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Cassegrain reflecting telescope. Fig. 9.151 shows
Cassegrainian type reflecting telescope. It consists of a
large concave paraboloidal (primary) mirror having a
hole at its centre. There is a small convex (secondary)
mirror near the focus of the primary mirror. The
eyepiece is placed on the axis of the telescope near the
hole of the primary mirror.

The parallel rays from the distant object are
reflected by the large concave mirror. Before these rays
come to focus at F, they are reflected by the small
convex mirror and are converged to a point I just



Paraboloidal
objective
MIrror

Fig. 9.151 Cassegrain reflecting telescope.

outside the hole. The final image formed at I is viewed
through the eyepiece. As the first image at F is inverted
with respect to the distant object and the second image
I is erect with the respect to the first image F, hence the
final image is inverted with respect to the object.

Let f; be the focal length of the objective and f, that
of the eyepiece.

For the final image formed at the least distance of -
distinct vision,

fo
For the final image formed at infinity,
| fo _R/2

i



‘Different types of telescope. Broadly, the tele-
ses can be divided into two categories :

1. Refracting telescopes. These make use of lenses to
mu distant objects. These are of two types :
1z) Astronomical telescope. It is used to see hea-
v objects like the sun, stars, planets, etc. The final
meee formed is inverted one which is immaterial in
i c2se of heavenly bodies because of their round shape.

5) Terrestrial telescope. It is used to see distant
biects on the surface of the earth. The final image
mmed is erect one. This is an essential condition of
the objects on earth’s surface correctly.

2 Reflecting telescopes. These make use of converging
iimers fo view the distant objects. For example, Newtonian
i Cassegrain telescopes.

¥ ASTRONOMICAL TELESCOPE

82. What is an astronomical telescope ? Give its
mstruction. With the help of ray diagrams, explain its
Marlking when it forms final image at the least distance
\@istinct vision and at infinity. Deduce expression for
memifying power in each case.

Astronomical telescope. It is a refracting type telescope
ud fo see heavenly bodies like stars, planets, satellites, etc.

Construction. It consists of two converging lenses
anted co-axially at the outer ends of two sliding tubes.

1. Objective. It is a convex lens of large focal length
me 2 much larger aperture. It faces the distant object.
der to form bright image of the distant objects, the
srture of the objective is taken large so that it can
miher sufficient light from the distant objects.

2 Eyepiece. It is a convex lens of small focal length
mé small aperture. It faces the eye. The aperture of the
mepiece is taken small so that whole light of the
slescope may enter the eye for distinct vision.

- Working. (2) When the final image is formed at
e least distance of distinct vision. As shown in
e 9.147, the parallel beam of light coming from the

distant object falls on the objective at some angle o.. The
objective focusses the beam in its focal plane and forms
areal, inverted and diminished image A’ B'. This image
A’ B' acts as an object for the eyepiece. The distance of
the eyepiece is so adjusted that the image A’ B lies
within its focal length. The eyepiece magnifies this
image so that final image A”B" is magnified and
inverted with respect to the object. The final image is
seen distinctly by the eye at the least distance of
distinct vision.

Magnifying power. The magnifying power of a
telescope is defined as the ratio of the angle subtended at the
eye by the final image formed at the least distance of distinct
vision to the angle subtended at the eye by the object at
infinity, when seen directly.

As the object is very far off, the angle subtended by
it at the eye is practically equal to the angle o
subtended by it at the objective. Thus

£Z AOB=aqa
Also,let ZA"EB'=8
.. Magnifying power,

tan
ey
~APR/BE OB
" AB/OB -BE’
According to the new Cartesian sign convention,
OB =+ f, =focal length of the objective
B E =~ u, =distance of A' B’ from the eyepiece,
acting as an object for it

> a,P are small]

m=—=
u&'

Again, for the eyepiece :
u=-u, and v=-D

T oy
Eyepieoe\%

Objective
A A
ays frO
T distan
t ob]e
B
At infinity %
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Fig. 9.147 Astronomical telescope focussed for least distance of distinct vision.

i



e T
=Dy - {,
or —1—=—l—+l=l(1+l’€]
Verileio D 1 D
Hence m~—jg[l+éj
: j;, D

Clearly for large magnifying power, fo>> f.- The
negative sign for the magnifying power indicates that
the final image formed is real and inverted.

(b) When the final image is formed at infinity :
Normal adjustment. As shown in Fig. 9.148, when a
parallel beam of light is incident on the objective, it
forms a real, inverted and diminished image A’ B' in its
focal plane. The eyepiece is so adjusted that the image
A' B exactly lies at its focus. Therefore, the final image
is formed at infinity, and is highly magnified and
inverted with respect to the object.

Magnifying power in normal adjustment. It is
defined as the ratio of the angle subtended at the eye by the
final image as seen through the telescope to the angle
subtended at the eye by the object seen directly, when both
the image and the object lie at infinity.

As the object is very far off, the angle subtended by
it at the eye is practically equal to the angle «
subtended by it at the objective.

