

 6

A STUDENT-TO-STUDENT GUIDE

- 1,300+ frequently tested facts and mnemonics 0
- High-yield updates throughout with a new public health section \bullet
- 200+ new integrated color illustrations and photos -
- Student-proven exam tips and strategies \bullet

USMLE STEP 1 2016

TAO LE, MD, MHS

Associate Clinical Professor
Chief, Section of Allergy and Immunology
Department of Medicine
University of Louisville

MATTHEW SOCHAT, MD

Resident, Department of Internal Medicine
Temple University Hospital
YASH CHAVDA, DO
Resident, Department of Emergency Medicine St. Barnabas Hospital, Bronx

FRANCIS DENG
Washington University School of Medicine in St. Louis Class of 2016

VIKAS BHUSHAN, MD

Diagnostic Radiologist
Los Angeles

MEHBOOB KALANI, MD
Resident, Department of Internal Medicine
Allegheny Health Network Medical Education Consortium

KIMBERLY KALLIANOS, MD

Resident, Department of Radiology and Biomedical Imaging University of California, San Francisco

PATRICK SYLVESTER, MD

Resident, Department of Emergency Medicine The Ohio State University

New York / Chicago / San Francisco / Athens / London / Madrid / Mexico City
Milan / New Delhi / Singapore / Sydney / Toronto

Copyright © 2016 by Tao Le and Vikas Bhushan. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-1-25-958738-2
MHID: 1-25-958738-X
The material in this eBook also appears in the print version of this title: ISBN: 978-1-25-958737-5,
MHID: 1-25-958737-1.
eBook conversion by codeMantra
Version 1.0
All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www mhprofessional.com.

Previous editions copyright © 1991 through 2015 by Tao Le and Vikas Bhushan. First edition copyright © 1990, 1989 by Vikas Bhushan, Jeffrey Hansen, and Edward Hon.
First Aid for the ${ }^{\circledR}$ is a registered trademark of McGraw-Hill Education.

Notice

Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Dedication

To the contributors to this and past editions, who took time to share their knowledge, insight, and humor for the benefit of students and physicians everywhere.

This page intentionally left blank

Contents

Contributing Authors vii
General Acknowledgments xiiiAssociate AuthorsFaculty AdvisorsPrefaceviii
How to Contribute xvii
How to Use This Book xix
Selected USMLE Laboratory Values xX
First Aid Checklist for the USMLE Step 1 xxii
GUIDE TO EFFICIENT EXAM PREPARATION 1

- SECTION I
Introduction 2 Test-Taking Strategies 19
USMLE Step 1—The Basics 2 Clinical Vignette Strategies 20
Defining Your Goal 12 21
If You Think You Failed
12 If You Failed Excelling in the Preclinical Years 12 22
Timeline for Study 14 22
Testing Agencies
18 References Study Materials 18 22
How to Use the Database 2831
47
BiochemistryBehavioral Science
107
Microbiology
Immunology 189
Pathology 215
Pharmacology 235
- SECTION III HIGH-YIELD ORGAN SYSTEMS 257
Approaching the Organ Systems 258 Neurology 449
Cardiovascular 261
Psychiatry 507
Endocrine 305 529337 Reproductive
Gastrointestinalastrointestina561
Respiratory Hematology and Oncology 605
415 Rapid Review Musculoskeletal, Skin, and Connective Tissue 629
- SECTION IVTOP-RATED REVIEW RESOURCES649
How to Use the Database 650
Biochemistry 654
Question Banks652 Cell Biology and Histology655
Question Books652
Internet Sites652Mobile Apps652653
Comprehensive
Anatomy, Embryology, and Neuroscience653654
Behavioral Science
655
Microbiology and Immunology
656
Pathology
Pharmacology 657
Physiology 657
Abbreviations and Symbols 659
Photo Acknowledgments 667
Index 687
About the Editors 761

Contributing Authors

RAM BABOO, MBBS, MS (Surgery)

Post Graduate Institute of Medical Education and Research

EMILIA CALVARESI, PhD

University of Illinois at Urbana-Champaign College of Medicine Class of 2017

ANGELA GAUTHIER

Yale School of Medicine
Class of 2017

BENJAMIN GOUGH

Lake Erie College of Osteopathic Medicine Class of 2016

JAN ANDRE GRAUMAN, MA

Adjunct Assistant Professor
University of Victoria School of Nursing

JACQUELINE HAIRSTON

Icahn School of Medicine at Mount Sinai
Class of 2016

DAVID HUANG

The Warren Alpert Medical School of Brown University Class of 2017

Image and Illustration Team

JOCELYN COMPTON, MD

Resident, Department of Orthopedic Surgery
University of Iowa Hospitals and Clinics

RYAN W. HADDEN

UAB School of Medicine
Class of 2017

PRAMOD THEETHA KARIYANNA, MD

Resident, Department of Internal Medicine SUNY Downstate Medical Center

M. SCOTT MOORE, DO

Resident, Department of Pathology University of Arizona

CAROLINE MURRELL

Wake Forest School of Medicine Class of 2017

JUN YEN NG

The University of Queensland Class of 2015

SARAH SCHIMANSKY, MB BCh BAO

Foundation Doctor
North Bristol NHS Trust

JARED SHENSON

Vanderbilt University School of Medicine Class of 2016

NINO SIKHARULIDZE, MD

Department of Endocrinology
Tbilisi State Medical University

ANDREW ZUREICK

University of Michigan Medical School
Class of 2017

RICHARD P. USATINE, MD

Professor, Dermatology and Cutaneous Surgery
Professor, Family and Community Medicine University of Texas Health Science Center San Antonio

RENATA VELAPATIÑO, MD

San Martín de Porres University

Associate Authors

MARIA BAKKAL

University of Aleppo School of Medicine

PRIYANKA CHILAKAMARRI

University of Vermont College of Medicine Class of 2016

PRITHA CHITAGI, MD

Resident, Department of Internal Medicine Wayne State University

PATRICK HUDSON, MD

Oregon Health \& Science University
Class of 2015

Image and Illustration Team

WENDY ABBOTT

Kentucky College of Osteopathic Medicine Class of 2015

KRISHAN JETHWA, MD

Resident, Department of Radiation Oncology Mayo Clinic

YIANNIS KOULLIAS, MD

Resident, Department of Internal Medicine
Brigham and Women's Hospital

SHAWN VERMA

The Warren Alpert Medical School of Brown University Class of 2018

KEVIN AU, MD

Resident, Department of Vascular Surgery
Louisiana State University

Faculty Advisors

MARIA ANTONELLI, MD

Rheumatology Fellow, Department of Medicine Case Western Reserve University School of Medicine

HERMAN BAGGA, MD

Fellow, Department of Urology
Cleveland Clinic

ADITYA BARDIA, MBBS, MPH

Attending Physician, Massachusetts General Hospital Harvard Medical School

SHASHANK BEHERE, MD

Fellow, Nemours Cardiac Center Nemours/Alfred I duPont Hospital for Children

PAULETTE BERND, PhD

Professor, Department of Pathology and Cell Biology Columbia University College of Physicians and Surgeons

J. PETER CAMPBELL, MD, MPH

Assistant Professor, Department of Ophthalmology
Oregon Health \& Science University

BROOKS D. CASH, MD

Professor of Medicine, Division of Gastroenterology
University of South Alabama School of Medicine

PETER V. CHIN-HONG, MD

Professor, Department of Medicine
University of California, San Francisco

SHIVANI VERMA CHMURA, MD

Adjunct Clinical Faculty, Department of Psychiatry
Stanford University School of Medicine

LINDA S. COSTANZO, PhD

Professor, Physiology \& Biophysics
Virginia Commonwealth University School of Medicine

ANTHONY L. DeFRANCO, PhD

Professor, Department of Microbiology and Immunology University of California, San Francisco School of Medicine

CHARLES S. DELA CRUZ, MD, PhD

Assistant Professor, Department of Pulmonary and Critical Care Medicine Yale School of Medicine

RICHARD S. FINKEL, PharmD

Clinical Assistant Professor, Department of Pharmaceutical Sciences Nova Southeastern University College of Pharmacy

CONRAD FISCHER, MD

Residency Program Director, Brookdale University Hospital Brooklyn, New York
Associate Professor, Medicine, Physiology, and Pharmacology Touro College of Medicine

JEFFREY J. GOLD, MD

Associate Professor, Department of Neurology University of California, San Diego School of Medicine

RYAN C.W. HALL, MD

Assistant Professor, Department of Psychiatry University of South Florida

LOUISE HAWLEY, PhD

Immediate Past Professor and Chair, Department of Microbiology Ross University School of Medicine

MARGARET HAYES, MD

Fellow, Department of Pulmonary and Critical Care Johns Hopkins Hospital

JEFFREY W. HOFMANN, PhD

The Warren Alpert Medical School of Brown University MD Candidate

DEEPALI JAIN, MD

Assistant Professor, Department of Pathology All India Institute of Medical Sciences

BRIAN C. JENSEN, MD

Assistant Professor, Division of Child and Adolescent Psychiatry University of Louisville School of Medicine

KRISTINE KRAFTS, MD

Assistant Professor, Department of Basic Sciences University of Minnesota School of Medicine

GERALD LEE, MD

Assistant Professor, Department of Pediatrics University of Louisville School of Medicine

KACHIU LEE, MD, MPH

Department of Dermatology
Harvard Medical School

WARREN LEVINSON, MD, PhD

Professor, Department of Microbiology and Immunology University of California, San Francisco School of Medicine

PETER MARKS, MD, PhD

Associate Professor, Department of Internal Medicine Yale School of Medicine

J. RYAN MARTIN, MD

Assistant Professor of Obstetrics, Gynecology, and Reproductive Sciences Yale School of Medicine

THOMAS A. PANAVELIL, PhD

Professor of Pharmacology
Nova Southeastern University College of Pharmacy

JEANNINE RAHIMIAN, MD, MBA

Associate Professor, Obstetrics and Gynecology
David Geffen School of Medicine at UCLA

SOROUSH RAIS-BAHRAMI, MD

Assistant Professor, Urology and Radiology
The University of Alabama at Birmingham School of Medicine

SASAN SAKIANI, MD

Fellow, Division of Gastroenterology and Hepatology Case Western Reserve University School of Medicine

JOSEPH L. SCHINDLER, MD

Assistant Professor, Neurology and Neurosurgery Yale School of Medicine

MELANIE SCHORR, MD

Research Fellow, Department of Medicine Massachusetts General Hospital

NATHAN W. SKELLEY, MD

Sports Medicine Fellow, Department of Orthopedic Surgery
Massachusetts General Hospital, Harvard Medical School

HOWARD M. STEINMAN, PhD

Assistant Dean, Biomedical Science Education
Professor, Department of Biochemistry
Albert Einstein College of Medicine

STEPHEN F. THUNG, MD

Associate Professor, Department of Obstetrics and Gynecology The Ohio State University College of Medicine

PRASHANT VAISHNAVA, MD

Assistant Professor, Department of Medicine
Mount Sinai Hospital and Icahn School of Medicine

J. MATTHEW VELKEY, PhD

Assistant Dean, Basic Science Education
Duke University School of Medicine

HILARY J. VERNON, MD, PhD

Assistant Professor, McKusick Nathans Institute of Genetic Medicine Johns Hopkins University

BRIAN WALCOTT, MD

Clinical Instructor, Department of Neurological Surgery University of California, San Francisco

TISHA SHIH-YUN WANG, MD

Assistant Clinical Professor, Department of Pulmonary and Critical Care University of California, Los Angeles

SYLVIA WASSERTHEIL-SMOLLER, PhD

Distinguished University Professor Emerita
Department of Epidemiology and Population Health
Albert Einstein College of Medicine

ADAM WEINSTEIN, MD

Assistant Professor, Section of Pediatric Nephrology
Geisel School of Medicine at Dartmouth

KAREN L. WHALEN, PharmD

Clinical Professor, Department of Pharmacotherapy and Translational Research
University of Florida College of Pharmacy

Preface

With the 26th edition of First Aid for the USMLE Step l, we continue our commitment to providing students with the most useful and up-to-date preparation guide for the USMLE Step l. This edition represents an outstanding revision in many ways, including:

- 50+ entirely new facts, including a new section on quality improvement principles and safety science.
- Hundreds of major fact updates culled from more than 100,000 comments and suggestions.
- Extensive text revisions, new mnemonics, clarifications, and corrections curated by a team of more than 30 student authors who excelled on their Step 1 examinations and verified by a team of expert faculty advisors and nationally recognized USMLE instructors.
- Updated with more than 250 new or revised full-color photos to help visualize various disorders, descriptive findings, and basic science concepts. Labeled and captioned photographs have been optimized to aid retention by engaging visual memory in a manner complementary to mnemonics.
- Updated with dozens of new and revised diagrams. We continue to expand our collaboration with USMLE-Rx (MedIQ Learning, LLC) to develop and enhance illustrations with improved information design to help students integrate pathophysiology, therapeutics, and diseases into memorable frameworks for annotation and personalization.
- Thicker, embossed cover and heavy-duty binding for increased durability and longevity.
- A revised exam preparation guide with updated data from the NBME and NRMP. The guide also features new high-yield techniques for efficient and effective test preparation. The updated supplemental guide for IMGs, osteopathic and podiatry students, and students with a disability can be found at our blog, www.firstaidteam.com.
- An updated summary guide to student-recommended USMLE Step l review resources, including mobile apps for iOS and Android. The full resource guide with detailed descriptions can be found at our blog, www.firstaidteam.com.
- Real-time Step 1 updates and corrections can also be found exclusively on our blog.

We invite students and faculty to share their thoughts and ideas to help us continually improve First Aid for the USMLE Step 1 through our blog and collaborative editorial platform. (See How to Contribute, p. xvii.)

Louisville	Tao Le
Los Angeles	Vikas Bhushan
Philadelphia	Matthew Sochat
New York City	Yash Chavda
St. Louis	Francis Deng
Pittsburgh	Mehboob Kalani
San Francisco	Kimberly Kallianos
Athens, Ohio	Patrick Sylvester

Special Acknowledgments

This has been a collaborative project from the start. We gratefully acknowledge the thousands of thoughtful comments, corrections, and advice of the many medical students, international medical graduates, and faculty who have supported the authors in our continuing development of First Aid for the USMLE Step 1.
We provide special acknowledgment and thanks to the following students who made exemplary contributions to this edition through our voting, proofreading, and crowdsourcing platform: Nicolas Austin, Kashif Badar, Stefan Campbell, Anup Chalise, Wendy Chen, Crosby Culp, Helen Dainton, Katy Demitruk, Okubit Gebreyonas, Gino Giannone, Richard Godby, Christina Govas, Bharath Guntupalli, Isaiah Hammonds, Cinthia Marie Gonzalez Hernandez, Joyce Ho, M Ho, Benjamin Hans Jeuk, Nikhar Kinger, Vladimer Kitiashvili, Martin Ma, Micah Mathai, James McCoy, Melissa Meghpara, Theresa Meloche, Ryan Meyer, Sarah Michelson, Joseph Mininni, JB Moses, Natia Murvelashvili, Thomas Nienaber, Michael Nguygen, Ishan Patel, Iqra Patoli, Eric Pease, Jimmy Tam Huy Pham, Anthony Purgianto, Mohsin Raza, Moshe Roberts, Casey Joseph Rosenthal, Anna Sevilla, Avinainder Singh, Feba Sunny, Amelia St. Ange, Angela Taeschner, Nkechi Ukeekwe, Vaishnavi Vaidyanathan, Paul Walden, Matthew Wallace, Isabella Wu, and Xuebao Zhang.
For help on the First Aid Team blog, thanks to Mark Ard (Editor), Edison Cano, Tim Durso, Luke Murray, Ryan Nguyen, and Joe Savarese. For support and encouragement throughout the process, we are grateful to Thao Pham and Jonathan Kirsch, Esq. Thanks to Louise Petersen for organizing and supporting the project. Thanks to our publisher, McGraw-Hill, for the valuable assistance of its staff, including Midge Haramis and Jeffrey Herzich. For enthusiasm, support, and commitment for this ongoing and ever-challenging project, thanks to our editor, Catherine Johnson.

We are also very grateful to Dr. Fred Howell and Dr. Robert Cannon of Textensor Ltd for providing us extensive customization and support for their powerful A.nnotate collaborative editing platform, which allows us to efficiently manage thousands of contributions. Thanks to Dr. Richard Usatine for his outstanding dermatologic and clinical image contributions. Thanks also to Jean-Christophe Fournet (www.humpath.com), Dr. Ed Uthman, and Dr. Frank Gaillard (www.radiopaedia.org) for generously allowing us to access some of their striking photographs. We especially thank Dr. Kristine Krafts for many insightful text and image contributions throughout the extensive revision.

For exceptional editorial support, enormous thanks to our tireless senior editor, Emma D. Underdown, and her team of editors, Christine Diedrich, Allison Battista, Linda Davoli, Janene Matragrano, Isabel Nogueira, Rebecca Stigall, and Hannah Warnshuis. Many thanks to Tara Price for page design and all-around InDesign expertise. Special thanks to Jan Bednarczuk for a greatly improved index. We are also grateful to our medical illustrators, Hans Neuhart and Diana Kryski, for their creative work on the new and updated illustrations. In particular, we thank Diana and Dr. Krafts for optimizing all of our photographs. Lastly, tremendous thanks to Rainbow Graphics, especially David Hommel and Donna Campbell, for remarkable ongoing editorial and production support under time pressure.

Louisville	Tao Le
Los Angeles	Vikas Bhushan
Philadelphia	Matthew Sochat
New York City	Yash Chavda
St. Louis	Francis Deng
Pittsburgh	Mehboob Kalani
San Francisco	Kimberly Kallianos
Athens, Ohio	Patrick Sylvester

General Acknowledgments

Each year we are fortunate to receive the input of thousands of medical students and graduates who provide new material, clarifications, and potential corrections through our website and our collaborative editing platform. This has been a tremendous help in clarifying difficult concepts, correcting errata from the previous edition, and minimizing new errata during the revision of the current edition. This reflects our long-standing vision of a true, student-to-student publication. We have done our best to thank each person individually below, but we recognize that errors and omissions are likely. Therefore, we will post an updated list of acknowledgments at our website, www.firstaidteam. com/bonus/. We will gladly make corrections if they are brought to our attention.

For submitting contributions and corrections, many thanks to Aaiza Malik, Stephanie Aaron, Abdul Muqtadir Abbasi, Mashya Abbassi, Ibrahim Abdelfattah, Ahmad Abdelhady, Andrew Abdelsayed, Khaled Abdulla, Alissa Aboff, Scott R. Abrahamson, Omar Abu Slieh, Naief AbuDaff, Noor Abu-Farsakh, Ra'ed Abujajeh, Bernardo Acevedo, Ian Ackers, David Adams, Cameron Adler, Neda Afshar, Vivian Agumadu, Masood Ahmad, Anosh Ahmed, Ayesha Ahmed, Muhammad Ahsan Ahsan, Himanshu Ajrawat, Zoey Akah, Marib Akanda, Adam Akbar, Anas Alabkaa, Ameen Al-Aghil, Mohammad Alam, Maryam Alaradi, Jemma Alarcon, Lourdes Alberty, Yeisel Alfonso, Mohammed Alhaidar, Mohamed Al-Hajji, Albert Alhatem, Muneer Al-Husseini, Daniel Alicea Delgado, Khalid Al-Kharraz, Rami Alkhoury, Yasser Almalky, Hussein Al-Mohamad, Ahmed Alnajar, Ahmad Al-Shyoukh, Morgan Altinok, Priscilla Alvarez, Abdullah Mohammed Alwadai, Frank Javier Amiama, Omid Amidi, Yajie An, Anna Anderson, David Anderson, Luke Andrea, Mehdi Ansari, Norin Ansari, Saeed Arefanian, Muhammad Mustafa Arif, Hassaan Arshad, Abdul Aziz Asbeutah, Syed Faaz Ashraf, Saira Aslam, Rizwan Attiq, Audrey Avila, Divya Ayyala, Katelynn Bachman, Marcus Badgeley, Denis Balaban, Vyshnavy Balendra, Muhammad Sher Khoh Qaisrani Baloch, Debdeep Banerjee, Behnoud Baradaran Noveiry, Eric Barbarite, Carlos Barbosa, Gauri Barlingay, Allison Basel, Jasper Bash, Mohammad Bashir, Jason Batey, Suraj Batish, Gabriel Batistuta, Richard Baylis, Andy Beck, Eric Behar, Amin Bemanian, Alex Benedick, Amanda Bennett, Kenechukwu Ben-Okafor, Ekta Bery, Abhinandan Bhagat, Shea Bielby, Vinoth Birabaharan, Brian Birnbaum, Malla Bishal, Aaron Blackshaw, Allison Blake, Stephanie Borinsky, Sminu Bose, Jeff Brady, Hemal Brahmbhat, Shay Brikman, Kenneth Brock, Carl Brophy, Sareena Brown, Alyssa Bruehlman, Kristin Bubel, Tapan Buch, Abraham Burshan, Katherine Butler, Kaitlyn Buzard, Trevor Cabrera, Cecilia Cai, Sunny Cai, Katharine Caldwell, Linelle Campbell, Edison Cano, Sean Cantwell, Justin Cappuzzo, Paul Cartwright, Marianne Casilla-Lennon, Nicole Castagno, Colombe Castellucci, Kenan Celtik, Abdelkader Chaar, Aron Chacko, Mac Chamberlin, Cindy Chang, Jodie Chang, Sherry Chao, Muhammad Chatha, Hafsa Chaudhry, Lakshpaul Chauhan, Sumir Chawla, Jenny Chen, Adam Cheng, Carling Cheung, Chideraa Chibuezeoke, Doug Chieffe, Priyanka Chilakamarri, Edward Cho, Joanne Cho, Jessica M. Cho, Ujval Choksi, Renee Cholyway, Andrew Chomchuensawat, Manita Choudhary, Nicholas Choy, Robert Chris, Bill Christian, La Nyka Christian, Alice Chuang, Hyun Bae Chun, Benjamin Chung, Jonathan Chung, Hyunsoo Chung, Angelo Ciliberti, Beth Clymer, Michael Lawrenz Co, Sam Cochran, Chen Cohen, Lauren Coleman, Jensyn Cone, Michael Conte, Rafael Contreras, Alejandro Cortes, Eliana Costantino Burgazzi, Erica Couzens, Ian Cox, Ronald Crandall, Daniel Crespo Artunduaga, John Cummins, Jennifer Cushman, Farah Dadabhoy, Chelsea Dahl, Amulya Dakka, Patrick Steven Damaso, Kathryn Davis, Korbin Davis, Solomon Dawson, Felice De Stefano, James Deardorff, Andrew DeCrescenzo, Carina Dehner, David DeMik, Daniel Denis, Jacqueline Joanna Denysiak, Margaret DeOliveira, Tricia Derges, Vaibhav Desai, Sagar Deshpande, Divya Dethier, Michael Dever, Jessie Dhaliwal, Gurpreet Dhanda, Ashley Dickens, Katherine Dittman, Isaac Dodd, Ricardo Domingo, Florence Doo, Atbin Doroodchi, Saman Doroodgar Jorshery, Irena Doubelt, Thomas Drzymala, Stephanie Dudzinski, Parikshit Duriseti, Sara Dusing, Marco Duverseau, Jeremy eckes, Susannah Eckman, Hamid Ehsani-Nia, lan Eisenhauer, Alexander El Sehamy, Abdelkhalek Elagamy, Abd El-Hameed Elmestarihi, Ghassan Elwanni, David Epstein, Jonathan Erdman, Semih Eren, Lee Eschenroeder, Pedro Mario Espino-Grosso, Maria Espiridion, Cynthia Estrada, Daniel Ezidiegwu, Emmanuel Fadiora, Matthew Fadus, Giselle Falconi, Tyler Fanning, Joseph Farahany, Shimon Farber, David Farchadi, Saba Farooqi,

Sohail Farshadsefat, Saul Feierstein, Timothy Feliciano, Yuan Feng, Charles Fennie, Laviel Fernandez, Renae R. Fisher, Matthew Fishman, Natalie Foertmeyer, Sandra Fong, Daniel Franco, Matthew Franklin, Peter Fredericks, Eli Fredman, Mohamed Gad, Anita Gade, Abdulaziz Ahmad Galadari, Avi Gandhi, Himali Gandhi, Sangeetha Gandhi, Jared Gans, Jacqueline Garavito, Russell Garcia, Anna Garza, Nicholas Geiger, Marianne Gelter, Alejandro Gener, Tobin George, Maikel Ragaei Ramzi Fahmi Gerges, Rupendra Ghatak, Pashmeena Gilani, Arshpal Gill, Zachary Gillooly, Christin Giordano, Aaron Goldberg, Monica Gonzalez, Jennipher Gonzalez, Andres Javier Gonzalez Salazar, Jose Manuel Gonzalez-Boffill, Jared Goodman, George Gorgy, Gavin Gorrell, Powell Graham, Sarah Grajower, Nathaniel Greenbaum, Brian Grice, Laura Groomes, Xavier Guell, Evin Guilliams, Sadaf Gulzar, Marcus Gunner, Chuner Guo, Prerna Gupta, Nita Gupta, Olga Guzovsky, Varan Haghshenas, Brandon Haghverdian, Jeremiah Haines, Zakary Hambsch, Sheiva Hamidi, Nicola Hampel, Arielle Hancu, Adeena Haque, Adam Harari, Noah Haroian, Jamison Harvey, Hunaid Hasan, Hassan J. Hashm, Asmaa Ibrahim Hassan Abd El Rehim, Fadi Hawa, Maham Hayat, Mona Hdeib, Sarah He, Richard Hickman, Kelsi Hirai, Erika Ho, Luqman Hodgkinson, Dana Holiday, Tyler Holliday, Kenneth Holton, Evan Horn, Katherine Hounshell, Jonathan Hourmozdi, Levi Howard, Ann Hua, Stephanie Huang, Eleanor Huber, Allyson Hughes, Steven Hull, Faisal Hussain, Catalina Hwang, Ibrahim Hyder, David Ianacone, Raafe Islam, Monica Jain, Sakshi Jain, Aditi Jalla, Nadia Jamil, Varendra Jamwant, James Jarvis, Jake Jasinski, Anam Javed, Majdoline Jayoushe, Seyed Behzad Jazayeri, Manana Jikurashvili, Rowen Jin, Adam Johnson, Aaron Johnson, Joel Johnson, Kyle Johnson, Christine Jokisch, Katherine Joltikov, Mitchell Jomsky, Sumeeth Jonathan, Jeletta Jose, Abhijeet Joshi, Shirley Ju, Lindsay Juarez, Jai Jung, Anis Kadado, Andrew Kaddis, Michael Kagan, Alyssa Kahn, Samantha Kaiser, Aaron Kala, Sumatt Kamal, Suthasenthuran Kanagalingam, Priyanka Kancherla, Melissa Kander, Kylie Kang, Edward Kanive, Agata Kantorowska, Neil Kapil, Kamran Karim, Nabin Raj Karki, Reema Kashif, Neil Kataria, LaDonna Kearse, Eytan Keidar, Nikhil Keny, Tamer Khashab, Nasir Khatri, Dae Kim, Erica Kim, Wi Jin Kim, Yoo Jung Kim, Brandon Kimbrel, Michael Kingberg, Ken Kitayama, Eleanore Knox, Gary Kocharian, Christine Koh, Mary Kombazdjian, Katerina Konstantinoff, Logan Konty, Efthymios Kostaras, Conrad Kozlowski, Casey Kramer, Andrew Krause, Rahul Krishna, Manjula Krishnamurthy, Nithya Krishnan, Elaine Kuhn, Anila Kumar, Matthew Kurian, Jason Kushner, Marcin Kuzma, Myoung Kwan Kwak, Frank Lacy, Jimmy Lam, Barbara Lam, Richa Lamba, Mary Lan, Rachel Landgren, Paul Lapis, Michael Larson, Daniel Layon, Duc Le, Jeremy Le, Stephenie Le, Aaron A. Lebron Burgos, Hyonju Lee, Paul Lee, Christopher Lee, Clement Lee, James Lee, Johanna Lee, Chewang Lee, Jenny Lee, William Lee, Michelle T. Lee, Eric Lepkowsky, Kenneth Less, Nathaniel Leu, Ori Levi, Rebecca Levin-Epstein, Edgar Miles Leviste, Alvin Li, Jonathan Li, Yedda Li, Jonathan Lim, Peter Lin, Stephanie Linscheid, Matthew Lippmann, Wen Liu, Kelvin Lo, Tony Logli, Tiffany Loh, Gregory Lohr, Shamelia Loiseau, Jerica Lomax, Paola Lopomo, Alnardo Lora, Luis Gerald Lora Garcla, Dexter Louie, Sean Love, Michael Lovelace, Casey Luce, Jesus-Mario Luevano Jr., Benjamin Lurvey, Terrance Lynn, James (Trey) Lyons, Julianne Macaulay, Adrian Maciejewski, Ashwini Mahadev, Satish Maharaj, Gajendra Maharjan, Mohammed Mahdi, Mahmoud Mahfouz, Zunair Thomas Nienaber a Mahmood, Nodari Maisuradze, Naomi Malam, Lydia Maleknia, Melody Malig, Aaiza Malik, Harsh Malik, Rohail Malik, Bishal Malla, Sandra-Jane Mancini, Evan Mannion, Bryan Manzana, Simon Martin, Beatriz Martinez, Jorge Martinez Bencosme, Chris Massey, Abraham Mathai, Gurneet Matharoo, Monica Mattes, Patrick Ryan Mayock, Brian Mayrsohn, Alex McDonald, Bailey McGuinness, Robert McKenna, Drew Mehta, Nehali Mehta, Matthew Meier, Stephanie Mejia, Janet Melnyk, Nicholaus Memphis, Deveer Menchaca, Joseph Mendez, Mohammed Meraj, John Mercke, Andrew Mergl, Paul Mergo, Yanet Merlo, Mohammad Mertaban, Jie Min, Sara Mitchell, Eric Mlodzinski, Saad Al-Deen Mohammad, Fatemeh Mohammadpour, Raghav Mohan, Guarina Molina Vargas, Rajat Moman, Grant Moody, John Moon, Sarah Morrison, Christopher Moutos, Lana Moy, Mudassar Mudassar, Harsha Musunuru, Syed Muzzammiluddin, Annamalai Nadarajan, Shehni Nadeem, Muhammad Luqman Farrukh Nagi, Nadav Nahumi, Alireza Najafian, Farnaz Najmi Varzaneh, Fabian Nalichowski, Aneesh Nandam, Andrew Napier, Anand Narayanan, Brenton Nash, Iraj Nasrabadi, Abdullah Nasser, Jared Nathanson, Arash Nazeri, Derek Nelsen, Jacob Nelson, Nancy Ngo, Rejoice Ngongoni, Andrew Nguyen, Daniel Nguyen, Jenny Kim Nguyen, MaiTrang Nguyen, Rio Nomoto, Salem Noureldine, Chigozie Michael Nwalozie, McEdwin Obi, Fernando Alekos Ocampo Gonzalez, Alejandro Ochoa, Olaitan Omole, Erin Ong, Chinasa Onuoha, Brenda Ortiz, Jordan Owens, Michael Owyong, Caitlin Pacheco, Preetinder Padda, Jayapriya Palaniappan, Laura Palmer, Khang Wen Pang, Lloyd Panjikaran, Aneta Pariaszevski, Andrew Park, Andrew Park, Shagufta Parveen, Michael Pasyk, Aashish Patel, Anuj Patel, Bhavin Bharat Patel, Karnav Patel, Mehul Patel, Pranav Patel, Shalvi Patel, Suhag Patel, Vinita Patel, Ravi Pathak, Saikrishna Patibandla, David Patterson, Melissa Pavelack, Kevin Pearson, Alexander Pennekamp, Brent Penque, Steven Perry, Christine Pham, Andrew S. Phan, Christina Pindar, Lauren Pioppo, Keyhan Piran, Stephen Pittman, Andryus Planutis, Andrew Plaska, Peter Plumeri,

Bella Plumptre, Vivek Podder, Utsav Pokharel, Tymon Pol, Eduardo Polanco Olio, Jason Polder, Stephanie Popofsky, Samuel Potter, Arun Prashar, Gina Provenzano, Preston Pugh, Audrey Pulitzer, Maria Punchak, Juozas Pundzius, Tyler Putnam, Ryan Qasawa, Nabeel Qureshi, Mohamad Raad, Leen Raddaoui, Saad Rahmat, Aara Raja, Vinaya Rajan, Arun Rajaratnam, Josean Ramos, Randy Ramsaywak, Maria Ramzi, Shobha Ranaweera, Harjot Randhawa, Karandeep Randhawa, Dhakshitha Rao, Huma Rasheed, Krishna Ravella, Bibi S Razack, Maheen Razi, Shazli Razi, Sushma Reddy, Quint Reid, Jon Reimer, Tong Ren, Mobeen Reza, Felix Richter, Chad Rieck, Joshua Ring, Julia Ringel, José Rios Russo, Taylor Rising, Reynolds Risseeuw, Kenny Rivera, Maria Eugenia Rivera Hernandez, Carlos Rivera Reyes, Miriam Rivera-Mendoza, Rhonda Robeel, Mark Robertshaw, Terrance Rodrigues, Catalina Rodriguez, Juliana D. Rodriguez, Nicole Rodriguez, Michael Rodriguez Tirado, Austin Rohl, Gregory Roloff, Gina Rong, Anthony Rooney, Holly Rose, Samuel Rose, Talal Roshan, Matthew Rossi, Vanessa Rota, Julietta Rubin, Martin Runnström, Jonathan Runyon, Nicholas Russo, Paul Rutkowski, Yazan Saba, Mohamed Sabra, Stuart Sacks, Rorita Sadhu, Nick Saggese, Nitin Sajankila, Carolina Salazar, Mohamad Saleh, Sumeet Salhotra, Tareq Salous, Iliana Sanchez, Jacqueline Sanchez, Gurmanpal Sandhu, Hasanin Zafar Sheikh Sanim, Melodie Sarebanha, Darya Savel, Mossum Sawhney, Stephen Schaeffer, Lance Schell, Collin Schenk, Christian Schuetz, Noah Schwartz, Adeeb Sebai, Natalya Sebastian, Eric Secrist, Siavash Sedghi, Manjinder Singh Sekhon, Roopak Sekhon, Jesse Sengillo, Debashree Sengupta, Angie Seo, Nicolas Seranio, Eric Seronick, Christina Serret, Anand Sewak, Lorenzo Sewanan, Mij Sha, Nadine Shabeeb, Anna Shah, Bindiya Shah, Harsh Shah, Muneeb Shah, Neil V. Shah, Neal Shah, Omer Shahab, Salma Shakh, Alan Shamrock, Saber Shamspour, Bryan Shapiro, Dolly Sharma, Darshan Shastri, Ling Shen, Mina Shenouda, Nomi Sherwin, Prajwal Shetty, Yue Shi, Benjamin Shin, Corey Shy, Haley Sibley, Tarik Silk, Jenna Silverstein, Silvia Simione, Brittany Simpson, Kiran Singh, Nainwant Singh, Vir Singh, Vikal Singh, Ann Skariya, Colby Smith, Christopher M. Smith, Wesley Smith, Tom Soker, Mohamed Soliman, Wilbur Song, Mihir Soparkar, Vlasios Sotirchos, Wilfredo Soto-Fuentes, Katherine Specht, Menachem Spira, Nicholas Squires, Anandhasayanan Sriramalu, Joseph D. Steffens, Jesintha Stephenson, Kristen Stevens, Florian Stroie, Benjamin Stuart, Nicholas Stukel, David Sukhai, Lishi Sun, Kiran Sury, Kriti Suwal, Alexa Swailes, Erica Swenson, Andrew Swiergosz, Adam Swiger, Ben Switzer, Mark Anthony Sy, Sarah Syeda, Omar Taani, Dawood Tafti, Mohamed Taha, Omar Taibah, Khandokar Talib, Wasif Talpur, Michael Tanael, Bashar Tanous, Syeda Taranum, David Taylor, Abiolah Telesford, Parker Thompson, Sandra Tomlinson-Hansen, Ileana A. Torres-Burgos, Ryan Town, Marie-Alexandria Tremis, Anuragh Trikha, Jefferson Triozzi, Marcelo Troya Maldonado, Michael Tseng, Harika Reddy Tula, John S. Underwood, Dhaval Upadhyay, Eva Urrechaga, Arthur Uyesugi, Akash Vadhavana, Spencer Vale, Devan Van Lanen-Wanek, Garrett Van Ostran, Leah Vance, Anu Varghese, Ilan Vashurin, Photios Frank Vassilyadi, Andrew Vaughan, Aleks Vayntraub, Erick Candido Velasquez Centellas, M.C. Viali, Josue Villegas Galaviz, Hongphuc Vo, Shaan Wadhawan, Gregory Wai, Sara Walker, Gary Walker, Xiamo Wang, Charles Wang, David Wang, Junjie Wang, Ezekiel Wang, Leonard Washington, Bradley Wasser, Alyssa Watkins, Josh Waytz, Corinne Webb, William Weber, Melanie Weinstein, Gong Weng, Winsor Wesson, Benjamin Westerhaus, Kendrick White, Raymond Whitham, Bettina Wiener-Fererhofer, James Wilhite, Augustine Wilson, Blake Young Wilson, Michael Wilson, Lindsey Winer, Amanda Witte, Zachary Wolner, Jeff Wong, Matthew Woodward, John Worth, Jonathan Wright, Michael Wyderko, Grace Xiong, Antonio Yaghy, Xiaofeng Yan, Daniel Yanes, Derek Yang, Linlin Yang, Samuel Yap, Kevin Yen, Isaac Yeung, Emily Yin, Peter You, Ann Young, Christopher Young, Steven Young, Elliot Yu, Guo Yu, Helena Yu, Alice Yu, Alex Yuan, James Yuan, Shuai Yuan, Mohammad Zahid, Rachil Zaia, Mohammad Zaidi, Theodore Zaki, Alan Zats, Bartosz Zawada, Michelle Zeidan, Pamela Zelnick, Ehud Zeltzer, Steven Qian Zhang, Bill Zhang, Zhihang Zhang, Jennifer Zhao, Xiao Zheng, Xiya Zhu, Hairan Zhu, Rhushi Ziradkar, Mark Zivney, Marcin Zuberek, Omry Zuckerman, Kathleen Zuniga, and Frank Zurfley.

This page intentionally left blank

How to Contribute

This version of First Aid for the USMLE Step 1 incorporates thousands of contributions and improvements suggested by student and faculty advisors. We invite you to participate in this process. Please send us your suggestions for:

- Study and test-taking strategies for the USMLE Step 1
- New facts, mnemonics, diagrams, and clinical images
- High-yield topics that may appear on future Step 1 exams
- Personal ratings and comments on review books, question banks, apps, videos, and courses

For each new entry incorporated into the next edition, you will receive up to a $\$ 20$ Amazon.com gift card as well as personal acknowledgment in the next edition. Significant contributions will be compensated at the discretion of the authors. Also, let us know about material in this edition that you feel is low yield and should be deleted.

All submissions including potential errata should ideally be supported with hyperlinks to a dynamically updated Web resource such as UpToDate, AccessMedicine, and ClinicalKey.

We welcome potential errata on grammar and style if the change improves readability. Please note that First Aid style is somewhat unique; for example, we have fully adopted the AMA Manual of Style recommendations on eponyms ("We recommend that the possessive form be omitted in eponymous terms") and on abbreviations (no periods with eg, ie, etc).

The preferred way to submit new entries, clarifications, mnemonics, or potential corrections with a valid, authoritative reference is via our website: www.firstaidteam.com.

This website will be continuously updated with validated errata, new high-yield content, and a new online platform to contribute suggestions, mnemonics, diagrams, clinical images, and potential errata.

Alternatively, you can email us at: firstaidteam@yahoo.com.
Contributions submitted by May 15, 2016, receive priority consideration for the 2017 edition of First Aid for the USMLE Step 1. We thank you for taking the time to share your experience and apologize in advance that we cannot individually respond to all contributors as we receive thousands of contributions each year.

All contributions become property of the authors and are subject to editing and reviewing. Please verify all data and spellings carefully. Contributions should be supported by at least two high-quality references.

Check our website first to avoid duplicate submissions. In the event that similar or duplicate entries are received, only the first complete entry received with valid, authoritative references will be credited. Please follow the style, punctuation, and format of this edition as much as possible.

> JOIN THE FIRST AID TEAM

The First Aid author team is pleased to offer part-time and full-time paid internships in medical education and publishing to motivated medical students and physicians. Internships range from a few months (eg, a summer) up to a full year. Participants will have an opportunity to author, edit, and earn academic credit on a wide variety of projects, including the popular First Aid series.

For 2016, we are actively seeking passionate medical students and graduates with a specific interest in improving our medical illustrations, expanding our database of medical photographs, and developing the software that supports our crowdsourcing platform. We welcome people with prior experience and talent in these areas. Relevant skills include clinical imaging, digital photography, digital asset management, information design, medical illustration, graphic design, and software development.

Please email us at firstaidteam@yahoo.com with a CV and summary of your interest or sample work.

How to Use This Book

CONGRATULATIONS: You now possess the book that has guided nearly two million students to USMLE success for over 25 years. With appropriate care, the binding should last the useful life of the book. Keep in mind that putting excessive flattening pressure on any binding will accelerate its failure. If you purchased a book that you believe is defective, please immediately return it to the place of purchase. If you encounter ongoing issues, you can also contact Customer Service at our publisher, McGraw-Hill Education, at https://www.mheducation.com/contact.html.

START EARLY: Use this book as early as possible while learning the basic medical sciences. The first semester of your first year is not too early! Devise a study plan by reading Section I: Guide to Efficient Exam Preparation, and make an early decision on resources to use by checking Section IV: Top-Rated Review Resources. Note that First Aid is neither a textbook nor a comprehensive review book, and it is not a panacea for inadequate preparation.

LET FIRST AID BE YOUR GUIDE: Annotate material from other resources, such as class notes or comprehensive textbooks, into your book. This will keep all the high-yield information you need in one place. Other tips on keeping yourself organized:

- For best results, use fine-tipped ballpoint pens (eg, BIC Pro+, Uni-Ball Jetstream Sports, Pilot Drawing Pen, Zebra F-301). If you like gel pens, try Pentel Slicci, and for markers that dry almost immediately, consider Staedtler Triplus Fineliner, Pilot Drawing Pen, and Sharpies.
- Consider using pens with different colors of ink to indicate different sources of information (eg, green for UWorld Step 1 Qbank, blue for USMLE-Rx Step 1 Qmax).
- Choose highlighters that are bright and dry quickly to minimize smudging and bleeding through the page (eg, Tombow Kei Coat, Sharpie Gel).
- Many students de-spine their book and get it 3-hole-punched. This will allow you to insert materials from other sources, such as course syllabi.

INTEGRATE STUDY WITH CASES, FLASH CARDS, AND QUESTIONS: To broaden your learning strategy, consider integrating your First Aid study with case-based reviews (eg, First Aid Cases for the USMLE Step 1), flash cards (eg, First Aid Flash Facts), and practice questions (eg, the USMLE-Rx Step 1 Qmax). Read the chapter in the book, then test your comprehension by using cases, flash cards, and questions that cover the same topics. Maintain access to more comprehensive resources (eg, First Aid for the Basic Sciences: General Principles and Organ Systems and First Aid Express videos) for deeper review as needed.

PRIME YOUR MEMORY: Return to your annotated Sections II and III several days before taking the USMLE Step 1. The book can serve as a useful way of retaining key associations and keeping high-yield facts fresh in your memory just prior to the exam. The Rapid Review section includes high-yield topics to help guide your studying.

CONTRIBUTE TO FIRST AID: Reviewing the book immediately after your exam can help us improve the next edition. Decide what was truly high and low yield and send us your comments. Feel free to send us scanned images from your annotated First Aid book as additional support. Of course, always remember that all examinees are under agreement with the NBME to not disclose the specific details of copyrighted test material.

Selected USMLE Laboratory Values

* = Included in the Biochemical Profile (SMA-12)

Blood, Plasma, Serum	Reference Range	SI Reference Intervals
*Alanine aminotransferase (ALT, GPT at $30^{\circ} \mathrm{C}$)	8-20 U/L	8-20 U/L
Amylase, serum	25-125 U/L	25-125 U/L
*Aspartate aminotransferase (AST, GOT at $30^{\circ} \mathrm{C}$)	8-20 U/L	8-20 U/L
Bilirubin, serum (adult) Total // Direct	$0.1-1.0 \mathrm{mg} / \mathrm{dL} \mathrm{//} 0.0-0.3 \mathrm{mg} / \mathrm{dL}$	$2-17 \mu \mathrm{~mol} / \mathrm{L} / / \mathrm{0}-5 \mu \mathrm{~mol} / \mathrm{L}$
*Calcium, serum (Total)	$8.4-10.2 \mathrm{mg} / \mathrm{dL}$	$2.1-2.8 \mathrm{mmol} / \mathrm{L}$
* Cholesterol, serum (Total)	$<200 \mathrm{mg} / \mathrm{dL}$	$<5.2 \mathrm{mmol} / \mathrm{L}$
*Creatinine, serum (Total)	$0.6-1.2 \mathrm{mg} / \mathrm{dL}$	53-106 $\mu \mathrm{mol} / \mathrm{L}$
Electrolytes, serum Sodium Chloride * Potassium Bicarbonate Magnesium	136-145 mEq/L 95-105 mEq/L $3.5-5.0 \mathrm{mEq} / \mathrm{L}$ $22-28 \mathrm{mEq} / \mathrm{L}$ $1.5 \mathrm{mEq} / \mathrm{L}$	136-145 mmol/L 95-105 mmol/L $3.5-5.0 \mathrm{mmol} / \mathrm{L}$ $22-28 \mathrm{mmol} / \mathrm{L}$ $0.75-1.0 \mathrm{mmol} / \mathrm{L}$
Gases, arterial blood (room air) $\begin{aligned} & \mathrm{P}_{\mathrm{O}_{2}} \\ & \mathrm{P}_{\mathrm{CO}_{2}} \\ & \mathrm{pH} \end{aligned}$	$\begin{aligned} & 75-105 \mathrm{~mm} \mathrm{Hg} \\ & 33-44 \mathrm{~mm} \mathrm{Hg} \\ & 7.35-7.45 \end{aligned}$	$\begin{aligned} & 10.0-14.0 \mathrm{kPa} \\ & 4.4-5.9 \mathrm{kPa} \\ & {\left[\mathrm{H}^{+}\right] 36-44 \mathrm{nmol} / \mathrm{L}} \end{aligned}$
*Glucose, serum	Fasting: 70-110 mg/dL 2-h postprandial: < $120 \mathrm{mg} / \mathrm{dL}$	$\begin{gathered} 3.8-6.1 \mathrm{mmol} / \mathrm{L} \\ <6.6 \mathrm{mmol} / \mathrm{L} \end{gathered}$
Growth hormone - arginine stimulation	Fasting: $<5 \mathrm{ng} / \mathrm{mL}$ provocative stimuli: $>7 \mathrm{ng} / \mathrm{mL}$	$\begin{aligned} & <5 \mu \mathrm{~g} / \mathrm{L} \\ & >7 \mu \mathrm{~g} / \mathrm{L} \end{aligned}$
Osmolality, serum	275-295 mOsm/kg	275-295 mOsm/kg
*Phosphatase (alkaline), serum (p-NPP at 30 ${ }^{\circ} \mathrm{C}$)	20-70 U/L	20-70 U/L
*Phosphorus (inorganic), serum	$3.0-4.5 \mathrm{mg} / \mathrm{dL}$	$1.0-1.5 \mathrm{mmol} / \mathrm{L}$
Prolactin, serum (hPRL)	$<20 \mathrm{ng} / \mathrm{mL}$	$<20 \mu \mathrm{~g} / \mathrm{L}$
*Proteins, serum		
Total (recumbent) Albumin Globulins	$\begin{aligned} & 6.0-7.8 \mathrm{~g} / \mathrm{dL} \\ & 3.5-5.5 \mathrm{~g} / \mathrm{dL} \\ & 2.3-3.5 \mathrm{~g} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 60-78 \mathrm{~g} / \mathrm{L} \\ & 35-55 \mathrm{~g} / \mathrm{L} \\ & 23-35 \mathrm{~g} / \mathrm{L} \end{aligned}$
* Urea nitrogen, serum (BUN)	$7-18 \mathrm{mg} / \mathrm{dL}$	$1.2-3.0 \mathrm{mmol} / \mathrm{L}$
*Uric acid, serum	$3.0-8.2 \mathrm{mg} / \mathrm{dL}$	0.18-0.48 mmol/L

Cerebrospinal Fluid	Reference Range	Sl Reference Intervals
Glucose	$40-70 \mathrm{mg} / \mathrm{dL}$	$2.2-3.9 \mathrm{mmol} / \mathrm{L}$
Hematologic		
Erythrocyte count	Male: $4.3-5.9 \mathrm{million} / \mathrm{mm}^{3}$	$4.3-5.9 \times 10^{12} / \mathrm{L}$
	Female: $3.5-5.5 \mathrm{million} / \mathrm{mm}^{3}$	$3.5-5.5 \times 10^{12} / \mathrm{L}$
Erythrocyte sedimentation rate (Westergen)	Male: $0-15 \mathrm{~mm} / \mathrm{h}$	$0-15 \mathrm{~mm} / \mathrm{h}$
	Female: $0-20 \mathrm{~mm} / \mathrm{h}$	$0-20 \mathrm{~mm} / \mathrm{h}$
Hematocrit	Male: $41-53 \%$	$0.41-0.53$
	Female: $36-46 \%$	$0.36-0.46$
Hemoglobin, blood	Male: $13.5-17.5 \mathrm{~g} / \mathrm{dL}$	$2.09-2.71 \mathrm{mmol} / \mathrm{L}$
	Female: $12.0-16.0 \mathrm{~g} / \mathrm{dL}$	$1.86-2.48 \mathrm{mmol} / \mathrm{L}$
Hemoglobin, plasma	$1-4 \mathrm{mg} / \mathrm{dL}$	$0.16-0.62 \mu \mathrm{~mol} / \mathrm{L}$
Leukocyte count and differential		
Leukocyte count	$4500-11,000 / \mathrm{mm}{ }^{3}$	$4.5-11.0 \times 10^{9} / \mathrm{L}$
Segmented neutrophils	$54-62 \%$	$0.54-0.62$
Band forms	$3-5 \%$	$0.03-0.05$
Eosinophils	$1-3 \%$	$0.01-0.03$
Basophils	$0-0.75 \%$	$0-0.0075$
Lymphocytes	$25-33 \%$	$0.25-0.33$
Monocytes	$3-7 \%$	$0.03-0.07$
Mean corpuscular hemoglobin	$25.4-34.6 \mathrm{pg} / \mathrm{cell}$	$0.39-0.54 \mathrm{fmol} / \mathrm{cell}$
Mean corpuscular volume	$80-100 \mu \mathrm{~m} 3$	$80-100 \mathrm{fL}$
Partial thromboplastin time (activated)	$25-40 \mathrm{~seconds}$	$25-40 \mathrm{~seconds}$
Platelet count	$150,000-400,000 / \mathrm{mm}^{3}$	$150-400 \times 10^{9} / \mathrm{L}$
Prothrombin time	$11-15 \mathrm{~seconds}$	$11-15 \mathrm{~seconds}$
Reticulocyte count	$0.5-1.5 \%$ of red cells	$0.005-0.015$
Sweat	$0-35 \mathrm{mmol} / \mathrm{L}$	$0-35 \mathrm{mmol} / \mathrm{L}$
Chloride	$<150 \mathrm{mg} / 24 \mathrm{~h}$	$<0.15 \mathrm{~g} / 24 \mathrm{~h}$
Urine		
Proteins, total		

First Aid Checklist for the USMLE Step 1

This is an example of how you might use the information in Section I to prepare for the USMLE Step 1. Refer to corresponding topics in Section I for more details.

Years Prior

Select top-rated review resources as study guides for first-year medical school courses.
\square Ask for advice from those who have recently taken the USMLE Step 1.

Months Prior

Review computer test format and registration information.Register six months in advance. Carefully verify name and address printed on scheduling permit. Call Prometric or go online for test date ASAP.\square Define goals for the USMLE Step 1 (eg, comfortably pass, beat the mean, ace the test).
\square Set up a realistic timeline for study. Cover less crammable subjects first. Review subject-by-subject emphasis and clinical vignette format.Simulate the USMLE Step 1 to pinpoint strengths and weaknesses in knowledge and test-taking skills.Evaluate and choose study methods and materials (eg, review books, question banks).

Weeks Prior

\square Simulate the USMLE Step 1 again. Assess how close you are to your goal.
\square Pinpoint remaining weaknesses. Stay healthy (exercise, sleep).
\square Verify information on admission ticket (eg, location, date)

One Week Prior

Remember comfort measures (loose clothing, earplugs, etc).Work out test site logistics such as location, transportation, parking, and lunch.Call Prometric and confirm your exam appointment.
One Day Prior

Relax.Lightly review short-term material if necessary. Skim high-yield facts.Get a good night's sleep.Make sure the name printed on your photo ID appears EXACTLY the same as the name printed on your scheduling permit.
Day of Exam

Relax. Eat breakfast. Minimize bathroom breaks during the exam by avoiding excessive morning caffeine.
Analyze and make adjustments in test-taking technique. You are allowed to review notes/study material during breaks on exam day.

After the Exam

Celebrate, regardless.
Send feedback to us on our website at www.firstaidteam.com.

SECTION I

Guide to Efficient Exam Preparation

"A mind of moderate capacity which closely pursues one study must infallibly arrive at great proficiency in that study."
-Mary Shelley, Frankenstein
"Finally, from so little sleeping and so much reading, his brain dried up and he went completely out of his mind."
-Miguel de Cervantes Saavedra, Don Quixote
"Sometimes the questions are complicated and the answers are simple."
-Dr. Seuss
"He who knows all the answers has not been asked all the questions."
-Confucius

- INTRODUCTION

Relax.

This section is intended to make your exam preparation easier, not harder. Our goal is to reduce your level of anxiety and help you make the most of your efforts by helping you understand more about the United States Medical Licensing Examination, Step 1 (USMLE Step 1). As a medical student, you are no doubt familiar with taking standardized examinations and quickly absorbing large amounts of material. When you first confront the USMLE Step l, however, you may find it all too easy to become sidetracked from your goal of studying with maximal effectiveness. Common mistakes that students make when studying for Step 1 include the following:

- Starting to study (including First Aid) too late
- Starting to study intensely too early and burning out
- Starting to prepare for boards before creating a knowledge foundation
- Using inefficient or inappropriate study methods
- Buying the wrong resources or buying more resources than you can ever use
- Buying only one publisher's review series for all subjects
- Not using practice examinations to maximum benefit
- Not understanding how scoring is performed or what the score means
- Not using review books along with your classes
- Not analyzing and improving your test-taking strategies
- Getting bogged down by reviewing difficult topics excessively
- Studying material that is rarely tested on the USMLE Step 1
- Failing to master certain high-yield subjects owing to overconfidence
- Using First Aid as your sole study resource
- Trying to prepare for it all alone

In this section, we offer advice to help you avoid these pitfalls and be more productive in your studies.

- USMLE STEP 1 —THE BASICS

The USMLE Step 1 is the first of three examinations that you must pass in order to become a licensed physician in the United States. The USMLE is a joint endeavor of the National Board of Medical Examiners (NBME) and the Federation of State Medical Boards (FSMB). The USMLE serves as the single examination system for US medical students and international medical graduates (IMGs) seeking medical licensure in the United States.

The Step 1 exam includes test items drawn from the following content areas ${ }^{1}$:

DISCIPLINE

Behavioral Sciences
Biochemistry
Genetics
Gross Anatomy \& Embryology
Histology \& Cell Biology
Microbiology \& Immunology
Nutrition
Pathology
Pharmacology
Physiology

ORGAN SYSTEM

Behavioral Health \& Nervous Systems/Special Senses
Biostatistics \& Epidemiology/ Population Health
Blood \& Lymphoreticular System
Cardiovascular System
Endocrine System
Gastrointestinal System
General Principles of Foundational Science
Immune System
Multisystem Processes \& Disorders
Musculoskeletal, Skin, \&
Subcutaneous Tissue
Renal/Urinary System
Reproductive System
Respiratory System

In 2015, a new, detailed, 31-page content outline was released. However, it is too early to say how useful the information will be in determining high-yield topics.

How Is the Computer-Based Test (CBT) Structured?

The CBT Step 1 exam consists of one "optional" tutorial/simulation block and seven "real" question blocks of 44 questions each for a total of 308 questions, timed at 60 minutes per block. A short 11 -question survey follows the last question block. The computer begins the survey with a prompt to proceed to the next block of questions.

Once an examinee finishes a particular question block on the CBT, he or she must click on a screen icon to continue to the next block. Examinees cannot go back and change their answers to questions from any previously completed block. However, changing answers is allowed within a block of questions as long as the block has not been ended and if time permits - unless the questions are part of a sequential item test set (see p. 4).

What Is the CBT Like?

Given the unique environment of the CBT, it's important that you become familiar ahead of time with what your test-day conditions will be like. In fact, you can easily add up to 15 minutes to your break time! This is because the 15 -minute tutorial offered on exam day may be skipped if you are already

- If you know the format, you can skip the tutorial and add up to 15 minutes to your break time!
- Keyboard shortcuts:
- A, B, etc—letter choices
- Enter or spacebar-move to next question
- Esc—exit pop-up Lab and Exhibit windows
- Alt-T—countdown timers for current session and overall test
> - Heart sounds are tested via media questions. Make sure you know how different heart diseases sound on auscultation.
- Be sure to test your headphones during the tutorial.
familiar with the exam procedures and the testing interface. The 15 minutes is then added to your allotted break time of 45 minutes for a total of 1 hour of potential break time. You can download the tutorial from the USMLE website and do it before test day. This tutorial interface is very similar to the one you will use in the exam; learn it now and you can skip taking it during the exam, giving you up to 15 extra minutes of break time. You can also gain experience with the CBT format by taking the 132 practice questions available online or by signing up for a practice session at a test center.

For security reasons, examinees are not allowed to bring any personal electronic equipment into the testing area. This includes both digital and analog watches, iPods, tablets, calculators, cell phones, and electronic paging devices. Examinees are also prohibited from carrying in their books, notes, pens/pencils, and scratch paper. Food and beverages are also prohibited in the testing area. The testing centers are monitored by audio and video surveillance equipment. However, most testing centers allot each examinee a small locker outside the testing area in which he or she can store snacks, beverages, and personal items.

The typical question screen in the CBT consists of a question followed by a number of choices on which an examinee can click, together with several navigational buttons on the top of the screen. There is a countdown timer on the lower left corner of the screen as well. There is also a button that allows the examinee to mark a question for review. If a given question happens to be longer than the screen (which occurs very rarely), a scroll bar will appear on the right, allowing the examinee to see the rest of the question. Regardless of whether the examinee clicks on an answer choice or leaves it blank, he or she must click the "Next" button to advance to the next question.

The USMLE features a small number of media clips in the form of audio and/or video. There may even be a question with a multimedia heart sound simulation. In these questions, a digital image of a torso appears on the screen, and the examinee directs a digital stethoscope to various auscultation points to listen for heart and breath sounds. The USMLE orientation materials include several practice questions in these formats. During the exam tutorial, examinees are given an opportunity to ensure that both the audio headphones and the volume are functioning properly. If you are already familiar with the tutorial and planning on skipping it, first skip ahead to the section where you can test your headphones. After you are sure the headphones are working properly, proceed to the exam.

The USMLE also has a sequential item test format. These questions are grouped together in the list of questions on the left side of the screen and must be completed in order. After an examinee answers the first question, he or she will be given the option to proceed to the next item but will be warned that the answer to the first question will be locked. After proceeding, examinees will not be able to change the answer selected for that question.

The question stem and the answer chosen will be available to the examinee as he or she answers the next question(s) in the sequence.

The examinee can call up a window displaying normal laboratory values. In order to do so, he or she must click the "Lab" icon on the top part of the screen. Afterward, the examinee will have the option to choose between "Blood," "Cerebrospinal," "Hematologic," or "Sweat and Urine." The normalvalues screen may obscure the question if it is expanded. The examinee may have to scroll down to search for the needed lab values. You might want to memorize some common lab values so you spend less time on questions that require you to analyze these.

The CBT interface provides a running list of questions on the left part of the screen at all times. The software also permits examinees to highlight or cross out information by using their mouse. Finally, there is a "Notes" icon on the top part of the screen that allows students to write notes to themselves for review at a later time. Being familiar with these features can save time and may help you better organize the information you need to answer a question.

For those who feel they might benefit, the USMLE offers an opportunity to take a simulated test, or "CBT Practice Session" at a Prometric center. Students are eligible to register for this three-and-one-half-hour practice session after they have received their scheduling permit.

The same USMLE Step 1 sample test items (150 questions) available on the USMLE website, www.usmle.org, are used at these sessions. No new items will be presented. The session is divided into a short tutorial and three l-hour blocks of 44 test items each at a cost of $\$ 75$, if your testing region is in the United States or Canada. Students receive a printed percent-correct score after completing the session. No explanations of questions are provided.

You may register for a practice session online at www.usmle.org. A separate scheduling permit is issued for the practice session. Students should allow two weeks for receipt of this permit.

How Do I Register to Take the Exam?

Prometric test centers offer Step 1 on a year-round basis, except for the first two weeks in January and major holidays. The exam is given every day except Sunday at most centers. Some schools administer the exam on their own campuses. Check with the test center you want to use before making your exam plans.

US students can apply to take Step 1 at the NBME website. This application allows you to select one of 12 overlapping three-month blocks in which to be tested (eg, April-May-June, June-July-August). Choose your three-month eligibility period wisely. If you need to reschedule outside your initial three-

Illustrations on the test include:

- Gross specimen photos
- Histology slides
- Medical imaging (eg, x-ray, (T, MRI)
- Electron micrographs
- Line drawings

> Familiarize yourself with the commonly tested lab values.

- Ctrl-Alt-Delete are the keys of death during the exam. Don't touch them at the same time!
> - The Prometric Web site will display a calendar with open test dates.
- The confirmation emails that Prometric and NBME send are not the same as the scheduling permit.

[^0]month period, you can request a one-time extension of eligibility for the next contiguous three-month period, and pay a rescheduling fee. The application also includes a photo ID form that must be certified by an official at your medical school to verify your enrollment. After the NBME processes your application, it will send you a scheduling permit.

The scheduling permit you receive from the NBME will contain your USMLE identification number, the eligibility period in which you may take the exam, and two additional numbers. The first of these is known as your "scheduling number." You must have this number in order to make your exam appointment with Prometric. The second number is known as the "candidate identification number," or CIN. Examinees must enter their CINs at the Prometric workstation in order to access their exams. However, you will not be allowed to bring your permit into the exam and will be asked to copy your CIN onto your scratch paper. Prometric has no access to the codes. Do not lose your permit! You will not be allowed to take the exam unless you present this permit along with an unexpired, government-issued photo ID that includes your signature (such as a driver's license or passport). Make sure the name on your photo ID exactly matches the name that appears on your scheduling permit.

Once you receive your scheduling permit, you may access the Prometric website or call Prometric's toll-free number to arrange a time to take the exam. You may contact Prometric two weeks before the test date if you want to confirm identification requirements. Although requests for taking the exam may be completed more than six months before the test date, examinees will not receive their scheduling permits earlier than six months before the eligibility period. The eligibility period is the three-month period you have chosen to take the exam. Most medical students choose the April-June or June-August period. Because exams are scheduled on a "first-come, firstserved" basis, it is recommended that you contact Prometric as soon as you receive your permit. After you've scheduled your exam, it's a good idea to confirm your exam appointment with Prometric at least one week before your test date. Prometric will provide appointment confirmation on a print-out and by email. Be sure to read the 2015 USMLE Bulletin of Information for further details.

What If I Need to Reschedule the Exam?

You can change your test date and/or center by contacting Prometric at l-800-MED-EXAM (1-800-633-3926) or www.prometric.com. Make sure to have your CIN when rescheduling. If you are rescheduling by phone, you must speak with a Prometric representative; leaving a voice-mail message will not suffice. To avoid a rescheduling fee, you will need to request a change at least 31 calendar days before your appointment. Please note that your rescheduled test date must fall within your assigned three-month eligibility period.

When Should I Register for the Exam?

You should plan to register as far in advance as possible ahead of your desired test date (eg, six months), but, depending on your particular test center, new dates and times may open closer to the date. Scheduling early will guarantee that you will get either your test center of choice or one within a 50 -mile radius of your first choice. For most US medical students, the desired testing window is in June, since most medical school curricula for the second year end in May or June. Thus, US medical students should plan to register before January in anticipation of a June test date. The timing of the exam is more flexible for IMGs, as it is related only to when they finish exam preparation. Talk with upperclassmen who have already taken the test so you have reallife experience from students who went through a similar curriculum, then formulate your own strategy.

