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Laws of reflection on the basis of Huygens' wave
theory. As shown in Fig. 10.4, consider a plane
wavefront AB incident on the plane reflecting surface
XY, both the wavefront and the reflecting surface

being perpendicular to the plane of paper.

Incident — Reflected
wavefrunt_\ l—wavefrqnt
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N,

¥

R T b

Fig. 10.4 Wavefronts and corresponding rays
for reflection from a plane surface.

First the wavefront touches the reflecting surtace at
B and then at the successive points towards C. In
sccordance with Huygens’ principle, from each point
on BC, secondary wavelets start growing with the



Speed ¢ During the time the disturbance from A
meaches the point C, the secondary wavelets from B
must have spread over a hemisphere of radius
85D = AC =ct, where ¢ is the time taken by the distur-
Dance to travel from A to C. The tangent plane CD
drawn from the point C over this hemisphere of radius
¢t will be the new reflected wavefront.

Let angles of incidence and reflection be i and »
respectively. In AABC and ADCB, we have

L BAC=/CDB [Each is 907
BO=B¢ [Common)]
AC=BD ~ [Each is equal %o cf]
AABC = ADCB
Hence ZABC=/DcCB
or =
.e., the angle of incidence is equal to the angle of reflection,
This proves the first law of reflection.

Further, since the incident ray 5B, the normal BN
and the reflected ray BD are respectively perpen-
dicular to the incident wavefront AB, the reflecting
surface XY and the reflected wavefront CD (all of
which are perpendicular to the plane of the paper),
therefore, they all lie in the plane of the paper, i.e., in

the same plane. This proves the second law of
reflection.
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Laws of refraction on the basis of Huygens’ wave
theory. Consider a plane wavefront AB incident on 3
plane surface XY, separating two media 1 and 2, as
shown in Fig. 10.5. Let v; and v, be the velocities of
light in the two media, with v, <7;.
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The wavefront first strikes at point A and then g
the successive points towards C. According
Huygens’ principle, from each point on AC, the secap
dary wavelets start growing in the second mediu m
with speed v,. Let the disturbance take tinfe £ o trawve)
from B to C then BC=u;t. During the time s
disturbance from B reaches the point C, the secondary
wavelets from point A must have spread over g
hemisphere of radius AD = Uyt In the second medium
The tangent plane CD drawn from point C over thay
hemisphere of radius U,t will be the new refra ted)
wavefront.

Let the angles of incidence and refraction be i and r
respectively.

From right AABC, we have
sin £ BAC = sin i =£E
AC
From right AADC, we have
sin Z DCA = sin r = ég
AC
sini _ BC -
sinr AD V,t
st o o
or =2 = a const
sin r v, 5 ( 2

This proves Suell’s law of refraction. The constant
1p2 is called the refractive index of the second medium
with respect to first medium.

Further, since the incident ray SA, the normal AN
and the refracted ray AD are respectively perpen-
dicular to the incident wavefront AB, the dividing
surface XY 'and the refracted wavefront CD (all
perpendicular to the plane of the paper), therefore,
they all lie in the plane of the paper, i.e, in the same
Plane. This proves another law of refraction.
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of Refraction at a rarer medium. Fig. 10.6 shows the
refraction of a plane wavefront at a rarer medium L.e3

Incident
wavefront

Refracted
wavefront

Fig. 10.6 Refraction of a

plane wave incident on a
rarer medium for which v, >V, . The plane wave

bends away from the refracting surface.



min Fig. 10.6.In

s The incident and refracted wavefronts are

this case, the angle of refraction is

than the angle of incidence. Here also the
's law of refraction is valid. That is -
sin 1 1 = |

— ="l (a constant)
s r
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Behaviour of a prism. Fig. 107 shows the
refraction of a plane wavefront through a thin pmsm.
Since the speed of light in glass is smaller than thatm
air, therefore, the lower part C of the plane wavefront
which travels through the greatest thickness of the
glass prism is slowed down the most and the upper
part A, which travels through the minimum thickness
of the glass prism, is slowed down the least. This
explains the tilting of a plane wavefront after refraction
through a glass prism.
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waveﬁont\
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Fig. 10.7 Refraction of a plane wavefront
through a prism.

