at

which Xk D 0. It is shown in [ P §7.9] that, for d D 1, one has ENn 

q

2
�
n as

n ! 1. (In formulas [ P §7.9, (17) and (18)], one must replace 1
2�

with 2
�

.)
(a) Prove that for d � 2 one has:

ENn 

(

1
�

lnn; d D 2;

cd ; d � 3;

where cd D 1=Pf�d D 1g, with �d D inffk > 0 W Xk D 0g (�d D 1 when the
infimum is taken over the empty set). Calculate the values of the constant cd .
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(b) Prove that for d D 2 one has:

lim
n

P



Nn

ln n
� x

�

D e��x; x > 0;

and
Pf�1 > ng D PfNn D 0g 
 �

lnn
as n ! 1:

(c) Prove that for d � 3 one has, as n ! 1:

Pf�1 D 2ng 
 PfX2n D 0g
h

1CP1
kD1 PfX2k D 0g

i2
:

(d) Prove that for d � 1 one has:

Pf�1 D 1g D 1

1CP1
kD1 PfX2k D 0g :

Remark. Property (d) is essentially established in the proof of [ P §8.5, Theo-
rem 1]. It is also useful to notice that Pólya’s Theorem:

Pf�1 < 1g D 1 for d D 1 and d D 2 .recurrence with probability 1);

Pf�1 < 1g < 1 for d � 3 .transience with positive probability),

obtains directly from property (d), in conjunction with the asymptotic property
PfX2k D 0g 
 c.d/

nd=2
, for d � 1, and with c.d/ > 0.

Problem 8.8.11. Consider the Dirichlet problem for the Poisson equation in the
domain C � E , where E is an at most countable set, namely: find a non-negative
function V D V.x/, such that

LV.x/ D �h.x/; x 2 C;
V.x/ D g.x/; x 2 D D E n C;

where h.x/ and g.x/ are given non-negative functions.
Prove that the smallest non-negative solution VD.x/ for this problem is given by:

VD.x/ D Ex
�

I.�.D/ < 1/g.X�.D//
C IC .x/Ex

2

4

�.D/�1
X

kD0
h.Xk/

3

5 ;

where �.D/ D inffn � 0 W Xn 2 Dg (as usual, we suppose that �.D/ D 1, if the
infiumum is taken over the empty set).
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Hint. Write the function VD.x/ in the form VD.x/ D 'D.x/ C  D.x/, where
(D D C )

'D.x/ D Ex
�

I.�.D/ < 1/g.X�.D//


;

 D.x/ D ID.x/Ex

2

4

�.D/�1
X

kD0
h.Xk/

3

5 :

Then observe that the functions 'D.x/ and  D.x/ can be written in the form

'D.x/ D ID.x/g.x/C ID.x/T 'D.x/;

 D.x/ D ID.x/h.x/C ID.x/T  D.x/;

and conclude from the last relations that

VD.x/ D ID.x/g.x/C ID.x/Œh.x/C T VD.x/�;

which implies that the above function gives a non-negative solution to the system:
LV.x/ D �h.x/ in the domain C and V.x/ D g.x/, for x 2 D.

To prove that V.x/ � VD.x/, for every non-negative solution V.x/ to this
system, it is enough to notice that V.x/ D ID.x/g.x/ C ID.x/Œh.x/ C T V.x/�,
from where one finds that

V.x/ � ID.x/g.x/C ID.x/h.x/;

and conclude by induction that

V.x/ �
n
X

kD0
.IDT

k/ŒIDg C IDh�.x/;

for every n � 0. This implies that

V.x/ �
X

k�0
.IDT

k/ŒIDg C IDh�.x/ D 'D.x/C  D.x/ D VD.x/:

Problem 8.8.12. Let X D .Xn/n�0 be a simple symmetric random walk on the
lattice Zd and let

�.D/ D inffn > 0 W Xn 2 Dg; D � Zd ;

assuming that the setD is finite. Prove that one can find positive constants c D c.D/

and " D ".D/ < 1, such that

Pxf�.D/ � ng � c "n;

for all x 2 D. (Comp. with the inequality in [ P §1.9, (20)].)
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Problem 8.8.13. Consider two independent simple symmetric random walks,
X1 D .X1

n/n�0 and X2 D .X2
n/n�0, that start, respectively, from x 2 Z and y 2 Z,

and are defined on the same probability space .˝;F ;P/. Let �1.x/ D inffn �
0 W X1

n D 0g and �2.y/ D inffn � 0 W X2
n D 0g. Find the probability

Pf�1.x/ < �2.y/g.

Problem 8.8.14. Prove that for a simple symmetric random walk, X D .Xn/n�0,
on the lattice Z D f0;˙1;˙2; : : :g that starts from 0 2 Z, one must have

P0f�.y/ D N g 
 jyjp
2�
N�3=2 as N ! 1;

where �.y/ D inffn � 0 W Xn D yg, y 6D 0. (Comp. with the results in
Problem 2.4.16.)

Problem 8.8.15. Consider the simple random walk X D .Xn/n�0 with Xn D x C
�1 C : : : C �n, where �1; �2; : : : are independent and identically distributed random
variables, with Pf�1 D 1g D p, Pf�1 D �1g D q, p C q D 1, and x 2 Z. Setting
�.x/ D inffn > 0 W Xn D xg, prove that

Pxf�.x/ < 1g D 2min.p; q/:

Problem 8.8.16. Consider the random walk introduced in the previous problem in
the special case x D 0, and let Rn denote the total number of (different) integer
values that appear in the set fX0;X1; : : : ; Xng (note that X0 D 0). Prove that

E0
Rn

n
! jp � qj as n ! 1:

Problem 8.8.17. Let X D .Xn/n�0 be the simple random walk on Z D
f0;˙1;˙2; : : :g, given by X0 D 0 and Xn D �1 C : : : C �n, n � 1, for some
sequence, �1; �2; : : : , of independent and identically distributed random variables
with Pf�1 D 1g D p and Pf�1 D �1g D q ( D 1 � p), for some fixed 0 < p < 1.
Prove that the sequence jX j D .jXnj/n�0 is a Markov chain with state space
E D f0; 1; 2; : : :g and with transition probabilities

pi;iC1 D piC1 C qiC1

pi C qi
D 1 � pi;i�1; i > 0; p0;1 D 1:

In addition, prove that

P.Xn D i j jXnj D i; jXn�1j D in�1; : : : ; jX1j D i1/ D pi

pi C qi
; for n � 1:

Problem 8.8.18. Let � D .�0; �1; �2; : : :/ be any sequence of independent and
identically distributed random variables with Pf�1 D 1g D p and Pf�1 D �1g D q,
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p C q D 1, and suppose that the sequence X D .Xn/n�0 is defined as Xn D
�n �nC1. Is this sequence a Markov chain? Is the sequence Y D .Yn/n�1, defined as
Yn D 1

2
.�n�1 C �n/, n � 1, a Markov chain?

Problem 8.8.19. Suppose that X D .Xn/n�0 is a simple symmetric random walk
on the lattice Z D f0;˙1;˙2 : : : g, which starts from 0, and let �1; �2; : : : be the
moments of return to 0, i.e., �1 D inffn > 0 W Xn D 0g, �2 D inffn > �1 W Xn D 0g,
etc.

Prove that:

(a) P0f�1 < 1g D 1;

(b) P0fX2n D 0g D P

k�1 P0f�k D 2ng;

(c) E0z�k D .E0z�1 /k , jzj < 1;

(d)
P

n�0 P0fX2n D 0gz2n D 1
1�E0z�1 ;

(e) E0z�1 D 1 � p
1 � z2, so that

P

n�0 P0fX2n D 0gz2n D 1p
1�z2

;

(f) if N.k/ denotes the number of visits of state k before the first return to 0, i.e.,
before time �1, then EN.k/ D 1, for any z 2 Z n f0g, k 6D 0.

Problem 8.8.20. LetX D .Xn/n�0 and Y D .Yn/n�0 be any two simple symmetric
random walks on Zd , d � 1, and let

Rn D
n
X

iD0

n
X

jD0
I.Xi D Yj /:

Prove that when d D 1 the expectation ERn, i.e., the expected number of periods
during which the two random walks meet before time n (taking into account multiple
visits of the same state), behaves, asymptotically, for large values of n, as c n3=2, for
some constant c > 0. It is well known—see [75], for example—that in dimensions
d > 1 one has (for large n)

ERn 


8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

c n; d D 2I
c

p
n; d D 3I

c lnn; d D 4I
c; d � 5;

where the constant c D cd depends on the dimension d . Verify the above
asymptotics for ERn and compute the constants c D cd .

Problem 8.8.21. Suppose that B is some finite set inside Zd and the function
f D f .x/ is defined for x 2 B [ @B , where @B D fx 62 B W kx � yk D
1 for some y 2 Bg. Then suppose that the function f D f .x/ is subharmonic in B ,
i.e., Tf .x/ � f .x/, x 2 B , where T is the one-step transition operator. Prove the
following maximum principle:

sup
x2B[@B

f .x/ D sup
x2@B

f .x/:
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Problem 8.8.22. Prove that every bounded harmonic function on Zd must be
constant.

Problem 8.8.23. Prove that all bounded solutions V D V.x/ to the problem:

�V.x/ D 0 for x 2 C; and V.x/ D g.x/ for x 2 @C;

where C � Zd is a given domain, and g D g.x/ is some (also given) bounded
function on @C , can be written as

V.x/ D Ex
�

g.X�.@C//I.�.@C / < 1/
C ˛ Pxf�.@C / D 1g;

for some ˛ 2 R, where �.@C / D inffn � 0 W Xn 2 @C g.

Problem 8.8.24. Prove the following results about the solution to the homogeneous
Dirichlet problem: find a function V D V.x/ that is harmonic in the domain C �
Zd (i.e., �V.x/ D 0, x 2 C ) and satisfies the boundary condition V.x/ D g.x/,
x 2 @C , for a given function g D g.x/ that is defined on @C as follows:

(a) if d � 2 and the function gD g.x/ is bounded, then, in the class of bounded
functions, the solution is unique and is given by the formulaV@C .x/ D Exg.X�.@C//;

(b) if d � 3, g D g.x/ is bounded and Pxf�.@C / < 1g D 1, for all x 2 C ,
then, in the class of bounded functions, the solution is again unique and is given by
the formula in (a).

Problem 8.8.25. Let X D .Xn/n�0 be a simple symmetric random walk on Zd ,
d � 1, and suppose that the domain C � Zd is bounded and its boundary @C is
defined as fx 2 Zd W x 62 C and kx � yk D 1 for some y 2 C g. Prove that the
Dirichlet problem:

find a function V D V .x/ on C [ @C , such that

�V.x/ D �h.x/ for x 2 C; and V .x/ D g.x/ for x 2 @C;

where h D h.x/, x 2 C , and g D g.x/, x 2 @C , are given functions,

has a unique solution, given by the formula

V@C .x/ D Exg.X�.@C//C Ex

2

4

�.@C /�1
X

kD0
h.Xk/

3

5 ; Ex

2

4

�.@C /�1
X

kD0
jh.Xk/j

3

5 < 1:

Hint. Use the method described in Sect. A.7 in the Appendix and the fact that,
because of the finiteness of C , one must have Pxf�.@C / < 1g D 1, x 2 C

(comp. with Problem 8.8.11).

Problem 8.8.26. Consider the simple random walk S D .Sn/n�0, defined on Z D
f0;˙1;˙2; : : :g by S0 D 0 and Sn D �1 C : : : C �n, n � 1, where �1; �2; : : : are
independent Bernoulli random variables, with Pf�i D 1g D Pf�i D �1g D 1=2,
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and let � D inffn � 0 W Sn D 1g. In Problem 7.2.18 it was proposed to show (by
using martingale methods) that, given any j˛j � 1, one must have

E˛� D ˛�1Œ1 �
p
1 � ˛2� :

Derive the last relation from the strong Markov property, by showing first that the
function '.˛/ D E˛� satisfies the relation '.˛/ D 1

2
˛ C 1

2
˛'2.˛/.

Problem 8.8.27. In this problem it is proposed to carry out certain calculations in
the model developed by T. and P. Ehrenfest, which was meant to explain the absence
of (the seemingly existent) contradiction between “irreversibility” and “recurrence”
in Boltzmann’s kinetic theory of heat propagation.

As is well known, this theory stems from the representation of the molecular
structure of the matter and the consequent treatment of the heat exchange as a
diffusion process. It was developed by Boltzmann for the purpose of explaining the
(mostly phenomenological) theoretical conclusions of thermodynamics, based on
the hypothesis that the distribution of heat is irreversible and moves toward a thermal
equilibrium. Although Boltzmann also believed that thermal equilibrium in the
system prevails and leads to a state that maximizes the entropy, the “stochastic”
theory that he proposed did not exclude—in theory at least—the possibility that over
time the system may return to its original thermodynamic disequilibrium, which
was the basis for criticism of the kinetic theory. (Poincaré noted the possibility
for “recurrence” in the case of dynamical systems described in terms of measure-
preserving transformations—see [ P §5.1].)

Boltzmann himself claimed that there was no contradiction between “irreversibil-
ity” and the physically unobservable “recurrence,” since in a stochastic system the
return to states of macroscopic non-equilibrium is possible, but occurs after such a
long period of time that it is practically unobservable.

From a physical point of view, the model developed by the Ehrenfests’, which
was formulated in terms of the theory of Markov chains, was quite adequate, as it
was able to describe the exchange of heat between two bodies that are in contact
with each other, but are otherwise isolated from their environment. This aspect of
the model allows for an interesting quantitative analysis of the average time for
transition from one state to another.

Let E D f0; 1; : : : ; 2kg, where “state i” means “there are i molecules in camera
A” (a detailed description of the model proposed by the Ehrenfests can be found in
[ P §8.8, 3 ]). Denote by

�.i/ D inffn � 0 W Xn D ig and �.i/ D inffn > 0 W Xn D ig;
respectively, the time of the first visit and the time of the first return to state i , with
the usual understanding that inf ¿ D 1.

Prove that:
(a) Ei �.i/ D 22k

iŠ .2k�i /Š
.2k/Š

and, in particular, the average recurrence time to the

null state is given by E0�.0/ D 22k;
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(b) Ek�.0/ D 1
2k
22k.1CO.k//;

(c) E0�.k/ D k ln k C k CO.1/.

(In [8] one can find the following numerical results: if k D 10;000 and the exchange
of molecules occurs once per second, then the expected time E0�.k/ is less than
29 h, whereas Ek�.0/ is astronomically large: 106;000 years (!)).

8.9 The Optimal Stopping Problem for Markov Chains

Problem 8.9.1. Prove by way of example that for Markov chains with countable
state space the optimal stopping time may not exist (within the class M1

0 ).

Problem 8.9.2. Verify that the time �y , introduced in the proof of [ P §8.9,
Theorem 2], is a Markov time.

Problem 8.9.3. Prove that the sequence X D .X1;X2; : : :/, which was defined in
in [ P §8.9, 7 ] in the description of “the marriage problem,” forms a Markov chain.

Problem 8.9.4. Let X D .Xn/n�0 be some homogeneous Markov chain with
values in R and with transition function P D P.xIB/, x 2 R, B 2 B.R/. We
say that the R-valued function f D f .x/, x 2 R, is harmonic (or P -harmonic, or
harmonic relative to the transition function P ), if

Ex jf .X1/j D
Z

R

jf .y/jP.xI dy/ < 1; x 2 R;

and

f .x/ D
Z

R

f .y/ P.xI dy/; x 2 R: .�/

If the identity “D” in .�/ is replaced by the inequality “�” we say that the function
f is superharmonic—see also Sect. A.7.

Prove that if f is a superharmonic function, then, for every x 2 R, the sequence
.f .Xn//n�0, with X0 D x, is a supermartingale (relative to the measure Px).

Problem 8.9.5. Prove that the time N� , which appears in [ P §8.9, (40)], belongs to
the class M1

1 .

Problem 8.9.6. Analogously to Example 1 in [ P §8.9, 6 ], consider the optimal
stopping problem

sN .x/ D sup
�2MN

0

Exg.X�/

and
s.x/ D sup

�2M1

0

Exg.X�/;

for all simple random walks from the Examples in [ P §8.8].
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Problem 8.9.7. (Controlled Markov chains and optimization.) Let fP.a/; a 2 Ag
be some family of transition probability matrices P.a/ D kpij .a/k, parametrized by
the collectionA of all possible choices for the “control.” The associated phase space
E D fi; j; : : :g is assumed to be either finite or countably infinite and any function
u D u.i/, i 2 E , which takes values in the space A, will be treated as a “possible
control strategy,” i.e., a prescription for the value of the control parameter in every
state i 2 E .

Given a particular choice for the control u D u.i/, i 2 E , we denote by Pu the
associated transition probability matrix kpij .u.i//k, from which one can obtain (see,
for example, the Ionescu Tulcea Theorem in [ P §2.9]) the respective probability
distribution, Pu

i , i 2 E , in the space E1—this is nothing but the probability
distribution of the Markov chain X D .Xn/n�0 that starts from state X0 D i and is
being “steered” by the control u.

