
The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

A STUDY OF PARALLELISM-LOCALITY TRADEOFFS

ACROSS MEMORY HIERARCHY

A Dissertation in

Computer Science and Engineering

by

Praveen Yedlapalli

c© 2015 Praveen Yedlapalli

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2015

The dissertation of Praveen Yedlapalli was read and approved1 by the following:

Mahmut Taylan Kandemir
Professor of Computer Science and Engineering
Dissertation Adviser
Chair of Committee

Chita R. Das
Professor of Computer Science and Engineering

Padma Raghavan
Professor of Computer Science and Engineering

Dinghao Wu
Assistant Professor of Information Sciences and Technology

Lee Coraor
Associate Professor of Computer Science and Engineering
Chair of the Graduate Program

1Signatures on file in the Graduate School.

iii

Abstract

As the number of cores on a chip increases, the memory bandwidth requirements
become a scalability issue. Current CMPs incorporate multiple resources both on-chip
and off-chip to handle these bandwidth requirements. There are multiple ways to orga-
nize these resources (caches and memory) with different parallelism and locality tradeoffs.
In this dissertation, we first study parallelism vs. locality tradeoffs in each layer of the
memory hierarchy, as well as the cross-layer interactions.

Using the observations from the characterization study we proposed a dynamic
memory migration technique which optimizes both parallelism and locality metrics in
the memory subsystem and thereby improve performance. Then we study the challenges
faced by traditional cache prefetchers in modern CMPs and identify the major pitfalls
in their use in these new systems. We show how memory prefetching can take advantage
of the memory locality and prefetch opportunistically, leading to better efficiency than
traditional cache prefetchers. We explore the emerging area of mobile computing and
identify mobile memory bandwidth requirement as a major challenge faced in these
systems. We propose a novel solution of breaking the application frames into smaller
ones to exploit the memory locality and reduce the memory bandwidth requirements
significantly in such systems.

iv

Table of Contents

List of Tables . vi

List of Figures . vii

Acknowledgments . ix

Chapter 1. Introduction . 1
1.1 Memory Migration . 3
1.2 Memory Prefetching . 3
1.3 Mobile Memory . 4
1.4 Programming Wall Challenge . 6

Chapter 2. Background and Related Work . 7
2.1 Background . 7

2.1.1 Mobile Platforms . 9
2.2 Related Work . 11

Chapter 3. Memory Migration . 16
3.1 Parallelism vs. Locality . 16

3.1.1 Mapping Scenarios . 16
3.1.2 L2 Cache . 16
3.1.3 Memory Channel . 18
3.1.4 Memory Bank . 20
3.1.5 Summary of Findings . 21

3.2 Dynamic Migration for Improving Memory Performance 22
3.2.1 Migration Policy . 22
3.2.2 Migration Mechanisms . 23

3.3 Experimental Evaluation . 25
3.3.1 Migration Policy . 25
3.3.2 Migration Mechanisms . 26

Chapter 4. Memory Prefetching . 28
4.1 Memory-Side Prefetching . 29

4.1.1 What to Prefetch? . 29
4.1.2 When to Prefetch? . 30
4.1.3 Where to Prefetch? . 31
4.1.4 Optimizations for Memory-Side Prefetching 32

4.2 Experimental Evaluation . 33
4.2.1 Setup . 33
4.2.2 Benchmarks . 33
4.2.3 Results and Analysis . 35

v

Chapter 5. Mobile Memory . 38
5.1 Problem Statement . 38
5.2 Evaluation Platform . 41
5.3 IP-to-IP Data Reuse . 42

5.3.1 Data Reuse and Reuse Distance 42
5.3.2 Converting Data Reuse into Locality 43

5.4 Sub-Framing . 44
5.4.1 Flow-Buffering . 46
5.4.2 IP-IP Short-circuiting . 47
5.4.3 Effects of Sub-framing Data with Flow-Buffering and IP-IP

Short-circuiting . 49
5.5 Implementation Details . 49

5.5.1 Correctness . 49
5.5.2 OS and Hardware Support . 52

5.6 Evaluation . 53

Chapter 6. Cooperative Parallelization . 56
6.1 Parallelization Approach . 56

6.1.1 Trees and Recursion . 57
6.1.2 Linked Lists and Loops . 59

6.2 Programmer Directives and Automation 61
6.2.1 Programmer Directives . 61
6.2.2 Automation . 63

6.3 Experimental Evaluation . 64
6.3.1 Platform . 64
6.3.2 Benchmarks . 64
6.3.3 Results . 65

Chapter 7. Future Work . 67
7.1 Cooperative Prefetching . 67
7.2 Mobile Memory Systems . 67

Chapter 8. Concluding Remarks . 68

Appendix. Publications . 69
A.1 Significant Publications . 69
A.2 Other Publications . 69

Bibliography . 71

vi

List of Tables

2.1 Breakdown of on-chip and off-chip latencies for L2 misses in three differ-
ent workloads without any prefetching. 8

3.1 Evaluated mapping scenarios. 17

4.1 Characteristics of different prefetch schemes. 31
4.2 Configuration of the evaluation platform. 33
4.3 Memory characteristics of SPEC2006 applications. 34

5.1 Platform configuration. 41
5.2 Expansions for IP abbreviations. 42
5.3 IP flows in our applications. 42

6.1 Hardware and Software configuration of the experimental evaluation plat-
form. 64

6.2 Benchmark applications and their important properties. 65

vii

List of Figures

2.1 Target SoC platform with a high-level view of different functional blocks
in the system. 9

2.2 Overview of data flow in SoC architectures. 10

3.1 L2 parallelism under different mappings. (Higher is better) 18
3.2 L2 Locality under different mappings. (Lower is better) 18
3.3 Normalized IPC under different mappings. 19
3.4 Memory channel parallelism under different mappings. (Higher is better.) 19
3.5 Memory channel locality under different mappings. (Lower is better.) . 20
3.6 Normalized IPC under different mappings. 20
3.7 Normalized IPC under different memory mappings. 21
3.8 Percentage of data to be migrated already present in the L2 cache. . . . 24
3.9 Ring network connecting the memory controllers is used for data migration. 24
3.10 Performance improvements with different migration policies. 25
3.11 Improvements in memory parallelism obtained by our migration scheme. 26
3.12 Memory locality with our migration scheme. 26
3.13 Performance improvements with different migration mechanisms. 27
3.14 Memory latency with different migration mechanisms. 27

4.1 Line access pattern graphs of some SPEC CPU2K6 applications. 30
4.2 Percentage IPC improvement over no prefetching with different prefetchers. 35
4.3 Average on-chip and off-chip latencies for an LLC miss without prefetch-

ing and different prefetching schemes. 36

5.1 Bandwidth usage of Youtube and Skype over time. 39
5.2 Total data stalls and processing time in IPs during execution. 39
5.3 Percentage of frames completed in a subset of applications with varying

memory bandwidths. 40
5.4 Trends showing increase of percentage of data stalls with each newer

generation of IPs and DRAMs. 40
5.5 Percentage reduction in Cycles-Per-Frame in different flows with a perfect

memory configuration. 40
5.6 Data access pattern of IPs in YouTube application. 43
5.7 Hit rates under various cache capacities. 44
5.8 Cycles Per Frame under various cache capacities. 45
5.9 Area and power-overhead with large shared caches. 45
5.10 IP-to-IP reuse distance variation with different sub-frame sizes. Note

that the y-axis is in the log scale. 46
5.11 Delay breakdown of a memory request issued by IPs or cores. The num-

bers above the bar give the absolute cycles. 48
5.12 Hit rates with flow-buffering and IP-IP short-circuiting. 49

viii

5.13 Pictorial representation showing the structure of five consecutive video
frames. 50

5.14 High level view of the SA that handles sub-frames. 51
5.15 Percentage of Frames Completed (Higher the better). 53
5.16 Reduction in Cycles Per Frame in a flow normalized to Baseline (Lower

the better). 54
5.17 Reduction in Number of Active Cycles of Accelerators (Lower the better). 55

6.1 A high level view of the proposed approach. 56
6.2 High level code of a parallelized program using the proposed strategy. . 57
6.3 Subproblems in a tree-based application. 58
6.4 A function from perimeter Rogers et al. (1995), one of our tree-based

applications. 59
6.5 A function from em3d Rogers et al. (1995), one of our linked list-based

applications. 60
6.6 Programming directives to express parallelism. Note that, val and num-

ber are optional fields. 61
6.7 High level view of automation. 63
6.8 Speedups obtained with our approach 66

ix

Acknowledgments

I sincerely thank my advisor, Professor Mahmut Kandemir for his continued sup-
port through out my PhD. His guidance was very helpful in driving me in the correct
direction. I learnt a lot of valuable lessons from him both in research and life. I admire
his patience in reviewing my results and writing many times and providing valuable
feedback. I appreciate the way he supported me when I wanted to change my thesis
topic mid-way. I am extremely thankful to him for that.

I am thankful to my dissertation committee members Professor Chita R. Das,
Professor Padma Raghavan and Professor Dinghao Wu for their valuable time and the
helpful feedback. I am especially thankful to Dr. Chita Das and Dr. Anand Sivasub-
ramaniam for their prolonged guidance in many of my projects. Interactions with them
has always been immensely insightful and helpful to me.

I am very thankful to my collaborators Nachiappan Chidambaram and Emre
Kultursay. Discussions with them are always interesting and gave me a new perspective
on the problems. I am also thankful to my lab mates and collaborators Jagadish Kotra,
Niranjan Soundararajan, Wei Ding, Adwait Jog, Diana Guttman, Jithendra Srinivas,
Sai Prashant Muralidhara and Yuanrui Zhang.

I should thank VMware and Intel corporations for offering me summer internships
that proved to be invaluable. Those were my first jobs in industry and I learnt a lot
from them. It was a great experience interacting with people from different universities
and that provided me a different perspective on academics and life.

I am also thankful to the organizations National Science Foundation (NSF), De-
partment of Energy (DOE), Intel and Microsoft for the support they provided to our lab.
Specifically, the NSF grants - #1302557, #0963839, #1205618, #1213052, #1320478,
#1317560, #1302225, #1017882, #1152479, #1147388, #1139023, #0811687 and #0953246.

Finally, I want to thank my sister (Dr. Swathi Yadlapalli), my parents (Dr.
Shailaja Yadlapalli and Dr. Prasad Yadlapalli) and my grand parents (Dr. Sarojini
Yerneni and Dr. Venkateswara Rao Yerneni) for inspiring me to get a PhD and providing
me motivation through out my time in PhD.

1

Chapter 1

Introduction

Chip multi-processors (CMPs) have become ubiquitous in all forms of computing
starting from mobile platforms to data centers. They handle the power and instruction
level parallelism (ILP) issues much better than the single-core processors. However, there
are some important challenges to be addressed to use CMPs effectively. Traditionally,
memory is slower compared to the processor. Putting more cores in a single processor
makes the memory problem even worse. This problem is referred as the Memory wall
challenge. In this dissertation, we look at the challenge from a memory parallelism vs
locality perspective. We propose novel solutions to address this challenge for systems
ranging from mobile computing domains to high performance platforms.

The memory wall continues to plague the scalability of high end computing sys-
tems. While this problem has persisted through the past decades of single core systems,
the multicore era only exacerbates the increasing reliance on an uninterrupted supply
of data (from the memory system) to keep the pipelines of different cores continuously
busy. Current and next generation chip multiprocessors (CMPs) do offer the potential
of better locality by accommodating deeper (2-3 levels) cache hierarchies on the same
die as the computation units before requiring off-chip accesses. They also offer multiple
(parallel) paths for getting to the memory hierarchy that is necessary to sustain the
high throughput needs of multiple cores on the die. However, these two dimensions –
locality and parallelism – need careful scrutiny and optimization for the successful scal-
ability of next generation CMPs. There have been specific studies looking to optimize
one or more artifacts of the memory hierarchy – the cache layers Kim et al. (2002); Cade
and Qasem (2009); Huh et al. (2007); Mutlu et al. (2003), the memory controllers Jeong
et al. (2012a); Sudan et al. (2010) and DRAM organization Kim et al. (2012); Udipi et al.
(2010) or even the on-chip interconnect for accessing the hierarchy Das et al. (2009); Park
et al. (2008). However, there has been little attempt at systematically studying these two
dimensions of locality and parallelism, and the tradeoffs therein, across the layers of the
memory hierarchy of a CMP. This dissertation presents the first such characterization,
studying the locality vs. parallelism trade-offs that exist in each layer, as well as across
layers. Note that, in this dissertation we use the term locality to represent the proximity
of the cache bank from the processor.

Next generation CMPs are envisioned to have dozens, or even hundreds, of cores
on the die. Each core typically has a local and private L1 cache (of the order of 16-32 KB).
This L1 cache is fairly adequate to sustain the response time (access times of 1-2 cycles)
and throughput (to handle memory requests which may be spaced a few instruction
apart) needs of the associated core, even if it is of multiple issue, for the data that it
holds. Consequently, the locality and parallelism of the L1 itself is not that much of a
problem. However, the problems arise when the requests miss in the L1 cache. The last

2

level cache (LLC), whose capacity can run to about 1 MB (or more) for each bank, can
take several cycles to service a request. Further, with this larger capacity, there is a much
higher possibility of uneven-ness of usage/requirements across the different cores. A lot of
recent work Kim et al. (2003, 2002) has thus looked at making the LLC shared1, to allow
better multiplexing the capacity across the nodes within this overall shared space. An L1
request miss could thus have differentiated behavior depending on whether it (i) hits in
an LLC bank that is associated with the same requesting core (typically taking around
5-8 cycles), (ii) needs to get to another LLC bank on the die containing that data item
after traversing an on-chip network (taking dozens of cycles), or (iii) misses in on-chip
LLC (whether local or remote) and needs to go to a memory controller traversing the on-
chip network as well as incurring off-chip DRAM latencies (taking hundreds of cycles).
Owing to the high overheads, the locality and parallelism issues, in all these cases, can
cause tremendous impact on the response times and throughput of the requests, with
trade-offs between these two dimensions themselves.

Let us first examine these trade-offs at the LLC level. Having all of a core’s L1
misses served at its local LLC bank is highly desirable from the locality viewpoint. Hence
a private LLC is locality tuned, but may suffer from load imbalance issues (overutiliza-
tion). If another core is less reliant on LLC, it may be better to have a shared LLC
pool, and thus multiplex the needs of different cores. From a fully private LLC, we can
go to an SNUCA-like organization Kim et al. (2003) where a core’s data gets striped
across the different LLC banks. The granularity of such striping would have a conse-
quence on the locality and parallelism trade-offs. Finer the granularity, the better is the
distribution of the load across all the LLCs on the die, and the better is the aggregate
ability of the LLC banks to service multiple requests (possibly from different cores). We
could go down to as fine a striping granularity as a cache block, which is essentially an
S-NUCA LLC organization that has been extensively studied Kim et al. (2003, 2002).
This parallelism and load balance comes at a cost of a loss in locality – a line may
now need to be retrieved from any other LLC on-chip (not just the local one) requiring
traversal through the on-chip network. The spatial locality is also only at the cache line
granularity, since successive cache lines involve going to a different LLC banks. Between
the private LLC and the cache-line interleaved shared LLC, we could also consider other
striping granularities, such as a page, for a spectrum of locality vs. parallelism trade-offs.

Going down to the next level of a LLC miss, we can also explore locality vs.
parallelism trade-offs at the memory controllers. We could opt to place all of a core’s
(application’s) data on a single memory controller – preferably one that is closest to the
LLC bank that receives a major portion of its L1 misses. Such a design may be preferen-
tial for locality since the distance (network hops) to get to the memory controller upon
an LLC miss may be reduced. However, the same memory controller serves all of that
application’s requests, and this may be undesirable for a memory-intensive application
which could benefit from multiple controllers (parallelism) serving its memory requests.
Instead, we could again stripe the data of an application across the memory controllers,

1Without loss of generality, we consider the last level cache to be L2, and consider both private
and shared options for it.

3

at page or even cache line levels for boosting parallelism, though this may hurt the local-
ity behavior. Finally, once a request gets to a memory controller there are again locality
vs. parallelism trade-offs when placing data across DRAM banks. Spreading it across
independent banks allows concurrent transfers. Within a bank, locality can be exploited
by transferring several cache lines at the same time into a row buffer, and subsequently
reading them off without incurring additional overheads (for a open row policy).

To summarize, there are both cache (LLC) and memory level locality vs. par-
allelism trade-offs when designing a memory hierarchy for a CMP. These trade-offs are
very much dependent on the characteristics of the workload running on the CMP –
the memory intensity, the heterogeneity of this intensity across the cores, the spatial
locality, the relative importance of latency versus throughput on the application, etc.
Understanding these tradeoffs towards designing a scalable hierarchy for the next gener-
ation CMPs requires a thorough characterization using a spectrum of workloads. We are
not aware of prior work that has systematically done such a characterization. With this
primary motivation, this dissertation conducts a detailed characterization and analysis
of the parallelism and locality trade-offs in the memory hierarchy of a network-on-chip
(NOC) based CMP, using a spectrum of multiprogrammed and multithreaded workloads
on a 32 core CMP. We analyze not just the trade-offs within each layer of the hierarchy
(the LLC or main memory) but also the cross-layer interactions.

1.1 Memory Migration

Based on the characterization study, we next explore the possibility of a data
migration scheme which can optimize both parallelism and locality in the memory sub-
system. Our data migration policy exploits the parallelism-locality tradeoff in memory
to improve the system performance. We build a dynamic runtime system which moni-
tors the application’s memory access patterns and determines the best address mapping
strategies at each level in the memory hierarchy. To implement this policy, we also
present novel migration mechanisms that can efficiently handle the data migration over-
heads.

1.2 Memory Prefetching

The growing scale of chip multiprocessors (CMPs), especially Network-On-Chip
(NOC) based CMPs is magnifying the memory wall problem in several ways: (i) a
larger number of hops has to be traversed in the on-chip network to get to the memory
controllers before a request can even be issued to the memory (DRAM); (ii) the increased
data demand from the cores causes higher contention for on-chip cache and network
resources; (iii) higher contention at the memory controllers results in larger queuing
delays; and (iv) the inter-mixing of requests across cores can lead to poor locality across
pages in the row buffers of the DRAMs, thereby incurring higher latencies to switch
the required rows before serving requests. All these detrimental factors accentuate the
memory wall problem over and beyond the growing bandwidth disparity between the
on-chip compute versus the off-chip memory.

4

One well-studied technique to address the memory wall problem is prefetching,
both software Luk et al. (2002); Ortega et al. (2002); Wu (2002) and hardware Joseph
and Grunwald (1997); Liu et al. (2011), wherein memory requests are (predicted and)
issued ahead of their need so that the corresponding instructions find the requested data
in an appropriate level of the cache when they execute. The prefetch accuracy, in terms
of both what and when, is a key determinant to hiding the memory latency. In fact,
studies Srinath et al. (2007); Zhuang and Lee (2003) have shown that aggressive and
inaccurate prefetches can even degrade performance. Further, prefetches in the context
of large CMPs have additional ramifications. They can increase memory bandwidth
requirements Srinath et al. (2007) and network traffic (i.e., lead to higher contention)
Chen and Baer (1994); Ebrahimi et al. (2009), and cause higher interference over cache
lines Wu et al. (2011); Zhuang and Lee (2003), worsening the performance even further.

An earlier idea that has been explored in the context of uniprocessors is “memory-
side” prefetching Hughes and Adve (2005); Hur and Lin (2006); Joseph and Grunwald
(1997); Solihin et al. (2003); Yang and Lebeck (2000) where the memory system observes
reference stream and pushes appropriate lines into the cache. This idea was primarily
proposed to address the storage space and logic needed to maintain large on-chip pre-
dictor tables and/or to reduce the critical path of prefetch messages.

We propose a memory-side prefetcher that is integrated with the memory con-
trollers of an on-chip network based CMP. It maintains a relatively small prefetch buffer
of about 256KB per controller, into which our logic prefetches cache lines from DRAM
row buffers based on various factors – predictability, bandwidth availability, row buffer
conflict overheads, utility to different request streams, etc.

1.3 Mobile Memory

The propensity of tablets and mobile phones in this handheld era raises several
interesting challenges. At the application end, these devices are being used for a number
of very demanding scenarios (unlike the mobiles of a decade ago), requiring substantial
computational resources for real-time interactivity, on both input and output sides, with
the external world. On the hardware end, power and limited battery capacities mandate
high degrees of energy efficiencies to perform these computational tasks. Meeting these
computational needs with the continuing improvements in hardware capabilities is no
longer just a matter of throwing high performance and plentiful cores or even accel-
erators at the problem. Instead, a careful examination and marriage of the hardware
with the application and execution characteristics is warranted for extracting the max-
imum efficiencies. In other words, a co-design of software and hardware is necessary
to design energy- and performance-optimal systems, which may not be possible just by
optimizing the system in parts. With this philosophy, this dissertation focusses on an
important class of applications run on these handheld devices (real-time frame-oriented
video/graphics/audio), examines the data flow in these applications through the dif-
ferent computational kernels, identifies the inefficiencies when sustaining these flows in
today’s hardware solutions, which simply rely on main memory to exchange such data,
and proposes alternate hardware enhancements to optimize such flows.

5

Real-time interactive applications, including interactive games, video streaming,
camera capture, and audio playback, are amongst the most popular on today’s tablets
and mobiles apart from email and social networking. Such applications account for
nearly 65% of the usage on today’s handhelds mob (January-February 2013), stressing
the importance of meeting the challenges imposed by such applications efficiently. This
important class of applications has several key characteristics that are relevant to this
study. First, these applications work with input (sensors, network, camera, etc.) and/or
output (display, speaker, etc.) devices, mandating real-time responsiveness. Second,
these applications deal with “frames” of data, with the requirement to process a frame
within a stipulated time constraint. Third, the computation required for processing a
frame can be quite demanding, with hardware accelerators2 often deployed to leverage
the specificity in computation for each frame and delivering high energy efficiency for
the required computation. The frames are then pipelined through these accelerators one
after another sequentially. Fourth, in many of these applications, the frames have to
flow not just through one such computational stage (accelerator) but possibly though
several such stages. For instance, consider a video capture application, where the camera
IP may capture raw data, which is then encoded into an appropriate form by another
IP, before being sent either to a flash storage or a display. Consequently, the frames
have to flow through all these computational stages, and typically the memory system
(the DRAM main memory) is employed to facilitate this flow. Finally, we may need
to support several such flows at the same time. Even a single application may have
several concurrent flows (the video part and audio part of the video capture application
which have their own pipelines). Even otherwise, with multiprogramming increasingly
prevalent in handhelds, there is a need to concurrently support individual application
flows in such environments.