Behaviour of a convex lens. Fig. 10.8 shows the
refraction of a plane wavefront through a convex lens.
The central part B of the plane wavefront travels
e through the greatest thickness of the lens and is,
therefore, slowed down the most. The marginal parts
A and C of the wavefront travel through a minimum

. S sl ¢ T Tl

1e
o thickness of the lens and are, therefore, slowed down
the least. So the emerging wavefront is spherical and
converges to a focus F.
7z Incident Refracted
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Fig. 10.8 Refraction of a plane wavefront
through a convex lens.
S0 Behaviour of a concave mirror. Fig. 10.9 shows the

reflection of a plane wavefront from a concave Mirror.

_ /"Incident /_' Reﬂe;ted
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Fig. 10.9 Reflection of a plane wavefront from
a concave mirror.



Ihe central part B of the incident wavefront has to
fravel the greatest distance before getting reflected,
compared to the marginal parts A and C, Therefore, the
central portion B of the reflected wavefront is closer to
the mirror than the marginal portions A’ and C'. Hence
the reflected wavefront is spherical and converges to a
focus.



10.10 * CONDITIONS FOR CONSTRUCTIVE

10. Derive an expression for the intensity at any
point on the observation screen in Young's double slit
experiment. Hence write the conditions for constructive
and destructive interference.

Expression for intensity at any peint in inter-
ference pattern. Suppose the displacements of two
light waves from two coherent sources S, and S, at
point P on the observation screen at any time ¢ are
given by

Yy, = a, sin of
and y, = 4, sin (ot + ¢)
where 4, and 4, are the amplitudes of the two waves, ¢
is the constant phase difference between the two

waves. By the superposition principle, the resultant
displacement at point P is

Y=y, +Y,=a; sin of +4a, sin (ot + ¢)
= g, sin®t + 4, Sin ©# o8 ¢+ a, cos ot sin¢
or y = (a; + 4, cos ¢) sin ®t + 4, sin ¢ cos wt



Put a4, +a, cos = A cos 0 (1)
and a, sin = Asin 0 -(2)

Then Y = A cos 0 sin ot + A sin 0 cos ot
or Yy =Asin (ot + )

Thus, the resultant wave is also a harmonic wave of -
amplitude A and it leads the first harmonic wave by
phase angle 6. To determine A, squaring and adding

equations (1) and (2), we get
A%cos?0 + A’sin%@ = (a, + a, cos §)* + azz sin? ¢

-

OF A% g2 a,” (cos? ¢+ sin? ¢) +2a,a, cos ¢

or A*= alz + a2_2' +2a,a, cos ¢ =3

But intensity of a wave o (amplitude)?
We write I=kA®, I =ka? and I, =ka?

%5 5

where k is proportionality constant. The equation (3) P
can be written as I
kA? = ka” + ka,” + 2vka; \ka, cos ¢ s

or " I=hL+1+2 /1T cos ¢ )

This equation gives the total intensity at a point b
where the phase difference is ¢. Here I, and 1, are the
intensities which the two individual sources produce €0

on their own. The total intensity also contains a third

term 2,/1’1 L, cos ¢. It is called interference term.

Constructive interference. The resultant intensity

at the point P will be maximum when

cos¢=1 or ¢=0,27, 4, ...
Since a phase difference of2 ncorresponds to a path

difference of 2, therefore, if p is the path difference
between the two superposing waves, then

et
A
or p=Al X 2X, 3% ...=m

Hence the resultant intensity at a point is maximum
when the phase difference between the two superposing

waves is an even multiple of m or path difference is an

integral multiple of wavelength ). This is the condition of
constructive interference.