Let C be some domain inside the phase space E , set D D E n C , and consider
the functions h D h.i; a/, i 2 C , a 2 A, and g D g.i; A/, i 2 D, a 2 A, which, for
now, will be assumed non-negative. For every (fixed) choice of the control u D u.i/,
i 2 E , we write hu.i/ D h.i; u.i// and gu.i/ D g.i; u.i//. The “gain” associated
with the control u D u.i/, i 2 E , when the chain is in state j 2 E is given by

V u.j / D Eu
j

�

gu.X�.D//I.�.D/ < 1/C
�.D/�1
X

kD0
hu.Xk/

�

;

where �.D/ D inffn � 0WXn 2 Dg. The meaning of the quantity V u.j / should
be clear: it represents the expected aggregate gains, including the cumulative gains
hu and the termination gain gu, collected while the chain remains in the domain C ,
assuming that the initial state is X0 D j and the chain is subjected to the control
u D u.i/, i 2 E .

The optimal control problem associated with the gain function V u.j / comes
down to computing the value function

V �.j / D sup
u
V u.j /; j 2 E;

and the optimal control u� D u�.i/, i 2 E , if one exist, with V �.j / D supu V
u�

.j /.
Prove the following statement, which is known as the “verification theorem:”

Suppose that

(i) There is a function V D V.j /, j 2 E , such that

V.j / D sup
a2A




X

j2E
pj i .a/V .i/C h.j; a/

�

; j 2 C;

and

V.j / D sup
a2A

g.j; a/; j 2 DI
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(ii) In the class of admissible controls, one can find a control u� D u�.i/, i 2 E ,
such that for any fixed j both supremums above are achieved with a D u�.j /.

Then the control u� D u�.i/, i 2 E , is optimal: for every admissible control u
one has

V u�

.j / � V u.j / and V u�

.j / D V.j /; j 2 E:
Hint. Use the fact that for every admissible control u one must have

V.j / � T uV.j /C hu.j /; j 2 C; where T uV.j / D Eu
j V .X1/;

and

V.j / � gu.j /; j 2 D:

Then use the fact that with u � u� the above inequalities turn into equalities.

Problem 8.9.8. (The “disorder” problem.) Consider the Bayesian risk

R�.�/ D P�f� < �g C cE�.� � �/C;

which was introduced in Problem 6.7.8. According to that problem, the infimum of
the quantity R�.�/, taken over the class M1

0 of all P� -finite (� 2 Œ0; 1�) Markov
times � , is attained at the Markov time

�� D inffn � 0 W �n � Ag; .�/

where A is some constant that may depend on c and p.
Prove that
(a) The Bayesian risk R�.�/ can be written in the form

R�.�/ D E�
(

.1 � �� /C cI.� � 1/

��1
X

kD0
�k

)

I

(b) In the optimal stopping problem for the Markov chain .�n/n�0

R� D inf
�2M1

0

E�
(

.1 � ��/C cI.� � 1/

��1
X

kD0
�k

)

;

the infimum is achieved with the stopping time �� defined in .�/.





Appendix A
Review of Some Fundamental Concepts
and Results from Probability Theory
and Combinatorics

A.1 Elements of Combinatorics

In its early stages, the “calculus of probability” was comprised mostly of combina-
torial methods for counting the (usually finite) number of configurations that lead
to the realization of certain random events. Even today, these counting techniques
remain indispensable for the theory of probability—especially for “the elementary
theory of probability,” which deals with finite spaces of elementary outcomes.
In fact, combinatorial methods play a crucial role in many domains of discrete
mathematics, including graph theory and the theory of algorithms.

What follows is a brief summary of some basic notions and result from
combinatorics that are used in the books “Probability” and also in the present
collection of problems.

• Let A be some collection of N < 1 elements a1; : : : ; aN (so that jAj D N ).
If all of these elements are distinct, then the collection A can be referred to as a set
and may be expressed as

A D fa1; : : : ; aN g :
In the above notation the order in which the elements a1; : : : ; aN are written
is irrelevant. For example, f1; 2; 3g and f2; 3; 1g refer to one and the same set
comprised of the elements f1g, f2g and f3g.

With each set A D fa1; : : : ; aN g one can associate two different types of samples
(sometimes called sequences) of size n:

.ai1 ; : : : ; ain / and Œai1 ; : : : ; ain � ;

where i1; : : : ; in 2 f1; : : : ; N g and the symbols aij stand for elements of the set A,
which may or may not coincide for different values of j .

The token .ai1 ; : : : ; ain/ is used to denote ordered samples, i.e., samples identi-
fied not only by the collection of its members, but also by the order in which those
members are listed.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics,
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The token Œai1 ; : : : ; ain � is used to denote unordered samples, i.e., samples
identified only by the collection of its members, but not by the order in which those
members are listed.

For example, the samples .a4; a1; a3; a1/ and .a1; a1; a4; a3/, represent one and
the same collection of elements, but are nevertheless different, because these are
ordered samples that differ in the order in which their (identical) members are listed.
At the same time, the samples Œa4; a1; a3; a1� and Œa1; a1; a4; a3� are two identical
unordered samples.

If samples of the form .ai1 ; : : : ; ain/, or of the form Œai1 ; : : : ; ain �, are taken from
the set A by way of “sampling without replacement,” obviously, all elements in the
sample must be different and, of course, one must have n � N . If samples of the
form .ai1 ; : : : ; ain/, or of the form Œai1 ; : : : ; ain �, are taken from the set A by way of
“sampling with replacement,” obviously, the sample may contain identical elements.
Furthermore, in this case the size of the sample, n, could be arbitrarily large.

A partition of the set A, with jAj D N , is any collection, D D fD1; : : : ;Dng,
n � N , of subsets Di � A, 1 � i � n, with Di 6D ¿, Di \ Dj D ¿ for i 6D j ,
andD1 C : : :CDn D A. The sets Di are the atoms of the partition D .

Counting Various Samples
from a generic set A D fa1; : : : ; aN g;

Combinatorial Numbers and Their Interpretation.

.a/ .N /n � N.N � 1/ : : : .N � n C 1/
(“number of placements”N to n, 1 �
n � N )

— The number of ordered samples .: : :/
of size n, comprised of elements of
the set A with jAj D N , by way of
“sampling without replacement;”

.b/ C n
N � .N /n

nŠ
(D NŠ

nŠ .N�n/Š ) (“number
of combinations” n of N , binomial
coefficients)

— The number of unordered samples
Œ: : :� of size n, comprised of elements
of the set A, with jAj D N , by way
of “sampling without replacement;”

.c/ N n — The number of ordered samples .: : :/
of size n � 1, comprised of elements
of the set A, with jAj D N , by way
of “sampling with repetition;”

.d/ C n
NCn�1 — The number of unordered samples

Œ: : :� of size n � 1, comprised of
elements of the set A, with jAj D N ,
by way of “sampling with repetition.”

For various combinatorial interpretations of the above numbers, see the problems
from Sects. 1.1 and 1.2. In particular, according to Problem 1.1.3 the number
of ordered sequences .: : :/ of length N , that consist of n “ones” and N � n

“zeroes”, equals C n
N . This result is particularly important in the elementary theory

of probability, in connection with the binomial distribution.
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Example A.1.1. Consider the set A D fa1; a2; a3; a4g, in which jAj D 4, and let
n D 2. Then one has
(a) .4/2 D 4.4� 1/ D 12. There are 12 ordered samples of size n:

.a1; a2/; .a1; a3/; .a1; a4/; .a2; a1/; .a2; a3/; .a2; a4/;

.a3; a1/; .a3; a2/; .a3; a4/; .a4; a1/; .a4; a2/; .a4; a3/:

(b) C2
4 D 4Š

2Š 2Š
D 6. There are 6 unordered samples of size n:

Œa1; a2�; Œa1; a3�; Œa1; a4�; Œa2; a3�; Œa2; a4�; Œa3; a4�:

(c) 42 D 16. In addition to the 12 samples listed in (a) one must include the samples
.a1; a1/, .a2; a2/, .a3; a3/ and .a4; a4/.

(d) C2
4C2�1 D C2

5 D 5Š
2Š 3Š

D 10. In addition to the 6 samples listed in (b) one must
include also the samples Œa1; a1�, Œa2; a2�, Œa3; a3� and Œa4; a4�.

Counting Subsets and Partitions
of a generic set A D fa1; : : : ; aN g;

Combinatorial Numbers and Their Interpretation

.e/ 2N — The number of all subsets of A (including
the empty set ¿ and the set A with jAj D
N ).

.f/ C n
N D NŠ

nŠ .N�n/Š — The number of subsets D � A, of size
0 � n � N (jDj D n, jAj D N , with the
understanding thatD D f¿g when n D 0
and C0

N D 1).

.g/ CN .n1; : : : ; nr / D NŠ
n1Š:::;nr Š

(the
“multinomial,” or “polynomial”
coefficients, n1C : : :Cnr D N )

— The number of partitions D D
fD1; : : : ;Drg of the set A with jAj D N
into r disjoint sets D1; : : : ;Dr , r � n,
with jD1j D n1; : : : ; jDr j D nr ,
n1 C : : :C nr D N .

.h/ DN .�1; : : : ; �N /

D NŠ

.1Š/�1 :::.N Š/�N .�1/Š:::.�N /Š

.�i � 0 for all i andPN
iD1 i�i D N/

— The number of “block” partitions of the
set A with jAj D N , of the form

D D fD11; : : : ;D1�1 I : : :
: : : IDN1; : : : ;DN�N g;

where the “block” ŒŒDi1; : : : ;Di�i �� con-
sists of �i sets, every one of which has
i elements (jDikj D i , 1 � k � �i );
if �i D 0, then the respective block
is undefined and is not included in the
partition D .



362 A Review of Some Fundamental Concepts and Results from Probability Theory...

.i/ SnN D P
DN.�1; : : : ; �N /

(the summation is taken over
all choices of �1; : : : ; �N ,
for which

PN
iD1 �i D n,PN

iD1 i�i D N , and �i � 0 for
all i )

— The number of partitions D of the set A,
with jAj D N , that consist of exactly n
classes.

The numbers SnN , 1 � n � N , are known as Stirling numbers of the second kind.1

.j/ BN D PN
nD1 SnN — The number of partitions of the set A, with

jAj D N .

The numbersBN are known as Bell numbers.

(Some additional properties of the numbers introduced in (f)–(j) above can be found
in the problems from Sect. 1.2.)

Example A.1.2. Consider again the set A D fa1; a2; a3; a4g and let N D jAj D 4

and n D 2.

(e) 24 D 16. The 16 sets are given by:

¿; fa1g; fa2g; fa3g; fa4g;
fa1; a2g; fa1; a3g; fa1; a4g; fa2; a3g; fa2; a4g; fa3; a4g;
fa1; a2; a3g; fa1; a2; a4g; fa1; a3; a4g; fa2; a3; a4g; fa1; a2; a3; a4g:

(f) C2
4 D 6. The 6 sets are given by:

fa1; a2g; fa1; a3g; fa1; a4g; fa2; a3g; fa2; a4g; fa3; a4g:

(g) If r D 2, n1 D 1 and n2 D 3, then C4.1; 3/ D 4Š
1Š 3Š

D 4. The 4 partitions are
given by:

fa1g and fa2; a3; a4g; fa2g and fa1; a3; a4g;
fa3g and fa1; a2; a4g; fa4g and fa1; a2; a3g.

(h) �1 D 2, �2 D 1, �3 D 0, �4 D 0;
P4

iD1 i�i D 4;

1For the Stirling numbers of the first kind, see p. 377 below.
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D4.2; 1; 0; 0/ D 4Š

.1Š/2.2Š/1.3Š/0.4Š/02Š 1Š 0Š 0Š
D 6:

The 6 “block” partitions are given by:

ŒŒfa1g; fa2g�� and ŒŒfa3g; fa4g��; ŒŒfa1g; fa3g�� and ŒŒfa2g; fa4g��;
ŒŒfa1g; fa4g�� and ŒŒfa2g; fa3g��; ŒŒfa2g; fa3g�� and ŒŒfa1g; fa4g��;
ŒŒfa2g; fa4g�� and ŒŒfa1g; fa3g��; ŒŒfa3g; fa4g�� and ŒŒfa1g; fa2g��:

(i) S24 D D4.0; 2; 0; 0/C D4.1; 0; 1; 0/ D 3 C 4 D 7. The 7 partitions are: fa1g
and fa2; a3; a4g,

fa2g and fa1; a3; a4g; fa3g and fa1; a2; a4g; fa4g and fa1; a2; a3g,

fa1; a2g and fa3; a4g; fa1; a3g and fa2; a4g; fa1; a4g and fa2; a3g.

For example, analogous calculation shows that:

S14 D 1; S34 D 6; S44 D 1;

S15 D 1; S25 D 15; S35 D 25; S45 D 10; S55 D 1;

S16 D 1; S26 D 31; S36 D 90; S46 D 65; S56 D 15; S56 D 1:

(j) With N D 4 property (i) implies that

B4 D S14 C S24 C S34 C S44 D 1C 7C 6C 1 D 15;

B5 D 1C 15C 25C 10C 1 D 52;

B6 D 1C 31C 90C 65C 15C 1 D 203 :

The respective 15 partitions (forN D 4) are:

fa1; a2; a3; a4gI fa1g, fa2g, fa3g, fa4gI
fa1g and fa2; a3; a4gI fa2g and fa1; a3; a4gI
fa3g and fa1; a2; a4gI fa4g and fa1; a2; a3g;

fa1; a2g and fa3; a4gI fa1; a3g and fa2; a4gI fa1; a4g fa2; a3g;

fa1g, fa2g and fa3; a4gI fa1g, fa3g and fa2; a4gI fa1g, fa4g and fa2; a3g;
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fa2g, fa3g and fa1; a4gI fa2g, fa4g and fa1; a3gI fa3g, fa4g and fa2; a3g.

• There is more to combinatorics then the mere counting of all favorable con-
figurations for various events encountered in the elementary theory of probability.
For example, combinatorial reasoning is often used to establish identities like the
following one:

nN D
nX

kD1
SkN � .n/k ; 1 � n � N ; .�/

where SkN are the Stirling numbers of the second kind. (Note that S1N D SNN D 1

and, by the usual convention, S0N D 0 and SnN D 0, for n > N .)
The combinatorial proof of the above identity is based on the idea that both

sides represent one and the same number of configurations, except that these
configurations are counted in two different ways. More specifically, let A and B
denote any two finite sets with jAj D N and jBj D n. Consider a generic function
of the form y D f .x/, which is defined for x 2 A and takes values in the setB . How
many such functions can one find? Since one can assign to each of the N possible
values of x any one of the n possible values y, it is clear that the total number of
functions from A to B must be nN .

The total number of functions fromA toB can be counted also by considering the
pre-image f �1.y/ D fx W f .x/ D yg of any given y 2 B . With this construction
in mind, given any subset C � B with jC j D k, for some 1 � k � n, consider the
collection of all functions y D f .x/, for which one can claim that Range.f / D C .
Since jC j D k, then any function f from this collection defines a partition of A that
consists k disjoint classes, characterized by the property that f takes one and the
same value on each class and different values on different classes, i.e., the classes
in the partition are simply the pre-images under f of the elements of C . As the
total number of such partitions is SkN , and for each partition there are .k/k D kŠ

functions that assign different values from the set C to the classes in the partition,
the total number of functions from A to B whose range is precisely C , must be
SkN � kŠ .

As there are Ck
n possible selections of the set C with jC j D k, the total number

of functions y D f .x/, defined for x 2 A and taking values in B , with jAj D N

and jBj D n, must be

nX

kD1
C k
n � SkN � kŠ D

nX

kD1
SkN � .n/k :

But the number of the elements in the same collection of functions was also found
to be nN , so that the identity (*) is now established. (Many problems and examples
of the use of “double counting” and other combinatorial techniques can be found in
the books [20, 27, 46, 110, 111].)
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Table A.1 Factorials and their logarithms

n nŠ lnnŠ

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0,3010300
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0,7781513
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 2,0791812

10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 628 800 6,5597630
15 . . . . . . . . . . . . . . . . . . . . . . . . .1 307 674 368 000 12,1164996
20 . . . . . . . . . . . . . . . . . 2 432 902 008 176 640 000 18,3861246
25 . . . . . . . . 15 511 210 043 330 985 984 000 000 25,1906457
30 265 252 859 812 191 058 636 308 480 000 000 32,4236601

Table A.2 Binomial coefficients

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1
11 1 11 55 165 330 462 330 165 165 55 11 1
12 1 12 66 220 495 792 924 792 495 220 66 12 1
13 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
14 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
15 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

n k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The first several values of the quantities nŠ and Ck
n are given in Tables A.1

and A.2.