Apart from the computational needs for real-time execution, all the above obser-
vations stress the memory intensity of these applications. Frames of data coming from
any external sensor/device is streamed in to memory, from which it is streamed out by
a different IP, processed and put back in memory. Such an undertaking places heavy
demands on the memory subsystem. When we have several concurrent flows, either
within the same application or across applications in a multiprogrammed environment,
all of these flows contend for the memory and stresses it even further. This contention
can have several consequences: (i) without a steady stream of data to/from memory, the
efficiencies from having specialized IPs with continuous dataflow can get lost with the
IPs stalling for memory; (ii) such stalls with idle IPs can lead to energy wastage in the
IPs themselves; and (iii) the high memory traffic can also contend with, and slow down,
the memory accesses of the main cores in the system. While there has been a lot of work
covering processing – whether it be CPU cores or specialized IPs and accelerators (e.g.
Saleh et al. (2006)Zhu and Reddi (2013)Lee and Chang (2006)) – for these handheld
environments, the topic of optimizing the data flows, while keeping the memory system
in mind, has drawn little attention. Optimizing for memory system performance, and
minimizing consequent queueing delays has itself received substantial interest in the past
decade, but only in the area of high-end systems (e.g., Balasubramanian et al. (2009)

2We use the term accelerators and IPs interchangeably in this work.

6

Kim et al. (2010a) Kim et al. (2010b) Das et al. (2010)). This dissertation addresses
this critical issue in the design of handhelds, where memory will play an increasingly
important role in sustaining the data flow not just across CPU cores, but also between
IPs, and with the peripheral input-output (display, sound, network and sensors) devices.

In today’s handheld architectures, a System Agent (SA) Keltcher et al. (2003);
Conway et al. (2010); Naveh et al. (2011); Yuffe et al. (2011) serves as the glue integrating
all the compute (whether it be IPs or CPU cores) and storage components. It also serves
as the conduit to the memory system. However, it does not clearly understand data
flows, and simply acts as a slave initiating and serving memory requests regardless of
which component requests it. As a result, the high frame rate requirements translate
to several transactions in the memory queues, and the flow of these frames from one
IP to another explicitly goes through these queues, i.e., the potential for data flow (or
data reuse) across IPs is not really being exploited. Instead, in this dissertation we
explore the idea of virtually integrating accelerator pipelines by “short-circuiting” many
of the read/write requests, so that the traffic in the memory queues can be substantially
reduced. Specifically, we explore the possibility of shared buffers/caches and short-
circuiting communication between the IP cores based on requests already pending in the
memory transaction queues.

1.4 Programming Wall Challenge

An industry wide transition from single-core to multicore processors IBM (2009);
Intel (2009); AMD (2009) has brought the problem of program parallelization to fore-
front. Software developers can no longer rely on computer architects to speed up single
threaded applications by increasing the clock frequency. Instead, developers are now
obliged to build parallel programs to take full advantage of the underlying multicore
architecture. However, building parallel programs manually is both challenging and
error-prone. Another problem with the idea of manual parallelization is the existence of
huge amount of legacy code which is mostly single threaded. The fact that it is very dif-
ficult to understand and parallelize programs developed by someone else is yet another
reason why manual parallelization is very problematic on a large scale. Parallelizing
compilers can offer some help through automatic parallelization of programs. Automatic
parallelization has been a well studied problem Lamport (1974); Wolfe (1995); Banerjee
(1988, 1994), which can be used as a solution to reduce the cost and time consumed in
developing parallel programs.

We propose an automatic parallelization technique for pointer-based applications.
It is a cooperative technique between the programmer, the compiler and the runtime sys-
tem to identify and efficiently exercise parallelism. The programmer provides hints that
indicate the parallelism in the code. The compiler understands the hints and generates
the parallel code. And the runtime system monitors the program and efficiently executes
the parallel code.

7

Chapter 2

Background and Related Work

2.1 Background

A typical commonality of applications working on dynamic data structures is that,
there is (i) a data structure that is constructed from the input and (ii) a function which
traverses the data structure and performs a computation on its nodes. Frequently, the
computations done by the function on different parts of the data structure are indepen-
dent. In the absence of a parallelization mechanism, the computations on different parts
of the data structure are done sequentially using recursive function calls or while loops.
During the computation of a subproblem, the function finds new subproblems and con-
tinues its execution by moving on to these subproblems. However, if the function has
access to the subproblems before starting the initial computation, it can potentially ini-
tiate processing of different parts of the problem independently in parallel. To achieve
this, before starting the computation on the data structure, our approach invokes a helper
thread which goes over the data structure and finds multiple independent subproblems
in the data structure. It is important to note that the subproblems are runtime entities
and cannot be identified at compile time. Then, the function gets access to multiple
subproblems and can start working on them in parallel.

The motivation for using a separate thread to identify the subproblems is to
reduce the overhead introduced by searching the data structure to identify subproblems.
The main thread invokes the helper thread before arriving at the parallel section and
proceeds with its work. While the helper thread identifies the subproblems, the main
thread can execute the code before the parallel section. Note that, the main thread has
to make sure that the target data structure is not modified once the helper thread is
invoked until the computation in the parallel section is started. This can be verified
using static analysis techniques, or it can also be obtained from the programmer in the
form of a directive.

In an on-chip network based CMP with S-NUCA Kim et al. (2003) cache organi-
zation, upon an L1 miss, the L1 cache controller issues a request to the L2 cache bank
corresponding to the missing address which traverses the on-chip network. If the address
misses in the L2 cache as well, the L2 cache controller at that bank issues a request to
the corresponding memory controller which again uses the on-chip network. The mem-
ory controller determines the memory bank corresponding to the requesting address and
places it in the particular bank’s queue. When it is time for the memory controller to
schedule this request, corresponding memory commands are sent to the memory module
(DRAM) over the memory channel. If the memory bank has the requesting address in
its row buffer (row buffer hit), the response will be sent back to the memory controller.
Otherwise, the row that is open must be closed and a new row must be activated (row

8

buffer conflict) before the data can be read. This data response travels from the mem-
ory controller back to the requesting L2 cache controller through the on-chip network.
Finally, the L2 cache controller forwards the response to the original requesting L1 cache.

Workload On-chip Off-chip
Queueing Access

High MPKI 18% 60% 22%
Moderate MPKI 35% 19% 46%

Low MPKI 43% 8% 49%

Table 2.1: Breakdown of on-chip and off-chip latencies for L2 misses in three different
workloads without any prefetching.

In a CMP system running multiple applications/threads, memory is a shared re-
source with high contention, which makes it one of the most important performance
bottlenecks. Within a short period of execution, multiple L2 misses can happen and
those requests will be sent to the memory controllers. To leverage memory level par-
allelism, multiple memory controllers and multiple banks at each memory controller
are deployed. Still, any core in the system can access any bank at any memory con-
troller. This flexibility leads to inter-core interference at the memory controllers. This
contention/interference in the memory system can lead to significant queueing delays,
thereby reducing overall memory system performance.

Table 2.1 shows the breakdown of the average round-trip latency incurred by a
memory request in a 32-core CMP with 4 memory controllers in three different multipro-
grammed workloads, prioritized from high (>10) MPKI (Misses Per Kilo Instructions)
to low(<1) MPKI. In high and moderate MPKI workloads, the total off-chip latencies
clearly dominate, with a bulk of these latencies coming from the queueing delays at the
memory controller in the high MPKI case. Note that while the DRAM access itself
contributes directly to the latency of a memory request, it also indirectly manifests in
the queueing delays of other requests waiting at the memory controller. Bringing data
on-chip (as is done in our proposal) can reduce such off-chip accesses, which is especially
useful in high MPKI applications. At the same time, note that in low MPKI workloads,
where on-chip latencies become comparable to off-chip latencies, it is equally important
to ensure that we do not add to the on-chip latencies when optimizing the off-chip costs.
These contentions at the on-chip network and off-chip memory channels are becoming
more prominent with increasing number of cores on chip and get further accentuated in
large-scale CMPs if we simply introduce a conventional, core-side prefetcher. Core-side
prefetcher can cause significant queueing latency increase in both on-chip network and
off-chip memory channels.

These observations motivate our proposal for a memory-side prefetcher which at-
tempts to bring some data from the currently active row in the DRAM on-chip to reduce
the off-chip costs for accessing this data while leveraging the fact that proactively read-
ing such data from the row buffer does not incur DRAM row switch out/in costs. Note

9

CPU

Wireless

LPDDR3 (DRAM)

Primary Camera

Secondary Camera

Core CPUCore C
P
U

C
o
r
e

C
P
U

C
o
r
e

Frame Buffer + LCD

Graphics

Video
Decoder

Video
Encoder

Image
Processor

Audio
Encoder

Audio
Decoder

CPUCore CPUCore

Network On Chip IOSF/OCP/AMBA/IDI

System

Agent

+

MC

Sound Device

Flash Memory Controller

Fig. 2.1: Target SoC platform with a high-level view of different functional blocks in the
system.

that such prefetching does not need to push/propagate this data to the caches/cores,
thus avoiding additional on-chip resource contention which can happen with normal in-
accurate and ill-timed core-side prefetches. Avoiding/reducing off-chip accesses, while
not increasing on-chip traffic and not creating cache pollution serves as the primary
motivation for our memory-side prefetcher.

2.1.1 Mobile Platforms

As shown in Figure 2.1, handhelds available in the market have multiple cores
and other specialized IPs. The IPs in these platforms can be broadly classified into
two categories – accelerators and devices. Devices interact directly with the user or
external world and include cameras, touch screen, speaker and wireless. Accelerators are
the on-chip hardware components which specialize in certain activities. They are the
workhorses of the SoC as they provide maximum performance and power efficiency, e.g.
video encoders/decoders, graphics, imaging and audio engines.

Interactions between Core, IPs and Operating System: SoC applications
are highly interactive and involve multiple accelerators and devices to enhance user
experience. Using API calls, application requirements get transformed to accelerator
requirements through different layers of the OS. Typically, the calls happen through
software device drivers in the kernel portion of the OS. These calls decide if, when and
for how long the different accelerators get used. The device drivers, which are optimized
by the IP vendors, control the functionality and the power states of the accelerators.
Once an accelerator needs to be invoked, its device driver is notified with request and
associated physical address of input data. The device driver sets up the different activities
that the accelerator needs to do, including writing appropriate registers with pointers to

10

Transaction
Queue

Core1

IP 1

IP 2

M
ai

n
 M

e
m

o
ry

Core2 Core3 Core4

System Agent

1
2

3

4
5

6

M
e

m
o

ry

B
u

sBank
Queues

Fig. 2.2: Overview of data flow in SoC architectures.

the memory region where the data should be fetched and written back. The accelerator
reads the data from main memory through DMA. Input data fetching and processing
are pipelined and the fetching granularity depends on how the local buffer is designed.
Once data is processed, it is written back to the local buffers and eventually to the main
memory at the address region specified by the driver. As most accelerators work faster
than main memory, there is a need for input and output buffers.

The System Agent (SA): Also known as the Northbridge, is a controller that
receives commands from the core and passes them on to the IPs. Some designs add more
intelligence to the SA to prioritize and reorder requests to meet QoS deadlines and to
improve DRAM hits. SA usually incorporates the memory controller (MC) as well. Apart
from re-ordering requests across components to meet QoS guarantees, even fine-grained
re-ordering among IP’s requests can be done to maximize DRAM bandwidth and bus-
utilization. With increasing user demands from handhelds the number of accelerators
and their speeds keep increasing Steve Scheirey (2013); Engwell (2013); Engwell. These
trends will place a very high demand on DRAM traffic. Consequently, unless we design
a sophisticated SA that can handle the increased amount of traffic, the improvement in
accelerators’ performance will not end in improved user experience.

Data movement in SoCs
Figure 2.2 depicts the high-level view of the data flow in SoC architectures. Once

a core issues a request to an IP through he SA (shown as (1), the IP starts its work by
injecting a memory request into SA. First, the request traverses through an interconnect
which is typically a bus or cross-bar, and is enqueued in a memory transaction queue.
Here, requests can be reordered by the SA according to individual IP priorities to help
requests meet their deadlines. Subsequently, requests are placed in the bank-queues of
the memory controller, where requests from IPs are re-arranged to maximize the bus
utilization (and in turn, the DRAM bandwidth). Following that, an off-chip DRAM
access is made. The response is returned to the IP through the response network in the

11

SA (shown as (2)). IP-1 writes its output data to memory (shown in (3)) till it completes
processing the whole frame. After IP-1 completes processing, IP-2 is invoked by the core
(shown as 4), and data flow similar to what IP-1 had is followed, as captured by (5)
and (6) in Figure 2.2. The unit of data processing in media and gaming IPs (including
audio, video and graphics) is a frame, which carries information about the image or
pixels or audio delivered to the user. Typically a high frame drop rate corresponds to a
deterioration in user-experience.

2.2 Related Work

Memory Parallelism vs. Locality There have been various works in the past
focusing on either parallelism or locality or both in different levels of the memory hier-
archy separately. Kim et al. (2002) proposed static and dynamic cache organizations to
improve parallelism and locality in the on-chip cache banks. The proposed Static-NUCA
organization optimizes the parallelism in the on-chip cache while Dynamic-NUCA opti-
mizes the locality. The work in Cade and Qasem (2009) explored the parallelism and
locality tradeoffs in the context of an on-chip cache in a CMP by manipulating the
thread-synchronization points. Huh et al. (2007) explored a spectrum of on-chip cache
organizations to find the optimal degree of sharing of cache banks, and Blelloch et al.
(2013) presented a program-centric model to improve the locality in on-chip caches.
Singhai et al. (1997) presented a loop fusion algorithm to improve the parallelism and
locality in the on-chip caches. Mutlu et al. (2003) proposed using run-ahead execution
to improve the memory parallelism at the core which leads to better utilization of the
on-chip caches and memory subsystem. A recent technique called subarray-level par-
allelism Kim et al. (2012) manages the subarrays within a memory bank individually,
thereby providing parallelism within the memory banks. The work presented in Jeong
et al. (2012a) proposed partitioning the memory banks across cores in order to improve
the memory bank locality by eliminating inter-thread interference. Another work that
targets memory locality is micro-pages Sudan et al. (2010), which puts heavily-accessed
parts of different pages into the rowbuffer. By placing parts of multiple pages in the
rowbuffer at the same time they showed significant improvements in rowbuffer locality.
All the above works focus on only one level in the memory hierarchy either on-chip
cache or memory but not both. In contrast, this dissertation presents a comprehensive
study on parallelism-locality tradeoffs in all the levels of memory hierarchy including the
cross-level interactions.

Memory Migration There have been prior works that explored data migration
in the context of CMPs. Awasthi et al. (2010) proposed a data migration scheme that
migrates pages between memory channels to balance the row buffer locality at different
memory channels. Page-NUCA Chaudhuri (2009) deals with migration of pages from
one cache bank to another to improve cache locality. They bring heavily accessed pages
to home L2 banks, thereby reducing the hit latency. Eisley et al. (2008) presented a
cache line migration scheme, where a cache line upon eviction from a cache bank is
migrated to a nearby cache bank. The on-chip routers keep track of cache utilization of
the neighboring nodes to route the evicted cache line to the under-utilized node. Most
of these migration techniques optimize for locality without much regard for parallelism

12

which is also important as shown in our characterization study. In contrast, our migration
scheme optimizes both the parallelism and locality at the same time. Moreover, in the
above schemes, the primary method of handling migration overheads is by being very
selective on which data to migrate. The migration mechanisms proposed in this work
are generic and can be employed for any migration policy.

Data Reuse: Data reuse within and across cores has been studied by many
works. Chen et al. (2005); Xue et al. (2006), Gordon et al. (2002) and Kandemir et al.
(2002) propose compiler optimizations that perform code restructuring and enable data
sharing across processors. Suhendra et al. (2006) proposed ways to optimally use scratch
pad memory in MPSoCs along with methods to schedule processes to cores. There have
been multiple works that discuss application and task mapping to MPSoCs Marwedel
et al. (2011); Singh et al. (2010); Coskun et al. (2007) with the goal of minimizing data
movement across cores. Our work looks at accelerator traffic, which is dominant in
SoCs, and identifies that frame data is reused across IPs. Unlike core traffic, the reuse
can be exploited only if the data frames are broken in sub-frames. We capture this
for data frames of different classes of applications (audio/video/graphics) and propose
techniques to reduce the data movement by short circuiting the producer writes to the
consumer reads.
Memory Controller Design: A large body of works exist in the area of memory
scheduling techniques and memory controller designs in the context of MPSoCs. Lee
and Chang Lee and Chang (2006) describe the essential issues in memory system design
for SoCs. Akesson et al. (2007) propose a memory scheduling technique that provides
a guaranteed minimum bandwidth and maximum latency bound to IPs. Jeong et al.
(2012b) provide QoS guarantees to frames by balancing memory requests at the memory
controller. Our work identifies a specific characteristic (reuse at sub-frame level) that
exists when data flows through accelerators and optimizes system agent design. Our
solution is complimentary to prior techniques and can work in tandem with them.

Along with IP design and analysis, several works have proposed IP-specific opti-
mizations Khan and Anwar; Fenney (2003); Shim et al. (2004); Han et al. (2013) and low
power aspects of system-on-chip architectures Gutierrez et al. (2011); Wang et al. (2010);
Diniz et al. (2007). Our solution is not specific to any IP rather, it is at the system-level.
By reducing the IP stall times and memory traffic, we make the SoC performance and
power-efficient.

Prefetching: Hughes and Adve (2005) proposed the use of memory prefetch-
ing to improve the performance of programs working with linked data structures. They
exploit the predictability of accesses available in linked data structures to do the prefetch-
ing. Their work focuses on a specific kind of programs whereas the idea presented in
this proposal in more versatile and works with any kind of programs. The work in Hur
and Lin (2006) proposed an Adaptive Stream Detection (ASD) technique at the memory
controller to identify the short-streams. They control the aggressiveness of the stream
prefetcher using Stream Length Histogram (SLH) that are computed periodically. Their
technique could stop useless prefetches. As indicated previously it is mainly a prediction
technique which dictates what to prefetch? while ours is a complete memory prefetching
solution which can actually incorporate their prediction technique. Impulse Carter et al.
(1999) proposed the use of a smarter memory controller which does address remapping

13

and prefetching for better performance. Both these schemes do not take into account the
state of the channel or the row buffers before prefetching. In contrast, the work presented
in this dissertation considers the current memory state before issuing the prefetches so
as to minimize the overhead of prefetching.

The work presented in Lin (2001) proposed the use of prefetchers both in the L2
caches and the memory controllers to improve performance. They identify idle cycles
on the memory channel and utilize them to schedule the prefetch requests. The work
in Ortega et al. (2002) proposed a hybrid software/hardware prefetch scheme. In their
scheme, hardware prefetcher does prefetching into the L1 cache, while the compiler-
directed special load and prefetch instructions bypass the data into the registers directly.
The work presented in Joseph and Grunwald (1997) uses Markov Predictors for memory-
side prefetching in a uniprocessor system. They also proposed the use of on-chip prefetch
buffers along with L1 caches. Solihin et al. (2003) proposed a user-level memory thread
based software prefetching. This user-level memory thread runs on a general purpose
core present on the memory controller chip. All these techniques are unicore based and
employ a push-based strategy where the prefetched data is pushed to the on-chip entities
which leads to network congestion and cache pollution in a large-scale on-chip network
based CMP.

Automatic Parallelization: Ryoo et al. (2007) point out the importance of
automatic parallelization and summarize various sophisticated analyses techniques re-
quired from a compiler to parallelize programs with pointers. Tournavitis et al. (2009)
propose a profile-driven approach to detect parallelism, instead of limited static analysis
techniques. They rely on the user for final approval of the potential transformation.
Decoupled software pipelining Ottoni et al. (2005) and parallel stage decoupled software
pipelining Raman et al. (2008a) (DSWP and PS-DSWP) represent non-speculative ap-
proaches to automatic parallelization by pipelining the loop iterations. Vachharajani
et al. (2007) explored an extension of DSWP by adding speculation in order to achieve
better speedups.

Another approach towards automatic parallelization is using commutativity anal-
ysis Aleen and Clark (2009); Rinard and Diniz (1996). It is based on the idea that, if the
program states reached after executing two statements in any order are equivalent, then
these statements are said be commutative. Since the order in which these statements
execute does not matter, they can be executed in parallel.

Rus et al. (2007, 2003) introduced a technique for automatic parallelization by
combining static and dynamic analyses of programs. In their work, the authors extract
conditions for parallel execution by static analysis and use them to guard the dynamic
parallelization of loops at runtime. The LRPD Test in Rauchwerger and Padua (1995a)
and the R-LRPD Test in Dang et al. (2002) are techniques for automatic parallelization
using only runtime analysis. In these works, target loops are executed speculatively in
parallel and tested for memory dependences at runtime.

Most of the prior works in this topic focus on using runtime information to par-
allelize array based applications. The work presented in this proposal, focuses on paral-
lelizing irregular programs where runtime information is much more important.

14

Bridges et al. (2007) presented a framework that brings together techniques from
compiler and hardware domains. They also indicate that, by extending the program-
ming languages, programmers can give hints to the compiler about potential parallelism
opportunities. OpenMP Standard (2009) is a successful example of programmer driven
parallelism. It takes directives from the programmers which express parallelism in the
code and executes the code in parallel. Grant et al. (2000) used annotations in programs
written using a declarative language to dynamically compile and specialize the program
to the actual running environment.

Rauchwerger and Padua (1995b) presented a framework to parallelize while loops.
They evaluate the recurrences that can be statically identified in parallel and specula-
tively execute the remainder of the loop concurrently. In their approach, they have to
undo the effects of any iterations that overshoot the termination condition. We do not
perform any speculative computations, and there is no need to undo computations in our
approach. Gupta et al. (2000) presented a technique to parallelize recursive procedures
that typically appear in divide-and-conquer algorithms. They discuss a compile time
analysis technique which works good for array based programs and use speculation to
run the code. Rogers et al. (1995) presented a execution model for supporting programs
that use pointer based dynamic data structures on distributed memory systems. They
address the issues of data placement in such applications on a distributed memory plat-
form. The work presented here targets shared memory machines where data layout and
data migration issues can be safely ignored.