Thus
LA OB =g
and let LA EB=8

. Magnifying power,
= B b tan
o tana

_AB/BE_ OB
AB/OB BE

[ a,paresmall angles]

Objective

Applying new Cartesian sign convention,
OB' = + f, = Distance of A’ B from the objective
along the incident light
B E=- f, =Distance of A’ B’ from the eyepiece
against the incident light
h
fe
Clearly for large magnifying power, fo>> £, The

negative sign for m indicates that the image is real and
inverted.

m=—

% » For Your Knowledge
A\ In a telescope, the objective has large focal length and
~ large aperture while the eyepiece has small focal
length and small aperture. _ S

A\ Actelescope is focussed on the distant object by varying
distance between the objective and the eye-piece with

the help of rack and pinion arrangement. 4

A\ The objective of the telescope should have large
aperture because then a much wider beam of light is
incident on it and is converged into a small cone
which, on entering the eye, produces sufficient
illumination on the retina. So even two distant faint
stars which cannot be seen by naked eyes, become
visible through such a telescope. = e
4\ In a telescope, the image is not actually magnified. A
telescope simply increases the visual angle. The visual

~ angle B for the image is much larger than the visual
angle a for the object. Consequently, the angular

~ magnification B/ « is quite large. A6 S e
A In normal adjustment, the distance between the

- Objective and the eyepiece = fy + £, 20

- When the final image is formed at the least distance of -

distinct vision, the magnifying power of the telescope

is larger than that in the case of normal adjustment

 because the factor [1+2¢ |51,
= ( B
A\ An astronomical telescope forms an inverted image.

 As the celestial objects are oval in shape, so it does not
matter whether the final image is inverted or erect.

Eyepiece

f[] —— c_'l

Fig. 9.148 Astronomical telescope in normal adjustment.
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9.44v COMPOUND MICROSCOPE

80. With the help of a ray diagram, explmin the
construction and working of a compound MICTOSIOEE.
Write an expression for its magnifying power.

Compound microscope. A compound microscope &
an optical device used to see magnified images of Gny
objects. A good quality compound microscope can
produce magnification of the order of 1000.

Construction. It consists of two convex lenses of
short focal length, arranged co-axially at the ends of
two sliding metal tubes.

1. Objective. It is a convex lens of very short focal
length f, and small aperture. It is positioned near the
object to be magnified.

2. Eyepiece or ocular. It is a convex lens of compara-
tively larger focal length f, and larger aperture than
the objective ( f, > fy) It is positioned near the eye for
viewing the final image.

The distance between the two lenses can be varied
by using rack and pinion arrangement.

Working. (a) When the final image is formed at the
least distance of distinct vision. The object AB to be
viewed is placed at distance slightly larger than the
focal length f, of the objective O. The objective forms a
real, inverted and magnified image A’ B, of the object
AB on the other side of the lens O, as shown in
Fig. 9.145. The separation between the objective O and
the eyepiece E, is 50 adjusted that the image A’ B lies
within the focal length f, of the eyepiece. The image
A’ B acts as an object for the eyepiece which essentially
acts like a simple microscope. The eyepiece E forms a
virtual and magnified final image A" B" of the object
AB. Clearly, the final image A" B’ is inverted with
respect to the object AB.

222 e e
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Fig. 9.145 Compound Microscope, final inmedﬂ.



subtended at the eye by the final virtual image to the angle
subtended at the eye by the object, when both are at the least
distance of distinct vision from the eye.

B_tanB HK/u, w D
= — = — =, — = n'hme
o tana h/D h u,
Here ’"0 = E— = E)_o_
h
As the eyepiece acts as a simple microscope, o
D /5 S v, DJ
Wens =1y o me_ol o
T S

As the object AB is placed close to the focus Fj of
the objective, therefore,

Uy == 1
Also image A’ B’ is formed close to the eyelens

whose focal length is short, therefore Uy = L= the
length of the microscope tube or the distance between
the two lenses
% L N
Wi~
e —Jo
L [ DJ I
m=——i1\1+— A
I L or bnal image at D]

(b) When the final image is formed at infinity.
When the image A’ B lies at the focus F, of the eyepiece

ie, u, = f, the image A" B" is formed at infinity, as
shown in Fig, 9.146. :

z——”ﬂ—ﬂ*————%
mo
B F;’ : rQ
2
A RO 3.
Fig. 9.146 Compound microscope, final image at o,
Magnification due to objective, = 2 oy
i h Unn
Angular magnification due to eyepiece, m, = 2!
e
Total magnification when the final image is formed i
at infinity, o
r b £Exam
M=y XM, =——x — magni
6 Assun

Obvicn.lsty, magnifying power of the compound distinci
microscope is large when both fy and f, are small. by the



9.43 ¢ SIMPLE MICROSCOPE

79. What is a simple microscope ? Give its working
principle. Write expressions for its magnifying power
when it forms final image at the least distance of
distinct vision and at infinity.

Simple microscope. A simple microscope or @

magnifying glass is just a convex lens of short focal length,
held close to the eye.

Working principle : When the final image is
formed at the least distance of distinct vision. When
an object ABis placed between the focus F and optical
centre O of a convex lens ; a virtual, erect and
magnified image A' B is formed on the same side of the
lens as the object. Since a normal eye can see an object
clearly at the least distance of distinct vision D
(=25 cm), the position of the lens is so adjusted that the
final image is formed at the distance D from the lens, as
shown in Fig. 9.143.

1_
S

Fig. 9.143 A simple microscope with the eye
focussed at the near point.