Fig. 10.13 Locus of points for which §P-SPis
equalto 0, £, =23, + 235
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- 0dd multiple of n or the path difference is an odd multi

Destructive interference. The resultant intensity
the point P will be minimum when

Cos¢=-1 or ¢=mg, Es ey

or EH—P=?I, I Bt
A
A 3A 5% A
or S e R iy
R e S

Hence the resultant intensity at a point is minimum
the phase difference between the tuo SUPerposing waves is

A/ 2. This is the condition of destructive interference.



12 ¥ THEORY OF INTERFERENCE FRINGES : separated bya small distance d. Interference fringes are
FRINGE WIDTH obtained on a screen placed af distance D from the

sources S1 and 52

Consider a point P on the screen at distance x from

le slit experiment. How can the wavelength of
ochromatic light be found by this experiment ? - the centre O. The nature of the interference at the point
& P depends on path difference,

Expression for fringe width in Young's double p=8,P-5P

experiment. As shown in Fig. 10.14, suppose a 3
narrow slit § is illuminated by monochromatic light of From right-angled AS,BP and A5 AP,

wavelength AJS, and S, are two narrow slits at equal P25 P =[5,B" + PB’] ~[5,4% + PA?]

 distance from S. Being derived from the same parent a2 1\
2 2
source §, the slits 5; and 5, act as two coherent sources, =| D"+ (x o+ —) =t [x ——)
: 2 2
13 -‘— e,
First D
bright 2

X B,
A Tl
Intensity
0 d - //: : |
{p, S
B | < B,
Screen Central &

e -
B
e e e e s

Fig. 10.14 Position of bright and dark fringes in Young'’s double slit experiment.

13. Deduce an expression for fringe width in Young’s




or (S,P = S,P)(S,P+ S, P)=2xd

or Sipeop i
Be.5p ./

In practice, the point Plies very close to O, therefore
P P Ty
SI P= 52 P=D. Hence

2 xd
=SSP -SP=——
p=5 155
! xd
or - = —D'- )
Positions of bright fringes. For constructive
interference,
xd
=—=HnA
: D
or x= 11% where n=0,1,2,3, ....
Clearly, the positions of various bright fringes are
as follows :
For n=0, x, =0 Central bright fringe

Forn=1 x = —2—1 First bright fringe

Forn=2, x,= .;2_?& Second bright fringe

...............................

Forn=n x = -'f;ﬂ nth bright fringe

Positions of dark fringes. For destructive interference,

xd A
====Qn-1)—
Pt i
or X =(2n~—-1)% where n=1,2,3, ...
Clearly, the positions of various dark fringes are as
follows :
Forn=1 x = 21 Pd—l First dark fringe
Forn=2, «x, =§ -%75 Second dark fringe

.............................

Since the central point O is equidistant from
S, and S,, the path difference p for it is zero. There will
be a bright fringe at the centre O. But as we move from
O upwards or downwards, alternate dark and bright
fringes are formed.

Fringe width. Jt is the separation between two
successtoe bright or dark fringes,
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Width of a dark fringe = Separation between two

consecutive bright fringes
_nDA (n-1)DA Dj
e AT e
Width of a bright fringe
- = Separation between two consecutive
dark fringes
= x:I = x.:i -1
=(2n ;1)Pj“_m[2 (n-1) _1]_D_7“:BE
e 2d . 20

Clearly, both the bright and dark fringes are of
equal width.

Hence the expression for the fringe width in
Young’s double slit experiment can be written as

1%

g
B

As B is independent of # (the order of fringe),
therefore, all the fringes are of equal width. In the case
of light, A is extremely small, D should be much larger
than d, so that the fringe width B may be appreciable
and hence observable. -

Measurement of wavelength. Young’s double slit
experiment can be used to determine the wavelength
of a monochromatic light. The interference pattern is
obtained in the focal plane of a micrometer eyepiece
and with its help fringe width P is measured. By
measuring the distance d between the two coherent
sources and their distance D from the eyepiece, the
value of wavelength A can be calculated as