There have been several efforts to analyze pointers at compile time. Rugina and
Rinard Rugina and Rinard (2003) present an approach to pointer analysis in multi-
threaded programs. They compute a conservative approximation of memory locations
to which each point may point to. Guo et al. (2005) propose the technique of per-
forming pointer analysis on a low-level intermediate representation obtained after the
code transformations. They compare their technique to propagating high-level pointer
analysis information through subsequent code transformations. In Da Silva and Stef-
fan (2006), the authors present a probabilistic pointer analysis approach that statically
predicts the probability of each points-to relation. This information is used in applying
various speculative optimizations.

There have been two approaches in the literature that employ speculation in
the context of code parallelization. The first approach, namely, memory alias specula-
tion Steffan and Mowry (1998); Bruening et al. (1998); Du et al. (2004); Zhong et al.
(2008), assumes that the addresses accessed by different threads do not overlap. In Du
et al. (2004), a cost driven compilation framework for speculative parallelization is pre-
sented. In this framework, consecutive iterations of a loop are executed in parallel by
speculating that the potential data dependencies across the iterations do not materialize
at runtime. Speculative code transformations to enhance thread level parallelism are
presented in Zhong et al. (2008). The work by Bruening et al. (1998) is based on the
observation that the memory access patterns can often be predicted at runtime using
simple value predictors.

The second approach to use speculation for parallelization is value speculation Ra-
man et al. (2008b); Quińones et al. (2005), which predict the values needed in future
iterations and execute these iterations in parallel speculatively. In Quińones et al. (2005),

15

the most effective points in a program to spawn speculative threads are identified. The
work by Raman et al. (2008b) distribute chunks of iterations to threads, and as a result,
reduce the number of predictions needed. Another approach to thread level speculation
for automatic parallelization Steffan et al. (2000); Steffan and Mowry (1998) is through
hardware support in the form of additional cache states.

It should be noted that speculative parallelization may suffer from a high mis-
speculation rate in some cases, which can result in the parallel code performing worse
than the sequential code. A high mis-speculation rate may also result in high power
consumption, since in the case of a mis-speculation, all the incorrect (speculative) results
are flushed and the code is executed sequentially resulting in the wastage of all the
speculative computations. Furthermore, as stated in Du et al. (2004), in speculative
parallelism, for the speculative threads, all the speculative results (including memory
writes) are buffered and are not part of the program state. As a result, even after the
speculated condition is discovered to be correct, a separate stage to update the program
state with the speculative results in the buffer is required.

The work presented in this proposal is a non-speculative approach to paralleliza-
tion. There is no need to maintain a different program state and update it in our
approach. Moreover, we propose techniques to totally hide the performance overheads
incurred in our approach. By employing these techniques, the parallel code generated
from our approach never performs worse than the sequential version.

16

Chapter 3

Memory Migration

3.1 Parallelism vs. Locality

Memory subsystem performance is a primary determinant of application perfor-
mance. In a typical system, L1 cache is organized as private to optimize for access latency
and there is not much scope for parallelism or locality at this level. Starting from the L1
miss, each level in the memory hierarchy exhibits different tradeoffs in parallelism and
locality which impact the L1 miss latencies. The parallelism and locality characteristics
are heavily influenced by the address mapping employed. This section characterizes the
tradeoffs of different address mappings in the memory hierarchy.

3.1.1 Mapping Scenarios

In an NoC based CMP with multiple L2 banks, there are a multitude of ways to
map the physical address space to the L2 banks. On one end of the spectrum, the L2
cache is privately mapped where full address space is mapped to each and every L2 bank
and each bank holds the data related only to the corresponding core. On the other end,
a shared L2 cache can be organized as an S-NUCA Kim et al. (2003) system where parts
of the address space are striped across different L2 banks. Two popular ways of striping
the data are line-level striping where consecutive cache lines are mapped to different
L2 banks in a block cyclic manner and page-level striping where consecutive pages are
mapped to different L2 banks.

Going to the next level in memory hierarchy, the address space can be mapped
across the memory channels as private or line-level or page-level striping. Similarly,
within each memory channel the addresses can be mapped to different memory banks
in those three manners. Table 3.1 gives a list of the scenarios we evaluated in our
characterization. To keep the number of simulations manageable we evaluated only line-
level and page-level stripings at the memory banks. Note that, in the cases with line-
level striping at the memory channel, the pages are already distributed across different
channels, thus it is not possible to have page-level striping at the memory banks. In
the following subsections we thoroughly explore the tradeoffs caused by these address
mappings at each level in the memory hierarchy.

3.1.2 L2 Cache

As discussed earlier, an L1 miss can have different behavior depending on whether
it (i) hits in the L2 in which case response is sent back, or (ii) misses in the L2 cache in
which case the request has to be forwarded to the memory. In either case every L1 miss
has to access an L2 bank (local or remote). From an L1’s perspective, the performance of

17

Serial No. L2 Bank Memory Channel Memory Bank
1 Line Line Line
2 Line Page Line
3 Line Page Page
4 Line Private Line
5 Line Private Page
6 Page Line Line
7 Page Page Line
8 Page Page Page
9 Page Private Line
10 Page Private Page
11 Private Line Line
12 Private Page Line
13 Private Page Page
14 Private Private Line
15 Private Private Page

Table 3.1: Evaluated mapping scenarios.

L2 cache is can be viewed in two dimensions: L2 parallelism and L2 locality. Parallelism
is a measure of how many L2 banks are serving an L1 cache in parallel, and locality is
a measure of how far the request has to travel on-chip in order to access the L2 bank.
Both of these metrics play an important role in determining the time spent in servicing
L1 cache misses.

We define L2 parallelism as the number of L2 banks serving an L1 in a small epoch
of 128 cycles (calculated based on the processor ROB size). Typically, an L1 can have
multiple outstanding requests to the L2 cache at a time. If these requests are distributed
across different L2 banks, then the utilization of L2 banks and network resources tends
to be uniform. The more number of L2 banks serving an L1, the more parallelism,
leading to faster L1 miss response times. L2 locality can be defined as the time spent by
an L1 miss request in the on-chip network to reach the corresponding L2 bank. This is
primarily determined by the distance between L1 cache and the L2 bank in the on-chip
network. Shorter distances mean better L2 locality, leading to faster L1 miss response
times. Different L2 mappings (line-level, page-level and private) exhibit very different
locality and parallelism characteristics. A line-level striping at L2 distributes the address
space at a very fine granularity (cache-line) leading to better L2 parallelism although at
the cost of L2 locality. On the other end, private organization of L2 banks is optimal
from the locality perspective although at the cost of L2 parallelism. In the middle of
the spectrum is page-level striping which has better parallelism than the private L2
organization and better locality than the line-level striping.

For clarity, in the following graphs, each workload category is represented as one
bar which is the average of values obtained in the four (very similar) workloads under that
category. When analyzing tradeoffs at a level in the memory hierarchy, the mappings at
the next level do not matter and consequently those combinations are not shown in the
following graphs.

18

0

1

2

3

4

WL1 WL2 WL3 WL4 WL5 WL6 AVG

L2
 p

a
ra

ll
e

li
sm

L2-Line L2-Page L2-Private

Fig. 3.1: L2 parallelism under different mappings. (Higher is better)

Figure 3.1 shows the L2 parallelism metric across different workloads under dif-
ferent L2 mappings. The memory channel and banks are set to line-level striping for
these experiments. It can be seen that line-level striping provides high L2 parallelism
compared to other two schemes, and private L2 organization has the least parallelism; in
fact, it is always 1. As expected page-level striping stands in between the two mappings.

0

10

20

30

40

50

WL1 WL2 WL3 WL4 WL5 WL6 AVG

L2
 L

o
ca

li
ty

L2-Line L2-Page L2-Private

Fig. 3.2: L2 Locality under different mappings. (Lower is better)

Figure 3.2 shows the L2 locality metric across different workloads under different
L2 mappings. Private L2 organization gives the best locality (always local). Line-level
striping has slightly better L2 locality than page-level striping.

Figure 3.3 shows the Normalized IPC under different L2 mappings normalized
to line-level striping. Because of the loss in L2 hit rate , page-level striping could not
perform on par with the line-level striping. Private L2 organization also performed worse
than the line-level striping in all the cases except low MPKI workloads (WL3).

From the above analysis it can be concluded that, parallelism is more important
than locality at the L2 cache level, because of the need to serve a burst of L2 requests
in a short time. Having a shared L2 cache is desirable to multiplex the cache capacity
and support demand from multiple cores, and an S-NUCA with line-level striping gives
the best parallelism at L2 level leading to better performance.

3.1.3 Memory Channel

An L2 miss is forwarded to the corresponding memory controller determined by
the address mapping at the memory channel level. Memory parallelism is a measure of
how many memory channels are serving the L2 cache at a time, and memory locality is
a measure of how far a request has to travel in order to reach the corresponding memory
controller. More specifically, memory channel parallelism is defined as the number of

19

0

0.5

1

1.5

WL1 WL2 WL3 WL4 WL5 WL6 AVG

N
o

r
m

.
IP

C

L2-Line L2-Page L2-Private

Fig. 3.3: Normalized IPC under different mappings.

memory channels serving the L2 cache (misses) in a small epoch (128 cycles 1). An
L2 can have multiple outstanding requests to the memory at a time. If these memory
requests utilize different memory channels, individual memory controllers will not be
overwhelmed with requests. The more number of memory channels serving an L2, the
more parallelism, leading to better L2 miss response times. Memory channel (MC)
locality is defined as the time spent by an L2 miss in the on-chip network to reach the
corresponding memory controller. This is primarily determined by the distance between
the L2 bank and the memory controller. Shorter distances mean better memory locality,
leading to faster L2 miss response times. Similar to the L2 mapping, address space can
be mapped to the memory channels in the system in three ways (i) private, (ii) line-
level striping, and (iii) page-level striping. In the private memory channel organization,
each memory channel caters to a set of cores in the system. All L2 misses from an
application are served by a particular memory controller. While we assigned private
memory channels to cores, it is also possible to assign the channels to a set of L2 banks.
However, we selected the former definition because such an organization has the potential
to improve locality inside the memory (explained in the next subsection). A line-level
striping, being fine grained, provides high parallelism at the memory channel level. Page-
level mapping is a compromise between the two mappings in terms of both parallelism
and locality.

0

1

2

3

4

WL1 WL2 WL3 WL4 WL5 WL6 AVGM
C

 P
a

ra
ll

e
li

s
m

L2line-MCline L2page-MCline L2private-MCline

L2line-Mcpage L2page-Mcpage L2private-Mcpage

L2line-Mcprivate L2page-Mcprivate L2private-Mcprivate

Fig. 3.4: Memory channel parallelism under different mappings. (Higher is better.)

Figure 3.4 shows the memory channel parallelism metric across different workloads
under different L2 and memory channel mappings. The memory banks are set to line-
level striping for these experiments. It can be seen that line-level striping provides the
highest memory channel parallelism; private memory channels give the least parallelism;

1At an epoch length of 128 cycles, noticeable differences in memory characteristics are ob-
served. Larger epochs tend to obscure such details.

20

and, page-level striping stands in between the two schemes. Within a memory channel
mapping there is no significant effect of different L2 level mappings on memory channel
parallelism.

0

10

20

30

WL1 WL2 WL3 WL4 WL5 WL6 AVG
M

C
 L

o
ca

li
ty

L2line-MCline L2page-MCline L2private-MCline

L2line-Mcpage L2page-Mcpage L2private-Mcpage

L2line-Mcprivate L2page-Mcprivate L2private-Mcprivate

Fig. 3.5: Memory channel locality under different mappings. (Lower is better.)

Figure 3.5 shows the memory channel locality metric across different workloads
under different L2 and memory channel mappings. In general, there is not much dif-
ference between the memory channel localities observed in different address mappings
except for the case of private memory channel with private L2 (L2private-MCprivate).
L2private means the core to L2 mapping is fixed; MCprivate means core to memory
channel mapping is fixed. When we combine both of them, the L2 to memory channel
mappings are fixed and consequently every L2 bank always accesses the nearest memory
controller, thereby improving the memory channel locality significantly.

0
0.2
0.4
0.6
0.8
1

1.2
1.4

WL1 WL2 WL3 WL4 WL5 WL6 AVG

N
o

r
m

.
IP

C

L2line-MCline L2line-Mcpage L2line-Mcprivate

L2page-MCline L2page-Mcpage L2page-Mcprivate

L2private-MCline L2private-Mcpage L2private-Mcprivate

Fig. 3.6: Normalized IPC under different mappings.

Figure 3.6 shows the Normalized IPC under different memory channel mappings
normalized to L2 line-level and MC line-level striping (first bar). Under a given L2
mapping there is no significant difference in IPC caused by different memory controller
mappings.

3.1.4 Memory Bank

Once a memory request is received at a memory controller, relevant memory
commands have to be sent to the memory bank corresponding to the requesting address.
The parallelism and locality at the memory banks impact the performance significantly.
Memory bank parallelism is defined as the number of memory banks busy at the memory
channel when at least one memory request is being serviced at that channel. Higher
memory bank parallelism means better utilization of memory banks leading to shorter
queueing delays at the memory controllers. Memory bank locality is defined as the average

21

row buffer hit rate at the memory banks. Higher memory bank locality means more row
buffer hits leading to shorter memory access delays. We explored two ways of address
mapping at the memory banks (i) line-level striping and (ii) page-level striping. Line-
level striping being very fine granular provides high parallelism at the memory banks,
whereas page-level mapping provides high locality in the memory banks because a whole
page is mapped to a bank and its row buffer leading to more row buffer hits.

In general, line-level striping at the memory banks gives better memory bank par-
allelism compared to page-level striping. Within the line-level striping at the bank, the
mappings with line-level striping at L2 showed slightly lower memory bank parallelism
than the other two options. Page-level striping at the memory banks gives significantly
better memory bank locality compared to line-level striping. As mentioned above, mem-
ory bank parallelism yields shorter memory queueing delays. In general line-level striping
at the memory banks show shorter memory queueing delays compared to the page-level
striping.

Memory bank locality yields shorter memory access latencies. Page-level strip-
ing at the memory banks show shorter memory access latencies compared to line-level
striping because of memory bank locality.

0

0.2

0.4

0.6

0.8

1

1.2

WL1 WL2 WL3 WL4 WL5 WL6 AVG

N
o

r
m

.
IP

C

MCline-Bankline MCpage-Bankline MCprivate-Bankline

MCpage-Bankpage MCprivate-Bankpage

Fig. 3.7: Normalized IPC under different memory mappings.

In order to clearly show the impact of memory bank mapping on performance,
we selected the line-level mapping at L2. Figure 3.7 shows the Normalized IPC under
different memory bank mappings normalized to line-level mapping at channel and bank
(first bar). The first three bars show the normalized IPC with line-level mapping at the
memory banks, and the last two bars show the normalized IPC with page-level mapping
at the memory banks. From the graph, it can be seen that there is no significant impact
of memory bank mapping on the IPC. However, different address mappings exhibit
very different memory queueing delays and access latencies. This is caused by the loss
in locality in the case of line-level mapping although it has good parallelism. In the
same way, page-level mapping has good locality but less parallelism leading to similar
performance in both the cases.

3.1.5 Summary of Findings

Address mapping plays an important role in determining the parallelism and
locality in the memory hierarchy, which in turn determine the memory subsystem per-
formance. We explored different address mappings at the L2 cache, memory channel

22

and memory bank levels ranging from line-level to page-level to private mapping. The
conclusions from our analysis are as follows:

• At the L2 level, parallelism is more important than the locality. Having a shared
L2 cache is desirable to support demand from multiple cores in parallel. An S-
NUCA with line-level mapping gives the best parallelism at L2 leading to the best
performance.

• At the memory channel and bank levels on the other hand, there is no clear winner
on which is more important parallelism or locality. Parallelism reduces the queueing
delays at the memory while locality reduces the memory access latencies. Although,
all the mappings tried at the memory level delivered fairly similar performance,
the means to achieve it were different – through parallelism or locality.

Through the findings of above analysis, we develop a technique which exploits both –
parallelism and locality in the memory subsystem, for better system performance.

3.2 Dynamic Migration for Improving Memory Performance

The characterization analysis presented in the previous section can be used in
multiple ways. By controlling the parallelism and locality in the memory hierarchy one
can improve the system performance or save power or design better prefetching schemes.
In this section, we explore a novel data migration scheme which exploits the parallelism
and locality in the memory subsystem to improve system performance.

A key observation from our characterization study is that different address map-
pings lead to different performance characteristics. For example, a page-level striping
at the memory banks yields better locality leading to shorter memory access latencies,
whereas a line-level striping yields better parallelism leading to shorter memory queue-
ing delays. Based on the application’s memory access patterns, some applications might
benefit from better parallelism from the memory subsystem and others prefer better lo-
cality. In fact, within an application, there could be parts of data that prefer parallelism,
while other parts prefer locality. These scenarios can be supported by a heterogeneous
memory organization where some data can be striped at page-level and other striped
at line-level. We present a dynamic migration scheme which identifies the ideal strip-
ing level for each page in the memory and migrates the data to realize that striping.
Obtaining this information by profiling the application is not feasible because it is very
sensitive to the program input and operating system memory management.

3.2.1 Migration Policy

The most important question in any migration scheme is Which data should be
migrated? This can be answered by identifying which pages in memory prefer parallelism
and which pages prefer locality. We propose the use of a runtime monitoring system to
identify such information. In a memory system with page-level striping at the memory
channels and memory banks, all the requests to a page are mapped to a particular

23

bank. For pages that are accessed in bursts, multiple requests are sent to the memory
in a short period of time (like 128 cycles) which can lead to substantial queuing at the
memory bank. If the same page is mapped with line-level striping, these requests are
sent to different memory controllers and memory banks resulting in less queueing. In the
same manner, in a memory system with line-level striping at the memory channels, the
locality of data is significantly reduced. For pages that exhibit high locality in accesses,
it is preferable to map them with page-level striping to exploit the row buffer locality.
Based on these observations, we propose a dynamic migration scheme which supports
heterogeneous address mapping at the memory. The system starts with a homogeneous
memory organization where all the data is mapped as either line-level striping or page-
level striping. While the application is running, a runtime system monitors the accesses
to different pages in the memory and decides the best mapping strategy for each page.
If a page gets multiple requests in a short period of time, line-level striping is preferable
for that page. Similarly, if a page exhibits high spatial locality, page-level striping is
preferred for that page. At the end of each epoch (10,000 cycles) the pages are either
distributed across multiple channels/banks (for line-level striping) or consolidated at one
bank (for page-level striping) according to the mapping identified for that page. This
can lead to better parallelism in a page-level striped system without much loss of locality
in the memory subsystem, and to better locality in a line-level striped system without
much loss of parallelism. The striping information for the pages can be stored using one
bit either in the page table or at the L2 banks.

3.2.2 Migration Mechanisms

Once the data to be migrated is identified, the next question to be answered is
How to efficiently migrate the data? Although migration has the potential to reduce the
memory access times, it comes with a significant overhead. There can be large amounts
of data that have to be migrated across the memory channels or banks.

One can build a data migration scheme which restricts the migrations to be within
the memory channel. Such a migration scheme does not incur the data transfer overheads
and the data can be migrated using techniques like rowclone Seshadri et al. (2013). How-
ever, those schemes cannot unlock the full parallelism and locality benefits provided by
an unrestricted scheme which improves the memory channel parallelism also. Therefore,
the rest of this section focuses on how to handle the overheads incurred in a full mi-
gration scheme. We present two novel migration mechanisms to reduce these overheads,
thereby allowing significantly more number of page migrations.

Smart Eviction: One way to reduce the overhead of migration is by reducing
the amount of data that has to be migrated. The key observation here is that parts of
the page that has to be migrated might already be present in the L2 cache on-chip. We
can utilize this data already on the chip to reduce the amount of data read from the
memory thereby reducing the data access overhead.

Figure 3.8 shows the percentage of the data that has to be migrated already
present in the L2 cache. It can be seen that on average 17% of the data to be migrated
is already in the L2 cache and do not have to be read from memory. We leverage this
by directly transferring the data present in L2 cache from the L2 bank to the recipient

24

0

5

10

15

20

25

WL1 WL2 WL3 WL5 WL6 WL7 AVG

%
 D

a
t
a

Fig. 3.8: Percentage of data to be migrated already present in the L2 cache.

MC and transferring the remaining data from the donor MC directly to the recipient
MC over the on-chip network.

Separate Network The main problem with using the on-chip network for data
migration is the bursty nature of the migration traffic. By injecting such a traffic to
the on-chip network, the network can go into saturation at times and affect the whole
system performance. We propose the use of a separate network to handle the migration
traffic. There have been efforts in the past Mishra et al. (2013); Das et al. (2013)
that use multiple networks on chip for different applications. In this work, we use the
extra network for migration traffic between memory controllers. Accordingly, it is only
connected to the memory controllers and is isolated from the original on-chip network.
This network can be used for other purposes as well in the future, but in this work we
dedicate it to data migrations.

MC1MC0

Control

Processor

Tile

Next

Router

Previous

Router

MC3 MC2

Memory

Controller

Fig. 3.9: Ring network connecting the memory controllers is used for data migration.

Figure 3.9 shows the ring type of network connecting the memory controllers in
a chip. The memory controller is now connected to the processor through a new router
(“R”). The router on the ring has four ports, one connected to the memory controller,
another connected to the main router in the processor tile and the remaining two to
connect to the previous and next routers on the ring. For simplicity and compatibility
reasons, we assume this network runs at the same frequency and has the same link width
(128 bits) as the original on-chip network. The router forwards the normal request
and response packets between the memory controller and the on-chip router. When
a migration packet is received from the memory controller, the router forwards it to

25

the corresponding link on the ring network based on the destination memory controller.
When a migration packet is received from the ring network, depending on the destination
it is either sent to the connected memory controller or forwarded to the next router in
the ring network.

Hybrid Smart eviction technique mainly reduces the data access overheads, while
a separate network targets the data transfer overheads. The two techniques can be com-
bined to develop a migration mechanism which has advantages of both the mechanisms.
In the combined scheme, as in the smart eviction technique, part of the data is trans-
ferred from the L2 bank to the recipient MC. The remaining data is read from the donor
MC and transferred to the recipient MC via the separate ring network.

3.3 Experimental Evaluation

In this section, we present the results obtained with our data migration scheme.
There are two ways to realize our migration idea (i) starting with page-level striping
and trying to increase the memory parallelism by distributing the data or (ii) starting
with line-level striping and increasing memory locality by consolidating the data. The
following evaluation is for the first approach. Similar results are expected in the second
approach also.

3.3.1 Migration Policy

We compare our new migration policy to the one proposed in Awasthi et al.
(2010) which migrates the data in order to balance the row-buffer locality at different
memory controllers. Our migration policy changes the address mapping for some pages
in memory to optimize the parallelism and locality metrics.