Where Can ITake the Exam?

Your testing location is arranged with Prometric when you call for your test date (after you receive your scheduling permit). For a list of Prometric locations nearest you, visit www.prometric.com.

How Long Will I Have to Wait Before I Get My Scores?

The USMLE reports scores in three to four weeks, unless there are delays in score processing. Examinees will be notified via email when their scores are available. By following the online instructions, examinees will be able to view, download, and print their score report. Additional information about score timetables and accessibility is available on the official USMLE website.

What About Time?

Time is of special interest on the CBT exam. Here's a breakdown of the exam schedule:

$$
\begin{array}{ll}
15 \text { minutes } & \text { Tutorial (skip if familiar with test format and features) } \\
7 \text { hours } & \text { Seven 60-minute question blocks } \\
45 \text { minutes } & \text { Break time (includes time for lunch) }
\end{array}
$$

The computer will keep track of how much time has elapsed on the exam. However, the computer will show you only how much time you have remaining in a given block. Therefore, it is up to you to determine if you are pacing yourself properly (at a rate of approximately one question per 78 seconds).

The computer will not warn you if you are spending more than your allotted time for a break. You should therefore budget your time so that you can take a short break when you need one and have time to eat. You must be especially careful not to spend too much time in between blocks (you should keep track

- Register six months in advance for seating and scheduling preference.

Gain extra break time by skipping the tutorial or finishing a block early.

[^1][^2]of how much time elapses from the time you finish a block of questions to the time you start the next block). After you finish one question block, you'll need to click to proceed to the next block of questions. If you do not click within 30 seconds, you will automatically be entered into a break period.

Forty-five minutes is the minimum break time for the day, but you are not required to use all of it, nor are you required to use any of it. You can gain extra break time (but not time for the question blocks) by skipping the tutorial or by finishing a block ahead of the allotted time. Any time remaining on the clock when you finish a block gets added to your remaining break time. Once a new question block has been started, you may not take a break until you have reached the end of that block. If you do so, this will be recorded as an "unauthorized break" and will be reported on your final score report.

Finally, be aware that it may take a few minutes of your break time to "check out" of the secure resting room and then "check in" again to resume testing, so plan accordingly. The "check-in" process may include fingerprints, pocket checks, and metal detector scanning. Some students recommend pocketless clothing on exam day to streamline the process.

If I Freak Out and Leave, What Happens to My Score?

Your scheduling permit shows a CIN that you will need to enter to start your exam. Entering the CIN is the same as breaking the seal on a test book, and you are considered to have started the exam when you do so. However, no score will be reported if you do not complete the exam. In fact, if you leave at any time from the start of the test to the last block, no score will be reported. The fact that you started but did not complete the exam, however, will appear on your USMLE score transcript. Even though a score is not posted for incomplete tests, examinees may still get an option to request that their scores be calculated and reported if they desire; unanswered questions will be scored as incorrect.

The exam ends when all question blocks have been completed or when their time has expired. As you leave the testing center, you will receive a printed test-completion notice to document your completion of the exam. To receive an official score, you must finish the entire exam.

What Types of Questions Are Asked?

One-best-answer multiple choice items (either singly or as part of a sequential item set) are the only question type on the exam. Most questions consist of a clinical scenario or a direct question followed by a list of five or more options. You are required to select the single best answer among the options given. There are no "except," "not," or matching questions on the exam. A number of options may be partially correct, in which case you must select the option that best answers the question or completes the statement. Additionally, keep in mind that experimental questions may appear on the exam, which do not affect your score.

How Is the Test Scored?

Each Step 1 examinee receives an electronic score report that includes the examinee's pass/fail status, a three-digit test score, and a graphic depiction of the examinee's performance by discipline and organ system or subject area. The actual organ system profiles reported may depend on the statistical characteristics of a given administration of the examination.

The USMLE score report is divided into two sections: performance by discipline and performance by organ system. Each of the 308 questions (minus experimental questions) is tagged according to any or all relevant content areas. Your performance in each discipline and each organ system is represented by a line of X's, where the width of the line is related to the confidence interval for your performance, which is often a direct consequence of the total number of questions for each discipline/system. If any lines have an asterisk $\left(^{*}\right)$ at the far right, this means your performance was exemplary in that area - not necessarily representing a perfect score, but often close to it.

The NBME provides a three-digit test score based on the total number of items answered correctly on the examination (see Figure 1). Your three-digit score will be qualified by the mean and standard deviation of US and Canadian medical school first-time examinees. The translation from the lines of X's and number of asterisks you receive on your report to the three-digit score is unclear, but higher three-digit scores are associated with more asterisks.

Since some questions may be experimental and are not counted, it is possible to get different scores for the same number of correct answers. The most recent mean score was 230 with a standard deviation of 20 .

A score of 192 or higher is required to pass Step 1. The NBME does not report the minimum number of correct responses needed to pass, but estimates that it is roughly $60-70 \%$. The NBME may adjust the minimum passing score in the future, so please check the USMLE website or www.firstaidteam.com for updates.

According to the USMLE, medical schools receive a listing of total scores and pass/fail results plus group summaries by discipline and organ system. Students can withhold their scores from their medical school if they wish. Official USMLE transcripts, which can be sent on request to residency programs, include only total scores, not performance profiles.

FIGURE 1. Scoring Scale for the USMLE Step 1.

Practice questions may be easier than the actual exam.

Consult the USMLE website or your medical school for the most current and accurate information regarding the examination.

What Does My Score Mean?
The most important point with the Step 1 score is passing versus failing. Passing essentially means, "Hey, you're on your way to becoming a fully licensed doc." As Table 1 shows, the majority of students pass the exam, so remember, we told you to relax.

Beyond that, the main point of having a quantitative score is to give you a sense of how well you've done on the exam and to help schools and residencies rank their students and applicants, respectively.

Official NBME/USMLE Resources

The NBME offers a Comprehensive Basic Science Examination (CBSE) for practice that is a shorter version of the Step l. The CBSE contains four blocks of 50 questions each and covers material that is typically learned during the basic science years. Scores range from 45 to 95 and correlate with a Step 1 equivalent (see Table 2). The standard error of measurement is approximately 3 points, meaning a score of 80 would estimate the student's proficiency is somewhere between 77 and 83 . In other words, the actual Step 1 score could be predicted to be between 218 and 232. Of course, these values do not correlate exactly, and they do not reflect different test preparation methods. Many schools use this test to gauge whether a student is expected to pass Step 1. If this test is offered by your school, it is usually conducted at the end of regular didactic time before any dedicated Step 1 preparation. If you do not encounter the CBSE before your dedicated study time, you need not worry about taking it. Use the information to help set realistic goals and timetables for your success.

TA B LE 1. Passing Rates for the 2013-2014 USMLE Step 1. ${ }^{2}$

	2013		$\mathbf{2 0 1 4}$	
	No. Tested	\% Passing	No. Tested	$\%$ Passing
Allopathic lst takers	19,108	97%	19,582	96%
Repeaters	915	72%	812	68%
Allopathic total	20,023	95%	20,394	95%
Osteopathic lst takers	2,680	94%	2,810	93%
Repeaters	46	74%	36	69%
Osteopathic total	2,726	94%	2,846	93%
Total US/Canadian	22,749	95%	23,240	95%
IMG lst takers	14,649	79%	15,149	78%
Repeaters	3,772	44%	2,889	38%
IMG total	18,421	72%	18,038	72%
Total Step l examinees	41,170	85%	41,278	85%

The NBME also offers six forms of Comprehensive Basic Science SelfAssessment (CBSSA). Students who prepared for the exam using this webbased tool reported that they found the format and content highly indicative of questions tested on the actual exam. In addition, the CBSSA is a fair predictor of USMLE performance (see Table 3). The test interface, however, does not match the actual USMLE test interface, so practicing with these forms alone is not advised.

The CBSSA exists in two formats: standard-paced and self-paced, both of which consist of four sections of 50 questions each (for a total of 200 multiple choice items). The standard-paced format allows the user up to 65 minutes to complete each section, reflecting time limits similar to the actual exam. By contrast, the self-paced format places a 4:20 time limit on answering all multiple choice questions. Every few years, a new form is released and an older one is retired, reflecting changes in exam content.

Keep in mind that this bank of questions is available only on the web. The NBME requires that users \log on, register, and start the test within 30 days of registration. Once the assessment has begun, users are required to complete the sections within 20 days. Following completion of the questions, the CBSSA provides a performance profile indicating the user's relative strengths and weaknesses, much like the report profile for the USMLE Step 1 exam. The profile is scaled with an average score of 500 and a standard deviation of 100. Please note that the CBSSAs do not list the correct answers to the questions at the end of the session. However, forms can be purchased with an extended feedback option; these tests show you which questions you answered incorrectly, but do not show you the correct answer or explain why your choice was wrong. Feedback from the self-assessment takes the form of a performance profile and nothing more. The NBME charges $\$ 50$ for assessments without feedback and $\$ 60$ for assessments with expanded feedback. The fees are payable by credit card or money order. For more information regarding the CBSE and the CBSSA, visit the NBME's website at www.nbme.org.

The NBME scoring system is weighted for each assessment exam. While some exams seem more difficult than others, the score reported takes into account these inter-test differences when predicting Step l performance. Also, while many students report seeing Step 1 questions "word-for-word" out of the assessments, the NBME makes special note that no live USMLE questions are shown on any NBME assessment.

Lastly, the International Foundations of Medicine (IFOM) offers a Basic Science Examination (BSE) practice exam at participating Prometric test centers for $\$ 200$. Students may also take the self-assessment test online for $\$ 35$ through the NBME's website. The IFOM BSE is intended to determine an examinee's relative areas of strength and weakness in general areas of basic science - not to predict performance on the USMLE Step 1 exam - and the content covered by the two examinations is somewhat different. However, because there is substantial overlap in content coverage and many IFOM items were previously used on the USMLE Step 1, it is possible to roughly

TA BLE 2. CBSE to USMLE Score Prediction.

CBSE Score	Step 1 Equivalent
≥ 94	≥ 260
92	255
90	250
88	245
86	240
84	235
82	230
80	225
78	220
76	215
74	210
72	205
70	200
68	195
66	190
64	185
62	180
60	175
58	170
56	165
54	160
52	155
50	150
48	145
46	140
≤ 44	≤ 135

TABLE 3. CBSSA to USMLE Score Prediction.

CBSSA Score	Approximate USMLE Step 1 Score
150	153
200	164
250	175
300	185
350	196
400	207
450	217
500	228
550	239
600	249
650	260
700	271
750	281
800	292

- Fourth-year medical students have the best feel for how Step 1 scores factor into the residency application process.
- Some competitive residency programs place more weight on Step 1 scores when choosing candidates to interview.
project IFOM performance onto the USMLE Step l score scale. More information is available at http://www.nbme.org/ifom/.

DEFINING YOUR GOAL

It is useful to define your own personal performance goal when approaching the USMLE Step l. Your style and intensity of preparation can then be matched to your goal. Furthermore, your goal may depend on your school's requirements, your specialty choice, your grades to date, and your personal assessment of the test's importance. Do your best to define your goals early so that you can prepare accordingly.

Certain highly competitive residency programs, such as those in plastic surgery and orthopedic surgery, have acknowledged their use of Step 1 scores in the selection process. In such residency programs, greater emphasis may be placed on attaining a high score, so students who seek to enter these programs may wish to consider aiming for a very high score on the Step 1 exam (see Figure 2). At the same time, your Step 1 score is only one of a number of factors that are assessed when you apply for residency. In fact, many residency programs value other criteria such as letters of recommendation, third-year clerkship grades, honors, and research experience more than a high score on Step l. Fourth-year medical students who have recently completed the residency application process can be a valuable resource in this regard.

EXCELLING IN THE PRECLINICAL YEARS

Many students feel overwhelmed during the first few weeks of medical school and struggle to find a workable system. Strategies that worked during your undergraduate years may or may not work as you prepare for the USMLE

FIGURE 2. Median USMLE Step 1 Score by Specialty for Matched US Seniors. ${ }^{\text {a }}$

Step l. Below are three study methods to use during the preclinical years and their effectiveness for Step 1 preparation. Regardless of your choice, the foundation of knowledge you build during your basic science years is the most important resource for success on the USMLE Step 1.

Highlight, Read, and Reread

The most passive of the three methods, this generally consists of sitting through lectures and highlighting relevant material (sometimes in an assortment of colors). Notes are jotted in the margins, but the general bulk of information is in the same order presented by the various lecturers. Students then go home and reread the notes, focusing on the highlights. It is difficult to test integration of concepts. These notes (usually in the thousands of pages) are almost useless for Step 1 preparation.

Flash cards

There is no shortage of flash card applications, from make-your-own cards to purchasable premade decks. Self-made flash cards, if done correctly, offer the ability to objectively test necessary facts. Written in an open-ended format and coupled with spaced repetition, they train both recognition and recall. Apps exist for various smartphones and tablets, so the flash cards are always accessible. However, the ease of quickly creating digital cards and sharing can lead to flash card overload (it is unsustainable to make 50 flash cards per lecture!). Even at a modest pace, the thousands upon thousands of cards are too many for Step 1 preparation. Unless you have specified high-yield cards (and checked the content with high-yield resources), stick to premade cards by reputable sources that curate the vast amount of knowledge for you.

Tables and Summaries

This is the most active (and time intensive) form of learning. It consists of integrating the pertinent information from paragraphs on each subject into tables that cut across topics within the same category. The key is to synthesize the sequentially presented material. Sensitive and specific findings should be highlighted. While many review sources offer this material in various styles and formats, your own class notes may in fact be concise enough to use as an adjunct for Step 1 preparation, and they have the added benefit of being organized to your liking.

- Watch out for flash card overload!

- TIMELINE FOR STUDY

Before Starting

Your preparation for the USMLE Step 1 should begin when you enter medical school. Organize and commit to studying from the beginning so that when the time comes to prepare for the USMLE, you will be ready with a strong foundation.

- Customize your schedule. Tackle your weakest section first.
- "Crammable" subjects should be covered later and less crammable subjects earlier.

Make a Schedule

After you have defined your goals, map out a study schedule that is consistent with your objectives, your vacation time, the difficulty of your ongoing coursework, and your family and social commitments (see Figure 3). Determine whether you want to spread out your study time or concentrate it into 14 -hour study days in the final weeks. Then factor in your own history in preparing for standardized examinations (eg, SAT, MCAT). Talk to students at your school who have recently taken Step 1. Ask them for their study schedules, especially those who have study habits and goals similar to yours.

Typically, US medical schools allot between four and eight weeks for dedicated Step 1 preparation. The time you dedicate to exam preparation will depend on your target score as well as your success in preparing yourself during the first two years of medical school. Some students reserve about a week at the end of their study period for final review; others save just a few days. When you have scheduled your exam date, do your best to adhere to it. Studies show that a later testing date does not translate into a higher score, so avoid pushing back your test date without good reason. ${ }^{3}$

Make your schedule realistic, and set achievable goals. Many students make the mistake of studying at a level of detail that requires too much time for a comprehensive review - reading Gray's Anatomy in a couple of days is not a realistic goal! Have one catch-up day per week of studying. No matter how well you stick to your schedule, unexpected events happen. But don't let yourself procrastinate because you have catch-up days; stick to your schedule as closely as possible and revise it regularly on the basis of your actual progress.

FIGURE 3. Typical Timeline for the USMLE Step 1.

Be careful not to lose focus. Beware of feelings of inadequacy when comparing study schedules and progress with your peers. Avoid others who stress you out. Focus on a few top-rated resources that suit your learning style - not on some obscure books your friends may pass down to you. Accept the fact that you cannot learn it all.

You will need time for uninterrupted and focused study. Plan your personal affairs to minimize crisis situations near the date of the test. Allot an adequate number of breaks in your study schedule to avoid burnout. Maintain a healthy lifestyle with proper diet, exercise, and sleep.

Another important aspect of your preparation is your studying environment. Study where you have always been comfortable studying. Be sure to include everything you need close by (review books, notes, coffee, snacks, etc). If you're the kind of person who cannot study alone, form a study group with other students taking the exam. The main point here is to create a comfortable environment with minimal distractions.

Year(s) Prior

The knowledge you gained during your first two years of medical school and even during your undergraduate years should provide the groundwork on which to base your test preparation. Student scores on NBME subject tests (commonly known as "shelf exams") have been shown to be highly correlated with subsequent Step 1 scores. ${ }^{4}$ Moreover, undergraduate science GPAs as well as MCAT scores are strong predictors of performance on the Step 1 exam. ${ }^{5}$

We also recommend that you buy highly rated review books early in your first year of medical school and use them as you study throughout the two years. When Step 1 comes along, these books will be familiar and personalized to the way in which you learn. It is risky and intimidating to use unfamiliar review books in the final two or three weeks preceding the exam. Some students find it helpful to personalize and annotate First Aid throughout the curriculum.

Months Prior

Review test dates and the application procedure. Testing for the USMLE Step 1 is done on a year-round basis. If you have disabilities or special circumstances, contact the NBME as early as possible to discuss test accommodations (see the Section I Supplement at www.firstaidteam.com/bonus).

Use this time to finalize your ideal schedule. Consider upcoming breaks and whether you want to relax or study. Work backward from your test date to make sure you finish at least one question bank. Also add time to redo missed or flagged questions (which may be half the bank). This is the time to build a structured plan with enough flexibility for the realities of life.

> Avoid burnout. Maintain proper diet, exercise, and sleep habits.

- Simulate the USMLE Step 1 under "real" conditions before beginning your studies.

> In the final two weeks, focus on review, practice questions, and endurance. Stay confident!

- One week before the test:
- Sleep according to the same schedule you'll use on test day
- Review the CBT tutorial one last time
- Call Prometric to confirm test date and time

Begin doing blocks of questions from reputable question banks under "real" conditions. Don't use tutor mode until you're sure you can finish blocks in the allotted time. It is important to continue balancing success in your normal studies with the Step 1 test preparation process.

Weeks Prior (Dedicated Preparation)

Your dedicated prep time may be one week or two months. You should have a working plan as you go into this period. Finish your school work strong, take a day off, and then get to work. Start by simulating a full-length USMLE Step 1 if you haven't yet done so. Consider doing one NBME CBSSA and the 150 free questions from the NBME website. Alternatively, you could choose 7 blocks of randomized questions from a commercial question bank. Make sure you get feedback on your strengths and weaknesses and adjust your studying accordingly. Many students study from review sources or comprehensive programs for part of the day, then do question blocks. Also, keep in mind that reviewing 46 questions can take upward of two hours. Feedback from CBSSA exams and question banks will help you focus on your weaknesses.

One Week Prior

Make sure you have your CIN (found on your scheduling permit) as well as other items necessary for the day of the examination, including a current driver's license or another form of photo ID with your signature (make sure the name on your ID exactly matches that on your scheduling permit). Confirm the Prometric testing center location and test time. Work out how you will get to the testing center and what parking and traffic problems you might encounter. Drive separately from other students taking the test on the same day, and exchange cell phone numbers in case of emergencies. If possible, visit the testing site to get a better idea of the testing conditions you will face. Determine what you will do for lunch. Make sure you have everything you need to ensure that you will be comfortable and alert at the test site. It may be beneficial to adjust your schedule to start waking up at the same time that you will on your test day. And of course, make sure to maintain a healthy lifestyle and get enough sleep.

One Day Prior

Try your best to relax and rest the night before the test. Double-check your admissions and test-taking materials as well as the comfort measures discussed earlier so that you will not have to deal with such details on the morning of the exam. At this point it will be more effective to review short-term memory material that you're already familiar with than to try to learn new material. The Rapid Review section at the end of this book is high yield for last-minute studying. Remember that regardless of how hard you have studied, you cannot know everything. There will be things on the exam that you have never even seen before, so do not panic. Do not underestimate your abilities.

Many students report difficulty sleeping the night prior to the exam. This is often exacerbated by going to bed much earlier than usual. Do whatever it takes to ensure a good night's sleep (eg, massage, exercise, warm milk, no back-lit screens at night). Do not change your daily routine prior to the exam. Exam day is not the day for a caffeine-withdrawal headache.

Morning of the Exam

On the morning of the Step 1 exam, wake up at your regular time and eat a normal breakfast. If you think it will help you, have a close friend or family member check to make sure you get out of bed. Make sure you have your scheduling permit admission ticket, test-taking materials, and comfort measures as discussed earlier. Wear loose, comfortable clothing. Plan for a variable temperature in the testing center. Arrive at the test site 30 minutes before the time designated on the admission ticket; however, do not come too early, as doing so may intensify your anxiety. When you arrive at the test site, the proctor should give you a USMLE information sheet that will explain critical factors such as the proper use of break time. Seating may be assigned, but ask to be reseated if necessary; you need to be seated in an area that will allow you to remain comfortable and to concentrate. Get to know your testing station, especially if you have never been in a Prometric testing center before. Listen to your proctors regarding any changes in instructions or testing procedures that may apply to your test site.

Finally, remember that it is natural (and even beneficial) to be a little nervous. Focus on being mentally clear and alert. Avoid panic. When you are asked to begin the exam, take a deep breath, focus on the screen, and then begin. Keep an eye on the timer. Take advantage of breaks between blocks to stretch, maybe do some jumping jacks, and relax for a moment with deep breathing or stretching.

After the Test

After you have completed the exam, be sure to have fun and relax regardless of how you may feel. Taking the test is an achievement in itself. Remember, you are much more likely to have passed than not. Enjoy the free time you have before your clerkships. Expect to experience some "reentry" phenomena as you try to regain a real life. Once you have recovered sufficiently from the test (or from partying), we invite you to send us your feedback, corrections, and suggestions for entries, facts, mnemonics, strategies, resource ratings, and the like (see p. xvii, How to Contribute). Sharing your experience will benefit fellow medical students and IMGs.

> No notes, books, calculators, pagers, cell phones, recording devices, or watches of any kind are allowed in the testing area, but they are allowed in lockers.

Arrive at the testing center 30 minutes before your scheduled exam time. If you arrive more than half an hour late, you will not be allowed to take the test.

- STUDY MATERIALS

Quality Considerations

Although an ever-increasing number of review books and software are now available on the market, the quality of such material is highly variable. Some common problems are as follows:

- Certain review books are too detailed to allow for review in a reasonable amount of time or cover subtopics that are not emphasized on the exam.
- Many sample question books were originally written years ago and have not been adequately updated to reflect recent trends.
- Some question banks test to a level of detail that you will not find on the exam.

Review Books

In selecting review books, be sure to weigh different opinions against each other, read the reviews and ratings in Section IV of this guide, examine the books closely in the bookstore, and choose carefully. You are investing not only money but also your limited study time. Do not worry about finding the "perfect" book, as many subjects simply do not have one, and different students prefer different formats. Supplement your chosen books with personal notes from other sources, including what you learn from question banks.

There are two types of review books: those that are stand-alone titles and those that are part of a series. Books in a series generally have the same style, and you must decide if that style works for you. However, a given style is not optimal for every subject.

You should also find out which books are up to date. Some recent editions reflect major improvements, whereas others contain only cursory changes. Take into consideration how a book reflects the format of the USMLE Step 1.

Practice Tests

Taking practice tests provides valuable information about potential strengths and weaknesses in your fund of knowledge and test-taking skills. Some students use practice examinations simply as a means of breaking up the monotony of studying and adding variety to their study schedule, whereas other students rely almost solely on practice. You should also subscribe to one or more high-quality question banks. In addition, students report that many current practice-exam books have questions that are, on average, shorter and less clinically oriented than those on the current USMLE Step 1.

Additionally, some students preparing for the Step l exam have started to incorporate case-based books intended primarily for clinical students on the wards or studying for the Step 2 CK exam. First Aid Cases for the USMLE Step 1 aims to directly address this need.

After taking a practice test, spend time on each question and each answer choice whether you were right or wrong. There are important teaching points in each explanation. Knowing why a wrong answer choice is incorrect is just as important as knowing why the right answer is correct. Do not panic if your practice scores are low as many questions try to trick or distract you to highlight a certain point. Use the questions you missed or were unsure about to develop focused plans during your scheduled catch-up time.

Textbooks and Course Syllabi

Limit your use of textbooks and course syllabi for Step 1 review. Many textbooks are too detailed for high-yield review and include material that is generally not tested on the USMLE Step 1 (eg, drug dosages, complex chemical structures). Syllabi, although familiar, are inconsistent across medical schools and frequently reflect the emphasis of individual faculty, which often does not correspond to that of the USMLE Step l. Syllabi also tend to be less organized than top-rated books and generally contain fewer diagrams and study questions.

- TEST-TAKING STRATEGIES

Your test performance will be influenced by both your knowledge and your test-taking skills. You can strengthen your performance by considering each of these factors. Test-taking skills and strategies should be developed and perfected well in advance of the test date so that you can concentrate on the test itself. We suggest that you try the following strategies to see if they might work for you.

Pacing

You have seven hours to complete 308 questions. Note that each one-hour block contains 44 questions. This works out to about 82 seconds per question. If you find yourself spending too much time on a question, mark the question, make an educated guess, and move on. If time permits, come back to the question later. Remember that some questions may be experimental and do not count for points (and reassure yourself that these experimental questions are the ones that are stumping you). In the past, pacing errors have been detrimental to the performance of even highly prepared examinees. The bottom line is to keep one eye on the clock at all times!

Dealing with Each Question

There are several established techniques for efficiently approaching multiple choice questions; find what works for you. One technique begins with identifying each question as easy, workable, or impossible. Your goal should be to answer all easy questions, resolve all workable questions in a

- Use practice tests to identify concepts and areas of weakness, not just facts that you missed.
- Practice! Develop your test-taking skills and strategies well before the test date.

[^3]- Go with your first hunch, unless you are certain that you are a good second-guesser.
- Be prepared to read fast and think on your feet!
- Practice questions that include case histories or descriptive vignettes are critical for Step 1 preparation.
reasonable amount of time, and make quick and intelligent guesses on all impossible questions. Most students read the stem, think of the answer, and turn immediately to the choices. A second technique is to first skim the answer choices to get a context, then read the last sentence of the question (the lead-in), and then read through the passage quickly, extracting only information relevant to answering the question. Try a variety of techniques on practice exams and see what works best for you. If you get overwhelmed, remember that a 30 -second time out to refocus may get you back on track.

Guessing

There is no penalty for wrong answers. Thus, no test block should be left with unanswered questions. A hunch is probably better than a random guess. If you have to guess, we suggest selecting an answer you recognize over one with which you are totally unfamiliar.

Changing Your Answer

The conventional wisdom is not to change answers that you have already marked unless there is a convincing and logical reason to do so-in other words, go with your "first hunch." Many question banks tell you how many questions you changed from right to wrong, wrong to wrong, and wrong to right. Use this feedback to judge how good a second-guesser you are. If you have extra time, reread the question stem and make sure you didn't misinterpret the question.

- CLINICAL VIGNETTE STRATEGIES

In recent years, the USMLE Step 1 has become increasingly clinically oriented. This change mirrors the trend in medical education toward introducing students to clinical problem solving during the basic science years. The increasing clinical emphasis on Step 1 may be challenging to those students who attend schools with a more traditional curriculum.

What Is a Clinical Vignette?

A clinical vignette is a short (usually paragraph-long) description of a patient, including demographics, presenting symptoms, signs, and other information concerning the patient. Sometimes this paragraph is followed by a brief listing of important physical findings and/or laboratory results. The task of assimilating all this information and answering the associated question in the span of one minute can be intimidating. So be prepared to read quickly and think on your feet. Remember that the question is often indirectly asking something you already know.

Strategy

Remember that Step 1 vignettes usually describe diseases or disorders in their most classic presentation. So look for cardinal signs (eg, malar rash for SLE or nuchal rigidity for meningitis) in the narrative history. Be aware that the question will contain classic signs and symptoms instead of buzzwords. Sometimes the data from labs and the physical exam will help you confirm or reject possible diagnoses, thereby helping you rule answer choices in or out. In some cases, they will be a dead giveaway for the diagnosis.

Making a diagnosis from the history and data is often not the final answer. Not infrequently, the diagnosis is divulged at the end of the vignette, after you have just struggled through the narrative to come up with a diagnosis of your own. The question might then ask about a related aspect of the diagnosed disease. Consider skimming the answer choices and lead-in before diving into a long stem. However, be careful with skimming the answer choices; going too fast may warp your perception of what the vignette is asking.

IF YOU THINK YOU FAILED

After the test, many examinees feel that they have failed, and most are at the very least unsure of their pass/fail status. There are several sensible steps you can take to plan for the future in the event that you do not achieve a passing score. First, save and organize all your study materials, including review books, practice tests, and notes. Familiarize yourself with the reapplication procedures for Step 1, including application deadlines and upcoming test dates.

Make sure you know both your school's and the NBME's policies regarding retakes. The NBME allows a maximum of six attempts to pass each Step examination. ${ }^{6}$ You may take Step 1 no more than three times within a 12 -month period. Your fourth and subsequent attempts must be at least 12 months after your first attempt at that exam and at least six months after your most recent attempt at that exam.

The performance profiles on the back of the USMLE Step 1 score report provide valuable feedback concerning your relative strengths and weaknesses. Study these profiles closely. Set up a study timeline to strengthen gaps in your knowledge as well as to maintain and improve what you already know. Do not neglect high-yield subjects. It is normal to feel somewhat anxious about retaking the test, but if anxiety becomes a problem, seek appropriate counseling.

$$
\text { Step } 1 \text { vignettes usually describe diseases or }
$$ disorders in their most classic presentation.

[^4]
- IF YOU FAILED

Even if you came out of the exam room feeling that you failed, seeing that failing grade can be traumatic, and it is natural to feel upset. Different people react in different ways: For some it is a stimulus to buckle down and study harder; for others it may "take the wind out of their sails" for a few days; and it may even lead to a reassessment of individual goals and abilities. In some instances, however, failure may trigger weeks or months of sadness, feelings of hopelessness, social withdrawal, and inability to concentrate - in other words, true clinical depression. If you think you are depressed, please seek help.

TESTING AGENCIES

- National Board of Medical Examiners (NBME) / USMLE Secretariat Department of Licensing Examination Services 3750 Market Street Philadelphia, PA 19104-3102
 (215) 590-9500 (operator) or
 (215) 590-9700 (automated information line)
 Fax: (215) 590-9457
 Email: webmail@nbme.org
 www.nbme.org

- Educational Commission for Foreign Medical Graduates (ECFMG) 3624 Market Street
Philadelphia, PA 19104-2685
(215) 386-5900

Fax: (215) 386-9196
Email: info@ecfmg.org
www.ecfmg.org

REFERENCES

1. United States Medical Licensing Examination. Available at: http:// www.usmle.org/bulletin/exam-content. Accessed October 20, 2015.
2. United States Medical Licensing Examination. 2014 Performance Data. Available at: http://www.usmle.org/performance-data/default.aspx\#2014_ step-l. Accessed October 20, 2015.
3. Pohl, Charles A., Robeson, Mary R., Hojat, Mohammadreza, and Veloski, J. Jon, "Sooner or Later? USMLE Step 1 Performance and Test Administration Date at the End of the Second Year," Academic Medicine, 2002, Vol. 77, No. 10, pp. S17-S19.
4. Holtman, Matthew C., Swanson, David B., Ripkey, Douglas R., and Case, Susan M., "Using Basic Science Subject Tests to Identify Students at Risk for Failing Step 1," Academic Medicine, 2001, Vol. 76, No. 10, pp. S48-S51.
5. Basco, William T., Jr., Way, David P., Gilbert, Gregory E., and Hudson, Andy, "Undergraduate Institutional MCAT Scores as Predictors of USMLE Step 1 Performance," Academic Medicine, 2002, Vol. 77, No. 10, pp. S13Sl6.
6. United States Medical Licensing Examination. 2014 USMLE Bulletin of Information. http://www.usmle.org/pdfs/bulletin/2014bulletin.pdf. Accessed September 26, 2014.

SECTION I SUPPLEMENT

Special Situations

Please visit www.usmle-rx.com/bonus/ to view this section.
> First Aid for theInternational MedicalGraduate> First Aid for theOsteopathic MedicalStudent12
> First Aid for the PodiatricMedical Student17
> First Aid for theStudent with aDisability19

High-Yield General Principles

"There comes a time when for every addition of knowledge you forget

> Behavioral Science	31
D Biochemistry	47
D Microbiology	107
DImmunology	189
D Pathology	215
D Pharmacology	235

- HOW TO USE THE DATABASE

The 2016 edition of First Aid for the USMLE Step 1 contains a revised and expanded database of basic science material that students, student authors, and faculty authors have identified as high yield for board review. The information is presented in a partially organ-based format. Hence, Section II is devoted to the foundational principles of behavioral science, biochemistry, microbiology, immunology, basic pathology, and basic pharmacology. Section III focuses on organ systems, with subsections covering the embryology, anatomy and histology, physiology, clinical pathology, and clinical pharmacology relevant to each. Each subsection is then divided into smaller topic areas containing related facts. Individual facts are generally presented in a three-column format, with the Title of the fact in the first column, the Description of the fact in the second column, and the Mnemonic or Special Note in the third column. Some facts do not have a mnemonic and are presented in a two-column format. Others are presented in list or tabular form in order to emphasize key associations.

The database structure used in Sections II and III is useful for reviewing material already learned. These sections are not ideal for learning complex or highly conceptual material for the first time.

The database of high-yield facts is not comprehensive. Use it to complement your core study material and not as your primary study source. The facts and notes have been condensed and edited to emphasize the essential material, and as a result, each entry is "incomplete" and arguably "over-simplified." Often, the more you research a topic, the more complex it becomes, with certain topics resisting simplification. Work with the material, add your own notes and mnemonics, and recognize that not all memory techniques work for all students.

We update the database of high-yield facts annually to keep current with new trends in boards emphasis, including clinical relevance. However, we must note that inevitably many other high-yield topics are not yet included in our database.

We actively encourage medical students and faculty to submit high-yield topics, well-written entries, diagrams, clinical images, and useful mnemonics so that we may enhance the database for future students. We also solicit recommendations of alternate tools for study that may be useful in preparing for the examination, such as charts, flash cards, apps, and online resources (see How to Contribute, p. xvii).

Image Acknowledgments

All images and diagrams marked with are © USMLE-Rx.com (MedIQ Learning, LLC) and reproduced here by special permission. All images marked with © are © Dr. Richard P. Usatine, author of The Color Atlas of Family Medicine, The Color Atlas of Internal Medicine, and The Color Atlas of Pediatrics, and are reproduced here by special permission (www. usatinemedia.com). Images and diagrams marked with 类 are adapted or reproduced with permission of other sources as listed on page 667. Images and diagrams with no acknowledgment are part of this book.

Disclaimer

The entries in this section reflect student opinions of what is high yield. Because of the diverse sources of material, no attempt has been made to trace or reference the origins of entries individually. We have regarded mnemonics as essentially in the public domain. Errata will gladly be corrected if brought to the attention of the authors, either through our online errata submission form at www.firstaidteam.com or directly by email to firstaidteam@yahoo.com.

HIGH-YIELD PRINCIPLES IN

Behavioral Science

"It is a mathematical fact that fifty percent of all doctors graduate in the bottom half of their class."
-Author Unknown
"It's psychosomatic. You need a lobotomy. I'll get a saw."
-Calvin, "Calvin \& Hobbes"
"There are two kinds of statistics: the kind you look up and the kind you make up."
-Rex Stout
"On a long enough time line, the survival rate for everyone drops to zero."
-Chuck Palahniuk

A heterogeneous mix of epidemiology, biostatistics, ethics, psychology, public health, and more falls under the heading of behavioral science. The exam has recently added an emphasis on patient safety and quality improvement topics. Many medical students do not diligently study this discipline because the material is felt to be easy or a matter of common sense. In our opinion, this is a missed opportunity.

Behavioral science questions may seem less concrete than questions from other disciplines, as they require an awareness of the psychosocial aspects of medicine. For example, if a patient does or says something, what should you do or say in response? These so-called quote questions now constitute much of the behavioral science section. Medical ethics and medical law are also appearing with increasing frequency. In addition, the key aspects of the doctor-patient relationship (eg, communication skills, open-ended questions, facilitation, silence) are high yield, as are biostatistics and epidemiology, which are the foundations of evidence-based medicine. Make sure you can apply biostatistical concepts such as sensitivity, specificity, and predictive values in a problem-solving format.
, Epidemiology/ Biostatistics
Dthics 39

Development and
Aging

- BEHAVIORAL SCIENCE—EPIDEMIOLOGY/BIOSTATISTICS

STUDY TYPE	DESIGN	MEASURES/EXAMPLE
Cross-sectional study	Collects data from a group of people to assess frequency of disease (and related risk factors) at a particular point in time. Asks, "What is happening?"	Disease prevalence. Can show risk factor association with disease, but does not establish causality.
Case-control study	Compares a group of people with disease to a group without disease. Looks for prior exposure or risk factor. Asks, "What happened?"	Odds ratio (OR). "Patients with COPD had higher odds of a history of smoking than those without COPD."
Cohort study	Compares a group with a given exposure or risk factor to a group without such exposure. Looks to see if exposure affects the likelihood of disease. Can be prospective (asks, "Who will develop disease?") or historical (asks, "Who developed the disease [exposed vs nonexposed]?").	Relative risk (RR). "Smokers had a higher risk of developing COPD than nonsmokers."
Twin concordance study	Compares the frequency with which both monozygotic twins or both dizygotic twins develop the same disease.	Measures heritability and influence of environmental factors ("nature vs nurture").
Adoption study	Compares siblings raised by biological vs adoptive parents.	Measures heritability and influence of environmental factors.

Clinical trial Experimental study involving humans. Compares therapeutic benefits of 2 or more treatments, or of treatment and placebo. Study quality improves when study is randomized, controlled, and double-blinded (ie, neither patient nor doctor knows whether the patient is in the treatment or control group). Triple-blind refers to the additional blinding of the researchers analyzing the data.

DRUG TRIALS	TYPICAL STUDY SAMPLE	PURPOSE
Phase I	Small number of healthy volunteers.	"Is it safe?" Assesses safety, toxicity, pharmacokinetics, and pharmacodynamics.
Phase II	Small number of patients with disease of interest.	"Does it work?" Assesses treatment efficacy, optimal dosing, and adverse effects.
Phase III	Large number of patients randomly assigned either to the treatment under investigation or to the best available treatment (or placebo).	"Is it as good or better?" Compares the new treatment to the current standard of care.
Phase IV	Postmarketing surveillance of patients after treatment is approved.	"Can it stay?" Detects rare or long-term adverse effects. Can result in treatment being withdrawn from market.

Evaluation of diagnostic tests

Specificity (truenegative rate)

Positive predictive value

Negative predictive value

Uses 2×2 table comparing test results with the actual presence of disease. $\mathrm{TP}=$ true positive; $\mathrm{FP}=$ false positive; $\mathrm{TN}=$ true negative; $\mathrm{FN}=$ false negative.
Sensitivity and specificity are fixed properties of a test. PPV and NPV vary depending on disease prevalence.

Proportion of all people with disease who test positive, or the probability that when the disease is present, the test is positive.
Value approaching 100% is desirable for ruling out disease and indicates a low false-negative rate. High sensitivity test used for screening in diseases with low prevalence.
Proportion of all people without disease who test negative, or the probability that when the disease is absent, the test is negative.
Value approaching 100% is desirable for ruling in disease and indicates a low falsepositive rate. High specificity test used for confirmation after a positive screening test.
Proportion of positive test results that are true positive.
Probability that a person who has a positive test result actually has the disease.

Proportion of negative test results that are true negative.
Probability that a person with a negative test result actually does not have the disease.

$=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})$
$=1-$ false-negative rate
SN-N-OUT = highly SeNsitive test, when
Negative, rules OUT disease
If sensitivity is 100%, TP $/(\mathrm{TP}+\mathrm{FN})=1, \mathrm{FN}=$ 0 , and all negatives must be TNs
$=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})$
= 1 - false-positive rate
SP-P-IN = highly SPecific test, when Positive, rules IN disease
If specificity is $100 \%, \mathrm{TN} /(\mathrm{TN}+\mathrm{FP})=1, \mathrm{FP}=$ 0 , and all positives must be TPs

$\mathrm{PPV}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})$

PPV varies directly with pretest probability (baseline risk, such as prevalence of disease): high pretest probability \rightarrow high PPV

NPV = TN / (TN + FN $)$
NPV varies inversely with prevalence or pretest probability: high pretest probability \rightarrow low NPV

POSSIBLE CUTOFF VALUES

A $=100 \%$ sensitivity cutoff value
$B=$ practical compromise between specificity and sensitivity
C $=100 \%$ specificity cutoff value

Lowering the cutoff point:	\uparrow Sensitivity \uparrow NPV
$\mathbf{B} \rightarrow \mathbf{A}(\uparrow$ FP \downarrow FN $)$	\downarrow Specificity \downarrow PPV
Raising the cutoff point:	\uparrow Specificity \uparrow PPV
$\mathbf{B} \rightarrow \mathbf{C}(\uparrow$ FN \downarrow FP)	\downarrow Sensitivity \downarrow NPV

Incidence vs prevalence

$\begin{aligned} & \text { Incidence } \\ & \text { rate }\end{aligned}=\frac{\# \text { of new cases }}{\# \text { of people at risk }}$
Prevalence $=\frac{\# \text { of existing cases }}{\text { Total \# of people }}$ time
in a population
(during a specified Incidence looks at new cases (incidents). time period)
(at a point in
Prevalence looks at all current cases.

Prevalence \approx pretest probability.

Definitions and formulas are based on the classic 2×2 or contingency table.

Odds ratio	Typically used in case-control studies. Odds that the group with the disease (cases) was exposed to a risk factor (a/c) divided by the odds that the group without the disease (controls) was exposed (b/d).	$\mathrm{OR}=\frac{\mathrm{a} / \mathrm{c}}{\mathrm{~b} / \mathrm{d}}=\frac{\mathrm{ad}}{\mathrm{bc}}$
Relative risk	Typically used in cohort studies. Risk of developing disease in the exposed group divided by risk in the unexposed group (eg, if 21% of smokers develop lung cancer vs 1% of nonsmokers, $R R=21 / 1=21$). If prevalence is low, $\mathrm{OR} \approx \mathrm{RR}$.	$\mathrm{RR}=\frac{\mathrm{a} /(\mathrm{a}+\mathrm{b})}{\mathrm{c} /(\mathrm{c}+\mathrm{d})}$
Attributable risk	The difference in risk between exposed and unexposed groups, or the proportion of disease occurrences that are attributable to the exposure (eg, if risk of lung cancer in smokers is 21% and risk in nonsmokers is 1%, then 20% of the lung cancer risk in smokers is attributable to smoking).	$A R=\frac{a}{a+b}-\frac{c}{c+d}$
Relative risk reduction	The proportion of risk reduction attributable to the intervention as compared to a control (eg, if 2% of patients who receive a flu shot develop the flu, while 8% of unvaccinated patients develop the flu, then $R R=2 / 8=0.25$, and $\operatorname{RRR}=0.75$).	$R R R=1-R R$
Absolute risk reduction	The difference in risk (not the proportion) attributable to the intervention as compared to a control (eg, if 8% of people who receive a placebo vaccine develop the flu vs 2% of people who receive a flu vaccine, then $\operatorname{ARR}=8 \%-2 \%=6 \%=.06)$.	$A R R=\frac{c}{c+d}-\frac{a}{a+b}$
Number needed to treat	Number of patients who need to be treated for 1 patient to benefit.	$\mathrm{NNT}=1 / \mathrm{ARR}$
Number needed to harm	Number of patients who need to be exposed to a risk factor for l patient to be harmed.	$\mathrm{NNH}=1 / \mathrm{AR}$

Precision vs accuracy

Precision	The consistency and reproducibility of a test (reliability). The absence of random variation in a test.	Random error \downarrow precision in a test. \uparrow precision $\rightarrow \downarrow$ standard deviation. \uparrow precision $\rightarrow \uparrow$ statistical power $(1-\beta)$.
Accuracy		
The trueness of test measurements (validity). The absence of systematic error or bias in a test.	Systematic error \downarrow accuracy in a test.	
Accurate, not precise		

Bias and study errors

TYPE	DEFINITION	EXAMPLES	STRATEGY TO REDUCE BIAS
Recruiting participants			
Selection bias	Error in assigning subjects to a study group resulting in an unrepresentative sample. Most commonly a sampling bias.	Berkson bias-study population selected from hospital is less healthy than general population Healthy worker effect-study population is healthier than the general population Non-response biasparticipating subjects differ from nonrespondents in meaningful ways	Randomization Ensure the choice of the right comparison/reference group
Performing study			
Recall bias	Awareness of disorder alters recall by subjects; common in retrospective studies.	Patients with disease recall exposure after learning of similar cases	Decrease time from exposure to follow-up
Measurement bias	Information is gathered in a systemically distorted manner.	Association between HPV and cervical cancer not observed when using non-standardized classifications	Use objective, standardized, and previously tested methods of data collection that are planned ahead of time
Procedure bias	Subjects in different groups are not treated the same.	Patients in treatment group spend more time in highly specialized hospital units	Blinding and use of placebo reduce influence of
Observer-expectancy bias	Researcher's belief in the efficacy of a treatment changes the outcome of that treatment (aka Pygmalion effect; self-fulfilling prophecy).	If observer expects treatment group to show signs of recovery, then he is more likely to document positive outcomes	participants and researchers on procedures and interpretation of outcomes as neither are aware of group allocation
Interpreting results			
Confounding bias	When a factor is related to both the exposure and outcome, but not on the causal pathway \rightarrow factor distorts or confuses effect of exposure on outcome.	Pulmonary disease is more common in coal workers than the general population; however, people who work in coal mines also smoke more frequently than the general population	Multiple/repeated studies Crossover studies (subjects act as their own controls) Matching (patients with similar characteristics in both treatment and control groups) Restriction Randomization
Lead-time bias	Early detection is confused with \uparrow survival.	Early detection makes it seem as though survival has increased, but the natural history of the disease has not changed	Measure "back-end" survival (adjust survival according to the severity of disease at the time of diagnosis)

Statistical distribution

Measures of central tendency	Mean $=($ sum of values $) /$ (total number of values $)$.	Most affected by outliers (extreme values).
	Median = middle value of a list of data sorted from least to greatest.	If there is an even number of values, the median will be the average of the middle two values.
	Mode = most common value.	Least affected by outliers.
Measures of dispersion	Standard deviation = how much variability exists from the mean in a set of values. Standard error of the mean = an estimate of how much variability exists between the sample mean and the true population mean.	$\begin{aligned} & \sigma=\text { SD; } \mathrm{n}=\text { sample size. } \\ & \text { Variance }=(\text { SD })^{2} . \\ & \text { SEM }=\sigma / \sqrt{n} . \\ & \text { SEM } \downarrow \text { as } \mathrm{n} \uparrow . \end{aligned}$
Normal distribution	Gaussian, also called bell-shaped. $\text { Mean }=\text { median }=\text { mode } .$	

Statistical hypotheses

Null (H_{0})	Hypothesis of no difference or relationship (eg, there is no association between the disease and the risk factor in the population).		Reality	
			H_{1}	H_{0}
Alternative (H_{1})	Hypothesis of some difference or relationship (eg, there is some association between the disease and the risk factor in the population)		$\begin{aligned} & \text { Power } \\ & (1-\beta) \end{aligned}$	α Type I error
			β Type II error	Correct

Outcomes of statistical hypothesis testing

Correct result	Stating that there is an effect or difference when one exists (null hypothesis rejected in favor of alternative hypothesis). Stating that there is not an effect or difference when none exists (null hypothesis not rejected).	
Incorrect result		
Type I error (α)	Stating that there is an effect or difference when none exists (null hypothesis incorrectly rejected in favor of alternative hypothesis). α is the probability of making a type I error. p is judged against a preset α level of significance (usually 0.05). If $p<0.05$, then there is less than a 5% chance that the data will show something that is not really there.	Also known as false-positive error. $\alpha=$ you "abserved" a difference that did not exist. You can never "prove" the alternate hypothesis, but you can reject the null hypothesis as being very unlikely.
Type Il error (β)	Stating that there is not an effect or difference when one exists (null hypothesis is not rejected when it is in fact false).	Also known as false-negative error.
	β is the probability of making a type II error. β is related to statistical power $(1-\beta)$, which is the probability of rejecting the null hypothesis when it is false. \uparrow power and $\downarrow \beta$ by: - \uparrow sample size - \uparrow expected effect size - \uparrow precision of measurement	$\beta=$ you were blinded by the truth. If you \uparrow sample size, you \uparrow power. There is power in numbers.

Confidence interval
Range of values within which the true mean of the population is expected to fall, with a specified probability.
$\mathrm{CI}=$ mean $\pm \mathrm{Z}($ SEM $)$.
The 95% CI (corresponding to $p=.05$) is often used.
For the 95% CI, $Z=1.96$.
For the 99% CI, $Z=2.58$.

If the 95% CI for a mean difference between 2 variables includes 0 , then there is no significant difference and H_{0} is not rejected.
If the $95 \% \mathrm{CI}$ for odds ratio or relative risk includes $1, \mathrm{H}_{0}$ is not rejected.
If the CIs between 2 groups do not overlap
\rightarrow statistically significant difference exists.
If the CIs between 2 groups overlap \rightarrow usually no significant difference exists.

Common statistical tests

t-test	Checks differences between means of 2 groups.	Tea is meant for 2. Example: comparing the mean blood pressure between men and women.
ANOVA	Checks differences between means of 3 or more groups.	3 words: ANalysis Of VAriance. Example: comparing the mean blood pressure between members of 3 different ethnic groups.
Chi-square $\left(\chi^{2}\right)$	Checks differences between 2 or more percentages or proportions of categorical outcomes (not mean values).	Pronounce Chi-tegorical. Example: comparing the percentage of members of 3 different ethnic groups who have essential hypertension.

Pearson correlation coefficient (r)
r is always between -1 and +1 . The closer the absolute value of r is to l, the stronger the linear correlation between the 2 variables.
Positive r value \rightarrow positive correlation (as one variable \uparrow, the other variable \uparrow). Negative r value \rightarrow negative correlation (as one variable \uparrow, the other variable \downarrow). Coefficient of determination $=r^{2}$ (value that is usually reported).

BEHAVIORAL SCIENCE—ETHICS

Core ethical principles

Autonomy	Obligation to respect patients as individuals (truth-telling, confidentiality), to create conditions necessary for autonomous choice (informed consent), and to honor their preference in accepting or not accepting medical care.
Beneficence	Physicians have a special ethical (fiduciary) duty to act in the patient's best interest. May conflict with autonomy (an informed patient has the right to decide) or what is best for society (eg, mandatory TB treatment). Traditionally, patient interest supersedes.
Nonmaleficence	"Do no harm." Must be balanced against beneficence; if the benefits outweigh the risks, a patient may make an informed decision to proceed (most surgeries and medications fall into this category).
Justice	To treat persons fairly and equitably. This does not always imply equally (eg, triage).

Informed consent

A process (not just a document/signature) that requires:

- Disclosure: discussion of pertinent information
- Understanding: ability to comprehend
- Capacity: ability to reason and make one's own decisions (distinct from competence, a legal determination)
- Voluntariness: freedom from coercion and manipulation
Patients must have an intelligent understanding of their diagnosis and the risks/benefits of proposed treatment and alternative options, including no treatment.
Patient must be informed that he or she can revoke written consent at any time, even orally.

Exceptions to informed consent:

- Patient lacks decision-making capacity or is legally incompetent
- Implied consent in an emergency
- Therapeutic privilege-withholding information when disclosure would severely harm the patient or undermine informed decision-making capacity
- Waiver-patient explicitly waives the right of informed consent

Consent for minors

A minor is generally any person <18 years old. Parental consent laws in relation to health care vary by state. In general, parental consent should be obtained unless emergent treatment is required (eg, blood transfusion) even if it opposes parental religious/cultural beliefs, or if a minor is legally emancipated (eg, is married, is self supporting, or is in the military).

Situations in which parental consent is usually not required:

- Sex (contraception, STIs, pregnancy)
- Drugs (substance abuse)
- Rock and roll (emergency/trauma)

Physicians should always encourage healthy minor-guardian communication.

Decision-making capacity

Physician must determine whether the patient is psychologically and legally capable of making a particular health care decision.

Components:

- Patient is ≥ 18 years old or otherwise legally emancipated
- Patient makes and communicates a choice
- Patient is informed (knows and understands)
- Decision remains stable over time
- Decision is consistent with patient's values and goals, not clouded by a mood disorder
- Decision is not a result of altered mental status (eg, delirium, psychosis, intoxication)

Advance directives	Instructions given by a patient in anticipation of the need for a medical decision. Details vary per state law.
Oral advance directive	Incapacitated patient's prior oral statements commonly used as guide. Problems arise from variance in interpretation. If patient was informed, directive was specific, patient made a choice, and decision was repeated over time to multiple people, then the oral directive is more valid.
Living will (written advance directive)	Describes treatments the patient wishes to receive or not receive if he/she loses decision-making capacity. Usually, patient directs physician to withhold or withdraw life-sustaining treatment if he/ she develops a terminal disease or enters a persistent vegetative state.
Medical power of	Patient designates an agent to make medical decisions in the event that he/she loses decision-making capacity. Patient may also specify decisions in clinical situations. Can be revoked by patient if decision-making capacity is intact. More flexible than a living will.

Surrogate decisionmaker

If a patient loses decision-making capacity and has not prepared an advance directive, individuals (surrogates) who know the patient must determine what the patient would have done. Priority of surrogates: spouse > adult children > parents > adult siblings >other relatives.

Confidentiality

Confidentiality respects patient privacy and autonomy. If patient is not present or is incapacitated, disclosing information to family and friends should be guided by professional judgment of patient's best interest. The patient may voluntarily waive the right to confidentiality (eg, insurance company request).
General principles for exceptions to confidentiality:

- Potential physical harm to others is serious and imminent
- Likelihood of harm to self is great
- No alternative means exists to warn or to protect those at risk
- Physicians can take steps to prevent harm

Examples of exceptions to patient confidentiality (many are state-specific) include:

- Reportable diseases (eg, STIs, TB, hepatitis, food poisoning)-physicians may have a duty to warn public officials, who will then notify people at risk
- The Tarasoff decision-California Supreme Court decision requiring physician to directly inform and protect potential victim from harm
- Child and/or elder abuse
- Impaired automobile drivers (eg, epileptics)
- Suicidal/homicidal patients

Ethical situations

situation

Patient is not adherent.

Patient desires an unnecessary procedure.

Patient has difficulty taking medications.

Family members ask for information about patient's prognosis.
A patient's family member asks you not to disclose the results of a test if the prognosis is poor because the patient will be "unable to handle it."
A 17-year-old girl is pregnant and requests an abortion.

A 15-year-old girl is pregnant and wants to keep the child. Her parents want you to tell her to give the child up for adoption.
A terminally ill patient requests physician assistance in ending his/her own life.

Patient is suicidal.

Patient states that he/she finds you attractive.

A woman who had a mastectomy says she now feels "ugly."
Patient is angry about the long time he/she spent in the waiting room.

Patient is upset with the way he/she was treated by another doctor.
An invasive test is performed on the wrong patient.

A patient requires a treatment not covered by his/her insurance.

A 7-year-old boy loses a sister to cancer and now feels responsible.

APPROPRIATE RESPONSE
Attempt to identify the reason for nonadherence and determine his/her willingness to change; do not coerce the patient into adhering or refer him/her to another physician.
Attempt to understand why the patient wants the procedure and address underlying concerns. Do not refuse to see the patient or refer him/her to another physician. Avoid performing unnecessary procedures.

Provide written instructions; attempt to simplify treatment regimens; use teach-back method (ask patient to repeat regimen back to physician) to ensure comprehension.
Avoid discussing issues with relatives without the patient's permission.

Attempt to identify why the family member believes such information would be detrimental to the patient's condition. Explain that as long as the patient has decisionmaking capacity and does not indicate otherwise, communication of information concerning his/her care will not be withheld.
Many states require parental notification or consent for minors for an abortion. Unless there are specific medical risks associated with pregnancy, a physician should not sway the patient's decision for an elective abortion (regardless of maternal age or fetal condition).
The patient retains the right to make decisions regarding her child, even if her parents disagree. Provide information to the teenager about the practical issues of caring for a baby. Discuss the options, if requested. Encourage discussion between the teenager and her parents to reach the best decision.
In the overwhelming majority of states, refuse involvement in any form of physicianassisted suicide. Physicians may, however, prescribe medically appropriate analgesics that coincidentally shorten the patient's life.
Assess the seriousness of the threat. If it is serious, suggest that the patient remain in the hospital voluntarily; patient can be hospitalized involuntarily if he/she refuses.
Ask direct, closed-ended questions and use a chaperone if necessary. Romantic relationships with patients are never appropriate.

Find out why the patient feels this way. Do not offer falsely reassuring statements (eg, "You still look good").
Acknowledge the patient's anger, but do not take a patient's anger personally. Apologize for any inconvenience. Stay away from efforts to explain the delay.
Suggest that the patient speak directly to that physician regarding his/her concerns. If the problem is with a member of the office staff, tell the patient you will speak to that person.
Regardless of the outcome, a physician is ethically obligated to inform a patient that a mistake has been made.
Never limit or deny care because of the expense in time or money. Discuss all treatment options with patients, even if some are not covered by their insurance companies.

At ages 5-7, children begin to understand that death is permanent, that all life functions end completely at death, and that everything that is alive eventually dies. Provide a direct, concrete description of his sister's death. Avoid clichés and euphemisms. Reassure that the boy is not responsible. Identify and normalize fears and feelings. Encourage play and healthy coping behaviors (eg, remembering her in his own way).

BEHAVIORAL SCIENCE—DEVELOPMENT AND AGING

Early developmental Milestone dates are ranges that have been approximated and vary by source. Children not meeting milestones milestones may need assessment for potential developmental delay.

AGE	MOTOR	SOCIAL	VERBAL/COGNITIVE
Infant	Parents	Start	Observing,

Changes in the elderly

Sexual changes:

- Men-slower erection/ejaculation, longer refractory period
- Women-vaginal shortening, thinning, and dryness
Sleep patterns: \downarrow REM and slow-wave sleep; \uparrow sleep onset latency and \uparrow early awakenings
\uparrow suicide rate
\downarrow vision, hearing, immune response, bladder control
\downarrow renal, pulmonary, GI function
\downarrow muscle mass, \uparrow fat

Libido is stable in men but decreases in women after menopause.
Intelligence does not decrease.

Presbycusis-sensorineural hearing loss (often of higher frequencies) due to destruction of hair cells at the cochlear base (preserved lowfrequency hearing at apex).

BEHAVIORAL SCIENCE—PUBLIC HEALTH

Disease prevention

Primary	Prevent disease before it occurs (eg, HPV vaccination)	
Secondary	Screen early for and manage existing but asymptomatic disease (eg, Pap smear for cervical cancer)	
Tertiary	Treatment to reduce complications from disease that is ongoing or has long-term effects (eg, chemotherapy)	Quaternary-identifying patients at risk of unnecessary treatment, protecting from the harm of new interventions

Medicare and

 MedicaidMedicare and Medicaid-federal programs that originated from amendments to the Social Security Act.
Medicare is available to patients ≥ 65 years old, <65 with certain disabilities, and those with end-stage renal disease.
Medicaid is joint federal and state health assistance for people with very low income.

MedicarE is for Elderly.
MedicaiD is for Destitute.
The 4 parts of Medicare:

- Part A: Hospital insurance
- Part B: Basic medical bills (eg, doctor's fees, diagnostic testing)
- Part C: (Parts A+B) delivered by approved private companies
- Part D: Prescription drugs

Common causes of death (US) by age

	<1 YR	1-14YR	15-34 YR	$35-44$ YR	45-64 YR	$65+$ YR
\#1	Congenital malformations	Unintentional injury	Unintentional injury	Unintentional injury	Cancer	Heart disease
\#2	Preterm birth	Cancer	Suicide	Cancer	Heart disease	Cancer
\#3	SIDS	Congenital malformations	Homicide	Heart disease	Unintentional injury	Chronic respiratory disease

Hospitalized conditions with frequent readmissions

	MEDICARE	MEDICAID	PRIVATE INSURANCE	UNINSURED
\#1	Congestive HF	Mood disorders	Maintenance of chemotherapy or radiotherapy	Mood disorders

Readmission for any reason within 30 days of original admission.

Safety culture \quad\begin{tabular}{c}
Organizational environment in which everyone

can freely bring up safety concerns without

\quad

Event reporting systems collect data on errors for

internal and external monitoring.
\end{tabular}

Human factors design Forcing functions (those that prevent undesirable actions [eg, connecting feeding syringe to IV tubing]) are the most effective. Standardization improves process reliability (eg, clinical pathways, guidelines, checklists). Simplification reduces wasteful activities (eg, consolidating electronic medical records [EMRs]).

Deficient designs hinder workflow and lead to staff workarounds that bypass safety features (eg, patient ID barcodes affixed to computers due to unreadable wristbands).

PDSA cycle

Process improvement model to test changes in real clinical setting. Impact on patients:

- Plan-define problem and solution
- Do-test new process
- Study-measure and analyze data
- Act-integrate new process into regular workflow

Quality measurements Plotted on run and control charts.

	MEASURE	EXAMPLE
Outcome	Impact on patients	Average $\mathrm{HbA}_{\mathrm{lc}}$ of patients with diabetes
Process	Performance of system as planned	Ratio of patients whose $\mathrm{HbA}_{\mathrm{lc}}$ was measured in the past 6 months
Balancing	Impact on other systems/outcomes	Incidence of hypoglycemia among those patients

Swiss cheese model
In complex organizations, flaws in multiple processes and systems may align to cause patient harm. Focuses on systems and conditions rather than an individual's error.

Types of medical errors	May involve patient identification, diagnosis, monitoring, nosocomial infection, medications, procedures, devices, documentation, handoffs. Errors causing harmful outcomes must be disclosed to patients.	
Active error	Occurs at level of frontline operator (eg, wrong IV pump dose programmed).	Immediate impact.
Latent error	Occurs in processes indirect from operator but impacts patient care (eg, different types of IV pumps used within same hospital).	Accident waiting to happen.

Medical error analysis

Root cause analysis

Failure mode and effects analysis

Uses records and participant interviews to identify all the underlying problems that led to an error. Categories of causes include process, people (providers or patients), environment, equipment, materials, management.
Uses inductive reasoning to identify all the ways a process might fail and prioritize these by their probability of occurrence and impact on patients.

Retrospective approach applied after failure event to prevent recurrence.
Plotted on fishbone (Ishikawa, cause-and-effect) diagram. Fix causes with corrective action plan.
Forward-looking approach applied before process implementation to prevent failure occurrence.

HIGH-YIELD PRINCIPLES IN

Biochemistry

"Biochemistry is the study of carbon compounds that crawl."

-Mike Adams

"We think we have found the basic mechanism by which life comes from life."

-Francis H. C. Crick

This high-yield material includes molecular biology, genetics, cell biology, and principles of metabolism (especially vitamins, cofactors, minerals, and single-enzyme-deficiency diseases). When studying metabolic pathways, emphasize important regulatory steps and enzyme deficiencies that result in disease, as well as reactions targeted by pharmacologic interventions. For example, understanding the defect in Lesch-Nyhan syndrome and its clinical consequences is higher yield than memorizing every intermediate in the purine salvage pathway. Do not spend time on hard-core organic chemistry, mechanisms, or physical chemistry. Detailed chemical structures are infrequently tested; however, many structures have been included here to help students learn reactions and the important enzymes involved. Familiarity with the biochemical techniques that have medical relevance-such as ELISA, immunoelectrophoresis, Southern blotting, and PCR-is useful. Review the related biochemistry when studying pharmacology or genetic diseases as a way to reinforce and integrate the material.

Molecular	48
Cellular	58
Laboratory Techniques	64
Venetics	68
Nutrition	76
Metabolism	83

BIOCHEMISTRY—MOLECULAR

Chromatin structure

in order to fit into the nucleus. Negatively charged DNA loops twice around positively charged histone octamer to form nucleosome "beads on a string." Histones are rich in the amino acids lysine and arginine. Hl binds to the nucleosome and to "linker DNA," thereby stabilizing the chromatin fiber.
In mitosis, DNA condenses to form chromosomes. DNA and histone synthesis occur during S phase.

Heterochromatin	Condensed, appears darker on EM. Transcriptionally inactive, sterically inaccessible.	HeteroChromatin = Highly Condensed. Barr bodies (inactive X chromosomes) are heterochromatin.		
Euchromatin	Less condensed, appears lighter on EM. Transcriptionally active, sterically accessible.	Eu= true, "truly transcribed."		
DNA methylation	Template strand cytosine and adenine are methylated in DNA replication, which allows			
mismatch repair enzymes to distinguish				
between old and new strands in prokaryotes.				
DNA methylation at CpG islands represses				
transcription.			\quad CpG Methylation Makes DNA Mute. \quad Histone methylation	Usually reversibly represses DNA transcription,
:---				
but can activate it in some cases depending on				
methylation location.	\quad Hethylation Mostly Makes DNA Mute. \quad Histone Acetylation makes DNA Active.			