A.2 Basic Probabilistic Structures and Concepts

The most basic structure, on which essentially any probabilistic or statistical
analysis is usually carried out is that of a probability space, or, a probabilistic model,
which as a triplet of the form (see [ P §2.1])

.˝;F ;P/ ;
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where:

˝ is the space of elementary outcomes !;

F is a �-algebra of subsets of ˝;

P is a probability measure on F , i.e., �-additive function of the set
A 2 F , such that 0 � P.A/ � 1, P.¿/ D 0, P.˝/ D 1.

• In addition to the notion of �-algebra, which is an essential ingredient in the
structure of any probability space, sometimes one must work with other systems of
subsets: algebras, separable �-algebras, monotone classes, �-systems, �-systems,
�-�-systems, families of cylindrical sets, etc.—see [ P §2.2].

• The events (or the sets) A and B are said to be independent, if P.A \ B/ D
P.A/ � P.B/.

Two systems, G1 and G2, of subsets of F are said to be independent if for any set
A 2 G1 and any set B 2 G2 one can claim that A and B are independent.

The sets A1; : : : ; An 2 F are said to be independent, if, for every k D 1; : : : ; n

and 1 � i1 < i2 < : : : < ik � n, one has

P.Ai1 \ : : : \Aik / D P.Ai1/ : : :P.Aik /:

The independence of the systems G1; : : : ;Gn, all comprised of sets from F , can be
defined in a similar fashion.

• A measurable space is a pair of the form .E;E /, where E is a set and E is a
�-algebra comprised of subsets of E .

The most common measurable spaces are (see [ P §2.2]):

.R;B.R// — the real line R endowed with the Borel �-algebra B.R/
(often denoted simply by B);

.Rn;B.Rn// — the space Rn D R�: : :�R endowed with �-algebra B.Rn/ D
B.R/˝ : : :˝ B.R/;

.R1;B.R1// — the space R1 D R�: : :�R�: : : endowed with the �-algebra
B.R1/, generated by all cylinder sets;

.RT ;B.RT // — the space RT of all functions that map the (generic) set T
into the real line R, endowed with the �-algebra B.RT /,
generated by all cylinder sets in the space RT ;

.C ;B.C // — the space C of continuous functions (e.g., continuous func-
tions on Œ0; 1� or Œ0;1/) endowed with the �-algebra B.C /,
generated by all open sets for the usual topology of con-
vergence on compacts (or, which amounts to the same,
generated by all cylinder sets);
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.D;B.D// — the space D of right-continuous functions with left limits
(e.g, function on Œ0; 1� that are right-continuous at any
t < 1 and have left limits at any t > 0), endowed
with the �-algebra B.D/, generated by all open sets for
the Skorokhod’s metric (or, which amounts to the same,
generated by all cylinder sets).

• A random variable is any function XDX.!/ which is defined on some
measurable space .˝;F /, takes values in .R;B.R//, and is F -measurable, in the
sense that

f! W X.!/ 2 Bg 2 F

for any Borel set B 2 B.R/.
The simplest, and at the same time very important, example of a random variable

is the indicator, X.!/ D IA.!/, of a generic set A 2 F , which is given by

IA.!/ D
(
1; ! 2 A
0; ! 62 A :

A random element is any F=E -measurable map X D X.!/ from ˝ into E
(i.e., f! W X.!/ 2 Bg 2 F for any B 2 E ), where .˝;F / and .E;E / are two
measurable spaces.

A n-dimensional random vector .X1.!/; : : : ; Xn.!// is simply an ordered list of
random variables X1.!/; : : : ; Xn.!/.

A random sequence, or, equivalently, a random process in discrete time, X D
.Xn.!//n�1, is simply a sequence of random variables X1.!/;X2.!/; : : :

A random process, X D .Xt.!//t2T , on the time interval T � R is simply a
collection of random variables parameterized by the set T : Xt.!/, t 2 T .

• A distribution function, F D F.x/, on .R;B.R//, is any B.R/-measurable
function on R which has the following properties:

1. F.x/ is non-decreasing;
2. limx!�1 F.x/ D 0 and limx!C1 F.x/ D 1;
3. F.x/ is right-continuous and admits left limits at any point x 2 R.

If X D X.!/ is a random variable defined on the probability space .˝;F ;P/,
then the probability measure PX on .R;B.R//, given by

PX.B/ D Pf! W X.!/ 2 Bg ;

is known as the probability distribution of the random variable X D X.!/. It is
easy to see that the function FX.x/ D PX..�1; x�/ is a distribution function
on .R;B.R//. This function is known as the distribution function of the random
variable X D X.!/.

If X D .Xt.!//t2T is a random process then the probability distributions on Rn,
for various choices of n � 1 and t1 < : : : < tn, ti 2 T , given by
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Pt1;:::;tn .B/ D Pf! W .Xt1.!/; : : : ; Xtn.!// 2 Bg ; B 2 B.Rn/ ;

are known as the finite-dimensional distributions of the random process X . The
associated distribution functions

Ft1;:::;tn .x1; : : : ; xn/ D Pf! W Xt1.!/ � x1; : : : ; Xtn.!/ � xng

are known as finite-dimensional distribution functions of the random process X .
• If the reference measure of choice on .R;B.R// is the Lebesgue measure � D

�.dx/, then the “Lebesgue decomposition” (see [ P §3.9, (29)] or [ P §7.6, (3)])
leads to the following result: any distribution function, F D F.x/, on .R;B.R//
can be decomposed into the sum

F.x/ D aFabc.x/C bFsing.x/ ;

where the constants a � 0 and b � 0 are chosen so that a C b D 1 and

Fabc.x/ is some absolutely continuous distribution function on R with
(Borel-measurable) density f D f .y/, i.e., f .y/ � 0,
1R

�1
f .y/ �.dy/ D 1 and Fabc.x/ D

xR
�1

f .y/ �.dy/, x 2 R;

Fsing.x/ is some singular distribution function on .R;B.R//, in the
sense that the respective probability law, Psing, on .R;B.R// is
singular with respect to the Lebesgue measure � (Psing ? �).

The singular function Fsing.x/ can be further decomposed into the sum

Fsing.x/ D d � Fd-sing.x/C c � Fc-sing.x/ ;

in which the constants d � 0 and c � 0 are chosen so that d C c D 1, Fd-sing.x/ is
a discrete distribution function with the property that the support of the associated
probability measure, Pd-sing, is some set inside R that is at most countable, and
Fc-sing.x/ is a continuous distribution function characterized by the property that
the support of the associated probability measure, Pc-sing, is some uncountable set
inside R which is negligible for the Lebesgue measure �. (The canonical example
of such a function is the Cantor function Fc-sing.x/—see [ P §2.3, 1 ].)

Recall that the support of any measure � on .R;B.R// is defined as the set

supp.�/ D ˚
x 2 R W �fy W jy � xj � rg > 0;8r > 0� :

As a direct application of the above decompositions, one arrives at the canonical
decomposition (see Problem 2.3.18) of a generic distribution function F D F.x/

on .R;B.R//:

F D ˛1Fd C ˛2Fabc C ˛3Fsc ;
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where the constants ˛1 � 0, ˛2 � 0 and ˛3 � 0 are such that ˛1 C ˛2 C ˛3 D
1, and Fd (D Fd-sing), Fabc and Fsc (D Fc-sing) are distribution functions on
.R;B.R//, which are, respectively, discrete, absolutely continuous, and continuous
and singular.

A.3 Analytical Methods and Tools of Probability Theory

• An important characteristic of any random variable X D X.!/, defined on some
probability space .˝;F ;P/, is its expected value (or simply “expectation”) EX .

If X D X.!/ is a non-negative random variable, then its expected value EX
is defined as the Lebesgue integral of the function ! Ý X.!/ with respect to the
measure P:

EX D
Z

˝

X.!/P.d!/ :

If X D X.!/ is an arbitrary (i.e., not necessarily non-negative) random variable,
then one can write X D XC � X�, where XC D max.X; 0/ and X� D
� min.X; 0/, and the expected value EX is said to exist, or to be well defined, if at
least one of the expectations EXC and EX� is finite (i.e., min.EXC;EX�/ < 1),
in which case EX is defined as

EX D EXC � EX� :

The expectation EX is said to be finite (equivalently, X is said to be integrable), if
EXC < 1 and EX� < 1, which is equivalent to the requirement EjX j < 1,
since jX j D XC CX� (see [ P §2.6]).

• An important analytical “trick” in probability theory is the passage to the
limit under the Lebesgue integral. This operation is justified by the monotone
convergence theorem, Fatou’s lemma, and Lebesgue’s dominated convergence
theorem. The following tools are fundamental in probability theory: the concept of
uniform integrability, the fundamental inequalities (Chebyshev, Cauchy-Schwarz,
Jensen, Lyapunov, Hölder, Minkowski and others), the Radon-Nikodym theorem,
Fubini’s theorem and the “change of variables” theorem for the Lebesgue integral
(see [ P §2.6]).

• The dispersion of the random variable X D X.!/ is defined as

DX D E.X � EX/2 :

The quantity � D Cp
DX is known as standard (linear) deviation of the random

variable X (from the mean value EX ).
If it exists, the covariance of any given pair of random variables, .X; Y /, is

defined as
cov.X; Y / D E.X � EY /.Y � EY / :
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If X and Y are random variables with 0 < DX < 1 and 0 < DY < 1, then
the quantity

�.X; Y / D cov.X; Y /p
DX DY

is known as the correlation coefficient of X and Y .
For a given random variableX and an integer n, if it exists, the expectation EXn

is called the moment of order n, or the nth moment, of X . The quantity E.X/n D
EX.X � 1/ : : : .X � nC 1/ is called factorial moment of order n.

• If F D F.x/ is any distribution function, then the function

'.t/ D
Z

R

eitx dF.x/

�
D
Z

R

cos tx dF.x/C i

Z

R

sin tx dF.x/

�
; t 2 R ;

is the characteristic function of F . In particular, if X is a random variable and FX
is its distribution function, then the characteristic function of FX , namely,

'X.t/ D
Z

R

eitx dFX.x/ D EeitX.!/ ; t 2 R ;

is also called characteristic function of the random variable X D X.!/ (see
[ P §2.12]).

• Given any non-negative random variable X with distribution function FX D
FX.x/, the Laplace transform of X—or, equivalently, of FX—is defined as the
function

bFX.�/ D
1Z

0

e��x dFX.x/ D Ee��X ; � > 0 :

Tables of the most commonly used discrete probability distributions and distri-
butions with densities can be found in [ P §2.3].

• The method of generating functions is particularly useful in the study of discrete
random variables. This method is widely used also in other areas of mathematics as
a convenient tool for studying some special numerical sequences, whose structure
is not immediately obvious.

In probability theory, the generating function, G.s/, of the discrete random
variable X , which takes the values 0; 1; 2; : : : with probabilities p0; p1; p2; : : :
(pk � 0,

P1
kD0 pk D 1), is given by

G.s/ D EsX
�

D
1X

kD0
pks

k

�
; jsj � 1 :
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The distribution of the random variable X , namely, .pk/k�0, is uniquely deter-
mined from the generating functionG.s/ through the formula

pk D PfX D kg D G.k/.0/

kŠ
:

If the components of the discrete vector-valued random variable X D .X1; : : : ;

Xd /, take values in the set N D f0; 1; 2; : : :g, then its generating function, G.s/,
with s D .s1; : : : ; sd /, is defined by:

G.s1; : : : ; sd / D EsX11 : : : s
Xd
d D

1X

k1;:::;kdD0
pk1;:::;kd s

k1
1 : : : s

kd
d ;

where pk1;:::;kd D PfX1 D k1; : : : ; Xd D kd g, jskj � 1, k D 1; : : : ; d .
If the variablesX1; : : : ; Xd are independent, then

G.s1; : : : ; sd / D G1.s1/ : : : Gd .sd / ;

where Gk.sk/ D EsXkk , k D 1; : : : ; d .
The above definition of the generating function G.s/ assumes that the random

variableX is non-negative and takes values in the set N D f0; 1; 2; : : :g. For various
reasons it is useful to expand this construction also for the case where X takes
positive and negative values, i.e., PfX D kg D pk , for k D 0;˙1;˙2; : : : ;
and

P1
kD�1 pk D 1, without supposing that all p�1; p�2; : : : must vanish. The

generating function,G.s/, of any such random variable X is given by the formula

G.s/ D EsX D
1X

kD�1
pks

k ;

for those s for which EjsX j < 1.
Typically, generating functions of the above type are used when working with

the difference, X D X1 �X2, of two random variables, X1 and X2, that take values
in the set N D f0; 1; 2; : : :g. For example, if X1 and X2 are independent and have
generating functions, respectively,GX1.s/ and GX2.s/, then

GX.s/ � GX1�X2.s/ D GX1.s/GX2

�
1

s

�
:

In particular, if Xi is distributed with Poisson law of parameter �i , i D 1; 2, then
GXi .s/ D e��i .1�s/ and the generating functionGX.s/ of X D X1 �X2 is given by

GX.s/ D e�.�1C�2/Cs �1C 1
s �2 D e�.�1C�2/ � e

p
�1�2.tC 1

t / ;

where t D s
p
�1=�2.
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It is well known from analysis that, for every fixed x 2 R, one can write

ex.tC
1
t / D

1X

kD�1
tkIk.2x/ ;

where Ik.2x/ is the modified Bessel function of the first kind of order k, namely

Ik.2x/ D xk
1X

rD0

x2r

rŠ 	 .k C r C 1/
; k D 0;˙1;˙2; : : :

(Alternatively, one can say that for every fixed x 2 R, the generating function of the
sequence .Ik.2x//kD0;˙1;::: is ex.tC 1

t /.)
Thus, we find that the probability distribution of the random variable X D X1 �

X2 can be expressed as

PfX D kg D e�.�1C�2/
�
�1

�2

�k=2
In.2

p
�1�2/ ;

where k D 0;˙1;˙2; : : : .
For other examples related to the calculation of some concrete generating

functions, and for various applications of the method of generating functions, see,
Problems 2.6.28, 2.6.32, 7.2.18, and 8.8.19.

• As was noted earlier, the method of generating functions plays a significant role
in several important domains of mathematics; in particular, in discrete mathematics
and combinatorics.

In fact, it was the method of generating functions that brought to light the
algebraic methods for solving various combinatorial problems, thus giving rise to a
new direction in combinatorics, called algebraic combinatorics.

In general, many important combinatorial properties, operations and relations
can be interpreted in such a way that they become algebraic in nature.

As an illustration of the use of the algebraic properties of certain generating
functions for the purpose of a concrete combinatorial calculation, consider the
following lottery-problem. The tickets in a particular lottery are identified by the
six-digit numbers from 000000 to 999999. Suppose that one must compute the
probability that a randomly chosen ticket has a number in which the sum of the first
three digits equals the sum of the last three digits. Clearly, this is a combinatorial
problem, which comes down to computing the respective number of favorable
configurations. One may try to compute this number by brute force, i.e., by counting
those configurations one-by-one. However, as we are about to see, this number is
quite large (55; 252, to be precise) and straight counting would be rather impractical.

In contrast, the method of generating functions allows one to solve fairly quickly
a more general problem: calculate the probability for a randomly selected ticket in
a lottery with 102n tickets, identified with the 2n-digit numbers from 0 to 102n � 1,
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to have a number in which the sum of the first n digits equals the sum of the last
n digits. Assuming that n D 3, let X D .X1; : : : ; X6/ be a vector of independent
random variables, chosen so that pk D P fXi D kg D 1=10, for k D 0; 1; : : : ; 9,
and consider the generating function

GXi .s/ D
9X

kD0
pks

k D 1

10
.1C s C : : :C s9/ D 1

10

1 � s10
1 � s

:

Because of the independence of the random variablesXi , 1 � i � 6, one can write

GX1CX2CX3.s/ D GX1.s/ �GX2.s/ �GX3.s/ D 1

103

�
1 � s10
1 � s

�3
:

Analogous expression can be written also for GX4CX5CX6.s/.
Now consider the random variable Y D .X1 C X2 C X3/ � .X4 C X5 C X6/.