Magnifying power. The magnifying power of asimple
microscope is defined as the ratio of the angles subtended by

Ol
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le
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the image and the object at the eye, when both are ai e logst
distance of distinct vision from the eye. Thus,
Magnifying power
Angle subtended by the image at the least
distance of distinct vision

3 Angle- subtended by the object at the least
distance of distinct vision

As the eye is held close to the lens, the angles
subtended at the lens may be taken to be the angles
subtended at the eye. The image A’ B' is formed at the
least distance of distinct vision ‘D’. Let £ A'OB' =p.
Imagine the object AB to be displaced to position A'B
at distance D from the lens. Let ZA"OB =a. Then
magnifying power,
p_tanP

a tana [+ o, are small angles]
AB/OB _ AB/OB

= = [+ A"B = AB]
A" B/OB AB/ OB
_O0B _-D
OB —x
D
or m=—
X

Let fbe the focal length of the lens. As the image is
formed at the least distance of distinct vision from the
lens, so

v=—D
Using thin lens formula,
gt
o w
1 I |
we get, — ——=—
-D -x f
e L
or —_—=— 4 —
-0 f
x f
m31+2

Thus shorter the focal length.of the convex lens, the
greater is its magnifying power. :

Working principle : When the final image is
formed at infinity. When we see an image at the near
point, it causes some strain in the eye. Often the object
is placed at the focus of the convex lens, so that parallel
rays enter the eye, as shown in Fig. 9.144(a). The image
is formed at infinity, which is more suitable and

by comfortable for viewing by the relaxed eye.



Eye focussed

A at infinity
= D -

()

Fig. 9.144 (a) with object at F, image is at infinity,
(b) Object at the near point.

Magnifying power. It is defined as the ratio of the
angle formed by the image (when situated gt infinity) at the
eye to the angle formed by the object at the eye, when situated
at the least distance of distinct vision. :

m= B sanp [c, B are small]
o tana
From Fig. 9.144(a),
tanB = -

From Fig. 9.144(b),

h
t =—
ana=— !
h/
=% Hi:
h/D

or m=—

This magnification is one less than the magni-
fication when the image is formed at the near point.

But viewing is more comfortable when the eye is
focussed at infinity.

Uses of simple microscopes :

1. Watch makers and jewellers use a magni- |
fying glass for having a magnified view of 5
the small parts of watches and the fine fﬁ;

zinnégmjf::;a inted letters in a book, 7°

3 € printed letters in a book, ' .
textures of fibres or threads of a cloth, i
| ings, details of stamp, etc.

-

grifying glass is used in science laboratories




9.25¥ RULES FOR DRAWING IMAGES Formation of images by spherical lenses :
FORMED _Y SPHERICAL LENSES (5) Object beyond 2F. The image is

40. State the rules used for drawing images formed Gl betwean Fard b 3 (i:) i
by spherical lenses. . :

Rules for drawing images formed by spherical
lenses. The position of the image formed by any
spherical lens can be found by considering any two of
the following rays of light coming from a point on the
object. ;

(ii1) inverted (1v) smaller

(i) A ray from the object parallel to the principal (@)
axis after refraction passes through the second princi- (b) Object at 2F. The image is
pal focus E [in a conve:'-c lens, as shown in Fig. 9.75(:2.)] : (1') e : (ii) real
Or appears to diverge [in a concave lens, as shown in Gii) Thverted (iv) =
Fig. 9.75(b)] from the first principal focus F,. e s A
F r O _; F
1 g O 1 : (b)
. £ (c) Object between 2F and F. The image is
(a) ) (i) beyond 2F (i) real
Fig. 9.75 Path of ray incident parallel to the (i1i) inverted (iv) larger
principal axis of (a) convex lens (b) concave lens.
(i) A ray of light passing through the first principal
focus [in a convex lens, as shown in Fig. 9.84(a)] or
appearing to meet at it [in a concave lens, as shown in
Fig. 9.76(b)] emerges parallel to the principal axis after
refraction.
(d) Obj ect between P and_O. The image is )
'/ (i) behind object (i) virtual
o~ (iff) erect (iv) larger
etk : S al B
F E, A
o=
(b) !
Fig. 9.76 Path of a ray passing through focus of I
(a) convex lens (b) concave lens.
(i) A ray of light, passing through the optical (d)

cenire of the lens, emerges without any deviation after (e) Object in any position. The imége is
refraction, as shown in Figs. 9.77(a) and (b). (i) in front of object (i) virtual

(iti) erect (iv) smaller

Fig. 9.77. Path of = ray passing through the optical
centre (a) convex lens (b) concave lens.
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Derivation of thin lens formula for a convex lens
when it forms a real image. As shown in Fig. 9.79,
consider an object AB placed perpendicular to the
principal axis of a thin convex lens between its F' and
C'. A real, inverted and magnified image A B is
formed beyond C on the other side of the lens.

Y

image formed by a convex lens.
A A’ B'O and A ABO are similar,

Fig. 9.79 Real

A'B OB\

— = )
AB BO

Also AA' B F and A MOF are similar,
A B P

MO OF



But MO = AB,
AB _FP @
AB OF
From (1) and (2), we get
OB "FB." OB —OF
BO-OF OF
Using new Cartesian sagn conventmn, we get

Object distance, BO == u
Image distance, OB -—-»«—l- v

Focal length, ﬂF + f

e
_u' f
or of =—uv+uf or Uv= uf uf

Dividing both sides by uvf, we get
s e S 7]

—— T —

s DU
This proves the lens formula for a convex lens
when it forms a real image.

- T C._ . ;m asmesas isSss Tﬂ'l"lﬂ 11Fhﬂﬂ
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Derivation of thin lens formula for a convex lens
when it forms a virtual image. As shown in Fig. 9.80,
when an object AB is placed between the optical centre
O and the focus F of a convex lens, the image A'B
formed by the convex lens is virtual, erect and

Fig. 9.80 Virtual image formed by a convex lens.