-20

-10

0

10

20

30

WL1 WL2 WL3 WL4 WL5 WL6 AVG

IP
C

 I
m

p
.

%

RBC-based Mapping-based RBC-optimal Mapping-optimal

Fig. 3.10: Performance improvements with different migration policies.

Figure 3.10 shows the performance improvements obtained with different migra-
tion policies. The y-axis shows the percentage IPC improvements compared to the
base case of no migration (page-level striping at memory channels and banks). When
the overheads are not modeled, both the policies performed decently yielding average
improvements of 7.7% and 13.2% with row-buffer locality and mapping based policies
respectively. Note that, the improvements with our mapping based policy are always bet-
ter than the improvements with the row-buffer locality based policy. However, when the

26

overheads are accurately modeled, the improvements with row-buffer locality based pol-
icy dropped significantly to -9.4%, while our mapping based policy managed to achieve
1.9% improvement. The poor performance of load based policy is due to the overheads
in on-chip and off-chip resources which are amplified in the large NOC based CMP.

0

0.5

1

1.5

2

2.5

WL1 WL2 WL3 WL4 WL5 WL6 AVG

M
C

 P
a

ra
ll

e
li

s
m

Page-level Migration

Fig. 3.11: Improvements in memory parallelism obtained by our migration scheme.

Figure 3.11 shows the memory channel parallelism observed with our migration
scheme. The first bar for each workload shows the channel parallelism obtained when
all the pages are mapped with page-level striping and the second bar shows the channel
parallelism with our data migration scheme where selected pages are changed to line-
level striping for better parallelism. It can be seen that using our migration policy we
are able to improve the memory channel parallelism by 16.1%.

0

20

40

60

80

WL1 WL2 WL3 WL4 WL5 WL6 AVG

M
e

m
o

ry
 L

o
ca

li
ty Page-level Migration

Fig. 3.12: Memory locality with our migration scheme.

Figure 3.12 shows the memory bank locality observed with our migration scheme.
By migrating only suitable pages our scheme does not loose much memory locality com-
pared to the page-level striping case. Overall, while our approach is promising from
a parallelism and locality perspective, the associated overheads are high and efficient
migration mechanisms are needed for better performance improvements.

3.3.2 Migration Mechanisms

The migration mechanisms (smart eviction, separate network, hybrid) described
in Section 3.2.2 are evaluated in this section with our mapping-based migration policy.
We compare these three mechanisms to a migration that uses on-chip network and an
optimal case that does not model any overheads.

Figure 3.13 shows the performance improvements obtained with different migra-
tion mechanisms discussed in this dissertation. Both the data access and data transfer
overheads are predominant in the On-chip mechanism thereby adversely affecting the

27

-10

0

10

20

30

WL1 WL2 WL3 WL4 WL5 WL6 AVG

IP
C

 I
m

p
.

%

On-chip Smart Eviction Separate NW Hybrid Optimal

Fig. 3.13: Performance improvements with different migration mechanisms.

performance (1.9% on average). Smart Eviction mechanism gives slightly better im-
provements (3.4% on average) by reducing the data access overhead but still incurring
the data transfer overhead. The Separate Network mechanism only reduces the data
transfer overhead and gives 7% improvement. The hybrid technique reduces both the
overheads and yields maximum performance (8.6%), with all overheads included.

-20

0

20

40

60

WL1 WL2 WL3 WL4 WL5 WL6 AVGM
e

m
L
a

te
n

c
y

 I
m

p
 %

On-chip Smart Eviction Separate NW Hybrid Optimal

Fig. 3.14: Memory latency with different migration mechanisms.

By improving the memory channel parallelism our migration scheme handles
bursts of memory accesses efficiently thereby reducing memory queuing delays. Fig-
ure 3.14 shows the reduction in memory latency (queueing delay + access latency) with
different migration mechanisms. The proposed smart eviction mechanism reduces the
data access overheads and achieves better memory latencies compared to the other mech-
anisms.

From the above analysis it can be concluded that the proposed migration policy
is effective improving the system performance by reducing the memory latencies. Also,
the proposed mechanisms (smart eviction and separate network) reduce the overheads of
data migration, thereby enabling more data migrations. Moreover, the hybrid mechanism
combines the benefits of both the mechanisms giving even better results.

28

Chapter 4

Memory Prefetching

A memory side prefetcher can be developed in the context of large CMPs, as
explained below:

• With memory (DRAM) performance becoming a serious bottleneck, under-
standing and optimizing the requests issued to it based on its current state (especially
leveraging the row buffer locality) is becoming extremely critical Cade and Qasem (2009);
Sudan et al. (2010); Zhang et al. (2000). A memory-side prefetcher may have more accu-
rate knowledge to optimize such locality (reduce row-buffer conflicts and further augment
the effectiveness of memory controller scheduling algorithms Kim et al. (2010c); Mutlu
and Moscibroda (2008)), compared to a core-side prefetcher which does not have instan-
taneous access to memory state.

• While a core-side prefetcher relies on accurate predictions for being effective,
a memory-side prefetcher can afford to be more “opportunistic”, e.g., initiate certain
requests based on bandwidth availability in the memory system. A core-side prefetcher
is unaware of the memory status to nimbly adjust its aggressiveness.

• A core-side prefetcher employs round-trip messages, and its inaccuracies increase
the contention in the on-chip network as will be shown in later. Its purpose is to bring the
data into an appropriate cache/buffer so that hit rates can be improved. In a large-scale
CMP having dozens of cores, while one would ideally want the data to be present in the
caches when requested, reducing miss latencies can be even more important. Though one
could build a general scheme (as in prior work Iacobovici et al. (2004); Karlsson et al.
(2000); Lin (2001); Poulsen and Yew (1994); Smith (1978)) where the data is pushed
up to the caches, it does not need to be a mandatory requirement for a memory-side
prefetcher. A memory-side prefetcher that just brings data on-chip (say to the memory
controller), can cut as much as 82% of the total round-trip latency of a normal load
request as shown in Table 2.1. Consequently, unlike a core-side prefetcher, a memory-
side prefetcher need not contribute to on-chip network contention as show in the next
section, while still offering the potential of removing off-chip latency.

• We want to emphasize that a memory-side prefetcher does not preclude the
provisioning of a core-side prefetcher as well. In fact, it is quite possible that the two
could work in unison (as a decoupled prefetching solution), with the former bringing the
data on-chip while leveraging the instantaneous state and capabilities of the memory
banks/channels, and the latter leveraging the predictability of core requests to pick up
the data (without going off-chip) brought in by the former.

Based on these ideas, we proposes a memory-side prefetcher that is integrated with
the memory controllers of an on-chip network based CMP. It maintains a relatively small
prefetch buffer of about 256KB per controller, into which our logic prefetches cache lines

29

from DRAM row buffers based on various factors – predictability, bandwidth availabil-
ity, row buffer conflict overheads, utility to different request streams, etc. We compare
our memory-side prefetcher to a state-of-the-art stream-based core-side prefetcher which
employs techniques from Ebrahimi et al. (2011), a next-line core-side prefetcher, a vari-
ation of our memory-side prefetcher which pushes the data to caches, and an existing
memory-side prefetcher Lin (2001) which pushes the data prefetched at bus idle times
to on-chip caches. We show that our memory-side prefetcher outperforms all of those
prefetchers. Using both multiprogrammed and multithreaded workloads, with varying
memory pressures, running on a 32-core simulation platform with DDR3 memory, we
show that our proposal gives an average IPC improvement of 6.2% (maximum of 33.6%)
over no prefetching case when running alone, and 10% (maximum of 49.6%) when com-
bined with a core-side prefetcher. We also perform a sensitivity study to demonstrate
the robustness of our memory-side prefetcher in different configurations. Our results
show that:

• Core-side prefetching does cut memory access latencies for CMPs, however its
effectiveness decreases sharply as the CMPs get larger (like 32 cores).

• Existing memory-side prefetching schemes have better scope in large CMPs, but
their effectiveness is limited due to increase in on-chip queueing delays.

• On large-scale CMPs, our mid-way memory-side prefetcher generates better
results than conventional core-side and memory-side prefetchers, and complements core-
side prefetcher to amplify the benefits.

4.1 Memory-Side Prefetching

In this work, we use memory-side prefetching to improve the latency of off-chip
memory requests in large CMPs. Our prefetching scheme improves memory performance
in two ways: (i) An access to prefetched (on-chip) data is served faster. (ii) An access
to prefetched data will not use the memory bank or the memory channel, which reduces
the contention on these highly shared resources, and as a result, reduces the queuing
delay for all memory requests. We now explain the details of our proposed prefetching
scheme.

4.1.1 What to Prefetch?

While prefetching has the potential to improve the performance of the memory
system, it is not a light-weight task and comes with its own overheads. Therefore,
accuracy of what to prefetch is extremely important. Our first criterion in identifying
the data to be prefetched is that the data should come from an open row that is in
the row buffer. A prefetch from a row buffer can be fast and does not disturb the
current contents of the row buffer. Within a row, there are many cache lines that we
can potentially prefetch. We analyzed the line access patterns of different applications,
specifically focusing on the order in which the lines in a row are accessed after the row
is opened.

The three graphs in Figure 4.1 plot the line access patterns of some representative
applications. Each application is run individually on a single core platform with one

30

Fig. 4.1: Line access pattern graphs of some SPEC CPU2K6 applications.

memory controller to obtain these graphs. The xy-plane represents the line (each of
size 64B) numbers within a row (of size 4KB), running from 0 to 63. For any point
(x,y) in this plane, the value in the z-axis represents how frequently line y was accessed
immediately after line x within the same row.

To quantify the line locality of an application, we define a metric called next-line
locality (NLL), which is the average of all the values in the diagonal with offset 1 in
the line access pattern graph (i.e., values at points (i, i + 1)). This value represents the
percentage of times a line is accessed immediately after its preceding line from the same
row. Table 4.3 gives the NLL values of all the SPEC CPU2K6 applications. We see that
the chances of accessing the next line in the same row after a line is accessed is about
36.8% over all applications. Extending the definition of next-line locality, next-k-line
locality represents the percentage of times one of lines (i + 1, i + 2, .., i + k) are accessed
immediately after line i is accessed in the same row. The average next-k-line locality of
our evaluated applications is around 43.7% for k = 4. This indicates that prefetching
multiple subsequent lines may be a reasonable option in practice.

We selected next-line prediction for its simplicity to merely illustrate the benefits
of memory-side prefetching and placing the data midway. Clearly, one could use a
more sophisticated predictor like Adaptive Stream Detection Hur and Lin (2006). The
predictor for the prefetching scheme is in itself orthogonal to the main contributions of
this work. A sophisticated predictor has the potential to improve the accuracy of the
memory prefetcher, further adding to the overall benefits one could achieve.

4.1.2 When to Prefetch?

It is of utmost importance to identify the “ideal time” to initiate a prefetch from
the row buffer. The options are: (1) when a row buffer conflict happens, (2) when a row
buffer hit happens, (3) when the row is first opened, or (4) when the memory bank and
channel are idle.

31

Prefetch at Row Buffer Hit: Another opportunity for prefetching data from
the row buffer is upon a row buffer hit (RBH). Along with a demand request, we issue
prefetch requests for the next lines from the row buffer. We call this scheme Prefetch
at RBH. By doing the prefetching at row buffer hit, we are not making the demand-
request wait. Instead, we first service the demand-request and then perform our prefetch.
Subsequent requests to those lines in that row (which were supposed to be row buffer
conflicts or hits) can now become prefetch hits. One more advantage of Prefetch at RBH
is the prefetches may more accurately reflect sequentiality.

A prefetch hit is much faster than a row buffer hit as it hides the latency of ac-
cessing the memory and is served directly from an on-chip buffer. Compared to Prefetch
at RBC, the number of prefetches issued with Prefetch at RBH will be lower because
of fewer row buffer hits compared to the row buffer conflicts in a system with multiple
applications. Note that we prefetch only at read row buffer hits since we are prefetching
to serve only read requests.

Prefetch Scheme Critical Path Locality # of Prefetches
Prefetch at RBC Yes No High
Prefetch at RBH No Yes Low

Prefetch at Row ACT No No High
Prefetch at Idle Times No Yes High

Table 4.1: Characteristics of different prefetch schemes.

Table 4.1 gives a summary of the memory-side prefetching schemes discussed in
this section. A good prefetching scheme should not be on the critical path, should
consider locality before prefetching, and should not issue too many prefetches.

4.1.3 Where to Prefetch?

Once the questions of what to prefetch and when to prefetch are answered, the
next question that comes up is where to store the prefetched data? Prefetched data
should be stored on-chip to avoid off-chip latencies. Typically, core-side prefetchers
bring the prefetched data to on-chip caches. In this work, we explore the option of
storing the prefetched data in a separate buffer on-chip called Prefetch Buffer in the
memory controller. As explained earlier, this cuts down a substantial part of the off-chip
latency, while avoiding the problems of core-side prefetching.

The prefetch buffer is logically organized as a cache. Each row in this cache holds
a prefetched memory block data and this data is identified uniquely by its corresponding
memory address. The memory controller populates a new entry in the prefetch buffer
when new data is prefetched from memory. Before issuing each memory read request,
the memory controller does a lookup on the prefetch buffer and serves the request from
the buffer if it is a hit.

32

We allocate a separate prefetch buffer at each memory controller. The prefetch
buffer can be organized in two ways: (1) shared prefetch buffer, where any prefetch
entry in the buffer can be used by any core, and (2) private prefetch buffer, where
each core gets a specific set of prefetch entries in the buffer. A shared prefetch buffer
suffers from the same problem of memory interference already observed by the memory
controller queues. In this case, cores with high MPKI can take up more entries in the
prefetch buffer, leading to fairness issues. Another problem with shared prefetch buffer
is the extra cost of performing an associative search over a cache with relatively higher
associativity. On the other hand, using private prefetch buffers reserves each core its
own set of entries, and therefore, eliminates the interference between the cores at the
prefetch buffer. While one can think that the data shared across applications or threads
of a multithreaded application can lead to duplicate entries in the prefetch buffer which
would not exist in a shared prefetch buffer, our experiments indicated that even with
data sharing, the use of a shared prefetch buffer is not justified to offset the higher cost
having a shared prefetch buffer. Therefore, we employ private per-core prefetch buffers.

4.1.4 Optimizations for Memory-Side Prefetching

Memory prefetching comes at the cost of extra pressure on the memory resources
such as channels and banks. As a result, prefetching too frequently (e.g., along with every
row buffer hit) can become an overkill. In some situations, serving a demand-request
might be more beneficial than doing a prefetch (although prefetch will be done from an
open row), because, while the prefetch is being done, all demand-requests in the bank
queue get delayed. Further, application characteristics can vary dynamically throughout
execution. There can be cases where an application or a phase of an application might
not benefit from memory prefetching because of lack of locality. We implemented three
optimizations to improve the effectiveness of the proposed memory-side prefetching.

• Precharge on Prefetch: After prefetching from an open row, there is a low
chance of getting further immediate requests to that same row due to the filtering effect
of the prefetch buffer. Consequently, we can precharge the row, thereby saving few cycles
for subsequent requests to that bank.

•Averting Costly Prefetches: We do not issue prefetches when a high number
of demand requests are queued, waiting for the channels or banks to become available.
We calculate the total load on the memory bus and do prefetching only if the load is
below a predetermined threshold (Queueing Thresh).

• Prefetch Throttling: We monitor the usefulness of prefetching for each appli-
cation at runtime and reduce the prefetch degree dynamically for individual applications
that do not benefit from it. For each application, the prefetch accuracy in the last epoch
is calculated and based on its value relative to two predetermined thresholds Accuracy
Thresh1 and Accuracy Thresh2 we select the prefetch degree for the next epoch. If
the accuracy is greater than Accuracy Thresh2 we select a high prefetch degree; if it is
below Accuracy Thresh1 we select a low prefetch degree; and if it is in between the two
thresholds we select a moderate prefetch degree.

33

4.2 Experimental Evaluation

4.2.1 Setup

We evaluate our memory prefetching scheme using the Simics Magnusson et al.
(2002) full-system simulator with GEMS Martin et al. (2005). We model a network-
on-chip (NoC) based CMP with the MOESI CMP directory cache coherence protocol.
We use Opal module of GEMS to simulate out-of-order cores. The cache and memory
hierarchy are modeled using Ruby and the NoC is modeled using GARNET. Table 4.2
shows the important processor and memory parameters used in our experiments, and
their default values. Later, we conduct a sensitivity analysis on some of these parameters.

Processor 32 cores at 2.4 GHz; ultra-sparc-iii-plus ISA
out-of-order; 12-stage pipeline; issue width: 4

Network On Chip 8x4 2D mesh network; 2-stage pipelined router,
4VCs per port with 4-entry buffer each; 128b flit

Caches 64-byte cache line; 32KB L1D; 32KB L1I
per core; 32MB banked shared LLC (S-NUCA)
L1 hit latency: 3 cycles; L2 hit latency: 6 cycles

Memory 16GB; DDR3-1600; 4 memory channels;
total 51.2 GBps bandwidth
1 DIMM, 2 ranks, and 16 banks at each channel

Memory Parameters Row Buffer Hit: 42 cycles; Conflict: 102 cycles
tCL, tRP and tRCD = 10, 10, 10 memory cycles

Address Mapping Page Interleaving at the Memory Controllers
Cache Line Interleaving at the L2 caches

Memory Prefetch Hit latency: 5 cycles; Max degree: 4 lines
Parameters Timing: Prefetch at Row Buffer Hit

256KB, 128-entry, 32-way set associative
prefetch buffer at each memory controller

Memory Prefetch Accuracy Thresh1: 10; Accuracy Thresh2: 25
Opt. Thresholds Queueing Thresh: 48 requests
Cache Prefetch Max Degree: 4; Prefetch distance: 24
Parameters Prefetch Window: 32 cache lines

Train & Stream entries per core: 64

Table 4.2: Configuration of the evaluation platform.

4.2.2 Benchmarks

We created multiprogrammed workloads from applications in the SPEC CPU2K6
and SPEC CPU2K benchmark suites and multi-threaded workloads from SPEC OMP2K1
applications to evaluate our memory-side prefetching scheme. For each application, first
we did a study on its memory characteristics. We specifically looked at the MPKI, Row
Buffer Locality and Next Line Locality of each application when running alone on a sin-
gle core platform. Table 4.3 shows the MPKI, row buffer hit rate (RBHR) and next line
locality (NLL) of all the considered applications. We created three workload categories

34

Application L2 MPKI RBHR NLL Application L2 MPKI RBHR NLL Application L2 MPKI RBHR NLL
470.lbm 34.54 36.49 5.88 183.equake 7.12 72.16 68.21 465.tonto 0.61 70.90 43.43
462.libquantum 31.66 97.03 98.90 436.cactus 5.83 13.57 10.62 444.namd 0.59 77.64 56.50
459.GemsFDTD 30.47 37.29 43.17 429.mcf 5.08 34.83 2.12 464.h264ref 0.56 66.71 62.55
179.art 25.57 80.89 6.01 435.gromacs 4.57 57.31 62.46 416.gamess 0.47 57.55 44.36
433.milc 21.47 66.99 37.55 171.swim 4.33 17.51 18.54 481.wrf 0.43 71.49 36.85
401.bzip2 20.63 3.10 2.47 434.zeusmp 2.88 49.59 49.12 458.sjeng 0.42 18.47 15.97
437.leslie3d 18.36 72.86 72.54 450.soplex 2.24 20.13 15.52 403.gcc 0.39 69.13 54.64
410.bwaves 17.10 66.09 67.45 454.calculix 1.20 93.19 21.02 453.povray 0.26 79.63 54.87
483.xalancbmk 16.77 76.30 14.31 473.astar 1.12 35.55 19.94 447.dealII 0.21 78.08 59.41
471.omnetpp 12.95 48.30 3.74 456.hmmer 0.84 38.69 34.32 400.perlbench 0.15 74.76 51.51
482.sphinx3 11.99 29.50 26.25 445.gobmk 0.74 43.20 18.26

Table 4.3: Memory characteristics of SPEC2006 applications.

(WL1 - High MPKI and High Locality, WL2 - High MPKI and Low Locality and WL3
- Low MPKI) with varying memory intensity and locality (NLL).

We created a workload category (WL4) with high locality applications which
benefit core-side prefetching and a workload category (WL5) with mix of all types of
applications. We created two additional workload categories (WL6 - 8 applications
with 4 threads each and WL7 - one application with 32 threads) with multithreaded
applications. In each workload category, we created four workloads of 32 applications
each by randomly selecting applications from the corresponding category.

While running a workload, each of the 32 applications is bound to an individual
core. The simulations are fast forwarded to 15 billion cycles, the caches are warmed up for
5 million instructions and the detailed simulation is run for 10 million instructions on the
first core. We measure the overall performance of a workload using the harmonic mean
of the IPCs of individual applications in the workload which represents both fairness and
performance Luo et al. (2001). We analyze the effect of prefetching on other metrics like
on-chip and off-chip latencies, L2 hit rates and row buffer hit rates. We further measure
the following prefetching-specific metrics:

Prefetch Coveragememory−side =
Prefetch hits

Total memory requests
× 100,

P refetch Coveragecore−side =
Prefetch hits

Prefetch hits + misses
× 100,

P refetch Accuracy =
Prefetch hits

Number of prefetched lines
× 100

Prefetch coverage is the percentage of memory requests served from the prefetch
buffer out of the total requests to memory controller. In the case of core-side prefetcher,
prefetch coverage is the percentage of L2 misses avoided by prefetched lines. Prefetch
accuracy is a measure of how many prefetches are actually useful.