Clearly, due to the independence, one must have

GY .s/ D GX1CX2CX3.s/GX4CX5CX6
�1
s

�
D 1

106
1

s27

�
1 � s10
1 � s

�6
:

In addition, the coefficient q0 (for the term s0) in the expansion

GY .s/ D
X

k

qks
k

is nothing but the probability PfY D 0g, which is precisely the probability that the
sum of the first three digits on the randomly selected ticket equals the sum of the last
three digits. After a somewhat involved but otherwise straight-forward calculation,

from the expansions of .1 � s10/6, .1 � s/�6 and 1
s27

�
1�s10
1�s

�6
into power series (for

the powers sk , k D 0;˙1;˙2; : : :) one finds that

q0 D 55252

106
D 0:05525

(see also Problem 2.6.79).
In general, the generating function associated with an arbitrary numerical

sequence a D .an/n�0 is defined as the (formal) power series

Ga.x/ D a0 C a1x C a2x
2 C : : : ; x 2 R :

If the above series has a non-trivial radius of convergence, then it would define a true
(i.e., not just formal) function (on the respective interval of convergence). According
to the general theory of generating functions, the function Ga.x/ is nothing but
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a special “encryption” of the sequence a D .an/n�0, in that there is a bijective
correspondence

.an/ $ Ga.x/ :

It is a trivial matter to check that if .bn/ $ Gb.x/ and c is some constant, then

.an C cbn/ $ Ga.x/C cGb.x/:

Perhaps the most important features of the bijection “$” is the relation

 
nX

iD0
ai bn�i

!

n�0
$ Ga.x/ �Gb.x/ ;

which simply says that under the bijection “$” the convolution of the sequences
a D .an/n�0 and b D .bn/n�0 corresponds to the multiplication of their respective
generating functions. It is not hard to see that the formal operations introduced above
(addition, multiplication by scalars and multiplication between formal series) posses
the associativity, commutativity and distributivity properties, so that the space of all
formal series can be treated as an algebraic structure—for more details, see [27,46,
110, 111].

In addition to the power series Ga.x/, constructed from the sequence .an/, one
can define the exponential generating function

Ea.x/ D
X

n�0
an
xn

nŠ
;

the series again being understood as a formal series. Just as in the case of generating
functions, one has the one-to-one correspondence

.an/ $ Ea.x/

and the following properties hold

.an C cbn/ $ Ea.x/
�
cEb.x/

	
;

� nX

iD0
C i
naibn�i

�
$ Ea.x/Eb.x/:

Now we turn to some examples. If the sequence .an/n�0 is chosen so that an D 1,
n � 0, then

Ga.x/ D
1X

nD0
xn

�
D 1

1 � x ; jxj < 1
�
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and one has the formula

ŒGa.x/�
N D


 1X

nD0
xn
�N

D
1X

nD0
C n
NCn�1xn ;

which comes as a result of the following argument.
What is the coefficient for xn in the formal expansion of .1 C x C x2 C : : :/N ?

Since

.1CxCx2 C : : :/N D .1CxCx2 C : : :/.1CxCx2 C : : :/ : : : .1CxCx2 C : : :/;

it is clear that if one extracts from the first factor xn1 , extracts from the second factor
xn2 , : : : ; and, finally, extracts from the N th factor the term xnN , then one would
end up with the term xn1xn2 : : : xnN D xn. The total number of all such choices
.n1; n2; : : : ; nN /, with n1 Cn2 C : : :CnN D n and ni � 0, is simply the number of
all non-negative integer-valued solutions to the equation n1 C n2 C : : :C nN D n,
which, according to Problem 1.1.6, is precisely Cn

NCn�1.
This shows that the generating function of the sequence .C n

NCn�1/n�0 is simply
.1 � x/�N , jxj < 1. In particular, the following identity must hold:

1X

nD0
2�nC n

NCn�1 D 2N :

Furthermore, the generating function of the sequence .C n
N /n�0, with the under-

standing that Cn
N D 0, n > N , is nothing but .1C x/N ; in other words,

.1C x/N D
NX

nD0
C n
Nx

n :

The proof of the last relation is analogous to the proof of the formula for the
generating function of the sequence .C n

NCn�1/n�0.
Consider the identity

.1C x/N .1C x/M D .1C x/NCM ;

and observe that after expanding both sides in the powers xk and comparing the
respective terms one finds that

NX

jD0
C
j
NC

k�j
M D Ck

NCM :
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The last identity is known as “Vandermonde’s convolution,” or the hypergeometric
identity—see also Problem 1.2.2. Its derivation is a good illustration of the use of
the method of generating functions for deriving various combinatorial identities.

To conclude the discussion of the topic “generating functions,” we now turn to
the Stirling numbers of the second kind, SnN , and the Bell numbers,BN , which were
introduced earlier. Recall that SnN gives the number of all partitions D of a set A
with N elements, such that D consists of exactly n classes. Recall also that BN DPN

nD1 SnN gives the number of all possible partitions of the set A with jAj D N .
In Sect. A.1 we established the formula nN D Pn

kD1 SkN .n/k by using combina-
torial considerations. (Recall that S1N D SNN D 1, S0N D 0 and SnN D 0 for n > N .)
It is easy to see from this formula that for any N � 1 the polynomial

PN .x/ D xN �
NX

nD1
SnN .x/n ; x 2 R ;

has roots x D 1; : : : ; N . Since x D 0 is also a root, it follows that PN .x/ � 0.
Consequently, for any N � 1 and x 2 R one has

xN D
NX

nD1
SnN .x/n :

If we set S00 D 1, .x/0 D 1 and S0N D 0 for N � 1, one finds that

xN D
NX

nD0
SnN .x/n ;

for all N D 0; 1; 2; : : : and all x 2 R.
With the above relations in mind, one can write

X

n�0

�X

N�0
SnN

yN

N Š

�
.x/n D

X

N�0

yN

N Š

�X

n�0
SnN .x/n

�

D
X

N�0

.yx/N

N Š
D eyx D .ey/x D .1C .ey � 1//x D

X

n�0

1

nŠ
.ey � 1/n .x/n ;

due to the Taylor expansion .1 C z/x D P
n�0 zn

nŠ
.x/n. By comparing the left and

right sides of the above chain of identities, one finds that, for every n � 0, the
exponential generating function for the Stirling numbers of the second kind, SnN ,
N � 0, is given by the formula
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X

N�0
SnN

yN

N Š
D 1

nŠ
.ey � 1/n ; n � 0 :

(with the convention S00 D 1, S0N D 0 for N � 1 and SnN D 0 for N < n).
In much the same way one can obtain the generating function of the sequence

.SnN /n�0:
X

n�0
SnNx

n D e�xX

m�0

mNxm

mŠ
: .��/

Indeed, taking into account that .m/n D 0 form � n � 1, one can write

xnex D
X

i�0

xiCn

i Š
D
X

m�0
.m/n

xm

mŠ
:

Furthermore, the formulamN D P
n�0

SnN .m/n yields

ex
X

n�0
SnNx

n D
X

n�0
SnNx

nex D
X

n�0
SnN

�X

m�0
.m/n

xm

mŠ

�

D
X

m�0

xm

mŠ

�X

n�0
SnN .m/n

�
D
X

m�0

mNxm

mŠ
;

which gives .��/.
With x D 1 .��/ gives Dobinski’s formula for the Bell numbers:

BN D e�1X

m�0

mN

mŠ
:

The definition of the Stirling numbers of the second kind, SnN , was based on the
combinatorial interpretation of these quantities as the total number of partitions of
a set A that has N elements into n disjoint classes. Then we showed that xN DPN

nD0 SnN .x/n, for every N � 0.
The algebraic Stirling numbers of the first kind, snN , 0 � n � N , can be defined

by the relation

.x/N D
NX

nD0
snN x

n: .�/

The combinatorial interpretation of the numbers snN can be explained as follows. Let
� D .�1; : : : ; �N / be any permutation of the numbers .1; : : : ; N / and let cnN denote
the number of permutations with exactly n cycles. (For example, the permutation�
1; 2; 3; 4; 5
2; 1; 4; 5; 3

	
has two cycles.) One can then show that
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cnN D cn�1
N�1 C .N � 1/cnN�1

(with c00 D 1), and conclude that

NX

nD0
cnN x

n D x.x C 1/ : : : .x CN � 1/:

By comparing the above generating function for the sequence c0N ; c
1
N ; : : : ; c

N
N with

the generating function in .�/, for the sequence of Stirling numbers of the first kind,
s0N ; s

1
N ; : : : ; s

N
N , one finds that

cnN D .�1/N�nsnN :

This shows that the Stirling numbers of the first kind snN coincide up to their sign
with the number of permutations of the set .1; : : : ; N /, that have precisely n cycles.

The generating functionG.s/ D EsX , jsj � 1, associated with a discrete random
variable X that takes values in the set N D f0; 1; 2; : : :g with probabilities pk D
PfX D kg, k 2 N , can be written as

G.s/ D
1X

kD0
pks

k ;

and therefore can be identified with the generating function of the numerical
sequence .pk/k�0.

Closely related to the notion of generating function is the notion of moment
generating function (see Problem 2.6.32). The moment generating function of the
random variable X is defined as

M.s/ D EesX :

Notice that if X � 0 (a. e.) the expectation EesX would be well defined for �1 <
s < 0. Assuming that all moments m.k/ D EXk , k � 1, are finite, the moment
generating functionM.s/ can be expanded into the (formal) series

M.s/ D
1X

kD0
m.k/ s

k

kŠ
;

which is nothing but the exponential generating function for the sequence .m.k//k�0.
As was noted earlier, in addition to the usual momentsm.k/ D EXk , in probability
theory it is often useful to work with the factorial moments

.m/k D E.X/k � EX.X � 1/ : : : .X � k C 1/
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and the binomial moments

b.k/ D E
.X/k

kŠ
D .m/k

kŠ

(the term “binomial” is justified by the relation b.k/ D ECk
X , where Ck

X D
.X/k=kŠ).

The sequence of factorial moments ..m/k/k�0 and the sequence of binomial
moments .b.k//k�0 give rise, respectively, to the exponential generating function

.M/.s/ D
1X

kD0
.m/k

sk

kŠ

and the generating function

B.s/ D
1X

kD0
b.k/s

k :

Clearly, one must have

M.s/ D G.es/ and .M/.s/ D B.s/ D G.s C 1/ :

It is useful to point out that the following two identities, established earlier, in which
SnN and snN stand for the Stirling numbers, respectively, of the second and the first
kind,

xN D
1X

nD0
SnN .x/n; .x/N D

1X

nD0
snN x

n ;

entail the following connection between the momentsm.n/ D EXn and the factorial
moments .m/n D E.X/n, n � 0:

m.N/ D
NX

nD0
SnN .m/n ; .m/N D

NX

nD0
snNm

.n/ :

• It is useful to notice that many special sequences in mathematics (e.g.,
Bernoulli, Euler, etc.) and special polynomials (Bernoulli, Euler, Hermite, Appell,
etc.) are defined in terms of generating functions.

(a) The Bernoulli numbers, b0; b1; b2; : : : ; and the Bernoulli polynomials,
B0.x/; B1.x/; B2.x/; : : : ; are defined through the respective exponential generating
functions as:

s

es � 1 D
1X

nD0
bn
sn

nŠ
and

sexs

es � 1
D

1X

nD0
Bn.x/

sn

nŠ
:
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(The first several Bernoulli numbers are: b0 D 1, b1 D � 1
2
, b2 D 1

6
, b4 D � 1

30
,

b6 D 1
42

, b8 D � 1
30

, b0.x/ D 1, B1.x/ D x � 1
2
, B2.x/ D x2 � x C 1

6
, B3.x/ D

x3 � 3
2
x2 C 1

2
x—see [109], for example.) All odd-numbered Bernoulli numbers

(except for b1 D � 1
2
) are equal to zero. What follows is a list of some key properties

and relations:
1. bN D PN

nD0 C n
N bN�n, N D 2; 3; : : : ;

2. all numbers bN are rational;
3. BN .0/ D bN , BN .1/ D .�1/N bN , N � 0;
4. BN .x/ D PN

nD0 C n
N bnx

N�n, N � 1;
5. B 0

N .x/ D NBN�1.x/, N � 1.

(b) The Euler numbers, e0; e1; e2; : : : ; and the Euler polynomials E0.x/; E1.x/;
E2.x/; : : : ; are also defined through the exponential generating functions as:

2es

e2s C 1
D

1X

nD0
en
sn

nŠ
and

2exs

es C 1
D

1X

nD0
En.x/

sn

nŠ
:

Since 2es

e2sC1 D 1
cosh s , the exponential generating function for the sequence of Euler

numbers e0; e1; e2; : : : is simply 1
cosh s .

The above definitions imply that:

1. eN D 2NEN .
1
2
/, N � 0;

2. EN.x/ D PN
nD0 C n

NEn
1
2n

�
x � 1

2

	N�n
, N � 0;

3. E 0
N .x/ D NEN�1.x/, N � 1;

4. all odd-numbered Euler numbers are equal to zero, while even-numbered
Euler numbers are integers.

The first several Euler numbers can be computed as: e0 D 1, e2 D �1, e4 D 5,
e6 D �61, e8 D 1; 385—see [109].

(c) The Hermite polynomials are defined somewhat differently in analysis and
probability theory.

The Hermite polynomials,Hn.x/, n � 0, of the type commonly used in analysis,
are defined as

Hn.x/ D .�1/nD
n .x/

 .x/
;

where .x/ D 1p
2�
e�x2 . The respective exponential generating function is given by

1X

nD0
Hn.x/

sn

nŠ
D e2xs�s2 ; s 2 R ; x 2 R :

The Hermite polynomials, Hen.x/, n � 0, of the type commonly used in
probability theory, are defined as:

Hen.x/ D .�1/nD
n'.x/

'.x/
; n � 0 ;
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where '.x/ D 1p
2�
e�x2=2 is the density of the standard distribution N .0; 1/. (Note

that in [ P §2.11]—and, commonly, in probability theory—the above polynomials
Hen.x/ are denoted byHn.x/.) The exponential generating function associated with
the sequence Hen.x/, n � 0, is given by:

1X

nD0
Hen.x/

sn

nŠ
D exs�s2=2 ; s 2 R ; x 2 R :

One can easily verify the relation

Hen.x/ D 2�n=2Hn.2
�1=2x/ :

The first several Hermite polynomials can be computed as:

H0.x/ D 1; He0.x/ D 1;

H1.x/ D 2x; He1.x/ D x;

H2.x/ D 4x2 � 2; He2.x/ D x2 � 1;
H3.x/ D 8x3 � 12x; He3.x/ D x3 � 3x :

A more general version of the Hermite polynomials, written as Hen.x; t/, n � 0,
x 2 R, t 2 RC, can be defined through the relation

1X

nD0
Hen.x; t/

sn

nŠ
D exs�

s2

2 t ; s 2 R ; x 2 R :

The polynomials Hen.x; t/, n � 0, play an important role in the study of the
Brownian motion, due to the following property: if B D .Bt /t�0 is any standard
Brownian motion, then the following processes can be claimed to be martingales
relative to the filtration of B D .Bt /t�0:

.Hen.Bt ; t//t�0; for any n � 0; and

�
esBt�

s2

2 t

�

t�0
; for any s 2 R :

Note that in the literature the polynomials Hen.x; t/ are usually written as Hn.x; t/,
the exact meaning being made clear from the context.

(d) Suppose that X is some random variable and the associated generating
function,

G.s/ D EesX ;

is finite for all jsj < �, for some � > 0.
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We now define the function

A.s; x/ D esx

G.s/
; x 2 R; jsj < � :

In actuarial and financial mathematics the map xÝ esx

G.s/
is called Escher’s transform

(of the random variable X )—see [ P §7.11]. The function A.s; x/ gives rise to the
Appell polynomials (also known as Sheffer polynomials)Q0.x/;Q1.x/; : : : through
the expansion

A.s; x/ D
1X

kD0
Qk.x/

sk

kŠ
:

In other words, A.s; x/ D esx

EesX is simply written as the generating function of the
sequence of polynomials .Qk.x//k�0.

The generating function of a random variables X that is uniformly distributed in
the interval Œ0; 1� is

G.s/ D EesX D es � 1

s
:

Consequently, in this special case one has

A.s; x/ D sesx

es � 1

and the Appell polynomials Qk.x/ are nothing but the Bernoulli polynomials
Bk.x/, considered earlier.

If X is a Bernoulli random variable with PfX D 1g D PfX D 0g D 1=2, then
its generating function is

G.s/ D EesX D es C 1

2

and, consequently,

A.s; x/ D 2esx

es C 1
;

and that in this case the Appell polynomials coincide with the Euler polynomials.
A standard normal (N .0; 1/) random variable X has generating function

G.s/ D es
2=2 ;

and it is easy to check that in this case one has

A.s; x/ D exs�s2=2 ;

and that the Appell polynomials Qk.x/ coincide with the Hermite polynomials
Hek.x/.
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Next, let ~1; ~2; : : : denote the cumulants (a.k.a. semi-invariants) of the random
variable X . The following relations are easy to verify:

Q0.x/ D 1;

Q1.x/ D x � ~1;

Q2.x/ D .x � ~1/
2 � ~2;

Q3.x/ D .x � ~1/
3 � 3~2.x � ~1/ � ~3:

In the special case where X � N .0; 1/, the cumulants are ~1 D 0, ~2 D 1, and
~3 D ~4 D : : : D 0. As a result, one can write:

Q0.x/ D He0.x/ D 1;

Q1.x/ D He1.x/ D x;

Q2.x/ D He2.x/ D x2 � 1;

Q3.x/ D He3.x/ D x3 � 3x:

Notice that in order to claim that the polynomials Qk.x/, k D 1; : : : ; n, are
uniquely defined it is enough to require that EjX jn < 1. Furthermore, one has
(with the understanding that Q0.x/ � 1):

Q0
k.x/ D kQk�1.x/; 1 � k � n :

The above identities are known as the Appell relations.
• Given any non-negative random variable X , defined on .˝;F ;P/, and given

any �-sub-algebra G � F , the conditional expectation of X relative to G is any
non-negative (not necessarily finite, i.e., with values in the extended real line R)
random variable E.X j G / D E.X j G /.!/ that shares the following two properties

1. E.X j G / is G -measurable,
2. For every set A 2 G one has:

EŒXIA� D EŒE.X j G /IA� :

For a general (i.e., not necessarily non-negative) random variableX ( D XC �X�)
the conditional expectation ofX relative to the �-sub-algebra G � F is considered
to be well defined if one has (P-a. e.)

minŒE.XC j G /.!/;E.X� j G /.!/� < 1 ;
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in which case one can write

E.X j G /.!/ D E.XC j G /.!/� E.X� j G /.!/ :

If X.!/ D IA.!/, i.e., if X is the indicator of the set A 2 F , the conditional
expectation E.IA j G / D E.IA j G /.!/ is usually written as P.A j G /, or as
P.A j G /.!/, and is called the conditional probability of A relative to the �-algebra
G � F .