Triangles A' B'O and ABO are similar.
AR B0

AB BO ~1)
Also, triangles A’ B' F and MOF are similar.
AB PBE
MO OF
~But MO = AB, therefore
AB _BF

AB OF



From (1) and (2). we get
BO_ BF PBO+OF
BO —OF = or
Using new cartesian sign convention,

=0 —o+f
= f
or ~-0f = uv — uf
or uv = uf —of
Dividing both sides by uvf, we get
-1 1
f v ou

This proves the thin lens formula for a convex lens
when it forms a virtual image.

!! nﬂ“:n*L.ﬁLL_]___r : "~ ==
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Derivation of thin lens formula for a concave lens.
As shown in Fig. 9.81, suppose O be the optical centre
and F be the principal focus of concave lens of focal
length f. ABis an object placed perpendicular to its
principal axis. A virtual erect and diminished image
A' B is formed due to refraction through the lens.

Fig. 9.81 Virtual image formed by a concave lens.

As A A B'O~AABO

AB - PO
= (1)
AB BO
Also, AA'BF ~A MOE
AB. - FB
MO FO
But MO = AB therefore
AB FB
= .(2)
AB FO

From (1) and (2), we get
BO FB FO-BO
BO FO FO

LUSimg mewr Cartesian sign convention, we get
B0=—m, BO=-v, FO=-f




of =uf —uv or wuv=uf —of
Dividing both sides by uvf, we get
‘ T 1 '

| — — —

e e

This proves the thin lens formula for a concave leﬂ
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9.27 ¥ LINEAR MAGNIFICATION

45. Define linear magnification produced by a lens.
Derive expressions for the magnification produced by
convex and concave lenses.

Linear magnification. The linear magnification
produced by a lens is defined as the ratio of the size of the
image formed by the lens to the size of the object. 1t is
denoted by m. Thus

_ Size of image h,
~ Size of object h,

Convex lens. Earlier Fig. 9.79 shows a ray diagram
for the formation of image A’ B’ of a finite object AB by
a convex lens.

Now A AOB~A A OB

AB OB

| AB OB
Applying the new cartesian sign convention, we get
A B'=-h, (Downward image height)
AB=+h, (Upward object height)
OB=-u (Image distance on left)
OB'=+wv (Image distance on right)

= +v v

By

Magﬁiﬁcation, m= -
1

Concave lens. Fig. 9.81 shows the formation of a
virtual image A’ B of a finite object AB by a concave lens.

Now A AOB~A A' OB
AFB - OB
AB OB
Applying the new cartesian sign convention, we get
AB=+h,, AB=+h
OB'=-pv, OB=-u

(/)
U

%

e

+h —u
A . hz e
. Magnification, m=g— =—.
u

1



Linear magnification in terms of u and f.The thin .
!

lens formula 1S
R o |

v w ¥

Multiplying both sides by u, we get

u u u u + U
= —=— -0Or —=1+—-=f

ARt i -:.::".‘:"“"""--;‘i"-'*--;.""""--'-""P-'--L
S e onn I R e

A A s 4 S S
A Ry T Myl 3
S T G

o Y e i
X o o "--'
ek L .=_,\_ =

2

.m“mm.m
ok f%»u

Linear magmﬁcahnn in terms of vand f. The thin

lens formula is

=11
g ft o+ f

Multiplying both sides by v, we get
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Lens maker’s formula for a double convex lens.
As shown in Fig. 9.70, consider a thin double convex
lens of refractive index H, placed in a medium of
refractive index Hq- Herep, <p,. Let B and D be the
poles, C, and C, be the centres of curvature, and
R, and R, be the radii of curvature of the two lens
surfaces ABC and ADC, respectively.

Normal Normal
atN

Fig. 9.70 Refraction through a double convex lens.

Suppose a point object O is placed on the principal
axis in the rarer medium of refractive index ;- The ray
OM is incident on the first surface ABC. It is refracted
along MN, bending towards the normal at this surface.
If the second surface ADC were absent, the ray MN
would have met the principal axis at I,. So we can treat
[, as the real image formed by first surface ABC in the
medium of refractive index Ho-

For refraction at surface ABC, we can write the
relation between the object distance image distance
v, and radius of curvature R_1 as

B 28 _Haily (1)
v, U R1

But actually the ray MN suffers another refraction
at surface ADC, bending away from the normal at
point N. The emergent ray meets the principal axis at
point I which is the final image of O formed by the
lens. For refraction at second surface, I, acts as a virtual
object placed in the medium of refractive index K, and
I'is the real image formed in the medium of refractive
index p,. Therefore, the relation between the object
distance v,, image distance v and radius of curvature
R, can be written as

Pagcls B, Q)

v o R2

Adding equations (1)\ and (2), we get

ot Y e W e
- 7 (P'_')_ Pl)[RI RQJ

> 1-1{@%&4] -0)
2t H1 R, R



If the object is placed at infinity (u =), the image o
will be formed at the focus, t.e., v = I Therefore, c

1 Ahasfelf LS (4
f Hq R R
This is lens maker’s formula.
When the lens is placed in air, iy =1, and p, =H.
The lens maker’s formula takes the form :

ae
F R

A
Fed e
5

From equaﬁnﬁs (3) and (4), we have

T gt Lo =2y oA
e e R S e
L e
1 PR LR o el
P e R B e
:\-+-;.° o e A i
iy L e e,
s b i g e
i e = g i :\:{
e SR 5 gl
i s - Wi TR

= o e A
Ji st o R o m

This is the thin lens formula which gives relationship

between u, v and f of a lens.
s = . 7 e e Yimita Enveiariln: FAY 0 dﬂ?lh]ﬂ
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Lens maker's formula for a double concave lens.
As shown in Fig. 9.71, consider a thin double concave
lens of refractive index p, placed in a medium of
refractive p ;. Here p; <H,. Let B and E be the poles,
and R, and R, be the radii of curvature of the two lens
surfaces ABC and DEF, respectively.