De novo pyrimidine Various immunosuppressive, antineoplastic, and antibiotic drugs function by interfering with and purine synthesis nucleotide synthesis:

Disrupt pyrimidine synthesis:

- Leflunomide: inhibits dihydroorotate dehydrogenase
- Methotrexate (MTX), trimethoprim (TMP), and pyrimethamine: inhibit dihydrofolate reductase (\downarrow deoxythymidine monophosphate [dTMP]) in humans, bacteria, and protozoa, respectively
- 5-fluorouracil (5-FU): forms 5-F-dUMP, which inhibits thymidylate synthase (\downarrow dTMP)

Disrupt purine synthesis:

- 6-mercaptopurine (6-MP) and its prodrug azathioprine: inhibit de novo purine synthesis
- Mycophenolate and ribavirin: inhibit inosine monophosphate dehydrogenase
Disrupts purine and pyrimidine synthesis:
- Hydroxyurea: inhibits ribonucleotide reductase

Purine salvage deficiencies

Genetic code features

Unambiguous	Each codon specifies only 1 amino acid.	
Degenerate/ redundant	Most amino acids are coded by multiple codons.	Exceptions: methionine and tryptophan encoded by only 1 codon (AUG and UGG, respectively).
Commaless, nonoverlapping	Read from a fixed starting point as a continuous sequence of bases.	Exceptions: some viruses.
Universal	Genetic code is conserved throughout evolution.	Exception in humans: mitochondria.

Mutations in DNA	Severity of damage: silent \ll missense $<$ nonsense $<$ frameshift. For point (silent, missense, and nonsense) mutations: - Transition - purine to purine (eg, A to G) or pyrimidine to pyrimidine (eg, C to T). - Transversion - purine to pyrimidine (eg, A to T) or pyrimidine to purine (eg, C to G).	
Silent	Nucleotide substitution but codes for same (synonymous) amino acid; often base change in 3rd position of codon (tRNA wobble).	
Missense	Nucleotide substitution resulting in changed amino acid (called conservative if new amino acid is similar in chemical structure).	Sickle cell disease (substitution of glutamic acid with valine).
Nonsense	Nucleotide substitution resulting in early stop codon. Usually results in nonfunctional	Stop the nonsense!
protein.		

Lac operon

Classic example of a genetic response to an environmental change. Glucose is the preferred metabolic substrate in E coli, but when glucose is absent and lactose is available, the lac operon is activated to switch to lactose metabolism. Mechanism of shift:

- Low glucose $\rightarrow \uparrow$ adenylate cyclase (adenylyl cyclase) activity $\rightarrow \uparrow$ generation of cAMP from ATP \rightarrow activation of catabolite activator protein (CAP) $\rightarrow \uparrow$ transcription.
- High lactose \rightarrow unbinds repressor protein from repressor/operator site $\rightarrow \uparrow$ transcription.

DNA repair

Single strand		
Nucleotide excision repair	Specific endonucleases release the oligonucleotides containing damaged bases; DNA polymerase and ligase fill and reseal the gap, respectively. Repairs bulky helix-distorting lesions. Occurs in G_{1} phase of cell cycle.	Defective in xeroderma pigmentosum, which prevents repair of pyrimidine dimers because of ultraviolet light exposure.
Base excision repair	Base-specific glycosylase removes altered base and creates AP site (apurinic/apyrimidinic). One or more nucleotides are removed by AP-endonuclease, which cleaves the 5^{\prime} end. Lyase cleaves the 3^{\prime} end. DNA polymerase- β fills the gap and DNA ligase seals it. Occurs throughout cell cycle.	Important in repair of spontaneous/toxic deamination.
Mismatch repair	Newly synthesized strand is recognized, mismatched nucleotides are removed, and the gap is filled and resealed. Occurs predominantly in G_{2} phase of cell cycle.	Defective in Lynch syndrome (hereditary nonpolyposis colorectal cancer [HNPCC]).
Double strand		
Nonhomologous end joining	Brings together 2 ends of DNA fragments to repair double-stranded breaks. No requirement for homology. Some DNA may be lost.	Mutated in ataxia telangiectasia; Fanconi anemia.

DNA/RNA/protein synthesis direction

DNA and RNA are both synthesized $5^{\prime} \rightarrow 3^{\prime}$.
The 5^{\prime} end of the incoming nucleotide bears the triphosphate (energy source for bond). Protein synthesis is N-terminus to C-terminus.
mRNA is read 5^{\prime} to 3^{\prime}.
The triphosphate bond is the target of the 3^{\prime} hydroxyl attack. Drugs blocking DNA replication often have modified $3^{\prime} \mathrm{OH}$, preventing addition of the next nucleotide ("chain termination").

Start and stop codons

mRNA start codons	AUG (or rarely GUG).	AUG inAUGurates protein synthesis.
Eukaryotes	Codes for methionine, which may be removed before translation is completed.	
Prokaryotes	Codes for N-formylmethionine (fMet).	fMet stimulates neutrophil chemotaxis.
mRNA stop codons	UGA, UAA, UAG.	UGA $=\mathrm{U}$ Go Away.
		$\mathrm{UAA}=\mathrm{U}$ Are Away.
	$\mathrm{UAG}=\mathrm{U}$ Are Gone.	

Regulation of gene expression

Promoter	Site where RNA polymerase II and multiple other transcription factors bind to DNA upstream from gene locus (AT-rich upstream sequence with TATA and CAAT boxes).
Enhancer	Stretch of DNA that alters gene expression by binding transcription factors.
Silencer	Site where negative regulators (repressors) bind.

Promoter mutation commonly results in dramatic \downarrow in level of gene transcription.

Enhancers and silencers may be located close to, far from, or even within (in an intron) the gene whose expression it regulates.

RNA polymerases

Eukaryotes

Prokaryotes

RNA polymerase I makes rRNA (most numerous RNA, rampant).
RNA polymerase II makes mRNA (largest RNA, massive).
RNA polymerase III makes 5S rRNA, tRNA (smallest RNA, tiny).
No proofreading function, but can initiate chains. RNA polymerase II opens DNA at promoter site.

I, II, and III are numbered in the same order that their products are used in protein synthesis: large ribosomal RNA, mRNA, then small RNAs.
α-amanitin, found in Amanita phalloides (death cap mushrooms), inhibits RNA polymerase II. Causes severe hepatotoxicity if ingested.
Rifampin inhibits RNA polymerase in prokaryotes. Actinomycin D inhibits RNA polymerase in both prokaryotes and eukaryotes.

1 RNA polymerase (multisubunit complex) makes all 3 kinds of RNA.

RNA processing (eukaryotes)

Initial transcript is called heterogeneous nuclear RNA (hnRNA). hnRNA is then modified and becomes mRNA.
The following processes occur in the nucleus following transcription:

- Capping of 5^{\prime} end (addition of 7-methylguanosine cap)
- Polyadenylation of 3^{\prime} end (≈ 200 A's)
- Splicing out of introns

Capped, tailed, and spliced transcript is called mRNA.
mRNA is transported out of the nucleus into the cytosol, where it is translated.
mRNA quality control occurs at cytoplasmic processing bodies (P-bodies), which contain exonucleases, decapping enzymes, and microRNAs; mRNAs may be stored in P-bodies for future translation.
Poly-A polymerase does not require a template. AAUAAA = polyadenylation signal.

Splicing of pre-mRNA

(1) Primary transcript combines with small nuclear ribonucleoproteins (snRNPs) and other proteins to form spliceosome.
(2) Lariat-shaped (looped) intermediate is generated.
(3) Lariat is released to precisely remove intron and join 2 exons.
Antibodies to spliceosomal snRNPs (antiSmith antibodies) are highly specific for SLE. Anti-Ul RNP antibodies are highly associated with mixed connective tissue disease (MCTD).

Introns vs exons
Exons contain the actual genetic information coding for protein.
Introns are intervening noncoding segments of DNA.
Different exons are frequently combined by alternative splicing to produce a larger number of unique proteins.

microRNAs

Small, noncoding RNA molecules that posttranscriptionally regulate protein expression. Introns can contain microRNA (miRNA) genes. They can have multiple mRNA targets, typically related to complementary base pairing. miRNA \rightarrow degradation or inactivation of target mRNA $\rightarrow \downarrow$ translation into protein. Abnormal expression of miRNAs contributes to certain malignancies (eg, by silencing an mRNA from a tumor suppressor gene).
tRNA

Structure

75-90 nucleotides, 2° structure, cloverleaf form, anticodon end is opposite 3^{\prime} aminoacyl end. All tRNAs, both eukaryotic and prokaryotic, have CCA at 3^{\prime} end along with a high percentage of chemically modified bases. The amino acid is covalently bound to the 3^{\prime} end of the tRNA. CCA Can Carry Amino acids.
T-arm: contains the T世C (ribothymidine, pseudouridine, cytidine) sequence necessary for tRNAribosome binding.
D-arm: contains dihydrouridine residues necessary for tRNA recognition by the correct aminoacyltRNA synthetase.
Acceptor stem: the 5^{\prime}-CCA- 3^{\prime} is the amino acid acceptor site.
Charging
Aminoacyl-tRNA synthetase (l per amino acid; "matchmaker"; uses ATP) scrutinizes amino acid before and after it binds to tRNA. If incorrect, bond is hydrolyzed. The amino acid-tRNA bond has energy for formation of peptide bond. A mischarged tRNA reads usual codon but inserts wrong amino acid.
Aminoacyl-tRNA synthetase and binding of charged tRNA to the codon are responsible for accuracy of amino acid selection.

Protein synthesis

Initiation	Initiated by GTP hydrolysis; initiation factors (eukaryotic IFs) help assemble the 40 S ribosomal subunit with the initiator tRNA and are released when the mRNA and the ribosomal 60S subunit assemble with the complex.	Eukaryotes: 40S $+60 \mathrm{~S} \rightarrow 80 \mathrm{~S}$ (Even). PrOkaryotes: $30 \mathrm{~S}+50 \mathrm{~S} \rightarrow 70 \mathrm{~S}$ (Odd). ATP-tRNA Activation (charging). GTP-tRNA Gripping and Going places (translocation).
Elongation	1. Aminoacyl-tRNA binds to A site (except for initiator methionine) 2. rRNA ("ribozyme") catalyzes peptide bond formation, transfers growing polypeptide to amino acid in A site 3. Ribosome advances 3 nucleotides toward 3' end of mRNA, moving peptidyl tRNA to P site (translocation)	Think of "going APE": A site $=$ incoming Aminoacyl-tRNA. P site $=$ accommodates growing Peptide. E site $=$ holds Empty tRNA as it Exits.
Termination	Stop codon is recognized by release factor, and completed polypeptide is released from ribosome.	

Posttranslational modifications

Trimming	Removal of N - or C-terminal propeptides from zymogen to generate mature protein (eg, trypsinogen to trypsin).
Covalent alterations	Phosphorylation, glycosylation, hydroxylation, methylation, acetylation, and ubiquitination.

Chaperone protein Intracellular protein involved in facilitating and/or maintaining protein folding. For example, in yeast, heat shock proteins (eg, Hsp60) are expressed at high temperatures to prevent protein denaturing/misfolding.

Cell cycle phases

Checkpoints control transitions between phases of cell cycle. This process is regulated by cyclins, cyclin-dependent kinases (CDKs), and tumor suppressors. M phase (shortest phase of cell cycle) includes mitosis (prophase, prometaphase, metaphase, anaphase, telophase) and cytokinesis (cytoplasm splits in two). G_{1} and G_{0} are of variable duration.

REGULATION OF CELL CYCLE		
CDKs	Constitutive and inactive.	
Cyclins	Regulatory proteins that control cell cycle events; phase specific; activate CDKs.	G_{2}
Cyclin-CDK complexes	Phosphorylate other proteins to coordinate cell cycle progression; must be activated and inactivated at appropriate times for cell cycle to progress.	
Tumor suppressors	p53 induces p21, which inhibits CDKs \rightarrow hypophosphorylation (activation) of Rb. Hypophosphorylated Rb binds to and inactivates transcription factor E2F \rightarrow inhibition of $\mathrm{G}_{1}-\mathrm{S}$ progression. Mutations in these genes result in unrestrained cell division (eg, Li-Fraumeni syndrome).	
CELL TYPES		
Permanent	Remain in G_{0}, regenerate from stem cells.	Neurons, skeletal and cardiac muscle, RBCs.
Stable (quiescent)	Enter G_{1} from G_{0} when stimulated.	Hepatocytes, lymphocytes.
Labile	Never go to G_{0}, divide rapidly with a short G_{1}. Most affected by chemotherapy.	Bone marrow, gut epithelium, skin, hair follicles, germ cells.

Rough endoplasmic reticulum

Site of synthesis of secretory (exported) proteins and of N -linked oligosaccharide addition to many proteins.
Nissl bodies (RER in neurons) - synthesize peptide neurotransmitters for secretion. Free ribosomes-unattached to any membrane; site of synthesis of cytosolic and organellar proteins.

Mucus-secreting goblet cells of the small intestine and antibody-secreting plasma cells are rich in RER.

Smooth endoplasmic reticulum

Site of steroid synthesis and detoxification of drugs and poisons. Lacks surface ribosomes.

Liver hepatocytes and steroid hormoneproducing cells of the adrenal cortex and gonads are rich in SER.

Cell trafficking
Golgi is the distribution center for proteins and lipids from the ER to the vesicles and plasma membrane. Modifies N-oligosaccharides on asparagine. Adds O-oligosaccharides on serine and threonine. Adds mannose-6-phosphate to proteins for trafficking to lysosomes.
Endosomes are sorting centers for material from outside the cell or from the Golgi, sending it to lysosomes for destruction or back to the membrane/Golgi for further use.
I-cell disease (inclusion cell disease/mucolipidosis type II) -inherited lysosomal storage disorder; defect in N-acetylglucosaminyl-l-phosphotransferase \rightarrow failure of the Golgi to phosphorylate mannose residues (ie, \downarrow mannose-6-phosphate) on glycoproteins \rightarrow proteins are secreted extracellularly rather than delivered to lysosomes. Results in coarse facial features, clouded corneas, restricted joint movement, and high plasma levels of lysosomal enzymes. Often fatal in childhood.

Signal recognition particle (SRP)
Abundant, cytosolic ribonucleoprotein that traffics proteins from the ribosome to the RER. Absent or dysfunctional SRP \rightarrow proteins accumulate in the cytosol.

Vesicular trafficking proteins
COPI: Golgi \rightarrow Golgi (retrograde); cis-Golgi \rightarrow ER.
COPII: ER \rightarrow cis-Golgi (anterograde).
Clathrin: trans-Golgi \rightarrow lysosomes; plasma membrane \rightarrow endosomes (receptormediated endocytosis [eg, LDL receptor activity]).

Peroxisome
Membrane-enclosed organelle involved in catabolism of very-long-chain fatty acids (through β-oxidation), branched-chain fatty acids, amino acids, and ethanol.

Proteasome

Barrel-shaped protein complex that degrades damaged or ubiquitin-tagged proteins. Defects in the ubiquitin-proteasome system have been implicated in some cases of Parkinson disease.

Cytoskeletal elements A network of protein fibers within the cytoplasm that supports cell structure, cell and organelle movement, and cell division.

TYPE OF FILAMENT	PREDOMINANT FUNCTION	EXAMPLES
Microfilaments	Muscle contraction, cytokinesis	Actin, microvilli.
Intermediate filaments	Maintain cell structure	Vimentin, desmin, cytokeratin, lamins, glial fibrillary acid proteins (GFAP), neurofilaments.
Microtubules	Movement, cell division	Cilia, flagella, mitotic spindle, axonal trafficking, centrioles.

Immunohistochemical stains for intermediate filaments

STAIN	CELLTYPE	IDENTFIES
Vimentin	Mesenchymal tissue (eg, fibroblasts, endothelial cells, macrophages)	Mesenchymal tumors (eg, sarcoma), but also many other tumors (eg, endometrial carcinoma, renal cell carcinoma, and meningiomas)
DesMin	Muscle	Muscle tumors (eg, rhabdomyosarcoma)
Cytokeratin	Epithelial cells	Epithelial tumors (eg, squamous cell carcinoma)

Microtubule

Cylindrical outer structure composed of a helical array of polymerized heterodimers of α - and β-tubulin. Each dimer has 2 GTP bound. Incorporated into flagella, cilia, mitotic spindles. Grows slowly, collapses quickly. Also involved in slow axoplasmic transport in neurons.
Molecular motor proteins-transport cellular cargo toward opposite ends of microtubule tracks.

- Dynein-retrograde to microtubule ($+\rightarrow-$).
- Kinesin-anterograde to microtubule ($-\rightarrow+$).

Cilia structure

$9+2$ arrangement of microtubule doublets (arrows in \boldsymbol{A}). The base of a cilium below the cell membrane, called the basal body, consists of 9 microtubule triplets with no central microtubules.
Axonemal dynein-ATPase that links peripheral 9 doublets and causes bending of cilium by differential sliding of doublets.

Drugs that act on microtubules (Microtubules Get Constructed Very Poorly):

- Mebendazole (antihelminthic)
- Griseofulvin (antifungal)
- Colchicine (antigout)
- Vincristine/Vinblastine (anticancer)
- Paclitaxel (anticancer)

Kartagener syndrome (1° ciliary dyskinesia) immotile cilia due to a dynein arm defect. Results in male and female infertility due to immotile sperm and dysfunctional fallopian tube cilia, respectively; \uparrow risk of ectopic pregnancy. Can cause bronchiectasis, recurrent sinusitis, and situs inversus (eg, dextrocardia on CXR).

Plasma membrane composition	Asymmetric lipid bilayer. Contains cholesterol, phospholipids, sphingolipid contain ergosterol.	, glycolipids, and proteins. Fungal membranes
Sodium-potassium pump	$\mathrm{Na}^{+}-\mathrm{K}^{+}$ATPase is located in the plasma membrane with ATP site on cytosolic side. For each ATP consumed, $3 \mathrm{Na}^{+}$go out of the cell (pump phosphorylated) and $2 \mathrm{~K}^{+}$come into the cell (pump dephosphorylated).	Ouabain inhibits by binding to K^{+}site. Cardiac glycosides (digoxin and digitoxin) directly inhibit the $\mathrm{Na}^{+}-\mathrm{K}^{+}$ATPase, which leads to indirect inhibition of $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchange $\rightarrow \uparrow\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}} \rightarrow \uparrow$ cardiac contractility.
Collagen	Most abundant protein in the human body. Extensively modified by posttranslational modification. Organizes and strengthens extracellular matrix.	Be (So Totally) Cool, Read Books.
Type I	Most common (90%) - Bone (made by osteoblasts), Skin, Tendon, dentin, fascia, cornea, late wound repair.	Type I: bone. \downarrow production in osteogenesis imperfecta type I.
Type II	Cartilage (including hyaline), vitreous body, nucleus pulposus.	Type II: cartwolage.
Type III	Reticulin-skin, blood vessels, uterus, fetal tissue, granulation tissue.	Type III: deficient in the uncommon, vascular type of Ehlers-Danlos syndrome (ThreE D).
Type IV	Basement membrane, basal lamina, lens.	Type IV: under the floor (basement membrane). Defective in Alport syndrome; targeted by autoantibodies in Goodpasture syndrome.

Collagen synthesis and structure

(1) Synthesis-translation of collagen α chains (preprocollagen)-usually Gly-X-Y (X and Y are proline or lysine). Glycine content best reflects collagen synthesis (collagen is $1 / 3$ glycine).
(2) Hydroxylation-hydroxylation of specific proline and lysine residues. Requires vitamin C; deficiency \rightarrow scurvy.
(3) Glycosylation-glycosylation of pro- α-chain hydroxylysine residues and formation of procollagen via hydrogen and disulfide bonds (triple helix of 3 collagen α chains). Problems forming triple helix \rightarrow osteogenesis imperfecta.
(4) Exocytosis-exocytosis of procollagen into extracellular space.
(5) Proteolytic processing-cleavage of disulfide-rich terminal regions of procollagen \rightarrow insoluble tropocollagen.
(6) Cross-linking-reinforcement of many staggered tropocollagen molecules by covalent lysine-hydroxylysine cross-linkage (by coppercontaining lysyl oxidase) to make collagen fibrils. Problems with cross-linking \rightarrow EhlersDanlos syndrome, Menkes disease.

Osteogenesis imperfecta

Genetic bone disorder (brittle bone disease) caused by a variety of gene defects (most commonly COL1A1 and COL1A2). Most common form is autosomal dominant with \downarrow production of otherwise normal type I collagen. Manifestations can include:

- Multiple fractures with minimal trauma A B; may occur during the birth process
- Blue sclerae C due to the translucent connective tissue over choroidal veins
- Hearing loss (abnormal ossicles)
- Some forms have tooth abnormalities, including opalescent teeth that wear easily due to lack of dentin (dentinogenesis imperfecta)

May be confused with child abuse.

Ehlers-Danlos syndrome

Faulty collagen synthesis causing hyperextensible skin, tendency to bleed (easy bruising), and hypermobile joints A. Multiple types. Inheritance and severity vary. Can be autosomal dominant or recessive. May be associated with joint dislocation, berry and aortic aneurysms, organ rupture.

Hypermobility type (joint instability): most common type.
Classical type (joint and skin symptoms): caused by a mutation in type V collagen.
Vascular type (vascular and organ rupture): deficient type III collagen.

Menkes disease
X-linked recessive connective tissue disease caused by impaired copper absorption and transport due to defective Menkes protein (ATP7A). Leads to \downarrow activity of lysyl oxidase (copper is a necessary cofactor). Results in brittle, "kinky" hair, growth retardation, and hypotonia.

Elastin

Stretchy protein within skin, lungs, large arteries, elastic ligaments, vocal cords, ligamenta flava (connect vertebrae \rightarrow relaxed and stretched conformations).
Rich in nonhydroxylated proline, glycine, and lysine residues.
Tropoelastin with fibrillin scaffolding.
Cross-linking takes place extracellularly and gives elastin its elastic properties.
Broken down by elastase, which is normally inhibited by α_{1}-antitrypsin.

Marfan syndrome-caused by a defect in fibrillin, a glycoprotein that forms a sheath around elastin.
Emphysema-can be caused by α_{1}-antitrypsin deficiency, resulting in excess elastase activity.
Wrinkles of aging are due to \downarrow collagen and elastin production.

BIOCHEMISTRY—LABORATORY TECHNIQUES

Polymerase chain

 reactionMolecular biology laboratory procedure used to amplify a desired fragment of DNA. Useful as a diagnostic tool (eg, neonatal HIV, herpes encephalitis).

Blotting procedures

Southern blot	1. DNA sample is enzymatically cleaved into smaller pieces, which are separated on a gel by electrophoresis, and then transferred to a filter. 2. Filter is exposed to radiolabeled DNA probe that recognizes and anneals to its complementary strand. 3. Resulting double-stranded, labeled piece of DNA is visualized when filter is exposed to film.	$\begin{aligned} & \text { SNoW DRoP: } \\ & \text { Southern = DNA } \\ & \text { Northern = RNA } \\ & \text { Western = Protein } \end{aligned}$
Northern blot	Similar to Southern blot, except that an RNA sample is electrophoresed. Useful for studying mRNA levels, which are reflective of gene expression.	
Western blot	Sample protein is separated via gel electrophoresis and transferred to a membrane. Labeled antibody is used to bind to relevant protein. Confirmatory test for HIV after \oplus ELISA.	
Southwestern blot	Identifies DNA-binding proteins (eg, transcription factors) using labeled oligonucleotide probes.	

Flow cytometry

Laboratory technique to assess size, granularity, and protein expression (immunophenotype) of individual cells in a sample.

Cells are tagged with antibodies specific to surface or intracellular proteins. Antibodies are then tagged with a unique fluorescent dye. Sample is analyzed one cell at a time by focusing a laser on the cell and measuring light scatter and intensity of fluorescence.

Data are plotted either as histogram (one measure) or scatter plot (any two measures, as shown). In illustration:

- Cells in left lower quadrant Θ for both CD8 and CD3.
- Cells in right lower quadrant \oplus for CD8. (Right lower quadrant is empty because all CD8-expressing cells also express CD3.)
- Cells in left upper quadrant \oplus for CD3.
- Cells in right upper quadrant \oplus for CD8 and CD3 (red + blue \rightarrow purple).

Commonly used in workup of hematologic abnormalities (eg, paroxysmal nocturnal hemoglobinuria, fetal RBCs in mother's blood) and immunodeficiencies (eg, CD4 cell count in HIV).

Microarrays
Thousands of nucleic acid sequences are arranged in grids on glass or silicon. DNA or RNA probes are hybridized to the chip, and a scanner detects the relative amounts of complementary binding. Used to profile gene expression levels of thousands of genes simultaneously to study certain diseases and treatments. Able to detect single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) for a variety of applications including genotyping, clinical genetic testing, forensic analysis, cancer mutations, and genetic linkage analysis.

Enzyme-linked	Immunologic test used to detect the presence of either a specific antigen (eg, HBsAg) or antibody
immunosorbent assay	(eg, anti-HBs) in a patient's blood sample. Detection involves the use of an antibody linked to an enzyme. Added substrate reacts with enzyme, producing a detectable signal (eg, color change).
	Major ELISA variations include direct, sandwich, and competitive. Can have high sensitivity and specificity.

Karyotyping

A process in which metaphase chromosomes are stained, ordered, and numbered according to morphology, size, arm-length ratio, and banding pattern. Can be performed on a sample of blood, bone marrow, amniotic fluid, or placental tissue. Used to diagnose chromosomal imbalances (eg, autosomal trisomies, sex chromosome disorders).

Fluorescence in situ

 hybridizationFluorescent DNA or RNA probe binds to specific gene site of interest on chromosomes.
Used for specific localization of genes and direct visualization of chromosomal anomalies at the molecular level.

- Microdeletion-no fluorescence on a chromosome compared to fluorescence at the same locus on the second copy of that chromosome
- Translocation-fluorescence outside the original chromosome
- Duplication-extra site of fluorescence on one chromosome relative to its homologous chromosome

Cloning methods

Cloning is the production of a recombinant DNA molecule that is self-perpetuating. Steps:

1. Isolate eukaryotic mRNA (post-RNA processing steps) of interest.
2. Expose mRNA to reverse transcriptase to produce cDNA (lacks introns).
3. Insert cDNA fragments into bacterial plasmids containing antibiotic resistance genes.
4. Transform recombinant plasmid into bacteria.
5. Surviving bacteria on antibiotic medium produce cloned DNA (copies of cDNA).

Gene expression modifications	Transgenic strategies in mice involve: - Random insertion of gene into mouse genome - Targeted insertion or deletion of gene through homologous recombination with mouse gene	Knock-out = removing a gene, taking it out. Knock-in = inserting a gene.
Cre-lox system	Can inducibly manipulate genes at specific developmental points (eg, to study a gene whose deletion causes embryonic death).	
RNA interference	dsRNA is synthesized that is complementary to the mRNA sequence of interest. When transfected into human cells, dsRNA separates and promotes degradation of target mRNA, "knocking down" gene expression.	

- BIOCHEMISTRY—GENETICS

Genetic terms

TERM	DEFINITION	EXAMPLE
Codominance	Both alleles contribute to the phenotype of the heterozygote.	Blood groups A, B, AB; α_{1}-antitrypsin deficiency.
Variable expressivity	Phenotype varies among individuals with same genotype.	2 patients with neurofibromatosis type 1 (NFl) may have varying disease severity.
Incomplete penetrance	Not all individuals with a mutant genotype show the mutant phenotype.	BRCAl gene mutations do not always result in breast or ovarian cancer.
Pleiotropy	One gene contributes to multiple phenotypic effects.	Untreated phenylketonuria (PKU) manifests with light skin, intellectual disability, and musty body odor.
Anticipation	Increased severity or earlier onset of disease in succeeding generations.	Trinucleotide repeat diseases (eg, Huntington disease).
Loss of heterozygosity	If a patient inherits or develops a mutation in a tumor suppressor gene, the complementary allele must be deleted/mutated before cancer develops. This is not true of oncogenes.	Retinoblastoma and the "two-hit hypothesis," Lynch syndrome (HNPCC), Li-Fraumeni syndrome.
Dominant negative mutation	Exerts a dominant effect. A heterozygote produces a nonfunctional altered protein that also prevents the normal gene product from functioning.	Mutation of a transcription factor in its allosteric site. Nonfunctioning mutant can still bind DNA, preventing wild-type transcription factor from binding.
Linkage disequilibrium	Tendency for certain alleles at 2 linked loci to occur together more or less often than expected by chance. Measured in a population, not in a family, and often varies in different populations.	

Genetic terms (continued)

TERM	Defintion	EXAMPLE
Mosaicism	Presence of genetically distinct cell lines in the same individual. Somatic mosaicism-mutation arises from mitotic errors after fertilization and propagates through multiple tissues or organs. Gonadal mosaicism-mutation only in egg or sperm cells.	McCune-Albright syndrome-due to mutation affecting G-protein signaling. Presents with unilateral café-au-lait spots, polyostotic fibrous dysplasia, precocious puberty, multiple endocrine abnormalities. Lethal if mutation occurs before fertilization (affecting all cells), but survivable in patients with mosaicism.
Locus heterogeneity	Mutations at different loci can produce a similar phenotype.	Albinism.
Allelic heterogeneity	Different mutations in the same locus produce the same phenotype.	β-thalassemia.
Heteroplasmy	Presence of both normal and mutated mtDNA , resulting in variable expression in mitochondrially inherited disease.	
Uniparental disomy	Offspring receives 2 copies of a chromosome from 1 parent and no copies from the other parent. Heterodisomy (heterozygous) indicates a meiosis I error. Isodisomy (homozygous) indicates a meiosis II error or postzygotic chromosomal	Uniparental is eUploid (correct number of chromosomes), not aneuploid. Most occurrences of UPD \rightarrow normal phenotype. Consider UPD in an individual manifesting a recessive disorder when only one parent is a carrier.

Hardy-Weinberg population genetics

	pA	qa
pA	$\begin{gathered} A A \\ p \times p=p^{2} \end{gathered}$	$\begin{gathered} A a \\ p \times q \end{gathered}$
qa	$\begin{gathered} A a \\ p \times q \end{gathered}$	$\begin{gathered} a a \\ q \times q=q^{2} \end{gathered}$

If a population is in Hardy-Weinberg equilibrium and if p and q are the frequencies of separate alleles, then: $\mathrm{p}^{2}+2 \mathrm{pq}+\mathrm{q}^{2}=1$ and $\mathrm{p}+\mathrm{q}=1$, which implies that:
$p^{2}=$ frequency of homozygosity for allele p
$\mathrm{q}^{2}=$ frequency of homozygosity for allele q
$2 \mathrm{pq}=$ frequency of heterozygosity (carrier frequency, if an autosomal recessive disease). The frequency of an X-linked recessive disease in males $=\mathrm{q}$ and in females $=\mathrm{q}^{2}$.

Hardy-Weinberg law assumptions include:

- No mutation occurring at the locus
- Natural selection is not occurring
- Completely random mating
- No net migration

Imprinting
At some loci, only one allele is active; the other is inactive (imprinted/inactivated by methylation). With one allele inactivated, deletion of the active allele \rightarrow disease.
Prader-Willi syndrome Maternal imprinting: gene from mom is normally silent and Paternal gene is deleted/mutated. Results in hyperphagia, obesity, intellectual disability, hypogonadism, and hypotonia.
AngelMan syndrome Paternal imprinting: gene from dad is normally silent and Maternal gene is deleted/mutated. Results in inappropriate laughter ("happy puppet"), seizures, ataxia, and severe intellectual disability.

Both Prader-Willi and Angelman syndromes are due to mutation or deletion of genes on chromosome 15.
25% of cases due to maternal uniparental disomy (two maternally imprinted genes are received; no paternal gene received).
5% of cases due to paternal uniparental disomy (two paternally imprinted genes are received; no maternal gene received).

Modes of inheritance

Autosomal dominant Often due to defects in structural genes. Many generations, both male and female, affected.

Autosomal recessive
Often due to enzyme deficiencies. Usually seen in only l generation.

X-linked recessive
Sons of heterozygous mothers have a 50% chance of being affected. No male-to-male
 transmission. Skips generations.

Often pleiotropic (multiple apparently unrelated effects) and variably expressive (different between individuals). Family history crucial to diagnosis. With one affected (heterozygous) parent, on average, $1 / 2$ of children affected.

Commonly more severe than dominant disorders; patients often present in childhood. \uparrow risk in consanguineous families.
With 2 carrier (heterozygous) parents, on average: $1 / 4$ of children will be affected (homozygous), $1 / 2$ of children will be carriers, and $1 / 4$ of children will be neither affected nor carriers.

Commonly more severe in males. Females usually must be homozygous to be affected.

X-linked dominant Transmitted through both parents. Mothers

Mitochondrial inheritance

Transmitted only through the mother. All offspring of affected females may show signs of disease.

Hypophosphatemic rickets-formerly known as vitamin D-resistant rickets. Inherited disorder resulting in \uparrow phosphate wasting at proximal tubule. Results in rickets-like presentation. Other examples: Rett syndrome, fragile X syndrome, Alport syndrome.

Variable expression in a population or even within a family due to heteroplasmy.

Mitochondrial myopathies—rare disorders; often present with myopathy, lactic acidosis, and CNS disease, eg, MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes). 2° to failure in oxidative phosphorylation. Muscle biopsy often shows "ragged red fibers."
\square = unaffected male; \square = affected male; \bigcirc = unaffected female; $\bigcirc=$ affected female.

Autosomal dominant diseases

Achondroplasia	Mutation of fibroblast growth factor receptor 3 (FGFR3) inhibits chondrocyte proliferation. Most common cause of dwarfism; limb length affected more than head or torso size. Full penetrance.
Autosomal dominant polycystic kidney disease	Bilateral, massive enlargement of kidneys due to multiple large cysts. 85% of cases are due to mutation in PKDl (chromosome 16; 16 letters in "polycystic kidney"); remainder due to mutation in PKD2 (chromosome 4).
Familial adenomatous polyposis	Colon becomes covered with adenomatous polyps after puberty. Progresses to colon cancer unless colon is resected. Mutations on chromosome 5q (APC gene); 5 letters in "polyp."
Familial hypercholesterolemia	Elevated LDL due to defective or absent LDL receptor. Leads to severe atherosclerotic disease early in life, corneal arcus, tendon xanthomas (classically in the Achilles tendon).
Hereditary hemorrhagic telangiectasia	Inherited disorder of blood vessels. Findings: branching skin lesions (telangiectasias), recurrent epistaxis, skin discolorations, arteriovenous malformations (AVMs), GI bleeding, hematuria. Also known as Osler-Weber-Rendu syndrome.
Hereditary spherocytosis	Spheroid erythrocytes due to spectrin or ankyrin defect; hemolytic anemia; \uparrow MCHC, \uparrow RDW. Treatment: splenectomy.
Huntington disease	Findings: depression, progressive dementia, choreiform movements, and caudate atrophy. \uparrow dopamine, \downarrow GABA, \downarrow ACh in the brain. Gene on chromosome 4; trinucleotide repeat disorder: $(\mathrm{CAG})_{n}$. Demonstrates anticipation: \uparrow repeats $\rightarrow \downarrow$ age of onset. "Hunting 4 CAGs."
Li-Fraumeni syndrome	Abnormalities in TP53 \rightarrow multiple malignancies at an early age. Also known as SBLA cancer syndrome (sarcoma, breast, leukemia, adrenal gland).
Ma	FBNl gene mutation on chromosome $15 \rightarrow$ defective fibrillin (scaffold for elastin) \rightarrow connective tissue disorder affecting skeleton, heart, and eyes. Findings: tall with long extremities, pectus excavatum, hypermobile joints, and long, tapering fingers and toes (arachnodactyly); cystic medial necrosis of aorta \rightarrow aortic incompetence and dissecting aortic aneurysms; floppy mitral valve. Subluxation of lenses, typically upward and temporally.
Multiple endocrine neoplasias (MEN)	Several distinct syndromes (1, 2A, 2B) characterized by familial tumors of endocrine glands, including those of the pancreas, parathyroid, pituitary, thyroid, and adrenal medulla. MEN 1 is associated with MEN1 gene, MEN 2A and 2B are associated with RET gene.
Neurofibromatosis type 1 (von Recklinghausen disease)	Neurocutaneous disorder characterized by café-au-lait spots, cutaneous neurofibromas, optic gliomas, pheochromocytomas, Lisch nodules (pigmented iris hamartomas). 100% penetrance, variable expression. Caused by mutations in the NF1 gene on chromosome 17; 17 letters in "von Recklinghausen."
Neurofibromatosis type 2	Findings: bilateral acoustic schwannomas, juvenile cataracts, meningiomas, and ependymomas. NF2 gene on chromosome 22; type $2=22$.
Tuberous sclerosis	Neurocutaneous disorder with multi-organ system involvement, characterized by numerous benign hamartomas. Variable expression.
von Hippel-Lindau disease	Disorder characterized by development of numerous tumors, both benign and malignant. Associated with deletion of VHL gene (tumor suppressor) on chromosome 3 (3p). Von Hippel-Lindau $=3$ words for chromosome 3.

Autosomal recessive
diseases

Albinism, autosomal recessive polycystic kidney disease (ARPKD), cystic fibrosis, glycogen storage diseases, hemochromatosis, Kartagener syndrome, mucopolysaccharidoses (except Hunter syndrome), phenylketonuria, sickle cell anemia, sphingolipidoses (except Fabry disease), thalassemias, Wilson disease.

Cystic fibrosis	
genetics	Autosomal recessive; defect in CFTR gene on chromosome 7; commonly a deletion of Phe508. Most common lethal genetic disease in Caucasian population.
PATHOPHYSIOLOGY	CFTR encodes an ATP-gated Cl^{-}channel that secretes Cl^{-}in lungs and GI tract, and reabsorbs Cl^{-}in sweat glands. Most common mutation \rightarrow misfolded protein \rightarrow protein retained in RER and not transported to cell membrane, causing $\downarrow \mathrm{Cl}^{-}\left(\right.$and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ secretion; \uparrow intracellular Cl^{-} results in compensatory $\uparrow \mathrm{Na}^{+}$reabsorption via epithelial Na^{+}channels $\rightarrow \uparrow \mathrm{H}_{2} \mathrm{O}$ reabsorption \rightarrow abnormally thick mucus secreted into lungs and GI tract. $\uparrow \mathrm{Na}^{+}$reabsorption also causes more negative transepithelial potential difference.
diagnosis	$\uparrow \mathrm{Cl}^{-}$concentration ($>60 \mathrm{mEq} / \mathrm{L}$) in sweat is diagnostic. Can present with contraction alkalosis and hypokalemia (ECF effects analogous to a patient taking a loop diuretic) because of ECF $\mathrm{H}_{2} \mathrm{O} / \mathrm{Na}^{+}$losses and concomitant renal $\mathrm{K}^{+} / \mathrm{H}^{+}$wasting. \uparrow immunoreactive trypsinogen (newborn screening).
COMPLICATIONS	Recurrent pulmonary infections (eg, S aureus [early infancy], Paeruginosa [adolescence]), chronic bronchitis and bronchiectasis \rightarrow reticulonodular pattern on CXR. Pancreatic insufficiency, malabsorption with steatorrhea, fat-soluble vitamin deficiencies (A, D, E, K), biliary cirrhosis, liver disease. Meconium ileus in newborns. Infertility in men (absence of vas deferens, spermatogenesis may be unaffected) and subfertility in women (amenorrhea, abnormally thick cervical mucus). Nasal polyps, clubbing of nails.
TREATMENT	Multifactorial: chest physiotherapy, albuterol, aerosolized dornase alfa (DNAse), and hypertonic saline facilitate mucus clearance. Azithromycin used as anti-inflammatory agent. Pancreatic enzymes for insufficiency.

X-linked recessive disorders

Ornithine transcarbamylase deficiency, Fabry disease, Wiskott-Aldrich syndrome, Ocular albinism, G6PD deficiency, Hunter syndrome, Bruton agammaglobulinemia, Hemophilia A and B, Lesch-Nyhan syndrome, Duchenne (and Becker) muscular dystrophy.
Female carriers can be variably affected depending on the percentage inactivation of the X chromosome carrying the mutant vs normal gene.

Oblivious Female Will Often Give Her Boys Her x-Linked Disorders

Muscular dystrophies

Duchenne	X-linked disorder typically due to frameshift or nonsense mutations \rightarrow truncated dystrophin protein \rightarrow inhibited muscle regeneration. Weakness begins in pelvic girdle muscles and progresses superiorly. Pseudohypertrophy of calf muscles due to fibrofatty replacement of muscle A. Gower maneuver-patients use upper extremities to help them stand up. Waddling gait. Onset before 5 years of age. Dilated cardiomyopathy is common cause of death.	Duchenne $=$ deleted dystrophin. Dystrophin gene (DMD) is the largest protein-coding human gene $\rightarrow \uparrow$ chance of spontaneous mutation. Dystrophin helps anchor muscle fibers, primarily in skeletal and cardiac muscle. It connects the intracellular cytoskeleton (actin) to the transmembrane proteins α - and β-dystroglycan, which are connected to the extracellular matrix (ECM). Loss of dystrophin results in myonecrosis. $\uparrow \mathrm{CK}$ and aldolase are seen; Western blot and muscle biopsy confirm diagnosis.
Becker	X-linked disorder typically due to nonframeshift insertions in dystrophin gene (partially functional instead of truncated). Less severe than Duchenne. Onset in adolescence or early adulthood.	Deletions can cause both Duchenne and Becker.
Myotonic type 1	Autosomal dominant. CTG trinucleotide repeat expansion in the DMPK gene \rightarrow abnormal expression of myotonin protein kinase \rightarrow myotonia, muscle wasting, cataracts, testicular atrophy, frontal balding, arrhythmia.	My Tonia, My Testicles (testicular atrophy), My Toupee (frontal balding), My Ticker (arrhythmia).

Fragile X syndrome

X-linked dominant inheritance. Trinucleotide repeat in FMR1 gene \rightarrow methylation $\rightarrow \downarrow$ expression. The 2 nd most common cause of genetic intellectual disability (after Down syndrome). Findings: post-pubertal macroorchidism (enlarged testes), long face with a large jaw, large everted ears, autism, mitral valve prolapse.

Trinucleotide repeat disorder (CGG) . Fragile $\mathbf{X}=$ eXtra large testes, jaw, ears.

Trinucleotide repeat

 expansion diseasesHuntington disease, myotonic dystrophy,
Friedreich ataxia, fragile \mathbf{X} syndrome.
Fragile \mathbf{X} syndrome $=(C G G)_{n}$.
Friedreich ataxia $=(G A A)_{n}$.
Huntington disease $=(C A G)_{n}$. Myotonic dystrophy $=(\mathrm{CTG})_{\mathrm{n}}$.

Try (trinucleotide) hunting for my fried eggs (X).
X-Girlfriend's First Aid Helped Ace My Test.
May show genetic anticipation (disease severity \uparrow and age of onset \downarrow in successive generations).

Autosomal trisomies

Down syndrome (trisomy 21)	Findings: intellectual disability, flat facies, prominent epicanthal folds, single palmar crease, gap between lst 2 toes, duodenal atresia, Hirschsprung disease, congenital heart disease (eg, atrioventricular septal defect), Brushfield spots. Associated with early-onset Alzheimer disease (chromosome 21 codes for amyloid precursor protein) and \uparrow risk of ALL and AML. 95\% of cases due to meiotic nondisjunction (\uparrow with advanced maternal age; from 1:1500 in women <20 to $1: 25$ in women >45 years old). 4% of cases due to unbalanced Robertsonian translocation, most typically between chromosomes 14 and 21.1% of cases due to mosaicism (no maternal association; postfertilization mitotic error).	Incidence 1:700. Drinking age (21). Most common viable chromosomal disorder and most common cause of genetic intellectual disability. First-trimester ultrasound commonly shows \uparrow nuchal translucency and hypoplastic nasal bone; \downarrow serum PAPP-A, \uparrow free β-hCG. Second-trimester quad screen shows $\downarrow \alpha$-fetoprotein, $\uparrow \beta$-hCG, \downarrow estriol, \uparrow inhibin A.
Edwards syndrome (trisomy 18)	Findings: severe intellectual disability, rockerbottom feet, micrognathia (small jaw), low-set Ears, clenched hands with overlapping fingers, prominent occiput, congenital heart disease. Death usually occurs within 1 year of birth.	Incidence 1:8000. Election age (18). 2nd most common trisomy resulting in live birth (most common is Down syndrome). PAPP-A and free β-hCG are \downarrow in first trimester. Quad screen shows $\downarrow \alpha$-fetoprotein, $\downarrow \beta$-hCG, \downarrow estriol, \downarrow or normal inhibin A.
Patau syndrome (trisomy 13)	Findings: severe intellectual disability, rockerbottom feet, microphthalmia, microcephaly, cleft liP/Palate, holoProsencephaly, Polydactyly, congenital heart disease, cutis aplasia. Death usually occurs within l year of birth.	Incidence 1:15,000. Puberty (13). First-trimester pregnancy screen shows \downarrow free β-hCG, \downarrow PAPP-A.
	Nondisjunction in meiosis I	Nondisjunction in meiosis II
	Meiosis I	$\left(\begin{array}{ll} (& 8 \\ 8 & 0 \\ 8 & \& \end{array}\right)$
	Nondisjunction Meiosis II	
	λ	
	$888 \underbrace{888}_{n+1}$ Gametes	
	Trisomy Monosomy	Normal Monosomy Trisomy 國

Genetic disorders by chromosome	CHROMOSOME	Sellected examples
	3	von Hippel-Lindau disease, renal cell carcinoma
	4	ADPKD (PKD2), achondroplasia, Huntington disease
	5	Cri-du-chat syndrome, familial adenomatous polyposis
	6	Hemochromatosis (HFE)
	7	Williams syndrome, cystic fibrosis
	9	Friedreich ataxia
	11	Wilms tumor, β-globin gene defects (eg, sickle cell disease, β-thalassemia)
	13	Patau syndrome, Wilson disease, retinoblastoma (RB1), BRCA2
	15	Prader-Willi syndrome, Angelman syndrome, Marfan syndrome
	16	ADPKD (PKDl), α-globin gene defects (eg, α-thalassemia)
	17	Neurofibromatosis type 1, BRCAl
	18	Edwards syndrome
	21	Down syndrome
	22	Neurofibromatosis type 2, DiGeorge syndrome (22q11)
	X	Fragile X syndrome, X-linked agammaglobulinemia, Klinefelter syndrome (XXY)

Robertsonian

 translocationChromosomal translocation that commonly involves chromosome pairs 13, 14, 15, 21, and 22.
One of the most common types of translocation. Occurs when the long arms of 2 acrocentric chromosomes (chromosomes with centromeres near their ends) fuse at the centromere and the 2 short arms are lost. Balanced translocations normally do not cause any abnormal phenotype. Unbalanced translocations can result in miscarriage, stillbirth, and chromosomal imbalance (eg, Down syndrome, Patau syndrome).

Cri-du-chat syndrome	Congenital microdeletion of short arm of chromosome $5(46, \mathrm{XX}$ or XY, $5 \mathrm{p}-)$.\quad Cri du chat $=$ cry of the cat.
Findings: microcephaly, moderate to	
severe intellectual disability, high-pitched	
crying/mewing, epicanthal folds, cardiac	
abnormalities (VSD).	

Williams syndrome
Congenital microdeletion of long arm of chromosome 7 (deleted region includes elastin gene). Findings: distinctive "elfin" facies, intellectual disability, hypercalcemia (\uparrow sensitivity to vitamin D), well-developed verbal skills, extreme friendliness with strangers, cardiovascular problems.

22q11 deletion syndromes

Microdeletion at chromosome 22q1l \rightarrow variable presentations including Cleft palate, Abnormal facies, Thymic aplasia \rightarrow T-cell deficiency, Cardiac defects, and Hypocalcemia 2° to parathyroid aplasia.
DiGeorge syndrome-thymic, parathyroid, and cardiac defects.
Velocardiofacial syndrome-palate, facial, and cardiac defects.

CATCH-22.

Due to aberrant development of 3rd and 4th branchial pouches.

- BIOCHEMISTRY—NUTRITION

Vitamins: fat soluble
A, D, E, K. Absorption dependent on gut and pancreas. Toxicity more common than for water-soluble vitamins because fat-soluble vitamins accumulate in fat.

Malabsorption syndromes with steatorrhea, such as cystic fibrosis and sprue, or mineral oil intake can cause fat-soluble vitamin deficiencies.

Vitamins: water soluble

B_{1} (thiamine: TPP)
B_{2} (riboflavin: FAD, FMN)
B_{3} (niacin: NAD^{+})
B_{5} (pantothenic acid: CoA)
B_{6} (pyridoxine: PLP)
B_{7} (biotin)
B_{9} (folate)
B_{12} (cobalamin)
C (ascorbic acid)

All wash out easily from body except B_{12} and B_{9} (folate). B_{12} stored in liver for $\sim 3-4$ years. B_{9} stored in liver for ~3-4 months.
B-complex deficiencies often result in dermatitis, glossitis, and diarrhea.
Can be coenzymes (eg, ascorbic acid) or precursors to organic cofactors (eg, FAD, NAD^{+}).

function	Antioxidant; constituent of visual pigments (retinal); essential for normal differentiation of epithelial cells into specialized tissue (pancreatic cells, mucus-secreting cells); prevents squamous metaplasia. Used to treat measles and AML subtype M3.	Retinol is vitamin A , so think retin- A (used topically for wrinkles and Acne). Found in liver and leafy vegetables. Use oral isotretinoin to treat severe cystic acne. Use all-trans retinoic acid to treat acute promyelocytic leukemia.
deficiency	Night blindness (nyctalopia); dry, scaly skin (xerosis cutis); corneal degeneration (keratomalacia); Bitot spots on conjunctiva; immunosuppression.	
EXCESS	Acute toxicity—nausea, vomiting, vertigo, and blurred vision. Chronic toxicity-alopecia, dry skin (eg, scaliness), hepatic toxicity and enlargement, arthralgias, and pseudotumor cerebri. Teratogenic (cleft palate, cardiac abnormalities), therefore a Θ pregnancy test and two forms of contraception are required before isotretinoin (vitamin A derivative) is prescribed.	Isotretinoin is teratogenic.

Vitamin B_{1} (thiamine)
function
 several dehydrogenase enzyme reactions:

- Pyruvate dehydrogenase (links glycolysis to TCA cycle)
- α-ketoglutarate dehydrogenase (TCA cycle)
- Transketolase (HMP shunt)
- Branched-chain ketoacid dehydrogenase

Impaired glucose breakdown \rightarrow ATP depletion worsened by glucose infusion; highly aerobic tissues (eg, brain, heart) are affected first. Wernicke-Korsakoff syndrome and beriberi. Seen in malnutrition and alcoholism (2° to malnutrition and malabsorption). Diagnosis made by \uparrow in RBC transketolase activity following vitamin B_{1} administration.

Think ATP: α-ketoglutarate dehydrogenase, Transketolase, and Pyruvate dehydrogenase. Spell beriberi as BerlBerl to remember vitamin B_{1}. Wernicke-Korsakoff syndrome-confusion, ophthalmoplegia, ataxia (classic triad) + confabulation, personality change, memory loss (permanent). Damage to medial dorsal nucleus of thalamus, mammillary bodies. Dry beriberi-polyneuritis, symmetrical muscle wasting.
Wet beriberi-high-output cardiac failure (dilated cardiomyopathy), edema.

Vitamin B_{5} (pantothenic acid)

FUNCTION	Essential component of coenzyme $\mathrm{A}(\mathrm{CoA}$, a cofactor for acyl transfers $)$ and fatty acid synthase.
Dermatitis, enteritis, alopecia, adrenal insufficiency.	B_{5} is "pento"thenic acid.
DEFIIENCY	

Vitamin B_{6} (pyridoxine)

FUNCTION

DEFICIENCY

Converted to pyridoxal phosphate (PLP), a cofactor used in transamination (eg, ALT and AST), decarboxylation reactions, glycogen phosphorylase. Synthesis of cystathionine, heme, niacin, histamine, and neurotransmitters including serotonin, epinephrine, norepinephrine (NE), dopamine, and GABA.
Convulsions, hyperirritability, peripheral neuropathy (deficiency inducible by isoniazid and oral contraceptives), sideroblastic anemias due to impaired hemoglobin synthesis and iron excess.

Vitamin B_{7} (biotin)		
function	Cofactor for carboxylation enzymes (which add a l-carbon group): - Pyruvate carboxylase: pyruvate (3C) \rightarrow oxaloacetate (4C) - Acetyl-CoA carboxylase: acetyl-CoA (2C) \rightarrow malonyl-CoA (3C) - Propionyl-CoA carboxylase: propionyl-CoA (3C) \rightarrow methylmalonyl-CoA (4C)	"Avidin in egg whites avidly binds biotin."
Defliency	Relatively rare. Dermatitis, alopecia, enteritis. Caused by antibiotic use or excessive ingestion of raw egg whites.	
Vitamin B_{9} (folate)		
function	Converted to tetrahydrofolic acid (THF), a coenzyme for l-carbon transfer/methylation reactions. Important for the synthesis of nitrogenous bases in DNA and RNA.	Found in leafy green vegetables. Absorbed in jejunum. Folate from foliage. Small reserve pool stored primarily in the liver.
defriency	Macrocytic, megaloblastic anemia; hypersegmented polymorphonuclear cells (PMNs); glossitis; no neurologic symptoms (as opposed to vitamin B_{12} deficiency). Labs: \uparrow homocysteine, normal methylmalonic acid levels. Most common vitamin deficiency in the United States. Seen in alcoholism and pregnancy.	Deficiency can be caused by several drugs (eg, phenytoin, sulfonamides, methotrexate). Supplemental maternal folic acid in early pregnancy \downarrow risk of neural tube defects.

Vitamin		
function	Cofactor for methionine synthase (transfers CH_{3} groups as methylcobalamin) and methylmalonyl-CoA mutase.	Found in animal products. Synthesized only by microorganisms. Very large reserve pool (several years) stored primarily in the liver. Deficiency caused by malabsorption (eg, sprue, enteritis, Diphyllobothrium latum), lack of intrinsic factor (pernicious anemia, gastric bypass surgery), absence of terminal ileum (surgical resection, eg, for Crohn disease), or insufficient intake (eg, veganism). Anti-intrinsic factor antibodies diagnostic for pernicious anemia.
deficiency	Macrocytic, megaloblastic anemia; hypersegmented PMNs; paresthesias and subacute combined degeneration (degeneration of dorsal columns, lateral corticospinal tracts, and spinocerebellar tracts) due to abnormal myelin. Associated with \uparrow serum homocysteine and methylmalonic acid levels. Prolonged deficiency \rightarrow irreversible nerve damage.	
		Fatty acids with odd number of carbons, branched-chain amino acids
Vitamin C (ascorbic acid)		
function	Antioxidant; also facilitates iron absorption by reducing it to Fe^{2+} state. Necessary for hydroxylation of proline and lysine in collagen synthesis. Necessary for dopamine β-hydroxylase, which converts dopamine to NE.	Found in fruits and vegetables. Pronounce "absorbic" acid. Ancillary treatment for methemoglobinemia by reducing Fe^{3+} to Fe^{2+}.
deficiency	Scurvy—swollen gums, bruising, petechiae, hemarthrosis, anemia, poor wound healing, perifollicular and subperiosteal hemorrhages, "corkscrew" hair. Weakened immune response.	Vitamin C deficiency causes sCurvy due to a Collagen synthesis defect.
EXCESS	Nausea, vomiting, diarrhea, fatigue, calcium oxalate nephrolithiasis. Can \uparrow risk of iron toxicity in predisposed individuals (eg, those with transfusions, hereditary hemochromatosis).	

Vitamin D	$\mathrm{D}_{2}=$ ergocalciferol-ingested from plants. $\mathrm{D}_{3}=$ cholecalciferol-consumed in milk, formed in sun-exposed skin (stratum basale). $25-\mathrm{OH} \mathrm{D}_{3}=$ storage form. $1,25-(\mathrm{OH})_{2} \mathrm{D}_{3}($ calcitriol $)=$ active form.
function	\uparrow intestinal absorption of calcium and phosphate, \uparrow bone mineralization at low levels, \uparrow bone resorption at higher levels.
DEFIIIENCY A	Rickets \boldsymbol{A} in children (bone pain and deformity), osteomalacia in adults (bone pain and muscle weakness), hypocalcemic tetany. Breastfed infants should receive oral vitamin D. Deficiency is exacerbated by low sun exposure, pigmented skin, prematurity.
EXCESS	Hypercalcemia, hypercalciuria, loss of appetite, stupor. Seen in granulomatous disease (\uparrow activation of vitamin D by epithelioid macrophages).

Vitamin E (tocopherol/tocotrienol)

FUNCTION	Antioxidant (protects RBCs and membranes from free radical damage).	Can enhance anticoagulant effects of warfarin.
DEFIIIENCY	Hemolytic anemia, acanthocytosis,	Neurologic presentation may appear similar
	muscle weakness, posterior column and	to vitamin B_{12} deficiency, but without
spinocerebellar tract demyelination.	megaloblastic anemia, hypersegmented neutrophils, or \uparrow serum methylmalonic acid	
		levels.

Vitamin K (phytomenadione, phylloquinone, phytonadione)

fUNCTION	Cofactor for the γ-carboxylation of glutamic acid residues on various proteins required for blood clotting. Synthesized by intestinal flora.	K is for Koagulation. Necessary for the maturation of clotting factors II, VII, IX, X, and proteins C and S. Warfarin-vitamin K antagonist.
DEFIIENCY	Neonatal hemorrhage with \uparrow PT and \uparrow aPTT but normal bleeding time (neonates have sterile intestines and are unable to synthesize vitamin K). Can also occur after prolonged use of broad-spectrum antibiotics.	Not in breast milk; neonates are given vitamin K injection at birth to prevent hemorrhagic disease of the newborn.

Zinc

Mineral essential for the activity of $100+$ enzymes. Important in the formation of zinc fingers (transcription factor motif).
Delayed wound healing, hypogonadism, \downarrow adult hair (axillary, facial, pubic), dysgeusia, anosmia, acrodermatitis enteropathica A. May predispose to alcoholic cirrhosis.

Malnutrition

Kwashiorkor

Protein malnutrition resulting in skin lesions, edema due to \downarrow plasma oncotic pressure, liver malfunction (fatty change due to \downarrow apolipoprotein synthesis). Clinical picture is small child with swollen abdomen \boldsymbol{A}.

Kwashiorkor results from a proteindeficient MEAL: Malnutrition Edema Anemia Liver (fatty)

Total calorie malnutrition resulting in emaciation (tissue and muscle wasting, loss of subcutaneous fat); +/- edema.

Marasmus results in Muscle wasting.

Ethanol metabolism

Fomepizole-inhibits alcohol dehydrogenase and is an antidote for methanol or ethylene glycol poisoning.
Disulfiram—inhibits acetaldehyde dehydrogenase (acetaldehyde accumulates, contributing to hangover symptoms).
NAD^{+}is the limiting reagent.
Alcohol dehydrogenase operates via zero-order kinetics.
Ethanol metabolism $\uparrow \mathrm{NADH} / \mathrm{NAD}^{+}$ratio in liver, causing:

- Pyruvate \rightarrow lactate (lactic acidosis).

- Oxaloacetate \rightarrow malate (prevents gluconeogenesis \rightarrow fasting hypoglycemia)
- Dihydroxyacetone phosphate \rightarrow glycerol-3-phosphate (combines with fatty acids to make triglycerides \rightarrow hepatosteatosis)
End result is clinical picture seen in chronic alcoholism.
Additionally, \uparrow NADH/NAD ${ }^{+}$ratio disfavors TCA production of NADH $\rightarrow \uparrow$ utilization of acetyl-CoA for ketogenesis (\rightarrow ketoacidosis) and lipogenesis (\rightarrow hepatosteatosis).

- BIOCHEMISTRY—METABOLISM

Metabolism sites

Mitochondria	Fatty acid oxidation (β-oxidation), acetyl- CoA production, TCA cycle, oxidative phosphorylation, ketogenesis.
Cytoplasm	Glycolysis, HMP shunt, and synthesis of steroids
	(SER), proteins (ribosomes, RER), fatty acids,
cholesterol, and nucleotides.	

[^5]	Enzyme terminology	An enzyme's name often describes its function. For example, glucokinase is an enzyme that catalyzes the phosphorylation of glucose using a molecule of ATP. The following are commonly used enzyme descriptors.
Kinase	Catalyzes transfer of a phosphate group from a high-energy molecule (usually ATP) to a substrate (eg, phosphofructokinase).	
Phosphorylase	Adds inorganic phosphate onto substrate without using ATP (eg, glycogen phosphorylase).	
Phosphatase	Removes phosphate group from substrate (eg, fructose-1,6-bisphosphatase).	
Dehydrogenase	Catalyzes oxidation-reduction reactions (eg, pyruvate dehydrogenase).	

Summary of pathways

(1) Galactokinase (mild galactosemia)
(2) Galactose-1-phosphate uridyltransferase (severe galactosemia)
(3) Hexokinase/glucokinase
(4) Glucose-6-phosphatase (von Gierke disease)
(5) Glucose-6-phosphate dehydrogenase
(6) Transketolase
(7) Phosphofructokinase-1

8 Fructose-1,6-bisphosphatase
(9) Fructokinase (essential fructosuria)
(10) Aldolase B (fructose intolerance)
(1)

Aldolase B (liver), A (muscle)
(12)

Pyruvate kinase
(13) Pyruvate dehydrogenase
(14) HMG-CoA reductase
(15) Pyruvate carboxylase
(16) PEP carboxykinase
(1)

Citrate synthase
(18) Isocitrate dehydrogenase
(1) α-ketoglutarate dehydrogenase
(20) Ornithine transcarbamylase
(21) Propionyl-CoA carboxylase

ATP production

Aerobic metabolism of glucose produces 32 net ATP via malate-aspartate shuttle (heart and liver), 30 net ATP via glycerol-3-phosphate shuttle (muscle).
Anaerobic glycolysis produces only 2 net ATP per glucose molecule.
ATP hydrolysis can be coupled to energetically unfavorable reactions.

Arsenic causes glycolysis to produce zero net ATP.

Activated carriers

CARRIER MOLECULE	CARRIED in activated form
ATP	Phosphoryl groups
NADH, NADPH, FADH2	Electrons
CoA, lipoamide	Acyl groups
Biotin	CO_{2}
Tetrahydrofolates	l-carbon units
S-adenosylmethionine (SAM)	CH_{3} groups
TPP	Aldehydes

Universal electron acceptors

Nicotinamides $\left(\mathrm{NAD}^{+}\right.$from vitamin B_{3}, NADP^{+}) and flavin nucleotides (FAD^{+}from vitamin B_{2}).
NAD^{+}is generally used in catabolic processes to carry reducing equivalents away as NADH.
NADPH is used in anabolic processes (steroid and fatty acid synthesis) as a supply of reducing equivalents.

NADPH is a product of the HMP shunt.
NADPH is used in:

- Anabolic processes
- Respiratory burst
- Cytochrome P-450 system
- Glutathione reductase

Hexokinase vs glucokinase

Phosphorylation of glucose to yield glucose-6-phosphate serves as the lst committed step of glycolysis (also serves as the lst step of glycogen synthesis in the liver). Reaction is catalyzed by either hexokinase or glucokinase, depending on the tissue. At low glucose concentrations, hexokinase sequesters glucose in the tissue. At high glucose concentrations, excess glucose is stored in the liver.

	Hexokinase	Glucokinase
Location	Most tissues, except liver and pancreatic β cells	Liver, β cells of pancreas
K_{m}	Lower (\uparrow affinity $)$	Higher (\downarrow affinity)
$\mathrm{V}_{\text {max }}$	Lower (\downarrow capacity)	Higher (\uparrow capacity)
Induced by insulin	Yes	
Feedback-inhibited by glucose-6-phosphate	Yes	No
Gene mutation associated with maturity-onset diabetes of the young (MODY)	No	Yes

Glycolysis regulation, key enzymes	Net glycolysis (cytoplasm): Glucose $+2 \mathrm{P}_{\mathrm{i}}+2 \mathrm{ADP}+2 \mathrm{NAD}^{+} \rightarrow 2$ pyruvate $+2 \mathrm{ATP}+2 \mathrm{NADH}+2 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O}$.	
	Equation not balanced chemically, and exact balanced equation depends on ionization state of reactants and products.	
REQUIRE ATP	Glucose $\xrightarrow[\text { Hexokinase/glucokinase }{ }^{\text {a }}]{ }$ Glucose-6-P	Glucose-6-P \ominus hexokinase. Fructose-6-P \ominus glucokinase.
	$\text { Fructose-6-P } \xrightarrow[\substack{\text { Phosphofructokinase-1 } \\ \text { (rate-limiting step) }}]{ } \text { Fructose-1,6-BP }$	AMP \oplus, fructose-2,6-bisphosphate \oplus. ATP Θ, citrate Θ.
	${ }^{\text {a }}$ Glucokinase in liver and β cells of pancreas; hexokinase in all other tissues.	
PRODUCE ATP	$\text { 1,3-BPG } \underset{\text { Phosphoglycerate kinase }}{\rightleftarrows} 3 \text {-PG }$	
	Phosphoenolpyruvate $\xrightarrow[\text { Pyruvate kinase }]{ }$ Pyruvate	Fructose-1,6-bisphosphate \oplus. ATP Θ, alanine Θ.