If the �-algebra G is generated by the random element Y D Y.!/ (i.e., G D
GY D �.Y /), the quantities E.X j GY / and P.A j GY / are usually written as E.X jY /
and P.A jY / and are referred to, respectively, as the conditional expectation of X
given Y and the conditional probability of the event A given Y . (See [ P §2.7].)

• Just as in mathematical analysis one deals with various types of convergence, in
probability theory, too, one deals with various types of convergence for sequence of

random variables: convergence in probability (Xn
P!X ); convergence almost surely

or almost everywhere (Xn ! X (P-a. e.)); convergence in distribution (Xn
d! X ,

or Xn
law! X , or Law.Xn/ ! Law.X/, or Law.Xn/

w! Law.X/); Lp-convergence,

p > 0, (Xn
Lp! X ); point-wise convergence (Xn.!/ ! X.!/, ! 2 ˝). (See

[ P §2.10].)
• In addition to the various types of convergence of sequences of random

variables, in probability theory one also deals with convergence of probability
measures and convergence of probability distributions and their characteristics.

One of the most important types of convergence of probability measures is the

weak convergence Pn
w! P , for a given sequence of probability measures Pn, n �

1, and a probability measure P , defined on various metric spaces, including the
spaces Rn, R1, C and D that were introduced earlier.

Many classical results from probability theory (e.g., the central limit theorem,
Poisson theorem, convergence to infinitely divisible distributions, etc.), are es-
sentially statements about weak convergence of certain sequences of probability
measures—see [ P Chap. 3].

• Most fundamental results in probability theory—e.g., the zero-one law, the
strong law of large numbers, the law of the iterated logarithm—are concerned
exclusively with properties that hold “with Probability 1” (or “almost surely”). A
particularly interesting and useful result is contained in the Borel–Cantelli lemma:

Let A1; A2; : : : be any sequence of events and let fAn i. og ( � limn An � T
1

nD1

S
1

kDn Ak)
stand for the set of those ! 2 ˝ which belong to infinitely many events from the sequence
A1; A2; : : : Then

(a)
P

1

nD1 P.An/ < 1 implies that PfAn i. o.g D 0;
(b) If the events A1; A2; : : : are independent, then

P
1

nD1 P.An/ D 1 implies that
PfAn i. o.g D 1.

(See [ P Chap. 4] for more details.)
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A.4 Stationary (in Strict Sense) Random Sequences

• The random sequence X D .X1;X2; : : :/, defined on the probability space
.˝;F ;P/ is said to be stationary in strict sense, if its distribution law, Law.X/,
(or, equivalently, its probability distribution,PX ) coincides with the distribution law,
Law.�kX/, of the “shifted” sequence �kX D .XkC1; XkC2; : : :/, for any k � 1.

It is convenient to study the probabilistic properties of such sequences (as is done
[ P Chap. 5]) by using the notions, ideas and methods of the theory of dynamical
systems.

• The main object of study in dynamical systems theory are the (measurable)
measure-preserving transformations of a given configuration space.

The map T W˝ ! ˝ is said to be measurable if, for any given A 2 F , the
set T �1A D f! W T! 2 Ag belongs to F , or T �1A 2 F for short. The map
T W˝ ! ˝ is said to be a measure preserving transformation (of the configuration
space ˝) if it is measurable (for F ) and

P.T �1A/ D P.A/ ; for every A 2 F :

The intrinsic connection between “stationary in strict sense random sequences” and
“measure-preserving transformations” can be explained as follows.

Let T be any measure-preserving transformation and let X1 D X1.!/ be any
random variable on ˝ (automatically measurable for F ). Given any n � 1, define
Xn.!/ D X1.T

n�1!/, where T n�1 D T ıT ı � � � ıT (.n�1/-times) is the .n�1/st

power of T (as a transformation of ˝). The sequence X D .X1;X2; : : :/ is easily
seen to be stationary in strict sense.

The converse statement can also be made, if one is allowed to reconstruct the
probability space. Specifically, if X D .X1;X2; : : :/ is any stationary in strict sense
random sequence (defined on some probability space .˝;F ;P/), then it is possible
to produce a probability space .e̋ ; eF ;eP/, on which one can construct a measure-
preserving (foreP) transformation eT W e̋ ! e̋ and a random variable eX1 D eX1.e!/,
so that Law.X/ D Law.eX/, where eX D .eX1.e!/; eX1.eTe!/; : : :/.

The main results of [ P Chap. 5] are concerned with the fundamental properties
of certain measure-preserving transformations, such as recurrence (“Poincaré re-
currence theorem”), ergodicity and mixing. The key result in that chapter is the
Birkhoff–Khinchin theorem, one invariant of which (that covers both measure-
preserving transformations and stationary in strict sense random sequences) can be
stated as follows:

(a) Let T be some measure-preserving ergodic transformation on .˝;F ;P/ and
let 
 D 
.!/ be any random variable on ˝ with Ej
j < 1. Then

lim
n

1

n

n�1X

kD0

.T k!/ D E
 .P-a. e./ :
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(b) Let X D .X1;X2; : : :/ be any stationary in strict sense ergodic sequence of
random variables on .˝;F ;P/, for which EjX1j < 1. Then

lim
n

1

n

n�1X

kD0
Xk.!/ D EX1 :

A.5 Stationary (in Broad Sense) Random Sequences

From the point of view of both theory and practice, in the study of random sequences
of the form X D .Xn/, it is important to allow the random variables Xn to take
complex values and to be defined for all n 2 Z D f0;˙1;˙2; : : :g. We will then
write X D .: : : ; X�1; X0;X1; : : :/ and will suppose that each Xn is a complex
random variable of the form (an C ibn) with EjXnj2 D E.an2 C bn

2/ < 1 for
all n 2 Z—see [ P §6.1].

Our main assumption “stationarity in broad sense” comes down to EXn D EX0
and cov.XnCm;Xm/ D cov.Xn;X0/, for all n;m 2 Z.

Without any loss of generality we may and do suppose that EX0 D 0, so that
cov.Xn;X0/ D EXnX0. The function R.n/ D EXnX0, n 2 Z, is called the
covariance function of the sequence X .

• The following two results (the Herglotz theorem and the spectral representation
theorem) demonstrate that, by nature, a stationary in broad sense random sequence
is nothing but an infinite sum of harmonics with random amplitudes, the summation
being taken (with an appropriate limiting procedure) over the entire range of
frequencies of the harmonics.

The first result (see [ P §6.1]) states that every covariance function R.n/, n 2 Z,
admits the spectral representation:

R.n/ D
�Z

��
ei�n F.d�/ ; for all n 2 Z ;

where F D F.B/, B 2 B.Œ�; �//, is some finite real-valued measure, and the
integral is understood in the sense of Lebesgue–Stiltjes.

The second result (see [ P §6.3]) gives the spectral representation of the random
sequence X D .Xn/n2Z :

Xn D
�Z

��
ei� n Z.d�/ (P-a. e.) ; for all n 2 Z ;
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where Z D Z.�/, � 2 B.Œ��; �//, is some orthogonal (generally, complex-
valued) random measure with EZ.�/ D 0 and EjZ.�/j2 D F.�/ (recall that in
our setting EX0 D 0).

If they exist, the spectral function F D F.d�/ and the spectral density f D
f .�/ (related by F.B/ D R

B
f .�/ d�, B 2 B.Œ��; �//), play a fundamental

role in the spectral and correlation analysis of the random sequence X , providing a
description of the “spectral composition” of the covariance function.

At the same time, the relation EjZ.�/j2 D F.�/ reveals the connection between
the spectral function and the “stochastic spectral component” in the representation
Xn D R �

�� e
i�n Z.d�/, n 2 Z.

• Given the intrinsic nature of the spectral properties outlined above, it is
easy to understand why results of this type are so important in the statistics of
stationary sequences and the statistics of random processes in continuous time. More
specifically, these features allow one to construct “reasonably good” estimates of the
covariance function, the spectral density and their characteristics (see [ P §5.4]). All
of this is instrumental for building probabilistic models of observable phenomena,
which are consistent with the data derived from experiments.

Finally, we note that the pioneering work of A. N. Kolmogorov and N. Wiener
on the theory of filtering, extrapolation and interpolation of random sequences and
processes, was developed almost entirely in the context of stationary in the broad
sense random sequences and processes (see [ P §6.6]).

A.6 Martingales

In the very early stages of the development of the general theory of martingales
it was recognized that it would be extremely useful to amend the underlying
probability space .˝;F ;P/ with a flow of �-algebras, i.e., a filtration, of the form
.Fn/n�0, where Fn � F . The filtration has the meaning of “flow of information,”
i.e., each Fn comprises all “pieces of information” that an observer may be able to
receive by time n. The structure .˝;F ; .Fn/n�0;P/ is called filtered probability
space. With any such structure one can associate the notions “adapted” (to the
filtration .Fn/n�0), “predictable,” “stochastic sequence,” “martingale,” “Markov
times”, “stopping times,” etc.

• The sequence of random variables X D .Xn/n�0, defined on the structure
.˝;F ; .Fn/n�0;P/, is said to be adapted to the filtration .Fn/n�0 if Xn is Fn-
measurable for every n � 0. The same sequence is said to be a martingale on
.˝;F ; .Fn/n�0;P/ if, in addition to being adapted to .Fn/n�0, it is integrable, in
that EjXnj < 1, n � 0, and has the property

E.Xn j Fn�1/ D Xn�1 ; for all n � 1 :
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If the equality in the above relation is replaced by the inequality E.Xn j Fn�1/ �
Xn�1, or the inequality E.Xn j Fn�1/ � Xn�1, then the sequence X D .Xn/n�0 is
said to be, respectively, submartingale and supermartingale.

• The class of martingales includes many special sequences of random vari-
ables, encountered in many important practical applications (see [ P §7.1]). More
importantly, the general theory of martingales provides methods, insights and
computational tools that are indispensable for certain aspects of probability theory
and mathematical statistics—especially in connection with some important practical
applications. The key insights from the martingale theory are: the invariance of
the martingale property under random time-change (see [ P §7.2]), the fundamental
inequalities for martingales and submartingales (see [ P §7.3]) and the convergence
theorems for martingales and submartingales (see [ P §7.4]).

Some of the most important practical application of martingale theory, namely:
the probability for ruin in insurance, the martingale characterization of the absence
of arbitrage in financial markets, the construction of hedging strategies in complete
financial markets and the optimal stopping problem, are discussed in [ P §7.10]
through [ P §7.13].

A.7 Markov Chains

In what follows we will expand and reformulate some of the main results from
the general theory of Markov chains that was developed in [ P Chap. 8]. The
notation and the terminology introduced in [ P Chap. 8] will be assumed, but will be
modified and expanded, in connection with some new topics that were not included
in [ P Chap. 8].

• Similarly to martingales, a generic Markov chain (in broad sense), X D
.Xn/n�0, can be treated as a sequence of random variables that are defined on some
filtered probability space .˝;F ; .Fn/n�0;P/ and take values in some set E , called
the “state space” of the Markov chain X . The state space E will be endowed with
the structure of a measurable space and will be denoted by .E;E /. As a sequence
of random variables, the Markov chain X D .Xn/n�0 will always be assumed to
be adapted to the filtration .Fn/n�0, in the sense that Xn is Fn=E -measurable for
every n � 0. The fundamental property that characterizesX D .Xn/n�0 as a Markov
chain in broad sense can be stated as follows for every n � 0 and every B 2 E one
has

P.XnC1 2 B j Fn/.!/ D P.XnC1 2 B jXn/.!/ (P-a. e.) :

(With a slight abuse of the notation, we will write P.XnC1 2 B jXn.!// instead of
P.XnC1 2 B jXn/.!/.)

If the filtration .Fn/n�0 happens to be the natural filtration of the sequence
X D .Xn/n�0, i.e., Fn D FX

n � �.X0;X1; : : : ; Xn/ for every n � 0, then the
Markov property in broad sense becomes Markov property in strict sense, and, if
this property holds, the sequence X D .Xn/n�0 is said to be a Markov chain.
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In the special case where .E;E / is a Borel space, [ P §2.7, Theorem 5]
guarantees that for every fixed n � 0 there is a regular conditional probability
Pn.xIB/, x 2 E , B 2 E , with the property that for every B 2 E one can write

P.Xn 2 B jXn�1.!// D Pn.Xn�1.!/IB/; for P-a. e.! 2 ˝ :

In the theory of Markov processes, the regular conditional probabilities Pn.xIB/,
n � 0, are called transition functions (from E to E ), or Markov kernels. In the
special case where the transition functions do not depend on n, i.e., one can write
Pn.xIB/ D P.xIB/, the associated Markov chain (in broad sense or in strict sense)
is said to be homogeneous.

Another important element of the construction of any Markov chain, in addition
to the transition functions Pn.xIB/, n � 0, is the initial distribution � D �.B/,
B 2 E , which is simply the probability distribution of the random variable X0, i.e.,

�.B/ D PfX0 2 Bg ; B 2 E :

The initial distribution and the transition functions, i.e., the entire collection .�; P1;
P2; : : :/, which in the homogeneous case comes down to the pair .�; P /, uniquely
determines the probability distribution (as a random sequence) of the Markov chain
X D .X0;X1; : : :/.

• Following the modern treatment of the subject, [ P Chap. 8] adopts the view that
the main building blocks in the general theory of Markov chains are the state space
.E;E / and the collection of transition functions Pn.xIB/, x 2 E , B 2 E , n � 0

from E to E (which reduces to a single transition function P.xIB/, x 2 E , B 2 E
in the homogeneous case). This was a departure from the classical framework,
in which the starting point is the filtered probability space .˝;F ; .Fn/n�0;P/,
the state space .E;E /, and the sequence X D .X0;X1; : : :/ of E-valued random
variables, chosen so that each Xn is Fn=E -measurable. According to the Ionescu
Tulcea Theorem (see [ P §2.9]), for any given state space .E;E / and any given
family of transition functions fromE to E , one can take .˝;F / to be the canonical
coordinate space .E1;E 1/ and then construct a family of probability measures,
fPx; x 2 Eg, on .˝;F /, in such a way that the sequence of coordinate maps,
X D .X0;X1; : : :/, given by Xn.!/ D xn for ! D .x0; x1; : : :/, n � 0, forms
a Markov chain under the probability measure Px , with PxfX0 D xg D 1, for
every x 2 E , i.e., under the probability measure Px (on .E1;E 1/) the sequence
of coordinate maps X D .X0;X1; : : :/ (from˝ into E) behaves as a Markov chain
that starts from x 2 E with probability 1.

Given any probability law � D �.B/, B 2 E (think of this law as the “initial”
distribution of some Markov chain), we denote by P� the probability measure on
.E1;E 1/ given by P�.A/ D R

E
Px.A/ �.dx/, A 2 E 1. It is not very difficult

to check that under the probability measure P� the sequence of coordinate maps X
behaves as a Markov chain with initial distribution � , i.e., P�fX0 2 Bg D �.B/,
for every B 2 E .
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• In order to formulate two new variants of the Markov property—the so called
generalized Markov property and the strong Markov property—we must introduce
the shift operator � , its “powers” �n, and the “random power” �� , for any given
Markov time � . The shift operator � W˝ ! ˝ is defined as

�.!/ D .x1; x2; : : :/ ; for ! D .x0; x1; : : :/ :

In other words, the operator � “shifts” the time-scale one period forward (period
1 becomes period 0, period 2 becomes period 1, and so on), as a result of which
the trajectory .x0; x1; : : :/ turns into .x1; x2; : : :/. (Recall that in [ P Chap. 5], which
deals with stationary in strict sense random sequences and the related dynamical
systems, we also had to introduce certain transformations of ˝ into itself, which
were denoted by T .)

If �0 D I stands for the identity map �0.!/ D !, the n-th power, �n, of the
operator � , is defined for n � 1 as �n D �n�1 ı � ( D � ı �n�1), i.e., �n.!/ D
�n�1.�.!//.