Fig. 9.71 Refraction through a double concave lens.

Suppose a point object O is placed on the principal
axis in the rarer medium of refractive index p . First the
spherical surface ABC forms its virtual image ;. As
refraction occurs from rarer to denser medium, so we
can write the relation between object distance 1, image
distance v; and radius of curvature R, as

Bot Hq Ha by (1)
v, U R,

But the lens material is not continuous. The ray MN

suffers another refraction at N and emerges along IN.

So [ is the final virtual image of the point object O. The
image I, acts as an object for refraction at surface DEF
from denser to rarer medium. So the relation between

ler

v :_:' ﬂ
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object distance v, image distance v and radius of
curvature R, can be written as

by Ba, Fabg 2

= Ry |
Adding equations (1) and (2), we get

by B A

et = l-Lz"l'lj[) Rt

v U LRI R,

is B s R b
o L ny LR R

If an object is placed at infinity, then the image is
formed at the focus i.e, v = f, SO

’ —Ta

f Hq R, K
This is lens maker’s formula.

When the lens is placed in air, p; =1 andp, =p.The
lens maker’s formula takes the form :

et B ot . @ 5
=3 = e . - et B e 5 e e
e | e oo S e T

- e e
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Refraction at a convex spherical surface :

(1) The object lies in rarer medium and the image
Jormed is real. In Fig. 9.55, APBis a convex refracting
surface which separates a rarer medium of refractive

index ., from a denser medium of refractive index T

Let P be the pole, C be the centre of curvature and
R = PC be the radius .of curvature of this surface.
Suppose a point object O is placed on the principal
axis in the rarer medium. Starting from the point object
O, aray ON is incident at an angle 7. After refraction, it
bends towards the normal CN at an angle of refraction
r. Another ray OP is incident normally on the convex
surface and passes undeviated. The two refracted rays
meet at point I. So Iis the real image of point object O.

B B A R L R et et

Fig. 9.55 Refraction from rarer to denser medium,
when the image is real.

Draw NM perpendicular to the principal axis. Let
@, B and y be the angles, as shown in Fig. 9.55.
In ANOC, i is an exterior angle, therefore,
I=a+7y
Similarly, from A NIC, we have
Y=r+p
or r=y—§

Suppose all the rays are paraxisl. Then the angles g,

1,7, a,p and ﬁﬂlibewm

Fic

i

]
]
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AR L § a

a—tancx=OM e [ Pis close to M]
: NM _ NM
sl
and y=tany = 1 N
MC PC
From Snell’s law of refraction,
sini [,
sinr Hq

As i and r are small, therefore

i
I8 P’l
or ulf:pzf
or hilo+yl=p, [y Bl
NM NM] | NM NM
s 1 =15 =
OF —-P€ L PC— R
o ATEREMEE
i s B T e
i o S e U

@pr - pj PC

Object distance,
Image d1stance, | "'__"?: P
Radius of curvature, P‘C

t1 B 1b 0

—Uu v R

or

e/ Vi 1t first ‘medium s air, then u = and
p, = ;1 ‘we have




(1) The object lies in the rarer medium and the
image formed is virtual. When the object O in the

b e R e e

Fig. 9.56 Refraction from rarer to denser medium,
when the image is virtual.



rarer medium lies close to the pole P of the convex
refracting surface, the two refracted rays appear to
diverge from a point I on the principal axis, as shown
in Fig. 9.56. So [ is the virtual image of the point
object O. :

From ANOC, i=a+y
From ANCI, r=f+7v.
Suppose all the rays are paraxial. Then the angles
i r, 0, p and y will be small
L astano = A S [~ Mis close to P]
OM OP
B=tanp= NM _NM
M IP
= NM NM
and Y= tany = =
MC PC
From Snell’s law of refraction,
sini Mo
_sint o py

As i and r are small, so
il
T iy

or Pl(a‘+7)=l~l2(ﬁ+"¥'}
NM NM [NM NM
[N+ e e+ e

o or  pyl=H

(8]

H

+
QP ——EE

Object distance,  Uf
Image distance, i

Radius of airvatum,:j: = PC

By B Hoslg

—hE R
o By Mg Ko™y

(7] ] R

- e T e e e o it B e



(iii) The object lies in the denser medium and the .
image formed is real. Fig. 0.57 shows a convex
refracting surface which is convex towards the rarer
medium. The point object Olies in the denser medium.
The two refracted rays meet at point I. So 18 the real
~ image of the point object O.

From ANOC, y=i+0o or i=y-—-a
From ANIC, r=B+Y



e .

X
er

P T T L e e e e
Fig. 9.57 Refraction from denser to rarer medium
when the image is real.

