
3 Servomotors & PWM

3 Servomotors & PWM

During this second session, we will focus on the actuation of the two-
wheeled robot through the regulation of each wheel speed.

3.1 Servomotors

The two-wheeled robot can move along a flat surface. Two servomotors can
independently drive the two side wheels of the robot, to make it advance
along a straight line or to make it turn. When the two wheels rotate at
exactly the same angular velocity (ω1 = ω2, see Fig. 1) and direction,
the robot moves straight forward (or backward, according to the rotation
direction). Instead, when one wheel rotates faster than the other one, the
robot turns to the side of the slower turning wheel (see Fig. 1, for a complete
overview).

ω1

ω2

ω1=ω2>0

ω1=ω2<0

ω2>ω1>0

ω1>ω2>0

ω2<ω1<0

ω1<ω2<0

Figure 1: Driving directions.

A servomotor1 is a rotary actuator that combines in a single device a motor,
an encoder and a feedback loop control unit. The encoder provides a po-
sition and/or speed feedback and the control unit compares this feedback

1http://en.wikipedia.org/wiki/Servomotor and http://www.princeton.edu/

~mae412/TEXT/NTRAK2002/292-302.pdf

21 | 35

http://en.wikipedia.org/wiki/Servomotor
http://www.princeton.edu/~mae412/TEXT/NTRAK2002/292-302.pdf
http://www.princeton.edu/~mae412/TEXT/NTRAK2002/292-302.pdf


3 Servomotors & PWM

with the incoming signal from the receiver thus controlling the current
flowing through the motor.

These three components together aim to ensure a precise control of the
output shaft, in terms of angular position and/or velocity, depending on
the specific application. The control of the servomotor, in general, can rely
on a single wire that carries the signal with encoded control parameters.

Each servomotor is connected to the Arduino board by means of a three-
wire ribbon cable. The black wire is the reference ground, the red wire is
the power supply (Vcc = 5V), while the white wire is the control signal
that determines the target angular velocity. The control signal is periodic
with a period of 20 ms (50 Hz). Within each period a pulse of variable
duration encodes magnitude and direction of the target angular velocity2.
Specifically, a 1.5 ms pulse corresponds to an output velocity of zero (the
servomotor shaft holds the current position). A longer pulse indicates a
positive angular velocity (forward rotation), while a shorter pulse indicates
a negative angular velocity (backward rotation). The magnitude of the
angular velocity is proportional to the absolute difference between the
pulse duration and the reference value 1.5 ms. It is important to notice that
the pulse duration has to be in the range [1.0, 2.0]ms.

Fig.2 summarizes the different cases.

angular velocity = 0

angular velocity > 0

angular velocity < 0

out of range

20 ms
1.5 ms

Figure 2: Pulse duration and corresponding angular velocity.

2see http://en.wikipedia.org/wiki/Servo_control for further information about the
control. The web page explains how to control the angular position of a servomotor.
However, same considerations are also valid for controlling the angular velocity

22 | 35

http://en.wikipedia.org/wiki/Servo_control


3 Servomotors & PWM

3.1.1 Preparation Task: PWM signal to control the servomotor

A way to generate a suitable control signal for the servomotor exploits the
internal timer/counters of the MCU to output a Pulse-Width Modulation
(PWM3) signal to an external pin. Even though the servomotor control sig-
nal is not a pure PWM, as the pulse width is limited within a range shorter
than the base period and can not be null, using the internal timer/counter
of the MCU reduces the overhead on the main processor that can hence
work in parallel to the PWM generation.

Chapter 20 of the ATMega2560 datasheet explains how to program the 8-
bit Timer/Counter2 to generate a PWM signal and which different settings
are available.
The Timer/Counter2 requires an input clock to work that determines the
basic counting frequency and that can be connected to different sources, as
shown in Fig.20-1 of the datasheet. For our purpose, we select the MCU
clock (clk I/O in the datasheet) as source. As very often the MCU clock has
a frequency higher than required (the Arduino MCU works at 16 MHz).
That can be scaled down with a prescaler of a power of two (1, 8, 32, 64, 128,
256 or 1024). The scaled down frequency will not have exactly the needed
value of 50 Hz (period of 20 ms), due to integer divisions. Nevertheless,
the servomotors work fine also with periodic signals that approximate the
target value.
The modes of operation describe the behaviour of the Timer/Counter: it
is possible to set whether the output pin works in inverted mode, whether
the timer gets cleared on a compare match (see output compare register),
and whether the timer counts up or down.

3.1.2 Task: program the MCU to generate PWM signals

Create a new C-module and call it “servo”. The module should implement
the following three functions:

• servo_init(), to initialize the timer/counter2;

• servo_le f t(int v), to set the angular velocity of the left wheel;

• servo_right(int v), to set the angular velocity of the right wheel.

There are four registers to be set during the initialization: TCCR2A, TCCR2B,
OCR2A, OCR2B. Refer to the datasheet on how to configure them. While
configuring TCCR2A and TCCR2B, it is better to temporary disable the
interrupts to prevent accidental generation of unwanted signals: two func-
tions cli() and sei() are available with the AVR-libc to disable and enable
the global interrupts.

3http://en.wikipedia.org/wiki/Pulse-width_modulation

23 | 35

http://en.wikipedia.org/wiki/Pulse-width_modulation


3 Servomotors & PWM

The two functions servo_le f t(intv) and servo_right(intv) set the correspond-
ing Output Compare Register to control the pulse duration of the output
control signal. The input parameter v of each function is an integer in
the range [−100, 100] whose absolute value is proportional to the angular
velocity of the corresponding servomotor and whose sign defines the direc-
tion of rotation. As overall, these functions map the input range [−100, 100]
to the output range [1.0, 2.0]ms which corresponds to the pulse duration
of the control signal, thus the angular velocity and rotation direction of
the servomotor. Notice that, as the two servomotors are symmetrically
mounted, one of the two functions has to invert the direction of rotation.

To test your code initialize the servo module from main.c and call servo_le f t(int v)
and servo_right(int v) with different values. Check whether the servos
work as expected. You can even implement a function in main.c, which
would let you change the speed of the servomotors via the serial terminal
Putty after pressing the push button.
It could happen that rapid changes of wheel speed result in the reset of
the MCU: this is due to inrush current of the servomotors. To mitigate
this effect you can program a proportional control to slowly switch on
the servos to progressively reach the target speed. This can be done, for
example, by slightly incrementing (or decrementing, depending on the
turning direction) the speed of the servo of a small amount ∆S at every
time step ∆t. You can use a delay function to define the duration of a time
step. You should empirically find the two parameters ∆S and ∆t which
prevent the robot from resetting but which also minimize the responsiveness
of the servos, as this will be crucial in the last assignment, where the robot
will be controlled via the joystick.
The following table reports the connections between the servomotors and
the Arduino board:

Servomotor ATMega2560 Pin Output Compare Register TinkerKit Conn.

Right wheel (ω1) Port B pin 4 (PB4) OC2A O1

Left wheel (ω2) Port H pin 6 (PH6) OC2B O2

Table 1: Connection between the ATMega2560 and the two servomotors.

24 | 35