Bl
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10.16 ® COMPARISON OF INTENSITIES AT
MAXIMA AND MINIMA

17. Derive an expression for the ratio of intensities
at maxima and minima in an interference pattern.
Comparison of intensities at maxima and minima.
Let a, and a, be the amplitudes and [ and I, be the
intensities of light waves from two different sources.
L _ &

As Intensity o Am1::1i*l:m:1+a2 -
L %

Amplitude at a maximum in interference pattern
=a, + 4,

Amplitude at a minimum in interference pattern

Z=h =%

Therefore, the ratio of intensities at maxima and
minima 18
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10.22 ¥ DIFFRACTION AT A SINGLE SLIT

- 24, Explain the phenomenon of diffraction of light at
a single slit to show the formation of diffraction fringes.
Show graphically the variation of intensity with angle im
this diffraction pattern. Why secondary maxima are lesy
intense than the central maximum ?

Diffraction at a single slit. As shown in Fig. 10.21,
a source Sof monochromatic light is placed at the focus
ofa convexlens L. A parallel beam of light and hence =
plane wavefront WW gets incident on a narrow
rectangular slit AB of width 4.

L,

e

Fig. 10.21 Diffraction at a single slit.

The incident wavefront disturbs all parts of the slit
AB simultaneously. According to Huygens’ theory, all |
parts of the slit AB will become source of secondary
wavelets, which all start in the same phase. These
wavelets spread out in all directions, thus causing
diffraction of light after it emerges through slit AR
Suppose the diffraction pattern is focussed by a convex
lens L, on a screen placed in its focal plane.

Central maximum. All the secondary wavelets
going straight across the slit AB are focussed at the
central point O of the screen. The wavelets from any
two corresponding points of the two halves of the slit
reach the point O in the same phase, they add
constructively to produce a central bright fringe. For
detailed explanation of diffraction fringes, see For Your
Knowledge box on page 10.32.

Calculation of path difference. Suppose the
secondary wavelets diffracted at an angle 0 are
focussed at point P. The secondary wavelets start from
different parts of the slit in same phase but they reach



:_5?1- point P in different phases. Draw perpendicular
N from A on to the ray from B. Then the path cant
ference between the wavelets from A and B will be
p=BP— AP=BN = ABsin 6 =d sin @.
Positions of minima. Let the point P be so located T
m the screen that the path difference, p= X and angle
=8,. Then from the above equation, we get
dsin 6, =% 1
- We can divide the slit AB into two halves AC and jncr
B Then the path difference between the wavelets 1
som A and C will be % Similarly, corresponding 0 yee

point in the upper half AC, there is a point in the tl}:e
sho

wer half CB for which the path difference is = Hence

be wavelets from the two halves reach the point P the
ways in opposite phases. They interfere destruc- dec

fively so as to produce a minimum.
Thus the condition for first dark fringe is
d sin 8, =\
Similarly, the condition for second dark fringe will be
d sin 8, =2
Hence the condition for nth dark fringe can be
written as '

of vg_ﬁq};g minima are gi{ren by
[As A << d, sO sin 8,~6,]

Positions of secondary maxima. Suppose the point  gj

%
The directions

P is so located that p= 37;

When9=9’1, then dsin@'l:;—]k =

We can divide the slit into three equal parts. The
path difference between two corresponding points of
the first two parts will be = The wavelets from these .
points will interfere destructively. However, the
wavelets from the third part of the slit will contribute |
to some intensity forming a secondary maximum. The' |
intensity of this maximum is much less than that of the
central maximum.

Thus the condition for the first secondary maximum is

dang ==
2

Similarly, the condition for the second secondary
maximum is

dsm€2=§x
2



can be written as

dsin®, =@n+1)5 =123

The directions of secondary maxima are given by

The intensity of secondary maxima decreases as 7
“increases.