Suppose all the rays are paraxial. Then the angles
i,r,a,pandy will be small.

a=tana=EM s N [+ Mis close to P]
OM OP
B‘ith:g\&i =_Nl<[-
ML P}
= NM NM
and yStany=——=—r
cM —CP

From Snell’s law of refraction, for refraction from
denser to rarer medium, we have
sini _ M4

sint My

As i and r are small angles, so

i M :
—=-1 or Wi =,
r }'I'z | 2 1
or Ho (y—a)=pq (B+7)
Bal~ep @R | ''l'PT ©P
= [_1___1_:_” [LJFL]-
Malep " OP] "lPI CP
of | S B aitely
I OP CP

Using the new Cartesian sign convention, we have

i

Object distance, o
Image distance,
Radius of Ctlrvatm‘e;

Wy s Bioh
v -—-U = =

e
v U R






surface, then the two refracted rays appear to come
from the point I, as shown in Fig. 9.58. So I is the
virtual image of the point object O.

From ANOC, i+y=a or i=a-—y

From ANIC, r+y=B or r=B-y

Fig. 9.58 Refraction from denser to rarer medium
when the image is virtual.

Suppose all the rays are paraxial. Then the angles

i,7,a,p and y will be small.
= NM NM
a=tano=——=——

OM OP [+ Mis close to P]
NM NM
=t — e e
p p - I
2 NM NM
y=tany=——=———
o IEM- 2 CP

From Snell’s law of refraction, for refraction from
denser to rarer medium, we have
sini _p,

sinr u,

As i and r are small angles, so

LI or p i=p,r
T K,
or Hy(a=y)=p;(B=7)
- [M_ﬂf‘é]z [M_EM}
OP - P IP CP.
B (5 2lfied
“210p "cp| M| P CP
ot o AW 517

P oP CP |
Using the new Cartesian sig‘l cmvenﬁon, we have

Mdmtance
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Refraction at a concave spherical surface.

(i) The object lies in the rarer medium. In Fig. 9.59,
APB is a concave refracting surface separating two
media of refractive indices p, and p,.

i
B b o B T

Fig. 9.59 Refraction at a concave surface when
the object lies in the rarer medium.

Let
P = Pole of the concave surface APB
C = Centre of curvature of the concave surface
O = Point object placed on the principal axis
I = Virtual image of point cbject O
In A NOC, y is an exterior angle, therefore
Y=0+i Of i=y—a
Similarly, from A NIC, we have
y=B+r or r=y-PB
Suppose all the rays are paraxial. Then the angles i,
1, a, B and y will be small.

u:tanazNMﬁ i [+ Mis close to P]
OM OP
NM . NM
%t - =
e
2 NM _ NM
¥l e
eM- &P
From Snell’s law of refraction,
sint _ Ky
sinr



OF it ar uq [y —a]=poly =Pl
[NM NM' [NM NM]
Oor K B =Hoy

cP OP. CPIP
M-
“11cp " op] MdcP TP
55 Ty o oy
OP 1P —€p

Using new Cartesian Eﬂgn conventmn, we find
Object distance, = OP=— H
Image clz.stan::e, . IP =— zr
Radius of curvature, CP=— R
-—U =0 — R
R - Basts = Hq
I ) R

or




(ii) The object lies in the denser medium. As shown
in Fig. 9.64, when the point object O is placed in the
denser medium, the refracted rays appear to diverge
from a point I in the denser medium. So I is the virtual
image of the point object O.

From A NOC, i=a+Y
From ANIC, r=B+y

A
AR s e
| Denser-it,.s8 = 1“' Rarer - 1,
: i <5
b e : >
i -
% Yo
=0 C
1 L. R |
1 = i |

B

Fig. 9.60 Refraction at a concave surface when the
object lies in the denser medium.

Suppose all the rays are paraxial. Then the angles i,

r, o, Bp and y will be small.
3 NM NM
o=-tanoa=—— = —
OM OP
S o MAE R
IM IP

= NM NM
yotany=— -
MC PC

From Snell’s law of refraction, for refraction from

denser to rarer medium, we have
sini I,

[© Mis close to P]

sinr H,
As i and r are small angles, so

Hs B Hol =pqt
R,



Or

or

or

or

or

Mo [o+y]=p,[B+7]
NM NM] NM NM |
“z[op Pc™M P pel
1 it oo 19
ILL2[013* pc ™M1 pc]
SEr R Wy —Hy
P~ Ok PC
Using new Cartesian s1gn mnventmn we find
Object distance, @P = ﬁ
Radius of curvature, ]
St oliRibo
=W = =l R
e 2,
0L e R



Derivation of mirror formula for a concave mirror
when it forms a real image. Consider an object AB
placed on the principal axis beyond the centre of
curvature C of a concave mirror of small aperture, as




shown in Fig. 9.13. A ray AM from the object travels
parallel to the principal axis and after reflection from
the mirror it passes through focus F. Another ray AP is
incident on the pole P of the mirror and is reflected
along PA' in accordance with the laws of reflection so
that ZAPB= /B PA'. The two reflected rays meet at
point A" Thus A’ is the real image of A. The image of
any point on AB will lie on a corresponding point of
A'B. Hence A'B is the real image of AB formed by
reflection from the concave mirror.

: f : :
Using cartesian sign convention, we find

Object distance,
Image distance,
Focal length, e
Radius of curvafuxe; C |

Now AA' BC~A ABC
AB _CB CP-BP -R+v

AB - “BC—-"BP-€P —u+R =D
As £ A PB =/ APB, therefore,
A ABP~A ABP,
Consequently,
AR - B’P_—v:E Q)

AB BP *—y U

From equations (1) and (2), we get

—R+v_v
-u+R u
or —uR + uv = —uv + vR
or PR + uR =2 uv
Dividing both sides by uvR, we get
142
i ik
But R = f
1. el
—_—t ==
TR

This proves the mirror formula for a concave
mirror, wihen it forms a real image.