35

4.2.3 Results and Analysis

To evaluate the benefits of our memory-side prefetching approach (MSP), we
compare it against four different prefetching schemes: a sophisticated stream-based core-
side prefetching scheme (CSP), a next-line (degree 1) core-side prefetching scheme, our
memory-side prefetching scheme which pushes the prefetched data to the on-chip (L2)
caches (MSP-PUSH), an existing memory side prefetching work Lin (2001) proposed
for unicore systems, extended to multicores (IDLE-PUSH). The core-side prefetcher
(CSP) we implemented is an adaptive-stride stream-prefetcher similar to the one in Liu
et al. (2011) (and to the one adopted in current Intel Xeon Hegde (2008) and IBM
Power Srinath et al. (2007) processors) that builds streams based on the L2 misses and
prefetches data into the last-level (L2) cache (which is increased by the size of the total
prefetch buffer (1MB) in this case). We added accuracy-based “dynamic throttling”
Srinath et al. (2007) to the core-side prefetcher to improve its effectiveness. In addition,
we implemented techniques presented in Ebrahimi et al. (2011) to reduce the effect of
prefetch requests on demand requests at memory. We monitored the cache interference
caused by our core-side prefetcher and identified that it is not a major problem in our
configuration. We find that our core-side prefetcher has coverage and accuracy numbers
similar to the prefetchers used in previous work Ebrahimi et al. (2011); Lee et al. (2008);
Srinath et al. (2007). We also implemented a simple next-line prefetcher at the core
although it is not expected to give better benefits than the sophisticated stream-based
core-side prefetcher. Our memory-side prefetching (MSP) scheme prefetches at row
buffer hits and stores the data in prefetch buffers at the memory controllers (on-chip).
(MSP-PUSH) scheme is similar to (MSP), but does not use the prefetch buffers and
instead pushes the prefetched data to the on-chip (L2) cache which is increased by
1MB. (IDLE-PUSH) is similar to Lin (2001) which uses the idle periods on the memory
bus to prefetch data from open rows and pushes the prefetched data to on-chip (L2)
caches. In the combined case (CSP+MSP), both the prefetchers work independently
where the memory-side prefetcher brings data to prefetch buffers from DRAM and core-
side prefetcher fetches data from either the prefetch buffer or memory to the on-chip
(L2) caches.

-15

-10

-5

0

5

10

15

20

25

W
L
1
_
1

W
L
1
_
2

W
L
1
_
3

W
L
1
_
4

A
V
G

W
L
2
_
1

W
L
2
_
2

W
L
2
_
3

W
L
2
_
4

A
V
G

W
L
3
_
1

W
L
3
_
2

W
L
3
_
3

W
L
3
_
4

A
V
G

W
L
4
_
1

W
L
4
_
2

W
L
4
_
3

W
L
4
_
4

A
V
G

W
L
5
_
1

W
L
5
_
2

W
L
5
_
3

W
L
5
_
4

A
V
G

W
L
6
_
1

W
L
6
_
2

W
L
6
_
3

W
L
6
_
4

A
V
G

W
L
7
_
1

W
L
7
_
2

W
L
7
_
3

W
L
7
_
4

A
V
G

A
V
G

WL1 WL2 WL3 WL4 WL5 WL6 WL7

%
 I

P
C

 I
m

p
ro

v
e

m
e

n
t

CSP MSP MSP-PUSH IDLE-PUSH CSP+MSP

49.542.4 29.4 33.2

Fig. 4.2: Percentage IPC improvement over no prefetching with different prefetchers.

36

Figure 4.2 shows the percentage IPC improvements over the no prefetching case
using five of the six schemes discussed above. The first bar for each workload shows
the improvement with CSP scheme, the second, third, fourth and fifth bars show the
improvements with the MSP, MSP-PUSH, IDLE-PUSH, and CSP+MSP schemes, re-
spectively. The average IPC improvement over all 28 workloads (7 workload categories
× 4 workloads/category) is 1.9% with the CSP scheme, -17.4% with next-line core-
prefetcher (not shown in graph), 6.2% with MSP, 4.6% with MSP-PUSH, -3% with
IDLE-PUSH and 10% with the CSP+MSP scheme. CSP scheme gave noticeable im-
provements (7.3%) only in workload category (WL4). Even by reserving a cache way
just for prefetches the average IPC improvement with CSP increased to only 2.6%. We
investigate the reason for this poor performance of CSP in the following paragraphs. In
almost all workloads, memory-side prefetcher (MSP) performed better than the core-
side prefetcher (CSP). The difference between (CSP) and (MSP) is more noticeable in
high MPKI workloads (WL1, WL2 and WL6). The MSP-PUSH scheme suffers from
the on-chip resource contention and loses some performance compared to MSP. The
IDLE-PUSH scheme was not able to bring any performance improvement on average
because of the following problems: (i) useful idle periods on the memory bus are rare
(ii) the pushed data creates contention in the on-chip network and pollutes the caches.
Accordingly, it performed well only in low MPKI workloads (WL3), and in all the other
workloads its performance was worse than the baseline no prefetching case. The improve-
ments obtained in the combined scheme (CSP+MSP) are higher than any other scheme
in all the workloads. The improvements are especially good (average 33.2%) in high
MPKI workloads (WL1). We want to emphasize that the improvement with CSP+MSP
is larger than the sum of the improvements from CSP and MSP in many cases. This is
because many core-side prefetches (in the combined case) hit in the prefetch buffer filled
by the memory-side prefetcher in the CSP+MSP case which were originally accessing
the DRAM and overwhelming the memory subsystem in the CSP case.

0

200

400

600

WL1 WL2 WL3 WL4 WL5 WL6 WL7 AVG

C
y
cl
e
s

No Pref CSP MSP MSP-PUSH IDLE-PUSH CSP+MSP
676.1749.9

Fig. 4.3: Average on-chip and off-chip latencies for an LLC miss without prefetching and
different prefetching schemes.

Figure 4.3 shows the average on-chip and off-chip latencies incurred by an L2 miss
in different schemes (No Pref, CSP, MSP, MSP-PUSH, IDLE-PUSH and CSP+MSP).
Six stacked bars are shown for each workload category. Each bar represents the average
latencies in the four workloads in that category with a particular scheme. The first
bar is the total miss latency without any prefetching, the second, third, fourth, fifth
and sixth bars show the miss latencies with CSP, MSP, MSP-PUSH, IDLE-PUSH and
CSP+MSP schemes respectively. Within each bar, the lower part shows the number

37

of cycles spent by a request on-chip, and the upper part shows the number of cycles
spent in the memory controller. It can be seen that the core-side prefetching, even
with sophisticated techniques like throttling and prefetch aware memory controllers, is
still causing significant delays at the memory controller (35.8% increase on average).
Our MSP scheme is very effective in reducing the off-chip latency (48.5% reduction on
average) especially in high MPKI workloads (WL1, WL2, WL6 and WL7). MSP-PUSH
and IDLE-PUSH schemes push all the prefetched data to caches and lead to higher on-
chip latencies. They also show higher off-chip latencies because of the lack of prefetch
buffer at memory controller in the case of MSP-PUSH and because of the interference
of prefetch activity with demand requests in the IDLE-PUSH scheme. In the case of
CSP+MSP, the increase in off-chip latency by the core-side prefetcher is balanced by
the reduction in latency provided by the memory-side prefetcher.

Our memory-side prefetcher (MSP), being ”DRAM state-aware“ can also reduce
the power consumption of DRAM by reducing the number of row activations and proac-
tively retrieving data from open rows. In comparison to core-side prefetching, an in-
accurate prefetch in our scheme (MSP) also wastes less energy as (i) it is done on an
already-open row, and (ii) it does not use the on-chip network. The average DRAM
power savings obtained with MSP (calculated using MICRON power calculator Micron
(2009)) are 8.8% and 8.3% compared to no prefetching and CSP cases respectively.

From the above analysis it can be concluded that although core-side prefetcher
(CSP) significantly improves L2 hit rates (18.9% on average) and does accurate prefetch-
ing (82.2% on average), it is not very effective in improving the overall performance of
the system (average 1.9% in figure 4.2). This is due to the increase in queueing latency
at the memory controllers (35.8% on average as shown in figure 4.3) because of the
bursty nature of core-side prefetch requests. To confirm this fact, we ran the same sim-
ulations with a constant memory latency (200 cycles) and the core-side prefetcher gave
an average improvement of 10.4%. In fact, we could not find any work in recent litera-
ture which shows significant performance improvements with core-side prefetching on a
many(32)-core system when full memory subsystem and on-chip network is modeled. We
believe, this problem of off-chip queueing becomes more prominent as we move to larger
core counts and core-side prefetching becomes far less effective. On the other hand, our
memory-side prefetcher is a low overhead solution which can scale with the prefetching
requirements of larger number of cores. However, pushing the prefetched data to on-chip
caches is also not a good idea because of on-chip network and cache contention problems.
Finally, we conclude that, combined prefetching (CSP+MSP) leverages the advantages
of both the prefetching schemes and yields better benefits than either of them.

38

Chapter 5

Mobile Memory

5.1 Problem Statement

DRAM stalls are high in current SoCs and this will only worsen as IPs performance
scale. Typically, DRAM is shared between the cores and IPs and is used to transfer data
between them. There is a high degree of data movement and this often results in a high
contention for memory controller bandwidth between the different IPs Jog et al. (2013).
Figure 5.1 shows the memory bandwidth obtained by two of our applications: YouTube

and Skype with a 6.4 GBPS memory. One can notice the burstiness of the accesses in
these plots. Depending on the type of IPs involved, frames get written to memory or read
from memory at a certain rate. For example, cameras today can capture video frames of
resolution 1920x1080 at 60 FPS and the display refreshes the screen with these frames at
the same rate (60 FPS). Therefore, 60 bursts of memory requests from both IPs happen
in a second, with each burst requesting one complete frame. While the request rate is
small, the data size per request is high – 6MB for a 1920x1080 resolution frame (this
will increase with 4K resolutions Engwell (2013)). If this amount of bandwidth cannot
be catered to by the DRAM, the memory controller and DRAM queues fill up rapidly
and in turn the devices and accelerators start experiencing performance drops. The
performance drop also affects battery life as execution time increases. In the right side
graph in Figure 5.1, whenever the camera (CAM) initiates its burst of requests, the peak
memory bandwidth consumption can be seen (about 6 GBPS). We also noticed that the
average memory latency more than doubles in those periods, and memory queues sustain
over 95% utilization.

To explain how much impact the memory subsystem and the system-agent can
have on IPs’ execution time (active cycles during which the IPs remains in active state),
in Figure 5.2, we plot the total number of cycles spent by an IP in processing data and in
data stalls. Here, we use “data stall” to mean the number of cycles an IP stalls for data
without doing any useful computation, after issuing a request to the memory. We observe
from Figure 5.2 that the video decoder and video encoder IPs spend most of their time
processing the data, and do not stress the memory subsystem. IPs that have very small
compute time, like the audio decoder and sound engine, demand very high bandwidth
than what memory can provide, and thus tend to stall more than compute. Camera IP
and graphics IP, on the other hand, send bursts of requests for large frames of data at
regular intervals. Here as well, if memory is not able to meet the high bandwidth or has
high latency, the IP remains in the high-power mode stalling for the requests. The high
data stalls seen in Figure 5.2 translate to frame drops which is shown in Figure 5.3 (for
5.3 GBPS memory bandwidth). We see that on average 24% of the frames are dropped
with the default baseline system, which can hurt user experience with the device. With

39

higher memory bandwidths (2x and 4x of the baseline bandwidth), though the frame
drops decrease, they still do not improve as much as the increase in bandwidth. Even
with 4x baseline bandwidth, we observe more than 10% frame drops (because of higher
memory latencies).

0

2

4

6

8
(a) Youtube

0

2

4

6

8
(b) Skype

Time

M
e

m
.

B
a

n
d

w
id

th
 (

in

G
B

P
S

)

M
e

m
.

B
a

n
d

w
id

th
 (

in

G
B

P
S

)

Time

Fig. 5.1: Bandwidth usage of Youtube and Skype over time.

%
 o

f
ti

m
e
 s

p
e
n

t

0%

20%

40%

60%

80%

100%

G
P

U

D
C

A
D

S
N

D

M
IC A
E

A
D

S
N

D

IM
G

D
C

C
A

M

IM
G

D
C

C
A

M

V
E

V
D

D
C

A
D

S
N

D

M
IC A
E

C
A

M

IM
G

D
C

V
E

M
IC A
E

V
D

D
C

A
D

S
N

D

Angry Birds Audio MP3 Photos CamPic Skype Video Record Youtube

Processing Cycles Data Stall Cycles

Snd.

Rec

Fig. 5.2: Total data stalls and processing time in IPs during execution.

As user demands increase and more use-cases need to be supported, the number
of IPs in the SoC is likely to increase Steve Scheirey (2013) along with data sizes Engwell
(2013). Even as the DRAM speeds increase, the need to go off-chip for data accesses
places a significant bottleneck. This affects performance, power and eventually the over-
all user experience. To understand the severity of this problem, we conduct a simple
experiment shown in Figure 5.4, demonstrating how the cycles per frame vary across the
base system (given in Table 5.1) and when the IPs compute at half their base speed (last
generation IPs), and twice their speed (next generation) etc. For DRAM, we varied the
memory throughput by varying the LPDDR configurations. We observe from the results
in Figure 5.4 that the percentage of data stalls increases as we go from one generation
to the next. Increasing the DRAM peak bandwidth alone is not sufficient to match the
IP scaling. We require solutions that can tackle this problem within the SoC.

Further, to establish the maximum gains that can be obtained if we had an “ideal
and perfect memory”, we did a hypothetical study of perfect memory with 1 cycle latency.
The cycles-per-frame results with this perfect memory system are shown in Figure 5.5.

40

0

25

50

75

100

A6 A7 A8 AVG(all)

%
 o

f
F

ra
m

e
s

S

h
o

w
n

5.3 GBPS 10.6 GBPS 21.2 GBPS

Fig. 5.3: Percentage of frames completed in a subset of applications with varying memory
bandwidths.

F
ra

c
ti

o
n

 o
f

ti
m

e
 a

n

IP
 s

ta
ll

s
 i
n

 m
e
m

o
ry

0

20

40

60

80

100

G
P

U

A
D

A
E

A
D

IM
G

IM
G

V
E

V
D

A
D

A
E

IM
G

V
E

A
E

V
D

A
D

Angry Birds Snd
Rec

MP3 Photos CamPic Skype Video Record Youtube

0.5x-LPDDR2-800 Base-LPDDR3-1333 2x-LPDDR3-1600 4x-LPDDR4-3200

Fig. 5.4: Trends showing increase of percentage of data stalls with each newer generation
of IPs and DRAMs.

0

20

40

60

80

100

G
P

U
-D

C

A
D

-S
N

D

M
IC

-A
E

-M
M

C

M
M

C
-A

D
-S

N
D

M
M

C
-I

M
G

-D
C

C
A

M
-I

M
G

-D
C

C
A

M
-I

M
G

-M
M

C

C
A

M
-V

E

V
D

-D
C

A
D

-S
N

D

M
IC

-A
E

C
A

M
-I

M
G

-D
C

C
A

M
-V

E
-M

M
C

M
IC

-A
E

-M
M

C

V
D

-D
C

A
D

-S
N

D

A1 A2 A3 A4 A5 A6 A7 A8

%
 C

y
c

le
s

 P
e

r
F

ra
m

e

Fig. 5.5: Percentage reduction in Cycles-Per-Frame in different flows with a perfect
memory configuration.

41

As expected, we observed drastic reduction in cycles per frames across applications and
IPs (as high as 75%). In some IPs, memory is not a bottleneck and those did not
show improved benefits. From this data, we conclude that reducing the memory access
times does bring the cycles per frame down, which in turn boosts the overall application
performance. Note that, this perfect memory does not allow any frames to be dropped.

5.2 Evaluation Platform

Handheld/mobile platforms commonly run applications that rely on user in-
puts and are interactive in nature. Studying such a system is tricky due to the non-
determinism associated with it. To enable that, we use GemDroid Chidambaram Nachi-
appan et al. (2014), which utilizes Google Android’s open-source emulator Google (2013)
to capture the complete system-level activity. This provides a complete memory trace
(with cycles between memory accesses) along with all IP calls when they were invoked
by the application. We extended the platform by including DRAMSim2 Rosenfeld et al.
(2011) for accurate memory performance evaluation. Further, we enhanced the tool to
extensively model the system agent, accelerators and devices in detail.

Processor ARM ISA; 4-core processor; Clocked at 2 GHz;
OoO w/issue width: 4

Caches 32 KB L1-I; 32KB L1-D; 512 KB L2

Memory Till 2 GB reserved for cores. 2GB to 3GB reserved for IPs.
LPDDR3-1333; 1 channel; 1 rank; 8 Banks

5.3 GBPS peak bandwidth; tCL,tRP ,tRCD = 12, 12, 12 ns

System Agent Frequency: 500 MHz; Interconnect latency: 1 cycle per 16 Bytes
Memory Transaction-Q.: 64 entries; Bank-Q.: 8 entries

All IPs run at 500Mhz frequency
IPs and Aud.Frame: 16KB frame; Vid.Frame: 4K (3840x2160)

System Parameters Camera Frame: 1080p (1920x1080)
Input Buffer Sizes: 16-32KB; Output Buffer Sizes: 32-64KB

Enc/Decoding Ratio: VD→1:32; AD→1:8;

Table 5.1: Platform configuration.

Specifications of select IPs frequency, frame sizes and processing latency are avail-
able from SoC (2011). For completeness, we give all core parameters, DRAM param-
eters, and IP details in Table 5.1. Note that the techniques discussed in this work are
generic and not tied to specific microarchitectural parameters.

While most of the applications that we use in this work are well known, we would
like to mention a few details. In our setup, all video-based applications like youtube,

angry birds game, and photo-gallery work with 1080x1920 HD frames simulating
at least 200 frames in total at 60 FPS (frames-per-second). Audio-playback plays a

42

IP Abbr. Expansion IP Abbr. Expansion

VD Video Decoder AD Audio Decoder

DC Display Controller VE Video Encoder

MMC Flash Controller MIC Microphone

AE Audio Encoder CAM Camera

IMG Imaging SND Sound

Table 5.2: Expansions for IP abbreviations.

Id Application IP Flows

A1 Angry Birds AD - SND; GPU - DC

A2 Sound Record MIC - AE - MMC

A3 Audio Playback (MP3) MMC - AD - SND

A4 Photos Gallery MMC - IMG - DC

A5 Photo Capture (Cam Pic) CAM - IMG - DC; CAM - IMG - MMC

A6 Skype CAM - VE; VD - DC; AD - SND; MIC - AE

A7 Video Record CAM - VE - MMC; MIC - AE - MMC

A8 Youtube VD - DC; AD - SND

Table 5.3: IP flows in our applications.

320Kbps music file, while audio-record/encoding occurs at 44KHz. Input from CAM
is set up with a 4K frame for video recording (again at 60 FPS). Youtube downloads
data over the network before video-decoding. The specifications used are derived from
current systems in the marketSamsung (2014); Apple.

5.3 IP-to-IP Data Reuse

This section explores performance optimization opportunities that exist in current
designs and whether existing solutions can exploit that.

5.3.1 Data Reuse and Reuse Distance

In a flow, data get read, processed (by IPs) and written back. The producer
and consumer of the data could be two different IPs or sometimes even the same IP.
We capture this IP-to-IP reuse in Figure 5.6, where we plotted the physical addresses
accessed by the core and other IPs for YouTube application. Note that this figure only
captures a very small slice of the entire application run. Here, we can see that the
display-controller (DC) (red points) reads a captured frame from a memory region that
was previously written to by video decoder (black points). Similarly, we can also see
that the sound-engine reads from an address region where audio-decoder writes. This
clearly shows that the data gets reused repeatedly across IPs, but the reuse distances
can be very high.

43

Time

2.2e+09

2.22e+09

2.21e+09

2.205e+09

2.215e+09

+ VD
+ DC

+ AD
+ SND

A
d

d
re

s
s
 R

a
n

g
e

Fig. 5.6: Data access pattern of IPs in YouTube application.

As mentioned in Section 2.1.1, when a particular application is run, the same
physical memory regions get used (over time) by an IP for writing different frames. In
our current context, the reuse we mention is only between the producer and consumer
IPs for a particular frame and nothing to to do with frames being rewritten to the same
addresses. Due to frame rate requirements, reuse distances between display frame based
IPs were more than tens of milli-seconds, while audio frame based IPs were less than a
milli-second. Thus, there is a large variation across producer-consumer reuse distances
across IPs that process large (display) frames (e.g., VD, CAM) and IPs that process
smaller (audio) frames (e.g., AD, AE).

5.3.2 Converting Data Reuse into Locality

Given the data reuse, the simplest solution is to place a on-chip cache and allow
the multiple IPs to share it. The expectancy is that caches are best for locality and hence
they should work. In this subsection, we evaluate the impact of adding such a shared
cache to hold the data frames. Typical to conventional caches, on a cache-miss, the
request is sent to the transaction queue. The shared cache is implemented as a direct-
mapped structure, with multiple read and write ports, and multiple banks (with a bank
size of 4MB), and the read/write/lookup latencies are modeled using CACTI Shivakumar
and Jouppi (2001). We evaluated multiple cache sizes, ranging from 4MB to 32MB, and
analyzed their hit rates and the reduction in cycles taken per frame to be displayed. We
present the results for 4MB, 8MB, 16MB and 32MB shared caches in Figure 5.7 and
Figure 5.8 for clarity. They capture the overall trend observed in our experiments. In
our first experiment, we notice that as the cache sizes increase, the cache hit rates either
increase or remain the same. For applications like Audio Record and Audio Play (with
small frames), we notice 100% cache hit rates from 4MB cache. For other applications
like Angry Birds or Video-play (with larger frames), a smaller cache does not suffice.
Thus, as we increase the cache capacity, we achieve higher hit rates. Interestingly, some
applications have very low cache hit rates even with large caches. This can be attributed
to two main reasons. First, frame sizes are very large to fit even two frames in a large
32MB cache (as in the case of YouTube and Gallery). Second, and most importantly,

44

0

20

40

60

80

100

A1 A2 A3 A4 A5 A6 A7 A8

4 MB 8 MB 16 MB 32 MB

H
it

 R
a
te

 (
%

)

Fig. 5.7: Hit rates under various cache capacities.

if the reuse distances are large, data gets kicked out of caches by the other flows in the
system or by other frames in the same flow. Applications with large reuse distances like
Video-record exhibit such behavior.

In our second experiment, we quantify the performance benefits of having such
large shared caches between IPs, and give the average cycles consumed by an IP to pro-
cess a full-frame (audio/video/camera frame). As can be seen from Figure 5.8, increasing
the cache sizes does not always help and there is no optimal size. For IPs like SND and
AD, the frame sizes are small and hence a smaller cache suffices. From there on, increas-
ing cache size increases lookup latencies, and affects the access times. In other cases,
like DC, as the frame sizes are large, we observe fewer cycles per frame as we increase
the cache size. For other accelerators with latency tolerance, once their data fits in the
cache, they encounter no performance impact.