Intensity distribution curve. If we plot a graph bet-
ween the intensities of maxima and minima against
the diffraction angle 6, we get a graph of the type
shown in Fig. 10.22. Ithas a broad central maximum in
the direction (8 =0°) of incident light. On either side of

. the central maximum, it has secondary maxima of
decreasing intensity at positions,

A
p=+02n+1)—
Ruels s

and  minima at positions,

A
O==+n E (?’I F O)
A Intensity
e
SETERE I 0 PO e
A d d d d d d
nt gig. 10.22 Variation of intensity with angle @8 in
single slit diffraction.
The intensities of secondary maxima relating to the
intensity of central maximum are in ratio,
0‘} ‘9161 121
2 Thus the intensity of the first secondary maximum

is just 4% of that of the central maximum.
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25. Deduce expressions for (1) angular width of
central maximum (ii) linear width of central maximum
and (iii) linear width of a secondary maximum.

Angular width of central maximum, The angular
width of the central maximum is the angular separatios
between the directions of the first minima on the two sides of
the central maximum, as shown in Fig. 10.26.

-~
e 2
et ~
--"'-.r \
dI-:ii- g = g, | Central )
'\-\.-"'I-__h-h. e [] maﬂmm
-‘"‘ll__.- f
-.._“-‘. f
S P
.-.h'.._‘-‘. f
N D S
Screen

Fig. 10.26 Angular and linear widths of
central maximum.



™. directions of first minima on either side of does

=l maximum are given by - the
8  distc
0=—
d 1
lhis angle is called half angular width of central Fres
l.,_. of |
2\ ape

* Angular width of central maximum =20 = = S
Linear width of central maximum. If D is the
kance of the screen from the single slit, then the
er width of central maximum will be

spr
) = =f’-ﬂ]
Radius D
Linear width of a secondary maximum. The O
gular width of nth secondary maximum is the angular
weration between the directions of nth and (n+ 1)th lig
tre
Direction of nth minimum, 6, =7 = 2
Direction of (# + 1) th minimum,
A
0 e = (n + 1) —d—
- Angular width of nth secondary maximum
: A A Te
=_en+1—9n=(n+l)avn3:ﬁ u
Hence the linear width of nth secondary maximum .
= Angular widthx D
= "_~'~_':-;:.- | €
i
Clearly, By= 2[3.
- Thus the central maximum of a diffraction pattern is
—wice as wide as any secondary maximun.
]

Clearly, width of a secondary maximum
1 :

o —
slit width
As the slit width is increased, the secondary
maxi wer. If the slit is sufficiently wide, the
secondary maxima disappear and only the central
maximum is obtained which is the sharp image of the
Slit. Thus a distinct diffraction pattern is possible only
if the slit is very narrow.
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Ray optics as a limiting case of wave optics -
Fresnel’s distance and Fresnel’s zone. A parallel beam
of light of wavelength A on passing through an
aperture of size d gets diffracted into a beam of angular
width, :

o=
d

If a screen is placed at distance D, this beam
spreads over a linear width,

DA
=
d
If the diffraction spread x is small, the concept of

ray optics will be valid.

If we have an aperture of size d =10 mm and use
light of wavelength A =6 x 1077 m, then the beam after
travelling a distance of 3 m will get diffracted through
a width :

D A 3><6>~<10_7

==

d 10x 1072
—18x 10~ m =0.18 mm

This diffraction spreading is not quite large. Thus
ray optics is valid in many cOMMORN situations. It is
useful here to define what is called Fresnel’s distance,
Dr.

The distance at which the diffraction spread of beam is
equal to the size of the aperture is called Fresnel’s distance.

ie, when x=d, D=D;

DA :

d - A
If D<Dg, then there will not be too much
broadening by diffraction i.e., the light will travel along
straight lines and the concepts of ray optics will be

valid.
2

As D<Dp or D<%— or d>~AD

For a given value of D, the quantity A D is called
the size of Fresnel zone and is denoted by dp .