Regulation by fructose-2,6bisphosphate

FBPase-2 (fructose bisphosphatase-2) and PFK-2 (phosphofructokinase-2) are the same bifunctional enzyme whose function is reversed by phosphorylation by protein kinase A.
Fasting state: \uparrow glucagon $\rightarrow \uparrow$ cAMP $\rightarrow \uparrow$ protein kinase $\mathrm{A} \rightarrow \uparrow$ FBPase- $2, \downarrow$ PFK-2, less glycolysis, more gluconeogenesis.
Fed state: \uparrow insulin $\rightarrow \downarrow$ cAMP $\rightarrow \downarrow$ protein kinase $\mathrm{A} \rightarrow \downarrow$ FBPase- $2, \uparrow$ PFK-2, more glycolysis, less gluconeogenesis.

Pyruvate dehydrogenase complex

Mitochondrial enzyme complex linking glycolysis and TCA cycle. Differentially regulated in fed/fasting states (active in fed state).
Reaction: pyruvate $+\mathrm{NAD}^{+}+\mathrm{CoA} \rightarrow$ acetyl-
$\mathrm{CoA}+\mathrm{CO}_{2}+\mathrm{NADH}$.
The complex contains 3 enzymes that require 5
cofactors:

1. Thiamine pyrophosphate $\left(B_{1}\right)$
2. Lipoic acid
3. $\mathrm{CoA}\left(\mathrm{B}_{5}\right.$, pantothenic acid)
4. FAD (B_{2}, riboflavin)
5. NAD (B_{3}, niacin $)$

Activated by:
$\uparrow \mathrm{NAD}^{+} / \mathrm{NADH}$ ratio
\uparrow ADP
$\uparrow \mathrm{Ca}^{2+}$

The complex is similar to the α-ketoglutarate dehydrogenase complex (same cofactors, similar substrate and action), which converts α-ketoglutarate \rightarrow succinyl-CoA (TCA cycle).

TLC For Nancy.

Arsenic inhibits lipoic acid. Findings: vomiting, rice-water stools, garlic breath.

Pyruvate dehydrogenase complex deficiency	Causes a buildup of pyruvate that gets shunted to lactate (via LDH) and alanine (via ALT). X-linked.
FINDINGS	Neurologic defects, lactic acidosis, \uparrow serum alanine starting in infancy.
TREATMENT	\uparrow intake of ketogenic nutrients (eg, high fat content or \uparrow lysine and leucine).

Pyruvate metabolism

Functions of different pyruvate metabolic pathways (and their associated cofactors):
(1) Alanine aminotransferase $\left(\mathrm{B}_{6}\right)$: alanine carries amino groups to the liver from muscle
(2) Pyruvate carboxylase (biotin): oxaloacetate can replenish TCA cycle or be used in gluconeogenesis
(3) Pyruvate dehydrogenase $\left(B_{1}, B_{2}, B_{3}, B_{5}\right.$, lipoic acid): transition from glycolysis to the TCA cycle
(4) Lactic acid dehydrogenase $\left(B_{3}\right)$: end of anaerobic glycolysis (major pathway in RBCs, WBCs, kidney medulla, lens, testes, and cornea)

TCA cycle (Krebs cycle) Pyruvate \rightarrow acetyl-CoA produces l NADH, $1 \mathrm{CO}_{2}$.

The TCA cycle produces 3 NADH, $1 \mathrm{FADH}_{2}$, $2 \mathrm{CO}_{2}, 1$ GTP per acetyl-CoA $=10$ ATP/ acetyl-CoA ($2 \times$ everything per glucose). TCA cycle reactions occur in the mitochondria.
α-ketoglutarate dehydrogenase complex requires the same cofactors as the pyruvate dehydrogenase complex $\left(B_{1}, B_{2}, B_{3}, B_{5}\right.$, lipoic acid).
Citrate Is Krebs' Starting Substrate For Making Oxaloacetate.

Electron transport chain and oxidative phosphorylation

NADH electrons from glycolysis enter mitochondria via the malate-aspartate or glycerol-3phosphate shuttle. FADH_{2} electrons are transferred to complex II (at a lower energy level than $\mathrm{NADH})$. The passage of electrons results in the formation of a proton gradient that, coupled to oxidative phosphorylation, drives the production of ATP.

ATP PRODUCED VIA ATP SYNTHASE		
	$1 \mathrm{NADH} \rightarrow 2.5$ ATP; $1 \mathrm{FADH}_{2} \rightarrow 1.5$ ATP.	
OXIDATIVE PHOSPHORYLATION POISONS		
Electron transport inhibitors	Directly inhibit electron transport, causing a \downarrow proton gradient and block of ATP synthesis.	RotenONE: complex ONE inhibitor. "An-3-mycin" (antimycin) A: complex 3 inhibitor. CO/CN: complex 4 inhibitors (4 letters).
ATP synthase inhibitors	Directly inhibit mitochondrial ATP synthase, causing an \uparrow proton gradient. No ATP is produced because electron transport stops.	Oligomycin.
Uncoupling agents	\uparrow permeability of membrane, causing a \downarrow proton gradient and $\uparrow \mathrm{O}_{2}$ consumption. ATP synthesis stops, but electron transport continues. Produces heat.	2,4-Dinitrophenol (used illicitly for weight loss), aspirin (fevers often occur after aspirin overdose), thermogenin in brown fat.

HMP shunt (pentose phosphate pathway)

Provides a source of NADPH from abundantly available glucose-6-P (NADPH is required for reductive reactions, eg, glutathione reduction inside RBCs, fatty acid and cholesterol biosynthesis). Additionally, this pathway yields ribose for nucleotide synthesis and glycolytic intermediates. 2 distinct phases (oxidative and nonoxidative), both of which occur in the cytoplasm. No ATP is used or produced.
Sites: lactating mammary glands, liver, adrenal cortex (sites of fatty acid or steroid synthesis), RBCs.

REACTIONS	KEY ENZYMES PRODUCTS
Oxidative (irreversible)	
Nonoxidative (reversible)	

Glucose-6-phosphate dehydrogenase deficiency

NADPH is necessary to keep glutathione reduced, which in turn detoxifies free radicals and peroxides. \downarrow NADPH in RBCs leads to hemolytic anemia due to poor RBC defense against oxidizing agents (eg, fava beans, sulfonamides, primaquine, antituberculosis drugs). Infection (most common cause) can also precipitate hemolysis; inflammatory response produces free radicals that diffuse into RBCs, causing oxidative damage.

X-linked recessive disorder; most common human enzyme deficiency; more prevalent among African Americans. \uparrow malarial resistance.
Heinz bodies-denatured Hemoglobin precipitates within RBCs due to oxidative stress.
Bite cells-result from the phagocytic removal of Heinz bodies by splenic macrophages. Think, "Bite into some Heinz ketchup."

Disorders of fructose metabolism

Essential fructosuria Involves a defect in fructokinase. Autosomal recessive. A benign, asymptomatic condition, since fructose is not trapped in cells.
Symptoms: fructose appears in blood and urine.
Disorders of fructose metabolism cause milder symptoms than analogous disorders of galactose metabolism.
Fructose intolerance Hereditary deficiency of aldolase B. Autosomal recessive. Fructose-l-phosphate accumulates, causing a \downarrow in available phosphate, which results in inhibition of glycogenolysis and gluconeogenesis. Symptoms present following consumption of fruit, juice, or honey. Urine dipstick will be Θ (tests for glucose only); reducing sugar can be detected in the urine (nonspecific test for inborn errors of carbohydrate metabolism).
Symptoms: hypoglycemia, jaundice, cirrhosis, vomiting.
Treatment: \downarrow intake of both fructose and sucrose (glucose + fructose).
Fructose metabolism (liver)

Disorders of galactose metabolism

Galactokinase deficiency	Hereditary deficiency of galactokinase. Galactitol accumulates if galactose is present in diet. Relatively mild condition. Autosomal recessive. Symptoms develop when infant begins feeding (lactose present in breast milk and routine formula). Symptoms: galactose appears in blood (galactosemia) and urine (galactosuria); infantile cataracts. May present as failure to track objects or to develop a social smile.
Classic galactosemia	Absence of galactose-1-phosphate uridyltransferase. Autosomal recessive. Damage is caused by accumulation of toxic substances (including galactitol, which accumulates in the lens of the eye). Symptoms: failure to thrive, jaundice, hepatomegaly, infantile cataracts, intellectual disability. Can lead to E coli sepsis in neonates. Treatment: exclude galactose and lactose (galactose + glucose) from diet.

Fructose is to Aldolase B as Galactose is to UridylTransferase (FAB GUT).
The more serious defects lead to $\mathrm{PO}_{4}{ }^{3-}$ depletion.

Sorbitol

An alternative method of trapping glucose in the cell is to convert it to its alcohol counterpart, called sorbitol, via aldose reductase. Some tissues then convert sorbitol to fructose using sorbitol dehydrogenase; tissues with an insufficient amount/activity of this enzyme are at risk for intracellular sorbitol accumulation, causing osmotic damage (eg, cataracts, retinopathy, and peripheral neuropathy seen with chronic hyperglycemia in diabetes).
High blood levels of galactose also result in conversion to the osmotically active galactitol via aldose reductase.

Liver, ovaries, and seminal vesicles have both enzymes.

Schwann cells, retina, and kidneys have only aldose reductase. Lens has primarily aldose reductase.

Amino acids	Only L-amino acids are found in proteins.	
Essential	Glucogenic: methionine (Met), valine (Val), histidine (His). Glucogenic/ketogenic: isoleucine (Ile), phenylalanine (Phe), threonine (Thr), tryptophan (Trp). Ketogenic: leucine (Leu), lysine (Lys).	All essential amino acids need to be supplied in the diet.
Acidic	Aspartic acid (Asp) and glutamic acid (Glu). Negatively charged at body pH.	
Basic	Arginine (Arg), lysine (Lys), histidine (His). Arg is most basic. His has no charge at body pH.	Arg and His are required during periods of growth. Arg and Lys are it histones, which bind negatively charged DNA.

Lactase deficiency
Insufficient lactase enzyme \rightarrow dietary lactose intolerance. Lactase functions on the brush border to digest lactose (in human and cow milk) into glucose and galactose.
Primary: age-dependent decline after childhood (absence of lactase-persistent allele), common in people of Asian, African, or Native American descent.
Secondary: loss of brush border due to gastroenteritis (eg, rotavirus), autoimmune disease, etc.
Congenital lactase deficiency: rare, due to defective gene.
Stool demonstrates $\downarrow \mathrm{pH}$ and breath shows \uparrow hydrogen content with lactose hydrogen breath test. Intestinal biopsy reveals normal mucosa in patients with hereditary lactose intolerance.

FINDINGS	Bloating, cramps, flatulence, osmotic diarrhea.
TREATMENT	Avoid dairy products or add lactase pills to diet; lactose-free milk.

TREATMENT
Avoid dairy products or add lactase pills to diet; lactose-free milk.

Acidic

Basic Arginine (Arg), lysine (Lys), histidine (His).
His has no charge at body pH .
Glucogenic/ketogenic: isoleucine (Ile), phenylalanine (Phe), threonine (Thr),
tryptophan (Trp).
Ketogenic: leucine (Leu), lysine (Lys).
Aspartic acid (Asp) and glutamic acid (Glu). Negatively charged at body pH.

All essential amino acids need to be supplied in the diet.
\qquad

Urea cycle

Amino acid catabolism results in the formation of common metabolites (eg, pyruvate, acetylCoA), which serve as metabolic fuels. Excess nitrogen $\left(\mathrm{NH}_{3}\right)$ generated by this process is converted to urea and excreted by the kidneys.

Ordinarily, Careless Crappers Are Also Frivolous About Urination.

Transport of ammonia by alanine and glutamate

Hyperammonemia

Can be acquired (eg, liver disease) or hereditary (eg, urea cycle enzyme deficiencies).
Results in excess NH_{3}, which depletes α-ketoglutarate, leading to inhibition of TCA cycle.
Treatment: limit protein in diet.
May be given to \downarrow ammonia levels:

- Lactulose to acidify the GI tract and trap $\mathrm{NH}_{4}{ }^{+}$for excretion.
- Rifaximin to \downarrow colonic ammoniagenic bacteria.
- Benzoate, phenylacetate, or phenylbutyrate to bind to NH_{4}^{+}and lead to excretion.

Ammonia accumulation-tremor (asterixis), slurring of speech, somnolence, vomiting, cerebral edema, blurring of vision.

N -acetylglutamate synthase deficiency

Required cofactor for carbamoyl phosphate synthetase I. Absence of N-acetylglutamate \rightarrow hyperammonemia.
Presents in neonates as poorly regulated respiration and body temperature, poor feeding, developmental delay, intellectual disability (identical to presentation of carbamoyl phosphate synthetase I deficiency).

Ornithine transcarbamylase deficiency

Most common urea cycle disorder. X-linked recessive (vs other urea cycle enzyme deficiencies, which are autosomal recessive). Interferes with the body's ability to eliminate ammonia. Often evident in the first few days of life, but may present later. Excess carbamoyl phosphate is converted to orotic acid (part of the pyrimidine synthesis pathway).
Findings: \uparrow orotic acid in blood and urine, \downarrow BUN, symptoms of hyperammonemia. No megaloblastic anemia (vs orotic aciduria).

Amino acid derivatives

Catecholamine synthesis/tyrosine catabolism

Phenylketonuria

Maple syrup urine disease

Due to \downarrow phenylalanine hydroxylase or \downarrow tetrahydrobiopterin cofactor (malignant PKU). Tyrosine becomes essential. ${ }^{\uparrow}$ phenylalanine \rightarrow excess phenylketones in urine.
Findings: intellectual disability, growth retardation, seizures, fair skin, eczema, musty body odor.
Treatment: \downarrow phenylalanine and \uparrow tyrosine in diet, tetrahydrobiopterin supplementation.

Autosomal recessive. Incidence $\approx 1: 10,000$.
Screening occurs 2-3 days after birth (normal at birth because of maternal enzyme during fetal life).
Phenylketones-phenylacetate, phenyllactate, and phenylpyruvate.
Disorder of aromatic amino acid metabolism \rightarrow musty body odor.
PKU patients must avoid the artificial sweetener aspartame, which contains phenylalanine.

Maternal PKU—lack of proper dietary therapy during pregnancy. Findings in infant: microcephaly, intellectual disability, growth retardation, congenital heart defects.

Blocked degradation of branched amino acids (Isoleucine, Leucine, Valine) due to \downarrow branched-chain α-ketoacid dehydrogenase $\left(B_{1}\right)$. Causes $\uparrow \alpha$-ketoacids in the blood, especially those of leucine.
Causes severe CNS defects, intellectual disability, and death.
Treatment: restriction of isoleucine, leucine, valine in diet, and thiamine supplementation.

Autosomal recessive.
Presentation: vomiting, poor feeding, urine smells like maple syrup/burnt sugar.
I Love Vermont maple syrup from maple trees (with B_{1} ranches).

Alkaptonuria

Congenital deficiency of homogentisate oxidase in the degradative pathway of tyrosine to fumarate \rightarrow pigment-forming homogentisic acid accumulates in tissue A. Autosomal recessive. Usually benign.
Findings: bluish-black connective tissue and sclerae (ochronosis); urine turns black on prolonged exposure to air. May have debilitating arthralgias (homogentisic acid toxic to cartilage).

Types (all autosomal recessive):

- Cystathionine synthase deficiency (treatment: \downarrow methionine, \uparrow cysteine, $\uparrow \mathrm{B}_{12}$ and folate in diet)
- \downarrow affinity of cystathionine synthase for pyridoxal phosphate (treatment: $\uparrow \uparrow \mathrm{B}_{6}$ and \uparrow cysteine in diet)
- Methionine synthase (homocysteine methyltransferase) deficiency (treatment: \uparrow methionine in diet)

All forms result in excess homocysteine.
Findings: $\uparrow \uparrow$ homocysteine in urine, intellectual disability, osteoporosis, marfanoid habitus, kyphosis, lens subluxation (downward and inward), thrombosis, and atherosclerosis (stroke and MI).

Cystinuria

Hereditary defect of renal PCT and intestinal amino acid transporter that prevents reabsorption of Cystine, Ornithine, Lysine, and Arginine (COLA).
Excess cystine in the urine can lead to recurrent precipitation of hexagonal cystine stones \boldsymbol{A}.
Treatment: urinary alkalinization (eg, potassium citrate, acetazolamide) and chelating agents (eg, penicillamine) \uparrow solubility of cystine stones; good hydration.

Autosomal recessive. Common (1:7000). Urinary cyanide-nitroprusside test is diagnostic.

Cystine is made of 2 cysteines connected by a disulfide bond.

Glycogen regulation by insulin and glucagon/epinephrine

Glycogen
Skeletal muscle

Hepatocytes

Branches have $\alpha-(1,6)$ bonds; linkages have $\alpha-(1,4)$ bonds.
Glycogen undergoes glycogenolysis \rightarrow glucose-l-phosphate \rightarrow glucose-6-phosphate, which is rapidly metabolized during exercise.
Glycogen is stored and undergoes glycogenolysis to maintain blood sugar at appropriate levels. Glycogen phosphorylase liberates glucose-l-phosphate residues off branched glycogen until 4 glucose units remain on a branch. Then 4- α-D-glucanotransferase (debranching enzyme (5) moves 3 molecules of glucose-l-phosphate from the branch to the linkage. Then $\alpha-1,6$-glucosidase (debranching enzyme (6) cleaves off the last residue, liberating glucose.
"Limit dextrin" refers to the one to four residues remaining on a branch after glycogen phosphorylase has already shortened it.

Note: A small amount of glycogen is degraded in lysosomes by α-1,4-glucosidase (acid maltase).

Glycogen storage diseases	12 types, all resulting in abnormal glycogen metabolism and an accumulation of glycogen within cells. Periodic acid-Schiff stain identifies glycogen and is useful in identifying these diseases.	glycogen Very Poor Carb Types I, II, III, iff stain in identifying	ohydrate Metabolism. and V are autosomal recessive.
DISEASE	Finoligs	deficient enzym	COMMENTS
Von Gierke disease (type I)	Severe fasting hypoglycemia, $\uparrow \uparrow$ Glycogen in liver, \uparrow blood lactate, \uparrow triglycerides, \uparrow uric acid (Gout), and hepatomegaly.	Glucose-6-phosphatase	Treatment: frequent oral glucose/cornstarch; avoidance of fructose and galactose Impaired gluconeogenesis and glycogenolysis
Pompe disease (type II)	Cardiomegaly, hypertrophic cardiomyopathy, exercise intolerance, and systemic finds leading to early death.	Lysosomal $\alpha-1,4$-glucosidase with α-1,6-glucosidase activity (acid maltase)	Pompe trashes the Pump (heart, liver, and muscle)
Cori disease (type III)	Milder form of von Gierke (type I) with normal blood lactate levels. Accumulation of limit dextrin-like structures in cytosol.	Debranching enzyme (α-l,6-glucosidase)	Gluconeogenesis is intact
McArdle disease (type V)	\uparrow glycogen in muscle, but muscle cannot break it down \rightarrow painful Muscle cramps, Myoglobinuria (red urine) with strenuous exercise, and arrhythmia from electrolyte abnormalities. Second-wind phenomenon noted during exercise due to \uparrow muscular blood flow.	Skeletal muscle glycogen phosphorylase (Myophosphorylase)	Blood glucose levels typically unaffected McArdle $=$ Muscle

Lysosomal storage diseases	Each is caused by a deficiency in one of of abnormal metabolic products.	he many lysosomal enzyi	nes. Results in an ac	mulation
DISEASE	FINDINGS	DEFIIIENT ENZYME	ACCUMULATED SUBSTRATE	INHERITANCE
Sphingolipidoses				
Fabry disease A	Early: Triad of episodic peripheral neuropathy, angiokeratomas A, hypohidrosis. Late: progressive renal failure, cardiovascular disease.	(2) α-galactosidase A	Ceramide trihexoside	XR
Gaucher disease B	Most common. Hepatosplenomegaly, pancytopenia, osteoporosis, aseptic necrosis of femur, bone crises, Gaucher cells [B (lipid-laden macrophages resembling crumpled tissue paper).	(5) Glucocerebrosidase (β-glucosidase); treat with recombinant glucocerebrosidase	Glucocerebroside	AR
Niemann-Pick disease	Progressive neurodegeneration, hepatosplenomegaly, foam cells (lipid-laden macrophages) C, "cherry-red" spot on macula \mathbf{D}.	(6) Sphingomyelinase	Sphingomyelin	AR
Tay-Sachs disease	Progressive neurodegeneration, developmental delay, "cherry-red" spot on macula \mathbf{D}, lysosomes with onion skin, no hepatosplenomegaly (vs Niemann-Pick).	(1) Hexosaminidase A	GM_{2} ganglioside	AR
Krabbe disease	Peripheral neuropathy, developmental delay, optic atrophy, globoid cells.	(4) Galactocerebrosidase	Galactocerebroside, psychosine	AR
Metachromatic leukodystrophy	Central and peripheral demyelination with ataxia, dementia.	(3) Arylsulfatase A	Cerebroside sulfate	AR
Mucopolysaccharidoses				
Hurler syndrome	Developmental delay, gargoylism, airway obstruction, corneal clouding, hepatosplenomegaly.	α-L-iduronidase	Heparan sulfate, dermatan sulfate	AR
Hunter syndrome	Mild Hurler + aggressive behavior, no corneal clouding.	Iduronate sulfatase	Heparan sulfate, dermatan sulfate	XR

No man picks (Niemann-Pick) his nose with his sphinger (sphingomyelinase).
Tay-SaX lacks heXosaminidase.
Hunters see clearly (no corneal clouding) and aggressively aim for the \mathbf{X} (\mathbf{X}-linked recessive). \uparrow incidence of Tay-Sachs, Niemann-Pick, and some forms of Gaucher disease in Ashkenazi Jews.

Fatty acid metabolism

Fatty acid synthesis requires transport of citrate from mitochondria to cytosol. Predominantly occurs in liver, lactating mammary glands, and adipose tissue.
Long-chain fatty acid (LCFA) degradation requires carnitine-dependent transport into the mitochondrial matrix.
"SYtrate" = SYnthesis.
CARnitine = CARnage of fatty acids.
Systemic 1° carnitine deficiency-inherited defect in transport of LCFAs into the mitochondria \rightarrow toxic accumulation. Causes weakness, hypotonia, and hypoketotic hypoglycemia.

Medium-

chain acyl-CoA
dehydrogenase deficiency

Autosomal recessive disorder of fatty acid oxidation. \downarrow ability to break down fatty acids into acetyl-CoA \rightarrow accumulation of 8 - to 10 -carbon fatty acyl carnitines in the blood and hypoketotic hypoglycemia. May present in infancy or early childhood with vomiting, lethargy, seizures, coma, and liver dysfunction.

Minor illness can lead to sudden death. Treat by avoiding fasting.

Ketone bodies

In the liver, fatty acids and amino acids are metabolized to acetoacetate and β-hydroxybutyrate (to be used in muscle and brain).
In prolonged starvation and diabetic ketoacidosis, oxaloacetate is depleted for gluconeogenesis. In alcoholism, excess NADH shunts oxaloacetate to malate. Both processes cause a buildup of acetyl-CoA, which shunts glucose and FFA toward the production of ketone bodies.

Metabolic fuel use

l g protein or carbohydrate $=4 \mathrm{kcal}$.
1 g fat $=9 \mathrm{kcal}$.
1 g alcohol $=7 \mathrm{kcal}$.

Fasting and starvation	Priorities are to supply sufficient glucose to the brain and RBCs and to preserve protein.	
Fed state (after a meal)	Glycolysis and aerobic respiration.	Insulin stimulates storage of lipids, proteins, and glycogen.
Fasting (between meals)	Hepatic glycogenolysis (major); hepatic gluconeogenesis, adipose release of FFA (minor).	Glucagon and epinephrine stimulate use of fuel reserves.
Starvation days 1-3	Blood glucose levels maintained by: - Hepatic glycogenolysis - Adipose release of FFA - Muscle and liver, which shift fuel use from glucose to FFA - Hepatic gluconeogenesis from peripheral tissue lactate and alanine, and from adipose tissue glycerol and propionylCoA (from odd-chain FFA-the only triacylglycerol components that contribute to gluconeogenesis)	Glycogen reserves depleted after day 1. RBCs lack mitochondria and therefore cannot use ketones.
Starvation after day 3	Adipose stores (ketone bodies become the main source of energy for the brain). After these are depleted, vital protein degradation accelerates, leading to organ failure and death. Amount of excess stores determines survival time.	

Cholesterol synthesis

Cholesterol needed to maintain cell membrane integrity and to synthesize bile acid, steroids, and vitamin D.
Rate-limiting step catalyzed by HMG-CoA reductase (induced by insulin), which converts HMG-CoA to mevalonate. $2 / 3$ of plasma cholesterol esterified by lecithin-cholesterol acyltransferase (LCAT).

Statins (eg, atorvastatin) competitively and reversibly inhibit HMG-CoA reductase.

Lipid transport, key

 enzymes

Pancreatic lipase-degradation of dietary triglycerides (TGs) in small intestine.
Lipoprotein lipase (LPL) - degradation of TGs circulating in chylomicrons and VLDLs. Found on vascular endothelial surface.
Hepatic TG lipase (HL) - degradation of TGs remaining in IDL.
Hormone-sensitive lipase-degradation of TGs stored in adipocytes.

LCAT-catalyzes esterification of cholesterol.
Cholesterol ester transfer protein (CETP) - mediates transfer of cholesterol esters to other lipoprotein particles.

Major apolipoproteins

Apolipoprotein	Function	Chylomicron	Chylomicron remnant	VLDL	IDL	LDL	HDL
E	Mediates remnant uptake	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
A-I	Activates LCAT	\checkmark					\checkmark
C-II	Lipoprotein lipase cofactor	\checkmark		\checkmark			\checkmark
B-48	Mediates chylomicron secretion	\checkmark	\checkmark				
B-100	Binds LDL receptor						

Lipoprotein functions	Lipoproteins are composed of varying proportions of cholesterol, TGs, and phospholipids. LDL and HDL carry the most cholesterol. LDL transports cholesterol from liver to tissues. HDL transports cholesterol from periphery to liver.			
Chylomicron	Delivers dietary TGs to peripheral tissue. Delivers cholesterol to liver in the form of chylomicron remnants, which are mostly depleted of their TGs. Secreted by intestinal epithelial cells.			
VLDL	Delivers hepatic TGs to peripheral tissue. Secreted by liver.			
IDL	Formed in the degradation of VLDL. Delivers TGs and cholesterol to liver.			
LDL	Delivers hepatic cholesterol to peripheral tissues. Formed by hepatic lipase modification of IDL in the liver and peripheral tissue. Taken up by target cells via receptor-mediated endocytosis.			
HDL	Mediates reverse cholesterol transport from periphery to liver. Acts as a repository for apolipoproteins C and E (which are needed for chylomicron and VLDL metabolism). Secreted from both liver and intestine. Alcohol \uparrow synthesis.			
Familial dyslipidemias				
TYPE	INHERTIANCE	Pathogenesis	\uparrow BLOod Le	CLINCAL
I-Hyperchylomicronemia	AR	Lipoprotein lipase or apolipoprotein C-II deficiency	Chylom choles	Pancreatitis, hepatosplenomegaly, and eruptive/pruritic xanthomas (no \uparrow risk for atherosclerosis). Creamy layer in supernatant.
Ila-Familial hypercholesterolemia	AD	Absent or defective LDL receptors	LDL, c	Heterozygotes (1:500) have cholesterol $\approx 300 \mathrm{mg} / \mathrm{dL}$; homozygotes (very rare) have cholesterol $\approx 700+\mathrm{mg} / \mathrm{dL}$. Accelerated atherosclerosis (may have MI before age 20), tendon (Achilles) xanthomas, and corneal arcus.
IV-Hypertriglyceridemia	AD	Hepatic overproduction of VLDL	VLDL,	Hypertriglyceridemia (> 1000 $\mathrm{mg} / \mathrm{dL}$) can cause acute pancreatitis.

HIGH-YIELD PRINCIPLES IN

Microbiology

"Support bacteria. They're the only culture some people have."
-Steven Wright
"What lies behind us and what lies ahead of us are tiny matters compared to what lies within us."
-Henry S. Haskins
"Infectious disease is merely a disagreeable instance of a widely prevalent tendency of all living creatures to save themselves the bother of building, by their own efforts, the things they require."
-Hans Zinsser

This high-yield material covers the basic concepts of microbiology. The emphasis in previous examinations has been approximately 40% bacteriology (20% basic, 20% quasi-clinical), 25% immunology, 25% virology (10% basic, 15% quasi-clinical), 5% parasitology, and 5\% mycology.

Microbiology questions on the Step 1 exam often require two (or more) steps: Given a certain clinical presentation, you will first need to identify the most likely causative organism, and you will then need to provide an answer regarding some feature of that organism. For example, a description of a child with fever and a petechial rash will be followed by a question that reads, "From what site does the responsible organism usually enter the blood?"

This section therefore presents organisms in two major ways: in individual microbial "profiles" and in the context of the systems they infect and the clinical presentations they produce. You should become familiar with both formats. When reviewing the systems approach, remind yourself of the features of each microbe by returning to the individual profiles. Also be sure to memorize the laboratory characteristics that allow you to identify microbes.

MICROBIOLOGY—BASIC BACTERIOLOGY

Bacterial structures

STRUCTURE	CHEMICAL COMPOSITION	FUNCTION
Appendages		
Flagellum	Proteins.	Motility.
Pilus/fimbria	Glycoprotein.	Mediate adherence of bacteria to cell surface; sex pilus forms during conjugation.
Specialized structures		

Spore
Cell envelope

Capsule	Organized, discrete polysaccharide layer (except poly-D glutamate on B anthracis).
Glycocalyx	Loose network of polysaccharides.
Outer membrane	Outer leaflet: contains endotoxin (LPS/LOS). Embedded proteins: porins and other outer membrane proteins (OMPs)
Inner leaflet: phospholipids.	

Periplasm

Cell wall

Cytoplasmic membrane

Keratin-like coat; dipicolinic acid; peptidoglycan, DNA.

Gram \oplus only.
Survival: resist dehydration, heat, chemicals.

Protects against phagocytosis.

Mediates adherence to surfaces, especially foreign surfaces (eg, indwelling catheters).

Gram \ominus only.
Endotoxin: lipid A induces TNF and IL-l;
O polysaccharide component antigenic.
Most OMPs are antigenic.
Porins: transport across outer membrane.
Gram \ominus only.
Accumulates components exiting gram Θ cells, including hydrolytic enzymes (eg, β-lactamases).
Net-like structure gives rigid support, protects against osmotic pressure damage.
Site of oxidative and transport enzymes; PBPs involved in cell wall synthesis.
Lipoteichoic acids induce TNF and IL-l.

Cell walls

MORPHOLOGY	Gram \oplus examples	Gram \ominus examples
Spherical (coccus)	Staphylococcus (clusters) Streptococcus (chains or pairs)	Moraxella catarrhalis Neisseria
Rod (bacillus)	Bacillus Clostridium Corynebacterium Gardnerella (gram variable) Lactobacillus Listeria Mycobacterium (acid fast) Propionibacterium	Enterics: - Bacteroides - Campylobacter - E coli - Enterobacter - Helicobacter - Klebsiella - Proteus - Pseudomonas - Salmonella - Serratia - Shigella - Vibrio - Yersinia Respiratory: - Bordetella - Burkholderia cepacia - Haemophilus (pleomorphic) - Legionella (silver stain) Zoonotic: - Bartonella - Brucella - Francisella - Pasteurella
Branching filamentous	Actinomyces Nocardia (weakly acid fast)	
Pleomorphic		Chlamydiae (Giemsa) Rickettsiae (Giemsa)
Spiral		Spirochetes: - Borrelia (Giemsa) - Leptospira - Treponema
No cell wall	Mycoplasma, Ureaplasma (contain sterols, which do not Gram stain)	

Stains

Gram stain	First-line lab test in bacterial identification. Bacteria with thick peptidoglycan layer retain crystal violet dye $(\operatorname{gram} \oplus)$; bacteria with thin peptidoglycan layer turn red or pink (gram Θ) with counterstain. The bugs below do not Gram stain well. These Microbes May Lack Real Color	
	Treponema, Leptospira	Too thin to be visualized.
	Mycobacteria	Cell wall has high lipid content.
	Mycoplasma, Ureaplasma	No cell wall.
	Legionella, Rickettsia, Chlamydia, Bartonella, Ehrlichia, Anaplasma	Primarily intracellular; also, Chlamydia lack classic peptidoglycan because of \downarrow muramic acid.
Giemsa stain	Chlamydia, Borrelia, Rickettsia, Trypanosomes A, Plasmodium	Certain Bugs Really Try my Patience.
Periodic acid-Schiff stain	Stains glycogen, mucopolysaccharides; used to diagnose Whipple disease (Tropheryma whipplei B)	PaSs the sugar.
Ziehl-Neelsen stain (carbol fuchsin)	Acid-fast bacteria, eg, Mycobacteria (stains mycolic acid in cell wall), Nocardia; protozoa, eg, Cryptosporidium oocysts	Alternative is auramine-rhodamine stain for screening (inexpensive, more sensitive but less specific).
India ink stain	Cryptococcus neoformans D; mucicarmine can also be used to stain thick polysaccharide capsule red	
Silver stain	Fungi (eg, Coccidioides E, Pneumocystis jirovecii), Legionella, Helicobacter pylori	
Fluorescent antibody stain	Used to identify many bacteria and viruses.	Example is FTA-ABS for confirming syphilis.

Properties of growth

 mediaThe same type of media can possess both (or neither) of these properties.

Favors the growth of particular organism while preventing growth of other organisms, eg, ThayerMartin agar contains antibiotics that allow the selective growth of Neisseria by inhibiting the growth of other sensitive organisms.

Indicator (differential) Yields a color change in response to the metabolism of certain organisms, eg, MacConkey agar media
contains a pH indicator; a lactose fermenter like E coli will convert lactose to acidic metabolites \rightarrow color change.

Special culture requirements

Bug	MEDIA USED FOR ISOLATION	MEDIA CONTENTS/OTHER
Hinfluenzae	Chocolate agar	Factors V $\left(\mathrm{NAD}^{+}\right)$and X (hematin)
N gonorrhoeae, N meningitidis	Thayer-Martin agar	Selectively favors growth of Neisseria by inhibiting growth of gram \oplus organisms with Vancomycin, gram Θ organisms except Neisseria with Trimethoprim and Colistin, and fungi with Nystatin Very Typically Cultures Neisseria
B pertussis	Bordet-Gengou agar (Bordet for Bordetella) Regan-Lowe medium	Potato Charcoal, blood, and antibiotic
C diphtheriae	Tellurite agar, Löffler medium	
M tuberculosis	Löwenstein-Jensen agar	
M pneumoniae	Eaton agar	Requires cholesterol
Lactose-fermenting enterics	MacConkey agar	Fermentation produces acid, causing colonies to turn pink
Ecoli	Eosin-methylene blue (EMB) agar	Colonies with green metallic sheen
Legionella	Charcoal yeast extract agar buffered with cysteine and iron	
Fungi	Sabouraud agar	"Sab's a fun guy!"

Aerobes | Use an O_{2}-dependent system to generate ATP. Nagging Pests Must Breathe. |
| :---: |
| Examples include Nocardia, Pseudomonas |
| aeruginosa, and MycoBacterium tuberculosis. |
| Reactivation of M tuberculosis (eg, after |
| immunocompromise or TNF- α inhibitor use) |
| has a predilection for the apices of the lung. |

Anaerobes

Examples include Clostridium, Bacteroides, Fusobacterium, and Actinomyces. They lack catalase and/or superoxide dismutase and are thus susceptible to oxidative damage. Generally foul smelling (short-chain fatty acids), are difficult to culture, and produce gas in tissue $\left(\mathrm{CO}_{2}\right.$ and $\left.\mathrm{H}_{2}\right)$.

Anaerobes Can't Breathe Fresh Air.
Anaerobes are normal flora in GI tract, typically pathogenic elsewhere. AminO_{2} glycosides are ineffective against anaerobes because these antibiotics require O_{2} to enter into bacterial cell.

Intracellular bugs

Obligate intracellular	Rickettsia, CHlamydia, COxiella. Rely on host ATP.	Stay inside (cells) when it is Really CHilly and COld.
Facultative intracellular	Salmonella, Neisseria, Brucella, Mycobacterium, Listeria, Francisella, Legionella, Yersinia pestis.	Some Nasty Bugs May Live FacultativeLY.

Encapsulated bacteria

Examples are Pseudomonas aeruginosa, Streptococcus pneumoniae A, Haemophilus Influenzae type B, Neisseria meningitidis, Escherichia coli, Salmonella, Klebsiella pneumoniae, and group B Strep. Their capsules serve as an antiphagocytic virulence factor.
Capsular polysaccharide + protein conjugate serves as an antigen in vaccines.

Please SHINE my SKiS.
Are opsonized, and then cleared by spleen. Asplenics have \downarrow opsonizing ability and thus \uparrow risk for severe infections. Give S pneumoniae, H influenzae, N meningitidis vaccines.

Encapsulated bacteria vaccines

Some vaccines containing polysaccharide capsule antigens are conjugated to a carrier protein, enhancing immunogenicity by promoting T-cell activation and subsequent class switching. A polysaccharide antigen alone cannot be presented to T cells.

Pneumococcal vaccine: PCV (pneumococcal conjugate vaccine, ie, Prevnar); PPSV (pneumococcal polysaccharide vaccine with no conjugated protein, ie, Pneumovax) H influenzae type B (conjugate vaccine) Meningococcal vaccine (conjugate vaccine)

Urease-positive organisms

Proteus, Cryptococcus, H pylori, Ureaplasma, Nocardia, Klebsiella, S epidermidis, S saprophyticus. Potentiate struvite (ammonium magnesium phosphate) stones. Urease hydrolyzes urea to release ammonia and $\mathrm{CO}_{2} \rightarrow \uparrow \mathrm{pH}$.

Pee CHUNKSS.

Catalase-positive organisms

Catalase degrades $\mathrm{H}_{2} \mathrm{O}_{2}$ into $\mathrm{H}_{2} \mathrm{O}$ and bubbles of O_{2} A before it can be converted to microbicidal products by the enzyme myeloperoxidase. People with chronic granulomatous disease (NADPH oxidase deficiency) have recurrent infections with certain catalase \oplus organisms. Examples: Nocardia, Pseudomonas, Listeria, Aspergillus, Candida, E coli, Staphylococci, Serratia, B cepacia, H pylori.

$\left.$	Pigment-producing bacteria	Actinomyces israelii-yellow "sulfur" granules, which are composed of filaments of bacteria.	Israel has yellow sand.
	S aureus-yellow pigment.		\quad
:---	:---	\right\rvert\,	P aeruginosa-blue-green pigment.
:---	:---		
	Serratia marcescens -red pigment.		Serratia marcescens - -think red maraschino
:---			
cherries.			

In vivo biofilm- producing bacteria	S epidermidis Viridans streptococci (S mutans, S sanguinis)	Catheter and prosthetic device infections P aeruginosa
	Nonty plaques, infective endocarditis	
Respiratory tree colonization in cystic fibrosis		
patients, contact lens-associated keratitis		

Type III secretion system

Also known as "injectisome." Needle-like protein appendage facilitating direct delivery of toxins from certain gram Θ bacteria (eg, Pseudomonas, Salmonella, Shigella, E coli) to eukaryotic host cell.

Bacterial genetics

Transformation	Ability to take up naked DNA (ie, from cell lysis) from environment (also known as "competence"). A feature of many bacteria, especially S pneumoniae, H influenzae type B, and Neisseria (SHiN). Any DNA can be used. Adding deoxyribonuclease to environment will degrade naked DNA in medium \rightarrow no transformation seen.
Conjugation	
$\mathrm{F}^{+} \times \mathrm{F}^{-}$	F^{+}plasmid contains genes required for sex pilus and conjugation. Bacteria without this plasmid are termed F^{-}. Sex pilus on F^{+}bacterium contacts F^{-}bacterium. A single strand of plasmid DNA is transferred across the conjugal bridge ("mating bridge"). No transfer of chromosomal DNA.
$\mathrm{Hfr} \times \mathrm{F}^{-}$	F^{+}plasmid can become incorporated into bacterial chromosomal DNA, termed high-frequency recombination (Hfr) cell. Replication of incorporated plasmid DNA may include some flanking chromosomal DNA. Transfer of plasmid and chromosomal genes.
Transposition	Segment of DNA (eg, transposon) that can "jump" (excision and reintegration) from one location to another, can transfer genes from plasmid to chromosome and vice versa. When excision occurs, may include some flanking chromosomal DNA, which can be incorporated into a plasmid and transferred to another bacterium (eg, vanA gene from vancomycin-resistant Enterococcus to S aureus).
Transduction	
Generalized	A "packaging" event. Lytic phage infects bacterium, leading to cleavage of bacterial DNA. Parts of bacterial chromosomal DNA may become packaged in phage capsid. Phage infects another bacterium, transferring these genes.
Specialized	An "excision" event. Lysogenic phage infects bacterium; viral DNA incorporates into bacterial chromosome. When phage DNA is excised, flanking bacterial genes may be excised with it. DNA is packaged into phage capsid and can infect another bacterium. Genes for the following 5 bacterial toxins are encoded in a lysogenic phage (ABCD'S): - Group A strep erythrogenic toxin - Botulinum toxin - Cholera toxin - Diphtheria toxin - Shiga toxin

Spore-forming bacteria

Some bacteria can form spores \boldsymbol{A} at the end of the stationary phase when nutrients are limited.
Spores are highly resistant to heat and chemicals. Have dipicolinic acid in their core. Have no metabolic activity. Must autoclave to potentially kill spores (as is done to surgical equipment) by steaming at $121^{\circ} \mathrm{C}$ for 15 minutes.

Bacillus anthracis	Anthrax
Bacillus cereus	Food poisoning
Clostridium botulinum	Botulism
Clostridium difficile	Pseudomembranous
	colitis
Clostridium perfringens	Gas gangrene
Clostridium tetani	Tetanus

Main features of exotoxins and endotoxins

PROPERTY	Exotoxin	Endotoxin
SOURCE	Certain species of gram \oplus and gram Θ bacteria	Outer cell membrane of most gram Θ bacteria
SECRETED FROM CELL	Yes	No
CHEmISTRY	Polypeptide	Lipid A component of LPS (structural part of bacteria; released when lysed)
LOCATION OF GENES	Plasmid or bacteriophage	Bacterial chromosome
ADVERSE EfFectis	High (fatal dose on the order of $1 \mu \mathrm{~g}$)	Low (fatal dose on the order of hundreds of micrograms)
ClINICAL EFFECTS	Various effects (see following pages)	Fever, shock (hypotension), DIC
MODE OF ACTION	Various modes (see following pages)	Induces TNF, IL-1, and IL-6
antigenicity	Induces high-titer antibodies called antitoxins	Poorly antigenic
vacines	Toxoids used as vaccines	No toxoids formed and no vaccine available
heat stablity	Destroyed rapidly at $60^{\circ} \mathrm{C}$ (except staphylococcal enterotoxin)	Stable at $100^{\circ} \mathrm{C}$ for 1 hr
TYPICAL DISEASES	Tetanus, botulism, diphtheria	Meningococcemia; sepsis by gram \ominus rods

Bugs with exotoxins

BACTERIA	TOXIN	MECHANISM	MANIFESTATION
Inhibit protein synthesis			
Corynebacterium diphtheriae	Diphtheria toxin ${ }^{\text {a }}$	Inactivate elongation factor(EF-2)	Pharyngitis with pseudomembranes in throat and severe lymphadenopathy (bull neck)
Pseudomonas aeruginosa	Exotoxin $\mathrm{A}^{\text {a }}$		Host cell death
Shigella spp.	Shiga toxin (ST) ${ }^{\text {a }}$	Inactivate 60 S ribosome by removing adenine from rRNA	GI mucosal damage \rightarrow dysentery; ST also enhances cytokine release, causing hemolyticuremic syndrome (HUS)
Enterohemorrhagic E coli (EHEC)	Shiga-like toxin $(S L T)^{a}$		SLT enhances cytokine release, causing HUS (prototypically in EHEC serotype Ol57:H7). Unlike Shigella, EHEC does not invade host cells
Increase fluid secretion			
Enterotoxigenic E coli (ETEC)	Heat-labile toxin $(\mathrm{LT})^{\mathrm{a}}$ Heat-stable toxin (ST)	Overactivates adenylate cyclase (\uparrow cAMP) $\rightarrow \uparrow \mathrm{Cl}^{-}$ secretion in gut and $\mathrm{H}_{2} \mathrm{O}$ efflux Overactivates guanylate cyclase (\uparrow cGMP) $\rightarrow \downarrow$ resorption of NaCl and $\mathrm{H}_{2} \mathrm{O}$ in gut	Watery diarrhea: "labile in the Air (Adenylate cyclase), stable on the Ground (Guanylate cyclase)"
Bacillus anthracis	Edema toxin ${ }^{\text {a }}$	Mimics the adenylate cyclase enzyme (\uparrow cAMP)	Likely responsible for characteristic edematous borders of black eschar in cutaneous anthrax
Vibrio cholerae	Cholera toxin ${ }^{\text {a }}$	Overactivates adenylate cyclase (\uparrow cAMP) by permanently activating G_{s} $\rightarrow \uparrow \mathrm{Cl}^{-}$secretion in gut and $\mathrm{H}_{2} \mathrm{O}$ efflux	Voluminous "rice-water" diarrhea
Inhibit phagocytic ability			
Bordetella pertussis	Pertussis toxin ${ }^{\text {a }}$	Overactivates adenylate cyclase (\uparrow cAMP) by disabling G_{i}, impairing phagocytosis to permit survival of microbe	Whooping cough - child coughs on expiration and "whoops" on inspiration (toxin may not actually be a cause of cough; can cause "100-day cough" in adults)
Inhibit release of neurotransmitter			
Clostridium tetani	Tetanospasmin ${ }^{\text {a }}$	Both are proteases that cleave SNARE (soluble NSF attachment protein receptor), a set of proteins required for neurotransmitter release via vesicular fusion	Spastic paralysis, risus sardonicus, and "lockjaw"; toxin prevents release of inhibitory (GABA and glycine) neurotransmitters from Renshaw cells in spinal cord
Clostridium botulinum	Botulinum toxin ${ }^{\text {a }}$		Flaccid paralysis, floppy baby; toxin prevents release of stimulatory (ACh) signals at neuromuscular junctions \rightarrow flaccid paralysis

${ }^{a}$ An AB toxin (aka, two-component toxin [or three for anthrax]) with B enabling binding and triggering uptake (endocytosis) of the active A component. The A components are usually ADP ribosyltransferases; others have enzymatic activities as listed in chart.

Bugs with exotoxins (continued)

BACTERIA	Toxin	MECHANISM	MANIFESTATION
Lyse cell membranes			
Clostridium perfringens	Alpha toxin	Phospholipase (lecithinase) that degrades tissue and cell membranes	Degradation of phospholipids \rightarrow myonecrosis ("gas gangrene") and hemolysis ("double zone" of hemolysis on blood agar)
Streptococcus pyogenes	Streptolysin O	Protein that degrades cell membrane	Lyses RBCs; contributes to β-hemolysis; host antibodies against toxin (ASO) used to diagnose rheumatic fever (do not confuse with immune complexes of poststreptococcal glomerulonephritis)
Superantigens causing shock			
Staphylococcus aureus	Toxic shock syndrome toxin (TSST-1)	Binds to MHC II and TCR outside of antigen binding site to cause overwhelming	Toxic shock syndrome: fever, rash, shock; other toxins cause scalded skin syndrome (exfoliative toxin) and food poisoning (enterotoxin)
Streptococcus pyogenes	Exotoxin A	release of IL-1, IL-2, IFN- γ, and TNF- α \rightarrow shock	Toxic shock syndrome: fever, rash, shock

Endotoxin

LPS found in outer membrane of gram Θ bacteria (both cocci and rods). Composed of O antigen + core polysaccharide $+\operatorname{lipid} \mathrm{A}$ (the toxic component).
Released upon cell lysis or by living cells by blebs detaching from outer surface membrane (vs exotoxin, which is actively secreted).
Three main effects: macrophage activation (TLR4), complement activation, and tissue factor activation.

ENDOTOXINS:

Edema
Nitric oxide
DIC/Death
Outer membrane
TNF- α
O-antigen + core polysaccharide + lipid A
eXtremely heat stable
IL-1 and IL-6
Neutrophil chemotaxis
Shock

- MICROBIOLOGY—CLINICAL BACTERIOLOGY

Gram-positive lab algorithm

Important tests are in bold. Important pathogens are in bold italics.
Note: Enterococcus is either α - or γ-hemolytic.

Gram-positive cocci antibiotic tests

Staphylococci	NOvobiocin-Saprophyticus is Resistant; Epidermidis is Sensitive.	On the office's "staph" retreat, there was NO StRESs.
Streptococci	Optochin—Viridans is Resistant; Pneumoniae is	OVRPS (overpass).
Sensitive.		

\propto-hemolytic bacteria

Gram \oplus cocci. Partial reduction of hemoglobin causes greenish or brownish color without clearing around growth on blood agar \boldsymbol{A}. Include the following organisms:

- Streptococcus pneumoniae (catalase Θ and optochin sensitive)
- Viridans streptococci (catalase Θ and optochin resistant)

β-hemolytic bacteria

Gram \oplus cocci. Complete lysis of RBCs \rightarrow clear area surrounding colony on blood agar \boldsymbol{A}. Include the following organisms:

- Staphylococcus aureus (catalase and coagulase \oplus)
- Streptococcus pyogenes - group A strep (catalase Θ and bacitracin sensitive)
- Streptococcus agalactiae - group B strep (catalase Θ and bacitracin resistant)

Staphylococcus aureus

Gram \oplus, β-hemolytic, catalase \oplus, coagulase \oplus cocci in clusters A. Protein A (virulence factor) binds $\mathrm{Fc}-\mathrm{IgG}$, inhibiting complement activation and phagocytosis. Commonly colonizes the nares.

Causes:

- Inflammatory disease—skin infections, organ abscesses, pneumonia (often after influenza virus infection), endocarditis, septic arthritis, and osteomyelitis.
- Toxin-mediated disease—toxic shock syndrome (TSST-1), scalded skin syndrome (exfoliative toxin), rapid-onset food poisoning (enterotoxins).
- MRSA (methicillin-resistant S aureus) infection-important cause of serious nosocomial and community-acquired infections; resistant to methicillin and nafcillin because of altered penicillinbinding protein.

TSST-1 is a superantigen that binds to MHC II and T-cell receptor, resulting in polyclonal T-cell activation.
Staphylococcal toxic shock syndrome (TSS) presents as fever, vomiting, rash, desquamation, shock, end-organ failure. TSS results in \uparrow AST, \uparrow ALT, \uparrow bilirubin. Associated with prolonged use of vaginal tampons or nasal packing.
Compare with Streptococcus pyogenes TSS (a toxic shock-like syndrome associated with painful skin infection).
S aureus food poisoning due to ingestion of preformed toxin \rightarrow short incubation period (2-6 hr) followed by nonbloody diarrhea and emesis. Enterotoxin is heat stable \rightarrow not destroyed by cooking.
Staph make catalase because they have more "staff." Bad staph (aureus) make coagulase and toxins. Forms fibrin clot around self \rightarrow abscess.

Staphylococcus epidermidis

Gram \oplus, catalase \oplus, coagulase Θ, urease \oplus cocci in clusters. Novobiocin sensitive.
Normal flora of skin; contaminates blood cultures.
Infects prosthetic devices (eg, hip implant, heart valve) and IV catheters by producing adherent biofilms.

Staphylococcus saprophyticus

Gram \oplus, catalase \oplus, coagulase Θ, urease \oplus cocci in clusters. Novobiocin resistant.
Normal flora of female genital tract and perineum.
Second most common cause of uncomplicated UTI in young women (most common cause is E coli).

Streptococcus

 pneumoniae

Viridans group streptococci

Gram \oplus, lancet-shaped diplococci \boldsymbol{A}. Encapsulated. IgA protease. Optochin sensitive. Most common cause of:

- Meningitis
- Otitis media (in children)
- Pneumonia
- Sinusitis

Pneumococcus is associated with "rusty" sputum, sepsis in patients with sickle cell disease and splenectomy.
No virulence without capsule.

Streptococcus pyogenes (group A streptococci) A

Gram \oplus cocci. Group A strep \boldsymbol{A} cause:

- Pyogenic-pharyngitis, cellulitis, impetigo, erysipelas
- Toxigenic-scarlet fever, toxic shock-like syndrome, necrotizing fasciitis
- Immunologic-rheumatic fever, glomerulonephritis
Bacitracin sensitive, β-hemolytic, pyrrolidonyl arylamidase $(\mathrm{PYR}) \oplus$. Antibodies to M protein enhance host defenses against S pyogenes but can give rise to rheumatic fever.
ASO titer detects recent S pyogenes infection.

JマNES (major criteria for acute rheumatic fever):
Joints—polyarthritis
\checkmark-carditis
Nodules (subcutaneous)
Erythema marginatum
Sydenham chorea
Pharyngitis can result in rheumatic "phever" and glomerulonephritis.
Impetigo usually precedes glomerulonephritis. Scarlet fever-blanching, sandpaper-like body rash, strawberry tongue, and circumoral pallor in the setting of group A streptococcal pharyngitis (erythrogenic toxin \oplus).

Streptococcus agalactiae (group B streptococci)	Gram \oplus cocci, bacitracin resistant, β-hemolytic,	colonizes vagina; causes pneumonia, B for Babies!
	meningitis, and sepsis, mainly in babies.	
Produces CAMP factor, which enlarges the		
area of hemolysis formed by S aureus. (Note:		
CAMP stands for the authors of the test, not		
cyclic AMP.) Hippurate test \oplus. PYR Θ.		

Streptococcus bovis

Gram \oplus cocci, colonizes the gut. S gallolyticus (S bovis biotype l) can cause bacteremia and subacute endocarditis and is associated with colon cancer.

Bovis in the blood = cancer in the colon.

Enterococci

Gram \oplus cocci. Enterococci (E faecalis and E faecium) are normal colonic flora that are penicillin G resistant and cause UTI, biliary tract infections, and subacute endocarditis (following GI/GU procedures). Catalase Θ, PYR \oplus, variable hemolysis.
VRE (vancomycin-resistant enterococci) are an important cause of nosocomial infection.

Enterococci, hardier than nonenterococcal group D , can grow in $6.5 \% \mathrm{NaCl}$ and bile (lab test).
Entero $=$ intestine, faecalis $=$ feces, strepto $=$ twisted (chains), coccus = berry.

Bacillus anthracis

Cutaneous anthrax

Pulmonary anthrax

Gram \oplus, spore-forming rod that produces anthrax toxin. The only bacterium with a polypeptide capsule (contains D-glutamate).
Painless papule surrounded by vesicles \rightarrow ulcer with black eschar (\boldsymbol{A}) (painless, necrotic) \rightarrow uncommonly progresses to bacteremia and death.

Inhalation of spores \rightarrow flu-like symptoms that rapidly progress to fever, pulmonary hemorrhage, mediastinitis, and shock. Also known as woolsorter's disease

Bacillus cereus	Gram \oplus rod. Causes food poisoning.
Spores survive cooking rice. Keeping rice	
warm results in germination of spores and	
enterotoxin formation.	
Emetic type usually seen with rice and pasta.	
Nausea and vomiting within l-5 hr. Caused	
by cereulide, a preformed toxin.	
Diarrheal type causes watery, nonbloody	
diarrhea and GI pain within $8-18$ hr.	

Reheated rice syndrome.

Clostridia (with exotoxins)

Gram \oplus, spore-forming, obligate anaerobic rods.

C difficile

Cbotulinum

C perfringens

Produces tetanospasmin, an exotoxin causing tetanus. Tetanus toxin (and botulinum toxin) are proteases that cleave SNARE proteins for neurotransmitters. Blocks release of inhibitory neurotransmitters, GABA and glycine, from Renshaw cells in spinal cord.
Causes spastic paralysis, trismus (lockjaw), risus sardonicus (raised eyebrows and open grin).
Prevent with tetanus vaccine. Treat with antitoxin +/- vaccine booster, diazepam (for muscle spasms), and wound debridement.

Produces a heat-labile toxin that inhibits ACh release at the neuromuscular junction, causing botulism. In adults, disease is caused by ingestion of preformed toxin. In babies, ingestion of spores (eg, in honey) leads to disease (floppy baby syndrome). Treat with antitoxin.

Produces α toxin (lecithinase, a phospholipase) that can cause myonecrosis (gas gangrene ©) and hemolysis.
Spores can survive in undercooked food; when ingested, bacteria release heat-labile enterotoxin \rightarrow food poisoning.

Produces 2 toxins. Toxin A, enterotoxin, binds to the brush border of the gut. Toxin B, cytotoxin, causes cytoskeletal disruption via actin depolymerization \rightarrow diarrhea \rightarrow pseudomembranous colitis B. Often 2° to antibiotic use, especially clindamycin or ampicillin; associated with PPI use. Diagnosed by detecting one or both toxins in stool by PCR.

Tetanus is tetanic paralysis.

Botulinum is from bad bottles of food, juice, and honey (causes a descending flaccid paralysis). Local botox injections used to treat focal dystonia, achalasia, and muscle spasms. Also used for cosmetic reduction of facial wrinkles.

Perfringens perforates a gangrenous leg.

Difficile causes diarrhea. Treatment: metronidazole or oral vancomycin. For recurrent cases, consider repeating prior regimen, fidaxomicin, or fecal microbiota transplant.

Corynebacterium diphtheriae

Gram \oplus rod. Causes diphtheria via exotoxin encoded by β-prophage. Potent exotoxin inhibits protein synthesis via ADP-ribosylation of EF-2.
Symptoms include pseudomembranous pharyngitis (grayish-white membrane A) with lymphadenopathy, myocarditis, and arrhythmias.
Lab diagnosis based on gram \oplus rods with metachromatic (blue and red) granules and \oplus Elek test for toxin.
Toxoid vaccine prevents diphtheria.

Coryne $=$ club shaped.
Black colonies on cystine-tellurite agar.
ABCDEFG:
ADP-ribosylation
β-prophage
Corynebacterium
Diphtheriae
Elongation Factor 2
Granules

Listeria Gram \oplus, facultative intracellular rod; acquired by ingestion of unpasteurized dairy products and cold deli meats, via transplacental transmission, or by vaginal transmission during birth. Forms "rocket tails" (red in A) via actin polymerization that allow intracellular movement and cell-to-cell spread across cell membranes, thereby avoiding antibody. Characteristic tumbling motility in broth.
Can cause amnionitis, septicemia, and spontaneous abortion in pregnant women; granulomatosis infantiseptica; neonatal meningitis; meningitis in immunocompromised patients; mild, selflimited gastroenteritis in healthy individuals.
Treatment: ampicillin in infants, immunocompromised, and the elderly as empirical treatment of meningitis.

Nocardia vs

Actinomyces

Both are gram \oplus and form long, branching filaments resembling fungi.

Nocardia	Actinomyces
Aerobe	Anaerobe
Acid fast (weak) A	Not acid fast B
Found in soil	Normal oral, reproductive, and GI flora
Causes pulmonary infections in immunocompromised (can mimic TB but with Θ PPD); cutaneous infections after trauma in immunocompetent	Causes oral/facial abscesses that drain through sinus tracts, forms yellow "sulfur granules;" can also cause PID with IUDs
Treat with sulfonamides (TMP-SMX)	Treat with penicillin
Treatment is a SNAP: Sulfonamides—Nocardia; Actinomyces-Penicillin	

Primary and secondary tuberculosis

Mycobacteria

Mycobacterium tuberculosis (TB, often resistant to multiple drugs).
M avium-intracellulare (causes disseminated, non-TB disease in AIDS; often resistant to multiple drugs). Prophylaxis with azithromycin when CD4+ count <50 cells $/ \mathrm{mm}^{3}$.
M scrofulaceum (cervical lymphadenitis in children).
M marinum (hand infection in aquarium handlers).
All mycobacteria are acid-fast organisms (pink rods; arrows in \boldsymbol{A}).

PPD \oplus if current infection or past exposure. PPD \ominus if no infection and in sarcoidosis.
Interferon- $\boldsymbol{\gamma}$ release assay (IGRA) has fewer false positives from BCG vaccination.
Caseating granulomas \boldsymbol{A} with central necrosis (upper left) and Langerhans giant cells (arrow) are characteristic of 2° tuberculosis.

TB symptoms include fever, night sweats, weight loss, cough (nonproductive or productive), hemoptysis.
Cord factor creates a "serpentine cord" appearance in virulent M tuberculosis strains; inhibits macrophage maturation and induces release of TNF- α. Sulfatides (surface glycolipids) inhibit phagolysosomal fusion.

Leprosy (Hansen disease)

Caused by Mycobacterium leprae, an acid-fast bacillus that likes cool temperatures (infects skin and superficial nerves-"glove and stocking" loss of sensation A) and cannot be grown in vitro. Reservoir in United States: armadillos.
Hansen disease has 2 forms:

- Lepromatous - presents diffusely over the skin, with leonine (lion-like) facies [B, and is communicable; characterized by low cell-mediated immunity with a humoral Th2 response. Lepromatous form can be lethal.
- Tuberculoid-limited to a few hypoesthetic, hairless skin plaques; characterized by high cellmediated immunity with a largely Thl-type immune response.
Treatment: dapsone and rifampin for tuberculoid form; clofazimine is added for lepromatous form.

Gram-negative lab algorithm

Important tests are in bold. Important pathogens are in bold italics.

Lactose-fermenting enteric bacteria

Fermentation of lactose \rightarrow pink colonies on MacConkey agar. Examples include Klebsiella, E coli, Enterobacter, and Serratia (weak fermenter). E coli produces β-galactosidase, which breaks down lactose into glucose and galactose.

Lactose is key.
Test with MacConKEE'S agar.
EMB agar-lactose fermenters grow as purple/ black colonies. E coli grows colonies with a green sheen.

Neisseria

Gram Θ diplococci. Metabolize glucose and produce IgA proteases. N gonorrhoeae is often intracellular (within neutrophils) A.

Gonococci

No polysaccharide capsule
No maltose metabolized
No vaccine due to antigenic variation of pilus proteins
Sexually or perinatally transmitted
Causes gonorrhea, septic arthritis, neonatal conjunctivitis, pelvic inflammatory disease (PID), and Fitz-Hugh-Curtis syndrome

Condoms \downarrow sexual transmission, erythromycin eye ointment prevents neonatal blindness
Treatment: ceftriaxone + (azithromycin or doxycycline) for possible chlamydial coinfection

MeninGococci ferment Maltose and Glucose. Gonococci ferment Glucose.

Meningococci

Polysaccharide capsule
Maltose fermentation
Vaccine (type B vaccine not widely available)

Transmitted via respiratory and oral secretions
Causes meningococcemia with petechial hemorrhages and gangrene of toes B, meningitis, Waterhouse-Friderichsen syndrome (adrenal insufficiency, fever, DIC, shock) syndrome
Rifampin, ciprofloxacin, or ceftriaxone prophylaxis in close contacts
Treatment: ceftriaxone or penicillin G

Haemophilus influenzae

Small gram Θ (coccobacillary) rod. Aerosol transmission. Nontypeable (unencapsulated) strains are the most common cause of mucosal infections (otitis media, conjunctivitis, bronchitis) as well as invasive infections since the vaccine for capsular type b was introduced Produces IgA protease. Culture on chocolate agar, which contains factors $\mathrm{V}\left(\mathrm{NAD}^{+}\right)$and X (hematin) for growth; can also be grown with S aureus, which provides factor V through the hemolysis of RBCs. HaEMOPhilus causes Epiglottitis (endoscopic appearance in A, can be "cherry red" in children; "thumbprint sign" on x-ray B), Meningitis, Otitis media, and Pneumonia.
Treatment: amoxicillin + /- clavulanate for mucosal infections; ceftriaxone for meningitis; rifampin prophylaxis for close contacts.

Vaccine contains type b capsular polysaccharide and PRP (polyribosylribitol phosphate) conjugated to diphtheria toxoid or other protein. Given between 2 and 18 months of age.