TS e = L.



om of Mimror formula for a concave mirror
hen the image formed is wirtual. Consider an object

Aﬂplmﬂlmﬂnmmdamave mirror (of

small aperiure) between ifs pole P and focus F. As




shown in Fig. 9.14, a virtual and erect image A'B is
formed behind the mirror, after reflection from the
concave mirror. g

Ai’

Fig. 9.14 Image formed by a concave mirror when
the object lies between F and P.

Using the cartesian sign convention, we find that
Object distance, =~ BP=-u /

Image distance,

Focal length, P = — f
Radius of curvature, CP

Now AABC ~ AA' B C, therefore
AB CB CP-BP -2f+u

= = = el
AB CB CP+PB -2f+v )
Also AMPF ~ AA' B F, therefore,
MP— [P~ EP
A'B- FB FP+ PHB
or 2 = sl 2)
AB ~f+y
From equations (1) and (2), we get
= fie - f

—2f+v_—f+*v-
or 2f% - fu-2fo+uw=2f2- fv

or - fo- fu+uv=0
or w = fo+ fu
Dividing both sides by uvf, we get
21,1
I3 g

This proves the mirror formula for a concave mirror
when it forms a virtual image.

4 -y _ s 1T 9 ¥ il . embL TR



10. Establish the relationship between object

distance, image distance and radius of curvature for a
convex mirror.

Derivation of mirror formula for a convex mirror.
Consider an object AB placed on the principal axis of a



convex mirror of small aperture, as shown in Fig. 9.15.
A ray AM from the object travels parallel to the
principal axis and after reflection from the mirror, it
appears to come from the focus F. Another ray AP is
incident on the pole P of the mirror and is reflected
along PQ in accordance with the laws of reflection, so
that £ APB= Z BPQ. The two reflected rays appear to
diverge from a common point A'. Thus A'is the virtual
image of A. The image of any point on AB will lieon a
corresponding point of A’ B'. Hence A’ B'is the virtual
image of AB formed by reflection from the convex

mirror.

'Fig. 9.15 To derive mirror formula for a convex mirror.

Using cartesian sign convention, we find
Object distance, BP=-u ==
Image distance, PB“=+ T
Focallength, ~  FP=xf =
Radius of curvature, PC=+ R= +?- 7

Now A A'BC ~A ABC
AF BCSPC-FPP - R-p
AB BC BP+PC -u+R

As A_A’ PB= £ BPQ=Z APB,
Therefore, A A'B'P~A ABP.

Consequently,
AB _PB_ v
AB BP -u
From equations (1) and (2), we get
Re=p 3=
-u+R -u
or —uR + uv=—uv + vR
or R + uR =2 uv

Dividing both sides by uvR, we get
o
e

U

(1)

(2)


http://www.tcpdf.org

I

2f

e
—

f

This proves the mirror formula for a convex mirror.

But

Q= N
[

1
~ +
U

r =



-

11. Define magnification. Write the expressions for
magnification for (i) a concave mirror and (ii) a convex
mirror. Express m in terms of u, v and f.

Linear magnification. The ratio of the height of the
image to that of the object is called linear or transverse
magnification or just magnification and is denoted
by m.

- Height of image _F,
~ Height of object E h,

Concave mirror. Fig. 9.13 shows the ray diagram
for the formation of image A’ B' of a finite object ABby
a concave mirror.

Now, AAPB~ AA' PB'

AB BP
"AB BP
Applying the new cartesian sign convention, we
get :
AB =-h, (Downward image height)
AB= +h, (Upward object height)
BE=-v (Image distance on left)
BP=~-1u (Object distance on left)
bt |
hy -—u

) Magnification,

Convex mirror. Fig. 9.15 shows the formation of
image A' B of a finite object ABby a convex mirror.

Now, "AA' B P~AABP
e AB _PB
5 AB BP

Applying the new cartesian sign convention, we
get ;
AB=+h, AB=+h
PB=+v, BP=—1u
%
hy

=
—u
BT

Magnification, m 2

=l
”

1



Linear Magnification in terms of # and f. The
mirror formula is

L T
e e
Multiplying both sides by u, we get
T
1+ —=—
v

+
g ]
Multiplying both sides by v, we get

v v
—+1=—

or




9.12¥ REFRACTION THROUGH A RECTANGULAR
GLASS >LAB AND LATERAL SHIFT

21. Discuss the refraction through a glass-slab and
show that emergent ray is parallel to the incident ray but
laterally displaced.

Refraction through a rectangular glass slab.
Consider a rectangular glass slab PQRS, as shown in
Fig. 9.26. A ray AB is incident on the face PQ at an angle
of incidence i;. On entering the glass slab, it bends
towards normal and travels along BC at an angle of
refraction 1. The refracted ray BC is incident on face SR
at an angle of incidence 7,. The emergent ray CD bends
away from the normal at an angle of refraction 7,

D displacement
R e
Fig. 9.26
Using Snell’s law for refraction at face PQ,
—a. (1)
sin 7, 8
For refraction at face SR,
sin 1 1
28y, = (2)

sin 7, 2
Multiplying (1) and (2), we get
s%n i . sin i, g
sinz; sinr

As PQ || SR, therefore, i, =1, ; hence

sini, sint
- le : 1=1
sinz, sint
or sirlilzsinr2 or i1=r?_

Thus the emergent ray CD is parallel to the incident
ray AB, but it has been laterally displaced with respect
to the madent ray. This shift in the path of light on
emerging frome & refracting medium with parallel faces is
called loteral displacement.