Further, scaling cache sizes above 4MB is not reasonable due to their area and
power overheads. Figure 5.9 plots the overheads for different cache sizes. Typically,
handhelds operate in the range of 2W – 10W, which includes everything on the device
(SoC+display+network). Even the 2W consumed by the 4MB cache will impact battery
life severely.
Summary: To summarize, the high number of memory stalls is the main reason for
frame drops, and large IP-to-IP reuse distances is the main cause for large memory
stalls. Even large caches are not sufficient to capture the data reuse and hence, accel-
erators and devices still have considerable memory stalls. All of these observations led
us to re-architect how data gets exchanged between different IPs, paving way for better
performance.

5.4 Sub-Framing

Our primary goal is to reduce the IP-to-IP data reuse distances, and thereby
reduce data stalls, which we saw were major impediment to performance in Section 5.1.
To achieve this, we propose a novel approach of sub-framing the data. One of the
commonly used compiler techniques to reduce the data reuse distance in loop nests that
manipulate array data is to employ loop tiling Song and Li (1999); Lim and Lam (1997).

45

0

20

40

60

80

100

AE AD VE VD IMG DC SND MIC CAM

4 MB 8 MB 16 MB 32 MB

%
 C

y
c

le
s

 P
e

r
F

ra
m

e

Fig. 5.8: Cycles Per Frame under various cache capacities.

0

2

4

6

8

4 MB 8 MB 16 MB 32 MB

P
o

w
e

r
(W

)

Dynamic Leakage

0

50

100

150

200

250

300

4 MB 8 MB 16 MB 32 MB

A
re

a
 (

m
m

2
)

Fig. 5.9: Area and power-overhead with large shared caches.

46

It is the process of partitioning a loop’s iteration space into smaller blocks (tiles) in a
manner that the data used by the loop remains in the cache enabling quicker reuse.
Inspired by tiling, we propose to break the data frames into smaller sub-frames, that
reduces IP-to-IP data reuse distances.

In current systems, IPs receive a request to process a data frame (it could be a
video frame, audio frame, display frame or image frame). Once it completes its process-
ing, the next IP in the pipeline is triggered, which in-turn triggers the following IP once
it completes its processing and so on. In our solution, we propose to sub-divide these
data frames into smaller sub-frames, so that once IP1 finishes it’s first subframe, IP2 is
invoked to process it. In the following sections, we show that this design reduces the
hardware requirements to store and move the data considerably thereby bringing both
performance and power gains. The granularity of the subframe can have a profound
impact on various metrics.

1

10

100

1000

10000

100000

1000000

10000000

100000000

F
ra

m
e

1
0
2

4

5
1
2

1
2
8

6
4

3
2 8 1

A
c
c
e
s
s
 I

n
te

rv
a
l

Sub-Frame Size

CAM-IMG IMG-DC

1

10

100

1000

10000

100000

1000000

10000000

100000000

F
ra

m
e

1
0
2
4

5
1
2

1
2
8

6
4

3
2 8 1

A
c

c
e
s

s
 I

n
te

rv
a

l

Sub-Frame Size

MMC-VD VD-DC

(a) (b)

Fig. 5.10: IP-to-IP reuse distance variation with different sub-frame sizes. Note that the
y-axis is in the log scale.

To quantify the effects of subdividing a frame, we varied the sub-frame sizes from
1 cache line to the current data frame size, and analyzed the reuse distances. Figure 5.10
plots the reduction in the IP-to-IP reuse distances (on y-axis, plotted on log-scale), as we
reduced the size of a sub-frame. We can see from this plot an inverse exponential decrease
in reuse distances. In fact, for very small sub-frame sizes, we see reuse distances in less
than 100 cycles. To capitalize on such small reuse distances, we explore two techniques
– flow-buffering and opportunistic IP-to-IP request short-circuiting.

5.4.1 Flow-Buffering

In Section 5.3.2, we showed that even large caches were not very effective in
avoiding misses. This is primarily due to very large reuse distances that are present
between the data-frame write by a producer and the data-frame read by a consumer.
With sub-frames, the reuse distances reduce dramatically. Motivated by this, we now
re-explore the option of caching data. Interestingly, in this scenario, caches of much
smaller size can be far more effective (low misses). The reuse distances resulting from
sub-framing are so small that even having a structure with few cache-lines is sufficient to

47

capture the temporal locality offered by IP pipelining in SoCs. We call these structures
as flow-buffers. Unlike a shared cache, the flow-buffers are private between any two
IPs. This design avoids the conflict misses seen in a shared cache (fully associative
has high power implications). These flow-buffers are write-through. As the sub-frame
gets written, the sub-frame is written to memory. The reason for this design choice is
discussed next.

In a typical use-case involving data flow from IP-A→IP-B→IP-C, IP-A gets its
data from the main-memory and starts computing it. During this process, as it completes
a sub-frame, it writes back this chunk of data into the flow-buffer between IP-A and IP-B.
IP-B starts processing this sub-frame from the flow-buffer (in parallel with IP-A working
on another sub-frame) and writes it back to the flow-buffer between itself and IP-C. Once
IP-C is done, the data is written into the memory or the display. Originally, every read
and write in the above scenario would have been scheduled to reach the main memory.
Now, with the flow-buffers in place, all the requests can be serviced from these small
low-latency cost and area efficient buffers.

Note that, in these use-cases, cores typically run device driver code and handle
interrupts. They have minimal data frames processing. Consequently, we do not incor-
porate flow-buffers between core and any other accelerator. Also, when a use-case is in
its steady-state (for example, a minute into running a video), the IPs are in the active
state and quickly consume data. However, if an IP is finishing up on an activity or busy
with another activity or waking up from sleep state, the sub-frames can be overwritten
in the flow-buffer. In that case, based on sub-frame addresses, the consumer IP can
find its data in the main memory since the flow-buffer is a write-through buffer. In our
experiments, discussed later in Section 5.6, we found that a flow-buffer size of 32 KB
provides a good trade-off between avoiding a large flow-buffer and sub-frames getting
overwritten.

5.4.2 IP-IP Short-circuiting

The flow-buffer solution requires an extra piece of hardware to work. To avoid
the cost of adding the flow-buffers, an alternate technique would be to enable consumers
directly use the data that their producers provide. Towards that, we analyzed the average
round-trip delays of all accesses issued by the cores or IPs (shown in Figure 5.11) and
found requests spend maximum time queuing in the memory subsystem. MC Trans

Queue shows the time taken from the request leaving the IP till it gets to the head of
the transaction queue. The next part MC Bank Queue, is the time spent in bank queues.
This is primarily determined by whether the data access was a row buffer hit, or miss.
And, finally DRAM shows the time for DRAM accessing along with the response back to
the IPs.

As can be seen, most of the time is spent in the memory transaction queues (˜100
cycles). This means that data that could otherwise be reused lies idle in the memory
queues and we use this observation towards building an opportunistic IP-to-IP short-
circuiting technique, similar in concept to “store-load forwarding” in CPU coresSha

48

0%

20%

40%

60%

80%

100%

Audio
Record

AR Game Video
Record

Video
Play

Average
(10 apps)

D
e

la
y
 B

re
a

k
d

o
w

n

MC Trans Q MC Bank Q DRAM
150 124 137 238 166

Snd.

Rec

Fig. 5.11: Delay breakdown of a memory request issued by IPs or cores. The numbers
above the bar give the absolute cycles.

et al. (2005); Loh et al. (2002)1 though our technique is in between different IPs. There
are correctness and implementation differences, which we highlighted in the following
paragraphs/sections.
IPs usually load the data frames produced by other IPs. Similar to store-load forwarding,
if the consumer IP’s load requests can be satisfied from the memory transaction queue or
bank queues, the memory stall time can be considerably reduced. As the sub-frame size
gets smaller, the probability of a load hitting a store gets higher. Unlike the flow-buffers
discussed in Section 5.4.1, store data does not remain in the queues till they are over-
written. This technique is opportunistic and as the memory bank clears up its entries,
the request moves from the transaction queue into the bank queues and eventually into
main memory. Thus, the loads need to follow the stores quickly, else it has to go to
memory. This distance between the consumer IP load request and producer IP store
request depends on how full the transaction and bank queues are. In the extreme case,
if both the queues (transaction-queue and bank-queue) are full, the number of requests
that a load can come after a store will be the sum of the number of entries in the queues.

The overhead of implementing the IP-IP short-circuiting is not significant since
we are using pre-existing queues present in the system agent. The transaction and bank
queues already implement an associative search to re-order requests based on their QoS
requirements and row-buffer hits, respectively Rixner et al. (2000). Address-searches for
satisfying core loads already exist and these can be reused for other IPs. As we will show
later, this technique works only when the sub-frame reuse distance is small.

1Core requests spend relatively insignificant amount of time in transaction queues as they
are not bursty in nature. Due to their strict QoS deadlines, they are prioritized over other IP
requests. They spend more time in bank queues and in DRAM.

49

5.4.3 Effects of Sub-framing Data with Flow-Buffering and IP-IP Short-
circuiting

The benefits of sub-framing are quantified in Figure 5.12 in terms of hit rates
when using flow-buffering and IP-IP short-circuiting. We can see that the buffer hit
rates increase as we increase the size of flow-buffers, and saturate when the size of
buffers are in the ranges of 16KB to 32KB. The other advantage of having sub-frames is
the reduced bandwidth consumption due to the reduced number of memory accesses. As
discussed before, accelerators primarily face bandwidth issues with the current memory
subsystem. Sub-framing alleviates such bottleneck by avoiding fetching every piece of
data from memory. Redundant writes and reads to same addresses are avoided. Latency
benefits of our techniques, as well as their impact on user experience will be given later
in Section 5.6.

0

20

40

60

80

100

Angry
Birds

Snd.Rec MP3 Photo CamPic Skype Video
Record

Youtube

H
it

 R
a

te
 (

%
)

32 KB Flow-Buffer 16 KB Flow-Buffer 8 KB Flow-Buffer

4 KB Flow-Buffer IP-IP Short-circuiting

Fig. 5.12: Hit rates with flow-buffering and IP-IP short-circuiting.

5.5 Implementation Details

In implementing our sub-frame idea, we account for the probable presence of
dependencies and correctness issues resulting from splitting frames. Below, we discuss the
correctness issue and the associated intricacies that need to be addressed to implement
sub-frames. We then discuss the software, hardware and system-level support needed
for such implementations.

5.5.1 Correctness

We broadly categorize data frames into the following types – (i) video, (ii) audio,
(iii) graphics display, and (iv) the network packets. Of these, the first three types
of frames are the ones that usually demand sustained high bandwidth with the frame
sizes varying from a megabyte to tens of MBs. In this work, we address only the first
three types of frames, and leave out network packets as the latency of network packet
transmission is considerably higher compared to the time spent in the SoC.

50

Slice
4x4

Macro
Blocks

Frame-1 Frame-2 Frame-3 Frame-4 Frame-5

Fig. 5.13: Pictorial representation showing the structure of five consecutive video frames.

Video and Audio Frames Encoding and decoding, abbreviated as codec is compres-
sion and decompression of data that can be performed at either hardware or software
layer. Current generation of smartphones such as Samsung S5 Samsung (2014) and
Apple iPhone Apple have multiple types of codes embedded in their phone.

Video Codecs: First, let us consider the flows containing video frames, and
analyze the correctness of sub-dividing such large frames into smaller ones. Among the
video codecs, the most commonly used are H.264 (MPEG-4) or H.265 (MPEG-H, HEVC)
codecs. Let us take a small set of video frames and analyze the decoding process. The
encoding process is almost equivalent to the inversion of each stage of decoding. As a
result, similar principles apply there as well. Figure 5.13 shows a video clip in its entirety,
with each frame component named. A high-quality HD video is made up of multiple
frames of data. Assuming a default of 60 FPS, the amount of data needed to show the clip
for a minute would be 1920x1080(screen resolution) x 3(bytes/pixel) x 60 (frame rate)
x 60 (seconds) = 21.35 GB. Even if each frame is compressed individually and stored
on today’s hand-held devices, the amount of storage available would not permit it. To
overcome this limitation, codecs take advantage of the temporal redundancy present in
video frames, as the next frame is usually not very different from the previous frame.

Each frame can be dissected into multiple slices. Slices are further split into
macroblocks, which are usually a block of 16x16 pixels. These macroblocks can be
further divided into finer granularities such as sub-macroblocks or pixel blocks. But,
we do not need such fine granularities for our purpose. Slices can be classified into 3
major types: I-Slice (independent or intra slices), P-Slice (predictive), and B-Slice (bi-
directional) Schwarz et al. (2007) as depicted in Figure 5.13. 2 I-slices have all data
contained in them, and do not need motion prediction. P-slices use motion prediction
from one slice which belongs to the past or future. B-slices use two slices from past or
the future. Each slice is an independent entity and can be decoded without the need for
any other slice in the current frame. P- and B-slices need slices from a previous or next
frame only.

2Earlier codecs had frame level classification instead of slice level. In such situations, I-frame
is constructed as a frame with only I-slices.

51

Subframe data

load

Flow Id

1

2

IP-1 IP-2

Core Initiating a Flow

FLOW_SETUP(IP1, IP2,..,SUB-FRAME_SIZE);

IP-to-IP Flow detail Table inside SA

IP-1

IP-2

Flow Buffer
(write-through)

Prod.1 Cons1

Subframe data
store

Response Signal

Activate Signal

Subframe data

load

IP-1

IP-2

IP-IP Short-circuiting

Memory Queues

Subframe data
store

(b)

D
R

A
M

Flow Id

1

2

Prod.1 Cons1Response Signal

Flow-buffer(a)

Fig. 5.14: High level view of the SA that handles sub-frames.

52

In our sub-frame implementation, we choose slice-level granularity as the finest
level of sub-division to ensure correctness without having any extra overhead of synchro-
nization. As slices are independently decoded in a frame, the need for another slice in the
frame does not arise, and we can be sure that correctness is maintained. Sub-dividing
any further would bring in dependencies, stale data and overwrites.

Audio Codecs: Audio data is coded in a much simpler fashion than video data.
An audio file has a large number of frames, with each audio frame having the same
number of bits. Each frame is independent of another and it consist of a header block and
data block. Header block (in MP3 format) stores 32-bits of metadata about the coming
data block frame. Thus, each audio frame can be decoded independently of another as
all required data for decoding is present in the current frames header. Therefore, using
a full audio frame as a sub-frame would not cause any correctness issue.

Graphics Rendering: Graphics IPs already employ tiled rendering when oper-
ating on frames and for the display rendering. These tiles are similar to the sub-frames
proposed in this work. A typical tiled rendering algorithm first transforms the geome-
tries to be drawn (multiple objects on the screen) into screen space and assigns them into
tiles. Each screen-space tile holds a list of geometries that needs to be drawn in that tile.
This list is sorted front to back, and the geometry behind another is clipped away and
only the ones in the front are drawn to the screen. GPUs renders each tile separately to
a local on-chip buffer, which is finally written back to main-memory inside a framebuffer
region. From this region, the display controller reads the frame to be displayed to be
shown on screen. All tiles are independent of each other, and thus form a sub-frame in
our system.

5.5.2 OS and Hardware Support

In current systems, IPs are invoked sequentially one-after-another per frame. Let
us revisit the example considered previously – a flow with 3 IPs. The OS, through device
drivers, calls the first IP in the flow. It waits for the processing to complete and the
data to be written back to memory and then calls the second IP. After the second IP
finishes its processing, the third IP is called. With sub-frames, when the data is ready in
the first IP, the second IP is notified of the incoming request so that it can be ready (by
entering to the active state from a low power state) when the data arrives. We envision
that the OS can capture this information through a library (or multiple libraries) since
the IP-flows for each application are pretty standard. In Android Google for instance,
there is a layer of libraries (Hardware Abstraction Layer – HAL) that interface with the
underlying device drivers and these HALs are specific to IPs. As devices evolve, HAL
and the corresponding drivers are expected to enable access to devices to run different
applications. By adding an SA HAL and its driver counterpart to communicate the flow
information, we can accomplish our requirements. From the application’s perspective,
this is transparent since the access to the SA HAL happens from within other HALs as
they are requested by the applications. Figure 5.14 shows a high level view of the sub-
frame implementation in SA along with our short-circuiting techniques. From a hardware
perspective, to enable sub-framing of data, the SA needs to have a small matrix of all
IPs – rows corresponding to producers and columns to consumers. Each entry in the

53

row is 1 bit per IP. Currently, we are looking at about 8 IPs, and this is about 8 bytes
in total. In future, even as we grow to 100 IPs, the size of the matrix is small. As each
IP completes its sub-frame, the SA looks at its matrix and informs the consumer IP. In
situations where we have multiple flows (currently Android allows two applications to
run simultaneously Report (2012)) with an IP in common, the entries in the SA for the
common IP can be swapped in or out along with the context of the application running.
This will maintain the correct consumer IP status in the matrix for any IP.

5.6 Evaluation

In this section, we present the performance and power benefits obtained by using
sub-frames compared to the conventional baseline system which uses full frames in IP
flows. We used a modified version of the GemDroid infrastructure Chidambaram Nachi-
appan et al. (2014) for the evaluation. For each application evaluated, we captured and
ran the traces either to completion or for a fixed time. The trace lengths varied from
about 2 secs to 30 secs. Usually this length is limited by frame sizes we needed to cap-
ture. Workloads evaluated are listed in Table 5.3 and the configuration of the system
used is described in Section 5.2 and Table 5.1. For this evaluation we used a sub-frame
size of 32 cache lines (2KB). The transaction queue and bank queues in SA can hold 64
entries (totaling 8KB). For the flow buffer solution, we used a 32 KB buffer (based on
the hit rates observed in Figure 5.12).

0

20

40

60

80

100

120

G
P

U
-D

C

A
D

_
S

N
D

M
IC

-A
E

-M
M

C

M
M

C
-A

D
-S

N
D

M
M

C
-I

M
G

-D
C

C
A

M
-I

M
G

-D
C

C
A

M
-I

M
G

-M
M

C

C
A

M
-V

E

V
D

-D
C

A
D

-S
N

D

M
IC

-A
E

C
A

M
-V

E
-M

M
C

M
IC

-A
E

-M
M

C

V
D

-D
C

A
D

-S
N

D

Angry Birds Snd.Rec MP3 Photo CamPic Skype Video Record Youtube AVG

F
ra

c
ti

o
n

 o
f

fr
a
m

e
s
 c

o
m

p
le

te
d

Base SubFrame-Cache SubFrame-Forward

Fig. 5.15: Percentage of Frames Completed (Higher the better).

User Experience: As a measure of user experience, we track the number of
frames that could complete in each flow. The more frames that get completed, lesser the
frame drops and better is the user experience. Figure 5.15 shows the number of frames
completed in different schemes. The y-axis shows the percentage of frames completed
out of the total frames in an application trace. The first bar shows the frames completed
in the baseline system with full frame flows. The second and third bars show the per-
centage of frames completed with our two techniques. In baseline system, only around
76% of frames were displayed. By using our two techniques, the percentage of frames
completed improved to 92% and 88%, respectively. Improvements in our schemes are
mainly attributed to the reduced memory bandwidth demand and improved memory

54

latency as the consumer IP’s requests are served through the flow-buffers or by short-
circuiting the memory requests. The hit-rates of consumer’s requests were previously
shown in Figure 5.12. In some cases, flow-buffers perform better than short-circuiting
due to the space advantage in the flow buffering technique.

Performance Gains: To understand the effectiveness of our schemes, we plot
the average number of cycles taken to process a frame in each flow in Figure 5.16. This is
the time between the invocation of first IP and completion of last IP in each flow. Note
that, reducing the cycles per frame can lead to fewer frame drops. When we use our
techniques with sub-framing, due to pipelining of intra-frame data across multiple IPs
instead of sequentially processing one frame after another, we are able to substantially
reduce the cycles per frame by 45% on average. We also observed that in A6-Skype
application (which has multiple flows), through the use of sub-framing, the memory
subsystem gets overwhelmed because, we allow more IPs to work at the same time.
This is not the case in the base system. If IPs do not benefit from flow-buffers or IP
request short-circuiting, the memory pressure is more than the baseline leading to some
performance loss (17%).

0

25

50

75

100

125

G
P

U
-D

C

A
D

-S
N

D

M
IC

-A
E

-M
M

C

M
M

C
-A

D
-S

N
D

M
M

C
-I

M
G

-D
C

C
A

M
-I

M
G

-D
C

C
A

M
-I

M
G

-M
M

C

C
A

M
-V

E

V
D

-D
C

A
D

-S
N

D

M
IC

-A
E

C
A

M
-V

E
-M

M
C

M
IC

-A
E

-M
M

C

V
D

-D
C

A
D

-S
N

D
A1 A2 A3 A4 A5 A6 A7 A8 AVG

%
 o

f
C

y
c

le
s

 P
e

r
F

ra
m

e

SubFrame-cache SubFrame-forward

Fig. 5.16: Reduction in Cycles Per Frame in a flow normalized to Baseline (Lower the
better).

Energy Gains: Energy efficiency is a very important metric in handhelds since
they operate out of a battery (most of the time). Exact IP design and power states
incorporated are not available publicly. As a proxy, we use the number of cycles an IP
was active to correspond to the energy consumed when running the specific applications.
In Figure 5.17, we plot the total number of active cycles consumed by an accelerator
compared to the base case. We plot this graph only for accelerators as they are compute-
intensive and hence, consume most of the power in a flow. On average, we observe 46%
and 35% reduction in active cycles (going up to 80% in GPU) with our techniques,
which translates to substantial system-level energy gains. With sub-framing, we also
reduce the memory energy consumption by 33% due to (1) reduced DRAM accesses,
and (2) memory spending more time in low-power mode. From the above results it can
be concluded that sub-framing yields significant performance and power gains.

55

0

20

40

60

80

100

120

G
P

U

A
D

A
E

A
D

IM
G

IM
G

V
E

V
D

A
D

A
E

V
E

A
E

V
D

A
D

A1 A2 A3 A4 A5 A6 A7 A8

%
 o

f
A

c
ti

v
e
 C

y
c
le

s SubFrame-Cache SubFrame-Forward

Fig. 5.17: Reduction in Number of Active Cycles of Accelerators (Lower the better).

56

Chapter 6

Cooperative Parallelization

6.1 Parallelization Approach

A high level graphical illustration of our approach is given in Figure 6.1. The
solid arrows represent the control flow of the program and the dashed arrows represent
the communication between threads. The left hand side of the figure illustrates the
sequential execution of a program with a sequential loop to be parallelized. On the
right hand side, parallel execution of the same program using our approach is given.
With the help of runtime information from the helper thread, the main thread is able to
parallelize the loop. In parallel execution, the main thread continues its work while the
helper thread identifies the subproblems in the program.

thread

main
thread

threads

loop
loop

application

Sequential

Execution

helper

Parallel Execution

Fig. 6.1: A high level view of the proposed approach.