Bordetella pertussis

Gram Θ, aerobic coccobacillus. Virulence factors include pertussis toxin (disables G_{i}) and tracheal cytotoxin. Causes whooping cough. Prevented by Tdap, DTaP vaccines. May be mistaken as viral infection due to lymphocytic infiltrate resulting from immune response.

Legionella

 pneumophila

Gram Θ rod. Gram stains poorly—use silver stain. Grow on charcoal yeast extract medium with iron and cysteine. Detected by presence of antigen in urine. Labs may show hyponatremia. Aerosol transmission from environmental water source habitat (eg, air conditioning systems, hot water tanks). No person-to-person transmission.
Treatment: macrolide or quinolone.
Legionnaires' disease-severe pneumonia (often unilateral and lobar A), fever, GI and CNS symptoms. Common in smokers and in chronic lung disease.
Pontiac fever-mild flu-like syndrome.

Think of a French legionnaire (soldier) with his silver helmet, sitting around a campfire (charcoal) with his iron dagger-he is no sissy (cysteine).

Pseudomonas

 aeruginosa

Aerobic, motile, gram Θ rod. Non-lactose fermenting, oxidase \oplus. Produces pyocyanin (blue-green pigment A); has a grape-like odor. Produces endotoxin (fever, shock), exotoxin A (inactivates EF-2), phospholipase C (degrades cell membranes), and pyocyanin (generates reactive oxygen species).
PSEUDOMONAS is associated with:

- Pneumonia, pyocyanin
- Sepsis
- Ecthyma gangrenosum
- UTIs
- Diabetes, drug use
- Osteomyelitis (eg, puncture wounds)
- Mucoid polysaccharide capsule
- Otitis externa (swimmer's ear)
- Nosocomial infections (catheters, equipment)
- exotoxin A
- Skin infections (hot tub folliculitis)

Treatments include "CAMPFIRE" drugs:

- Carbapenems
- Aminoglycosides
- Monobactams
- Polymyxins (eg, polymyxin B, colistin)
- Fluoroquinolones (eg, ciprofloxacin, levofloxacin)
- ThIRd- and fourth-generation cephalosporins (eg, ceftazidime, cefepime)
- Extended-spectrum penicillins (eg, piperacillin, ticarcillin)
Aeruginosa-aerobic.
Mucoid polysaccharide capsule may contribute to chronic pneumonia in cystic fibrosis patients due to biofilm formation.
Can cause wound infection in burn victims. Frequently found in water \rightarrow hot tub folliculitis. Ecthyma gangrenosum—rapidly progressive, necrotic cutaneous lesion B caused by Pseudomonas bacteremia. Typically seen in immunocompromised patients.

Ecoli Gram Θ rod. E coli virulence factors: fimbriae—cystitis and pyelonephritis (P-pili); K capsulepneumonia, neonatal meningitis; LPS endotoxin-septic shock.

STRAIN	toxin and mechanism	PRESENTATION
EIEC	Microbe invades intestinal mucosa and causes necrosis and inflammation.	Invasive; dysentery. Clinical manifestations similar to Shigella.
ETEC	Produces heat-labile and heat-stable enteroToxins. No inflammation or invasion.	Travelers' diarrhea (watery).
EPEC	No toxin produced. Adheres to apical surface, flattens villi, prevents absorption.	Diarrhea, usually in children (Pediatrics).
EHEC	Ol57:H7 is most common serotype in US. Often transmitted via undercooked meat, raw leafy vegetables. Shiga-like toxin causes hemolytic-uremic syndrome: triad of anemia, thrombocytopenia, and acute renal failure due to microthrombi forming on damaged endothelium \rightarrow mechanical hemolysis (with schistocytes on peripheral blood smear), platelet consumption, and \downarrow renal blood flow.	Dysentery (toxin alone causes necrosis and inflammation). Does not ferment sorbitol (distinguishes EHEC from other E coli). Hemorrhagic, Hamburgers, Hemolytic-uremic syndrome.

Klebsiella

Gram \ominus rod; intestinal flora that causes lobar pneumonia in alcoholics and diabetics when aspirated. Very mucoid colonies \boldsymbol{A} caused by abundant polysaccharide capsules. Dark red "currant jelly" sputum (blood/mucus). Also cause of nosocomial UTIs.

4 A's of KlebsiellA:
Aspiration pneumonia
Abscess in lungs and liver
Alcoholics
di-A-betics

Gram Θ, comma or S shaped (with polar flagella) \boldsymbol{A}, oxidase \oplus, grows at $42^{\circ} \mathrm{C}$ ("Campylobacter likes the hot campfire"). Major cause of bloody diarrhea, especially in children. Fecal-oral transmission through person-to-person contact or via ingestion of undercooked contaminated poultry or meat, unpasteurized milk. Contact with infected animals (dogs, cats, pigs) is also a risk factor. Common antecedent to Guillain-Barré syndrome and reactive arthritis.

Salmonella vs Shigella Both Salmonella and Shigella are gram Θ rods, non-lactose fermenters, oxidase Θ, and can invade the GI tract via M cells of Peyer patches.

	Salmonella typhi	Salmonella spp. (except Styphi)	Shigella
Reservoirs	Humans only	Humans and animals	Humans only
SPREAD	Can disseminate hematogenously	Can disseminate hematogenously	Cell to cell; no hematogenous spread
H_{2} Sproouction	Yes	Yes	No
FLAGELLA	Yes (salmon swim)	Yes (salmon swim)	No
VIRULEnce Factors	Endotoxin; Vi capsule	Endotoxin	Endotoxin; Shiga toxin (enterotoxin)
INFECTIOUS DoSE ((S $_{50}$)	High-large inoculum required because organism inactivated by gastric acids	High	Low-very small inoculum required; resistant to gastric acids
Effect of antibiotics on fecal EXCRETION	Prolongs duration	Prolongs duration	Shortens duration
IMMUNE RESPONSE	Primarily monocytes	PMNs in disseminated disease	Primarily PMN infiltration
Gimanfestations	Constipation, followed by diarrhea	Diarrhea (possibly bloody)	Bloody diarrhea (bacillary dysentery)
vaccine	Oral vaccine contains live attenuated S typhi IM vaccine contains Vi capsular polysaccharide	No vaccine	No vaccine
UnIoUE Properrites	- Causes typhoid fever (rose spots on abdomen, constipation, abdominal pain, fever); treat with ceftriaxone or fluoroquinolone - Carrier state with gallbladder colonization	- Poultry, eggs, pets, and turtles are common sources - Antibiotics not indicated - Gastroenteritis is usually caused by nontyphoidal Salmonella	- Four F's: Fingers, Flies, Food, Feces - In order of decreasing severity (less toxin produced): S dysenteriae, S flexneri, S boydii, S sonnei - Invasion is the key to pathogenicity; organisms that produce little toxin can cause disease due to invasion

Vibrio cholerae

Gram Θ, flagellated, comma shaped \boldsymbol{A}, oxidase \oplus, grows in alkaline media. Endemic to developing countries. Produces profuse rice-water diarrhea via enterotoxin that permanently activates G_{s}, \uparrow cAMP. Sensitive to stomach acid (acid labile); requires large inoculum (high ID_{50}) unless host has \downarrow gastric acidity. Prompt oral rehydration is necessary.

Yersinia enterocolitica

Gram Θ rod. Usually transmitted from pet feces (eg, puppies), contaminated milk, or pork. Causes acute diarrhea or pseudoappendicitis (right lower abdominal pain due to mesenteric adenitis and/ or terminal ileitis).

Curved, terminally flagellated, gram $\Theta \operatorname{rod} \boldsymbol{A}$ that is triple \oplus : catalase \oplus, oxidase \oplus, and urease \oplus (can use urea breath test or fecal antigen test for diagnosis). Urease produces ammonia, creating an alkaline environment, which helps H pylori survive in acidic mucosa. Colonizes mainly antrum of stomach; causes gastritis and peptic ulcers (especially duodenal). Risk factor for peptic ulcer disease, gastric adenocarcinoma, and MALT lymphoma.
Most common initial treatment is triple therapy: Amoxicillin (metronidazole if penicillin allergy) + Clarithromycin + Proton pump inhibitor; Antibiotics Cure Pylori.

Spirochetes

Spiral-shaped bacteria A with axial filaments. Includes Borrelia (big size), Leptospira, and Treponema. Only Borrelia can be visualized using aniline dyes (Wright or Giemsa stain) in light microscopy due to size. Treponema is visualized by dark-field microscopy or direct fluorescent antibody (DFA) microscopy.

BLT.

Borrelia is Big.

Leptospira interrogans
Spirochete found in water contaminated with animal urine, causes leptospirosis-flu-like symptoms, myalgias (classically of calves), jaundice, photophobia with conjunctival suffusion (erythema without exudate). Prevalent among surfers and in tropics (eg, Hawaii).
Weil disease (icterohemorrhagic leptospirosis) - severe form with jaundice and azotemia from liver and kidney dysfunction, fever, hemorrhage, and anemia.

Lyme disease

Caused by Borrelia burgdorferi, which is transmitted by the Ixodes deer tick \boldsymbol{A} (also vector for Anaplasma spp. and protozoa Babesia). Natural reservoir is the mouse.
Mice are important to tick life cycle.
Common in northeastern United States.
Stage l-early localized: erythema migrans B, flu-like symptoms.
Stage 2-early disseminated: secondary lesions, carditis, AV block, facial nerve (Bell) palsy, migratory myalgias/transient arthritis.
Stage 3-late disseminated: encephalopathies, chronic arthritis.

A Key Lyme pie to the FACE:
Facial nerve palsy (typically bilateral)
Arthritis
Cardiac block
Erythema migrans

VDRL false positives

VDRL detects nonspecific antibody that reacts with beef cardiolipin. Inexpensive, widely available test for syphilis, quantitative, sensitive but not specific.

False-positive results on VDRL with: Viral infection (eg, EBV, hepatitis) Drugs Rheumatic fever Lupus and leprosy

Flu-like syndrome (fever, chills, headache, myalgia) after antibiotics are started; due to killed bacteria (usually spirochetes) releasing toxins.

Zoonotic bacteria	Zoonosis: infectious disease transmitted be	imals and humans.
SPECIES	DISEASE	TRANSMISSION AND SOURCE
Anaplasma spp.	Anaplasmosis	Ixodes ticks (live on deer and mice)
Bartonella spp.	Cat scratch disease, bacillary angiomatosis	Cat scratch
Borrelia burgdorferi	Lyme disease	Ixodes ticks (live on deer and mice)
Borrelia recurrentis	Relapsing fever	Louse (recurrent due to variable surface antigens)
Brucella spp.	Brucellosis/undulant fever	Unpasteurized dairy
Campylobacter	Bloody diarrhea	Feces from infected pets/animals; contaminated meats/foods/hands
Chlamydophila psittaci	Psittacosis	Parrots, other birds
Coxiella burnetii	Q fever	Aerosols of cattle/sheep amniotic fluid
Ehrlichia chaffeensis	Ehrlichiosis	Amblyomma (Lone Star tick)
Francisella tularensis	Tularemia	Ticks, rabbits, deer flies
Leptospira spp.	Leptospirosis	Animal urine in water; recreational water use
Mycobacterium leprae	Leprosy	Humans with lepromatous leprosy; armadillo (rare)
Pasteurella multocida	Cellulitis, osteomyelitis	Animal bite, cats, dogs
Rickettsia prowazekii	Epidemic typhus	Human to human via human body louse
Rickettsia rickettsii	Rocky Mountain spotted fever	Dermacentor (dog tick)
Rickettsia typhi	Endemic typhus	Fleas
Salmonella spp. (except Styphi)	Diarrhea (which may be bloody), vomiting, fever, abdominal cramps	Reptiles and poultry
Yersinia pestis	Plague	Fleas (rats and prairie dogs are reservoirs)

Gardnerella vaginalis

A pleomorphic, gram-variable rod involved in bacterial vaginosis. Presents as a gray vaginal discharge with a fishy smell; nonpainful (vs vaginitis). Associated with sexual activity, but not sexually transmitted. Bacterial vaginosis is also characterized by overgrowth of certain anaerobic bacteria in vagina. Clue cells (vaginal epithelial cells covered with Gardnerella) have stippled appearance along outer margin (arrow in A).
Treatment: metronidazole or clindamycin.

I don't have a clue why I smell fish in the vagina garden!
Amine whiff test-mixing discharge with 10% KOH enhances fishy odor.

Rickettsial diseases Treatment for all: doxycycline. and vector-borne illnesses

RASH COMMON		
Rocky Mountain spotted fever	Rickettsia rickettsii, vector is tick. Despite its name, disease occurs primarily in the South Atlantic states, especially North Carolina. Rash typically starts at wrists A and ankles and then spreads to trunk, palms, and soles.	Classic triad-headache, fever, rash (vasculitis). Palms and soles rash is seen in Coxsackievirus A infection (hand, foot, and mouth disease), Rocky Mountain spotted fever, and 2 ${ }^{\circ}$ Syphilis (you drive CARS using your palms and soles). Typhus Endemic (fleas) - R typhi. Epidemic (human body louse)-R prowazekii. Rash starts centrally and spreads out, sparing palms and soles.

Chlamydiae

Chlamydiae cannot make their own ATP. They are obligate intracellular organisms that cause mucosal infections. 2 forms:

- Elementary body (small, dense) is "Enfectious" and Enters cell via Endocytosis; transforms into reticulate body.
- Reticulate body Replicates in cell by fission; Reorganizes into elementary bodies.
Chlamydia trachomatis causes reactive arthritis (Reiter syndrome), follicular conjunctivitis A, nongonococcal urethritis, and PID.
Chlamydophila pneumoniae and Chlamydophila psittaci cause atypical pneumonia; transmitted by aerosol.
Treatment: azithromycin (favored because onetime treatment) or doxycycline.

Chlamys $=$ cloak (intracellular).
C psittaci-has an avian reservoir (parrots), causes atypical pneumonia.
Lab diagnosis: cytoplasmic inclusions seen on Giemsa or fluorescent antibody-stained smear. The chlamydial cell wall lacks classic peptidoglycan (due to reduced muramic acid), rendering β-lactam antibiotics less effective.

Chlamydia trachomatis serotypes

Types A, B, and C Chronic infection, cause blindness due to follicular conjunctivitis in Africa.

Types D-K

Types L1, L2, and L3
Lymphogranuloma venereum—small, painless ulcers on genitals \rightarrow swollen, painful inguinal lymph nodes that ulcerate (buboes). Treat with doxycycline.
$\mathrm{ABC}=$ Africa, Blindness, Chronic infection.

D-K = everything else.
Neonatal disease can be acquired during passage through infected birth canal.

Mycoplasma pneumoniae

Classic cause of atypical "walking" pneumonia (insidious onset, headache, nonproductive cough, patchy or diffuse interstitial infiltrate). X-ray looks worse than patient. High titer of cold agglutinins (IgM), which can agglutinate or lyse RBCs. Grown on Eaton agar.
Treatment: macrolides, doxycycline, or fluoroquinolone (penicillin ineffective since Mycoplasma have no cell wall).

No cell wall. Not seen on Gram stain. Pleomorphic A.
Bacterial membrane contains sterols for stability.
Mycoplasmal pneumonia is more common in patients <30 years old.
Frequent outbreaks in military recruits and prisons.
Mycoplasma gets cold without a coat (cell wall).

All of the following can cause pneumonia and can disseminate. All are caused by dimorphic fungi: cold $\left(20^{\circ} \mathrm{C}\right)=$ mold; heat $\left(37^{\circ} \mathrm{C}\right)=$ yeast. The only exception is coccidioidomycosis, which is a spherule (not yeast) in tissue. Treatment: fluconazole or itraconazole for local infection; amphotericin B for systemic infection. Systemic mycoses can form granulomas (like TB) but cannot be transmitted person-to-person (unlike TB).

DISEASE	ENDEMICLOCATION AND PATHOLOGIC FEATURES	NOTES
Histoplasmosis	Mississippi and Ohio River valleys. Macrophage filled with Histoplasma (smaller than RBC) A.	Histo hides (within macrophages). Bird (eg, starlings) or bat droppings.
Blastomycosis	Eastern United States and Central America. Causes inflammatory lung disease and can disseminate to skin and bone. Forms granulomatous nodules. Broad-base buding (same size as RBC)	Blasto buds broadly.

Cutaneous mycoses

Tinea
(dermatophytes)
Tinea capitis

Tinea capitis
Tinea corporis

Tinea cruris
Tinea pedis
Tinea unguium
Tinea (pityriasis) versicolor

Tinea is the clinical name given to dermatophyte (cutaneous fungal) infections. Dermatophytes include Microsporum, Trichophyton, and Epidermophyton. Branching septate hyphae visible on KOH preparation with blue fungal stain \boldsymbol{A}.
Occurs on head, scalp. Associated with lymphadenopathy, alopecia, scaling B.
Occurs on torso. Characterized by erythematous scaling rings ("ringworm") and central clearing C. Can be acquired from contact with an infected cat or dog.
Occurs in inguinal area D. Often does not show the central clearing seen in tinea corporis.
Three varieties:

- Interdigital E; most common
- Moccasin distribution F
- Vesicular type

Onychomycosis; occurs on nails.
Caused by Malassezia spp. (Pityrosporum spp.), a yeast-like fungus (not a dermatophyte despite being called tinea). Degradation of lipids produces acids that damage melanocytes and cause hypopigmented \mathbb{G} and/or pink patches.
Can occur any time of year, but more common in summer (hot, humid weather). "Spaghetti and meatballs" appearance on microscopy \boldsymbol{H}.
Treatment: selenium sulfide, topical and/or oral antifungal medications.

Opportunistic fungal infections

Candida albicans $\quad a l b a=$ white. Dimorphic; forms pseudohyphae and budding yeasts at $20^{\circ} \mathrm{C} A$, germ tubes at $37^{\circ} \mathrm{C}$ B.
Systemic or superficial fungal infection. Causes oral C and esophageal thrush in immunocompromised (neonates, steroids, diabetes, AIDS), vulvovaginitis (diabetes, use of antibiotics), diaper rash, endocarditis (IV drug users), disseminated candidiasis (to any organ), chronic mucocutaneous candidiasis.
Treatment: topical azole for vaginal; nystatin, fluconazole, or caspofungin for oral/esophageal; fluconazole, caspofungin, or amphotericin B for systemic.

Aspergillus fumigatus

Septate hyphae that branch at 45° Acute Angle D. Produces conidia in radiating chains at end of conidiophore E.
Causes invasive aspergillosis, especially in immunocompromised and those with chronic granulomatous disease.
Can cause aspergillomas in pre-existing lung cavities, especially after TB infection.
Some species of Aspergillus produce Aflatoxins, which are associated with hepatocellular carcinoma.
Allergic bronchopulmonary aspergillosis (ABPA): hypersensitivity response associated with asthma and cystic fibrosis; may cause bronchiectasis and eosinophilia.
Cryptococcus neoformans

Mucor and Rhizopus
$5-10 \mu \mathrm{~m}$ with narrow budding. Heavily encapsulated yeast. Not dimorphic.
Found in soil, pigeon droppings. Acquired through inhalation with hematogenous dissemination to meninges. Culture on Sabouraud agar. Highlighted with India ink (clear halo F) and mucicarmine (red inner capsule G). Latex agglutination test detects polysaccharide capsular antigen and is more specific.
Causes cryptococcosis, cryptococcal meningitis, cryptococcal encephalitis ("soap bubble" lesions in brain), primarily in immunocompromised.
spp.
Irregular, broad, nonseptate hyphae branching at wide angles H.
Mucormycosis. Causes disease mostly in ketoacidotic diabetic and/or neutropenic patients (eg, leukemia). Fungi proliferate in blood vessel walls, penetrate cribriform plate, and enter brain. Rhinocerebral, frontal lobe abscess; cavernous sinus thrombosis. Headache, facial pain, black necrotic eschar on face; may have cranial nerve involvement.
Treatment: surgical debridement, amphotericin B.

Pneumocystis jirovecii Causes Pneumocystis pneumonia (PCP), a diffuse interstitial pneumonia A. Yeast-like fungus (originally classified as protozoan). Inhaled. Most infections are asymptomatic. Immunosuppression (eg, AIDS) predisposes to disease. Diffuse, bilateral ground-glass opacities on CXR/CT B. Diagnosed by lung biopsy or lavage. Disc-shaped yeast seen on methenamine silver stain of lung tissue C.
Treatment/prophylaxis: TMP-SMX, pentamidine, dapsone (prophylaxis only), atovaquone. Start prophylaxis when CD4+ count drops to <200 cells $/ \mathrm{mm}^{3}$ in HIV patients.

Sporothrix schenckii

Sporotrichosis. Dimorphic, cigar-shaped budding yeast that grows in branching hyphae with rosettes of conidia; lives on vegetation. When spores are traumatically introduced into the skin, typically by a thorn ("rose gardener's" disease), causes local pustule or ulcer A with nodules along draining lymphatics (ascending lymphangitis). Disseminated disease possible in immunocompromised host.
Treatment: itraconazole or potassium iodide.
"Plant a rose in the pot."

- MICROBIOLOGY-PARASITOLOGY

Protozoa-GI infections

ORGANISM	DISEASE	TRANSMISSION	DIAGNOSIS	TREATMENT
Giardia lamblia	Giardiasis-bloating, flatulence, foul-smelling, fatty diarrhea (often seen in campers/hikers) think fat-rich Ghirardelli chocolates for fatty stools of Giardia	Cysts in water	Multinucleated trophozoites \boldsymbol{A} or cysts B in stool	Metronidazole
Entamoeba histolytica	Amebiasis_bloody diarrhea (dysentery), liver abscess ("anchovy paste" exudate), RUQ pain; histology shows flask-shaped ulcer	Cysts in water	Serology and/or trophozoites (with engulfed RBCs in the cytoplasm) or cysts with up to 4 nuclei D in stool	Metronidazole; iodoquinol for asymptomatic cyst passers
Cryptosporidium	Severe diarrhea in AIDS Mild disease (watery diarrhea) in immunocompetent hosts	Oocysts in water	Oocysts on acid-fast stain E	Prevention (by filtering city water supplies); nitazoxanide in immunocompetent hosts
A	B C			

Protozoa-CNS infections

ORGANSM	DIIEASE	TRANSMISSION	DIAGVOSIS	treatment
Toxoplasma gondii	Congenital toxoplasmosis = classic triad of chorioretinitis, hydrocephalus, and intracranial calcifications; reactivation in AIDS \rightarrow brain abscess seen as ring-enhancing lesions on MRI A	Cysts in meat (most common); oocysts in cat feces; crosses placenta (pregnant women should avoid cats)	Serology, biopsy (tachyzoite)	Sulfadiazine + pyrimethamine
Naegleria fowleri	Rapidly fatal meningoencephalitis	Swimming in freshwater lakes (think Nalgene bottle filled with fresh water containing Naegleria); enters via cribriform plate	Amoebas in spinal fluid IC	Amphotericin B has been effective for a few survivors
Trypanosoma brucei	African sleeping sicknessenlarged lymph nodes, recurring fever (due to antigenic variation), somnolence, coma Two subspecies: Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense	Tsetse fly, a painful bite	Trypomastigote in blood smear D	Suramin for bloodborne disease or melarsoprol for CNS penetration ("it sure is nice to go to sleep"; melatonin helps with sleep)

Protozoa—hematologic infections

Protozoa—others

ORGANSM	DISEASE	TRANSMISSION	diagnosis	Treatment
Visceral infections				
Trypanosoma cruzi	Chagas disease-dilated cardiomyopathy with apical atrophy, megacolon, megaesophagus; predominantly in South America Unilateral periorbital swelling (Romaña sign) characteristic of acute stage	Reduviid bug ("kissing bug") feces, deposited in a painless bite (much like a kiss)	Trypomastigote in blood smear \boldsymbol{A}	Benznidazole or nifurtimox; Cruzing in my Benz, with a fur coat on
Leishmania donovani	Visceral leishmaniasis (kala-azar)-spiking fevers, hepatosplenomegaly, pancytopenia Cutaneous leishmaniasis-skin ulcers	Sandfly	Macrophages containing amastigotes B	Amphotericin B, sodium stibogluconate
Sexually transmitted infections				
Trichomonas vaginalis C	Vaginitis-foul-smelling, greenish discharge; itching and burning; do not confuse with Gardnerella vaginalis, a gram-variable bacterium associated with bacterial vaginosis	Sexual (cannot exist outside human because it cannot form cysts)	Trophozoites (motile) C on wet mount; "strawberry cervix"	Metronidazole for patient and partner (prophylaxis)

Nematode routes of infection

Ingested-Enterobius, Ascaris, Toxocara, Trichinella
Cutaneous-Strongyloides, Ancylostoma, Necator
Bites-Loa loa, Onchocerca volvulus, Wuchereria bancrofti

You'll get sick if you EATT these!

These get into your feet from the SANd.

Lay LOW to avoid getting bitten.

Immune response to helminths

Eosinophils act by type I and type II hypersensitivity reactions in responding to helminths. Type Ineutralization of histamine and leukotrienes. Type II—eosinophils attach to surface of helminths via IgE and release cytotoxins (eg, major basic protein) contained in their granules.

Nematodes (roundworms)

ORGANISM	DISEASE	TRANSMISSION	TREATMENT
Intestinal		Fecal-oral	Bendazoles (because
Enterobius vermicularis (pinworm)	Intestinal infection causing anal pruritus (diagnosed by seeing egg via the tape test)		worms are bendy)

Cestodes (tapeworms)

ORGANISM	DISEASE	TRANSMISSION	treatment
Taenia solium A	Intestinal tapeworm	Ingestion of larvae encysted in undercooked pork	Praziquantel
	Cysticercosis, neurocysticercosis B	Ingestion of eggs contaminated with human feces	Praziquantel; albendazole for neurocysticercosis
Diphyllobothrium latum	Vitamin B_{12} deficiency (tapeworm competes for B_{12} in intestine) \rightarrow megaloblastic anemia	Ingestion of larvae from raw freshwater fish	Praziquantel
Echinococcus granulosus	Hydatid cysts \mathbf{D} in liver E, causing anaphylaxis if antigens released (hydatid cyst injected with ethanol or hypertonic saline to kill daughter cysts before removal)	Ingestion of eggs from dog feces Sheep are an intermediate host	Albendazole
A			

Trematodes (flukes)

Parasite hints	Assoclations	ORGANsM
	Biliary tract disease, cholangiocarcinoma	Clonorchis sinensis
Brain cysts, seizures	Taenia solium (neurocysticercosis)	
Hematuria, squamous cell bladder cancer	Schistosoma haematobium	
Liver (hydatid) cysts	Echinococcus granulosus	
Microcytic anemia	Ancylostoma, Necator	
Myalgias, periorbital edema	Trichinella spiralis	
Perianal pruritus	Enterobius	
Portal hypertension	Schistosoma mansoni, Schistosoma japonicum	
Vitamin B_{12} deficiency	Diphyllobothrium latum	

Ectoparasites

Scabies
(Sarcoptes scabiei)

Mites that burrow into the stratum corneum
and cause pruritis. Causes serpiginous burrows
(lines) in webspace of hands and feet A.
:---
(jails, nursing homes); transmission through
fomites.
Treatment: permethrin cream, washing/drying
all clothing/bedding, treat close contacts.

MICROBIOLOGY—VIROLOGY

Viral structuregeneral features	
Viral genetics	
Recombination	Exchange of genes between 2 chromosomes by crossing over within regions of significant base sequence homology.
Reassortment	When viruses with segmented genomes (eg, influenza virus) exchange genetic material. For example, the 2009 novel H1Nl influenza A pandemic emerged via complex viral reassortment of genes from human, swine, and avian viruses. Has potential to cause antigenic shift.
Complementation	When 1 of 2 viruses that infect the cell has a mutation that results in a nonfunctional protein, the nonmutated virus "complements" the mutated one by making a functional protein that serves both viruses. For example, hepatitis D virus requires the presence of replicating hepatitis B virus to supply HBsAg, the envelope protein for HDV.
Phenotypic mixing	Occurs with simultaneous infection of a cell with 2 viruses. Genome of virus A can be partially or completely coated (forming pseudovirion) with the surface proteins of virus B. Type B protein coat determines the tropism (infectivity) of the hybrid virus. However, the progeny from this infection have a type A coat that is encoded by its type A genetic material.

Viral vaccines		
Live attenuated vaccines	Induce humoral and cell-mediated immunity but have reverted to virulence on rare occasions. Live attenuated: smallpox, yellow fever, rotavirus, chickenpox (VZV), Sabin polio virus, MMR, Influenza (intranasal).	No booster needed for live attenuated vaccines. Dangerous to give live vaccines to immunocompromised patients. Close contacts may be vaccinated with live vaccines (except live polio or influenza). "Live! One night only! See small yellow rotating chickens get vaccinated with Sabin and MMR! It's incredible!" MMR = measles, mumps, rubella; live attenuated vaccine that can be given to
HIV \oplus patients who do not show signs of		
immunodeficiency.		

DNA viral genomes	All DNA viruses except the Parvoviridae are dsDNA. All are linear except papilloma-, polyoma-, and hepadnaviruses (circular).	All are dsDNA (like our cells), except "part-of-avirus" (parvovirus) is ssDNA. Parvus = small.
RNA viral genomes	All RNA viruses except Reoviridae are ssRNA. \oplus stranded RNA viruses: I went to a retro (retrovirus) toga (togavirus) party, where I drank flavored (flavivirus) Corona (coronavirus) and ate hippie (hepevirus) California (calicivirus) pickles (picornavirus).	All are ssRNA (like our mRNA), except "repeato-virus" (reovirus) is dsRNA.
Naked viral genome infectivity	Purified nucleic acids of most dsDNA (except po $(\approx \mathrm{mRNA})$ viruses are infectious. Naked nuclei not infectious. They require polymerases conta	viruses and HBV) and \oplus strand ssRNA acids of Θ strand ssRNA and dsRNA viruses are ned in the complete virion.
Viral replication		
DNA viruses	All replicate in the nucleus (except poxvirus).	
RNA viruses	All replicate in the cytoplasm (except influenza v	rus and retroviruses).
Viral envelopes	Naked (nonenveloped) viruses include Papillomavirus, Adenovirus, Parvovirus, Polyomavirus, Calicivirus, Picornavirus, Reovirus, and Hepevirus. Generally, enveloped viruses acquire their envelopes from plasma membrane when they exit from cell. Exceptions include herpesviruses, which acquire envelopes from nuclear membrane.	Give PAPP smears and CPR to a naked hippie (hepevirus). DNA $=$ PAPP; RNA $=$ CPR and hepevirus.
DNA virus characteristics	Some general rules-all DNA viruses:	
	general rule	Comments
	Are HHAPPPPy viruses	Hepadna, Herpes, Adeno, Pox, Parvo, Papilloma, Polyoma.
	Are double stranded	Except parvo (single stranded).
	Have linear genomes	Except papilloma and polyoma (circular, supercoiled) and hepadna (circular, incomplete).
	Are icosahedral	Except pox (complex).
	Replicate in the nucleus	Except pox (carries own DNA-dependent RNA polymerase).

DNA viruses

VIRAL FAMILY	Envelope	DNA STRUCTURE	MEDICAL IMPORTANCE
Herpesviruses	Yes	DS and linear	See Herpesviruses entry
Poxvirus	Yes	DS and linear (largest DNA virus)	Smallpox eradicated world wide by use of the liveattenuated vaccine Cowpox ("milkmaid blisters") Molluscum contagiosum-flesh-colored papule with central umbilication
Hepadnavirus	Yes	Partially DS and circular	HBV: - Acute or chronic hepatitis - Not a retrovirus but has reverse transcriptase
Adenovirus	No	DS and linear	Febrile pharyngitis \boldsymbol{A}-sore throat Acute hemorrhagic cystitis Pneumonia Conjunctivitis-"pink eye"
Papillomavirus	No	DS and circular	HPV-warts (serotypes 1, 2, 6, 11), CIN, cervical cancer (most commonly 16, 18)
Polyomavirus	No	DS and circular	JC virus-progressive multifocal leukoencephalopathy (PML) in HIV BK virus-transplant patients, commonly targets kidney JC: Junky Cerebrum; BK: Bad Kidney
Parvovirus	No	SS and linear (smallest DNA virus)	B19 virus-aplastic crises in sickle cell disease, "slapped cheeks" rash in children (erythema infectiosum, or fifth disease) RBC destruction in fetus leads to hydrops fetalis and death, in adults leads to pure RBC aplasia and rheumatoid arthritis-like symptoms

Herpesviruses Enveloped, DS and linear viruses

VIRUS	ROUTE OF TRANSMISSION	CLIIICAL SIGNIFICANCE	NOTES
Herpes simplex virus-1	Respiratory secretions, saliva	Gingivostomatitis, keratoconjunctivitis \triangle, herpes labialis B, herpetic whitlow on finger, temporal lobe encephalitis.	Most common cause of sporadic encephalitis, can present as altered mental status, seizures, and/or aphasia.
Herpes simplex virus-2	Sexual contact, perinatal	Herpes genitalis \@, neonatal herpes.	Latent in sacral ganglia. Viral meningitis more common with HSV-2 than with HSV-l.
VaricellaZoster virus (HHV-3)	Respiratory secretions	Varicella-zoster (chickenpox D, shingles E), encephalitis, pneumonia. Most common complication of shingles is postherpetic neuralgia.	Latent in dorsal root or trigeminal ganglia.
Epstein-Barr virus (HHV-4)	Respiratory secretions, saliva; aka "kissing disease," (common in teens, young adults)	Mononucleosis-fever, hepatosplenomegaly, pharyngitis, and lymphadenopathy (especially posterior cervical nodes (F). Avoid contact sports until resolution due to risk of splenic rupture. Associated with lymphomas (eg, endemic Burkitt lymphoma), nasopharyngeal carcinoma.	Infects B cells through CD21. Atypical lymphocytes on peripheral blood smear G—not infected B cells but reactive cytotoxic T cells. \oplus Monospot test-heterophile antibodies detected by agglutination of sheep or horse RBCs.
Cytomegalovirus (HHV-5)	Congenital transfusion, sexual contact, saliva, urine, transplant	Mononucleosis (Θ Monospot) in immunocompetent patients; infection in immunocompromised patients, especially pneumonia in transplant patients; AIDS retinitis ("sightomegalovirus"): hemorrhage, cotton-wool exudates, vision loss. Congenital CMV	Infected cells have characteristic "owl eye" inclusions \boldsymbol{H}^{2}. Latent in mononuclear cells.
Human herpesviruses 6 and 7	Saliva	Roseola infantum (exanthem subitum): high fevers for several days that can cause seizures, followed by diffuse macular rash \square. HHV-7-less common cause of roseola.	
Human herpesvirus 8	Sexual contact	Kaposi sarcoma (neoplasm of endothelial cells). Seen in HIV/AIDS and transplant patients. Dark/violaceous plaques or nodules representing vascular proliferations.	Can also affect GI and lungs.

HSV identification Viral culture for skin/genitalia.

CSF PCR for herpes encephalitis.
Tzanck test-a smear of an opened skin vesicle to detect multinucleated giant cells A commonly seen in HSV-1, HSV-2, and VZV infection.
Intranuclear inclusions also seen with HSV-1, HSV-2, VZV.
Tzanck heavens I do not have herpes.

Receptors used by viruses	VIRUS	RECEPTORS
CMV	Integrins (heparan sulfate)	
EBV	CD21	
HIV	CD4, CXCR4, CCR5	
Rabies	Nicotinic AChR	
Rhinovirus	ICAM-1	

RNA viruses

VIRAL Famly	ENvELOPE	RNA Structure	CAPSID SYMMETRY	medical Importance
Reoviruses	No	DS linear 10-12 segments	Icosahedral (double)	Coltivirus ${ }^{3}$ - Colorado tick fever Rotavirus-\#1 cause of fatal diarrhea in children
Picornaviruses	No	SS \oplus linear	Icosahedral	Poliovirus-polio-Salk/Sabin vaccines-IPV/OPV Echovirus-aseptic meningitis Rhinovirus-"common cold" Coxsackievirus-aseptic meningitis; herpangina (mouth blisters, fever); hand, foot, and mouth disease; myocarditis; pericarditis HAV-acute viral hepatitis PERCH
Hepevirus	No	SS \oplus linear	Icosahedral	HEV
Caliciviruses	No	SS \oplus linear	Icosahedral	Norovirus-viral gastroenteritis
Flaviviruses	Yes	SS \oplus linear	Icosahedral	HCV Yellow fever ${ }^{\text {a }}$ Dengue ${ }^{\text {a }}$ St. Louis encephalitis ${ }^{\text {a }}$ West Nile virus ${ }^{\text {a }}$
Togaviruses	Yes	SS \oplus linear	Icosahedral	Rubella Eastern equine encephalitis ${ }^{a}$ Western equine encephalitis ${ }^{a}$
Retroviruses	Yes	SS \oplus linear 2 copies	Icosahedral (HTLV), complex and conical (HIV)	Have reverse transcriptase HTLV-T-cell leukemia HIV-AIDS
Coronaviruses	Yes	SS \oplus linear	Helical	"Common cold," SARS, MERS
Orthomyxoviruses	Yes	SS Θ linear 8 segments	Helical	Influenza virus
Paramyxoviruses	Yes	SS Θ linear Nonsegmented	Helical	PaRaMyxovirus: Parainfluenza-croup RSV—bronchiolitis in babies; Rx-ribavirin Measles, Mumps
Rhabdoviruses	Yes	SS Θ linear	Helical	Rabies
Filoviruses	Yes	SS Θ linear	Helical	Ebola/Marburg hemorrhagic fever-often fatal!
Arenaviruses	Yes	SS \oplus or Θ circular 2 segments	Helical	LCMV-lymphocytic choriomeningitis virus Lassa fever encephalitis-spread by rodents
Bunyaviruses	Yes	SS Θ circular 3 segments	Helical	California encephalitis ${ }^{a}$ Sandfl/Rift Valley fevers ${ }^{\text {a }}$ Crimean-Congo hemorrhagic fever ${ }^{\text {a }}$ Hantavirus-hemorrhagic fever, pneumonia
Delta virus	Yes	SS Θ circular	Uncertain	HDV is a "defective" virus that requires the presence of HBV to replicate

SS, single-stranded; DS, double-stranded; \oplus, positive sense; Θ, negative sense; ${ }^{\text {a }}=$ arbovirus, arthropod borne (mosquitoes, ticks).

Negative-stranded
viruses viruses

Must transcribe Θ strand to \oplus. Virion brings its own RNA-dependent RNA polymerase. They include Arenaviruses, Bunyaviruses, Paramyxoviruses, Orthomyxoviruses, Filoviruses, and Rhabdoviruses.

Always Bring Polymerase Or Fail Replication.

Segmented viruses
All are RNA viruses. They include Bunyaviruses, Orthomyxoviruses (influenza viruses), Arenaviruses, and Reoviruses.

BOAR.

Picornavirus

Includes Poliovirus, Echovirus, Rhinovirus, Coxsackievirus, and HAV. RNA is translated into 1 large polypeptide that is cleaved by proteases into functional viral proteins. Can cause aseptic (viral) meningitis (except rhinovirus and HAV). All are enteroviruses (fecal-oral spread) except rhinovirus.

PicoRNAvirus = small RNA virus. PERCH on a "peak" (pico).

Rhinovirus

A picornavirus. Nonenveloped RNA virus. Cause of common cold; >100 serologic types. Acid labile-destroyed by stomach acid; therefore, does not infect the GI tract (unlike the other picornaviruses).

Rhino has a runny nose.

Yellow fever virus

Rotavirus

A flavivirus (also an arbovirus) transmitted by Aedes mosquitoes A. Virus has a monkey or human reservoir. Symptoms: high fever, black vomitus, and jaundice. May see Councilman bodies (eosinophilic apoptotic globules) on liver biopsy.

Flavi = yellow, jaundice.

Rotavirus \boldsymbol{A}, the most important global cause of infantile gastroenteritis, is a segmented dsRNA virus (a reovirus). Major cause of acute diarrhea in the United States during winter, especially in day care centers, kindergartens. Villous destruction with atrophy leads to \downarrow absorption of Na^{+}and loss of K^{+}.

ROTAvirus $=$ Right Out The Anus.
CDC recommends routine vaccination of all infants.

Influenza viruses
Orthomyxoviruses. Enveloped, Θ ssRNA viruses with 8 -segment genome. Contain hemagglutinin (promotes viral entry) and neuraminidase (promotes progeny virion release) antigens. Patients at risk for fatal bacterial superinfection, most commonly S aureus, S pneumoniae, and H influenzae.

Reformulated vaccine ("the flu shot") contains viral strains most likely to appear during the flu season, due to the virus' rapid genetic change. Killed viral vaccine is most frequently used. Live attenuated vaccine contains temperaturesensitive mutant that replicates in the nose but not in the lung; administered intranasally.

Rubella virus

A togavirus. Causes rubella, once known as German (3-day) measles. Fever, postauricular and other lymphadenopathy, arthralgias, and fine, confluent rash that starts on face and spreads centrifugally to involve trunk and extremities \boldsymbol{A}. Causes mild disease in children but serious congenital disease (a ToRCHeS infection). Congenital rubella findings include "blueberry muffin" appearance due to dermal extramedullary hematopoiesis.

Paramyxoviruses
Paramyxoviruses cause disease in children. They include those that cause parainfluenza (croup: seal-like barking cough), mumps, and measles as well as RSV, which causes respiratory tract infection (bronchiolitis, pneumonia) in infants. All contain surface F (fusion) protein, which causes respiratory epithelial cells to fuse and form multinucleated cells. Palivizumab (monoclonal antibody against F protein) prevents pneumonia caused by RSV infection in premature infants.

Croup (acute laryngo-

tracheobronchitis) inspiratory stridor. Narrowing of upper trachea and subglottis leads to characteristic steeple sign

Caused by parainfluenza viruses (paramyxovirus). Results in a "seal-like" barking cough and on x-ray \boldsymbol{A}. Severe croup can result in pulsus paradoxus 2° to upper airway obstruction.

Measles (rubeola) virus

A paramyxovirus that causes measles. Usual presentation involves prodromal fever with cough, coryza, and conjunctivitis, then eventually Koplik spots (bright red spots with blue-white center on buccal mucosa A), followed l-2 days later by a maculopapular rash B that starts at the head/neck and spreads downward. Lymphadenitis with WarthinFinkeldey giant cells (fused lymphocytes) in a background of paracortical hyperplasia. SSPE (subacute sclerosing panencephalitis, occurring years later), encephalitis (1:2000), and giant cell pneumonia (rarely, in immunosuppressed) are possible sequelae.

3 C's of measles: Cough Coryza Conjunctivitis
Vitamin A supplementation can reduce morbidity and mortality from measles, particularly in malnourished children.

Mumps virus

A paramyxovirus that causes mumps, uncommon due to effectiveness of MMR vaccine.
Symptoms: Parotitis A, Orchitis (inflammation of testes), aseptic Meningitis, and Pancreatitis. Can cause sterility (especially after puberty).

Mumps makes your parotid glands and testes as big as POM-Poms.

Rabies virus

Bullet-shaped virus \boldsymbol{A}. Negri bodies (cytoplasmic inclusions B) commonly found in Purkinje cells of cerebellum and in hippocampal neurons. Rabies has long incubation period (weeks to months) before symptom onset. Postexposure prophylaxis is wound cleaning plus immunization with killed vaccine and rabies immunoglobulin. Example of passive-active immunity.
Travels to the CNS by migrating in a retrograde fashion up nerve axons after binding to ACh receptors.
Progression of disease: fever, malaise \rightarrow agitation, photophobia, hydrophobia, hypersalivation \rightarrow paralysis, coma \rightarrow death.

Infection more commonly from bat, raccoon, and skunk bites than from dog bites in the United States; aerosol transmission (eg, bat caves) also possible.

Ebola virus

A filovirus \boldsymbol{A} that targets endothelial cells, phagocytes, hepatocytes. Following an incubation period of up to 21 days, presents with abrupt onset of flu-like symptoms, diarrhea/vomiting, high fever, myalgia. Can progress to DIC, diffuse hemorrhage, shock. Diagnosed with RT-PCR within 48 hr of symptom onset. High mortality rate.

Transmission requires direct contact with bodily fluids, fomites (including dead bodies), infected bats or primates (apes/monkeys); high incidence of nosocomial infection.
Supportive care, no definitive treatment. Strict isolation of infected individuals and barrier practices for health care workers are key to preventing transmission.

Hepatitis viruses

Signs and symptoms of all hepatitis viruses: episodes of fever, jaundice, \uparrow ALT and AST. Naked viruses (HAV and HEV) lack an envelope and are not destroyed by the gut: the vowels hit your bowels.
HBV DNA polymerase has DNA- and RNA-dependent activities. Upon entry into nucleus, the polymerase completes the partial dsDNA. Host RNA polymerase transcribes mRNA from viral DNA to make viral proteins. The DNA polymerase then reverse transcribes viral RNA to DNA, which is the genome of the progeny virus.
HCV lacks $3^{\prime}-5^{\prime}$ exonuclease activity \rightarrow variation in antigenic structures of HCV envelope proteins. Host antibody production lags behind production of new mutant strains of HCV.

Virus	HAV	HBV	HCV	HDV	HEV
family	RNA picornavirus	DNA hepadnavirus	RNA flavivirus	RNA deltavirus	RNA hepevirus
transmission	Fecal-oral (shellfish, travelers, day care)	Parenteral (Blood), sexual (Babymaking), perinatal (Birthing)	Primarily blood (IVDU, posttransfusion)	Parenteral, sexual, perinatal	Fecal-oral, especially waterborne
incubation	Short (weeks)	Long (months)	Long	Superinfection (HDV after HBV) $=$ short Coinfection (HDV with HBV) $=$ long	Short
clincal course	Asymptomatic (usually), Acute	Initially like serum sickness (fever, arthralgias, rash); may progress to carcinoma	May progress to Cirrhosis or Carcinoma	Similar to HBV	Fulminant hepatitis in Expectant (pregnant) women
Prognosis	Good	Most adults have full resolution, minority have chronic infection	Majority develop stable, Chronic hepatitis C	Superinfection \rightarrow worse prognosis	High mortality in pregnant women
HCCRRSK	No	Yes	Yes	Yes	No
LIVER BIops γ	Hepatocyte swelling, monocyte infiltration, Councilman bodies	Granular eosinophilic "ground glass" appearance; cytotoxic T cells mediate damage	Lymphoid aggregates with focal areas of macrovesicular steatosis	Similar to HBV	Patchy necrosis
notes	No carrier state ("Alone")	Carrier state common	Carrier state common	Defective virus, Depends on HBV	Enteric, Epidemic, no carrier state

Hepatitis serologic markers

Anti-HAV (IgM)	IgM antibody to HAV; best test to detect acute hepatitis A.
Anti-HAV (IgG)	IgG antibody indicates prior HAV infection and/or prior vaccination; protects against reinfection.
HBsAg	Antigen found on surface of HBV; indicates hepatitis B infection.
Anti-HBs	Antibody to HBsAg; indicates immunity to hepatitis B.
HBcAg	Antigen associated with core of HBV.
Anti-HBc	Antibody to HBcAg; IgM $=$ acute/recent infection; IgG $=$ prior exposure or chronic infection. IgM anti-HBc may be the sole \oplus marker of infection during window period.
HBeAg	Secreted by infected hepatocyte into circulation. Not part of mature HBV virion. Indicates active viral replication and therefore high transmissibility.
Anti-HBe	Antibody to HBeAg; indicates low transmissibility.

	HBsAg	Anti-HBs	HBeAg	Anti-HBe	Anti-HBc
Acute HBV	\checkmark		\checkmark		IgM
Window			\checkmark	IgM	
Chronic HBV (high infectivity)	\checkmark				
Chronic HBV (low infectivity)	\checkmark	\checkmark	\checkmark	IgG	
Recovery		\checkmark		IgG	
Immunized				IgG	

Diploid genome (2 molecules of RNA).
The 3 structural genes (protein coded for):

- env (gpl20 and gp4l):
- Formed from cleavage of gpl60 to form envelope glycoproteins.
- gpl20-attachment to host CD4+ T cell.
- gp4l-fusion and entry.
- gag (p24 and pl7-capsid and matrix proteins, respectively.
- pol-reverse transcriptase, aspartate protease, integrase.
Reverse transcriptase synthesizes dsDNA from genomic RNA; dsDNA integrates into host genome.
Virus binds CD4 as well as a coreceptor, either CCR5 on macrophages (early infection) or CXCR4 on T cells (late infection).
Homozygous CCR 5 mutation $=$ immunity.
Heterozygous CCR5 mutation $=$ slower course .

HIV diagnosis

Presumptive diagnosis made with ELISA (sensitive, high false \oplus rate and low threshold, rule out test); \oplus results are then confirmed with Western blot assay (specific, low false \oplus rate and high threshold, rule in test).
Viral load tests determine the amount of viral RNA in the plasma. High viral load associated with poor prognosis. Also use viral load to monitor effect of drug therapy.
AIDS diagnosis $\leq 200 \mathrm{CD} 4+$ cells $/ \mathrm{mm}^{3}$ (normal: 500-1500 cells $/ \mathrm{mm}^{3}$). HIV \oplus with AIDS-defining condition (eg, Pneumocystis pneumonia) or CD4+ percentage $<14 \%$.

ELISA/Western blot tests look for antibodies to viral proteins; these tests often are falsely Θ in the first l-2 months of HIV infection and falsely \oplus initially in babies born to infected mothers (anti-gpl20 crosses placenta).

Time course of untreated HIV infection

Four stages of untreated infection:
l. Flu-like (acute)
2. Feeling fine (latent)
3. Falling count
4. Final crisis

During latent phase, virus replicates in lymph nodes.

Red line $=\mathrm{CD} 4+\mathrm{T}$ cell count $\left(\mathrm{cells} / \mathrm{mm}^{3}\right)$; blue line $=$ HIV RNA copies $/ \mathrm{mL}$ plasma.
Blue boxes on vertical CD4+ count axis indicate moderate immunocompromise ($<400 \mathrm{CD} 4+$ cells $/ \mathrm{mm}^{3}$) and when AIDS-defining illnesses emerge ($<200 \mathrm{CD} 4+$ cells $/ \mathrm{mm}^{3}$).
Most patients who do not receive treatment eventually die of complications of HIV infection.

Common diseases of HIV-positive adults

As CD4 + cell count \downarrow, risks of reactivation of past infections (eg, TB, HSV, shingles), dissemination of bacterial infections and fungal infections (eg, coccidioidomycosis), and non-Hodgkin lymphomas \uparrow.

Pathogen	PRESENTATION	FINDINGS
CD4+ cell count $<500 / \mathrm{mm}^{3}$		
Candida albicans	Oral thrush	Scrapable white plaque, pseudohyphae on microscopy
EBV	Oral hairy leukoplakia	Unscrapable white plaque on lateral tongue
Bartonella henselae	Bacillary angiomatosis	Biopsy with neutrophilic inflammation
HHV-8	Kaposi sarcoma	Biopsy with lymphocytic inflammation
Cryptosporidium spp.	Chronic, watery diarrhea	Acid-fast oocysts in stool
HPV	Squamous cell carcinoma, commonly of anus (men who have sex with men) or cervix (women)	
CD4+ cell count $<200 / \mathrm{mm}^{3}$		
HIV	Dementia	
JC virus (reactivation)	Progressive multifocal leukoencephalopathy	Nonenhancing areas of demyelination on MRI
Pneumocystis jirovecii	Pneumocystis pneumonia	"Ground-glass" opacities on CXR
CD4+ cell count $<100 / \mathrm{mm}^{3}$		
Aspergillus fumigatus	Hemoptysis, pleuritic pain	Cavitation or infiltrates on chest imaging
Cryptococcus neoformans	Meningitis	Encapsulated yeast on India ink stain or capsular antigen
Candida albicans	Esophagitis	White plaques on endoscopy; yeast and pseudohyphae on biopsy
CMV	Retinitis, esophagitis, colitis, pneumonitis, encephalitis	Linear ulcers on endoscopy, cotton-wool spots on fundoscopy Biopsy reveals cells with intranuclear (owl eye) inclusion bodies
EBV	B-cell lymphoma (eg, non-Hodgkin lymphoma, CNS lymphoma)	CNS lymphoma-ring enhancing, may be solitary (vs Toxoplasma)
Histoplasma capsulatum	Fever, weight loss, fatigue, cough, dyspnea, nausea, vomiting, diarrhea	Oval yeast cells within macrophages
Mycobacterium avium-intracellulare, Mycobacterium avium complex	Nonspecific systemic symptoms (fever, night sweats, weight loss) or focal lymphadenitis	
Toxoplasma gondii	Brain abscesses	Multiple ring-enhancing lesions on MRI

Prions

Prion diseases are caused by the conversion of a normal (predominantly α-helical) protein termed prion protein $\left(\mathrm{PrP}^{\mathrm{c}}\right)$ to a β-pleated form $\left(\mathrm{PrP}^{\mathrm{Pc}}\right)$, which is transmissible via CNS-related tissue (iatrogenic CJD) or food contaminated by BSE-infected animal products (variant CJD). PrPsc resists protease degradation and facilitates the conversion of still more $\mathrm{PrP}^{\mathrm{c}}$ to $\mathrm{PrP}^{\text {sc }}$. Resistant to standard sterilizing procedures, including standard autoclaving. Accumulation of $\mathrm{PrPsc}^{\text {Ps }}$ results in spongiform encephalopathy A and dementia, ataxia, and death.
Creutzfeldt-Jakob disease—rapidly progressive dementia, typically sporadic (some familial forms). Bovine spongiform encephalopathy (BSE)—also known as "mad cow disease."
Kuru-acquired prion disease noted in tribal populations practicing human cannibalism.

- MICROBIOLOGY-SYSTEMS

Normal flora: dominant

LOCATION	MICROORGaNISM
Skin	S epidermidis
Nose	S epidermidis; colonized by S aureus
Oropharynx	Viridans group streptococci
Dental plaque	S mutans
Colon	B fragilis $>$ E coli
Vagina	Lactobacillus, colonized by E coli and group
	B strep

Neonates delivered by C-section have no flora but are rapidly colonized after birth.

Bugs causing food poisoning
S aureus and B cereus food poisoning starts quickly and ends quickly.

MICROORGANISM	SOURCE OF INFECTION
B cereus	Reheated rice. "Food poisoning from reheated rice? Be serious!" (B cereus)
C botulinum	Improperly canned foods (toxins), raw honey (spores)
C perfringens	Reheated meat
E coli Ol57:H7	Undercooked meat
Salmonella	Poultry, meat, and eggs
S aureus	Meats, mayonnaise, custard; preformed toxin
V parahaemolyticus and V vulnificus ${ }^{\text {a }}$	Contaminated seafood
${ }^{\text {a } V ~ v u l n i f i c u s ~ c a n ~ a l s o ~ c a u s e ~ w o u n d ~ i n f e c t i o n s ~ f r o m ~ c o n t a c t ~ w i t h ~ c o n t a m i n a t e d ~ w a t e r ~ o r ~ s h e l l f i s h . ~}$	

Bugs causing diarrhea

Bloody diarrhea

Campylobacter	Comma- or S-shaped organisms; growth at $42^{\circ} \mathrm{C}$
E histolytica	Protozoan; amebic dysentery; liver abscess
Enterohemorrhagic E coli	Ol57:H7; can cause HUS; makes Shiga-like toxin
Enteroinvasive E coli	Invades colonic mucosa
Salmonella	Lactose Θ; flagellar motility; has animal reservoir, especially poultry and eggs
Shigella	Lactose Θ; very low ID_{50}; produces Shiga toxin (human reservoir only); bacillary dysentery
Y enterocolitica	Day care outbreaks, pseudoappendicitis
Watery diarrhea	Pseudomembranous colitis; caused by antibiotics; occasionally bloody diarrhea
C difficile	Also causes gas gangrene
Cperfringens	Travelers' diarrhea; produces heat-labile (LT) and heat-stable (ST) toxins
Enterotoxigenic E coli	Giardia, Cryptosporidium
Protozoa	Comma-shaped organisms; rice-water diarrhea; often from infected seafood
Vcholerae	Rotavirus, norovirus, adenovirus

Common causes of pneumonia

NEONATES (<4WK)	CHILDREN (4 WK-18YR)	ADULTS (18-40 YR)	ADULTS (40-65 YR)	ELDERLY
Group B streptococci E coli	Viruses (RSV) Mycoplasma C trachomatis (infants-3 yr) C preumoniae (school-aged children) S pneumoniae Runts May Cough Chunky Sputum	Mycoplasma C pneumoniae S pneumoniae Viruses (eg, influenza)	S pneumoniae H influenzae Anaerobes Viruses Mycoplasma	S pneumoniae Influenza virus Anaerobes H influenzae Gram \ominus rods
Special groups				
Alcoholic	Klebsiella, anaerobes (eg, Peptostreptococcus, Fusobacterium, Prevotella, Bacteroides)			
IV drug users	S pneumoniae, S aureus			
Aspiration	Anaerobes			
Atypical	Mycoplasma, Legionella, Chlamydia			
Cystic fibrosis	Pseudomonas, S aureus, S pneumoniae, Burkholderia cepacia			
Immunocompromised	S aureus, enteric gram Θ rods, fungi, viruses, P jirovecii (with HIV)			
Nosocomial (hospital acquired)	S aureus, Pseudomonas, other enteric gram Θ rods			
Postviral	S pneumoniae, S aureus, H influenzae			

Common causes of meningitis

NEWBORN (0-6M0)	CHILDREN (6M0-6 YR)	$6-60$ YR	60 YR +
Group B streptococci	S pneumoniae	S pneumoniae	S pneumoniae
E coli	N meningitidis	N meningitidis (\#l in teens)	Gram Θ rods
Listeria	H influenzae type B	Enteroviruses	Listeria
	Enteroviruses	HSV	

Give ceftriaxone and vancomycin empirically (add ampicillin if Listeria is suspected).
Viral causes of meningitis: enteroviruses (especially coxsackievirus), HSV-2 (HSV-1 = encephalitis), HIV, West Nile virus (also causes encephalitis), VZV.
In HIV: Cryptococcus spp.
Note: Incidence of H influenzae meningitis has \downarrow greatly with introduction of the conjugate H influenzae vaccine in last 10-15 years. Today, cases are usually seen in unimmunized children.

CSF findings in meningitis

	OPENING PRESSURE	CELLTYPE	PROTEIN	SUGAR
Bacterial	\uparrow	\uparrow PMNs	\uparrow	\downarrow
Fungal $/$ TB	\uparrow	\uparrow lymphocytes	\uparrow	\downarrow
Viral	Normal $/ \uparrow$	\uparrow lymphocytes	Normal $/ \uparrow$	Normal

Infections causing brain abscess

Most commonly viridans streptococci and Staphylococcus aureus. If dental infection or extraction precedes abscess, oral anaerobes commonly involved.
Multiple abscesses are usually from bacteremia; single lesions from contiguous sites: otitis media and mastoiditis \rightarrow temporal lobe and cerebellum; sinusitis or dental infection \rightarrow frontal lobe.
Toxoplasma reactivation in AIDS.

Osteomyelitis

RISK FACTOR	ASSOCIATED INFECTION
Assume if no other information is available	S aureus (most common overall)
Sexually active	Neisseria gonorrhoeae (rare), septic arthritis more common
Sickle cell disease	Salmonella and S aureus
Prosthetic joint replacement	S aureus and S epidermidis
Vertebral involvement	Paureus, Mycobacterium tuberculosis (Pott
Cat and dog bites multocida	

Elevated C-reactive protein (CRP) and erythrocyte sedimentation rate common but nonspecific. MRI is best for detecting acute infection and detailing anatomic involvement A. Radiographs are insensitive early but can be useful in chronic osteomyelitis B.

Urinary tract infections

Cystitis presents with dysuria, frequency, urgency, suprapubic pain, and WBCs (but not WBC casts) in urine. Primarily caused by ascension of microbes from urethra to bladder. Malesinfants with congenital defects, vesicoureteral reflux. Elderly—enlarged prostate. Ascension to kidney results in pyelonephritis, which presents with fever, chills, flank pain, costovertebral angle tenderness, hematuria, and WBC casts.
Ten times more common in women (shorter urethras colonized by fecal flora). Other predisposing factors: obstruction, kidney surgery, catheterization, GU malformation, diabetes, pregnancy.

UTI bugs

SPECIES	FEATURES	Comments
Escherichia coli	Leading cause of UTI. Colonies show green metallic sheen on EMB agar.	Diagnostic markers: \oplus Leukocyte esterase $=$ evidence of WBC activity. \oplus Nitrite test = reduction of urinary nitrates by bacterial species (eg, E coli). \oplus Urease test = urease-producing bugs (eg, Proteus, Klebsiella).
Staphylococcus saprophyticus	2nd leading cause of UTI in sexually active women.	
Klebsiella pneumoniae	3rd leading cause of UTI. Large mucoid capsule and viscous colonies.	
Serratia marcescens	Some strains produce a red pigment; often nosocomial and drug resistant.	
Enterococcus	Often nosocomial and drug resistant.	
Proteus mirabilis	Motility causes "swarming" on agar; produces urease; associated with struvite stones.	
Pseudomonas aeruginosa	Blue-green pigment and fruity odor; usually nosocomial and drug resistant.	

Common vaginal infections

$\left.\begin{array}{llll}\hline & \text { Bacterial vaginosis } & \text { Trichomonas vaginitis } & \text { Candida vulvovaginitis } \\ \hline \text { SIGNS AND SYMPTOMS } & \begin{array}{l}\text { No inflammation } \\ \text { Thin, white discharge } A \text { with } \\ \text { fishy odor }\end{array} & \begin{array}{l}\text { Inflammation ("strawberry } \\ \text { cervix") }\end{array} & \begin{array}{c}\text { Inflammation } \\ \text { Frothy, yellow-green, foul- } \\ \text { smelling discharge }\end{array} \\ \text { Thick, white, "cottage cheese" } \\ \text { discharge } \mathbf{C}\end{array}\right]$

ToRCHeS infections Microbes that may pass from mother to fetus. Transmission is transplacental in most cases, or via delivery (especially HSV-2). Nonspecific signs common to many ToRCHeS infections include hepatosplenomegaly, jaundice, thrombocytopenia, and growth retardation.
Other important infectious agents include Streptococcus agalactiae (group B streptococci), E coli, and Listeria monocytogenes-all causes of meningitis in neonates. Parvovirus B19 causes hydrops fetalis.

AGENT	MODES OF MATERNAL TRANSMISSION	MATERNAL MANIFESTATIONS	NEONATAL MANIFESTIONS

Red rashes of childhood

Sexually transmitted infections

DISEASE	CLINICAL FEATURES	ORGANISM
AIDS	Opportunistic infections, Kaposi sarcoma, lymphoma	HIV
Chancroid	Painful genital ulcer with exudate, inguinal adenopathy	Haemophilus ducreyi (it's so painful, you "do cry")
Chlamydia	Urethritis, cervicitis, epididymitis, conjunctivitis, reactive arthritis, PID	Chlamydia trachomatis (D-K)
Condylomata acuminata	Genital warts, koilocytes	HPV-6 and -11
Genital herpes	Painful penile, vulvar, or cervical vesicles and ulcers; can cause systemic symptoms such as fever, headache, myalgia	HSV-2, less commonly HSV-1
Gonorrhea	Urethritis, cervicitis, PID, prostatitis, epididymitis, arthritis, creamy purulent discharge	Neisseria gonorrhoeae
Hepatitis B	Jaundice	HBV
Lymphogranuloma venereum	Infection of lymphatics; painless genital ulcers, painful lymphadenopathy (ie, buboes)	C trachomatis (L1-L3)
Primary syphilis	Painless chancre	Treponema pallidum
Secondary syphilis	Fever, lymphadenopathy, skin rashes, condylomata lata	
Tertiary syphilis	Gummas, tabes dorsalis, general paresis, aortitis, Argyll Robertson pupil	
Trichomoniasis	Vaginitis, strawberry cervix, motile in wet prep	Trichomonas vaginalis

Pelvic inflammatory Top bugs-Chlamydia trachomatis (subacute, disease

often undiagnosed), Neisseria gonorrhoeae (acute). C trachomatis-most common bacterial STI in the United States. Cervical motion tenderness (chandelier sign), purulent cervical discharge ©. PID may include salpingitis, endometritis, hydrosalpinx, and tubo-ovarian abscess.

Salpingitis is a risk factor for ectopic pregnancy, infertility, chronic pelvic pain, and adhesions. Can lead to Fitz-Hugh-Curtis syndromeinfection of the liver capsule and "violin string" adhesions of peritoneum to liver (B).