Given any Markov time � D �.!/ with � � 1, we denote by �� the operator
that acts only on the set ˝� D f! W �.!/ < 1g in such a way that �� D �n on the
set f� D ng, i.e., if ! 2 ˝ is such that �.!/ D n, then

�� .!/ D �n.!/ :

If H D H.!/ is any F -measurable function of ! 2 ˝ (such as, for example,
� D �.!/, or Xm D Xm.!/), then the functionH ı �n is defined as .H ı �n/.!/ �
H.�n.!//, ! 2 ˝ .

If � is a Markov time, then the function H ı �� is defined on the ˝� D f! W
�.!/ < 1g so that for every fixed n 2 f0; 1; : : :g one has H ı �� D H ı �n
everywhere in the subset f� D ng � ˝� , i.e., .H ı �� /.!/ D .H ı �n/.!/ D
H.�n.!//, for every ! 2 f� D ng, and every n D 0; 1; : : : .

In particular, the above relations imply that, for any m; n D 0; 1; : : : and for any
Markov time � , one has

Xm ı �n D XmCn;

Xm ı �� D XmC� on the set ˝� :

Furthermore, for every two finite Markov times, � and � , one has

X� ı �� D X�ı��C� :

The operators �nW˝ ! ˝ give rise to the inverse operators ��1
n W F ! F ,

defined in the obvious way as

��1
n .A/ D f! W �n.!/ 2 Ag ; A 2 F :
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If in the last relation the set A is replaced by the set f! W Xm.!/ 2 Bg, for some
B 2 E , then one can write

��1
n .A/ D f! W XmCn.!/ 2 Bg ;

which is the same as
��1
n .X�1

m .B// D X�1
mCn.B/ :

(Additional properties of the operators �n, �� , ��1
n , etc., can be found in some of the

problems included in Sect. 8.2 in the present book)
• With the help of the operators �n one can establish (see [ P §8.2, Theorem 1])

the so called generalized Markov property: if H D H.!/ is any bounded (or
non-negative) and F -measurable function, then for every choice of the initial
distribution � and for every integer n � 0 one has

E�.H ı �n j FX
n /.!/ D EXn.!/H (P� -a. e.) :

In the above relation E� denotes the averaging over the measure P� and the
expressionEXn.!/H is understood as  .Xn.!//, where  .x/ D ExH .

In fact, the generalized Markov property can be generalized (i.e., weaken) even
further, in that one can replace the deterministic time n in the above relation with
some finite Markov time � . To be precise, one can claim the following: if .Hn/n�0
is any family of bounded (or non-negative) and F -measurable functions and if �
is any finite Markov time, then the Markov property implies the so called strong
Markov property, according to which for any initial distribution � one has

E�.H� ı �� j FX
� /.!/ D  .�.!/;X�.!/.!// (P� -a. e.) ;

where  .n; x/ D ExHn.
Note that the expressionH� ı �� D .H� ı �� /.!/ is understood as .Hn ı �n/.!/

for ! 2 f� D ng.
• As was pointed out earlier, the distribution (as a random sequence) of any

homogeneous Markov chain X D .Xn/n�0 with state space .E;E /, is completely
determined by the initial distribution � D �.dx/ and the transition function
P D P.xIB/, x 2 E , B 2 E . Furthermore, the distributions Px , x 2 E , which are
defined on .E1;E 1/ are determined only by the transition functionP D P.xIB/.

It is interesting that the concept of transition functions (or Markov kernels) also
lies in the core of the (entirely deterministic) domain of mathematical analysis,
which is known as potential theory. In fact, there is an intrinsic connection between
potential theory and the theory of homogeneous Markov chains. This connection
has been extremely beneficial for both fields.

We will now introduce some important notions in both potential theory and the
Markovian theory, which will be needed later in this section.

The transition function P D P.xIB/, x 2 E , B 2 E , gives rise to the linear
(one step) transition operator Pg, which acts on functions g D g.x/ according to
the formula
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Pg.x/ D
Z

E

g.y/ P.xI dy/ :

(It is quite common to also write .Pg/.x/.) The domain of the operator P consists of
all g 2 L 0.E;E I R/ (� the space of all E -measurable functions on E with values
in R), for which the integral

R
E
g.y/ P.xI dy/ is well defined for all x 2 E . Clearly,

this integral is well defined also on the class of all non-negative and E -measurable
functions on E , which class we denote by L 0.E;E I RC/, or on the class of all
bounded functions L 0

b .E;E I R/.
Letting I denote the identity operator Ig.x/ D g.x/, one can define the n-step

transition operator Pn, as Pn D P.Pn�1/ for n � 1, or, equivalently, Pn D Pn�1.P/
for n � 1, with the understanding that P0 D I.

It is clear that one has

Png.x/ D Exg.Xn/

for every g 2 L 0.E;E I R/, for which the integral
R
E
g.y/ P n.xI dy/ is well

defined, where Pn D Pn.xI dy/ is the n-step transition function (see [ P §8.1]).
Given any Markov time � for the filtration .FX

n /n�0 (FX
n D �.X0;X1; : : : ;

Xn/), let P� denote the operator that acts on functions g D g.x/ according to the
formula

P�g.x/ D Ex

I.� < 1/g.X�/

�
:

Notice that if g.x/ � 1, then

P�1.x/ D Pxf� < 1g :

The operators Pn, n � 0, give rise to the (generally, unbounded) operator

U D
X

n�0
Pn ;

which is called potential of the operator P (or potential of the associated Markov
chain).

For any g 2 L 0.E;E I RC/ one has

Ug D
X

n�0
Png D .I C PU/g ;

which may be abbreviated as
U D I C PU :

The function Ug is usually called the potential of the function g.
If the function g.x/ is taken to be the indicator of the set B 2 E , i.e., g.x/ D

IB.x/, then NB D P
n�0 IB.Xn/ is simply the number of visits of the chain X to

the set B , and one can write:
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UIB.x/ D
X

n�0
ExIB.Xn/ D ExNB :

For any fixed x 2 E , treated as a function of B 2 E , the quantity U.x;B/ D
UIB.x/ gives a measure on E , which is sometimes called potential measure.
Choosing B to be a singleton, namely B D fyg, for y 2 E , turns U.x; fyg/ into a
function of x; y 2 E , which is usually denoted by G.x; y/ and is called the Green
function (of the operator P , or, of the associated Markov chain). The meaning of
the Green function should be clear: G.x; y/ D ExNfyg is nothing but the average
number of visits to state y 2 E , starting from state X0 D x 2 E .

Analogously to the potential U of the operator P , one can define the kernelQ D
Q.xIB/ of the transition function P D P.xIB/ by the formula

Q.xIB/ D
X

n�0
P n.xIB/ � D IB.x/C PQ.xIB/	 :

Since PnIB.x/ D Pn.xIB/, it is clear that U.xIB/ D Q.xIB/.
• The operator P gives rise to another important operator, namely

L D P � I;

where, as usual, I denotes the identity operator. In Markovian theory the operator L
is called the generating operator (a.k.a. the discrete generator) of the homogeneous
Markov chain with transition function P D P.xIB/. The domain, DL, of the
operator L is the space of all g 2 L 0.E;E I R/ for which the expression Pg � g is
well defined.

If h 2 L 0.E;E I RC/ (i.e., h takes values in RC and is E -measurable), then,
since U D I C PU, its potential H D Uh satisfies the relation

H D hC PH :

Consequently, ifH 2 DL, thenH solves the (non-homogeneous) Poisson equation

LV D �h ; V 2 DL :

If one can find a solution, W 2 L 0.E;E I RC/, of the equation W D hC PW
(or to the equation LW D �h, when W 2 DL), then, since W D h C PW � h,
one can show by induction that W � Pn

kD0 Pkh for any n � 1, so that W � H . As
a result, the potential H D Uh is the smallest solution to the system V D hC PV
within the class L 0.E;E I RC/ (remind that Uh.x/ D Ex

P1
kD0 h.Xk/).

• A function f D f .x/, x 2 E , that belongs to the class L 0.E;E I RC/, is
said to be excessive for the operator P (or, for the associated Markov chain with
transition function P D P.xIB/), if

Pf � f ;
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or, which amounts to the same, Exf .X1/ � f .x/, for all x 2 E . In particular, the
potentialH D Uh of any function h 2 L 0.E;E I RC/ is an excessive function.

The function f 2 L 0.E;E I RC/ is said to be harmonic (or invariant), if

Pf D f ;

i.e., Exf .X1/ D f .x/, for all x 2 E .
The connection between potential theory (to which the notion of excessivity

belongs) and probability theory (specifically, the martingale theory) becomes
evident from the following statement: if X D .Xn/n�0 is any homogeneous Markov
chain with initial distribution � and with transition function P D P.xIB/, if
the associated distribution in the space .E1;E 1/ is P� , and if f D f .x/ is
any P-excessive function, then one can claim that Y D .Yn;FX

n ; P�/n�0, with
Yn D f .Xn/, is a non-negative supermartingale sequence, in that:

Yn is FX
n -measurable; for all n � 0I

E�.YnC1 j FX
n / � Yn .P� -a. e./; for all n � 0 :

If, in addition, one can claim that EYn < 1, for all n � 0, then Y D
.Yn;FX

n ; P�/n�0 is simply a supermartingale.
It is interesting to point out that some of the main properties of

non-negative supermartingales (see [ P §7.4, Theorem 1]) continue to hold also
for non-negative supermartingale sequences of the type described above: the limit
limn Yn ( D Y1) exists with P� -probability 1; furthermore, if P�fY0 < 1g D 1,
then P�fY1 < 1g D 1. The proof of this claim is delegated to Problem 7.4.24.

• Given any h 2 L 0.E;E I RC/, or h 2 L 0.E;E I RC/, the potential, H.x/ D
Uh.x/, satisfies the relationH.x/ D h.x/C PH.x/, which, in turn, gives

H.x/ � max.h.x/;PH.x// ; x 2 E :

Consequently, the potential H.x/ D Uh.x/ does both: dominates the function
h.x/ (i.e., H.x/ � h.x/, x 2 E) and belongs to the class of excessive functions
(one usually says that the potential of given function is an example of an excessive
majorant of that function).

In fact, many practical problems—the optimal stopping problem from [ P §8.9]
being a typical example—can be formulated as problems for computing the smallest
excessive majorant of a given E -measurable non-negative function g D g.x/.
Potential theory provides a special technique for solving such problems, which is
described next.

Let Q denote the operator that acts on all E -measurable non-negative functions
g D g.x/ according to the formula

Qg.x/ D max
�
g.x/;Pg.x/

	
:
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Next, notice that the smallest excessive majorant, s.x/, of any such function g.x/ is
given by the formula

s.x/ D lim
n

Qng.x/

and satisfies the equation

s.x/ D max
�
g.x/;Ps.x/

	
; x 2 E :

In particular, the last equation implies that for every s 2 DL one must have

Ls.x/ D 0;

s.x/ D g.x/;

x 2 CgI
x 2 Dg;

where Cg D fx W s.x/ > g.x/g and Dg D E n Cg. (The proof of this claim can be
found in [ P §8.9], where the token P is replaced by T , and the token Q is replaced
by Q.)

• One of the central issues in potential theory is the description of the class of
solutions to the Dirichlet problem for the operator P : for a given domain C � E

and two E -measurable non-negative functions h and g, defined, respectively, on C
and D D E n C , one must find a non-negative function V D V.x/, x 2 E , chosen
from one of the classes L 0.E;E I RC/, L 0.E;E I RC/, L 0

b .E;E I R/, etc., which
satisfies the equation

V.x/ D
(

PV.x/C h.x/; x 2 C I
g.x/; x 2 D:

If one looks for solutions V only in the class DL, then the above system is equivalent
to the following one:

LV.x/ D �h.x/ ;
V .x/ D g.x/ ;

x 2 C I
x 2 D :

The first equation above is commonly referred to as “the Poisson equation for the
domain C ” and, usually, the Dirichlet problem is understood as the problem for
solving the Poisson equation in some domain C , with the requirement that the
solution is defined everywhere in E and coincides on the complementD D E n C
with a given function g.

It is quite remarkable that the solution to the Dirichlet problem—which is entirely
non-probabilistic—can be expressed in terms of the homogeneous Markov chain
with transition function P D P.xIB/, which gives rise to the operator P . To make
this claim precise, let X D .Xn/n�0 be one such Markov chain and let �.D/ D
inffn � 0 W Xn 2 Dg (with the usual convention inff¿g D 1). One can then claim
that for every two functions, h and g, from the class L 0.E;E I RC/, a solution to
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the Dirichlet problem exists and the smallest non-negative solution, VD.x/, is given
by the formula:

VD.x/ D Ex

I.�.D/ < 1/g.X�.D//

�C IC .x/Ex


 �.D/�1X

kD0
h.Xk/

�
:

(For the proof of the last statement see the hint to Problem 8.8.11.)
Some special choices for h and g are considered next.
(a) If h D 0, i.e., one is looking for a function V D V.x/ which is harmonic in

the domain C and coincides with the function g on D D E n C , then the smallest
non-negative solution VD.x/ is given by the formula

VD.x/ D Ex

I.�.D/ < 1/g.X�.D//

�
:

In particular, if g.x/ � 1, x 2 D, then

VD.x/ D Pxf�.D/ < 1g :

At the same time, the probability, Pxf�.D/ < 1g, that the Markov chain will
eventually reach D, starting from X0 D x, treated as function of x 2 E , can be
claimed to be harmonic in the domain C . It is clear that if x 2 D, then Pxf�.D/ <
1g D 1, since in this case �.D/ D 0.

(b) With g.x/ D 0, x 2 D, and h.x/ D 1, x 2 C , the system becomes

V.x/ D
(

PV.x/C 1; x 2 C I
0; x 2 D: .�/

In this case the smallest non-negative solution is given by the formula

VD.x/ D IC .x/Ex


 �.D/�1X

kD0
1

�
D
(

Ex�.D/; x 2 C I
0; x 2 D:

In particular, treated as a function of x 2 E , the expected time, Ex�.D/, until the
first visit to D gives the smallest non-negative solution to the system .�/.

• A particularly important class of Markov sequences, associated with random
walks on some state space .E;E /, is the class of simple symmetric random walks
on the lattice

E D Zd D f0˙ 1;˙2; : : :gd ;
where d is a finite integer chosen from the set f1; 2; : : :g (see [ P §8.8]). Random
walks in the “entire” space E D Zd , of the form X D .Xn/n�0, can be defined
constructively, by setting

Xn D x C 
1 C : : :C 
n ;
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where 
1; 
2; : : : is a sequence of independent Rd -valued random variables, which
are defined on some probability space .˝;F ;P/, and are distributed uniformly in
the set of all basis vectors e D .e1; : : : ; ed / 2 Rd , defined by ei D 0;C1 or �1 and
kek � je1j C : : :C jed j D 1; in particular

Pf
1 D eg D .2d/�1 :

Such a random walk describes the movement of a “particle” which, starting from
some point x 2 Zd , during every period moves arbitrarily to one of the 2d
neighboring points on the lattice, and in such a way that each neighboring point
is equally likely to get selected.

The operator P , associated with such a random walk, has a particularly simple
form:

Pf .x/ D Exf .x C 
1/ D 1

2d

X
jejD1 f .x C e/ :

Consequently, the generating operator (or, the discrete generator) L D P �I, which
in this case is referred to as the discrete Laplacian and is commonly denoted by �,
has the following form

�f.x/ D 1

2d

X
jejD1.f .x C e/ � f .x//:

It is natural to reformulate the Dirichlet problem for the simple random walk by
taking into account the fact that exit from C � Zd can happen only on the
“boundary”

@C D fx W x 2 Zd ; x 62 C and kx � yk D 1 for some y 2 C g :

This observation leads to the following standard formulation of the (non-
homogeneous) Dirichlet problem on the lattice: given some domain C � Zd

and functions h D h.x/, x 2 C , and g D g.x/, x 2 @C , find a function V D V.x/,
x 2 C [ @C , which satisfies the equations

�V.x/ D �h.x/;
V .x/ D g.x/;

x 2 C I
x 2 @C:

If the domain C consists of finitely many points, then Pxf�.@C / < 1g D 1 for all
x 2 C , where �.@C / D inffn � 0 W Xn 2 @C g (see Problem 8.8.12). By using the
method described earlier, one can show that the solution in the domain C [ @C is
unique and is given by the formula:

V@C .x/ D Ex

g.X�.@C//

�C Ex

"
�.@C /�1X

kD0
h.x/

#
; x 2 C [ @C :
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Since in this case the domain C is finite, there is actually no need to suppose that
the functions h.x/ and g.x/ are non-negative. In particular, setting h D 0, one finds
that the only function on C [ @C , which is harmonic in C and equals g on @C , is
the function

V@C .x/ D Exg.X�.@C//:

We now turn to the homogeneous Dirichlet problem:

�V.x/ D 0;

V .x/ D g.x/;

x 2 C;
x 2 @C: .��/

treated on some unbounded domain C .
If d � 2, by Pólya’s theorem (see [ P §8.8]) one must have Pxf�.@C / < 1g D 1,

which, by using the same reasoning as in the case of finite domains, leads to the
following result: if the function g D g.x/ is bounded, then, in the class of bounded
functions on C [ @C , the solution to .��/ is unique and is given by

V@C .x/ D Exg.X�.@C// :

One must realize that even with bounded g D g.x/ there could be multiple
solutions in the class of unbounded functions on C [ @C . A classical example of
such situation is the following. In dimension d D 1 consider the domain C D Z n
f0g, for which @C D f0g. Setting g.0/ D 0, it is easy to see that every (automatically
unbounded) function V.x/ D ˛ x, ˛ 2 R, is a solution to the Dirichlet problem, i.e.,
one has �V.x/ D 0, x 2 Z n f0g, and V.0/ D g.0/.