Figure 6.2 shows the high level code for the proposed execution model. The main
thread signals the helper thread when the data structure becomes ready. The helper
thread, waiting for the signal, senses the signal, and starts its job of finding independent
subproblems in the data structure. After the helper thread’s job is complete, it signals
the main thread to notify the completion of finding of the subproblems. At this point, the
main thread has access to multiple subproblems, and distributes these tasks to different
application (worker) threads. The application threads that are waiting for a signal from
the main thread start working on their part of the data structure. Once their jobs are

57

complete, they signal the main thread individually. The main thread, waiting for these
signals, proceeds to merge the results from the individual threads.

 work on the subproblems assigned to this thread

 find subproblems in the data structure

helper thread:

application thread:

main thread:

 wait for signal from

 signal

 wait for signal from

 signal

 wait for signal from

 distribute subproblems to

 wait for signals from

 merge results from all the

main thread

main thread

helper thread

main thread

main thread

 signal when data structure is ready

helper thread

application threads

application threads

application threads

Fig. 6.2: High level code of a parallelized program using the proposed strategy.

6.1.1 Trees and Recursion

In this section, we describe how our approach handles tree based applications
with recursion. Typically, in a tree based application, a tree data structure is constructed
using the input and a function goes over the nodes of the tree and performs a computation
at each node. This function frequently is a recursive function which is initially called
on the root of the tree. The function performs some computation on the root node
and in turn calls itself on each of its child nodes. Once the processing of the children
is done, the function merges the results obtained from the function calls on the child
nodes. Note that, the function calls on child nodes are calls to the same function, i.e.,
they are recursive function calls. Figure 6.3 graphically illustrates the process where the
function called on the root node recursively calls itself to process the the left subtree and
then the right subtree.

The key observation in the described scenario is that, the function calls on different
subtrees can be independent. If this is the case, then the function need not wait for the
call on the first child to complete in order to proceed with the next child. In this scenario,
the only dependence is in merging the results obtained from the recursive calls which
will be performed after all calls are completed. Therefore, the potential parallelism can
be exploited by executing the function calls on child nodes in parallel. However, in
order to launch these functions as threads executing in parallel, the contexts in which
these functions will be called are needed. A context is defined as the set of parameters

58

subtree
left

subtree
right

rightleft

root

Fig. 6.3: Subproblems in a tree-based application.

that fully describes the environment that the thread will be launched in. In the tree
example, if two threads will be launched for the two subtrees shown in Figure 6.3, then
the pointers to the roots of the two subtrees are required to start the threads. Note
that, in this binary tree, at a specific instance of the function, the target node has direct
access only to its immediate children. As a result, the function can start a number of
parallel tasks up to the number of children of its node. In order to be able to start more
threads, deeper information over the tree is necessary.

We propose to move the task of finding the contexts for recursive function calls
to the helper thread. The helper thread goes over the tree and finds the pointers to
internal nodes along with the other parameters needed for the invocation of a function
call. The helper thread tries to find a number of independent tasks to execute in parallel
and sends this information to the main thread. It can find more number of tasks than
the number of children to a node. The main thread distributes these independent tasks
to application threads in a manner which balances the load over the available threads.
Then, the main thread waits for the application threads to complete and merges their
results.

As an example, consider the application perimeter, from the Olden benchmark
suite Rogers et al. (1995), which works on a quad tree where each node has four children1.
The perimeter function takes two parameters: a pointer to the root node of a tree and
the size of the tree, as shown in Figure 6.4. The function first checks whether the target
node is a leaf node. If this is the case, it performs a computation on that node; otherwise,
it calls itself recursively on the child nodes (represented as nw, ne, sw, se fields) of the
target node and half the size. The function adds the return values of all of recursive calls
to compute the return value of the function.

Note that, in this application, the calls to the perimeter function on sibling nodes
are independent and can be run in parallel. To parallelize such an application the main
thread needs to know the contexts in which the functions on child nodes are called. In

1The details of the applications together with our evaluation methodology can be found in
Section 6.3.

59

{

 {

 {

 }

}

 int retval = 0;

 }

 ... /* do something on the node*/

 return retval;

 if (tree−>color==grey) /*node has children */

 else if (tree−>color==black) /*node is a leaf node */

perimeterint (QuadTree tree, int size)

perimeter

perimeter

perimeter

perimeter

 retval += (tree−>nw, size/2);

 retval += (tree−>ne, size/2);

 retval += (tree−>sw, size/2);

 retval += (tree−>se, size/2);

Fig. 6.4: A function from perimeter Rogers et al. (1995), one of our tree-based applica-
tions.

this case, a function context comprises a node pointer and an integer. The main thread
invokes a helper thread to identify the contexts. The helper thread starts at the root
of the tree and finds the pointers to the four children along with the correct size values
for each child node. Then, it returns these contexts to the main thread which initiates
the application threads using these contexts, which have identical code as the original
sequential program. Note that, if the application is to be parallelized with eight threads,
then the helper thread goes one level deeper in the tree and identifies 16 second level
pointers and size values. Then, the main thread must distribute the 16 tasks identified
by the helper thread across the 8 application threads in a balanced fashion. Once all
application threads complete execution, the main thread aggregates the results from
individual jobs.

6.1.2 Linked Lists and Loops

In this section, we describe how our approach can be used to parallelize programs
that use linked lists. In a typical linked list based application, once a linked list is
constructed from the input, functions that operate on the linked list traverse the list
sequentially using a while loop and perform computations on each node. If the com-
putations performed on each node are independent, then the iterations of the loop are
independent. In this case, the problem can be divided into subproblems, which are de-
fined by the sublists of the original list. If the function has access the sublists of the list
before starting the loop, then it can start working on different sublists in parallel. After
the computations on the sublists are completed, the function can merge the results from
the individual sublists to generate the final result.

60

Identification of the sublists is done by the helper thread which is invoked by
the function before starting the loop. Once the helper thread completes its task, the
function gains access to multiple sublists, and as a result, instead of executing the loop
sequentially, it distributes the work on different sublists to different application threads.
The application threads work on the sublists assigned to them and compute the local
result from those sublists. Once all the application threads complete, the main thread
then merges the results obtained from the individual sublists.

To further concretize the idea, consider the em3d application which operates on
a singly linked list. The function compute nodes, shown in Figure 6.5, contains an while
loop which goes over the entire list and updates each node. Note that, the updates at a
node are independent of the updates at all other nodes. To parallelize such a function,
one needs to know the sublists in the linked list before starting the loop. Each sublist is
defined by pointers to the start and end nodes in different parts of the linked list. The
task of finding these pointers is carried out by the helper thread, which traverses the
list and saves the pointers at particular intervals. Note that, the helper thread does not
perform any computation but just traverses the list, which is why it can progress much
faster than the main thread. Once the helper thread completes, the main thread gains
access to different sublists of the linked list and distributes these sublists to different
application threads. The application threads perform similar function as the original
loop with the exception that they work on the sublists defined by the start and end
nodes given by the main thread.

{

}

 int i;

 while (nodelist != NULL)

 {

 for (i=0; i < nodelist−>from_count; i++)

 {

 node_t *other_node = nodelist−>from_nodes[i];

 double coeff = nodelist−>coeffs[i];

 double value = other_node−>value;

 nodelist−>value −= coeff * value;

 }

 nodelist = nodelist−>next

 }

compute_nodesvoid (node_t * nodelist)

Fig. 6.5: A function from em3d Rogers et al. (1995), one of our linked list-based appli-
cations.

61

6.2 Programmer Directives and Automation

Our automation framework consists of two components: (i) an effective way of
expressing parallelism and (ii) a method to generate parallel code from the sequential
code automatically. We implement the first component by designing simple compiler
directives that are used to annotate the target (sequential) program code. The second
component is realized by a source-to-source compiler that converts user annotated pro-
gram code to parallel code. In this section, we give detailed description of these two
components.

6.2.1 Programmer Directives

The first problem in parallelizing applications is the identification of independent
tasks in a program. In regular programs that mostly use arrays and for loops to ac-
cess elements of arrays, this can be done by data dependence analysis Maydan et al.
(1991, 1993); Goff et al. (1991); Pugh (1991); Wolfe (1995). However, in an irregu-
lar program involving pointer-accessed dynamic data structures, recursion, and while
loops, it is a very difficult task to identify data dependences automatically. Instead of
performing data dependence analysis, we take an alternative approach and obtain the
parallelism information from the programmer. In order to capture this information from
the programmer, we need well defined compiler directives that express parallelism in the
program. The design goals of these directives are that, they should be compact with
minimal essential information and simple enough to be easily used. Another use of the
directives is to dictate the features of the parallel program such as the number of threads.
We propose two types of directives, one for tree based applications and one for linked
list based applications, which are shown in Figure 6.6.

#parallel tree function (threads) (degree) (structure) {subproblems} val

#parallel llist function (threads) (structure) subproblem number

Fig. 6.6: Programming directives to express parallelism. Note that, val and number are
optional fields.

A tree based application typically consists of a recursive function in which, calls to
the same function in different contexts (defined by the parameters) can be parallelized.
The directive conveys exactly this information, where the first two fields indicate that
the directive is a parallelization directive and the program operates over a tree structure.
This information is used to select the type of helper thread to create for the application.
The function field indicates the name of the function to be parallelized and the threads
field indicates the number of worker threads that will be created in the parallel version
of the code. Note that, the number of threads information is critical in the sense that
the overall speedup obtained from our framework heavily depends on this number. This
field gives the user the capability to decide on the appropriate number of threads in the

62

parallel program considering the number of processing elements available. The degree
field indicates the number of children that each node in the tree has, which is used to
customize the helper thread according to the specific tree structure used in the program.
The structure and subproblems fields indicate the name of the structure and the name of
the child nodes in the tree structure, which are used to identify the subtrees that will be
searched to detect parallel tasks. Finally, the val field indicates the field of the tree node
on which the function performs its computation. This field is optional and is required
only when the function is accumulating results from the individual subtrees.

It should be noted that some of the fields, such as degree and subproblems, can
be obtained from static analysis of the node structure of the tree. However, in practice,
a node structure can have many fields and it is a difficult task for an automated system
to discover the meaning of each field. As a result, instead of employing complicated
analyses for this purpose, we ask the programmer to identify these fields. For example,
consider the following directive that targets the perimeter application:

#parallel tree perimeter (2) (4) (QuadTree) {nw, ne, sw, se}

This directive means that the target program is a tree based application, where the
perimeter function will be parallelized. Furthermore, the programmer indicated that
two threads will be used to parallelize the application. The name of the tree structure
is QuadTree and each node has four children with the names nw, ne, sw and se.

Figure 6.6 also shows our second type of directive. This directive is used to express
parallelism in linked list-based applications, which typically consist of a loop traversing
the elements of the list. The llist field indicates that the program to be parallelized is
a linked list-based application. Similar to the previously described tree-based directive,
the parameter structure defines the name of the structure corresponding to a node of the
linked list. The subproblem, on the other hand, identifies the field of a linked list node
that points to the next node in the list. The estimated number of nodes in the linked list
is given by the number field, which is an optional field that in turn determines the size of
the sublists the linked list will be divided into. Note that, if the provided number is too
small, then there will be a small number of nodes per sublist and high number of sublists.
This in turn increases the relative cost of distributing the computation to the worker
threads and later merging their results. Therefore, providing a correct estimate generates
efficient parallel code with less overhead. Along with this directive, the programmer also
provides another directive (#parallel) just before the loop which is to be parallelized.
This additional directive is used to identify the target loops in the function. Consider
the following directive that targets the em3d application:

#parallel llist compute nodes (2) (node t *) next 10000

This directive indicates that the program is a linked list based application and the func-
tion compute nodes contains a loop that can be executed in parallel using two threads.
The name of the list node structure is node t and the next item in the list can be ac-
cessed using the next field of the node. The programmer also provided an estimate of
ten thousand elements in the list.

63

6.2.2 Automation

Once the code is annotated with the programmer directives (hints) described in
the previous section, these directives need to be parsed and leveraged to generate the
parallel program. In order to achieve this, we implemented a source-to-source translator
that takes the original program with parallelism directives as input, attaches a helper
thread to it, and generates a parallel version of the program that receives vital paral-
lelization information from the helper thread. Source-to-source translation is actually
performed while parsing the high level source code of the original program. For this
purpose, we modified the C language grammar to include the programmer directives
and provided this grammar to a parser generator. The translator generated from the
parser generator parses the source code of the program and creates the parallel program
simultaneously. Figure 6.7 shows the high level view of this process. When the parser
detects a parallelization directive, it creates the functions for helper thread, application
threads, and the modified parallel function. The automation of program parallelization
is made possible due to similarity in steps taken in creating the parallel programs.

C program

Parallel

with directives

C program Translator

Generator

ParserModified

C grammar

Fig. 6.7: High level view of automation.

In a tree based application, the helper thread needs to find the contexts of multiple
function calls, which include pointers to the subtrees. The helper thread traverses the
tree to find pointers to a number of subtrees based on the number of parallel threads.
The number of discovered subtrees should be equal to or greater than the number of
threads so that each thread gets at least one subtree to work on. In order to discover
more contexts, the helper thread scans more levels of the tree. Note that, the code for the
helper thread is identical for all tree based applications except for the slight differences
caused by the differences in the degrees of the trees. The application thread code is
similar to the original function, which recursively calls itself over all child nodes. In some
cases, the application thread has to work on multiple contexts assigned to it by the main
thread. Note that, the application threads should call the original function to perform
the computations on the child nodes. The original function is modified to invoke the
helper thread, receive the context information from the helper thread, distribute these
contexts to different application threads, and merge their results. A parallel function in
a tree based application should perform these operations. The code in the parallelized
function is similar for all the tree based applications except for the merging part.

64

In a linked list based application, the helper thread is invoked to find sublists of
the linked list, identified by their pointers to start and end nodes. The helper thread
finds pointers to a number of sublists based on the number of threads to be used to
parallelize the application. The number of sublists should at least be equal the number
of threads. The code for the helper thread is created by finding a slice of the loop over
the loop control variable. This results in a loop which contains only the statements which
traverse the loop in the same way as the original loop. Along with these statements, we
add the code that saves the pointers at particular intervals which define the boundaries
of the sublists. The application thread has to do exactly what the original loop was doing
but on a sublist of the list. The application threads contain similar code as the original
loop with the exception of loop boundaries which are dependent on the sublist on which
the thread is working on. The original function is also modified; instead of executing
the loop, it invokes the helper thread, distributes the sublists to different application
threads, and merges the results from individual application threads. A parallel function
in a list based application should perform these operations. The code in the parallelized
function is similar for all the list based applications except for the merging part.

6.3 Experimental Evaluation

In this section, we present the experimental setup and evaluation of our automated
parallelization approach.

6.3.1 Platform

We target shared memory multicore systems for this work. The details of the
platform used for our experiments are provided in Table 6.1.

Hardware

Dual Socket Intel Xeon E7450 @ 2.40GHz
2 Hexa-cores, 12 cores in total

12MB L2 Cache per chip
4GB RAM

Operating System 64-bit Linux with 2.6.29.6 kernel

Compiler gcc 4.1.2

Table 6.1: Hardware and Software configuration of the experimental evaluation platform.

6.3.2 Benchmarks

We used the Olden benchmark suite Rogers et al. (1995) to evaluate our approach.
The suite consists of nine applications which are based on trees and linked lists, and
are written in C programming language. Out of the nine applications, three of them

65

have data dependences between their statements, which prevent parallel execution. We
parallelized the remaining six applications and otter Laboratory (2009) which is a linked
list-based application. The details of these applications are shown in Table 6.2. For each
application, the second column gives the brief description and the third column indicates
the type of the data structure used in the application. We profiled the applications using
gprof, and the input set given in column four. The functions we parallelized and their
contribution to the overall execution times of the applications are also given in columns
five and six, of the same table respectively. Note that, the higher the execution time
fraction, the better overall speedup over the whole application when that function is
parallelized.

Benchmark Description Data Structure Input Size Core Function Execution Time
bisort Bitonic Sorting Binary Tree 100,000

numbers
bisort 50%

treeAdd Adding Numbers in
Nodes

Binary Tree 22 levels treeAdd 57%

tsp Traveling Salesman Binary Tree 10,000 cities tsp 90%
perimeter Perimeters of Re-

gions in Images
Quad Tree 11 levels perimeter 65%

mst Minimum Spanning
Tree

Singly Linked List 4096 nodes BlueRule 91%

em3d Electron Microscope
Tomography

Singly Linked List 6,000
n nodes &
100 d nodes

compute nodes 83%

otter Theorem Proving
Software

Singly Linked List twoval.in find lightest cl 20%

Table 6.2: Benchmark applications and their important properties.

We identified the parallelism available in each application by manual inspection
and added the appropriate directives (described earlier in Section 6.2.1) to the original
programs. These modified programs are processed using the translator described in
the previous section, which understands the directives and automatically generates the
parallel C programs. During our experiments, we bound each thread of the parallelized
application to a different core in the underlying platform. We measured the running
times of each of the parallelized applications and compared them with the sequential
execution times.

6.3.3 Results

The results we obtained with the proposed approach are shown in Figures 6.8a
and 6.8b. The first graph shows the speedups obtained on tree based applications and
the second graph shows the speedups obtained on linked list based applications. In both
the figures, the x-axis represents different applications considered, and the y-axis gives
the speedups obtained on the particular function or a loop that is parallelized. Each

66

bar in the graph corresponds to a different number of application threads used in the
parallel program. In most of the applications, we obtained almost linear speedups. The
speedup in bisort is not significant because of the costly merge operations occurring after
the parallel computations. The speedup in otter is not significant due to the overheads
in our approach. These overheads are discussed in detail in the next section.

4

5

6

7

8

S
p
e
e
d
u
p

2-threads

4-threads

6-threads

8-threads

0

1

2

3

bisort treeAdd tsp perimeter

S
p
e
e
d
u
p

(a) Speedups with the tree-based applications

3

4

5

6

S
p
e
e
d
u
p

2-threads

4-threads

6-threads

8-threads

0

1

2

mst em3d otter

S
p
e
e
d
u
p

(b) Speedups with the linked list-based applica-
tions

Fig. 6.8: Speedups obtained with our approach

Although our technique can handle the generation of parallel code, an exception
in our implementation is that, in programs with complex merge operations, it cannot
produce accurate code to merge the results from different application threads. If the
program is just finding the sum or product of the results from individual threads, that
is automated in our translator. The difficulty in handling complex merge operations is
that, in a recursive environment, the merges in deeper levels of recursion should happen
before the merges in higher levels. Since we are unrolling the recursion in a way, we need
a mechanism to determine the order in which the results are to be merged. This feature
is not yet fully automated in our translator. Instead, in our current implementation, the
user of the tool has to examine the generated code specifically at the merging part and
do any required modifications manually. We believe that, this does not arise frequently
in general programs. Even in cases it arises, the programmer should be able to easily
add the code needed for the merging. In the seven benchmarks we tested our approach,
three of them (bisort, tsp, and otter) required slight modification in the merging part.

67

Chapter 7

Future Work

7.1 Cooperative Prefetching

Current cache prefetcher designs are not well suited for S-NUCA based CMPs. In
such a system, each L2 bank gets requests from multiple L1s. A traditional L2 prefetcher
monitors the L2 misses happening from that bank and maintains miss streams at the L2
bank. When each L2 bank is serving multiple L1s at the same time it is very difficult
to detect streams at L2 banks. We are working on a new stream prefetcher design for
S-NUCA based systems. We maintain the streams corresponding to an application at
the corresponding L1 bank instead of multiple L2 banks.

Core-side prefetcher has the following characteristics (i) High accuracy, (ii) Ag-
nostic to memory-state and, (iii) On-chip resource pollution. Whereas, Memory-side
prefetcher has the following characteristics (i) Relatively low accuracy, (ii) Opportunis-
tic, (iii) Memory-state aware and, (iv) No on-chip resource pollution. In our memory-side
prefetching work we showed that both the prefetchers can work together to yield bet-
ter benefits than either one of them individually. However, there are some smart ways
to combine the two where both of them work together instead of independently. For
example, memory-side prefetcher can bring the data to prefetch buffer at the memory
controller and core-side prefetcher prefetches only from the prefetch buffer without dis-
turbing the off-chip memory. We are currently working on multiple ways to integrate
these two prefetchers to achieve maximum benefits.

7.2 Mobile Memory Systems

Many of the memory issues discussed in this dissertation are in the context of
high performance computing. Similar issues can occur in other platforms like mobiles
or system on chip (SOCs). Typically, SOCs use independent accelerators for specific
tasks like graphics, video encoding/decoding etc. Accelerators coordinate with CPU
and communicate through memory to accomplish tasks. Power is a major concern in
mobile platform. As a result, low power memory designs (LP-DDR) are used in such
systems. The problem with LP-DDR is it runs at half the frequency compared to a
DDR memory and therefore has half the bandwidth. With modern mobile applications,
the bandwidth requirements of accelerators can overwhelm the available bandwidth from
memory. The parallelism vs. locality tradeoff in these scenarios will be very different
than the results presented in this dissertation which are got on high performance systems.
As a future work we want to explore this area more.

68

Chapter 8

Concluding Remarks

Memory wall challenge is an important challenge faced by current generation
CMPs. In this dissertation we looked at this problem from the parallelism vs locality
perspective. We started with a characterization study on parallelism and locality dimen-
sions at different levels of the memory hierarchy. From the findings of that study, we
proposed a dynamic memory migration technique to optimize both locality and paral-
lelism in the memory subsystem. We presented the major challenges faced by traditional
cache prefetchers in modern CMPs. We showed how memory prefetching can take advan-
tage of the memory locality and prefetch opportunistically, leading to better efficiency
than traditional cache prefetchers.

Current mobile computing platforms are performance bottlenecked by the memory
subsystem, especially for media and graphics applications. These applications have a lot
of temporal locality of data between producer and consumer cores/IPs. We proposed to
break the application frames into sub-frames in order to exploit the memory locality and
reduce the memory bandwidth requirements in such systems. All of these techniques
try to reduce the difference in speed between the processor and memory and abate the
memory wall problem.