Nosocomial infections	E coli (UTI) and S aureus (wound infection) are the two most common causes.	
RISK FACTOR	PATHo6EN	UNIOUE SIGNS/SMMPTOMS

Bugs affecting unvaccinated children

CLINCAL PRESENTATION	FNNDINGS/LABS	PATHoGEN
Dermatologic	Beginning at head and moving down with postauricular lymphadenopathy	Rubella virus
RashBeginning at head and moving down; rash preceded by cough, coryza, conjunctivitis, and blue-white (Koplik) spots on buccal mucosa	Measles virus	
Neurologic	Microbe colonizes nasopharynx Meningitis	H influenzae type B
Respiratory also lead to myalgia and paralysis	Poliovirus	
Epiglottitis	Fever with dysphagia, drooling, and difficulty breathing due to edematous "cherry red" epiglottis; "thumbprint sign" on x-ray	H influenzae type B (also capable of causing epiglottitis in fully immunized children)
Pharyngitis	Grayish oropharyngeal exudate ("pseudomembranes" may obstruct airway); painful throat	Corynebacterium diphtheriae (elaborates toxin that causes necrosis in pharynx, cardiac, and CNS tissue)

Bug hints (if all else fails)

characteristic	ORGansm
Asplenic patient (due to surgical splenectomy or autosplenectomy, eg, chronic sickle cell disease)	Encapsulated microbes, especially SHiN (S pneumoniae >>H influenzae type $\mathrm{B}>$ N meningitidis)
Branching rods in oral infection, sulfur granules	Actinomyces israelii
Chronic granulomatous disease	Catalase \oplus microbes, especially S aureus
"Currant jelly" sputum	Klebsiella
Dog or cat bite	Pasteurella multocida
Facial nerve palsy	Borrelia burgdorferi (Lyme disease)
Fungal infection in diabetic or immunocompromised patient	Mucor or Rhizopus spp.
Health care provider	HBV (from needlestick)
Neutropenic patients	Candida albicans (systemic), Aspergillus
Organ transplant recipient	CMV
PAS \oplus	Tropheryma whipplei (Whipple disease)
Pediatric infection	Haemophilus influenzae (including epiglottitis)
Pneumonia in cystic fibrosis, burn infection	Pseudomonas aeruginosa
Pus, empyema, abscess	S aureus
Rash on hands and feet	Coxsackie A virus, Treponema pallidum, Rickettsia rickettsii
Sepsis/meningitis in newborn	Group B strep
Surgical wound	S aureus
Traumatic open wound	Clostridium perfringens

- MICROBIOLOGY-ANTIMICROBIALS

Antimicrobial therapy

Penicillin G, V

MECHANISM

CLINICALUSE

ADVERSE EFFECTS
RESISTANCE

Penicillin G (IV and IM form), penicillin V (oral). Prototype β-lactam antibiotics.
D-Ala-D-Ala structural analog. Bind penicillin-binding proteins (transpeptidases).
Block transpeptidase cross-linking of peptidoglycan in cell wall.
Activate autolytic enzymes.
Mostly used for gram \oplus organisms (S pneumoniae, S pyogenes, Actinomyces). Also used for gram Θ cocci (mainly N meningitidis) and spirochetes (namely T pallidum). Bactericidal for gram \oplus cocci, gram \oplus rods, gram Θ cocci, and spirochetes. Penicillinase sensitive.
Hypersensitivity reactions, direct Coombs \oplus hemolytic anemia.
Penicillinase in bacteria (a type of β-lactamase) cleaves β-lactam ring.

Penicillinase-sensitive penicillins	Amoxicillin, ampicillin; aminopenicillins.	
mechanism	Same as penicillin. Wider spectrum; penicillinase sensitive. Also combine with clavulanic acid to protect against destruction by β-lactamase.	AMinoPenicillins are AMPed-up penicillin. AmOxicillin has greater Oral bioavailability than ampicillin.
clincal use	Extended-spectrum penicillin-H influenzae, H pylori, E coli, Listeria monocytogenes, Proteus mirabilis, Salmonella, Shigella, enterococci.	Coverage: ampicillin/amoxicillin HHELPSS kill enterococci.
adverse effects	Hypersensitivity reactions; rash; pseudomembranous colitis.	
mechansm of resistance	Penicillinase in bacteria (a type of β-lactamase) cleaves β-lactam ring.	

Penicillinase-resistant penicillins	Dicloxacillin, nafcillin, oxacillin.
mechanism	Same as penicillin. Narrow spectrum; penicillinase resistant because bulky R group blocks access of β-lactamase to β-lactam ring.
clincal use	S aureus (except MRSA; resistant because of "Use naf (nafcillin) for staph." altered penicillin-binding protein target site).
adverse effects	Hypersensitivity reactions, interstitial nephritis.

Antipseudomonal Piperacillin, ticarcillin.

penicillins

MECHANSM	Same as penicillin. Extended spectrum.
CLINCAL LSE	Pseudomonas spp. and gram Θ rods; susceptible to penicillinase; use with β-lactamase inhibitors.
AdVERSE EFfects	Hypersensitivity reactions.

β-lactamase inhibitors Include Clavulanic Acid, Sulbactam, CAST.
Tazobactam. Often added to penicillin antibiotics to protect the antibiotic from destruction by β-lactamase (penicillinase).

Cephalosporins (generations I-V)		
mechanism	β-lactam drugs that inhibit cell wall synthesis but are less susceptible to penicillinases. Bactericidal.	Organisms typically not covered by lst-4th generation cephalosporins are LAME: Listeria, Atypicals (Chlamydia, Mycoplasma), MRSA, and Enterococci. Exception: ceftaroline (5th generation cephalosporin) covers MRSA.
Clinical use	lst generation (cefazolin, cephalexin)—gram \oplus cocci, Proteus mirabilis, E coli, Klebsiella pneumoniae. Cefazolin used prior to surgery to prevent S aureus wound infections.	lst generation-PEcK.
	2nd generation (cefaclor, cefoxitin, cefuroxime)-gram \oplus cocci, H influenzae, Enterobacter aerogenes, Neisseria spp., Serratia marcescens, Proteus mirabilis, E coli, Klebsiella pneumoniae.	Fake fox fur. 2nd generation-HENS PEcK.
	3rd generation (ceftriaxone, cefotaxime, ceftazidime)-serious gram Θ infections resistant to other β-lactams.	```Ceftriaxone-meningitis, gonorrhea, disseminated Lyme disease. Ceftazidime-Pseudomonas.```
	4th generation (cefepime)-gram Θ organisms, with \uparrow activity against Pseudomonas and gram \oplus organisms.	
	5th generation (ceftaroline)-broad gram \oplus and gram Θ organism coverage, including MRSA; does not cover Pseudomonas.	
ADVERSE EFFECTS	Hypersensitivity reactions, autoimmune hemolytic anemia, disulfiram-like reaction, vitamin K deficiency. Exhibit cross-reactivity with penicillins. \uparrow nephrotoxicity of aminoglycosides.	
mechanism Of resistance	Structural change in penicillin-binding proteins (transpeptidases).	

Carbapenems	Imipenem, meropenem, ertapenem, doripenem.	
MECHANISM	Imipenem is a broad-spectrum, β-lactamaseresistant carbapenem. Always administered with cilastatin (inhibitor of renal dehydropeptidase I) to \downarrow inactivation of drug in renal tubules.	With imipenem, "the kill is lastin' with cilastatin." Newer carbapenems include ertapenem (limited Pseudomonas coverage) and doripenem.
CLINICAL USE	Gram \oplus cocci, gram Θ rods, and anaerobes. Wide spectrum, but significant side effects limit use to life-threatening infections or after other drugs have failed. Meropenem has a \downarrow risk of seizures and is stable to dehydropeptidase I.	
AdVERSE EfFECTS	GI distress, skin rash, and CNS toxicity (seizures) at high plasma levels.	

Monobactams	Aztreonam
MECHANISM	Less susceptible to β-lactamases. Prevents peptidoglycan cross-linking by binding to penicillin- binding protein 3. Synergistic with aminoglycosides. No cross-allergenicity with penicillins.
CLIIICALUSE	Gram Θ rods only-no activity against gram \oplus rods or anaerobes. For penicillin-allergic patients and those with renal insufficiency who cannot tolerate aminoglycosides.
ADVERSE EFFECTS	Usually nontoxic; occasional GI upset.

Vancomycin

mechansm	Inhibits cell wall peptidoglycan formation by binding D-ala D-ala portion of cell wall precursors. Bactericidal against most bacteria (bacteriostatic against C difficile). Not susceptible to β-lactamases.
CLINICAL USE	Gram \oplus bugs only-serious, multidrug-resistant organisms, including MRSA, S epidermidis, sensitive Enterococcus species, and Clostridium difficile (oral dose for pseudomembranous colitis).
adverse effects	Well tolerated in general-but NOT trouble free. Nephrotoxicity, Ototoxicity, Thrombophlebitis, diffuse flushing-red man syndrome \boldsymbol{A} (can largely prevent by pretreatment with antihistamines and slow infusion rate).
mechansm of resistance	Occurs in bacteria via amino acid modification of D-ala D-ala to D-ala D-lac. "Pay back 2 D-alas (dollars) for vandalizing (vancomycin)."

Protein synthesis inhibitors

Aminoglycosides	Gentamicin, Neomycin, Amikacin, Tobramycin, Streptomycin.	"Mean" (aminoglycoside) GNATS caNNOT kill anaerobes.
mechanism	Bactericidal; irreversible inhibition of initiation complex through binding of the 30S subunit. Can cause misreading of mRNA. Also block translocation. Require O_{2} for uptake; therefore ineffective against anaerobes.	
ClINICAL USE	Severe gram Θ rod infections. Synergistic with β-lactam antibiotics. Neomycin for bowel surgery.	
AdVERSE EFFECTS	Nephrotoxicity, Neuromuscular blockade, Ototoxicity (especially when used with loop diuretics). Teratogen.	
mechanism of resistance	Bacterial transferase enzymes inactivate the drug by acetylation, phosphorylation, or adenylation.	

Tetracyclines	Tetracycline, doxycycline, minocycline.
mechansm	Bacteriostatic; bind to 30S and prevent attachment of aminoacyl-tRNA; limited CNS penetration. Doxycycline is fecally eliminated and can be used in patients with renal failure. Do not take tetracyclines with milk $\left(\mathrm{Ca}^{2+}\right)$, antacids $\left(\mathrm{Ca}^{2+}\right.$ or $\left.\mathrm{Mg}^{2+}\right)$, or iron-containing preparations because divalent cations inhibit drugs' absorption in the gut.
cluncal use	Borrelia burgdorferi, M pneumoniae. Drugs' ability to accumulate intracellularly makes them very effective against Rickettsia and Chlamydia. Also used to treat acne.
adverse effects	GI distress, discoloration of teeth and inhibition of bone growth in children, photosensitivity. Contraindicated in pregnancy.
mechanism Of resistance	\downarrow uptake or \uparrow efflux out of bacterial cells by plasmid-encoded transport pumps.
Chloramphenicol	
mechanism	Blocks peptidyltransferase at 50 S ribosomal subunit. Bacteriostatic.
Clincal use	Meningitis (Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae) and Rocky Mountain spotted fever (Rickettsia rickettsii). Limited use owing to toxicities but often still used in developing countries because of low cost.
adverse effects	Anemia (dose dependent), aplastic anemia (dose independent), gray baby syndrome (in premature infants because they lack liver UDP-glucuronyl transferase).
mechanism Of Resistance	Plasmid-encoded acetyltransferase inactivates the drug.
Clindamycin	
mechanism	Blocks peptide transfer (translocation) at 50S ribosomal subunit. Bacteriostatic.
cluncal use	Anaerobic infections (eg, Bacteroides spp., Clostridium perfringens) in aspiration pneumonia, lung abscesses, and oral infections. Also effective against invasive group A streptococcal infection. Treats anaerobic infections above the diaphragm vs metronidazole (anaerobic infections below diaphragm).
adverse effects	Pseudomembranous colitis (C difficile overgrowth), fever, diarrhea.

Oxazolidinones	Linezolid.
mechanism	Inhibit protein synthesis by binding to 50 S subunit and preventing formation of the initiation complex.
CLINICAL USE	Gram \oplus species including MRSA and VRE.
AdVERSE EfFECTS	Bone marrow suppression (especially thrombocytopenia), peripheral neuropathy, serotonin syndrome.
MECHANISM OF RESIITANCE	Point mutation of ribosomal RNA.
Macrolides	Azithromycin, clarithromycin, erythromycin.
mechanism	Inhibit protein synthesis by blocking translocation ("macroslides"); bind to the 23S rRNA of the 50S ribosomal subunit. Bacteriostatic.
ClINICAL USE	Atypical pneumonias (Mycoplasma, Chlamydia, Legionella), STIs (Chlamydia), gram \oplus cocci (streptococcal infections in patients allergic to penicillin), and B pertussis.
ADVERSE EFFECTS	MACRO: Gastrointestinal Motility issues, Arrhythmia caused by prolonged QT interval, acute Cholestatic hepatitis, Rash, eOsinophilia. Increases serum concentration of theophylline, oral anticoagulants. Clarithromycin and erythromycin inhibit cytochrome P-450.
MECHANISM OF RESIITANCE	Methylation of 23S rRNA-binding site prevents binding of drug.

Sulfonamides	Sulfamethoxazole (SMX), sulfisoxazole, sulfadiazine.
mechansm	Inhibit dihydropteroate synthase, thus inhibiting folate synthesis. Bacteriostatic (bactericidal when combined with trimethoprim).
clincal use	Gram- \oplus, gram Θ, Nocardia, Chlamydia. SMX for simple UTI.
adverse effects	Hypersensitivity reactions, hemolysis if G6PD deficient, nephrotoxicity (tubulointerstitial nephritis), photosensitivity, kernicterus in infants, displace other drugs from albumin (eg, warfarin).
mechanism Of resistance	Altered enzyme (bacterial dihydropteroate synthase), \downarrow uptake, or \uparrow PABA synthesis.
Dapsone	
mechansm	Similar to sulfonamides, but structurally distinct agent.
clincal use	Leprosy (lepromatous and tuberculoid), Pneumocystis jirovecii prophylaxis.
adverse effects	Hemolysis if G6PD deficient.
Trimethoprim	
mechansm	Inhibits bacterial dihydrofolate reductase. Bacteriostatic.
cluncal use	Used in combination with sulfonamides (trimethoprim-sulfamethoxazole [TMPSMX]), causing sequential block of folate synthesis. Combination used for UTIs, Shigella, Salmonella, Pneumocystis jirovecii pneumonia treatment and prophylaxis, toxoplasmosis prophylaxis.
adverse effects	Megaloblastic anemia, leukopenia, granulocytopenia. (May alleviate with supplemental folinic acid). TMP Treats Marrow Poorly.

Fluoroquinolones	Ciprofloxacin, norfloxacin, levofloxacin, ofloxacin, moxifloxacin, gemifloxacin, enoxacin.
mechanism	Inhibit prokaryotic enzymes topoisomerase II (DNA gyrase) and topoisomerase IV. Bactericidal. Must not be taken with antacids.
Clincal use	Gram Θ rods of urinary and GI tracts (including Pseudomonas), Neisseria, some gram \oplus organisms.
adverse effects	GI upset, superinfections, skin rashes, headache, Fluoroquinolones hurt attachments to your dizziness. Less commonly, can cause leg bones. cramps and myalgias. Contraindicated in pregnant women, nursing mothers, and children <18 years old due to possible damage to cartilage. Some may prolong QT interval. May cause tendonitis or tendon rupture in people >60 years old and in patients taking prednisone.
mechanism Of resistance	Chromosome-encoded mutation in DNA gyrase, plasmid-mediated resistance, efflux pumps.

Daptomycin

MECHANISM	Lipopeptide that disrupts cell membrane of gram \oplus cocci.
CLINICAL USE	S aureus skin infections (especially MRSA), bacteremia, endocarditis, VRE.
Myopathy, rhabdomyolysis.	Not used for pneumonia (avidly binds to and is inactivated by surfactant).
ADVERSEEFFECTS	

Metronidazole

mechanism	Forms toxic free radical metabolites in the bacterial cell that damage DNA. Bactericidal, antiprotozoal.	
Clincal use	Treats Giardia, Entamoeba, Trichomonas, Gardnerella vaginalis, Anaerobes (Bacteroides, C difficile). Used with a proton pump inhibitor and clarithromycin for "triple therapy" against H Pylori.	GET GAP on the Metro with metronidazole! Treats anaerobic infection below the diaphragm vs clindamycin (anaerobic infections above diaphragm).
adverse effects	Disulfiram-like reaction (severe flushing, tachycardia, hypotension) with alcohol; headache, metallic taste.	

Antimycobacterial drugs

Rifamycins	Rifampin, rifabutin.	
mechanism	Inhibit DNA-dependent RNA polymerase.	Rifampin's 4 R's: RNA polymerase inhibitor Ramps up microsomal cytochrome P-450 Red/orange body fluids Rapid resistance if used alone Rifampin ramps up cytochrome P-450, but rifabutin does not.
CLINICAL USE	Mycobacterium tuberculosis; delay resistance to dapsone when used for leprosy. Used for meningococcal prophylaxis and chemoprophylaxis in contacts of children with Haemophilus influenzae type B.	
AdVERSE EfFECTS	Minor hepatotoxicity and drug interactions (\uparrow cytochrome P-450); orange body fluids (nonhazardous side effect). Rifabutin favored over rifampin in patients with HIV infection due to less cytochrome P-450 stimulation.	
mechanism of resistance	Mutations reduce drug binding to RNA polymerase. Monotherapy rapidly leads to resistance.	

mechanism	\downarrow synthesis of mycolic acids. Bacterial catalaseperoxidase (encoded by KatG) needed to convert INH to active metabolite.	
Clinical use	Mycobacterium tuberculosis. The only agent used as solo prophylaxis against TB. Also used as monotherapy for latent TB.	Different INH half-lives in fast vs slow acetylators.
AdVERSE EfFECTS	Hepatotoxicity, P-450 inhibition, drug-induced SLE, vitamin B_{6} deficiency (peripheral neuropathy, sideroblastic anemia). Administer with pyridoxine $\left(\mathrm{B}_{6}\right)$.	INH Injures Neurons and Hepatocytes.
MECHANISM OF RESIITANCE	Mutations leading to underexpression of KatG.	

Pyrazinamide

MECHANISM	Mechanism uncertain. Pyrazinamide is a prodrug that is converted to the active compound pyrazinoic acid. Works best at acidic pH (eg, in host phagolysosomes).
CLINICAL USE	Mycobacterium tuberculosis.
ADVERSE EFFECTS	Hyperuricemia, hepatotoxicity.

Ethambutol

MECHANISM	\downarrow carbohydrate polymerization of mycobacterium cell wall by blocking arabinosyltransferase.
CLINICAL USE	Mycobacterium tuberculosis.
ADVERSE EFFECTS	Optic neuropathy (red-green color blindness). Pronounce "eyethambutol."

Streptomycin

MECHANISM	Interferes with 30 S component of ribosome.
CLINICALUSE	Mycobacterium tuberculosis (2nd line).
adVERSE EFFECTS	Tinnitus, vertigo, ataxia, nephrotoxicity.

Antimicrobial prophylaxis	ClINICAL SCENARIO	MEDICATION
	High risk for endocarditis and undergoing surgical or dental procedures	Amoxicillin
	Exposure to gonorrhea	Ceftriaxone
	History of recurrent UTIs	TMP-SMX
	Exposure to meningococcal infection	Ceftriaxone, ciprofloxacin, or rifampin
	Pregnant woman carrying group B strep	Intrapartum penicillin G or ampicillin
	Prevention of gonococcal conjunctivitis in newborn	Erythromycin ointment on eyes
	Prevention of postsurgical infection due to S aureus	Cefazolin
	Prophylaxis of strep pharyngitis in child with prior rheumatic fever	Benzathine penicillin G or oral penicillin V
	Exposure to syphilis	Benzathine penicillin G

Prophylaxis in HIV patients

cELL COUNT	PROPHYLAXIS	INFECTION
CD4 $<\mathbf{2 0 0}$ cells $/ \mathrm{mm}^{3}$	TMP-SMX	Pneumocystis pneumonia
CD4 $<\mathbf{1 0 0}$ cells $/ \mathrm{mm}^{3}$	TMP-SMX	Pneumocystis pneumonia and toxoplasmosis
CD4 <50 cells $/ \mathrm{mm}^{3}$	Azithromycin or clarithromycin	Mycobacterium avium complex

Treatment of highly

 resistant bacteriaMRSA: vancomycin, daptomycin, linezolid, tigecycline, ceftaroline.
VRE: linezolid and streptogramins (quinupristin, dalfopristin).
Multidrug-resistant P aeruginosa, multidrug-resistant Acinetobacter baumannii: polymyxins B and E (colistin).

Antifungal therapy

Amphotericin B		
mechansm	Binds ergosterol (unique to fungi); forms membrane pores that allow leakage of electrolytes.	Amphotericin "tears" holes in the fungal membrane by forming pores.
clincal use	Serious, systemic mycoses. Cryptococcus (amphotericin B with/without flucytosine for cryptococcal meningitis), Blastomyces, Coccidioides, Histoplasma, Candida, Mucor. Intrathecally for fungal meningitis. Supplement K^{+}and Mg^{2+} because of altered renal tubule permeability.	
adverse effects	Fever/chills ("shake and bake"), hypotension, nephrotoxicity, arrhythmias, anemia, IV phlebitis ("amphoterrible"). Hydration \downarrow nephrotoxicity. Liposomal amphotericin \downarrow toxicity.	

Nystatin

mechanism
Same as amphotericin B. Topical use only as too toxic for systemic use.
CLIIICAL USE "Swish and swallow" for oral candidiasis (thrush); topical for diaper rash or vaginal candidiasis.

Flucytosine

MECHANISM	Inhibits DNA and RNA biosynthesis by conversion to 5-fluorouracil by cytosine deaminase.
CLINICALUSE	Systemic fungal infections (especially meningitis caused by Cryptococcus) in combination with amphotericin B.
ADVERSE EFFECTS	Bone marrow suppression.

Azoles	Clotrimazole, fluconazole, itraconazole, ketoconazole, miconazole, voriconazole.
mechanism	Inhibit fungal sterol (ergosterol) synthesis by inhibiting the cytochrome P-450 enzyme that converts lanosterol to ergosterol.
ClINICAL USE	Local and less serious systemic mycoses. Fluconazole for chronic suppression of cryptococcal meningitis in AIDS patients and candidal infections of all types. Itraconazole for Blastomyces, Coccidioides, Histoplasma. Clotrimazole and miconazole for topical fungal infections.
adverse effects	Testosterone synthesis inhibition (gynecomastia, especially with ketoconazole), liver dysfunction (inhibits cytochrome P-450).

Terbinafine

MECHANISM	Inhibits the fungal enzyme squalene epoxidase.
CLIIICALUSE	Dermatophytoses (especially onychomycosis-fungal infection of finger or toe nails).
ADVERSEEFFECTS	GI upset, headaches, hepatotoxicity, taste disturbance.

Echinocandins	Anidulafungin, caspofungin, micafungin.
MECHANISM	Inhibit cell wall synthesis by inhibiting synthesis of β-glucan.
CLINICALUSE	Invasive aspergillosis, Candida.
ADVERSE EFFECTS	GI upset, flushing (by histamine release).
Griseofulvin	Interferes with microtubule function; disrupts mitosis. Deposits in keratin-containing tissues (eg, nails). MEChanism CLINICALUSE
Oral treatment of superficial infections; inhibits growth of dermatophytes (tinea, ringworm).	

Antiprotozoan therapy Pyrimethamine (toxoplasmosis), suramin and melarsoprol (Trypanosoma brucei), nifurtimox (T cruzi), sodium stibogluconate (leishmaniasis).

Anti-mite/louse	Permethrin (blocks Na+ channels	Treat PML (Pesty Mites and Lice) with PML
therapy	\rightarrow neurotoxicity), malathion	(Permethrin, Malathion, Lindane), because
	(acetylcholinesterase inhibitor), lindane	they NAG you (Na, AChE, GABA blockade).
	(blocks GABA channels \rightarrow neurotoxicity).	
	Used to treat scabies (Sarcoptes scabiei) and	
	lice (Pediculus and Pthirus).	

Chloroquine

MECHANISM
CLINICAL USE Blocks detoxification of heme into hemozoin. Heme accumulates and is toxic to plasmodia. Treatment of plasmodial species other than P falciparum (frequency of resistance in P falciparum is too high). Resistance due to membrane pump that \downarrow intracellular concentration of drug. Treat P falciparum with artemether/lumefantrine or atovaquone/proguanil. For life-threatening malaria, use quinidine in US (quinine elsewhere) or artesunate.
Retinopathy; pruritus (especially in dark-skinned individuals).
ADVERSEEFECTS
Antihelminthic
therapy

Antiviral therapy

国

Oseltamivir, zanamivir

mechanism

clinicaluse

Inhibit influenza neuraminidase $\rightarrow \downarrow$ release of progeny virus.
Treatment and prevention of both influenza A and B.

Acyclovir, famciclovir, valacyclovir

MECHANISM Guanosine analogs. Monophosphorylated by HSV/VZV thymidine kinase and not phosphorylated in uninfected cells \rightarrow few adverse effects. Triphosphate formed by cellular enzymes. Preferentially inhibit viral DNA polymerase by chain termination.

CLINICAL USE

MECHANISM OF RESISTANCE
HSV and VZV. Weak activity against EBV. No activity against CMV. Used for HSVinduced mucocutaneous and genital lesions as well as for encephalitis. Prophylaxis in immunocompromised patients. No effect on latent forms of HSV and VZV. Valacyclovir, a prodrug of acyclovir, has better oral bioavailability.
For herpes zoster, use famciclovir.
Obstructive crystalline nephropathy and acute renal failure if not adequately hydrated.
Mutated viral thymidine kinase.

Ganciclovir	
mechanism	5^{\prime}-monophosphate formed by a CMV viral kinase. Guanosine analog. Triphosphate formed by cellular kinases. Preferentially inhibits viral DNA polymerase.
clincal use	CMV, especially in immunocompromised patients. Valganciclovir, a prodrug of ganciclovir, has better oral bioavailability.
adverse effects	Bone marrow suppression (leukopenia, neutropenia, thrombocytopenia), renal toxicity. More toxic to host enzymes than acyclovir.
mechanism Of resistance	Mutated viral kinase.
Foscarnet	
mechanism	Viral DNA/RNA polymerase inhibitor and Foscarnet $=$ pyrofosphate analog. HIV reverse transcriptase inhibitor. Binds to pyrophosphate-binding site of enzyme. Does not require any kinase activation.
Clincal use	CMV retinitis in immunocompromised patients when ganciclovir fails; acyclovir-resistant HSV.
adverse effects	Nephrotoxicity, electrolyte abnormalities (hypo- or hypercalcemia, hypo- or hyperphosphatemia, hypokalemia, hypomagnesemia) can lead to seizures.
mechanism Of resistance	Mutated DNA polymerase.
Cidofovir	
mechanism	Preferentially inhibits viral DNA polymerase. Does not require phosphorylation by viral kinase.
cluncal use	CMV retinitis in immunocompromised patients; acyclovir-resistant HSV. Long half-life.
adverse effects	Nephrotoxicity (coadminister with probenecid and IV saline to \downarrow toxicity).

Highly active antiretroviral therapy (HAART): often initiated at the time of HIV diagnosis. Strongest indication for patients presenting with AIDS-defining illness, low CD4+ cell counts (<500 cells $/ \mathrm{mm}^{3}$), or high viral load. Regimen consists of 3 drugs to prevent resistance: 2 NRTIs and preferrably an integrase inhibitor.

DRUG	MECHANISM	toxicity
NRTIs		
Abacavir (ABC) Didanosine (ddl) Emtricitabine (FTC) Lamivudine (3TC) Stavudine (d4T) Tenofovir (TDF) Zidovudine (ZDV, formerly AZT)	Competitively inhibit nucleotide binding to reverse transcriptase and terminate the DNA chain (lack a 3^{\prime} OH group). Tenofovir is a nucleoTide; the others are nucleosides and need to be phosphorylated to be active. ZDV can be used for general prophylaxis and during pregnancy to \downarrow risk of fetal transmission. Have you dined (vudine) with my nuclear (nucleosides) family?	Bone marrow suppression (can be reversed with granulocyte colony-stimulating factor [G-CSF] and erythropoietin), peripheral neuropathy, lactic acidosis (nucleosides), anemia (ZDV), pancreatitis (didanosine). Abacavir contraindicated if patient has HLA-B*5701 mutation.
NNRTIs		
Delavirdine Efavirenz Nevirapine	Bind to reverse transcriptase at site different from NRTIs. Do not require phosphorylation to be active or compete with nucleotides.	Rash and hepatotoxicity are common to all NNRTIs. Vivid dreams and CNS symptoms are common with efavirenz. Delavirdine and efavirenz are contraindicated in pregnancy.
Protease inhibitors		
Atazanavir Darunavir Fosamprenavir Indinavir Lopinavir Ritonavir Saquinavir	Assembly of virions depends on HIV-1 protease (pol gene), which cleaves the polypeptide products of HIV mRNA into their functional parts. Thus, protease inhibitors prevent maturation of new viruses. Ritonavir can "boost" other drug concentrations by inhibiting cytochrome P-450. All protease inhibitors end in -navir. Navir (never) tease a protease.	Hyperglycemia, GI intolerance (nausea, diarrhea), lipodystrophy (Cushing-like syndrome). Nephropathy, hematuria (indinavir). Rifampin (a potent CYP/UGT inducer) contraindicated with protease inhibitors because it can decrease protease inhibitor concentration.
Integrase inhibitors		
Raltegravir Elvitegravir Dolutegravir	Inhibits HIV genome integration into host cell chromosome by reversibly inhibiting HIV integrase.	\uparrow creatine kinase.
Fusion inhibitors		
Enfuvirtide	Binds gp4l, inhibiting viral entry.	Skin reaction at injection sites.
Maraviroc	Binds CCR-5 on surface of T cells/monocytes, inhibiting interaction with gpl20.	

Interferons	
MECHANSM	Glycoproteins normally synthesized by virus-infected cells, exhibiting a wide range of antiviral and antitumoral properties.
ClINcAL USE	IFN- $\alpha:$ chronic hepatitis B and C, Kaposi sarcoma, hairy cell leukemia, condyloma acuminatum, renal cell carcinoma, malignant melanoma. IFN- β : multiple sclerosis. IFN- $\gamma:$ chronic granulomatous disease.
Flu-like symptoms, depression, neutropenia, myopathy.	

Hepatitis C therapy

DRUG	MECHANSM	CLINCAL USE
Ribavirin	Inhibits synthesis of guanine nucleotides by competitively inhibiting inosine monophosphate dehydrogenase.	Chronic HCV; also used in RSV (palivizumab preferred in children) Adverse effects: hemolytic anemia; severe teratogen.
Sofosbuvir	Inhibits HCV RNA-dependent RNA polymerase acting as a chain terminator.	Chronic HCV in combination with ribavirin, +/- peginterferon alfa. Do not use as monotherapy. Adverse effects: fatigue, headache, nausea.
Simeprevir	HCV protease inhibitor; prevents viral	Chronic HCV in combination with ledipasvir (NS5A inhibitor).
	replication.	Do not use as monotherapy. Adverse effects: photosensitivity reactions, rash.

Infection control techniques	Goals include the reduction of pathogenic organism counts to safe levels (disinfection) and the inactivation of self-propagating biological entities (sterilization).
Autoclave	Pressurized steam at $>120^{\circ} \mathrm{C}$. May be sporicidal.
Alcohols	Denature proteins and disrupt cell membranes. Not sporicidal.
Chlorhexidine	Denatures proteins and disrupts cell membranes. Not sporicidal.
Hydrogen peroxide	Free radical oxidation. Sporicidal.
lodine and iodophors	Halogenation of DNA, RNA, and proteins. May be sporicidal.

Antimicrobials to avoid in pregnancy

ANTIMcRoBBAL	ADVERSE Effect
Sulfonamides	Kernicterus
Aminoglycosides	Ototoxicity
Fluoroquinolones	Cartilage damage
Clarithromycin	Embryotoxic
Tetracyclines	Discolored teeth, inhibition of bone growth
Ribavirin	Teratogenic
Griseofulvin	Teratogenic
Chloramphenicol	Gray baby syndrome

SAFe Children Take Really Good Care.

NOTES

HIGH-YIELD PRINCIPLES IN

Immunology

"I hate to disappoint you, but my rubber lips are immune to your charms."
-Batman \& Robin
"No State shall make or enforce any law which shall abridge the privileges or immunities of citizens of the United States . . ."
-The United States Constitution

Mastery of the basic principles and facts in the immunology section will be useful for the Step 1 exam. Cell surface markers are important to know because they are clinically useful (eg, in identifying specific types of immunodeficiency or cancer) and are functionally critical to the jobs immune cells carry out. By spending a little extra effort here, it is possible to turn a traditionally difficult subject into one that is high yield.
Lymphoid Structures 190

- Lymphocytes 192
Immune Responses 198
-IMMUNOLOGY—LYMPHOID STRUCTURES

Lymph drainage

Lymph node cluster	AREA OF booy drained
Cervical	Head and neck
Hilar	Lungs
Mediastinal	Trachea and esophagus
Axillary	Upper limb, breast, skin above umbilicus
Celiac	Liver, stomach, spleen, pancreas, upper duodenum
Superior mesenteric	Lower duodenum, jejunum, ileum, colon to splenic flexure
Inferior mesenteric	Colon from splenic flexure to upper rectum
Internal iliac	Lower rectum to anal canal (above pectinate line), bladder, vagina (middle third), cervix, prostate
Para-aortic	Testes, ovaries, kidneys, uterus
Superficial inguinal	Anal canal (below pectinate line), skin below umbilicus (except popliteal area), scrotum, vulva
Popliteal	Dorsolateral foot, posterior calf

Right lymphatic duct drains right side of body above diaphragm.
Thoracic duct drains everything else into junction of left subclavian and internal jugular veins.

Sinusoids of spleen

Long, vascular channels in red pulp (red arrow in A) with fenestrated "barrel hoop" basement membrane.

- T cells are found in the periarteriolar lymphatic sheath (PALS) within the white pulp (white arrow in A).
- B cells are found in follicles within the white pulp.
- The marginal zone, in between the red pulp and white pulp, contains macrophages and specialized B cells, and is where antigenpresenting cells (APCs) capture blood-borne antigens for recognition by lymphocytes.
Macrophages found nearby in spleen remove encapsulated bacteria.

Splenic dysfunction (eg, postsplenectomy, sickle cell disease): $\downarrow \mathrm{IgM} \rightarrow \downarrow$ complement activation $\rightarrow \downarrow$ C3b opsonization $\rightarrow \uparrow$ susceptibility to encapsulated organisms (Please SHINE my SKiS):

- Pseudomonas aeruginosa
- Streptococcus pneumoniae
- Haemophilus Influenzae type b
- Neisseria meningitidis
- Escherichia coli
- Salmonella spp.
- Klebsiella pneumoniae
- Group B Streptococci

Postsplenectomy:

- Howell-Jolly bodies (nuclear remnants)
- Target cells
- Thrombocytosis (loss of sequestration and removal)
- Lymphocytosis (loss of sequestration)

Thymus

Located in the anterosuperior mediastinum. Site of T-cell differentiation and maturation. Encapsulated. Thymus is derived from the Third pharyngeal pouch. Lymphocytes of mesenchymal origin. Cortex is dense with immature T cells; medulla is pale with mature T cells and Hassall corpuscles containing epithelial reticular cells.

T cells $=$ Thymus
B cells $=$ Bone marrow
Hypoplastic in DiGeorge syndrome and severe combined immunodeficiency (SCID). Enlarged in myasthenia gravis.
-IMMUNOLOGY-LYMPHOCYTES

Innate vs adaptive immunity

	Innate immunity	Adaptive immunity
COMPONENTS	Neutrophils, macrophages, monocytes, dendritic cells, natural killer (NK) cells (lymphoid origin), complement	T cells, B cells, circulating antibodies

MHC I and II MHC encoded by HLA genes. Present antigen fragments to T cells and bind T-cell receptors (TCRs).
$\left.\begin{array}{l|l|l}\hline & \text { MHC I (1 letter) } & \text { MHC II (2 letters) } \\ \hline \text { LOCI } & \text { HLA-A, HLA-B, HLA-C } & \text { HLA-DP, HLA-DQ, HLA-DR } \\ \hline \text { BINDING } & \text { TCR and CD8 } & \text { TCR and CD4 } \\ \hline \text { EXPRESSION } & \text { Expressed on all nucleated cells } \\ \text { Not expressed on RBCs }\end{array}\right]$

HLA subtypes associated with diseases

A3	Hemochromatosis.	
B8	Addison disease, myasthenia gravis.	
B27	Psoriatic arthritis, Ankylosing spondylitis, IBD-associated arthritis, Reactive arthritis (formerly Reiter syndrome).	PAIR. Also known as seronegative arthropathies.
DQ2/DQ8	Celiac disease.	I ate (8) too (2) much gluten at Dairy Queen.
DR2	Multiple sclerosis, hay fever, SLE, Goodpasture syndrome.	
DR3	Diabetes mellitus type l, SLE, Graves disease, Hashimoto thyroiditis, Addison disease.	
DR4	Rheumatoid arthritis, diabetes mellitus type l, Addison disease.	There are 4 walls in a "rheum" (room).
DR5	Pernicious anemia \rightarrow vitamin B_{12} deficiency, Hashimoto thyroiditis.	

Natural killer cells

Use perforin and granzymes to induce apoptosis of virally infected cells and tumor cells.
Lymphocyte member of innate immune system.
Activity enhanced by IL-2, IL-12, IFN- α, and IFN- β.
Induced to kill when exposed to a nonspecific activation signal on target cell and/or to an absence of class I MHC on target cell surface.
Also kills via antibody-dependent cell-mediated cytotoxicity (CDl6 binds Fc region of bound Ig, activating the NK cell).

Major functions of B and T cells

B-cell functions	Recognize antigen—undergo somatic hypermutation to optimize antigen specificity. Produce antibody—differentiate into plasma cells to secrete specific immunoglobulins. Maintain immunologic memory-memory B cells persist and accelerate future response to antigen.
T-cell functions	CD4+ T cells help B cells make antibodies and produce cytokines to recruit phagocytes and activate other leukocytes.
	CD8+ T cells directly kill virus-infected cells.
Delayed cell-mediated hypersensitivity (type IV).	
Acute and chronic cellular organ rejection.	
Rule of $8:$ MHC II \times CD4 $=8 ;$ MHC I \times CD8 $=8$.	

Cytotoxic T cells
Kill virus-infected, neoplastic, and donor graft cells by inducing apoptosis.
Release cytotoxic granules containing preformed proteins (eg, perforin, granzyme B).
Cytotoxic T cells have CD8, which binds to MHC I on virus-infected cells.

Regulatory T cells Help maintain specific immune tolerance by suppressing CD4 and CD8 T-cell effector functions. Identified by expression of CD3, CD4, CD25, and FOXP3.
Activated regulatory T cells produce anti-inflammatory cytokines (eg, IL-10, TGF- β).

T- and B-cell activation APCs: B cells, macrophages, dendritic cells.
Two signals are required for T-cell activation, B-cell activation, and class switching.
Naive T-cell activation 1. Dendritic cell (specialized APC) samples and processes antigen.
2. Dendritic cell migrates to the draining lymph node.
3. T-cell activation (signal l): antigen is presented on MHC II and recognized by TCR on Th (CD4+) cell. Endogenous antigen is presented on MHC I to Tc (CD8+) cell.
4. Proliferation and survival (signal 2): costimulatory signal via interaction of B7 proteins (CD80/86) and CD28.
5. Th cell activates and produces cytokines. Tc cell activates and is able to recognize and kill virusinfected cell.

B-cell activation and

1. Th-cell activation as above. class switching
2. B-cell receptor-mediated endocytosis; foreign antigen is presented on MHC II and recognized by TCR on Th cell.
3. CD40 receptor on B cell binds CD40 ligand (CD40L) on Th cell.
4. Th cell secretes cytokines that determine Ig class switching of B cell. B cell activates and undergoes class switching, affinity maturation, and antibody production.

Antibody structure and function

Fab (containing the variable/hypervariable regions) consisting of light (L) and heavy (H) chains recognizes antigens. Fc region of IgM and IgG fixes complement. Heavy chain contributes to Fc and Fab regions. Light chain contributes only to Fab region.

Fab:

- Fragment, antigen binding
- Determines idiotype: unique antigen-binding pocket; only l antigenic specificity expressed per B cell
Fc:
- Constant
- Carboxy terminal
- Complement binding
- Carbohydrate side chains
- Determines isotype (IgM, IgD, etc)

Generation of antibody diversity (antigen independent)

1. Random recombination of VJ (light-chain) or $V(D)$ J (heavy-chain) genes
2. Random addition of nucleotides to DNA during recombination by terminal deoxynucleotidyl transferase (TdT)
3. Random combination of heavy chains with light chains
Generation of antibody specificity (antigen
dependent)
4. Somatic hypermutation and affinity maturation (variable region)
5. Isotype switching (constant region)

Immunoglobulin isotypes

All isotypes can exist as monomers. Mature, naive B cells prior to activation express IgM and IgD on their surfaces. They may differentiate in germinal centers of lymph nodes by isotype switching (gene rearrangement; mediated by cytokines and CD40L) into plasma cells that secrete $\operatorname{IgA}, \mathrm{IgE}$, or IgG.

Main antibody in 2° (delayed) response to an antigen. Most abundant isotype in serum. Fixes complement, crosses the placenta (provides infants with passive immunity), opsonizes bacteria, neutralizes bacterial toxins and viruses.
$\lg A \quad$ Prevents attachment of bacteria and viruses to mucous membranes; does not fix complement. Monomer (in circulation) or dimer (with J chain when secreted). Crosses epithelial cells by transcytosis. Produced in GI tract (eg, by Peyer patches) and protects against gut infections (eg, Giardia). Most produced antibody overall, but has lower serum concentrations. Released into secretions (tears, saliva, mucus) and breast milk. Picks up secretory component from epithelial cells, which protects the Fc portion from luminal proteases.
$\operatorname{IgM} \quad$ Produced in the 1° (immediate) response to an antigen. Fixes complement but does not cross the J chain placenta. Antigen receptor on the surface of B cells. Monomer on B cell, pentamer with J chain when secreted. Pentamer enables avid binding to antigen while humoral response evolves.

IgD Unclear function. Found on surface of many B cells and in serum.

$\lg \mathrm{E}$
Binds mast cells and basophils; cross-links when exposed to allergen, mediating immediate (type I)

Antigen type and memory

Thymus-independent antigens

Thymus-dependent antigens

Antigens lacking a peptide component (eg, lipopolysaccharides from gram Θ bacteria); cannot be presented by MHC to T cells. Weakly immunogenic; vaccines often require boosters and adjuvants (eg, pneumococcal polysaccharide vaccine).
Antigens containing a protein component (eg, diphtheria vaccine). Class switching and immunologic memory occur as a result of direct contact of B cells with Th cells (CD40-CD40L interaction).

-IMMUNOLOGY-IMMUNE RESPONSES

\(\left.$$
\begin{array}{ll}\text { Acute-phase reactants } & \begin{array}{l}\text { Factors whose serum concentrations change significantly in response to inflammation; produced by } \\
\text { the liver in both acute and chronic inflammatory states. Notably induced by IL-6. }\end{array} \\
\hline \text { Positve (UPREGLLATED) } & \begin{array}{l}\text { Opsonin; fixes complement and facilitates phagocytosis. } \\
\text { Measured clinically as a sign of ongoing inflammation. }\end{array}
$$

\hline C-reactive protein \& Binds and sequesters iron to inhibit microbial iron scavenging.\end{array}\right]\)| Cerritin | Coagulation factor; promotes endothelial repair; correlates with ESR.
 \downarrow iron absorption (by degrading ferroportin) and \downarrow iron release (from macrophages) \rightarrow anemia of
 chronic disease. |
| :--- | :--- |
| Fibrinogen | Prolonged elevation can lead to amyloidosis. |
| Sepcidin | Reduction conserves amino acids for positive reactants. |
| Serum amyloid A | Internalized by macrophages to sequester iron. |

Important cytokines

SECRETED BY Macrophages		
IL-1	Also called osteoclast-activating factor. Causes fever, acute inflammation. Activates endothelium to express adhesion molecules. Induces chemokine secretion to recruit WBCs.	"Hot T-bone stEAK": IL-1: fever (hot). IL-2: stimulates T cells. IL-3: stimulates bone marrow. IL-4: stimulates IgE production. IL-5: stimulates IgA production. IL-6: stimulates aKute-phase protein production.
IL-6	Causes fever and stimulates production of acutephase proteins.	
IL-8	Major chemotactic factor for neutrophils.	"Clean up on aisle 8." Neutrophils are recruited by IL-8 to clear infections.
IL-12	Induces differentiation of T cells into Thl cells. Activates NK cells.	
TNF-¢	Mediates septic shock. Activates endothelium. Causes WBC recruitment, vascular leak.	Causes cachexia in malignancy.
SECRETED BYALI TELLIS		
IL-2	Stimulates growth of helper, cytotoxic, and regulatory T cells, and NK cells.	
IL-3	Supports growth and differentiation of bone marrow stem cells. Functions like GM-CSF.	
FROM ThC CLLL		
Interferon- γ	Secreted by NK cells and T cells in response to IL-12 from macrophages; stimulates macrophages to kill phagocytosed pathogens. Inhibits differentiation of Th2 cells.	Also activates NK cells to kill virus-infected cells. Increases MHC expression and antigen presentation by all cells.
FROM Th2 CLlLS		
IL-4	Induces differentiation of T cells into Th 2 cells. Promotes growth of B cells. Enhances class switching to IgE and IgG.	
IL-5	Promotes growth and differentiation of B cells. Enhances class switching to IgA. Stimulates growth and differentiation of eosinophils.	
IL-10	Attenuates inflammatory response. Decreases expression of MHC class II and Thl cytokines. Inhibits activated macrophages and dendritic cells. Also secreted by regulatory T cells.	TGF- β and IL-10 both attenuate the immune response.

Respiratory burst (oxidative burst)

Involves the activation of the phagocyte NADPH oxidase complex (eg, in neutrophils, monocytes), which utilizes O_{2} as a substrate. Plays an important role in the immune response \rightarrow rapid release of reactive oxygen species (ROS). NADPH plays a role in both the creation and neutralization of ROS. Myeloperoxidase is a blue-green heme-containing pigment that gives sputum its color.

Phagocytes of patients with CGD can utilize $\mathrm{H}_{2} \mathrm{O}_{2}$ generated by invading organisms and convert it to ROS. Patients are at \uparrow risk for infection by catalase \oplus species (eg, S aureus, Aspergillus) capable of neutralizing their own $\mathrm{H}_{2} \mathrm{O}_{2}$, leaving phagocytes without ROS for fighting infections. Pyocyanin of P aeruginosa functions to generate ROS to kill competing microbes. Lactoferrin is a protein found in secretory fluids and neutrophils that inhibits microbial growth via iron chelation.

Interferon- α and - β

A part of innate host defense against both RNA and DNA viruses. Interferons are glycoproteins synthesized by virus-infected cells that act locally on uninfected cells, "priming them" for viral defense by helping to selectively degrade viral nucleic acid and protein.

Interfere with viruses.

Cell surface proteins	MHC I present on all nucleated cells (ie, not mature RBCs).
T cells	TCR (binds antigen-MHC complex) CD3 (associated with TCR for signal transduction) CD28 (binds B7 on APC) CXCR4/CCR5 (co-receptors for HIV)
Helper T cells	CD4, CD40L
Cytotoxic T cells	$\begin{aligned} & \text { CD8 } \\ & \text { CXCR4/CCR5 } \end{aligned}$
Regulatory T cells	CD4, CD25
B cells	Ig (binds antigen) CD19, CD20, CD21 (receptor for EBV), CD40 You can drink Beer at the Bar when you're 21: MHC II, B7 B cells, Epstein-Barr virus, CD21.
Macrophages	CD14 (receptor for PAMPs, eg, LPS), CD40 CCR5 MHC II, B7 (CD80/86) Fc and C3b receptors (enhanced phagocytosis)
NK cells	CDl6 (binds Fc of IgG), CD56 (unique marker for NK)
Hematopoietic stem cells	CD34

Anergy
State during which a cell cannot become activated by exposure to its antigen. T and B cells become anergic when exposed to their antigen without costimulatory signal (signal 2). Another mechanism of self-tolerance.

Effects of bacterial toxins

Superantigens (S pyogenes and S aureus) - cross-link the β region of the T-cell receptor to the MHC class II on APCs. Can activate any CD4+ T cell \rightarrow massive release of cytokines.
Endotoxins/lipopolysaccharide (gram \ominus bacteria)—directly stimulate macrophages by binding to endotoxin receptor TLR4/CD14; Th cells are not involved.

Antigenic variation

Classic examples:

- Bacteria-Salmonella (2 flagellar variants), Borrelia recurrentis (relapsing fever), N gonorrhoeae (pilus protein)
- Viruses-influenza, HIV, HCV
- Parasites-trypanosomes

Some mechanisms for variation include DNA rearrangement and RNA segment reassortment (eg, influenza major shift).

Passive vs active immunity

	Passive	Active
Means of açulsition	Receiving preformed antibodies	Exposure to foreign antigens
ONSET	Rapid	Slow
DURATION	Short span of antibodies (half-life $=3$ weeks)	Long-lasting protection (memory)
ExAMPLES	IgA in breast milk, maternal IgG crossing placenta, antitoxin, humanized monoclonal antibody	Natural infection, vaccines, toxoid
Notes	After exposure to Tetanus toxin, Botulinum toxin, HBV, Varicella, or Rabies virus, unvaccinated patients are given preformed antibodies (passive)-"To Be Healed Very Rapidly"	Combined passive and active immunizations can be given for hepatitis B or rabies exposure

Vaccination
Induces an active immune response (humoral and/or cellular) to specific pathogens.

Vaccine type	DESCRIPTION	pros/cons	EXAMPLES
Live attenuated vaccine	Microorganism loses its pathogenicity but retains capacity for transient growth within inoculated host. Induces cellular and humoral responses. MMR is the only live attenuated vaccine given to persons with HIV.	Pro: induces strong, often lifelong immunity. Con: may revert to virulent form. Often contraindicated in pregnancy and immunodeficiency.	BCG, influenza (intranasal), measles, mumps, polio (Sabin), rubella, varicella, yellow fever.
Inactivated or killed vaccine	Pathogen is inactivated by heat or chemicals. Maintaining epitope structure on surface antigens is important for immune response. Mainly induces a humoral response.	Pro: safer than live vaccines. Con: weaker immune response; booster shots usually required.	Rabies, Influenza (injection), Polio (Salk), hepatitis A ("R.I.P. Always").

Hypersensitivity types	Four types: Anaphylactic and Atopic (type I), Cy complex (type III), Delayed (cell mediated, type	xic (antibody mediated, type II), Immune) (ACID).
Type I	Anaphylactic and atopic-free antigen crosslinks IgE on presensitized mast cells and basophils, triggering immediate release of vasoactive amines that act at postcapillary venules (ie, histamine). Reaction develops rapidly after antigen exposure because of preformed antibody. Delayed response follows due to production of arachidonic acid metabolites (eg, leukotrienes).	First (type) and Fast (anaphylaxis). Types I, II, and III are all antibody mediated. Test: skin test for specific IgE. Examples: - Allergic and atopic disorders (eg, rhinitis, hay fever, eczema, hives, asthma) - Anaphylaxis (eg, bee sting, some food/drug allergies)
Type II $\mathbf{C}=\text { complement }$	Cytotoxic (antibody mediated) - IgM, IgG bind to fixed antigen on "enemy" cell \rightarrow cellular destruction. Antibody and complement lead to MAC. 3 mechanisms: - Opsonization and phagocytosis - Complement- and Fc receptor-mediated inflammation - Antibody-mediated cellular dysfunction Disease tends to be specific to tissue or site where antigen is found.	Type II is cy-2-toxic. Direct and indirect Coombs' tests: Direct-detects antibodies that have adhered to patient's RBCs (eg, test an Rh \oplus infant of an $\mathrm{Rh} \Theta$ mother). Indirect-detects serum antibodies that can adhere to other RBCs (eg, test an Rh Θ woman for $\mathrm{Rh} \oplus$ antibodies). Examples: - Acute hemolytic transfusion reactions - Autoimmune hemolytic anemia - Bullous pemphigoid - Erythroblastosis fetalis - Goodpasture syndrome - Graves disease - Guillain-Barré syndrome - Idiopathic thrombocytopenic purpura - Myasthenia gravis - Pemphigus vulgaris - Pernicious anemia - Rheumatic fever

Hypersensitivity types (continued)

Blood transfusion reactions

TYPE	PATHOGENESIS	CLINCAL PRESENTATIN
Allergic reaction	Type I hypersensitivity reaction against plasma proteins in transfused blood.	Urticaria, pruritus, wheezing, fever. Treat with antihistamines.
Anaphylactic reaction	Severe allergic reaction. IgA-deficient individuals must receive blood products without IgA.	Dyspnea, bronchospasm, hypotension, respiratory arrest, shock. Treat with epinephrine.
Febrile nonhemolytic transfusion reaction	Type II hypersensitivity reaction. Host antibodies against donor HLA antigens and WBCs.	Fever, headaches, chills, flushing.
Acute hemolytic transfusion reaction	Type II hypersensitivity reaction. Intravascular hemolysis (ABO blood group incompatibility) or extravascular hemolysis (host antibody	Fever, hypotension, tachypnea, tachycardia, flank pain, hemoglobinuria (intravascular hemolysis), jaundice (extravascular).
	reaction against foreign antigen on donor RBCs).	

Autoantibodies

Autoantibody	ASSOCIATED DISORDER
Anti-ACh receptor	Myasthenia gravis
Anti-basement membrane	Goodpasture syndrome
Anticardiolipin, lupus anticoagulant	SLE, antiphospholipid syndrome
Anticentromere	Limited scleroderma (CREST syndrome)
Anti-desmoglein (anti-desmosome)	Pemphigus vulgaris
Anti-dsDNA, anti-Smith	SLE
Anti-glutamic acid decarboxylase (GAD-65)	Type 1 diabetes mellitus
Antihemidesmosome	Bullous pemphigoid
Anti-histone	Drug-induced lupus
Anti-Jo-1, anti-SRP, anti-Mi-2	Polymyositis, dermatomyositis
Antimicrosomal, antithyroglobulin	Hashimoto thyroiditis
Antimitochondrial	1° biliary cirrhosis
Antinuclear (ANA)	SLE, nonspecific
Antiparietal cell	Pernicious anemia
Antiphospholipase A_{2} receptor	1° membranous nephropathy
Anti-Scl-70 (anti-DNA topoisomerase I)	Scleroderma (diffuse)
Anti-smooth muscle	Autoimmune hepatitis type 1
Anti-SSA, anti-SSB (anti-Ro, anti-La)	Sjögren syndrome
Anti-TSH receptor	Graves disease
Anti-Ul RNP (ribonucleoprotein)	Mixed connective tissue disease
Voltage-gated calcium channel antibodies	Lambert-Eaton syndrome
IgA anti-endomysial, IgA anti-tissue transglutaminase	Celiac disease
MPO-ANCA/p-ANCA	Microscopic polyangiitis, eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome)
PR3-ANCA/c-ANCA	Granulomatosis with polyangiitis (Wegener)
Rheumatoid factor (IgM antibody that targets IgG Fc region), anti-CCP (more specific)	Rheumatoid arthritis

Immunodeficiencies

DISEASE	Defect	PRESENTATION	Finoligs
B-cell disorders			
X-linked (Bruton) agammaglobulinemia	Defect in BTK, a tyrosine kinase gene \rightarrow no B -cell maturation. X-linked recessive (\uparrow in Boys).	Recurrent bacterial and enteroviral infections after 6 months (\downarrow maternal IgG).	Absent B cells in peripheral blood, $\downarrow \mathrm{Ig}$ of all classes. Absent/scanty lymph nodes and tonsils.
Selective IgA deficiency	Unknown. Most common 1° immunodeficiency.	Majority Asymptomatic. Can see Airway and GI infections, Autoimmune disease, Atopy, Anaphylaxis to IgA-containing products.	$\downarrow \operatorname{IgA}$ with normal IgG, IgM levels.
Common variable immunodeficiency	Defect in B-cell differentiation. Many causes.	Can be acquired in 20s-30s; \uparrow risk of autoimmune disease, bronchiectasis, lymphoma, sinopulmonary infections.	\downarrow plasma cells, \downarrow immunoglobulins.
T-cell disorders			
Thymic aplasia (DiGeorge syndrome)	22q11 deletion; failure to develop 3rd and 4th pharyngeal pouches \rightarrow absent thymus and parathyroids.	Tetany (hypocalcemia), recurrent viral/fungal infections (T-cell deficiency), conotruncal abnormalities (eg, tetralogy of Fallot, truncus arteriosus).	\downarrow T cells, $\downarrow \mathrm{PTH}, \downarrow \mathrm{Ca}^{2+}$. Absent thymic shadow on CXR. 22qll deletion detected by FISH.
IL-12 receptor deficiency	\downarrow Thl response. Autosomal recessive.	Disseminated mycobacterial and fungal infections; may present after administration of BCG vaccine.	\downarrow IFN- γ.
Autosomal dominant hyper-lgE syndrome (Job syndrome)	Deficiency of Th17 cells due to STAT3 mutation \rightarrow impaired recruitment of neutrophils to sites of infection.	FATED: coarse Facies, cold (noninflamed) staphylococcal Abscesses, retained primary Teeth, \uparrow IgE, Dermatologic problems (eczema).	$\uparrow \mathrm{IgE}, \downarrow \mathrm{IFN}-\gamma$.
Chronic mucocutaneous candidiasis	T-cell dysfunction. Many causes.	Noninvasive Candida albicans infections of skin and mucous membranes.	Absent in vitro T-cell proliferation in response to Candida antigens. Absent cutaneous reaction to Candida antigens.

Immunodeficiencies (continued)

DISEASE	DEFECT	PRESENTATION	FINDINGS
B- and T-cell disorders			
Severe combined immunodeficiency	Several types including defective IL-2R gamma chain (most common, X-linked), adenosine deaminase deficiency (autosomal recessive).	Failure to thrive, chronic diarrhea, thrush. Recurrent viral, bacterial, fungal, and protozoal infections. Treatment: bone marrow transplant (no concern for rejection).	\downarrow T-cell receptor excision circles (TRECs). Absence of thymic shadow (CXR), germinal centers (lymph node biopsy), and T cells (flow cytometry).
Ataxia-telangiectasia	Defects in ATM gene \rightarrow failure to repair DNA double strand breaks \rightarrow cell cycle arrest.	Triad: cerebellar defects (Ataxia), spider Angiomas (telangiectasia), IgA deficiency.	\uparrow AFP. $\downarrow \operatorname{IgA}, \operatorname{IgG}$, and IgE. Lymphopenia, cerebellar atrophy.
Hyper-lgM syndrome	Most commonly due to defective CD40L on Th cells \rightarrow class switching defect; X-linked recessive.	Severe pyogenic infections early in life; opportunistic infection with Pneumocystis, Cryptosporidium, CMV.	Normal or $\uparrow \mathrm{IgM}$. $\downarrow \downarrow \operatorname{IgG}, \operatorname{Ig} A, I g E$.
Wiskott-Aldrich syndrome	Mutation in WAS gene; T cells unable to reorganize actin cytoskeleton. X-linked recessive.	WATER: Wiskott-Aldrich: Thrombocytopenia, Eczema, Recurrent infections. \uparrow risk of autoimmune disease and malignancy.	\downarrow to normal $\operatorname{IgG}, \mathrm{IgM}$. $\uparrow \operatorname{IgE}, \mathrm{IgA}$. Fewer and smaller platelets.
Phagocyte dysfunction			
Leukocyte adhesion deficiency (type 1)	Defect in LFA-1 integrin (CD18) protein on phagocytes; impaired migration and chemotaxis; autosomal recessive.	Recurrent bacterial skin and mucosal infections, absent pus formation, impaired wound healing, delayed separation of umbilical cord (> 30 days).	\uparrow neutrophils. Absence of neutrophils at infection sites.
Chédiak-Higashi syndrome A -	Defect in lysosomal trafficking regulator gene (LYST). Microtubule dysfunction in phagosome-lysosome fusion; autosomal recessive.	Recurrent pyogenic infections by staphylococci and streptococci, partial albinism, peripheral neuropathy, progressive neurodegeneration, infiltrative lymphohistiocytosis.	Giant granules (\mathbf{A}, arrows) in granulocytes and platelets. Pancytopenia. Mild coagulation defects.
Chronic granulomatous disease	Defect of NADPH oxidase $\rightarrow \downarrow$ reactive oxygen species (eg, superoxide) and \downarrow respiratory burst in neutrophils; X-linked recessive most common.	\uparrow susceptibility to Catalase \oplus organisms (Cats Need PLACESS to Belch their Hairballs): Nocardia, Pseudomonas, Listeria, Aspergillus, Candida, E coli, Staphylococci, Serratia, B cepacia, H pylori	Abnormal dihydrorhodamine (flow cytometry) test (\downarrow green fluorescence). Nitroblue tetrazolium dye reduction test obsolete.

Infections in immunodeficiency

Pathogen	ticell	B cells	1 granulocytes	\downarrow Complement
Bacteria	Sepsis	Encapsulated: Pseudomonas aeruginosa, Streptococcus pneumoniae, Haemophilus Influenzae type B, Neisseria meningitidis, Escherichia coli, Salmonella, Klebsiella pneumoniae, group B Strep (Please SHINE my SKiS)	Staphylococcus, Burkholderia cepacia, Pseudomonas aeruginosa, Serratia, Nocardia	Encapsulated species with early component deficiencies Neisseria with late component (MAC) deficiencies
Viruses	CMV, EBV, JCV, VZV, chronic infection with respiratory/GI viruses	Enteroviral encephalitis, poliovirus (live vaccine contraindicated)	N/A	N/A
Fungi/parasites	Candida (local), PCP	GI giardiasis (no IgA)	Candida (systemic), Aspergillus	N/A

Note: B-cell deficiencies tend to produce recurrent bacterial infections, whereas T-cell deficiencies produce more fungal and viral infections.

Grafts

Autograft	From self.
Syngeneic graft (isograft)	From identical twin or clone.
Allograft	From nonidentical individual of same species.
Xenograft	From different species.

Transplant rejection

TYPe of rejection	ONSET	Pathogenesis	Features
Hyperacute	Within minutes	Pre-existing recipient antibodies react to donor antigen (type II hypersensitivity reaction), activate complement.	Widespread thrombosis of graft vessels \rightarrow ischemia/necrosis. Graft must be removed.
Acute	Weeks to months	Cellular: CD8+ T cells activated against donor MHCs (type IV hypersensitivity reaction). Humoral: similar to hyperacute, except antibodies develop after transplant.	Vasculitis of graft vessels with dense interstitial lymphocytic infiltrate. Prevent/reverse with immunosuppressants.
Chronic	Months to years	CD4+ T cells respond to recipient APCs presenting donor peptides, including allogeneic MHC. Both cellular and humoral components (type II and IV hypersensitivity reactions).	Recipient T cells react and secrete cytokines \rightarrow proliferation of vascular smooth muscle, parenchymal atrophy, interstitial fibrosis. Dominated by arteriosclerosis. Organ-specific examples: - Bronchiolitis obliterans (lung) - Accelerated atherosclerosis (heart) - Chronic graft nephropathy (kidney) - Vanishing bile duct syndrome (liver)
Graft-versus-host disease	Varies	Grafted immunocompetent T cells proliferate in the immunocompromised host and reject host cells with "foreign" proteins \rightarrow severe organ dysfunction. Type IV hypersensitivity reaction.	Maculopapular rash, jaundice, diarrhea, hepatosplenomegaly. Usually in bone marrow and liver transplants (rich in lymphocytes). Potentially beneficial in bone marrow transplant for leukemia (graft-versus-tumor effect).

-IMMUNOLOGY-IMMUNOSUPPRESSANTS
Immunosuppressants Agents that block lymphocyte activation and proliferation. Reduce acute transplant rejection by suppressing cellular immunity. Frequently combined to achieve greater efficacy with \downarrow toxicity. Chronic suppression \uparrow risk of infection and malignancy.