In dimension d � 3 the question of existence and uniqueness of the solution
to the Dirichlet problem �V.x/ D 0, x 2 C , and V.x/ D g.x/, x 2 @C , even
in the class of bounded functions V.x/, x 2 C [ @C , depends on the condition
Pxf�.@C / < 1g D 1, for all x 2 C . If this condition holds and g D g.x/

is bounded, then one can claim that there is precisely one solution in the class of
bounded functions on C [ @C , which is given by V@C .x/ D Exg.X�.@C//, for all
x 2 C [ @C .

However, if the condition Pxf�.@C / < 1g D 1, x 2 C , does not hold, then,
assuming that g D g.x/, x 2 @C , is bounded, every (automatically bounded)
function of the form

V
.˛/

@C .x/ D Ex

I.�.@C / < 1/g.X�.@C//

�C ˛Pxf�.@C / D 1g ;

for all choices of ˛ 2 R, is a solution to the Dirichlet problem�V.x/ D 0, x 2 C ,
and V.x/ D g.x/, x 2 @C—see, for example, [75, Theorem 1.4.9].

• The discussion in [ P Chap. 8] of the various aspects of the classification of
Markov chains with countable state space follows the tradition established during
the 1930s in the works of Kolmogorov, Frćhet, Döblin and others, which is based on
the idea that any classification must reflect, on the one hand, the algebraic properties
of the one-step transition probability matrix, and, on the other hand, the asymptotic
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properties of the transition probabilities as the time grows to 1. Since then notions
like

essential and inessential states;

reachable and communicating states;

irreducibility and periodicity;

which are determined from the properties of the one-step transition matrix, and
notions like

transience and recurrence;

positive recurrent and null recurrent states;

invariant (stationary) distributions;

ergodic distributions and ergodic theorems;

which are determined from the limiting behavior of the transition probabilities, have
become central in the theory of Markov chains.

Gradually, it became clear that it is more convenient to study the asymptotic
properties of Markov chains by utilizing the tools of potential theory, the basic
ingredients of which (e.g., the notion of potential, the notions of harmonic and
excessive functions, and some basic results involving those notions) were introduced
above.

The exposition in [ P Chap. 8] makes it clear that the primary tool for studying
the limiting behavior of Markov chains is a method that would be rather natural to
call “the method of regenerating cycles,” as is explained next.

Let x 2 E be any state and let .�kx /k�0 be the sequence of “regenerating Markov
times,” which is constructed as follows: first, define �0x D 0 and �1x D �x , where

�x D inffn > 0 W Xn D xg I

then define by induction, for any k � 2,

�kx D inffn > �k�1
x W Xn D xg on the set f�k�1

x < 1g :

Equivalently, one can write

�kx D
(
�k�1
x C �x ı ��k�1

x
; if �k�1

x < 1I
1; if �k�1

x D 1:
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The following properties explain the term “regenerating times” and its connection
with the “regenerating cycles”:

1. On the set f�kx < 1g one has X�kx D x.
2. On the set f�kx < 1g the sequence .X�kxCn/n�0 is independent from random

vector .X0;X1; : : : ; X�kx�1/, relative to the measure Px .
3. If �kx .!/ < 1 for all ! 2 E1, then, relative to Px , the distribution of the

sequence .X�kxCn/n�0 is the same as the distribution of the sequence .Xn/n�0.
4. If �kx .!/ < 1 for all ! 2 E1, then, relative to Px , the “regenerating cycles”

.X0;X1; : : : ; X�1x�1/; : : : ; .X�k�1
x
; X�k�1

x C1; : : : ; X�kx�1/

are independent.
5. Pxf�kx < 1g D Pxf�k�1

x < 1gPxf�x < 1g and, therefore, Pxf�nx < 1g D
ŒPxf�x < 1g�n.

6. Setting Nx D P
n�0

Ifxg.Xn/ (in the notation introduced previously, this is

nothing but Nfxg, the number of visits to state x), then the expected time ExNx
(which is ExNfxg D G.x; x/) is given by

ExNx D 1C
X

n�1
Pxf�nx < 1g D 1C

X

n�1
ŒPxf�x < 1g�n :

7. The above relations entail

Pxf�x < 1g D 1 , ExNx D 1 , PxfNx D 1g D 1;

Pxf�x < 1g < 1 , ExNx < 1 , PxfNx < 1g D 1:

8. For any y 6D x one has

G.x; y/ D Pxf�y < 1gG.y; y/ ;

or, equivalently,
ExNy D Pxf�y < 1gEyNy :

9. If Pxf�kx < 1g D 1 for all k � 1, then the sequence of “regenerating periods”,
.�kx � �k�1

x /k�0, is a sequence of independent and identically distributed random
variables.

Recall that according to the definitions in [ P §8.5] the state x 2 E is called

recurrent, if Pxf�x < 1g D 1;

transient, if Pxf�x < 1g < 1:
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Since (see [ P §8.5, Theorem 1])

Pxf�x < 1g D 1 , PxfXn D x i.o.g D 1;

Pxf�x < 1g < 1 , PxfXn D x i.o.g D 0 ;

the state x 2 E is (or may be called that by definition)

recurrent, if PxfXn D x i.o.g D 1,

transient, if PxfXn D x i.o.g D 0.

In fact, the intrinsic meaning of the terms “recurrent” and “transient” is better
reflected in the relations “PxfXn D x i.o.g D 1” and “PxfXn D x i.o.g D 0,”
as opposed to the equivalent relations “Pxf�x < 1g D 1” and “Pxf�x < 1g < 1”.
Indeed, “recurrence of x” is to be understood as “eventual return to x after every
visit to x” and “transience of x” is to be understood as “non-recurrence of x,” i.e.,
as “non-return after some visit to x”.

Thus, the recurrence of the state x is equivalent to each of the following
properties

PxfXn D x i.o.g D 1, or PxfNx D 1g D 1, or ExNx D 1 ,

while the transience is equivalent to each of the properties:

PxfXn D x i.o.g D 0, or PxfNx < 1g D 1, or ExNx < 1.

• The use of potential theory and, in particular, the technique of “regenerating
cycles” allows one to develop a more or less complete understanding of the structure
of the invariant measures and distributions (i.e., probability distributions). The
exposition below follows [85].

Recall that any (one-step) transition probability matrix P D kpxyk, x; y 2 E ,
gives rise to the linear operator Pf , which acts on functions f 2 L 0.E;E I RC/
according to the rule

.Pf /.x/ D
X

y2E
pxyf .y/; x 2 E ;

understood as

.matrix P/˝ .vector-column f / D .vector-column Pf / :

Let q D q.A/, A � E , be any non-trivial (i.e., not identically 0 or 1) measure
defined on the subsets of some countable set E . Such a measure is completely
determined by its values, q.fxg/, on the singleton sets fxg, x 2 E (for the sake
of simplicity we will write q.x/ instead of q.fxg/).
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Let MC denote the space of such measures q and let P stand for the linear
operator that transforms measures from MC into measures from MC according
to the rule MC 3 q Ý qP 2 MC, where qP is the measure

qP.y/ D
X

x2E
q.x/pxy ; y 2 E ;

i.e., qP 2 MC is understood as the vector

.vector-column qP/ D .vector-column q/˝ .matrix P/ :

The measure q 2 MC is said to be invariant or stationary for the Markov chain
with operator P if qP D q. The measure q 2 MC is said to be excessive, or P-
excessive, if qP � q.

Next, consider the bi-linear form

hq; f i D
X

x

q.x/f .x/ ; f 2 L 0.E;E I RC/ ; q 2 MC :

The following duality relation is easy to verify:

hq;Pf i D hqP ; f i ; f 2 L 0.E;E I RC/ ; q 2 MC :

Essentially, the above relation says that the action of the operator P on functions
and the action of the operator P on measures can be interchanged.

[ P §8.6, Theorem 2] shows that, in the case of irreducible (there is only one
class) and positive recurrent Markov chains with countable state space, an invariant
distribution exists, it is unique, and is given by

q.x/ D ŒEx�x��1 ; x 2 E ;

where �x D inffn � 1 W Xn D xg is the time of the first recurrence to x. (Note that
1 � Ex�x < 1, x 2 E .)

As we are about to show, by using the characteristics of the first “regenerating
cycle” the result about the existence and the structure of the invariant sets can
be established for arbitrary irreducible and recurrent Markov chains, without the
requirement for positive recurrence.

More specifically, one can claim the following:

Any irreducible and recurrent Markov chain X D .Xn/n�0, which has a countable state
space E , admits an invariant measure q D q.A/, A 	 E , which is non-trivial, in that
0 < q.E/, q.x/ 6� 1 and 0 < q.x/ < 1, for any state x 2 E . This measure is unique up
to a multiplicative constant.
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To prove the above statement, notice that for any fixed state xı 2 E , one can
always construct an invariant measure, say qı, with the property qı.xı/ D 1. For
example, one can set

qı.x/ D Exı

2

4
�xı

�1X

kD0
Ifxg.Xk/

3

5 ; x 2 E ;

where �xı D inffn � 1 W Xn D xıg. In order to show that the above measure is
indeed invariant (and that therefore invariant measures exist), it would be enough to
show that for any function f 2 L 0.E;E I RC/ one has

hqıP ; f i D hqı; f i :

In conjunction with the strong Markov property established in Problem 8.2.13, the
last relation follows from the following chain of identities:

hqıP ; f i D hqı;Pf i D Exı


 �xı
�1X

kD0
.Pf /.Xk/

�
D Exı


 �xı
�1X

kD0
EXkf .X1/

�

D
X

k�0
Exı


Ifk<�xı

gEXkf .X1/
� D

X

k�0
Exı

˚
Ifk<�xı

gExı Œf ı �k j Fk�
�

D
X

k�0
Exı

˚
Exı ŒIfk<�xı

gf ı �k j Fk�
� D

X

k�0
Exı


Ifk<�xı

gf ı �k
�

D Exı

X

k�0
Ifk<�xı

gf .XkC1/ D Exı

�xıX

lD1
f .Xl / D Exı

�xı
�1X

kD0
f .Xk/

D hqı; f i :

In addition to the normalization qı.xı/ D 1, the measure qı constructed above also
has the property 0 < qı.x/ < 1, for all x 2 E . This last property follows from the
following simple fact about excessive measures.

Suppose that the underlying Markov chain is irreducible and that the measure
q 2 MC is excessive, i.e., qP � q. If there is a state xı 2 E for which q.xı/ D 0

(note that q.xı/ < 1), then for any x 2 E one must have q.x/ D 0 (note that
q.x/ < 1). To see why this claim can be made, observe that for any x 6D xı one
can find an integer n � 1, for which p.n/x;xı

> 0. As a result, the relations

0 D q.xı/ �
X

y2E
q.y/p

.n/

y;xı

� q.x/p
.n/

x;xı

;

imply that q.x/ D 0.
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We will now show that, up to a positive multiplicative constant, qı is the only
non-trivial invariant measure. For that purpose, suppose that q is some invariant
(and, therefore, also excessive) measure with 0 < q.x/ < 1, for all x 2 E . Set

f .x/ D q.x/

qı.x/
; x 2 E ;

and define the (dual of pxy) functionbpxy D qı.y/

qı.x/
pyx . Since for every fixed x 2 E

one has X

y2E
bpxy D 1

qı.x/
X

y2E
qı.x/pyx D qı.x/

qı.x/
D 1 ;

the matrix bP D kbpxyk can be treated as a transition probability matrix and one can
write

bPf .x/ D
X

y2E
bpxyf .y/ D

X

y2E
bpxy

q.y/

qı.y/
D
X

y2E

qı.y/
qı.x/

pxy
q.y/

qı.y/

D 1

qı.x/
X

y2E
pxyq.y/ D q.x/

qı.x/
D f .x/ :

The function f D f .x/ is therefore bP-harmonic. Since bpxy D qı.y/

qı.x/
pyx by

definition, for every n � 1 one must have

bp.n/xy D qı.y/
qı.x/

p.n/yx ;

which entails the following relation between the respective Green functions

bG.x; y/ D qı.y/
qı.x/

G.y; x/ :

The last two relations imply that if the Markov chain X D .Xn/n�0, with operator
P , happens to be irreducible and recurrent, then the dual chain X D .Xn/n�0,
with operator bP , must be irreducible and recurrent, too. However, if f D f .x/ is
any (automatically non-negative) excessive function (in particular, if f D f .x/ is
harmonic), then the sequence .f .Xn//n�0 must be a non-negative supermartingale
relative to the measure bP� , for any initial distribution � . This property was
mentioned earlier. We also noted that for sequences of that form the limit limn Xn

( � X1) existsbP� -almost everywhere, and, therefore the limit limn f .Xn/ ( � Z)
must existbP� -almost everywhere, too. It is easy to see that if the chain is irreducible
and recurrent, then for any two states, x and y 6D x, one can claim that Xn visits
infinitely many times both x and y. In particular, this shows that f .x/ D f .y/, for
every x; y 2 E , so that f .x/ � const.
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We have thus established that any other invariant distribution q, such that 0 <
q.x/ < 1, x 2 E , must be a multiple, with some positive constant factor, of the
measure qı.

The result that we just established entails the following feature of all irreducible
and recurrent Markov chains, which was mentioned earlier: the only invariant
probability distribution qı D .qı.x/; x 2 E/ is given by qı.x/ D ŒEx�x��1, x 2 E .

• We now turn to certain ergodic theorems for Markov chains with countable state
spaces, i.e., theorems about convergence almost surely as n ! 1 of quantities of
the form 1

n

Pn�1
kD0 f .Xk/, or, more generally, of the form

n�1X

kD0
f .Xk/

. nX

kD0
g.Xk/ ;

for certain classes of functions f and g. We will again rely on the technique of
“regeneration cycles.”

Let X D .Xn/n�0 be some irreducible and recurrent Markov chain with
countable state space E and invariant measure qı.x/, such that 0 < q.x/ < 1
for all x 2 E and qı.xı/ D 1 for some fixed state xı.

Next, suppose that f D f .x/ and g D g.x/ are two function from the class
L1.qı/, i.e., f D f .x/ and g D g.x/ are two function on E chosen so thatP

x2E jf .x/jqı.x/ < 1 and
P

x2E jg.x/jqı.x/ < 1, and set

Y0 D
�1
xı

�1X

kD0
f .Xk/ and Ym D

�
mC1

xı

�1X

kD�m
xı

f .Xk/ . D Y0 ı ��m
xı

/ :

By the very definition of the invariant distribution qı we have

ExY0 D hqı; f i ;

and, due to the Markov property, for any initial distribution � one must have

E�Ym D E�

EX�m

xı

.Y0/
� D ExıY0 D hqı; f i :

Thus, relative to the measure P� , the random variables Y1; Y2; : : : are independent
and identically distributed, and, furthermore, have the property E�Ym D hqı; f i
(<1), m � 1. The strong law of large numbers now implies that for every initial
distribution � one must have (P� -a. e.)