69

Appendix

Publications

A.1 Significant Publications

[ICCAD 2011]
Praveen Yedlapalli, Emre Kultursay, Mahmut Kandemir, Cooperative Parallelization,
In 30th International Conference on Computer Aided Design (ICCAD)

[PACT 2013]
Praveen Yedlapalli, Jagadish Kotra, Emre Kultursay, Chita Das, Mahmut Kandemir,
Anand Sivasubramaniam, Meeting Midway: Improving DRAM Performance and Off-
Chip Latencies with Memory-Side Prefetching, In 22nd International Conference on Par-
allel Architectures and Compilation Techniques (PACT)

[MICRO 2014]
Praveen Yedlapalli, Nachiappan Chidambaram, Niranjan Soundararajan, Anand Siva-
subramaniam, Mahmut Kandemir, Chita Das, Short-Circuiting Memory Traffic in Hand-
held Platforms, In 47th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO)

[IISWC 2015 - Submitted]
Praveen Yedlapalli, Mahmut Kandemir, Chita Das, Anand Sivasubramaniam, Quan-
tifying and Exploiting Parallelism-Locality Tradeoff across Memory Hierarchy, In IEEE
International Symposium on Workload Characterization (IISWC)

A.2 Other Publications

[HPCA 2015]
Nachiappan Chidambaram, Praveen Yedlapalli, Niranjan Soundararajan, Anand Siva-
subramaniam, Mahmut Kandemir, Ravishankar Iyer, Chita Das Domain Knowledge
Based Energy Management in Handhelds, In 21st IEEE Symposium on High Perfor-
mance Computer Architecture (HPCA)
[IISWC 2014 - Short Paper]
Yang Ding, Praveen Yedlapalli, Mahmut Kandemir, QoS Aware Dynamic Time-Slice
Tuning, In IEEE International Symposium on Workload Characterization (IISWC)
[IISWC 2014 - Short Paper]
Umut Orhan, Umut Orhan, Praveen Yedlapalli, Mahmut Kandemir, Ozcan Ozturk
A Cache Topology-Aware Multi-Query Scheduler for Multicore Architectures, In IEEE
International Symposium on Workload Characterization (IISWC)

70

[PACT 2014]
Wei Ding, Mahmut Kandemir, Diana Guttman, Adwait Jog, Chita R. Das, Praveen
Yedlapalli Trading Cache Hit Rate for Memory Performance, In 23rd International
Conference on Parallel Architectures and Compilation Techniques (PACT)
[SIGMETRICS 2014]
Nachiappan Chidambaram, Praveen Yedlapalli, Niranjan Soundararajan, Mahmut
Kandemir, Anand Sivasubramaniam, Chita Das GemDroid: A Framework to Evaluate
Mobile Platforms, In International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS)
[CGO 2013]
Wei Ding, Yuanrui Zhang, Mahmut Kandemir, Jithendra Srinivas, Praveen Yedlapalli,
Locality-Aware Mapping and Scheduling for Multicores, In International Symposium on
Code Generation and Optimization (CGO)
[DATE 2010]
Yuanrui Zhang, Lanping Deng, Praveen Yedlapalli, Sai Muralidhara, Nikos Pitsianis,
Xiaobai Sun, Mahmut Kandemir, Chaitali Chakrabarti , A special-purpose compiler for
function evaluation code generation, In Design, Automation and Test in Europe (DATE)

71

Bibliography

A. Rogers, M. Carlisle, J. Reppy, and L. Hendren, “Supporting dynamic data structures
on distributed memory machines,” ACM Transactions on Programming Languages
and Systems, vol. 17, no. 2, Mar. 1995.

C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches,” SIGARCH Comput. Archit. News, 2002.

M. Cade and A. Qasem, “Balancing locality and parallelism on shared-cache multicore
systems,” in HPCC, 2009.

J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. Keckler, “A nuca substrate for
flexible cmp cache sharing,” Parallel and Distributed Systems, IEEE Transactions on,
2007.

O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead execution: an alternative to
very large instruction windows for out-of-order processors,” in HPCA, 2003.

M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez, “Balancing dram
locality and parallelism in shared memory cmp systems.” in HPCA, 2012.

K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and A. Davis,
“Micro-pages: Increasing dram efficiency with locality-aware data placement,” in AS-
PLOS, 2010.

Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploiting subarray-level
parallelism (salp) in dram,” in ISCA, 2012.

A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and
N. P. Jouppi, “Rethinking dram design and organization for energy-constrained multi-
cores,” in ISCA, 2010.

R. Das, S. Eachempati, A. Mishra, V. Narayanan, and C. R. Das, “Design and evaluation
of a hierarchical on-chip interconnect for next-generation cmps,” in HPCA, 2009.

D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie, N. Vijaykrishnan, and C. R. Das,
“Mira: A multi-layered on-chip interconnect router architecture,” in ISCA, 2008.

C. Kim, D. Burger, and S. Keckler, “Nonuniform cache architectures for wire-delay
dominated on-chip caches,” Micro, IEEE, 2003.

C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G. Lowney, and R. Cohn, “Profile-guided
post-link stride prefetching,” in ICS, 2002.

D. Ortega, E. Ayguadé, J.-L. Baer, and M. Valero, “Cost-effective compiler directed
memory prefetching and bypassing,” in PACT, 2002.

72

Y. Wu, “Efficient discovery of regular stride patterns in irregular programs and its use
in compiler prefetching,” in PLDI, 2002.

D. Joseph and D. Grunwald, “Prefetching using Markov predictors,” in ISCA, 1997.

G. Liu, Z. Huang, J.-K. Peir, X. Shi, and L. Peng, “Enhancements for accurate and
timely streaming prefetcher,” The Journal of ILP, vol. 13, Jan. 2011.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed prefetching: Improving
the performance and bandwidth-efficiency of hardware prefetchers,” in HPCA, 2007.

X. Zhuang and H.-H. S. Lee, “A hardware-based cache pollution filtering mechanism for
aggressive prefetches,” in ICPP, 2003.

T.-F. Chen and J.-L. Baer, “A performance study of software and hardware data
prefetching schemes,” in ISCA, 1994.

E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated control of multiple
prefetchers in multicore systems,” in MICRO, 2009.

C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, Jr., and J. Emer, “Pacman: prefetch-
aware cache management for high performance caching,” in MICRO, 2011.

C. J. Hughes and S. V. Adve, “Memory-side prefetching for linked data structures for
processor-in-memory systems,” Journal of PDC, 2005.

I. Hur and C. Lin, “Memory prefetching using adaptive stream detection,” in MICRO,
2006.

Y. Solihin, J. Lee, and J. Torrellas, “Correlation prefetching with a user-level memory
thread,” IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 6, Jun. 2003.

C.-L. Yang and A. R. Lebeck, “Push vs. pull: data movement for linked data structures,”
in ICS, 2000.

“Vision Statement: How People Really Use Mobile,” January-February 2013. [Online].
Available: http://hbr.org/2013/01/how-people-really-use-mobile/ar/1

R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. Pande,
C. Grecu, and A. Ivanov, “System-on-chip: Reuse and integration,” Proceedings of
the IEEE, 2006.

Y. Zhu and V. J. Reddi, “High-performance and energy-efficient mobile web browsing
on big/little systems,” in HPCA, 2013.

K.-B. Lee and T.-S. Chang, Essential Issues in SoC Design Designing - Complex
Systems-on-Chip. Springer, 2006, ch. SoC Memory System Design.

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consump-
tion in mobile phones: A measurement study and implications for network applica-
tions,” in IMC, 2009.

73

Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster Memory
Scheduling: Exploiting Differences in Memory Access Behavior,” in MICRO, 2010.

Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-
performance Scheduling Algorithm for Multiple Memory Controllers,” in HPCA, 2010.

R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Aergia: Exploiting packet latency
slack in on-chip networks,” in ISCA, 2010.

C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The amd opteron processor
for multiprocessor servers,” IEEE Micro, 2003.

P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes, “Cache hier-
archy and memory subsystem of the amd opteron processor,” IEEE micro, 2010.

A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann, “Power management
architecture of the 2nd generation intel R© core microarchitecture, formerly codenamed
sandy bridge,” 2011.

M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A fully integrated multi-cpu,
gpu and memory controller 32nm processor,” in ISSCC, 2011.

IBM, “Cell broadband engine,” 2009, http://www.research.ibm.com/cell/.

Intel, “Xeon processor,” 2009, http://www.intel.com/p/en US/products/server/
processor.

AMD, “Opteron processor,” 2009, http://www.amd.com/us/products/server/
processors/.

L. Lamport, “The parallel execution of do loops,” Commun. ACM, vol. 17, no. 2, pp.
83–93, 1974.

M. J. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley
Longman Publishing Co., Inc., 1995.

U. K. Banerjee, Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
1988.

——, Loop Parallelization. Kluwer Academic Publishers, 1994.

D. S. Steve Scheirey, “Sensor fusion, sensor hubs and the future of smartphone intelli-
gence,” ARM, Tech. Rep., 2013.

J. Engwell, “The high resolution future retina displays and design,” Blurgroup, Tech.
Rep., 2013.

J. Y. C. Engwell, “Gpu technology trends and future requirements,” Nvidia Corp., Tech.
Rep.

G. E. Blelloch, J. Fineman, P. B. Gibbons, and H. V. Simhadri, “Program-centric cost
models for locality,” in MSPC, 2013.

74

S. K. Singhai, Kathryn, and S. Mckinley, “A parametrized loop fusion algorithm for
improving parallelism and cache locality,” Computer Journal, 1997.

M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian, and A. Davis, “Handling
the problems and opportunities posed by multiple on-chip memory controllers,” in
PACT, 2010.

M. Chaudhuri, “Pagenuca: Selected policies for page-grain locality management in large
shared chipmultiprocessor caches,” in HPCA, 2009.

N. Eisley, L.-S. Peh, and L. Shang, “Leveraging on-chip networks for data cache migration
in chip multiprocessors,” in PACT, 2008.

G. Chen, G. Chen, O. Ozturk, and M. Kandemir, “Exploiting inter-processor data shar-
ing for improving behavior of multi-processor socs,” in ISVLSI, 2005.

L. Xue, M. Kandemir, G. Chen, and T. Yemliha, “Spm conscious loop scheduling for
embedded chip multiprocessors,” in ICPADS, 2006.

M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb, C. Leger,
J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe, “A stream compiler for
communication-exposed architectures,” in ASPLOS, 2002.

M. Kandemir, J. Ramanujam, and A. Choudhary, “Exploiting shared scratch pad mem-
ory space in embedded multiprocessor systems,” in DAC, 2002.

V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory optimization
and task scheduling for mpsoc architectures,” in CASES, 2006.

P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha, C. Lee, Q. Xu, and
L. Huang, “Mapping of applications to mpsocs,” in CODES+ISSS, 2011.

A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-aware heuristics
for run-time task mapping on noc-based mpsoc platforms,” J. Syst. Archit., 2010.

A. Coskun, T. Rosing, and K. Whisnant, “Temperature aware task scheduling in mp-
socs,” in DATE, 2007.

B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A predictable sdram memory
controller,” in CODES+ISSS, 2007.

M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A qos-aware memory controller for
dynamically balancing gpu and cpu bandwidth use in an mpsoc,” in DAC, 2012.

H. b. T. Khan and M. K. Anwar, “Quality-aware Frame Skipping for MPEG-2 Video
Based on Inter-frame Similarity,” Malardalen University, Tech. Rep.

S. Fenney, “Texture compression using low-frequency signal modulation,” in HWWS,
2003.

75

H. Shim, N. Chang, and M. Pedram, “A compressed frame buffer to reduce display power
consumption in mobile systems,” in ASP-DAC, 2004.

K. Han, A. Min, N. Jeganathan, and P. Diefenbaugh, “A hybrid display frame buffer
architecture for energy efficient display subsystems,” in ISLPED, 2013.

A. Gutierrez, R. Dreslinski, A. Saidi, C. Emmons, N. Paver, T. Wenisch, and T. Mudge,
“Full-system analysis and characterization of interactive smartphone applications,” in
IISWC, 2011.

Y. Wang, B. Krishnamachari, Q. Zhao, and M. Annavaram, “Markov-optimal sensing
policy for user state estimation in mobile devices,” in IPSN, 2010.

B. Diniz, D. O. G. Neto, W. M. Jr., and R. Bianchini, “Limiting the power consumption
of main memory.” in ISCA, 2007.

J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C.
Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama, “Impulse: Building
a smarter memory controller,” in HPCA, 1999.

W.-f. Lin, “Reducing DRAM latencies with an integrated memory hierarchy design,” in
HPCA, 2001.

S. Ryoo, S.-Z. Ueng, C. I. Rodrigues, R. E. Kidd, M. I. Frank, and W.-M. W. Hwu,
Automatic Discovery of Coarse-Grained Parallelism in Media Applications. Springer-
Verlag, 2007, pp. 194–213.

G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards a holistic approach
to auto-parallelization: integrating profile-driven parallelism detection and machine-
learning based mapping,” SIGPLAN Not., vol. 44, no. 6, pp. 177–187, 2009.

G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread extraction with
decoupled software pipelining,” in Proceedings of the 38th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture. IEEE Computer Society, 2005, pp.
105–118.

E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August, “Parallel-stage decou-
pled software pipelining,” in Proceedings of the sixth Annual IEEE/ACM International
Symposium on Code Generation and Optimization. ACM, 2008, pp. 114–123.

N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August,
“Speculative decoupled software pipelining,” in Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Techniques. IEEE Computer
Society, 2007, pp. 49–59.

F. Aleen and N. Clark, “Commutativity analysis for software parallelization: letting
program transformations see the big picture,” SIGPLAN Not., vol. 44, no. 3, pp.
241–252, 2009.

76

M. Rinard and P. Diniz, “Commutativity analysis: A new analysis framework for paral-
lelizing compilers,” University of California at Santa Barbara, Tech. Rep., 1996.

S. Rus, M. Pennings, and L. Rauchwerger, “Sensitivity analysis for automatic paral-
lelization on multi-cores,” in Proceedings of the 21st Annual International Conference
on Supercomputing. ACM, 2007, pp. 263–273.

S. Rus, L. Rauchwerger, and J. Hoeflinger, “Hybrid analysis: static & dynamic memory
reference analysis,” Int. J. Parallel Program., vol. 31, no. 4, pp. 251–283, 2003.

L. Rauchwerger and D. Padua, “The LRPD test: Speculative run-time parallelization of
loops with privatization and reduction parallelization,” SIGPLAN Not., vol. 30, no. 6,
pp. 218–232, 1995.

F. Dang, H. Yu, and L. Rauchwerger, “The R-LRPD test: Speculative parallelization
of partially parallel loops,” in Proceedings of the 16th International Symposium on
Parallel and Distributed Processing. IEEE Computer Society, 2002, p. 20.

M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August, “Revisiting the
sequential programming model for multi-core,” in Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
2007, pp. 69–84.

P. I. Standard, “Openmp: A proposed industry standard api for shared memory pro-
gramming,” 2009, http://openmp.org/wp/.

B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers, “DyC: an expressive
annotation-directed dynamic compiler for C,” Theor. Comput. Sci., vol. 248, no. 1-2,
pp. 147–199, 2000.

L. Rauchwerger and D. A. Padua, “Parallelizing while loops for multiprocessor systems,”
in Proceedings of the 9th International Symposium on Parallel Processing. IEEE
Computer Society, 1995, pp. 347–356.

M. Gupta, S. Mukhopadhyay, and N. Sinha, “Automatic parallelization of recursive
procedures,” Int. J. Parallel Program., vol. 28, no. 6, pp. 537–562, 2000.

R. Rugina and M. C. Rinard, “Pointer analysis for structured parallel programs,” ACM
Trans. Program. Lang. Syst., vol. 25, no. 1, pp. 70–116, 2003.

B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D. I. August, “Practi-
cal and accurate low-level pointer analysis,” in Proceedings of the International Sym-
posium on Code Generation and Optimization. IEEE Computer Society, 2005, pp.
291–302.

J. Da Silva and J. G. Steffan, “A probabilistic pointer analysis for speculative optimiza-
tions,” in Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 2006, pp. 416–425.

77

J. Steffan and T. Mowry, “The potential for using thread-level data speculation to facili-
tate automatic parallelization,” in Proceedings of the 4th International Symposium on
High-Performance Computer Architecture. IEEE Computer Society, 1998, pp. 2–13.

D. Bruening, S. Devabhaktuni, and S. Amarasinghe, “Softspec: Software-based spec-
ulative parallelism,” in In 3rd ACM Workshop on Feedback-Directed and Dynamic
Optimization, 1998.

Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai, “A cost-driven compi-
lation framework for speculative parallelization of sequential programs,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. ACM, 2004, pp. 71–81.

H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke, “Uncovering hidden loop level
parallelism in sequential applications,” in Proceedings of the 14th International Sym-
posium on High-Performance Computer Architecture, 2008.

E. Raman, N. Vachharajani, R. Rangan, and D. I. August, “Spice: speculative parallel
iteration chunk execution,” in Proceedings of the sixth Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization. ACM, 2008, pp. 175–184.

C. G. Quińones, C. Madriles, J. Sánchez, P. Marcuello, A. González, and D. M.
Tullsen, “Mitosis compiler: an infrastructure for speculative threading based on pre-
computation slices,” SIGPLAN Not., vol. 40, no. 6, pp. 269–279, 2005.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable approach to thread-
level speculation,” SIGARCH Comput. Archit. News, vol. 28, no. 2, pp. 1–12, 2000.

V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “Rowclone: Fast and
energy-efficient in-dram bulk data copy and initialization,” in MICRO, 2013.

A. Mishra, O. Mutlu, and C. Das, “A heterogeneous multiple network-on-chip design:
An application-aware approach,” in DAC, 2013.

R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Catnap: Energy pro-
portional multiple network-on-chip,” in ISCA, 2013.

Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme to
reduce row-buffer conflicts and exploit data locality,” in MICRO, 2000.

Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable and high-
performance scheduling algorithm for multiple memory controllers,” in HPCA, 2010.

O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing both
performance and fairness of shared dram systems,” in ISCA, 2008.

S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham, “Effective stream-
based and execution-based data prefetching,” in ICS, 2004.

78

M. Karlsson, F. Dahlgren, and P. Stenstrom, “A prefetching technique for irregular
accesses to linked data structures,” in HPCA, 2000.

D. K. Poulsen and P.-C. Yew, “Data prefetching and data forwarding in shared memory
multiprocessors,” in ICPP, 1994.

A. J. Smith, “Sequential program prefetching in memory hierarchies,” Computer, vol. 11,
no. 12, Dec. 1978.

E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware shared resource
management for multicore systems,” in ISCA, 2011.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg, J. Högberg,
F. Larsson, A. Moestedt, and B. Werner, “SIMICS: A full system simulation platform,”
Computer, 2002.

M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen,
K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacets general execution-driven
multiprocessor simulator (gems) toolset,” SIGARCH Comput. Archit. News, 2005.

K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and fairness in smt
processors,” in ISPASS, 2001.

R. Hegde, “Optimizing application performance on intel core microarchitecture using
hardware-implemented prefetchers,” Intel, 2008.

C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-aware DRAM controllers,”
in MICRO, 2008.

Micron, “DDR3 Power Calculator.” 2009.

A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “OWL: Cooperative Thread Array Aware Scheduling Techniques for
Improving GPGPU Performance,” in ASPLOS, 2013.

N. Chidambaram Nachiappan, P. Yedlapalli, N. Soundararajan, A. Sivasubramaniam,
M. Kandemir, and C. R. Das, “GemDroid: A Framework to Evaluate Mobile Plat-
forms,” in SIGMETRICS, 2014.

Google. (2013) Android sdk - emulator. [Online]. Available:
http://developer.android.com/

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate memory
system simulator,” CAL, 2011.

R. SoC, “Rk3188 multimedia codec benchmark,” 2011.

Samsung, “Samsung galaxy s5,” 2014. [Online]. Available:
http://www.samsung.com/global/microsite/galaxys5/

Apple, “Apple iphone 5s.” [Online]. Available: https://www.apple.com/iphone/

79

P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing, power, and
area model,” Technical Report 2001/2, Compaq Computer Corporation, Tech. Rep.,
2001.

Y. Song and Z. Li, “New tiling techniques to improve cache temporal locality,” in ACM
SIGPLAN Notices, 1999.

A. W. Lim and M. S. Lam, “Maximizing parallelism and minimizing synchronization
with affine transforms,” in POPL, 1997.

T. Sha, M. M. K. Martin, and A. Roth, “Scalable store-load forwarding via store queue
index prediction,” in MICRO, 2005.

G. H. Loh, R. Sami, and D. H. Friendly, “Memory bypassing: Not worth the effort,” in
WDDD, 2002.

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access
scheduling,” in ISCA, 2000.

H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension
of the h. 264/avc standard,” IEEE Transactions on Circuits and Systems for Video
Technology, 2007.

Google, “Android HAL.” [Online]. Available:
https://source.android.com/devices/index.html

S. T. Report, “Wqxga solution with exynos dual,” 2012.

D. E. Maydan, J. L. Hennessy, and M. S. Lam, “Efficient and exact data dependence
analysis,” in Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. ACM, 1991, pp. 1–14.

D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, “Array-data flow analysis and its use
in array privatization,” in Proceedings of the 20th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. ACM, 1993, pp. 2–15.

G. Goff, K. Kennedy, and C.-W. Tseng, “Practical dependence testing,” SIGPLAN Not.,
vol. 26, no. 6, pp. 15–29, 1991.

W. Pugh, “The omega test: a fast and practical integer programming algorithm for
dependence analysis,” in Proceedings of the 1991 ACM/IEEE Conference on Super-
computing. ACM, 1991, pp. 4–13.

A. N. Laboratory, “Otter,” 2009, http://www.mcs.anl.gov/research/projects/AR/
otter/.

Vita

I am a Ph.D. Candidate in the Computer Science and Engineering Department

at Penn State University. I am working in the area of Computer Architecture with Dr.

Mahmut Kandemir for my PhD. I also collaborate with Dr. Anand Sivasubramaniam

and Dr Chita R. Das. Currently, I am working on memory and network optimizations

for NOC based CMPs. I mainly focus on optimizing the memory controller architecture

in order to improve the memory bandwidth available for the processor. Prior to coming

here, I received my Master of Technology (M.Tech.) in Computer Science and Engi-

neering in 2008 from Indian Institute of Technology Kanpur. I received my Bachelor

of Technology (B.Tech.) in Computer Science and Engineering in 2006 from Andhra

University.

I worked as an intern for VMware at Palo Alto, CA in the summer of 2013. I

worked in the ESX performance team developing new in-memory compression techniques

for the ESX hypervisor. I worked as an intern for Intel Corporation at Champaign, IL

for a major part of 2011. I worked in the Thread Checker team developing a new light

weight version of the tool to enable its usage on embedded platforms.