Hence the concepts of ray optics can be conve-
niently used without introducing any appreciable
error if the size of the aperture is greater than the size

of the Fresnel zone,

ie., d>dp.



immersion oogjective.

Resolving power of a microscope. The resolving
power of @ Microscope 1 defined as reciprocal of the smallest
Jistance between two point objects at which they can be just
resolved when seen through the microscope.

The smallest distance between two point objects at which
they can be just resolved by the microscope, or the limit of
resolution, is given by | ' |

g=—"
21 sin O i
.. Resolving power of a microscope = —;H = e imﬁ

Here,

'-- 5

% = the wavelength of light used,

§ = half the angle of cone of
light from each point
object or the angle sub-
tended by each point
the objective[Fig. 10.30]. Fig. 10.30

u = the refractive index of the medium between the
point object and the objective of the microscope-

1
I
1
i
1
I
[

6.9




The factor p sin 0 is called the numerical aperture
{for eye, p sin 6 =0.004).

The smaller the limit of resolution ‘d, the greater
will be the resolving power. The resolving power of a
microscope increases when an oil of high refractive

index (u) is used between the object and the objective
(called the oil immersion objective) of the microscope.
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Resolving power of a telescope. The resolving power
of a telescope is defined as the reciprocal of the smallest
angular separation between two distant objects whose
1mages can be just resolved by it.

The smallest linear angular separation between two
distant objects whose images can be just resolved by the
telescope, or the limit of resolution, is given by

dezl*22l

= D =
: RESGIVII‘[ - power of a telesco é*m . -
el L T ias

Here
A = the wavelength of light,
D = the diameter of the telescope objective, and

d6 = the angle subtended by the two distant
objects at the objective.

~ Thus larger the aperture of the objective and
smaller the wavelength of light used, the greater will
be the resolving power of the telescope.



Doppler effect. In class XI, you have already learnt
Doppler effect for sound waves. When a source of
sound travels towards an observer, the apparent fre-
quency is higher than the frequency actually emitted
by the source. When the source moves away, the
apparent frequency is lower than the actual frequency.
Doppler effect is a basic property of all waves and so
occurs in case of light also.

Whenever there is a relative motion between source of
 light and observer, the frequency of light received by
 the observer is different from the frequency actually
_emitted by the source. This phenomenon of the
apparent change in the frequency of light is called
- Doppler effect for light. - =

Expression for the apparent frequency of light.
Suppose a source of light emits waves of frequency v
and wavelength A. If cis the speed of light, then

C
=
Y,
=
Wave front
Vel=v \ \

S M =& R
Moving } / / Stationary
observer observer
. v .

Suppose an observer moves towards the source
with velocity v. In one second, the source and observer
come closer by a distance v.

Apparent frequency

= No. of light waves emitted per second
by the source + No. of light waves
contained in distance v

g v v v
OT V=V+——=V+———=V+V.—
c/v
or V’='V(1:+. —“‘) _ ...(1)

Clearly, v/ >vie.., the apparent frequency increases
wihen source and observer approach each other.

When source and observer move away from each
other, the apparent frequency can be obtained by
replacing o by — v in the above equation. Then

i ___]\‘
Vw12 (2)
ko e/

rea

ne
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Clearly, v' <vi.e., the apparent frequency decreases
when source and observer move away from ead
other.

Blue shift and red shift. Equations (1) and (2)
be combined together as

or vV-v=ty
c
The frequency change Av =V —v is called Dopple
shift. Putting v =£ andv' =— , we get
o e e
A C X
or a -+ 7
A c
But A=A _ A
N A
A=A =
A c
or e

(1) When source and observer approach each other,
positive sign is taken. Then A — A’ is positive or X' <3
i.e, the wavelengths in the middle part of the visible
spectrum shift towards the blue region. This is called
blue shift.

(i) When source and observer move away from
each other, negative sign is taken. Then A — )’ is
negative or )’ >), i.., the wavelengths in the middle
part of the visible spectrum shift towards the red
region. This is called red shift.


http://www.tcpdf.org