DRUG	Mechansm	USE	тох\ıITY	Notes
Cyclosporine	Calcineurin inhibitor; binds cyclophilin. Blocks T-cell activation by preventing IL-2 transcription.	Transplant rejection prophylaxis, psoriasis, rheumatoid arthritis.	Nephrotoxicity, hypertension, hyperlipidemia, neurotoxicity, gingival hyperplasia, hirsutism.	
Tacrolimus (FK506)	Calcineurin inhibitor; binds FK506 binding protein (FKBP). Blocks T-cell activation by preventing IL-2 transcription.	Transplant rejection prophylaxis.	Similar to cyclosporine, \uparrow risk of diabetes and neurotoxicity; no gingival hyperplasia or hirsutism.	nephrotoxic.
Sirolimus (Rapamycin)	mTOR inhibitor; binds FKBP. Blocks T-cell activation and B-cell differentiation by preventing response to IL-2.	Kidney transplant rejection prophylaxis.	"PanSirtopenia" (pancytopenia), insulin resistance, hyperlipidemia; not nephrotoxic.	Kidney "sir-vives." Synergistic with cyclosporine. Also used in drugeluting stents.
Daclizumab, basiliximab	Monoclonal antibodies; block IL-2R.	Kidney transplant rejection prophylaxis.	Edema, hypertension, tremor.	
Azathioprine	Antimetabolite precursor of 6-mercaptopurine. Inhibits lymphocyte proliferation by blocking nucleotide synthesis.	Transplant rejection prophylaxis, rheumatoid arthritis, Crohn disease, glomerulonephritis, other autoimmune conditions.	Leukopenia, anemia, thrombocytopenia.	6-MP degraded by xanthine oxidase; toxicity \uparrow by allopurinol. Pronounce "azathiopurine."
Mycophenolate mofetil	Reversibly inhibits IMP dehydrogenase, preventing purine synthesis of B and T cells.	Transplant rejection prophylaxis, lupus nephritis.	GI upset, pancytopenia, hypertension, hyperglycemia. Less nephrotoxic and neurotoxic.	Associated with invasive CMV infection.
Corticosteroids	Inhibit NF-кB. Suppress both B- and T-cell function by \downarrow transcription of many cytokines. Induce apoptosis of T lymphocytes.	Transplant rejection prophylaxis, many autoimmune and inflammatory disorders.	Hyperglycemia, osteoporosis, central obesity, muscle breakdown, psychosis, acne, hypertension, cataracts, avascular necrosis (femoral head).	Can cause iatrogenic Cushing syndrome.

Immunosuppression targets

Recombinant cytokines and clinical uses	Agent	clincal uses
	Aldesleukin (IL-2)	Renal cell carcinoma, metastatic melanoma
	Epoetin alfa (erythropoietin)	Anemias (especially in renal failure)
	Filgrastim (G-CSF)	Recovery of bone marrow
	Sargramostim (GM-CSF)	Recovery of bone marrow
	IFN- α	Chronic hepatitis B and C, Kaposi sarcoma, malignant melanoma
	IFN- β	Multiple sclerosis
	IFN- γ	Chronic granulomatous disease
	Romiplostim, eltrombopag (thrombopoietin receptor agonists)	Thrombocytopenia
	Oprelvekin (IL-11)	Thrombocytopenia

Therapeutic antibodies

Agent	target	CLINICAL USE	NOTES
Cancer therapy			
Alemtuzumab	CD52	CLL, MS	"Alymtuzumab"-chronic lymphocytic leukemia
Bevacizumab	VEGF	Colorectal cancer, renal cell carcinoma	
Cetuximab	EGFR	Stage IV colorectal cancer, head and neck cancer	
Rituximab	CD20	B-cell non-Hodgkin lymphoma, CLL, rheumatoid arthritis, ITP	
Trastuzumab	HER2/neu	Breast cancer	HER2-"tras2zumab"
Autoimmune disease therapy			
Adalimumab, certolizumab, infliximab	Soluble TNF- α	IBD, rheumatoid arthritis, ankylosing spondylitis, psoriasis	Etanercept is a decoy TNF- α receptor and not a monoclonal antibody
Eculizumab	Complement protein C5	Paroxysmal nocturnal hemoglobinuria	
Natalizumab	$\alpha 4$-integrin	Multiple sclerosis, Crohn disease	$\alpha 4$-integrin: WBC adhesion Risk of PML in patients with JC virus
Other applications			
Abciximab	Platelet glycoproteins IIb/IIIa	Antiplatelet agent for prevention of ischemic complications in patients undergoing percutaneous coronary intervention	IIb times IIIa equals "absiximab"
Denosumab	RANKL	Osteoporosis; inhibits osteoclast maturation (mimics osteoprotegerin)	Denosumab affects osteoclasts
Digoxin immune Fab	Digoxin	Antidote for digoxin toxicity	
Omalizumab	IgE	Allergic asthma; prevents IgE binding to FceRI	
Palivizumab	RSV F protein	RSV prophylaxis for high-risk infants	PaliVIzumab-VIrus
Ranibizumab, bevacizumab	VEGF	Neovascular age-related macular degeneration	

HIGH-YIELD PRINCIPLES IN

Pathology

"Digressions, objections, delight in mockery, carefree mistrust are signs of health; everything unconditional belongs in pathology."
-Friedrich Nietzsche
The fundamental principles of pathology are key to understanding diseases in all organ systems. Major topics such as inflammation and neoplasia appear frequently in questions across different organ systems, and such topics are definitely high yield. For example, the concepts of cell injury and inflammation are key to understanding the inflammatory response that follows myocardial infarction, a very common subject of board questions. Similarly, a familiarity with the early cellular changes that culminate in the development of neoplasias-for example, esophageal or colon cancer-is critical. Finally, make sure you recognize the major tumor-associated genes and are comfortable with key cancer concepts such as tumor staging and metastasis.

DInflammation	216
Neoplasia	226

PATHOLOGY—INFLAMMATION

$\left.\begin{array}{cc}\text { Apoptosis } & \begin{array}{c}\text { ATP-dependent programmed cell death. Intrinsic or extrinsic pathway; both pathways } \rightarrow \text { activation } \\ \text { of cytosolic proteases called caspases that mediate cellular breakdown } \rightarrow \text { cell shrinkage, } \\ \text { chromatin condensation, membrane blebbing, and formation of apoptotic bodies, which are then } \\ \text { phagocytosed. }\end{array} \\ \text { Characterized by deeply eosinophilic cytoplasm and basophilic nucleus, pyknosis (nuclear } \\ \text { shrinkage), and karyorrhexis (fragmentation caused by endonucleases cleaving at } \\ \text { internucleosomal regions). DNA laddering (fragments in multiples of l80 bp) is a sensitive } \\ \text { indicator of apoptosis. } \\ \text { Cell membrane typically remains intact without significant inflammation (unlike necrosis). }\end{array}\right]$

Cell injury

REVERSIBLE WITH O_{2}	IRREVERSIBLE
Cellular/mitochondrial swelling (\downarrow ATP $\rightarrow \downarrow$ activity of $\mathrm{Na}^{+} / \mathrm{K}^{+}$pumps)	Mitochondrial permeability/vacuolization; phospholipid-containing amorphous densities within mitochondria (swelling alone is reversible)
Nuclear chromatin clumping	Nuclear pyknosis (condensation), karyorrhexis (fragmentation), karyolysis (fading)
Membrane blebbing	Plasma membrane damage (degradation of membrane phospholipid)
\downarrow glycogen	Lysosomal rupture
Fatty change	
Ribosomal/polysomal detachment $(\downarrow$ protein synthesis)	

Ischemia

Inadequate blood supply to meet demand.
Regions most vulnerable to hypoxia/ischemia and subsequent infarction:

ORGAN	REGION
Brain	ACA/MCA/PCA boundary areas ${ }^{\text {a,b }}$
Heart	Subendocardium (LV)
Kidney	Straight segment of proximal tubule (medulla) Thick ascending limb (medulla)
Liver	Area around central vein (zone III)
Colon	Splenic flexure, ${ }^{\text {a }}$ rectum ${ }^{\text {a }}$
${ }^{\text {a }}$ Waters limited ${ }^{b}$ Neuron pyram	ply from most distal branches of 2 arteries with ceptible to ischemia from hypoperfusion. sults include Purkinje cells of the cerebellum and ex.

Infarcts: red vs pale

Red (hemorrhagic) infarcts \boldsymbol{A} occur in venous occlusion and tissues with multiple blood supplies, such as liver, lung, intestine, testes; reperfusion (eg, after angioplasty). Reperfusion injury is due to damage by free radicals.
Red $=$ reperfusion.

Pale

Pale (anemic) infarcts B occur in solid organs with a single (end-arterial) blood supply, such as
 heart, kidney, and spleen.

Inflammation	Characterized by rubor (redness), dolor (pain), calor (heat), tumor (swelling), and functio laesa (loss of function).
Vascular component	\uparrow vascular permeability, vasodilation, endothelial injury.

Chromatolysis

Reaction of neuronal cell body to axonal injury. Changes reflect \uparrow protein synthesis in effort to repair the damaged axon. Characterized by:

- Round cellular swelling A
- Displacement of the nucleus to the periphery
- Dispersion of Nissl substance throughout cytoplasm

Concurrent with Wallerian degeneration-degeneration of axon distal to site of injury.
Macrophages remove debris and myelin.

Types of calcification

Dystrophic	Ca^{2+} deposition in abnormal tissues 2° to injury or necrosis.
calcification	Tends to be localized (eg, calcific aortic stenosis). A shows dystrophic calcification (yellow star),

Metastatic calcification

Widespread (ie, diffuse, metastatic) deposition of Ca^{2+} in normal tissue 2° to hypercalcemia (eg, 1° hyperparathyroidism, sarcoidosis, hypervitaminosis D) or high calcium-phosphate product levels (eg, chronic renal failure with 2° hyperparathyroidism, long-term dialysis, calciphylaxis, warfarin).
B shows metastatic calcifications of alveolar walls in acute pneumonitis (blue arrows).
Ca^{2+} deposits predominantly in interstitial tissues of kidney, lung, and gastric mucosa (these tissues lose acid quickly; $\uparrow \mathrm{pH}$ favors deposition).
Patients are usually not normocalcemic.

Leukocyte extravasation

Extravasation predominantly occurs at postcapillary venules.
WBCs exit from blood vessels at sites of tissue injury and inflammation in 4 steps:

STEP	VASCULATURE/STROMA	Leukocyte
(1) Margination and rolling-defective in leukocyte adhesion deficiency type 2 (\downarrow Salyl-Lewis ${ }^{\text {X }}$)	E-selectin P-selectin GlyCAM-1, CD34	Sialyl-Lewis ${ }^{\mathrm{X}}$ Sialyl-Lewis ${ }^{\text {X }}$ L-selectin
(2) Tight-binding-defective in leukocyte adhesion deficiency type 1 (\downarrow CD18 integrin subunit)	ICAM-1 (CD54) VCAM-1 (CDl06)	$\begin{aligned} & \text { CD11/18 integrins } \\ & \text { (LFA-1, Mac-1) } \\ & \text { VLA-4 integrin } \end{aligned}$
(3) Diapedesis-WBC travels between endothelial cells and exits blood vessel	PECAM-1 (CD31)	PECAM-1 (CD31)
(4) Migration-WBC travels through interstitium to site of injury or infection guided by chemotactic signals	Chemotactic products released in response to bacteria: C5a, IL-8, LTB_{4}, kallikrein, platelet-activating factor	Various

Free radical injury

Free radicals damage cells via membrane lipid peroxidation, protein modification, and DNA breakage.
Initiated via radiation exposure (eg, cancer therapy), metabolism of drugs (phase I), redox reactions, nitric oxide, transition metals, WBC (eg, neutrophils, macrophages) oxidative burst.
Free radicals can be eliminated by scavenging enzymes (eg, catalase, superoxide dismutase, glutathione peroxidase), spontaneous decay, antioxidants (eg, vitamins A, C, E), and certain metal carrier proteins (eg, transferrin, ceruloplasmin).
Examples:

- Oxygen toxicity: retinopathy of prematurity (abnormal vascularization), bronchopulmonary dysplasia
- Drug/chemical toxicity: carbon tetrachloride and acetaminophen overdose (hepatotoxicity)
- Metal storage diseases: hemochromatosis (iron) and Wilson disease (copper)

Inhalational injury and sequelae

Pulmonary complication associated with smoke and fire. Caused by heat, particulates $(<1 \mu \mathrm{~m}$ diameter), or irritants (eg, $\left.\mathrm{NH}_{3}\right) \rightarrow$ chemical tracheobronchitis, edema, pneumonia, ARDS. Many patients present 2° to burns, CO inhalation, or arsenic poisoning.
Bronchoscopy shows severe edema, congestion of bronchus, and soot deposition ($\mathbf{A}, 18$ hours after inhalation injury; B, resolution at 11 days after injury).

Scar formation

Tissue mediators	MEDIATOR	ROLE
	PDGF	Secreted by activated platelets and macrophages Induces vascular remodeling and smooth muscle cell migration Stimulates fibroblast growth for collagen synthesis
	FGF	Stimulates angiogenesis
	EGF	Stimulates cell growth via tyrosine kinases (eg, EGFR/ErbBl)
	TGF- β	Angiogenesis, fibrosis, cell cycle arrest
	Metalloproteinases	Tissue remodeling
	VEGF	Stimulates angiogenesis
PHASE OF WOUND HEALING	Effectorcells	characteristics
Inflammatory (up to 3 days after wound)	Platelets, neutrophils, macrophages	Clot formation, \uparrow vessel permeability and neutrophil migration into tissue; macrophages clear debris 2 days later
Proliferative (day 3-weeks after wound)	Fibroblasts, myofibroblasts, endothelial cells, keratinocytes, macrophages	Deposition of granulation tissue and type III collagen, angiogenesis, epithelial cell proliferation, dissolution of clot, and wound contraction (mediated by myofibroblasts)
Remodeling (1 week-6+ months after wound)	Fibroblasts	Type III collagen replaced by type I collagen, \uparrow tensile strength of tissue

Granulomatous diseases

Bacterial:

- Mycobacteria (tuberculosis, leprosy)
- Bartonella henselae (cat scratch disease)
- Listeria monocytogenes (granulomatosis infantiseptica)
- Treponema pallidum (3° syphilis)

Fungal: endemic mycoses (eg, histoplasmosis)
Parasitic: schistosomiasis
Chronic granulomatous disease
Autoinflammatory:

- Sarcoidosis A
- Crohn disease
- Primary biliary cirrhosis
- Subacute (de Quervain/granulomatous) thyroiditis
- Granulomatosis with polyangiitis (Wegener)
- Eosinophilic granulomatosis with polyangiitis (Churg-Strauss)
- Giant cell (temporal) arteritis
- Takayasu arteritis

Foreign material: berylliosis, talcosis, hypersensitivity pneumonitis
Th_{1} cells secrete IFN- $\boldsymbol{\gamma}$, activating macrophages. TNF- α from macrophages induces and maintains granuloma formation. Anti-TNF drugs can, as a side effect, cause sequestering granulomas to break down, leading to disseminated disease. Always test for latent TB before starting anti-TNF therapy.
Associated with hypercalcemia due to calcitriol ($1,25-[\mathrm{OH}]_{2}$ vitamin D_{3}) production.
Caseating necrosis more common with infectious causes (eg, TB). Diagnosing sarcoidosis requires noncaseating granulomas on biopsy.

Exudate vs transudate	Exudate ("Thick...")	Transudate ("and thin")
	Cellular (cloudy)	Hypocellular (clear)
	\uparrow protein, \uparrow LDH (vs serum)	\downarrow protein, \downarrow LDH (vs serum)
	Specific gravity > 1.020	Specific gravity < 1.012
	Due to: - Lymphatic obstruction (chylous) - Inflammation/infection - Malignancy	Due to: - \uparrow hydrostatic pressure (eg, HF, Na^{+} retention) - \downarrow oncotic pressure (eg, cirrhosis, nephrotic syndrome)
Erythrocyte sedimentation rate	Products of inflammation (eg, fibrinogen) coat RBCs and cause aggregation. The denser RBC aggregates fall at a faster rate within a pipette tube. Often co-tested with CRP levels.	
	\uparrow ESR	\downarrow ESR
	Most anemias Infections Inflammation (eg, giant cell [temporal] arteritis, polymyalgia rheumatica) Cancer (eg, metastases, multiple myeloma) Renal disease (end-stage or nephrotic syndrome) Pregnancy	Sickle cell anemia (altered shape) Polycythemia (\uparrow RBCs "dilute" aggregation factors) HF Microcytosis Hypofibrinogenemia

Amyloidosis

Abnormal aggregation of proteins(or their fragments) into β-pleated linear sheets \rightarrow damage and apoptosis. Amyloid deposits visualized by Congo red stain \triangle, polarized light (apple green birefringence) \mathbf{B}, and H\&E stain (Cl shows deposits in glomerular mesangial areas [white arrows], tubular basement membranes [black arrows]).

COMMON TYPES	DESCRIPTION
AL (primary)	Due to deposition of proteins from Ig Light chains. Can occur as a plasma cell disorder or associated with multiple myeloma. Often affects multiple organ systems, including renal (nephrotic syndrome), cardiac (restrictive cardiomyopathy, arrhythmia), hematologic (easy bruising, splenomegaly), GI (hepatomegaly), and neurologic (neuropathy).
AA (secondary)	Seen with chronic inflammatory conditions such as rheumatoid arthritis, IBD, spondyloarthropathy, familial Mediterranean fever, protracted infection. Fibrils composed of serum Amyloid A. Often multisystem like AL amyloidosis.
Dialysis-related	Fibrils composed of β_{2}-microglobulin in patients with ESRD and/or on long-term dialysis. May present as carpal tunnel syndrome.
Heritable	Heterogeneous group of disorders, including familial amyloid polyneuropathies due to transthyretin gene mutation.
Age-related (senile) systemic	Due to deposition of normal (wild-type) transthyretin (TTR) predominantly in cardiac ventricles. Slower progression of cardiac dysfunction relative to AL amyloidosis.
Organ-specific	Amyloid deposition localized to a single organ. Most important form is amyloidosis in Alzheimer disease due to deposition of β-amyloid protein cleaved from amyloid precursor protein (APP). Islet amyloid polypeptide (IAPP) is commonly seen in diabetes mellitus type 2 and is caused by deposition of amylin in pancreatic islets. Isolated atrial amyloidosis due to atrial natriuretic peptide is common in normal aging.

Lipofuscin

A yellow-brown "wear and tear" pigment associated with normal aging.
Formed by oxidation and polymerization of autophagocytosed organellar membranes.
Autopsy of elderly person will reveal deposits in heart, colon A, liver, kidney, eye, and other organs.

- PATHOLOGY—NEOPLASIA

Reactive cellular changes

Atrophy	\downarrow in tissue mass due to \downarrow in size and/or number of cells. Causes include disuse, denervation, loss of blood supply, loss of hormonal stimulation, poor nutrition.
Hypertrophy	\uparrow in size of cells.

Preneoplastic and neoplastic cellular changes

Neoplasia	Uncontrolled, clonal proliferation of cells. Can be benign or malignant.
Dysplasia	Disordered, non-neoplastic cell growth. Used only with epithelial cells. Mild dysplasia is usually reversible; severe dysplasia usually progresses to carcinoma in situ.
Differentiation	The degree to which a malignant tumor resembles its tissue of origin. Well-differentiated tumors closely resemble their tissue of origin; poorly differentiated look almost nothing like their tissue of origin.
Anaplasia	Complete lack of differentiation of cells in a malignant neoplasm.

Neoplastic progression

Normal cells

Dysplasia

Carcinoma in situ/ preinvasive

Invasive carcinoma

Metastasis

Hallmarks of cancer: evasion of apoptosis, growth signal self-sufficiency, anti-growth signal insensitivity, sustained angiogenesis, limitless replicative potential, tissue invasion, and metastasis.

Normal cells with basal \rightarrow apical differentiation. See cervical example \boldsymbol{A}, which shows normal cells and spectrum of dysplasia, as discussed below.

Abnormal proliferation of cells with loss of size, shape, and orientation. Compare vs hyperplasia (cells \uparrow in number).

Neoplastic cells have not invaded the intact basement membrane. \uparrow nuclear/cytoplasmic (N/C) ratio and clumped chromatin. Neoplastic cells encompass entire thickness.

Cells have invaded basement membrane using collagenases and hydrolases (metalloproteinases). Cell-cell contacts lost by inactivation of E-cadherin.

Spread to distant organ, eg, metastatic cells in liver parenchyma.
"Seed and soil" theory of metastasis:

- Seed = tumor embolus.
- Soil = target organ is often the first-encountered capillary bed (eg, liver, lungs, bone, brain, etc).

Grade	Degree of cellular differentiation and mitotic activity on histology. Range from low grade (well differentiated) to high grade (poorly differentiated, undifferentiated or anaplastic).	Stage almost always has more prognostic value than grade.
Stage	Degree of localization/spread based on site and size of 1° lesion, spread to regional lymph nodes, presence of metastases. Based on clinical (c) or pathology (p) findings. Example: cT3N1M0	$\begin{aligned} & \text { TNM staging system (Stage = Spread): } \\ & \text { T = Tumor size } \\ & \text { N = Node involvement } \\ & \mathbf{M}=\text { Metastases } \end{aligned}$ Each TNM factor has independent prognostic value; M factor often most important.

Tumor nomenclature Carcinoma implies epithelial origin, whereas sarcoma denotes mesenchymal origin. Both terms imply malignancy.
Terms for non-neoplastic malformations include hamartoma (disorganized overgrowth of tissues in their native location, eg, Peutz-Jeghers polyps) and choristoma (normal tissue in a foreign location, eg, gastric tissue located in distal ileum in Meckel diverticulum).
Benign tumor is usually well differentiated, well demarcated, low mitotic activity, no metastasis, no necrosis.
Malignant tumor may show poor differentiation, erratic growth, local invasion, metastasis, and \downarrow apoptosis. Upregulation of telomerase prevents chromosome shortening and cell death.

CELLTYPE	BENGN	MALGGANT
Epithelium	Adenoma, papilloma	Adenocarcinoma, papillary carcinoma
Mesenchyme		Leukemia, lymphoma
Blood cells		Angiosarcoma
Blood vessels	Hemangioma	Leiomyosarcoma
Smooth muscle	Leiomyoma	Rhabdomyosarcoma
Striated muscle	Rhabdomyoma	Fibrosarcoma
Connective tissue	Fibroma	Osteosarcoma
Bone	Osteoma	Liposarcoma
Fat	Lipoma	Melanoma
Melanocyte	Nevus/mole	

Cancer epidemiology Skin cancer (basal > squamous >> melanoma) is the most common cancer (not included in list).

	MALE	FEnALE	NOTES
Incidence	1. Prostate	l. Breast	Lung cancer incidence has dropped in men, but
	2. Lung	2. Lung	has not changed significantly in women.
	3. Colon/rectum	3. Colon/rectum	
Mortality	1. Lung	1. Lung	Cancer is the 2nd leading cause of death in the
	2. Prostate	2. Breast	United States (heart disease is 1st).
	3. Colon/rectum	3. Colon/rectum	

Paraneoplastic syndromes

Manifestation	DESCRIPTION/MECHANSM	MOSt COMmONLY Associated cancer(s)
Cutaneous		
Acanthosis nigricans	Hyperpigmented velvety plaques in axilla and neck	Gastric adenocarcinoma and other visceral malignancies (but more commonly associated with obesity and insulin resistance)
Sign of Leser-Trélat	Sudden onset of multiple seborrheic keratoses	GI adenocarcinomas and other visceral malignancies
Endocrine		
Hypercalcemia	PTHrP	Squamous cell carcinomas of lung, head, and neck; renal, bladder, breast, and ovarian carcinomas
	$\uparrow 1,25-(\mathrm{OH})_{2}$ vitamin D_{3} (calcitriol)	Lymphoma
Cushing syndrome	\uparrow ACTH	Small cell lung cancer
Hyponatremia (SIADH)	\uparrow ADH	Small cell lung cancer
Hematologic		
Polycythemia	\uparrow Erythropoietin	Renal cell carcinoma, hepatocellular carcinoma, hemangioblastoma, pheochromocytoma, leiomyoma
Pure red cell aplasia	Anemia with low reticulocytes	Thymoma
Good syndrome	Hypogammaglobulinemia	Thymoma
Trousseau syndrome	Migratory superficial thrombophlebitis	Adenocarcinomas, especially pancreatic
Nonbacterial thrombotic (marantic) endocarditis	Deposition of sterile platelet thrombi on heart valves	Adenocarcinomas, especially pancreatic
Neuromuscular		
Anti-NMDA receptor encephalitis	Psychiatric disturbance, memory deficits, seizures, dyskinesias, autonomic instability, language dysfunction	Ovarian teratoma
Opsoclonusmyoclonus ataxia syndrome	"Dancing eyes, dancing feet"	Neuroblastoma (children), small cell lung cancer (adults)
Paraneoplastic cerebellar degeneration	Antibodies against Hu, Yo, and Tr antigens in Purkinje cells	Small cell lung cancer, gynecologic and breast cancers, and Hodgkin lymphoma
Paraneoplastic encephalomyelitis	Antibodies against Hu antigens in neurons	Small cell lung cancer
Lambert-Eaton myasthenic syndrome	Antibodies against presynaptic (P/Q-type) Ca^{2+} channels at NMJ	Small cell lung cancer
Myasthenia gravis	Antibodies against postsynaptic AChR at NMJ	Thymoma

Oncogenes	Gain of function $\rightarrow \uparrow$ cancer risk. Need damage to only l allele.	
GENE	GENEPRODUCT	ASSOCIATED NEOPLASM
ALK	Receptor tyrosine kinase	Lung adenocarcinoma
BCR-ABL	Tyrosine kinase	CML, ALL
BCL-2	Antiapoptotic molecule (inhibits apoptosis)	Follicular and diffuse large B cell lymphomas
BRAF	Serine/threonine kinase	Melanoma, non-Hodgkin lymphoma
c-KIT	Cytokine receptor	Gastrointestinal stromal tumor (GIST)
c-MYC	Transcription factor	Burkitt lymphoma
HER2/neu (c-erbB2)	Tyrosine kinase	Breast and gastric carcinomas
JAK2	Tyrosine kinase	Chronic myeloproliferative disorders
KRAS	GTPase	Colon cancer, lung cancer, pancreatic cancer
MYCL1	Transcription factor	Lung tumor
MYCN	Transcription factor	Neuroblastoma
RET	Tyrosine kinase	MEN 2A and 2B, medullary thyroid cancer

Tumor suppressor Loss of function $\rightarrow \uparrow$ cancer risk; both alleles must be lost for expression of disease. genes

GENE	ASSOCIATED CONDITIION	GENE PRODUCT
APC	Colorectal cancer (associated with FAP)	
BRCA1/BRCA2	Breast and ovarian cancer	DNA repair protein
CDKN2A	Melanoma, pancreatic cancer	pl6, blocks $\mathrm{G}_{1} \rightarrow$ S phase
DCC	Colon cancer	DCC-Deleted in Colon Cancer
DPC4/SMAD4	Pancreatic cancer	DPC-Deleted in Pancreatic Cancer
MEN1	MEN 1	Menin
NF1	NeuroFibromatosis type 1	Ras GTPase activating protein (neurofibromin)
NF2	NeuroFibromatosis type 2	Merlin (schwannomin) protein
PTEN	Breast cancer, prostate cancer, endometrial cancer	
Rb	Retinoblastoma, osteosarcoma	Inhibits E2F; blocks $\mathrm{G}_{1} \rightarrow$ S phase
TP53	Most human cancers, Li-Fraumeni syndrome	$p 53$, activates p21, blocks $G_{1} \rightarrow$ S phase
TSC1	Tuberous sclerosis	Hamartin protein
TSC2	Tuberous sclerosis	Tuberin protein
VHL	von Hippel-Lindau disease, renal cell carcinoma	Inhibits hypoxia inducible factor la
WT1/WT2	Wilms Tumor (nephroblastoma)	

Oncogenic microbes	Microbe	Associated cancer
	EBV	Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, $1^{\circ} \mathrm{CNS}$ lymphoma (in immunocompromised patients)
	HBV, HCV	Hepatocellular carcinoma, lymphoma
	HHV-8	Kaposi sarcoma
	HPV	Cervical and penile/anal carcinoma (types 16, 18), head and neck cancer
	H pylori	Gastric adenocarcinoma and MALT lymphoma
	HTLV-1	Adult T-cell leukemia/lymphoma
	Liver fluke (Clonorchis sinensis)	Cholangiocarcinoma
	Schistosoma haematobium	Bladder cancer (squamous cell)
Carcinogens		
Toxin	ORGAN	Impact
Aflatoxins (Aspergillus)	Liver	Hepatocellular carcinoma
Alkylating agents	Blood	Leukemia/lymphoma
Aromatic amines (eg, benzidine, 2-naphthylamine)	Bladder	Transitional cell carcinoma
Arsenic	Liver Lung Skin	Angiosarcoma Lung cancer Squamous cell carcinoma
Asbestos	Lung	Bronchogenic carcinoma $>$ mesothelioma
Carbon tetrachloride	Liver	Centrilobular necrosis, fatty change
Cigarette smoke	Bladder Cervix Esophagus Kidney Larynx Lung Pancreas	Transitional cell carcinoma Cervical carcinoma Squamous cell carcinoma/adenocarcinoma Renal cell carcinoma Squamous cell carcinoma Squamous cell and small cell carcinoma Pancreatic adenocarcinoma
Ethanol	Esophagus Liver	Squamous cell carcinoma Hepatocellular carcinoma
lonizing radiation	Thyroid	Papillary thyroid carcinoma
Nitrosamines (smoked foods)	Stomach	Gastric cancer
Radon	Lung	Lung cancer (2nd leading cause after cigarette smoke)
Vinyl chloride	Liver	Angiosarcoma

Psammoma bodies

Laminated, concentric spherules with dystrophic calcification A, PSaMMoma bodies are seen in:

- Papillary carcinoma of thyroid
- Serous papillary cystadenocarcinoma of ovary
- Meningioma
- Malignant mesothelioma

Serum tumor markers
Tumor markers should not be used as the 1° tool for cancer diagnosis or screening. They may be used to monitor tumor recurrence and response to therapy, but definitive diagnosis is usually made via biopsy.
Alkaline phosphatase Metastases to bone or liver, Paget disease of bone, seminoma (placental ALP).
α-fetoprotein
Hepatocellular carcinoma, hepatoblastoma, yolk sac (endodermal sinus) tumor, mixed germ cell tumor.
β-hCG Hydatidiform moles and Choriocarcinomas (Gestational trophoblastic disease), testicular cancer, mixed germ cell tumor.
CA 15-3/CA 27-29
CA 19-9
CA 125
Calcitonin Medullary thyroid carcinoma.
CEA CarcinoEmbryonic Antigen. Very nonspecific but produced by $\sim 70 \%$ of colorectal and pancreatic cancers; also produced by gastric, breast, and medullary thyroid carcinomas.
PSA Prostate-specific antigen. Prostate cancer.

Normally made by fetus. Transiently elevated in pregnancy. High levels associated with neural tube and abdominal wall defects, low levels associated with Down syndrome.
Produced by syncytiotrophoblasts of the placenta.

Breast cancer.
Pancreatic adenocarcinoma.
Ovarian cancer.

Can also be elevated in BPH and prostatitis. Questionable risk/benefit for screening.

P-glycoprotein
Also known as multidrug resistance protein 1 (MDR1). Classically seen in adrenal cell carcinoma but also expressed by other cancer cells (eg, colon, liver). Used to pump out toxins, including chemotherapeutic agents (one mechanism of \downarrow responsiveness or resistance to chemotherapy over time).

Cachexia

Weight loss, muscle atrophy, and fatigue that occur in chronic disease (eg, cancer, AIDS, heart failure, COPD). Mediated by TNF, IFN- γ, IL-1, and IL- 6 .

HIGH-YIELD PRINCIPLES IN

Pharmacology

"Take me, I am the drug; take me, I am hallucinogenic."
"I was under medication when I made the decision not to burn the tapes." -Richard Nixon
"I wondher why ye can always read a doctor's bill an' ye niver can read his purscription."
-Finley Peter Dunne
"Once you get locked into a serious drug collection, the tendency is to push it as far as you can."
-Hunter S. Thompson

Preparation for questions on pharmacology is straightforward. Memorizing all the key drugs and their characteristics (eg, mechanisms, clinical use, and important side effects) is high yield. Focus on understanding the prototype drugs in each class. Avoid memorizing obscure derivatives. Learn the "classic" and distinguishing toxicities of the major drugs. Specific drug dosages or trade names are generally not testable. Reviewing associated biochemistry, physiology, and microbiology can be useful while studying pharmacology. There is a strong emphasis on ANS, CNS, antimicrobial, and cardiovascular agents as well as on NSAIDs. Much of the material is clinically relevant. We occasionally mention drugs that are no longer available in the US, but help illustrate high-yield pharmacologic or disease mechanisms. They are highlighted as being of historical significance and should not appear on the USMLE. However, recently approved drugs are fair game for the exam.

Toxicities and Side Effects251

- Pharmacokinetics \&

Pharmacodynamics 236

- PHARMACOLOGY—PHARMACOKINETICS \& PHARMACODYNAMICS

Enzyme kinetics

Michaelis-Menten
kinetics

K_{m} is inversely related to the affinity of the
enzyme for its substrate.

$[\mathrm{S}]=$ concentration of substrate; $\mathrm{V}=$ velocity
Most enzymatic reactions follow a hyperbolic
concentration (ie, Michaelis-Menten kinetics);
however, enzymatic reactions that exhibit a
sigmoid curve usually indicate cooperative
kinetics (eg, hemoglobin).

Lineweaver-Burk plot \uparrow y-intercept, $\downarrow \mathrm{V}_{\text {max }}$.
The further to the right the x-intercept (ie, closer to zero), the greater the K_{m} and the lower the affinity.

Reversible competitive inhibitors cross each other competitively, whereas noncompetitive inhibitors do not.

Effects of enzyme inhibition

	Competitive inhibitors, reversible	Competitive inhibitors, irreversible	Noncompetitive inhibitors
Resemble substrate	Yes	Yes	No
Overcome by $\uparrow[S]$	Yes	No	No
Bind active site	Yes	Yes	No
Effect on $\mathrm{V}_{\text {max }}$	Unchanged	\downarrow	\downarrow
Effect on K_{m}	\uparrow	Unchanged	Unchanged
Pharmacodynamics	\downarrow potency	\downarrow efficacy	\downarrow efficacy

Pharmacokinetics

Bioavailability (F)	Fraction of administered drug reaching systemic circulation unchanged. For an IV dose, $\mathrm{F}=100 \%$. Orally: F typically $<100 \%$ due to incomplete absorption and first-pass metabolism.		
Volume of distribution $\left(V_{d}\right)$	Theoretical volume occupied by the total amount of drug in the body relative to its plasma concentration. Apparent V_{d} of plasma protein-bound drugs can be altered by liver and kidney disease (\downarrow protein binding, $\uparrow \mathrm{V}_{\mathrm{d}}$). Drugs may distribute in more than one compartment.$\mathrm{V}_{\mathrm{d}}=\frac{\text { amount of drug in the body }}{\text { plasma drug concentration }}$		
	V_{d}	compartment	DRUG TYPES
	Low	Blood	Large/charged molecules; plasma protein bound
	Medium	ECF	Small hydrophilic molecules
	High	All tissues including fat	Small lipophilic molecules, especially if bound to tissue protein

Clearance (CL) The volume of plasma cleared of drug per unit time. Clearance may be impaired with defects in cardiac, hepatic, or renal function.
$C L=\frac{\text { rate of elimination of drug }}{\text { plasma drug concentration }}=V_{d} \times K_{e}$ (elimination constant)
Half-life $\left(\mathrm{t}_{1 / 2}\right) \quad$ The time required to change the amount of drug in the body by $1 / 2$ during elimination. In first-order kinetics, a drug infused at a constant rate takes $4-5$ half-lives to reach steady state. It takes 3.3 half-lives to reach 90% of the steady-state level.
$\mathrm{t}_{1 / 2}=\frac{0.693 \times \mathrm{V}_{\mathrm{d}}}{\mathrm{CL}}$ in first-order elimination

\# of half-lives	1	2	3	4
\% remaining	50%	25%	12.5%	6.25%

Dosage calculations

Loading dose $=\frac{C_{p} \times V_{d}}{F}$
Maintenance dose $=\frac{\mathrm{C}_{\mathrm{p}} \times \mathrm{CL} \times \tau}{\mathrm{F}}$
$\mathrm{C}_{\mathrm{p}}=$ target plasma concentration at steady state $\tau=$ dosage interval (time between doses), if not administered continuously

In renal or liver disease, maintenance dose \downarrow and loading dose is usually unchanged.
Time to steady state depends primarily on $\mathrm{t}_{1 / 2}$ and is independent of dose and dosing frequency.

Types of drug interactions

TERM	DEFFINTION	EXAMPLE
Additive	Effect of substance A and B together is equal to the sum of their individual effects	Aspirin and acetaminophen
Permissive	Presence of substance A is required for the full effects of substance B	Cortisol on catecholamine responsiveness
Synergistic	Effect of substance A and B together is greater than the sum of their individual effects	Clopidogrel with aspirin
Tachyphylactic	Acute decrease in response to a drug after initial/repeated administration	MDMA and LSD

Elimination of drugs

Urine pH and drug elimination

Drug metabolism

| Phase I | Reduction, oxidation, hydrolysis with
 cytochrome P-450 usually yield slightly polar,
 water-soluble metabolites (often still active). | Geriatric patients lose phase I first. |
| :--- | :--- | :--- | :--- |
| Phase II | Conjugation (Methylation, Glucuronidation,
 Acetylation, Sulfation) usually yields very polar,
 inactive metabolites (renally excreted). | Geriatric patients have More GAS (phase II).
 Patients who are slow acetylators have \uparrow side
 effects from certain drugs because of \downarrow rate of
 metabolism. |

Efficacy vs potency

Efficacy
Maximal effect a drug can produce. Represented by the y-value $\left(\mathrm{V}_{\text {max }}\right) . \uparrow \mathrm{y}$-value $=\uparrow \mathrm{V}_{\text {max }}=$ \uparrow efficacy. Unrelated to potency (ie, efficacious drugs can have high or low potency). Partial agonists have less efficacy than full agonists.

RELATIVE EFFICACY

Amount of drug needed for a given effect. Represented by the x -value $\left(\mathrm{EC}_{50}\right)$. Left shifting $=$ $\downarrow \mathrm{EC}_{50}=\uparrow$ potency $=\downarrow$ drug needed. Unrelated to efficacy (ie, potent drugs can have high or low efficacy).

RELATIVE POTENCY

Receptor binding

AGONST WITH	Effect	EXAMPLE
(A) Competitive antagonist	Shifts curve right (\downarrow potency), no change in efficacy. Can be overcome by \uparrow the concentration of agonist substrate.	Diazepam (agonist) + flumazenil (competitive antagonist) on GABA receptor.
B Noncompetitive antagonist	Shifts curve down (\downarrow efficacy). Cannot be overcome by \uparrow agonist substrate concentration.	Norepinephrine (agonist) + phenoxybenzamine (noncompetitive antagonist) on α-receptors.
C Partial agonist (alone)	Acts at same site as full agonist, but with lower maximal effect (\downarrow efficacy). Potency is an	Morphine (full agonist) vs buprenorphine (partial agonist) at opioid μ-receptors.

Therapeutic index

Measurement of drug safety.
$\frac{\mathrm{TD}_{50}}{\mathrm{ED}_{50}}=\frac{\text { median toxic dose }}{\text { median effective dose }}$
Therapeutic window-dosage range that can safely and effectively treat disease.

TITE: Therapeutic Index $=\mathrm{TD}_{50} / \mathrm{ED}_{50}$.
Safer drugs have higher TI values. Drugs with lower TI values frequently require monitoring (eg, digoxin, lithium, theophylline, warfarin). LD_{50} (lethal median dose) often replaces TD_{50} in animal studies.

- PHARMACOLOGY—AUTONOMIC DRUGS

Central and peripheral nervous system

Note that the adrenal medulla and sweat glands are part of the sympathetic nervous system but are innervated by cholinergic fibers.
Botulinum toxin prevents release of acetylcholine at cholinergic terminals.

ACh receptors

Nicotinic ACh receptors are ligand-gated $\mathrm{Na}^{+} / \mathrm{K}^{+}$channels. Two subtypes: N_{N} (found in autonomic ganglia, adrenal medulla) and N_{M} (found in neuromuscular junction of skeletal muscle).
Muscarinic ACh receptors are G-protein-coupled receptors that usually act through 2nd messengers. 5 subtypes: M_{1-5} found in heart, smooth muscle, brain, exocrine glands, and on sweat glands (cholinergic sympathetic).

G-protein-linked 2nd messengers

Autonomic drugs

Circles with rotating arrows represent transporters. Drugs in italics are of historical significance
${ }^{\text {a }}$ Release of norepinephrine from a sympathetic nerve ending is modulated by norepinephrine itself, acting on presynaptic α_{2}-autoreceptors.
${ }^{\mathrm{b}}$ Amphetamines use the NE transporter (NET) to enter the presynaptic terminal, where they utilize the vesicular monoamine transporter (VMAT) to enter neurosecretory vesicles. This displaces NE from the vesicles. Once NE reaches a concentration threshold within the presynaptic terminal, the action of NET is reversed, and NE is expelled into the synaptic cleft, contributing to the characteristics and effects of $\uparrow \mathrm{NE}$ observed in patients taking amphetamines.

Tyramine

Normally degraded by monoamine oxidase (MAO). Levels \uparrow in patients taking MAO inhibitors who ingest tyramine-rich foods (eg, cheese, wine). Excess tyramine enters presynaptic vesicles and displaces other neurotransmitters (eg, NE) $\rightarrow \uparrow$ active presynaptic neurotransmitters $\rightarrow \uparrow$ diffusion of neurotransmitters into synaptic cleft $\rightarrow \uparrow$ sympathetic stimulation. Classically results in a hypertensive crisis.

Cholinomimetic agents

DRUG	ACtion	APPLICATIONS
Direct agonists		
Bethanechol	Activates bowel and bladder smooth muscle; resistant to AChE. "Bethany, call (bethanechol) me to activate your bowels and bladder."	Postoperative ileus, neurogenic ileus, urinary retention
Carbachol	Carbon copy of acetylcholine.	Constricts pupil and relieves intraocular pressure in open-angle glaucoma
Methacholine	Stimulates muscarinic receptors in airway when inhaled.	Challenge test for diagnosis of asthma
Pilocarpine	Contracts ciliary muscle of eye (open-angle glaucoma), pupillary sphincter (closed-angle glaucoma); resistant to AChE. "You cry, drool, and sweat on your 'pilow.'"	Potent stimulator of sweat, tears, and saliva Open-angle and closed-angle glaucoma, xerostomia (Sjögren syndrome)
Indirect agonists (anticholinesterases)		
Donepezil, galantamine, rivastigmine	\uparrow ACh.	Alzheimer disease.
Edrophonium	\uparrow ACh.	Historically, diagnosis of myasthenia gravis (extremely short acting). Myasthenia now diagnosed by anti-AChR Ab (anti-acetylcholine receptor antibody) test.
Neostigmine	\uparrow ACh. Neo CNS $=$ No CNS penetration (quaternary amine).	Postoperative and neurogenic ileus and urinary retention, myasthenia gravis, reversal of neuromuscular junction blockade (postoperative).
Physostigmine	\uparrow ACh. Physostigmine "phyxes" atropine overdose.	Anticholinergic toxicity; crosses blood-brain barrier \rightarrow CNS (tertiary amine).
Pyridostigmine	$\uparrow \mathrm{ACh} ; \uparrow$ muscle strength. Pyridostigmine gets rid of myasthenia gravis.	Myasthenia gravis (long acting); does not penetrate CNS (quaternary amine).

Note: With all cholinomimetic agents, watch for exacerbation of COPD, asthma, and peptic ulcers when giving to susceptible patients.

Cholinesterase inhibitor poisoning

Often due to organophosphates, such as parathion, that irreversibly inhibit AChE. Causes Diarrhea, Urination, Miosis, Bronchospasm, Bradycardia, Excitation of skeletal muscle and CNS, Lacrimation, Sweating, and Salivation. May lead to respiratory failure if untreated.

DUMBBELSS.

Organophosphates are often components of insecticides; poisoning usually seen in farmers.
Antidote-atropine (competitive inhibitor) + pralidoxime (regenerates AChE if given early).

Muscarinic antagonists

DRUGS	ORGANSYSTEMS	APPLCATIONS
Atropine, homatropine, tropicamide	Eye	Produce mydriasis and cycloplegia.
Benztropine	CNS	Parkinson disease ("park my Benz"). Acute dystonia.
Glycopyrrolate	GI, respiratory	Parenteral: preoperative use to reduce airway secretions. Oral: drooling, peptic ulcer.
Hyoscyamine, dicyclomine	GI	Antispasmodics for irritable bowel syndrome.

Atropine	Muscarinic antagonist. Used to treat bradycardia and for ophthalmic applications.	
ORGAN SYSTEM	ACTION	NOTES
Eye	\uparrow pupil dilation, cycloplegia	Blocks DUMBBeLSS in cholinesterase inhibitor poisoning. Does not block excitation of skeletal muscle and CNS (mediated by nicotinic receptors).
Airway	\downarrow secretions	
Stomach	\downarrow acid secretion	
Gut	\downarrow motility	
Bladder	\downarrow urgency in cystitis	
Adverse effects	\uparrow body temperature (due to \downarrow sweating); rapid pulse; dry mouth; dry, flushed skin; cycloplegia; constipation; disorientation Can cause acute angle-closure glaucoma in elderly (due to mydriasis), urinary retention in men with prostatic hyperplasia, and hyperthermia in infants	Side effects: Hot as a hare Dry as a bone Red as a beet Blind as a bat Mad as a hatter Jimson weed (Datura) \rightarrow gardener's pupil (mydriasis due to plant alkaloids)

Sympathomimetics		
DRUG	ACTION	APPLICATIONS
Direct sympathomimetics		
Albuterol, salmeterol	$\beta_{2}>\beta_{1}$	Albuterol for acute asthma or COPD. Salmeterol for long-term asthma or COPD control.
Dobutamine	$\beta_{1}>\beta_{2}, \alpha$	Heart failure (HF) (inotropic > chronotropic), cardiac stress testing.
Dopamine	$\mathrm{D}_{1}=\mathrm{D}_{2}>\beta>\alpha$	Unstable bradycardia, HF, shock; inotropic and chronotropic effects at lower doses due to β effects; vasoconstriction at high doses due to α effects.
Epinephrine	$\beta>\alpha$	Anaphylaxis, asthma, open-angle glaucoma; α effects predominate at high doses. Significantly stronger effect at β_{2}-receptor than norepinephrine.
Fenoldopam	D_{1}	Postoperative hypertension, hypertensive crisis. Vasodilator (coronary, peripheral, renal, and splanchnic). Promotes natriuresis. Can cause hypotension and tachycardia.
Isoproterenol	$\beta_{1}=\beta_{2}$	Electrophysiologic evaluation of tachyarrhythmias. Can worsen ischemia.
Midodrine	α_{1}	Autonomic insufficiency and postural hypotension. May exacerbate supine hypertension.
Norepinephrine	$\alpha_{1}>\alpha_{2}>\beta_{1}$	Hypotension, septic shock.
Phenylephrine	$\alpha_{1}>\alpha_{2}$	Hypotension (vasoconstrictor), ocular procedures (mydriatic), rhinitis (decongestant).
Indirect sympathomimetics		
Amphetamine	Indirect general agonist, reuptake inhibitor, also releases stored catecholamines	Narcolepsy, obesity, ADHD.
Cocaine	Indirect general agonist, reuptake inhibitor	Causes vasoconstriction and local anesthesia. Never give β-blockers if cocaine intoxication is suspected (can lead to unopposed α_{1} activation and extreme hypertension).
Ephedrine	Indirect general agonist, releases stored catecholamines	Nasal decongestion, urinary incontinence, hypotension.

Norepinephrine vs isoproterenol

Norepinephrine \uparrow systolic and diastolic pressures as a result of α_{1}-mediated vasoconstriction $\rightarrow \uparrow$ mean arterial pressure \rightarrow reflex bradycardia. However, isoproterenol (no longer commonly used) has little α effect but causes β_{2}-mediated vasodilation, resulting in \downarrow mean arterial pressure and \uparrow heart rate through β_{1} and reflex activity.

Sympatholytics (α_{2}-agonists)

DRUG	APPLCATIONS	ADVERSE EFFECTS
Clonidine, guanfacine	Hypertensive urgency (limited situations), ADHD, Tourette syndrome	CNS depression, bradycardia, hypotension, respiratory depression, miosis
$\boldsymbol{\alpha}$-methyldopa	Hypertension in pregnancy	Direct Coombs \oplus hemolysis, SLE-like syndrome

$\boldsymbol{\alpha}$-blockers		
DRUG	APPLICATIONS	ADVERSEEFFECTS
Nonselective		
Phenoxybenzamine (irreversible)	Pheochromocytoma (used preoperatively) to prevent catecholamine (hypertensive) crisis	Orthostatic hypotension, reflex tachycardia
Phentolamine (reversible)	Give to patients on MAO inhibitors who eat tyramine-containing foods	
α_{1} selective (-osin ending)	Urinary symptoms of BPH; PTSD (prazosin);	lst-dose orthostatic hypotension, dizziness, headache
Prazosin, terazosin, doxazosin, tamsulosin	hypertension (except tamsulosin)	

α-blockade of epinephrine vs phenylephrine

Shown above are the effects of an α-blocker (eg, phentolamine) on blood pressure responses to epinephrine and phenylephrine. The epinephrine response exhibits reversal of the mean blood pressure change, from a net increase (the α response) to a net decrease (the β_{2} response). The response to phenylephrine is suppressed but not reversed because phenylephrine is a "pure" α-agonist without β action.

β-blockers	Acebutolol, atenolol, betaxolol, carvedilol, esmolol, labetalol, metoprolol, nadolol, nebivolol, pindolol, propranolol, timolol.	
APPLICATION	Actions	NOTES
Angina pectoris	\downarrow heart rate and contractility, resulting in $\downarrow \mathrm{O}_{2}$ consumption	
MI	\downarrow mortality	
SVT (metoprolol, esmolol)	\downarrow AV conduction velocity (class II antiarrhythmic)	
Hypertension	\downarrow cardiac output, \downarrow renin secretion (due to β_{1}-receptor blockade on JGA cells)	
HF	\downarrow mortality (bisoprolol, carvedilol, metoprolol)	
Glaucoma (timolol)	\downarrow secretion of aqueous humor	
Variceal bleeding (nadolol, propranolol)	\downarrow hepatic venous pressure gradient and portal hypertension	
adverse effects	Erectile dysfunction, cardiovascular adverse effects (bradycardia, AV block, HF), CNS adverse effects (seizures, sedation, sleep alterations), dyslipidemia (metoprolol), and asthma/COPD exacerbations	Use with caution in cocaine users due to risk of unopposed α-adrenergic receptor agonist activity Despite theoretical concern of masking hypoglycemia in diabetics, benefits likely outweigh risks; not contraindicated
selectivity	β_{1}-selective antagonists $\left(\beta_{1}>\beta_{2}\right)$-acebutolol (partial agonist), atenolol, betaxolol, esmolol, metoprolol	Selective antagonists mostly go from \mathbf{A} to $\mathbf{M}\left(\beta_{1}\right.$ with lst half of alphabet)
	Nonselective antagonists $\left(\beta_{1}=\beta_{2}\right)$-nadolol, pindolol (partial agonist), propranolol, timolol	Nonselective antagonists mostly go from \mathbf{N} to \mathbf{Z} (β_{2} with 2nd half of alphabet)
	Nonselective α - and β-antagonists-carvedilol, labetalol	Nonselective α - and β-antagonists have modified suffixes (instead of "-olol")
	Nebivolol combines cardiac-selective β_{1}-adrenergic blockade with stimulation of β_{3}-receptors, which activate nitric oxide synthase in the vasculature	

Ingested seafood toxins

Toxin	SOURCE	ACtion	SyMptoms	treatment
Tetrodotoxin	Pufferfish.	Highly potent toxin; binds fast voltagegated Na^{+}channels in cardiac/nerve tissue, preventing depolarization.	Nausea, diarrhea, paresthesias, weakness, dizziness, loss of reflexes.	Primarily supportive.
Ciguatoxin	Reef fish such as barracuda, snapper, and moray eel.	Opens Na^{+} channels, causing depolarization.	Symptoms mimic cholinergic poisoning	Primarily supportive.
Histamine (scombroid poisoning)	Spoiled dark-meat fish such as tuna, mahimahi, mackerel, and bonito.	Bacterial histidine decarboxylase converts histidine to histamine. Frequently misdiagnosed as fish allergy.	Mimics anaphylaxis: acute burning sensation of mouth, flushing of face, erythema, urticaria, itching. May progress to bronchospasm, angioedema, hypotension.	Antihistamines. Albuterol and epinephrine if needed.

PHARMACOLOGY—TOXICITIES AND SIDE EFFECTS

Specific toxicity treatments

Toxin	TRearment
Acetaminophen	N-acetylcysteine (replenishes glutathione)
AChE inhibitors, organophosphates	Atropine > pralidoxime
Amphetamines (basic)	$\mathrm{NH}_{4} \mathrm{Cl}$ (acidify urine)
Antimuscarinic, anticholinergic agents	Physostigmine, control hyperthermia
Arsenic	Dimercaprol, succimer
Benzodiazepines	Flumazenil
β-blockers	Saline, atropine, glucagon
Carbon monoxide	$100 \% \mathrm{O}_{2}$, hyperbaric O_{2}
Copper	Penicillamine, trientine
Cyanide	Nitrite + thiosulfate, hydroxocobalamin
Digitalis (digoxin)	Anti-dig Fab fragments
Gold	Penicillamine, dimercaprol (BAL), succimer
Heparin	Protamine sulfate
Iron	Deferoxamine, deferasirox, deferiprone
Lead	EDTA, dimercaprol, succimer, penicillamine
Mercury	Dimercaprol, succimer
Methanol, ethylene glycol (antifreeze)	Fomepizole > ethanol, dialysis
Methemoglobin	Methylene blue, vitamin C
Opioids	Naloxone
Salicylates	NaHCO ${ }_{3}$ (alkalinize urine), dialysis
TCAs	NaHCO
Warfarin	Vitamin K (delayed effect), fresh frozen plasma

Drug reactions-cardiovascular

DRUG REACTION	CAUSAL AGENTS
Coronary vasospasm	Cocaine, sumatriptan, ergot alkaloids
Cutaneous flushing	Vancomycin, Adenosine, Niacin, Ca ${ }^{2+}$ channel blockers, Echinocandins (VANCE)
Dilated cardiomyopathy	Anthracyclines (eg, doxorubicin, daunorubicin); prevent with dexrazoxane

Drug reactions-endocrine/reproductive

CRUG REACTION	CAUSAL AGENTS	NOTES
Adrenocortical insufficiency	HPA suppression 2° to glucocorticoid withdrawal	
Hot flashes	Tamoxifen, clomiphene	
Hyperglycemia	Tacrolimus, Protease inhibitors, Niacin, HCTZ, Corticosteroids	Taking Pills Necessitates Having blood Checked
Hypothyroidism	Lithium, amiodarone, sulfonamides	

Drug reactions-GI

DRUG REACTION	CAUSAL AgENTS	NOTES
Acute cholestatic hepatitis, jaundice	Erythromycin	
Diarrhea	Acamprosate, acarbose, cholinesterase inhibitors, colchicine, erythromycin, ezetimibe, metformin, misoprostol, orlistat, pramlintide, quinidine, SSRIs	
Focal to massive hepatic necrosis	Halothane, Amanita phalloides (death cap mushroom), Valproic acid, Acetaminophen	Liver "HAVAc"
Hepatitis	Rifampin, isoniazid, pyrazinamide, statins, fibrates	
Pancreatitis	Didanosine, Corticosteroids, Alcohol, Valproic acid, Azathioprine, Diuretics (furosemide, HCTZ)	Drugs Causing A Violent Abdominal Distress
Pill-induced esophagitis	Tetracyclines, bisphosphonates, potassium chloride	Caustic effect minimized with upright posture and adequate water ingestion.
Pseudomembranous colitis	Clindamycin, ampicillin, cephalosporins	Antibiotics predispose to superinfection by resistant C difficile

Drug reactions-hematologic

DRUG REACTION	CAUSAL AGENTS	NOTES
Agranulocytosis	Clozapine, Carbamazepine, Propylthiouracil, Methimazole, Colchicine, Ganciclovir	Can Cause Pretty Major Collapse of Granulocytes
Aplastic anemia	Carbamazepine, Methimazole, NSAIDs, Benzene, Chloramphenicol, Propylthiouracil	Can't Make New Blood Cells Properly
Direct Coombs- positive hemolytic anemia	Methyldopa, penicillin	
Gray baby syndrome	Chloramphenicol	
Hemolysis in G6PD deficiency	Isoniazid, Sulfonamides, Dapsone, Primaquine, Aspirin, Ibuprofen, Nitrofurantoin	Hemolysis IS D PAIN
Megaloblastic anemia	Phenytoin, Methotrexate, Sulfa drugs	Having a blast with PMS
Thrombocytopenia	Heparin	OCPs, hormone replacement therapy
Thrombotic complications		

Drug reactions—musculoskeletal/skin/connective tissue

DRUG REACTION	CAUSAL AgENTS	NOTES
Fat redistribution	Protease inhibitors, Glucocorticoids	Fat PiG
Gingival hyperplasia	Phenytoin, Ca^{2+} channel blockers, cyclosporine	
Hyperuricemia (gout)	Pyrazinamide, Thiazides, Furosemide, Niacin, Cyclosporine	Painful Tophi and Feet Need Care
Myopathy	Fibrates, niacin, colchicine, hydroxychloroquine, interferon- α, penicillamine, statins, glucocorticoids	
Osteoporosis	Corticosteroids, heparin	
Photosensitivity	Sulfonamides, Amiodarone, Tetracyclines, 5-FU	SAT For Photo
Rash (StevensJohnson syndrome)	Anti-epileptic drugs (especially lamotrigine), allopurinol, sulfa drugs, penicillin	Steven Johnson has epileptic allergy to sulfa drugs and penicillin
SLE-like syndrome	Sulfa drugs, Hydralazine, Isoniazid, Procainamide, Phenytoin, Etanercept	Having lupus is "SHIPP-E"
Teeth discoloration	Tetracyclines	
Tendonitis, tendon rupture, and cartilage damage	Fluoroquinolones	

Drug reactions-neurologic

| DRUG REACTION | CAUSAL AGENTS | NOTES |
| :--- | :--- | :--- | :--- |
| Cinchonism | Quinidine, quinine | |
| Parkinson-like
 syndrome | Antipsychotics, Reserpine, Metoclopramide | Cogwheel rigidity of ARM |
| Seizures | Isoniazid (vitamin B6 deficiency), Bupropion,
 Imipenem/cilastatin, Tramadol, Enflurane | With seizures, I BITE my tongue |
| Tardive dyskinesia | Antipsychotics, metoclopramide | |

Drug reactions—renal/genitourinary

DRUG REACTION	CAUSAL AGENTS	NOTES
Diabetes insipidus	Lithium, demeclocycline	
Fanconi syndrome	Tenofovir, ifosfamide	
Hemorrhagic cystitis	Cyclophosphamide, ifosfamide	Prevent by coadministering with mesna
Interstitial nephritis	Methicillin, NSAIDs, furosemide	
SIADH	Carbamazepine, Cyclophosphamide, SSRIs	Can't Concentrate Serum Sodium

Drug reactions—respiratory

DRUG REACTION	CAUSAL AGENTS	NOTES
Dry cough	ACE inhibitors	
Pulmonary fibrosis	Methotrexate, Nitrofurantoin, Carmustine, Bleomycin, Busulfan, Amiodarone	My Nose Cannot Breathe Bad Air

Drug reactions-multiorgan

DRUG REACTION	CAUSAL AGENTS
Antimuscarinic	Atropine, TCAs, H1-blockers, antipsychotics
Disulfiram-like reaction	Metronidazole, certain cephalosporins, griseofulvin, procarbazine, lst-generation sulfonylureas
Nephrotoxicity/ ototoxicity	Aminoglycosides, vancomycin, loop diuretics, cisplatin. Cisplatin toxicity may respond to amifostine.

Cytochrome P-450 interactions (selected)

Inducers (+)	Substrates	Inhibitors (-)
Chronic alcohol use	Anti-epileptics	Acute Alcohol Abuse
St. John's wort	Theophylline	Ritonavir
Phenytoin	Warfarin	Amiodarone
Phenobarbital	OCPs	Cimetidine/ciprofloxacin
Nevirapine		Ketoconazole
Rifampin	Sulfonamides	
Griseofulvin	Isoniazid (INH)	
Carbamazepine	Grapefruit juice	
		Quinidine
		Macrolides (except
		azithromycin)
Chronic alcoholics Steal	Always Think When Outdoors	AAA RACKS IN GQ
Phen-Phen and Never		Magazine
Refuse Greasy Carbs		

Sulfa drugs
Sulfonamide antibiotics, Sulfasalazine, Scary Sulfa Pharm FACTS
Probenecid, Furosemide, Acetazolamide, Celecoxib, Thiazides, Sulfonylureas.
Patients with sulfa allergies may develop fever, urinary tract infection, StevensJohnson syndrome, hemolytic anemia, thrombocytopenia, agranulocytosis, and urticaria (hives). Symptoms range from mild to life threatening.

PHARMACOLOGY—MISCELLANEOUS

Drug names

ENDING	CATEGORY	EXAMPLE
Antimicrobial		
-azole	Ergosterol synthesis inhibitor	Ketoconazole
-bendazole	Antiparasitic/antihelminthic	Mebendazole
-cillin	Peptidoglycan synthesis inhibitor	Ampicillin
-cycline	Protein synthesis inhibitor	Tetracycline
-ivir	Neuraminidase inhibitor	Oseltamivir
-navir	Protease inhibitor	Ritonavir
-ovir	DNA polymerase inhibitor	Acyclovir
-thromycin	Macrolide antibiotic	Azithromycin
CNS		
-ane	Inhalational general anesthetic	Halothane
-azine	Typical antipsychotic	Thioridazine
-barbital	Barbiturate	Phenobarbital
-caine	Local anesthetic	Lidocaine
-etine	SSRI	Fluoxetine
-ipramine, -triptyline	TCA	Imipramine, amitriptyline
-triptan	$5-\mathrm{HT}_{1 \mathrm{~B} / 1 \mathrm{D}}$ agonists	Sumatriptan
-zepam, -zolam	Benzodiazepine	Diazepam, alprazolam
Autonomic		
-chol	Cholinergic agonist	Bethanechol, carbachol
-curium, -curonium	Nondepolarizing paralytic	Atracurium, vecuronium
-olol	β-blocker	Propranolol
-stigmine	AChE inhibitor	Neostigmine
-terol	β_{2}-agonist	Albuterol
-zosin	α_{1}-antagonist	Prazosin
Cardiovascular		
-afil	PDE-5 inhibitor	Sildenafil
-dipine	Dihydropyridine Ca^{2+} channel blocker	Amlodipine
-pril	ACE inhibitor	Captopril
-sartan	Angiotensin-II receptor blocker	Losartan
-statin	HMG-CoA reductase inhibitor	Atorvastatin
-xaban	Direct factor Xa inhibitors	Apixaban, edoxaban, rivaroxaban
Other		
-dronate	Bisphosphonate	Alendronate
-glitazone	PPAR- γ activator	Rosiglitazone
-prazole	Proton pump inhibitor	Omeprazole
-prost	Prostaglandin analog	Latanoprost
-tidine	H_{2}-antagonist	Cimetidine
-tropin	Pituitary hormone	Somatotropin
-ximab	Chimeric monoclonal Ab	Basiliximab
-zumab	Humanized monoclonal Ab	Daclizumab

SECTION III

High-Yield Organ Systems

"Symptoms, then, are in reality nothing but the cry from suffering organs."
-Jean-Martin Charcot
"Man is an intelligence in servitude to his organs."

> - Aldous Huxley
"Learn that you are a machine, your heart an engine, your lungs a fanning machine and a sieve, your brain with its two lobes an electric battery."
-Andrew T. Still

D Approaching the Organ Systems

Cardiovascular	261
Endocrine	305
Gastrointestinal	337
Hematology and Oncology	377

> Musculoskeletal and Connective Tissue

- APPROACHING THE ORGAN SYSTEMS

In this section, we have divided the High-Yield Facts into the major Organ Systems. Within each Organ System are several subsections, including Embryology, Anatomy, Physiology, Pathology, and Pharmacology. As you progress through each Organ System, refer back to information in the previous subsections to organize these basic science subsections into a "vertically integrated" framework for learning. Below is some general advice for studying the organ systems by these subsections.

Embryology

Relevant embryology is included in each organ system subsection. Embryology tends to correspond well with the relevant anatomy, especially with regard to congenital malformations.

Anatomy

Several topics fall under this heading, including gross anatomy, histology, and neuroanatomy. Do not memorize all the small details; however, do not ignore anatomy altogether. Review what you have already learned and what you wish you had learned. Many questions require two or more steps. The first step is to identify a structure on anatomic cross section, electron micrograph, or photomicrograph. The second step may require an understanding of the clinical significance of the structure.