Hence lateral skesft & the perpendicular distance between
the imcudent and emsergent rays, when light is incident
obliquely on a refracting slab with parallel faces.



22. A ray of light is incident at angle i on a rectan-
gular slab of thickness t and refractive index p. Obtain
an expression for the lateral displacement of the
emergent ray. Can lateral displacement exceed t ?

Expression for lateral displacement. F1g 9 27
shows the path of the ray undergoing refraction
through the slab PQORS. Let ¢ be the thickness of the
slab and x, the lateral displacement of the emergent
ray. Then from right A BEC, we have

Bic=sin(i—r) or x=BCsin(i-r)

Fig. 9.27 Calculation of lateral displacement.
From right A BFC, we have

Ez{:c'.'sr o ~BE= b =
BC COST COST
X = sin(i —7r) T

cosr

t S 3 =R
= [sin 7 cos r — cos i sin 7]

cost
.. COSisInT
=f|sini———
|: cos r }
From Snell’s law,
sin i sin i
H=— or snr=——
sin r T}
S0
1 G Sin 1
and cosr—1/ - = “2
o Ccos i.sin 1
Hence x=t¢t|sini-— 73
[1 sin? iJ
H A 2 :
oe &
Ccos 1
or x=tsini|l- «.(2)
5 [ (n2 — sin? I-)11’2}

Clearly, x tends to a maximum value when i — 90°,
so that sin i — 1 and cos i — 0. Thus

=tsin90°=¢

xmax

i.e., the displacement of the emergent ray cannot exceed the |
thickness of the glass slab.
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V.
Equivalent focal length and power of two thin g
lenses in contact. As shown in Fig. 9.100, let [, and L,

be two thin lenses of focal length f; and f, respec- a
tively, placed coaxially in contact with one another. Let

O be a point object on the principal axis of the lens
system.

0 S ]
F
Fig. 9.100 Two thin lenses in contact. {
Let OC; =u. In the absence of second lens L,, the
first lens L, will form a real image I' of O at distance
C,I' =v'. Using thin lens formula,
g B S|
= e
fi vV u

The image I' acts as a virtual object (u =7') for the
second lens L, which finally forms its real image [ at
distance v. Thus

Ik ats) opa|
s e (2
o 0 @)
Adding equations (1) and (2), we get
| Iy IR -
= -(3)

T R
i f, v U



For the combination of thin lenses in
the equivalent focal length, then

3 1 1
o )
oo f

From equations (3) and (4), we find that

o
HE s N e g
¥ i e b e
[Laniig et Oei R R R e
[ S o bt il P
b o R : 2k
E e e AR 3
i : e
it
SR
o
ok :

o . A i
e

: e e T
ST R e R e R S

.. Equivalent power,

el
e T = E*‘} ke
FEeT i e e
e s e ey
L 3 i . 't
e -32“-};2'“ i

IR T e P

For n thin lenses in contact, we have
| e ey e | 1

- + + ) i
f fl f2 -f3 fn

S Equivalent power,

- | N e e = e R



Thin lenses separated by a small distance. As
shown in Fig. 9.101, consider two thin lenses L, and L,
of focal lengths f, and f,, respectively. The two lenses
are placed coaxially, distance ‘d” apart.

Fig. 9.101 Two thin lenses separated by a small distance

Suppose a ray OA traversing parallel to the
principal axis is incident on lens L;. Itis refracted along
AF, F being the second principal focus of L. The
deviation produced by L, is

o
h

The emergent ray is further refracted by second
lens L, along BF'. Since the incident ray OA is parallel
to the principal axis, F’ should be second principal
focus of the combination. The deviation produced by
the second lens L, is :

61:tan81=

5, = tan &, = EZ— ;
f2

The final emergent ray BF’', when produced back-
wards, meets the incident ray at point D. Obwiousiy. &
is the final deviation produced. A single Thim lemi
placed at C will produce the same deviation as by e *
combination of two lenses. Thus distzamoe CF" i s



second focal length of the combinati i
length of the combination, thenmahﬂn‘ s

|

£
It is obvious from Fig. 9.101, that

=
o
1

C
1F ~ABC, F, therefore, we have I

or kzzflhd

T -
- e o T L PRSP
e e Erot T
. 5 R R T
r 3 T

m o
Sl i e 4 ;
Gl e e
- mm.-rﬂu; L
e St e T e e S = X
o L R e e R e
i e SRR e .
" = T
e B i .:.".'.-:"3{? 3 e
bt : B AR B St e B '
e S ) e e i L I
t f o e S e e
R it 1 S S r
i SR e e e 4 -J
S e
o e i e e e g e T
PP By
Lot -.'""'"'i_ - oy '\.--,q,-i*i"i o e S e
b FE e R ey (SR TR et AR R A
e et B e 2 b T e A
& Sl e s o iy R e b "2 =
e E e Sk e B s
T -:-u‘;".-‘;:-':'__-:-"' et
e e e

S
e A
Ly s x

s

L

e
SR

:w-___.‘ == rE_ﬁ'i


http://www.tcpdf.org