1

n

�n
xıX

kD0
f .Xk/ D Y0

n
C 1

n
.Y1 C : : :C Yn�1/C f .xı/

n
! hqı; f i as n ! 1 ;
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and, assuming that hqı; gi 6D 0, one must have (again, for every �)

�n
xıP

kD0
f .Xk/

�n
xıP

kD0
g.Xk/

! hqı; f i
hqı; gi as n ! 1 .P� -a. e./ :

Next, let �nxı

D
nP

kD1
I.Xk D xı/, and notice that, since the chain is recurrent, one

can claim that �nxı

! 1 as n ! 1 (P� -a. e.). Since �
�n
xı

xı

� n < �
�n
xı

C1
xı

, the above
convergence entails the ergodic theorem for ratios:

nP
kD0

f .Xk/

nP
kD0

g.Xk/

! hqı; f i
hqı; gi as n ! 1 .P� -a. e./ :

Finally, suppose that the Markov chain under consideration is irreducible and
positive recurrent. In this case one can replace the measure qı with the probability
distribution �ı D .�ı.x/; x 2 E/, chosen so that �ı D 1=.Ex�x/, and, as a
result, arrive at the following ergodic theorem (for irreducible and positive recurrent
Markov chains):

1

n

nX

kD0
f .Xk/ ! h�ı; f i as n ! 1 .P� -a. e./ ;

for any initial distribution � (in particular, for � D �ı).
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in Mathematics, vol. 1117. Springer, Berlin (1985)

2. Arnol0d, V.I.: Tsepnye drobi. MCNMO, Moscow (2001)
3. Arnol0d, V.I.: Chto takoe matematika. MCNMO, Moscow (2004)
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101. Révész, P.: Random Walk in Random and Non-random Environments. World Scientific,

Teaneck (1990)
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Fréchet, M., 215

G
Galton, F., 343
Gauss, C. F., 103
Gibbs, J. W., 36
Green, G, 393
Gronwall, 96
Gumbel, E., 9, 126
Gundi, R., 300

H
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discrete version of, 319
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of a random variable, 90, 370

Goodness-of-fit test:
�2, 40

Green function, 393
Gronwall–Bellman’s inequality, 96
Group property, 331
Group:

finite, 331
Gumbel’s distribution, 126

H
Hájek–Rényi’s inequalitiy, 296
Harmonic function, 284, 355, 394
Harmonic numbers, 26
Hellinger integral:

of order ˛, 218
Hellinger transformation:

of a measures, 219
Helly–Bray lemma, 184
Helly–Bray theorem, 184
Hermite polynomial, 380
Hoeffding formula, 222
Hoeffding inequality, 256
Hoeffding–Azuma’s inequality, 299
Homogeneous Markov chain, 389
Huygens problem, 63
Hypergeometric identity, 376
Hypothesis:

continuum, 69

I
Idempotent property of \ and [, 1
Identities:

Poincaré, 5

Identity:
binomial, 13
hypergeometric identity, 376
Nørlund, 13
Spitzer, 92
Vandermonde, 13
Wald’s, 290

Inclusion–exclusion formula:
for indicators of events, 30

Inclusion–exclusion formula:
for the probability of intersection of events,

5
for the probability of union, 32
for the probability of union of events,

5
Incomplete beta-function, 135
Independence:

for events, 366
for systems of subsets, 366

Independent events, 366
Indicator:

of a set, 367
Inequalities:

Burkholder–Davis–Gundi, 300
Cantelli, 96
Chernoff, 255
maximal, 255

Inequality:
cr , 101
Bell, 33
Bentkus, 303
Bernstein, 255
Berry-Esseen, 41
Bonferroni, 8
Boole, 5, 63
Borel, 168
Burkholder’s, 300
Cauchy-Bunyakovsky

for matrices, 123
Chebyshev’s, 97

two-dimensional analog, 34
coupling, 221, 222
Cramér’s, 162
Doob

exponential analog of, 296
Dvoretzky, 296
Etemadi, 240
Fréchet, 9
Fréchet-Hoeffding, 215
Gauss, 103
Gibbs, 36
Gronwall–Bellman, 96
Gumbel, 9
Hájek–Rényi, 296
Hoeffding, 256
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Inequality (Cont.)
Hoeffding–Azuma, 299
Jensen

for conditional expectations, 107
Khinchin

second, 302
Kochen-Stone, 146
Kolmogorov, 202

exponential analog of, 241
one-sided analog of, 238

Kolmogorov-Rozanov, 271
Kounias, 5
Lévy, 250
Marcinkiewicz-Zygmund, 301
maximal, 56, 297, 298

Rademacher-Menshov, 302
Ottaviani, 295
Paley–Zygmund, 95
Prokhorov, 251
Rényi, 37
Raikov, 156
Rao-Cramér, 40, 172
Skorokhod, 252
Slepyan, 164
von Bahr–Esseen, 162
Young, 97
Young’s, 124

Infinitely often, 63
Information:

amount of, 45
Fisher, 273
Kullback, 217, 222

Initial distribution, 389
Injection, 20
Integral:

–A, 193
Hellinger

of order ˛, 218
Lebesgue, 93

absolute continuity of, 88
Lebesgue–Stiltjes, 386
Riemann, 93

Interchangeable:
system of events, 60

Invariance principle:, 198
Donsker-Prokhorov, 200

Invariant function, 394
Invariant measure, 402
Invariant:

almost
random variable, 261

Inverse distribution function, 214
Ionescu Tulcea Theorem, 139
Ising model:

one dimensional, 22

Itô formula:
discrete version of, 319

J
Jensen’s inequality:

for conditional expectations, 107

K
Kakutani dichotomy, 313
Kakutani dichotomy theorem, 312
Kernel:

Fejér’s, 270
Markov, 389

Khinchin criterion, 192
Khinchin inequality:

second, 302
Khinchin law:

of large numbers, 192
Kochen-Stone inequality, 146
Kolmogorov criterion, 177
Kolmogorov distance, 212
Kolmogorov forward equation, 39
Kolmogorov inequality:, 202

exponential analog of, 241
one-sided analog of, 238

Kolmogorov law of large numbers, 192
Kolmogorov representation:

for characteristic functions of infinitely
divisible distributions, 208

Kolmogorov strong law of large numbers, 244
Kolmogorov transformation, 266
Kolmogorov–Chapman equation, 38
Kolmogorov–Lévy–Khinchin formula, 206
Kolmogorov-Rozanov inequality, 271
Kounias’ inequality, 5
Krickeberg’s decomposition, 295
Kronecker’s symbol, 17
Kullback’s information, 217, 222

L
Lévy distance, 183
Lévy metric, 183
Lack of memory property, 114
Ladder:

indexes, 104
moments, 104

Laplace transformation, 91, 370
Laplacian:

discrete, 397
Large numbers:

law of, 189
Kolmogorov, 192
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Latin square, 24
Law of large numbers:

Kolmogorov, 192
Law:

arcsine, 50, 51
of large numbers, 189, 246

Khinchin, 192
of rare events, 210
Pareto

continuous, 210
discrete, 136

strong, of large numbers
Kolmogorov, 244
Marcinkiewicz-Zygmund, 243

Lebesgue integral, 93
absolute continuity of, 88

Lebesgue–Stiltjes integral, 386
Lemma:

Borel-Cantelli, 252, 384
first, 142
second, 142

Fatou, 93
for conditional expectations, 109
for sets, 61

Helly–Bray, 184
Pratt’s, 88
Scheffe, 148
Slutsky, 140
Sperner, 69

Likelihood ratio, 55
Limit:

in the sense of Cesàro, 340
Lindeberg’s condition, 198

of order k, 199
Lindeberg’s theorem, 204
Local time, 53, 320
Local time:

discrete, 53
Log-normal distribution, 132
Log-normal random variable, 131
Long tail, 136
Luzin’s theorem, 145

M
Map:

measurable, 385
Marcinkiewicz-Zygmund

strong law if large numbers, 243
Marcinkiewicz-Zygmund inequality, 301
Marginal distribution, 129
Market:

financial, 224
Markov chain:, 388

Ehrenfests, 347
homogeneous, 389
of order r , 330
reversible, 332

Markov kernel, 389
Markov property:

generalized, 390, 391
Markov time, 390
Markov times:

regenerating, 399
Married couples problem, 23
Martingale:

reverse, 283, 287
Matching problem, 9
Matrix pseudo-inverse, 164
Maximal correlation coefficient, 115
Maximal inequalities, 255
Maximal inequality:, 56, 297, 298

Rademacher-Menshov, 302
Maximum principle, 352
Maxium likelihood estimate, 273
Mean:

sample, 120
Measurable map, 385
Measurable space, 366
Measure preserving transformation, 385
Measure:

atomic, 79
counting, 98
diffusion, 79
excessive, 402
Gauss, 266
invariant, 402
Mellin transformation of, 220
non-atomic, 79
standard, 219
stationary, 402

Median, 30
Median:

of a random variable, 34, 240
Mellin transformation:

of a measure, 220
of an experiment, 220

Mercer Theorem, 166
Method:

Cramér-Wold, 191
Metric:

Dobrushin, 230
Lévy, 183
Wasserstein, 229

Mode:
of a distribution, 103

Model:
auto-regression, 268
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Model (Cont.)
autoregressive, 272
Cramér-Lundberg, 320
Ehrenfest, 332
Galton-Watson, 343
Ising

one dimensional, 22
Moment:

binomial, 127, 379
factorial, 127, 378
factorial, of order n, 370

Moments:
record, 331

Multinomial coefficients, 20
Multinomial convolution:

Vandermonde, 20
Multivariate conversion formula, 151

N
Nørlund’s identity, 13
Needle variations, 327
No-arbitrage condition, 323
Non-atomic measure, 79
Non-negative supermartingale sequence, 308
Nondecreasing path, 2, 20
Normal numbers theorem:

Borel, 266
Novikov’s condition, 315
Number of combinations, 360
Number of placements, 360
Numbers:

Bell, 362
Bernoulli, 379
Catalan, 2
Euler, 380
Fibonacci, 18
harmonic, 26
Stirling

duality property of, 17
of the first kind, 377
of the second kind, 362

O
Observation series, 210
Observation series:

asymptotic negligibility, 210
limiting negligibility, 210

omega-square statistics, 229
One-step transition operator, 352
Operation:

binary, 331
Operator:

generating

discrete, 393
for a Markov chain, 393

shift, 390
transition, 57, 391

one-step, 352
Order statistics, 58, 119
Ordered sample, 359
Ornstein–Uhlenbeck process, 167
Ottaviani’s inequality, 295

P
Pólya’s theorem, 349, 398
Pólya’s urn scheme, 25
Paley–Zygmund inequality, 95
Paradox:

Bertrand, 77
Parameter:

“kurtosis”, 135
“skewness”, 135

Pareto distribution:
discrete, 136

Parseval’s relation, 158
Partial factorial, 1
Partitions, 360
Pascal triangle, 13, 23
Path:

nondecreasing, 2, 20
Peak:

of a probability density, 103
Perfect set, 71
Placements:

number of, 360
Plynomials:

Bernstein, 67
Poincaré recurrence theorem, 385
Poisson distribution:

compound, 209
generalized, 209

Poisson process:
non-homogeneous, 322

Poisson random variable:
double-sided, 210

Poisson’s equation, 395
Polish space, 65
Polygon divison problem:

Euler, 3
Polynomial coefficients, 20
Polynomials:

Appell, 382
Bernoulli, 379
Euler, 380
Hermite, 380
Sheffer, 382
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Potential measure , 393
Potential:

in martingale theory, 287
of a function, 392
of a Markov chain, 392
of an operator, 392

Pratt’s lemma, 88
Predictable sequence, 288
Principle:

invariance, 198
Donsker-Prokhorov, 200

maximum, 352
reflection

André, 348
for Brownian motion process, 176

Problème des ménage, 23
Probability distribution:

of a random variable, 367
Probability space:

complete, 70
filtered, 387
universal, 138

Problem:
Dirichlet, 353, 395, 397

for the Poisson equation, 349
homogeneous, 353

Huygens, 63
married couples, 23
matching, 9
random meeting, 108
the absent-minded secretary, 10

Procedure:
Robbins–Monro, 306

Process:
Galton-Watson, 343
Ornstein–Uhlenbeck, 167
Poisson

non-homogeneous, 322
random, 367
renewal

on a lattice, 293
Product formula:

Euler, 75
for the Riemann zeta function,

74
Prokhorov inequality, 251
Property:

coupling, 230
idempotent of \ and [, 1
lack of memory, 114
Markov

generalized, 390
Pascal triangle, 13, 23
Raikov, 321

Proposition:
Champernowne, 243

Pseudo-inverse:
of a matrix, 164

Pythagorean theorem, 150

Q
Quadratic variation, 300
Quantile, 230
Quantile function, 214

R
Rényi inequality, 37
Rademacher’s function, 150
Rademacher-Menshov’s maximal inequality,

302
Radon-Nikodym theorem, 313
Raikov inequality, 156
Raikov property, 321
Random element, 367
Random meeting problem, 108
Random sequence, 367
Random variable:, 367

almost invariant, 261
extended, 114
fractal, 135
generating function of, 90
log-normal, 131
Poisson

double-sided, 210
Random variables:

exchangeable, 286
Random vector, 367
Random walk:

breadth of, 48
on a group, 331
span of, 48

Random:
process

in discrete time, 367
Rank statistics, 58
Rao-Cramér’s inequality, 40, 172
Rare events:

law of, 210
Ratio:

likelihood, 55
Real line:

extended, 67
Record moments, 331
Recurrence theorem:

Poincaré, 385
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Reflection principle:
André, 348
for Brownian motion process, 176

Regenerating cycles, 400
Regenerating Markov times, 399
Relation:

Appell, 383
coupling, 230
Parseval, 158

Renewal equation, 139
Renewal process:

on a lattice, 293
Representation:

Kolmogorov
for characteristic functions of infinitely

divisible distributions, 208
Reverse martingale, 283, 287
Reversibility:

for Markov chains, 332
Riemann integral, 93
Riemann zeta-function, 74
Riesz decomposition, 287, 336
Robbins-Monro procedure, 306

S
Sample mean, 120
Sample variance, 120
Sample:

ordered, 359
unordered, 360

Scaling property:
for Brownian motion, 167

Scheffe’s lemma, 148
Scheme:

Bernoulli, 330
with random probability for

success, 133
Pólya, 25

Second Borel-Cantelli lemma, 142
Separable � -algebra, 65
Sequence:

non-negative supermartingale,
308

predictable, 288
random, 367

Set-difference:
symmetric, 29

Set:, 359
Borel, 69
Cantor, 71
perfect, 71

Shift operator, 390
Shift transformation, 265
Shifts:

Bernoulli, 265

Signal:
telegraph

discrete, 48
Skorokhod inequality, 252
Skorokhod’s embedding, 214
Slutsky’s lemma, 140
Space:

Polish, 65
Span of a random walk, 48
Sperner’s lemma, 69
Spitzer identity, 92
Square:

Latin, 24
Stability:

of a sequence in the sense of Kolmogorov,
192

Standard deviation, 369
Stationary measure, 402
Statistical experiment, 218
Statistics:

Bose–Einstein, 12
Maxwell-Boltzmann, 11
omega-square, 229
order, 58, 119
rank, 58

Stirling numbers:
of the second kind, 362

Stirling’s formula, 26, 29, 347
Strong law if large numbers:

Marcinkiewicz-Zygmund, 243
Strong law of large numbers:

Kolmogorov, 244
Strong mixing, 271
Superharmonic function, 355
Support:

of a measure, 368
Supremum:

essential, 257
Surjection, 20
Symbol:

Kronecker, 17
Symmetric difference:

for sets, 5
Symmetric set-difference, 29
System of events:

exchangeable, 60
interchangeable, 60

Szegö-Kolmogorov formula, 276

T
Tail:

long, 136
Tanaka formula:

discrete analog of, 319
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Telegraph signal:
discrete, 48

Test:
goodness-of-fit

�2, 40
Theorem:

Beppo Levi, 93
Bernstein, 165
Birkhoff-Khinchin, 385
Bochner-Khinchin, 154
Borel

normal numbers, 266
Carathéodory, 76
change of variables, 87
Chernoff, 254
Darmois-Skitovich, 165, 177
Diaconis, 243
dichotomy

Kakutani, 312
dominated convergence

H. Lebesgue, 304
Egoroff, 145
ergodic, 266
fundamental, of financial mathematics, 323
Helly–Bray, 184
Ionescu Tulcea, 139, 356, 389
Lindeberg, 204
Luzin, 145
Mercer, 166
P. Lévy, 304
Pólya, 349, 398
Poincaré, 5
Poincaré’s recurrence, 385
Pythagorean, 150
Radon-Nikodym, 313
three series, 239
Ulam, 186
verification, 356
Vitali–Hahn–Saks, 63

Three series theorem, 239
Tight:

family of random vectors, 187
Time reversibility:

for Markov chains, 332
Time:

local, 53
Markov, 390

Totient function:
Euler, 75

Transform:
Escher, 382
Laplace

for non-negative random variables, 157
Transformation:

Bernoulli, 265

Hellinger
of a measures, 219

Hellinger’s, of a statistical experiment, 218
Kolmogorov, 266
Laplace, 91, 370
measure preserving, 385
Mellin

of a measure, 220
of an experiment, 220

shift, 265
Transition function, 389
Transition operator, 57, 391
Triangle:

Pascal, 13, 23

U
Ulam theorem, 186
Uncountably many, 69
Universal probability space, 138
Unordered sample, 360
Urn scheme:

Pólya, 25

V
Vandermonde’s convolution, 376
Vandermonde’s identity, 13
Variable:

random, 367
Variance:

conditional
with respect to partitions, 42

sample, 120
Variation:

quadratic, 300
Vector:

random, 367
Verification theorem, 356
Viète formula, 277
Vitali–Hahn–Saks theorem, 63
Von Bahr–Esseen inequality, 162

W
Wald’s identity, 290
Wasserstein metric, 229
Weibull distribution, 119, 126

Y
Young’s inequality, 97

Z
Zeta function:

Riemann, 74
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