When studying, stress clinically important material. For example, be familiar with gross anatomy and radiologic anatomy related to specific diseases (eg, Pancoast tumor, Horner syndrome), traumatic injuries (eg, fractures, sensory and motor nerve deficits), procedures (eg, lumbar puncture), and common surgeries (eg, cholecystectomy). There are also many questions on the exam involving x-rays, CT scans, and neuro MRI scans. Many students suggest browsing through a general radiology atlas, pathology atlas, and histology atlas. Focus on learning basic anatomy at key levels in the body (eg, sagittal brain MRI; axial CT of the midthorax, abdomen, and pelvis). Basic neuroanatomy (especially pathways, blood supply, and functional anatomy), associated neuropathology, and neurophysiology have good yield. Please note that many of the photographic images in this book are for illustrative purposes and are not necessarily reflective of Step 1 emphasis.

Physiology

The portion of the examination dealing with physiology is broad and concept oriented and thus does not lend itself as well to fact-based review. Diagrams are often the best study aids, especially given the increasing number of questions requiring the interpretation of diagrams. Learn to apply basic physiologic relationships in a variety of ways (eg, the Fick equation, clearance equations). You are seldom asked to perform complex
calculations. Hormones are the focus of many questions, so learn their sites of production and action as well as their regulatory mechanisms.

A large portion of the physiology tested on the USMLE Step 1 is clinically relevant and involves understanding physiologic changes associated with pathologic processes (eg, changes in pulmonary function with COPD). Thus, it is worthwhile to review the physiologic changes that are found with common pathologies of the major organ systems (eg, heart, lungs, kidneys, GI tract) and endocrine glands.

Pathology

Questions dealing with this discipline are difficult to prepare for because of the sheer volume of material involved. Review the basic principles and hallmark characteristics of the key diseases. Given the clinical orientation of Step l, it is no longer sufficient to know only the "buzzword" associations of certain diseases (eg, café-au-lait macules and neurofibromatosis); you must also know the clinical descriptions of these findings.

Given the clinical slant of the USMLE Step l, it is also important to review the classic presenting signs and symptoms of diseases as well as their associated laboratory findings. Delve into the signs, symptoms, and pathophysiology of major diseases that have a high prevalence in the United States (eg, alcoholism, diabetes, hypertension, heart failure, ischemic heart disease, infectious disease). Be prepared to think one step beyond the simple diagnosis to treatment or complications.

The examination includes a number of color photomicrographs and photographs of gross specimens that are presented in the setting of a brief clinical history. However, read the question and the choices carefully before looking at the illustration, because the history will help you identify the pathologic process. Flip through an illustrated pathology textbook, color atlases, and appropriate Web sites in order to look at the pictures in the days before the exam. Pay attention to potential clues such as age, sex, ethnicity, occupation, recent activities and exposures, and specialized lab tests.

Pharmacology

Preparation for questions on pharmacology is straightforward. Memorizing all the key drugs and their characteristics (eg, mechanisms, clinical use, and important side effects) is high yield. Focus on understanding the prototype drugs in each class. Avoid memorizing obscure derivatives. Learn the "classic" and distinguishing toxicities of the major drugs. Do not bother with drug dosages or trade names. Reviewing associated biochemistry, physiology, and microbiology can be useful while studying pharmacology. There is a strong emphasis on ANS, CNS, antimicrobial, and cardiovascular agents as well as NSAIDs. Much of the material is clinically relevant. Newer drugs on the market are also fair game.

HIGH-YIELD SYSTEMS

Cardiovascular

"As for me, except for an occasional heart attack, I feel as young as I ever did."
-Robert Benchley
"Hearts will never be practical until they are made unbreakable."
-The Wizard of Oz
"As the arteries grow hard, the heart grows soft."
-H. L. Mencken
"Nobody has ever measured, not even poets, how much the heart can hold."
-Zelda Fitzgerald
"Only from the heart can you touch the sky."
"It is not the size of the man but the size of his heart that matters."

- Evander Holyfield

$$
0
$$

-
- Embryology 262

Anatomy 265
> Physiology
> Pathology
> Pharmacology

- CARDIOVASCULAR-EMBRYOLOGY

Heart embryology	EMBRYONICSTRUCTURE	GIVES RISE TO
	Truncus arteriosus	Ascending aorta and pulmonary trunk
Bulbus cordis	Smooth parts (outflow tract) of left and right ventricles	
Endocardial cushion	Atrial septum, membranous interventricular septum; AV and semilunar valves	
Primitive atrium	Trabeculated part of left and right atria	

Heart morphogenesis First functional organ in vertebrate embryos; beats spontaneously by week 4 of development.

Heart morphogenesis (continued)

Ventricles \begin{tabular}{l}
Muscular interventricular septum forms.

Opening is called interventricular foramen.

Ventricular septal defect (VSD)—most common

congenital cardiac anomaly, usually occurs in

membranous septum.
\end{tabular}

Aorticopulmonary septum rotates and fuses
with muscular ventricular septum to form
membranous interventricular septum, closing

Outflow tract
formation

Valve development

Neural crest and endocardial cell migrations \rightarrow truncal and bulbar ridges that spiral and fuse to form aorticopulmonary septum \rightarrow ascending aorta and pulmonary trunk.

Conotruncal abnormalities associated with failure of neural crest cells to migrate:

- Transposition of great vessels.
- Tetralogy of Fallot.
- Persistent truncus arteriosus.

Valvular anomalies may be stenotic, regurgitant, atretic (eg, tricuspid atresia), or displaced (eg, Ebstein anomaly).

Fetal circulation

Fetal-postnatal derivatives

AllaNtois \rightarrow urachus	MediaN umbilical ligament	Urachus is part of allantoic duct between bladder and umbilicus.
Ductus arteriosus	Ligamentum arteriosum	
Ductus venosus	Ligamentum venosum	
Foramen ovale	Fossa ovalis	
Notochord	Nucleus pulposus	
UmbiLical arteries	MediaL umbilical ligaments	Contained in falciform ligament.
Umbilical vein	Ligamentum teres hepatis	

Coronary artery anatomy

SA and AV nodes are usually supplied by RCA. Infarct may cause nodal dysfunction (bradycardia or heart block).
Right-dominant circulation (85\%) = PDA arises from RCA.
Left-dominant circulation (8\%) $=$ PDA arises from LCX.
Codominant circulation (7\%) = PDA arises from both LCX and RCA.
Coronary artery occlusion most commonly occurs in the LAD.
Coronary blood flow peaks in early diastole. The most posterior part of the heart is the left atrium; enlargement can cause dysphagia (due to compression of the esophagus) or hoarseness (due to compression of the left recurrent laryngeal nerve, a branch of the vagus).
Pericardium consists of 3 layers (from outer to inner):

- Fibrous pericardium
- Parietal layer of serous pericardium
- Visceral layer of serous pericardium

Pericardial cavity lies between parietal and visceral layers.

Cardiac output

$\mathrm{CO}=$ stroke volume $(\mathrm{SV}) \times$ heart rate (HR) Fick principle:
$\mathrm{CO}=\frac{\text { rate of } \mathrm{O}_{2} \text { consumption }}{\text { arterial } \mathrm{O}_{2} \text { content }- \text { venous } \mathrm{O}_{2} \text { content }}$
Mean arterial pressure $($ MAP $)=\mathrm{CO} \times$ total peripheral resistance (TPR)
MAP $=2 /$ diastolic pressure $+1 / 2$ systolic pressure
Pulse pressure $=$ systolic pressure - diastolic pressure Pulse pressure is proportional to SV, inversely proportional to arterial compliance.
SV = end-diastolic volume (EDV) - end-systolic volume (ESV)

During the early stages of exercise, CO is maintained by $\uparrow \mathrm{HR}$ and $\uparrow \mathrm{SV}$. During the late stages of exercise, CO is maintained by \uparrow HR only (SV plateaus).
Diastole is preferentially shortened with \uparrow HR; less filling time $\rightarrow \downarrow \mathrm{CO}$ (eg, ventricular tachycardia).
\uparrow pulse pressure in hyperthyroidism, aortic regurgitation, aortic stiffening (isolated systolic hypertension in elderly), obstructive sleep apnea (\uparrow sympathetic tone), exercise (transient).
\downarrow pulse pressure in aortic stenosis, cardiogenic shock, cardiac tamponade, advanced heart failure (HF).

Cardiac output variables

Stroke volume	Stroke Volume affected by Contractility, Afterload, and Preload. $\uparrow \mathrm{SV}$ with: - \uparrow Contractility (eg, anxiety, exercise) - \uparrow Preload (eg, early pregnancy) - \downarrow Afterload	SV CAP. A failing heart has \downarrow SV (systolic and/or diastolic dysfunction)
Contractility	Contractility (and SV) \uparrow with: - Catecholamines (inhibition of phospholamban $\rightarrow \uparrow \mathrm{Ca}^{2+}$ entry into sarcoplasmic reticulum $\rightarrow \uparrow \mathrm{Ca}^{2+}$-induced Ca^{2+} release) - \uparrow intracellular Ca^{2+} - \downarrow extracellular $\mathrm{Na}^{+}\left(\downarrow\right.$ activity of $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger) - Digitalis (blocks $\mathrm{Na}^{+} / \mathrm{K}^{+}$pump $\rightarrow \uparrow$ intracellular $\mathrm{Na}^{+} \rightarrow \downarrow \mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger activity $\rightarrow \uparrow$ intracellular Ca^{2+})	Contractility (and SV) \downarrow with: - β_{1}-blockade (\downarrow cAMP) - HF with systolic dysfunction - Acidosis - Hypoxia/hypercapnia ($\downarrow \mathrm{PO}_{2} / \uparrow \mathrm{PcO}_{2}$) - Non-dihydropyridine Ca^{2+} channel blockers
Myocardial oxygen demand	\uparrow MyoCARDial O_{2} demand is \uparrow by: - \uparrow Contractility - \uparrow Afterload (proportional to arterial pressure) - \uparrow heart Rate - \uparrow Diameter of ventricle (\uparrow wall tension)	Wall tension follows Laplace's law: Wall tension $=\frac{\text { pressure } \times \text { radius }}{2 \times \text { wall thickness }}$
Preload	Preload approximated by ventricular EDV; depends on venous tone and circulating blood volume.	VEnodilators (eg, nitroglycerin) \downarrow prEload.
Afterload	Afterload approximated by MAP. \uparrow afterload $\rightarrow \uparrow$ pressure $\rightarrow \uparrow$ wall tension per Laplace's law.	VAsodilators (eg, hydrAlAzine) \downarrow Afterload (Arterial). ACE inhibitors and ARBs \downarrow both preload and afterload.
	LV compensates for \uparrow afterload by thickening (hypertrophy) in order to \downarrow wall tension.	Chronic hypertension (\uparrow MAP) \rightarrow LV hypertrophy.
Ejection fraction	$\mathrm{EF}=\frac{\mathrm{SV}}{\mathrm{EDV}}=\frac{\mathrm{EDV}-\mathrm{ESV}}{\mathrm{EDV}}$ Left ventricular EF is an index of ventricular contractility; normal EF is $\geq 55 \%$.	EF \downarrow in systolic HF . EF normal in diastolic HF.

Starling curve

Ventricular EDV (preload)

Force of contraction is proportional to enddiastolic length of cardiac muscle fiber (preload).
\uparrow contractility with catecholamines, positive inotropes (eg, digoxin).
\downarrow contractility with loss of myocardium (eg, MI), β-blockers (acutely), non-dihydropyridine Ca^{2+} channel blockers, dilated cardiomyopathy.

Resistance, pressure, flow
$\Delta \mathrm{P}=\mathrm{Q} \times \mathrm{R}$
Similar to Ohm's law: $\Delta \mathrm{V}=\mathrm{IR}$
Volumetric flow rate $(\mathrm{Q})=$ flow velocity $(\mathrm{v}) \times$ cross-sectional area (A)
Resistance
$=\frac{\text { driving pressure }(\Delta \mathrm{P})}{\text { flow }(\mathrm{Q})}=\frac{8 \eta \text { (viscosity) } \times \text { length }}{\pi r^{4}}$
Total resistance of vessels in series:

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \cdots
$$

Total resistance of vessels in parallel:

$$
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}} \cdots
$$

Viscosity depends mostly on hematocrit
Viscosity \uparrow in hyperproteinemic states (eg, multiple myeloma), polycythemia
Viscosity \downarrow in anemia

Capillaries have highest total cross-sectional area and lowest flow velocity.
Removal of organs in parallel arrangement (eg, nephrectomy) $\rightarrow \downarrow$ TPR and \uparrow CO.
Pressure gradient drives flow from high pressure to low pressure.
Arterioles account for most of TPR. Veins provide most of blood storage capacity.

Cardiac and vascular function curves

Intersection of curves $=$ operating point of heart (ie, venous return and CO are equal).

Curve	Effect	EXAMPLES
(A) Inotropy	Changes in contractility \rightarrow altered CO for a given RA pressure (preload).	(1) Catecholamines, digoxin \oplus (2) Uncompensated HF, narcotic overdose Θ
(B) Venous return	Changes in circulating volume or venous tone \rightarrow altered RA pressure for a given CO. Mean systemic pressure (x-intercept) changes with volume/venous tone.	(3) Fluid infusion, sympathetic activity \oplus (4) Acute hemorrhage, spinal anesthesia Θ
© Total peripheral resistance	At a given mean systemic pressure (x-intercept) and RA pressure, changes in TPR \rightarrow altered CO.	(5) Vasopressors \oplus (6) Exercise, AV shunt Θ

Changes often occur in tandem, and may be reinforcing (eg, exercise \uparrow inotropy and \downarrow TPR to maximize CO) or compensatory (eg, HF \downarrow inotropy \rightarrow fluid retention to \uparrow preload to maintain CO).

Pressure-volume loops and cardiac cycle

The black loop represents normal cardiac physiology.

Phases-left ventricle:
(1) Isovolumetric contraction-period between mitral valve closing and aortic valve opening; period of highest O_{2} consumption
(2) Systolic ejection-period between aortic valve opening and closing
(3) Isovolumetric relaxation-period between aortic valve closing and mitral valve opening
(4) Rapid filling-period just after mitral valve opening
(5) Reduced filling-period just before mitral valve closing

Heart sounds:
Sl—mitral and tricuspid valve closure. Loudest at mitral area.
S2-aortic and pulmonary valve closure. Loudest at left upper sternal border.
S3-in early diastole during rapid ventricular filling phase. Associated with \uparrow filling pressures (eg, mitral regurgitation, HF) and more common in dilated ventricles (but can be normal in children and young adults).
S4-in late diastole ("atrial kick"). Best heard at apex with patient in left lateral decubitus position. High atrial pressure. Associated with ventricular noncompliance (eg, hypertrophy). Left atrium must push against stiff LV wall.
Consider abnormal, regardless of patient age.

Jugular venous pulse (JVP):
a wave-atrial contraction. Absent in atrial fibrillation (AF).
c wave-RV contraction (closed tricuspid valve bulging into atrium).
x descent-atrial relaxation and downward displacement of closed tricuspid valve during ventricular contraction. Absent in tricuspid regurgitation. Prominent in tricuspid insufficiency and right HF.
v wave $-\uparrow$ right atrial pressure due to filling ("villing") against closed tricuspid valve. y descent-RA emptying into RV. Prominent in constrictive pericarditis, absent in cardiac tamponade.

Splitting

Normal splitting	Inspiration \rightarrow drop in intrathoracic pressure $\rightarrow \uparrow$ venous return $\rightarrow \uparrow$ RV filling $\rightarrow \uparrow R V$ stroke volume $\rightarrow \uparrow$ RV ejection time \rightarrow delayed closure of pulmonic valve. \downarrow pulmonary impedance (\uparrow capacity of the pulmonary circulation) also occurs during inspiration, which contributes to delayed closure of pulmonic valve.	Expiration Inspiration	$\begin{gathered} \mid \\ \mathrm{Sl} \\ \mid \end{gathered}$	$\begin{gathered} \|\mid \\ \mathrm{A} 2^{\mathrm{P} 2} \\ \|\mid \end{gathered}$	
Wide splitting	Seen in conditions that delay RV emptying (eg, pulmonic stenosis, right bundle branch block). Causes delayed pulmonic sound (especially on inspiration). An exaggeration of normal splitting.	Expiration Inspiration	$\begin{gathered} \mid \\ \text { Sl } \\ \text { \| } \end{gathered}$	$\begin{gathered} \mid \\ \text { A2 P2 } \\ \|\mid \end{gathered}$	
Fixed splitting	Heard in ASD. ASD \rightarrow left-to-right shunt $\rightarrow \uparrow$ RA and RV volumes $\rightarrow \uparrow$ flow through pulmonic valve such that, regardless of breath, pulmonic closure is greatly delayed.	Expiration Inspiration			
Paradoxical splitting	Heard in conditions that delay aortic valve closure (eg, aortic stenosis, left bundle branch block). Normal order of valve closure is reversed so that P 2 sound occurs before delayed A2 sound. Therefore on inspiration, P2 closes later and moves closer to A2, thereby "paradoxically" eliminating the split (usually heard in expiration).	Expiration Inspiration	$\begin{gathered} \mid \\ \mathrm{Sl} \\ \mid \end{gathered}$	$\begin{gathered} \|\mid \\ \text { P2 A2 } \\ \\| \end{gathered}$	

Auscultation of the heart

回

BEDSIDE MANEUVER	EFFECT
Inspiration (\uparrow venous return to right atrium)	\uparrow intensity of right heart sounds
Hand grip (\uparrow afterload)	\uparrow intensity of MR, AR, VSD murmurs \downarrow hypertrophic cardiomyopathy murmurs MVP: later onset of click/murmur
Valsalva (phase II), standing up (\downarrow preload)	\downarrow intensity of most murmurs (including AS) \uparrow intensity of hypertrophic cardiomyopathy murmur MVP: earlier onset of click/murmur
Rapid squatting (\uparrow venous return, \uparrow preload, \uparrow afterload)	\downarrow intensity of hypertrophic cardiomyopathy murmur \uparrow intensity of AS murmur MVP: later onset of click/murmur

Systolic heart sounds include aortic/pulmonic stenosis, mitral/tricuspid regurgitation, VSD, MVP.
Diastolic heart sounds include aortic/pulmonic regurgitation, mitral/tricuspid stenosis.

Heart murmurs

Systolic
Aortic stenosis
S1
ММММММмии

Mitral/tricuspid regurgitation

Mitral valve prolapse

Ventricular septal defect

Crescendo-decrescendo systolic ejection murmur (ejection click may be present). LV >> aortic pressure during systole. Loudest at heart base; radiates to carotids. "Pulsus parvus et tardus" - pulses are weak with a delayed peak. Can lead to Syncope, Angina, and Dyspnea on exertion (SAD). Most commonly due to agerelated calcification in older patients (>60 years old) or in younger patients with early-onset calcification of bicuspid aortic valve.
Holosystolic, high-pitched "blowing murmur."
Mitral-loudest at apex and radiates toward axilla. MR is often due to ischemic heart disease (post-MI), MVP, LV dilatation.
Tricuspid—loudest at tricuspid area and radiates to right sternal border. TR commonly caused by RV dilatation.
Rheumatic fever and infective endocarditis can cause either MR or TR.
Late systolic crescendo murmur with midsystolic click (MC; due to sudden tensing of chordae tendineae). Most frequent valvular lesion. Best heard over apex. Loudest just before S2. Usually benign. Can predispose to infective endocarditis. Can be caused by myxomatous degeneration (1° or 2° to connective tissue disease such as Marfan or Ehlers-Danlos syndrome), rheumatic fever, chordae rupture.
Holosystolic, harsh-sounding murmur. Loudest at tricuspid area.

High-pitched "blowing" early diastolic decrescendo murmur. Long diastolic murmur, hyperdynamic pulse, and head bobbing when severe and chronic. Wide pulse pressure. Often due to aortic root dilation, bicuspid aortic valve, endocarditis, rheumatic fever. Progresses to left HF.

Mitral stenosis

Follows opening snap (OS; due to abrupt halt in leaflet motion in diastole, after rapid opening due to fusion at leaflet tips). Delayed rumbling late diastolic murmur (\downarrow interval between S 2 and OS correlates with \uparrow severity). LA \gg LV pressure during diastole. Often occurs 2° to rheumatic fever. Chronic MS can result in LA dilatation.

Continuous

Patent ductus arteriosus

Continuous machine-like murmur. Loudest at S2. Often due to congenital rubella or prematurity. Best heard at left infraclavicular area.

Myocardial action potential

Also occurs in bundle of His and Purkinje fibers.
Phase $0=$ rapid upstroke and depolarization—voltage-gated Na^{+}channels open.
Phase 1 = initial repolarization—inactivation of voltage-gated Na^{+}channels. Voltage-gated K^{+} channels begin to open.

Phase $2=$ plateau $-\mathrm{Ca}^{2+}$ influx through voltage-gated Ca^{2+} channels balances K^{+}efflux. Ca^{2+} influx triggers Ca^{2+} release from sarcoplasmic reticulum and myocyte contraction.

Phase 3 = rapid repolarization - massive K^{+}efflux due to opening of voltage-gated slow K^{+} channels and closure of voltage-gated Ca^{2+} channels.
Phase 4 = resting potential-high K^{+}permeability through K^{+}channels.

In contrast to skeletal muscle:

- Cardiac muscle action potential has a plateau, which is due to Ca^{2+} influx and K^{+}efflux.
- Cardiac muscle contraction requires Ca^{2+} influx from ECF to induce Ca^{2+} release from sarcoplasmic reticulum $\left(\mathrm{Ca}^{2+}\right.$-induced Ca^{2+} release).
- Cardiac myocytes are electrically coupled to each other by gap junctions.

Pacemaker action potential

Occurs in the SA and AV nodes. Key differences from the ventricular action potential include:
Phase $\mathbf{0}=$ upstroke—opening of voltage-gated Ca^{2+} channels. Fast voltage-gated Na^{+}channels are permanently inactivated because of the less negative resting potential of these cells. Results in a slow conduction velocity that is used by the AV node to prolong transmission from the atria to ventricles.

Phases 1 and 2 are absent.
Phase 3 = inactivation of the Ca^{2+} channels and \uparrow activation of K^{+}channels $\rightarrow \uparrow \mathrm{K}^{+}$efflux.
Phase 4 = slow spontaneous diastolic depolarization due to I_{f} ("funny current"). I_{f} channels responsible for a slow, mixed $\mathrm{Na}^{+} / \mathrm{K}^{+}$inward current; different from I_{Na} in phase 0 of ventricular action potential. Accounts for automaticity of SA and AV nodes. The slope of phase 4 in the SA node determines HR. ACh/adenosine \downarrow the rate of diastolic depolarization and $\downarrow \mathrm{HR}$, while catecholamines \uparrow depolarization and \uparrow HR. Sympathetic stimulation \uparrow the chance that I_{f} channels are open and thus \uparrow HR.

Electrocardiogram
Conduction pathway-SA node \rightarrow atria \rightarrow AV node \rightarrow bundle of His \rightarrow right and left bundle branches \rightarrow Purkinje fibers \rightarrow ventricles; left bundle branch divides into left anterior and posterior fascicles.
SA node "pacemaker" inherent dominance with slow phase of upstroke.
AV node-located in posteroinferior part of interatrial septum. Blood supply usually from RCA. 100-msec delay allows time for ventricular filling.
Pacemaker rates-SA $>\mathrm{AV}>$ bundle of His/ Purkinje/ventricles.
Speed of conduction-Purkinje $>$ atria $>$ ventricles $>\mathrm{AV}$ node.

P wave-atrial depolarization. Atrial repolarization is masked by QRS complex.
PR interval-time from start of atrial depolarization to start of ventricular depolarization (normally $<200 \mathrm{msec}$).
QRS complex-ventricular depolarization (normally $<120 \mathrm{msec}$).
QT interval-ventricular depolarization, mechanical contraction of the ventricles, ventricular repolarization.
T wave-ventricular repolarization. T-wave inversion may indicate recent MI.
J point-junction between end of QRS complex and start of ST segment.
ST segment-isoelectric, ventricles depolarized.
U wave-prominent in hypokalemia, bradycardia.

Torsades de pointes
Polymorphic ventricular tachycardia, characterized by shifting sinusoidal waveforms on ECG; can progress to ventricular fibrillation (VF). Long QT interval predisposes to torsades de pointes. Caused by drugs, $\downarrow \mathrm{K}^{+}, \downarrow \mathrm{Mg}^{2+}$, congenital abnormalities. Treatment includes magnesium sulfate.

Drug-induced long QT (ABCDE): AntiArrhythmics (class IA, III) AntiBiotics (eg, macrolides) Anti"C"ychotics (eg, haloperidol) AntiDepressants (eg, TCAs) AntiEmetics (eg, ondansetron)
Torsades de pointes $=$ twisting of the points

Congenital long QT Inherited disorder of myocardial repolarization, syndrome
typically due to ion channel defects; \uparrow risk of
sudden cardiac death (SCD) due to torsades de pointes. Includes:

- Romano-Ward syndrome-autosomal dominant, pure cardiac phenotype (no deafness).
- Jervell and Lange-Nielsen syndromeautosomal recessive, sensorineural deafness.

Brugada syndrome Autosomal dominant disorder most common in Asian males. ECG pattern of pseudo-right bundle branch block and ST elevations in $V_{1}-V_{3} . \uparrow$ risk of ventricular tachyarrhythmias and SCD. Prevent SCD with implantable cardioverter-defibrillator (ICD).

Wolff-Parkinson-White Most common type of ventricular presyndrome excitation syndrome. Abnormal fast accessory conduction pathway from atria to ventricle (bundle of Kent) bypasses the rate-slowing AV node \rightarrow ventricles begin to partially depolarize earlier \rightarrow characteristic delta wave with widened QRS complex and shortened PR interval on ECG. May result in reentry circuit \rightarrow supraventricular tachycardia.

RHYTHM	DESCRIPTION
Atrial fibrillation	Chaotic and erratic baseline with no discrete P waves in between irregularly spaced QRS complexes. Irregularly irregular heartbeat. Most common risk factors include hypertension and coronary artery disease (CAD). Can lead to thromboembolic events, particularly stroke. Treatment includes anticoagulation, rate control, rhythm control, and/or cardioversion.
A rapid succession of identical, back-to-back atrial depolarization waves. The identical appearance accounts for the "sawtooth" appearance of the flutter waves. Treat like atrial fibrillation. Definitive treatment is catheter ablation.	
A completely erratic rhythm with no identifiable waves. Fatal	
arrhythmia without immediate CPR and defibrillation.	

2nd degree

Mobitz type I Progressive lengthening of PR interval until a beat is "dropped" (Wenckebach) (a P wave not followed by a QRS complex). Usually asymptomatic. Variable RR interval with a pattern (regularly irregular).

Mobitz type II Dropped beats that are not preceded by a change in the length of the PR interval (as in type I).
May progress to 3rd-degree block. Often treated with pacemaker.

3rd degree (complete)

The atria and ventricles beat independently of each other. P waves and QRS complexes not rhythmically associated. Atrial rate > ventricular rate. Usually treated with pacemaker. Can be caused by Lyme disease.

Atrial natriuretic peptide

Released from atrial myocytes in response to \uparrow blood volume and atrial pressure. Acts via cGMP. Causes vasodilation and $\downarrow \mathrm{Na}^{+}$reabsorption at the renal collecting tubule. Dilates afferent renal arterioles and constricts efferent arterioles, promoting diuresis and contributing to "aldosterone escape" mechanism.

B-type (brain) natriuretic peptide

Released from ventricular myocytes in response to \uparrow tension. Similar physiologic action to ANP, with longer half-life. BNP blood test used for diagnosing HF (very good negative predictive value). Available in recombinant form (nesiritide) for treatment of HF.

Baroreceptors and chemoreceptors

Receptors:

- Aortic arch transmits via vagus nerve to solitary nucleus of medulla (responds to \downarrow and \uparrow in BP).
- Carotid sinus (dilated region at carotid bifurcation) transmits via glossopharyngeal nerve to solitary nucleus of medulla (responds to \downarrow and \uparrow in BP).

Baroreceptors:

- Hypotension $-\downarrow$ arterial pressure $\rightarrow \downarrow$ stretch $\rightarrow \downarrow$ afferent baroreceptor firing $\rightarrow \uparrow$ efferent sympathetic firing and \downarrow efferent parasympathetic stimulation \rightarrow vasoconstriction, $\uparrow \mathrm{HR}, \uparrow$ contractility, $\uparrow \mathrm{BP}$. Important in the response to severe hemorrhage.
- Carotid massage $-\uparrow$ pressure on carotid sinus $\rightarrow \uparrow$ stretch $\rightarrow \uparrow$ afferent baroreceptor firing $\rightarrow \uparrow$ AV node refractory period $\rightarrow \downarrow \mathrm{HR}$.
- Contributes to Cushing reaction (triad of hypertension, bradycardia, and respiratory depression) $-\uparrow$ intracranial pressure constricts arterioles \rightarrow cerebral ischemia $\rightarrow \uparrow \mathrm{pCO}_{2}$ and $\downarrow \mathrm{pH} \rightarrow$ central reflex sympathetic \uparrow in perfusion pressure (hypertension) $\rightarrow \uparrow$ stretch \rightarrow peripheral reflex baroreceptorinduced bradycardia.

Chemoreceptors:

- Peripheral—carotid and aortic bodies are stimulated by $\downarrow \mathrm{PO}_{2}$ $(<60 \mathrm{~mm} \mathrm{Hg}), \uparrow \mathrm{Pco}_{2}$, and $\downarrow \mathrm{pH}$ of blood.
- Central-are stimulated by changes in pH and PCO_{2} of brain interstitial fluid, which in turn are influenced by arterial CO_{2}. Do not directly respond to PO_{2}.

Normal cardiac pressures

Pulmonary capillary wedge pressure (PCWP; in mm Hg) is a good approximation of left atrial pressure. In mitral stenosis, PCWP > LV end diastolic pressure. PCWP is measured with pulmonary artery catheter (Swan-Ganz catheter).

Autoregulation
How blood flow to an organ remains constant over a wide range of perfusion pressures.

ORGAN	FACTORS DETERMINING AUTOREGULATION	
Heart	Local metabolites (vasodilatory): adenosine, NO, $\mathrm{CO}_{2}, \downarrow \mathrm{O}_{2}$	Note: the pulmonary vasculature is unique in that hypoxia causes vasoconstriction so that
Brain	Local metabolites (vasodilatory): $\mathrm{CO}_{2}(\mathrm{pH})$ only well-ventilated areas are perfused. In other organs, hypoxia causes vasodilation.	
Kidneys Myogenic and tubuloglomerular feedback		
Lungs Hypoxia causes vasoconstriction	$\mathrm{CO}_{2}, \mathrm{H}^{+}$, Adenosine, Lactate, K^{+}(CHALK)	

Starling forces determine fluid movement through capillary membranes:

- $\mathrm{P}_{\mathrm{c}}=$ capillary pressure-pushes fluid out of capillary
- $\mathrm{P}_{\mathrm{i}}=$ interstitial fluid pressure-pushes fluid into capillary
- $\pi_{\mathrm{c}}=$ plasma colloid osmotic (oncotic) pressure—pulls fluid into capillary
- $\pi_{\mathrm{i}}=$ interstitial fluid colloid osmotic pressure-pulls fluid out of capillary
$\mathrm{J}_{\mathrm{v}}=$ net fluid flow $=\mathrm{K}_{\mathrm{f}}\left[\left(\mathrm{P}_{\mathrm{c}}-\mathrm{P}_{\mathrm{i}}\right)-\varsigma\left(\pi_{\mathrm{c}}-\pi_{\mathrm{i}}\right)\right]$
$\mathrm{K}_{\mathrm{f}}=$ permeability of capillary to fluid
$\varsigma=$ permeability of capillary to protein
Edema-excess fluid outflow into interstitium commonly caused by:
- \uparrow capillary pressure ($\uparrow \mathrm{P}_{\mathrm{c}}$; eg, HF)
- \downarrow plasma proteins ($\downarrow \pi_{\mathrm{c}}$; eg, nephrotic syndrome, liver failure, protein malnutrition)
- \uparrow capillary permeability ($\uparrow \mathrm{K}_{\mathrm{f}}$; eg, toxins, infections, burns)
- \uparrow interstitial fluid colloid osmotic pressure ($\uparrow \pi_{\mathrm{i}}$; eg, lymphatic blockage)

Congenital heart diseases

RIGHT-TO-LEFT SHuNTS	Early cyanosis-"blue babies." Often diagnosed prenatally or become evident immediately after birth. Usually require urgent surgical treatment and/or maintenance of a PDA.	The 5 Ts: 1. Truncus arteriosus (1 vessel) 2. Transposition (2 switched vessels) 3. Tricuspid atresia ($3=$ Tri) 4. Tetralogy of Fallot $(4=$ Tetra $)$ 5. TAPVR (5 letters in the name)
Persistent truncus arteriosus	Truncus arteriosus fails to divide into pulmonary trunk and aorta due to lack of aorticopulmonary septum formation; most patients have accompanying VSD.	
D-transposition of great vessels	Aorta leaves RV (anterior) and pulmonary trunk leaves LV (posterior) \rightarrow separation of systemic and pulmonary circulations. Not compatible with life unless a shunt is present to allow mixing of blood (eg, VSD, PDA, or patent foramen ovale). Due to failure of the aorticopulmonary septum to spiral. Without surgical intervention, most infants die within the first few months of life.	
Tricuspid atresia	Absence of tricuspid valve and hypoplastic RV; requires both ASD and VSD for viability.	
Tetralogy of Fallot	Caused by anterosuperior displacement of the infundibular septum. Most common cause of early childhood cyanosis. (1) Pulmonary infundibular stenosis (most important determinant for prognosis) 2 Right ventricular hypertrophy (RVH) -boot-shaped heart on CXR A (3) Overriding aorta (4) VSD Pulmonary stenosis forces right-to-left flow across VSD \rightarrow RVH, "tet spells" (often caused by crying, fever, and exercise due to exacerbation of RV outflow obstruction).	PROVe. Squatting: \uparrow SVR, \downarrow right-to-left shunt, improves cyanosis. Treatment: early surgical correction.
Total anomalous pulmonary venous return	Pulmonary veins drain into right heart circulation (SVC, coronary sinus, etc); associated with ASD and sometimes PDA to allow for right-to-left shunting to maintain CO.	
Ebstein anomaly	Characterized by displacement of tricuspid valve leaflets downward into RV, artificially "atrializing" the ventricle. Associated with tricuspid regurgitation and right HF. Can be caused by lithium exposure in utero.	

Left-to-Right shunts	Late cyanosis (2 2° to Eisenmenger syndrome)- "blue kids." Frequency: VSD > ASD > PDA.	Right-to-Left shunts: eaRLy cyanosis. Left-to-Right shunts: "LateR" cyanosis.
Ventricular septal defect	Most common congenital cardiac defect. Asymptomatic at birth, may manifest weeks later or remain asymptomatic throughout life. Most self resolve; larger lesions may lead to LV overload and HF.	O_{2} saturation \uparrow in RV and pulmonary artery.
Atrial septal defect	Defect in interatrial septum [B; loud Sl; wide, fixed split S 2 . Ostium secundum defects most common and usually occur as isolated findings; ostium primum defects rarer yet usually occur with other cardiac anomalies. Symptoms range from none to HF. Distinct from patent foramen ovale in that septa are missing tissue rather than unfused.	O_{2} saturation \uparrow in RA, RV, and pulmonary artery.
Patent ductus arteriosus LV	In fetal period, shunt is right to left (normal). In neonatal period, \downarrow pulmonary vascular resistance \rightarrow shunt becomes left to right \rightarrow progressive RVH and/or LVH and HF. Associated with a continuous, "machine-like" murmur. Patency is maintained by PGE synthesis and low O_{2} tension. Uncorrected PDA C can eventually result in late cyanosis in the lower extremities (differential cyanosis).	"Endomethacin" (indomethacin) ends patency of PDA; PGE keeps ductus Going (may be necessary to sustain life in conditions such as transposition of the great vessels). PDA is normal in utero and normally closes only after birth.
Eisenmenger syndrome	Uncorrected left-to-right shunt (VSD, ASD, PDA) $\rightarrow \uparrow$ pulmonary blood flow \rightarrow pathologic remodeling of vasculature \rightarrow pulmonary arterial hypertension. RVH occurs to compensate \rightarrow shunt becomes right to left. Causes late cyanosis, clubbing \mathbf{D}, and polycythemia. Age of onset varies.	
OTHERANOMALIES		
Coarctation of the aorta	Aortic narrowing near insertion of ductus arteriosus ("juxtaductal"). Associated with bicuspid aortic valve, other heart defects, and Turner syndrome. Hypertension in upper extremities and weak, delayed pulse in lower extremities (brachial-femoral delay). With age, intercostal arteries enlarge due to collateral circulation; arteries erode ribs \rightarrow notched appearance on CXR. Complications include HF, \uparrow risk of cerebral hemorrhage (berry aneurysms), aortic rupture, and possible endocarditis.	

Congenital cardiac defect associations	DISORDER	defect
	Alcohol exposure in utero (fetal alcohol syndrome)	VSD, PDA, ASD, tetralogy of Fallot
	Congenital rubella	PDA, pulmonary artery stenosis, septal defects
	Down syndrome	AV septal defect (endocardial cushion defect), VSD, ASD
	Infant of diabetic mother	Transposition of great vessels
	Marfan syndrome	MVP, thoracic aortic aneurysm and dissection, aortic regurgitation
	Prenatal lithium exposure	Ebstein anomaly
	Turner syndrome	Bicuspid aortic valve, coarctation of aorta
	Williams syndrome	Supravalvular aortic stenosis
	22qll syndromes	Truncus arteriosus, tetralogy of Fallot
Hypertension	Defined as persistent systolic $\mathrm{BP} \geq 140 \mathrm{~mm} \mathrm{Hg}$ and/or diastolic $\mathrm{BP} \geq 90 \mathrm{~mm} \mathrm{Hg}$	
RISK Factors	\uparrow age, obesity, diabetes, physical inactivity, excess salt intake, excess alcohol intake, family history; African American > Caucasian > Asian.	
	90% of hypertension is 1° (essential) and related to $\uparrow \mathrm{CO}$ or $\uparrow \mathrm{TPR}$; remaining 10% mostly 2° to renal/renovascular disease (eg, fibromuscular dysplasia ["string of beads" appearance A], usually found in younger women) and 1° hyperaldosteronism. Hypertensive urgency-severe $(\geq 180 / \geq 120 \mathrm{~mm} \mathrm{Hg})$ hypertension without acute end-organ damage. Hypertensive emergency-severe hypertension with evidence of acute end-organ damage (eg, encephalopathy, stroke, retinal hemorrhages and exudates, papilledema, MI, HF, aortic dissection, kidney injury, microangiopathic hemolytic anemia, eclampsia).	
	CAD, LVH, HF, AF; aortic dissection, aortic aneurysm; stroke; chronic kidney disease (hypertensive nephropathy) B; retinopathy.	

Hyperlipidemia signs

Arteriosclerosis

Arteriolosclerosis
Mönckeberg sclerosis
(medial calcific
sclerosis)

Hardening of arteries, with arterial wall thickening and loss of elasticity.
Common. Affects small arteries and arterioles. Two types: hyaline (thickening of vessel walls in essential hypertension or diabetes mellitus A) and hyperplastic ("onion skinning" in severe hypertension B with proliferation of smooth muscle cells).
Uncommon. Affects medium-sized arteries. Calcification of internal elastic lamina and media of arteries \rightarrow vascular stiffening without obstruction. "Pipestem" appearance on x-ray C. Does not obstruct blood flow; intima not involved.

Atherosclerosis | Very common. Disease of elastic arteries and large- and medium-sized muscular arteries; a form of |
| :--- |
| arteriosclerosis caused by buildup of cholesterol plaques. |

Abdominal aorta > coronary artery > popliteal artery > carotid artery A.

Traumatic aortic rupture

Due to trauma and/or deceleration injury, most commonly at aortic isthmus (proximal descending aorta just distal to origin of left subclavian artery).

Aortic dissection

Longitudinal intimal tear forming a false lumen A. Associated with hypertension, bicuspid aortic valve, inherited connective tissue disorders (eg, Marfan syndrome). Can present with tearing chest pain, of sudden onset, radiating to the back +/- markedly unequal BP in arms. CXR shows mediastinal widening. Can result in organ ischemia, aortic rupture, death. Two types:

- Stanford type A (proximal): involves Ascending aorta. May extend to aortic arch or descending aorta. May result in acute aortic regurgitation or cardiac tamponade. Treatment: surgery.
- Stanford type B (distal): involves descending aorta and/or aortic arch. No ascending aorta involvement. Treat medically with β-blockers, then vasodilators.

Ischemic heart disease manifestations

Angina

Coronary steal syndrome

Chest pain due to ischemic myocardium 2° to coronary artery narrowing or spasm; no myocyte necrosis.

- Stable-usually 2° to atherosclerosis; exertional chest pain in classic distribution (usually with ST depression on ECG), resolving with rest or nitroglycerin.
- Variant (Prinzmetal)—occurs at rest 2° to coronary artery spasm; transient ST elevation on ECG. Known triggers include tobacco, cocaine, and triptans, but trigger is often unknown. Treat with Ca^{2+} channel blockers, nitrates, and smoking cessation (if applicable).
- Unstable-thrombosis with incomplete coronary artery occlusion; +/- ST depression and/or T-wave inversion on ECG but no cardiac biomarker elevation (unlike NSTEMI); \uparrow in frequency or intensity of chest pain or any chest pain at rest.
Distal to coronary stenosis, vessels are maximally dilated at baseline. Administration of vasodilators (eg, dipyridamole, regadenoson) dilates normal vessels and shunts blood toward well-perfused areas $\rightarrow \downarrow$ flow and ischemia in poststenotic region. Principle behind pharmacologic stress tests.

Sudden cardiac death

Chronic ischemic heart disease

Myocardial infarction
Death from cardiac causes within 1 hour of onset of symptoms, most commonly due to a lethal arrhythmia (eg, VF). Associated with CAD (up to 70% of cases), cardiomyopathy (hypertrophic, dilated), and hereditary ion channelopathies (eg, long QT syndrome, Brugada syndrome). Prevent with implantable cardioverter-defibrillator (ICD).
Progressive onset of HF over many years due to chronic ischemic myocardial damage.

Most often acute thrombosis due to rupture of coronary artery atherosclerotic plaque. \uparrow cardiac biomarkers (CK-MB, troponins) are diagnostic.

ST-segment elevation MI (STEMI)

Transmural infarcts
Full thickness of myocardial wall involved ST elevation on ECG, Q waves

Non-ST-segment elevation MI (NSTEMI)

Subendocardial infarcts
Subendocardium (inner $1 / 3$) especially vulnerable to ischemia
ST depression on ECG

Evolution of myocardial infarction

Commonly occluded coronary arteries: LAD $>$ RCA $>$ circumflex.
Symptoms: diaphoresis, nausea, vomiting, severe retrosternal pain, pain in left arm and/or jaw, shortness of breath, fatigue.

TIME	GROSS	LIGHT MICROSCOPE	COMPLICATIONS
0-24 hr	None	Early coagulative necrosis, release of necrotic cell contents into blood; edema, hemorrhage, wavy fibers. Neutrophils appear. Reperfusion injury, associated with generation of free radicals, leads to hypercontraction of myofibrils through \uparrow free calcium influx.	Ventricular arrhythmia, HF, cardiogenic shock.
1-3 days		Extensive coagulative necrosis. Tissue surrounding infarct shows acute inflammation with neutrophils.	Postinfarction fibrinous pericarditis.
3-14 days		Macrophages, then granulation tissue at margins.	Free wall rupture \rightarrow tamponade; papillary muscle rupture \rightarrow mitral regurgitation; interventricular septal rupture due to macrophage-mediated structural degradation. LV pseudoaneurysm (risk of rupture).
2 weeks to several months		Contracted scar complete.	Dressler syndrome, HF, arrhythmias, true ventricular aneurysm (risk of mural thrombus).

Diagnosis of
myocardial infarction

In the first 6 hours, ECG is the gold standard. Cardiac troponin I rises after 4 hours (peaks at 24 hr) and is \uparrow for $7-10$ days; more specific than other protein markers.
CK-MB rises after 6-12 hours (peaks at $16-24 \mathrm{hr}$) and is predominantly found in myocardium but can also be released from skeletal muscle. Useful in diagnosing reinfarction following acute MI because levels return to normal after 48 hours.
Large MIs lead to greater elevations in troponin I and CK-MB.
ECG changes can include ST elevation (STEMI, transmural infarct), ST depression (NSTEMI, subendocardial infarct), hyperacute (peaked) T waves, T -wave inversion, new left bundle branch block, and pathologic Q waves or poor R wave progression (evolving or old transmural infarct).

ECG localization of STEMI

Infarct location	LEADS With St elevations OR Q waves
Anteroseptal (LAD)	$\mathrm{V}_{1}-\mathrm{V}_{2}$
Anteroapical (distal LAD)	$\mathrm{V}_{3}-\mathrm{V}_{4}$
Anterolateral (LAD or LCX)	$\mathrm{V}_{5}-\mathrm{V}_{6}$
Lateral (LCX)	I, aVL
InFerior (RCA)	$\mathrm{II}, \mathrm{III}, \mathrm{aVF}$
Posterior (PDA)	$\mathrm{V}_{7}-\mathrm{V}_{9}$, ST depression in $\mathrm{V}_{1}-\mathrm{V}_{3}$ with tall R waves

Myocardial infarction complications

Cardiac arrhythmia	Occurs within the first few days after MI. Important cause of death before reaching the hospital and within the first 24 hours post-MI.
Postinfarction fibrinous pericarditis	Occurs l-3 days after MI. Friction rub.

Acute coronary syndrome treatments

Unstable angina/NSTEMI-Anticoagulation (eg, heparin), antiplatelet therapy (eg, aspirin + ADP receptor inhibitors (eg, clopidogrel), β-blockers, ACE inhibitors, statins. Symptom control with nitroglycerin and morphine.
STEMI-In addition to above, reperfusion therapy most important (percutaneous coronary intervention preferred over fibrinolysis).

Cardiomyopathies

Heart failure

Clinical syndrome of cardiac pump dysfunction \rightarrow congestion and low perfusion. Symptoms include dyspnea, orthopnea, fatigue; signs include rales, jugular venous distention (JVD), pitting edema \boldsymbol{A}.
Systolic dysfunction—reduced EF, \uparrow EDV; \downarrow contractility often 2° to ischemia/MI or dilated cardiomyopathy.
Diastolic dysfunction—preserved EF, normal EDV; \downarrow compliance often 2° to myocardial hypertrophy.
Right HF most often results from left HF. Cor pulmonale refers to isolated right HF due to pulmonary cause.
ACE inhibitors or angiotensin II receptor blockers, β-blockers (except in acute decompensated HF), and spironolactone \downarrow mortality. Thiazide or loop diuretics are used mainly for symptomatic relief. Hydralazine with nitrate therapy improves both symptoms and mortality in select patients.

Shock
Inadequate organ perfusion and delivery of nutrients necessary for normal tissue and cellular function. Initially may be reversible but life-threatening if not treated promptly.

	CAUSED BY	SKIN	PCWP (PRELOAD)	CO	SVR (AFTERLOAD)	TREATMENT
Hypovolemic	Hemorrhage, dehydration, burns	Cold, clammy	$\downarrow \downarrow$	\downarrow	\dagger	IV fluids
Cardiogenic Obstructive	Acute MI, HF, valvular dysfunction, arrhythmia Cardiac tamponade, pulmonary embolism	Cold, clammy	\uparrow	$\downarrow \downarrow$	\uparrow	Inotropes, diuresis Relieve obstruction
Distributive	Sepsis, anaphylaxis CNS injury	Warm Dry	\downarrow	\uparrow	$\begin{aligned} & \downarrow \downarrow \\ & \downarrow \downarrow \end{aligned}$	IV fluids, pressors

Bacterial endocarditis

Fever (most common symptom), new murmur, Roth spots (round white spots on retina surrounded by hemorrhage), Osler nodes (tender raised lesions on finger or toe pads), Janeway lesions (small, painless, erythematous lesions on palm or sole) A, glomerulonephritis, septic arterial or pulmonary emboli, splinter hemorrhages B on nail bed. Multiple blood cultures necessary for diagnosis.

- Acute-S aureus (high virulence). Large vegetations on previously normal valves C. Rapid onset.
- Subacute-viridans streptococci (low virulence). Smaller vegetations on congenitally abnormal or diseased valves. Sequela of dental procedures. Gradual onset.
S bovis (gallolyticus) is present in colon cancer, S epidermidis on prosthetic valves.
Endocarditis may also be nonbacterial (marantic/thrombotic) 2° to malignancy, hypercoagulable state, or lupus.

Mitral valve is most frequently involved.
Tricuspid valve endocarditis is associated with IV drug abuse (don't "tri" drugs). Associated with S aureus, Pseudomonas, and Candida.
Culture Θ-most likely Coxiella burnetii, Bartonella spp., HACEK (Haemophilus, Aggregatibacter (formerly Actinobacillus), Cardiobacterium, Eikenella, Kingella)
Bacteria FROM JANE
Fever
Roth spots
Osler nodes
Murmur
Janeway lesions
Anemia
Nail-bed hemorrhage
Emboli

A consequence of pharyngeal infection with group A β-hemolytic streptococci. Late sequelae include rheumatic heart disease, which affects heart valves-mitral > aortic >> tricuspid (high-pressure valves affected most). Early lesion is mitral valve regurgitation; late lesion is mitral stenosis. Associated with Aschoff bodies (granuloma with giant cells [blue arrows in \boldsymbol{A}]), Anitschkow cells (enlarged macrophages with ovoid, wavy, rod-like nucleus [red arrow in A]), \uparrow antistreptolysin O (ASO) titers.
Immune mediated (type II hypersensitivity); not a direct effect of bacteria. Antibodies to M protein cross-react with self antigens (molecular mimicry).
Treatment/prophylaxis: penicillin.

JPNES (major criteria): Joint (migratory polyarthritis) \checkmark (carditis) Nodules in skin (subcutaneous) Erythema marginatum Sydenham chorea

Acute pericarditis

Inflammation of the pericardium [\mathbf{A}, arrows]. Commonly presents with sharp pain, aggravated by inspiration, and relieved by sitting up and leaning forward. Often complicated by pericardial effusion [white arrow in A]. Presents with friction rub. ECG changes include widespread STsegment elevation and/or PR depression.
Causes include idiopathic (most common; presumed viral), confirmed infection (eg, Coxsackievirus), neoplasia, autoimmune (eg, SLE, rheumatoid arthritis), uremia, cardiovascular (acute STEMI or Dressler syndrome), radiation therapy.

Cardiac tamponade

Compression of the heart by fluid (eg, blood, effusions [arrows in A] in pericardial space) $\rightarrow \downarrow$ CO. Equilibration of diastolic pressures in all 4 chambers.
Findings: Beck triad (hypotension, distended neck veins, distant heart sounds), \uparrow HR, pulsus paradoxus. ECG shows low-voltage QRS and electrical alternans (due to "swinging" movement of heart in large effusion).
Pulsus paradoxus $-\downarrow$ in amplitude of systolic BP by $>10 \mathrm{~mm} \mathrm{Hg}$ during inspiration. Seen in cardiac tamponade, asthma, obstructive sleep apnea, pericarditis, croup.

Syphilitic heart disease

Can result in aneurysm of ascending aorta or aortic arch, aortic insufficiency.
3° syphilis disrupts the vasa vasorum of the aorta with consequent atrophy of vessel wall and dilatation of aorta and valve ring. May see calcification of aortic root and ascending aortic arch. Leads to "tree bark" appearance of aorta.

Cardiac tumors	Most common heart tumor is a metastasis. Myxomas common 1° cardiac tumor in adults A. 90% occur in the atria (mostly left atrium). Myxomas are usually described as a "ball valve" obstruction in the left atrium (associated with multiple syncopal episodes). May hear early diastolic "tumor plop" sound.
Rhabdomyomas	Most frequent l° cardiac tumor in children (associated with tuberous sclerosis). Tin JVP on inspiration instead of a normal \downarrow. Inspiration \rightarrow negative intrathoracic pressure not transmitted to heart \rightarrow impaired filling of right ventricle \rightarrow blood backs up into venae cavae \rightarrow JVD. May be seen with constrictive pericarditis, restrictive cardiomyopathies, right atrial or ventricular tumors.

Vasculitides

	EPIDEMIOLOGY/PRESENTATION	PATHOLOGY/LABS
Large-vessel vasculitis		
Giant cell (temporal) arteritis	Usually elderly females. Unilateral headache (temporal artery), jaw claudication. May lead to irreversible blindness due to ophthalmic artery occlusion. Associated with polymyalgia rheumatica.	Most commonly affects branches of carotid artery. Focal granulomatous inflammation A. \uparrow ESR. Treat with high-dose corticosteroids prior to temporal artery biopsy to prevent blindness.
Takayasu arteritis	Usually Asian females <40 years old. "Pulseless disease" (weak upper extremity pulses), fever, night sweats, arthritis, myalgias, skin nodules, ocular disturbances.	Granulomatous thickening and narrowing of aortic arch B and proximal great vessels. \uparrow ESR. Treat with corticosteroids.
Medium-vessel vasculitis		
Polyarteritis nodosa	Young adults. Hepatitis B seropositivity in 30% of patients. Fever, weight loss, malaise, headache. GI: abdominal pain, melena. Hypertension, neurologic dysfunction, cutaneous eruptions, renal damage.	Typically involves renal and visceral vessels, not pulmonary arteries. Immune complex mediated. Transmural inflammation of the arterial wall with fibrinoid necrosis. Different stages of inflammation may coexist in different vessels. Innumerable renal microaneurysms © and spasms on arteriogram. Treat with corticosteroids, cyclophosphamide.
Kawasaki disease (mucocutaneous lymph node syndrome)	Asian children <4 years old. Conjunctival injection, Rash (polymorphous \rightarrow desquamating), Adenopathy (cervical), Strawberry tongue (oral mucositis) D, Handfoot changes (edema, erythema), fever.	CRASH and burn. May develop coronary artery aneurysms [thrombosis or rupture can cause death. Treat with IV immunoglobulin and aspirin.
Buerger disease (thromboangiitis obliterans)	Heavy smokers, males <40 years old. Intermittent claudication may lead to gangrene (F, autoamputation of digits, superficial nodular phlebitis. Raynaud phenomenon is often present.	Segmental thrombosing vasculitis. Treat with smoking cessation.
Small-vessel vasculitis		
Granulomatosis with polyangiitis (Wegener)	Upper respiratory tract: perforation of nasal septum, chronic sinusitis, otitis media, mastoiditis. Lower respiratory tract: hemoptysis, cough, dyspnea. Renal: hematuria, red cell casts.	Triad: - Focal necrotizing vasculitis - Necrotizing granulomas in the lung and upper airway - Necrotizing glomerulonephritis PR3-ANCA/c-ANCA G (anti-proteinase 3). CXR: large nodular densities. Treat with cyclophosphamide, corticosteroids.
Microscopic polyangiitis	Necrotizing vasculitis commonly involving lung, kidneys, and skin with pauci-immune glomerulonephritis and palpable purpura. Presentation similar to granulomatosis with polyangiitis but without nasopharyngeal involvement.	No granulomas. MPO-ANCA/p-ANCA (anti- myeloperoxidase). Treat with cyclophosphamide, corticosteroids.

Vasculitides (continued)

	EPIDEMIOLOGY/PRESENTATION	PATHOLOGY/LABS
Small-vessel vasculitis (continued)		
Eosinophilic granulomatosis with polyangiitis (ChurgStrauss)	Asthma, sinusitis, skin nodules or purpura, peripheral neuropathy (eg, wrist/foot drop). Can also involve heart, GI, kidneys (pauciimmune glomerulonephritis).	Granulomatous, necrotizing vasculitis with eosinophilia $■$. MPO-ANCA/p-ANCA, \uparrow IgE level.
Henoch-Schönlein purpura	Most common childhood systemic vasculitis. Often follows URI. Classic triad: - Skin: palpable purpura on buttocks/legs J - Arthralgias - GI: abdominal pain	Vasculitis 2° to IgA immune complex deposition. Associated with IgA nephropathy (Berger disease).

CARDIOVASCULAR—PHARMACOLOGY

Hypertension treatment		
Primary (essential) hypertension	Thiazide diuretics, ACE inhibitors, angiotensin II receptor blockers (ARBs), dihydropyridine Ca^{2+} channel blockers.	
Hypertension with heart failure	Diuretics, ACE inhibitors/ARBs, β-blockers (compensated HF), aldosterone antagonists.	β-blockers must be used cautiously in decompensated HF and are contraindicated in cardiogenic shock.
Hypertension with diabetes mellitus	ACE inhibitors/ARBs, Ca^{2+} channel blockers, thiazide diuretics, β-blockers.	ACE inhibitors/ARBs are protective against diabetic nephropathy.
Hypertension in pregnancy	Hydralazine, labetalol, methyldopa, nifedipine.	

Calcium channel blockers	Amlodipine, clevidipine, nicardipine, nifedipine, nimodipine (dihydropyridines, act on vascular smooth muscle); diltiazem, verapamil (non-dihydropyridines, act on heart).
mechanism	Block voltage-dependent L-type calcium channels of cardiac and smooth muscle $\rightarrow \downarrow$ muscle contractility. Vascular smooth muscle-amlodipine $=$ nifedipine $>$ diltiazem $>$ verapamil. Heart-verapamil $>$ diltiazem $>$ amlodipine $=$ nifedipine (verapamil $=$ ventricle).
CLINICAL USE	Dihydropyridines (except nimodipine): hypertension, angina (including Prinzmetal), Raynaud phenomenon. Nimodipine: subarachnoid hemorrhage (prevents cerebral vasospasm). Clevidipine: hypertensive urgency or emergency. Non-dihydropyridines: hypertension, angina, atrial fibrillation/flutter.
ADVERSE Effects	Non-dihydropyridine: cardiac depression, AV block, hyperprolactinemia, constipation. Dihydropyridine: peripheral edema, flushing, dizziness, gingival hyperplasia.

Hydralazine

MECHANISM	\uparrow cGMP \rightarrow smooth muscle relaxation. Vasodilates arterioles > veins; afterload reduction.
CLIIICALUSE	Severe hypertension (particularly acute), HF (with organic nitrate). Safe to use during pregnancy.
Frequently coadministered with a β-blocker to prevent reflex tachycardia.	
ADVERSEEFFECTS	Compensatory tachycardia (contraindicated in angina/CAD), fluid retention, headache, angina.
	Lupus-like syndrome.

Hypertensive emergency	Drugs include clevidipine, fenoldopam, labetalol, nicardipine, nitroprusside.
Nitroprusside	Short acting; \uparrow cGMP via direct release of NO. Can cause cyanide toxicity (releases cyanide).
Fenoldopam	Dopamine D_{1} receptor agonist-coronary, peripheral, renal, and splanchnic vasodilation. $\downarrow \mathrm{BP}$, \uparrow natriuresis. Also used postoperatively as an antihypertensive. Can cause hypotension and tachycardia.

Nitrates	Nitroglycerin, isosorbide dinitrate, isosorbide mononitrate.
MECHANISM	Vasodilate by \uparrow NO in vascular smooth muscle $\rightarrow \uparrow$ in cGMP and smooth muscle relaxation. Dilate veins \gg arteries. \downarrow preload.
CLINICAL USE	Angina, acute coronary syndrome, pulmonary edema.
ADVERSE EFFECTS	Reflex tachycardia (treat with β-blockers), hypotension, flushing, headache, "Monday disease" in industrial exposure: development of tolerance for the vasodilating action during the work week and loss of tolerance over the weekend \rightarrow tachycardia, dizziness, headache upon reexposure.

Antianginal therapy Goal is reduction of myocardial O_{2} consumption $\left(\mathrm{MVO}_{2}\right)$ by $\downarrow 1$ or more of the determinants of MVO_{2} : end-diastolic volume, BP, HR, contractility.

COMPONENT	NITRATES	β-BLOCKERS	NITRATES $+\beta$-BLOCKERS
End-diastolic volume	\downarrow	No effect or \uparrow	No effect or \downarrow
Blood pressure	\downarrow	\downarrow	\downarrow
Contractility	No effect	\downarrow	Little/no effect
Heart rate	\uparrow (reflex response)	\downarrow	No effect or \downarrow
Ejection time	\downarrow	\uparrow	Little/no effect
MVO_{2}	\downarrow	\downarrow	$\downarrow \downarrow$

Verapamil is similar to β-blockers in effect.
Pindolol and acebutolol-partial β-agonists contraindicated in angina.

Ranolazine

MECHANISM	Inhibits the late phase of sodium current thereby reducing diastolic wall tension and oxygen consumption. Does not affect heart rate or contractility.
CLINICAL USE	Angina refractory to other medical therapies.
ADVERSEEFFECTS	Constipation, dizziness, headache, nausea, QT prolongation.

Lipid-lowering agents

DRUG	LDL	HDL	TRIGLYCERIDES	MECHANISMS OF ACTION	ADVERSE EFFECTS/PROBLEMS
HMG-CoA reductase inhibitors (eg, lovastatin, pravastatin)	$\downarrow \downarrow$	\uparrow	\downarrow	Inhibit conversion of HMGCoA to mevalonate, a cholesterol precursor; \downarrow mortality in CAD patients	Hepatotoxicity (\uparrow LFTs), myopathy (esp. when used with fibrates or niacin)
Bile acid resins Cholestyramine, colestipol, colesevelam	$\downarrow \downarrow$	Slightly \uparrow	Slightly \uparrow	Prevent intestinal reabsorption of bile acids; liver must use cholesterol to make more	GI upset, \downarrow absorption of other drugs and fat-soluble vitamins
Ezetimibe	$\downarrow \downarrow$	-	-	Prevent cholesterol absorption at small intestine brush border	Rare \uparrow LFTs, diarrhea
Fibrates Gemfibrozil, bezafibrate, fenofibrate	\downarrow	\uparrow	$\downarrow \downarrow \downarrow$	Upregulate LPL $\rightarrow \uparrow$ TG clearance Activates PPAR- α to induce HDL synthesis	Myopathy (\uparrow risk with statins), cholesterol gallstones
Niacin (vitamin B_{3})	\downarrow	$\uparrow \uparrow$	\downarrow	Inhibits lipolysis (hormonesensitive lipase) in adipose tissue; reduces hepatic VLDL synthesis	Red, flushed face, which is \downarrow by NSAIDs or long-term use Hyperglycemia Hyperuricemia

Cardiac glycosides	Digoxin.
mechanism	Direct inhibition of $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase \rightarrow indirect inhibition of $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger. $\uparrow\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}} \rightarrow$ positive inotropy. Stimulates vagus nerve $\rightarrow \downarrow$ HR.
ClINICAL USE	HF (\uparrow contractility); atrial fibrillation (\downarrow conduction at AV node and depression of SA node).
ADVERSE EfFECTS	Cholinergic—nausea, vomiting, diarrhea, blurry yellow vision (think van Gogh), arrhythmias, AV block. Can lead to hyperkalemia, which indicates poor prognosis. Factors predisposing to toxicity: renal failure (\downarrow excretion), hypokalemia (permissive for digoxin binding at K^{+}-binding site on $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase), drugs that displace digoxin from tissue-binding sites, and \downarrow clearance (eg, verapamil, amiodarone, quinidine).
Antidote	Slowly normalize K^{+}, cardiac pacer, anti-digoxin Fab fragments, Mg^{2+}.

Antiarrhythmicssodium channel blockers (class I)

Slow or block (\downarrow) conduction (especially in depolarized cells). \downarrow slope of phase 0 depolarization. Are state dependent (selectively depress tissue that is frequently depolarized [eg, tachycardia]).

Antiarrhythmics- β-blockers (class II)	Metoprolol, propranolol, esmolol, atenolol, timolol, carvedilol.
mechanism	Decrease SA and AV nodal activity by \downarrow cAMP, $\downarrow \mathrm{Ca}^{2+}$ currents. Suppress abnormal pacemakers by \downarrow slope of phase 4. AV node particularly sensitive- \uparrow PR interval. Esmolol very short acting.
ClINICAL USE	SVT, ventricular rate control for atrial fibrillation and atrial flutter.
AdVERSE EfFECTS	Impotence, exacerbation of COPD and asthma, cardiovascular effects (bradycardia, AV block, HF), CNS effects (sedation, sleep alterations). May mask the signs of hypoglycemia. Metoprolol can cause dyslipidemia. Propranolol can exacerbate vasospasm in Prinzmetal angina. β-blockers (except the nonselective α - and β-antagonists carvedilol and labetalol) cause unopposed α_{1}-agonism if given alone for pheochromocytoma or cocaine toxicity. Treat β-blocker overdose with saline, atropine, glucagon.

Antiarrhythmicspotassium channel blockers (class III)

MECHANISM	\uparrow AP duration, \uparrow ERP, \uparrow QT interval.	
CLINICAL USE	Atrial fibrillation, atrial flutter; ventricular tachycardia (amiodarone, sotalol).	
ADVERSE EFFECTS	Sotalol-torsades de pointes, excessive β blockade.	Remember to check PFTs, LFTs, and TFTs when using amiodarone.
	Ibutilide—torsades de pointes. Amiodarone—pulmonary fibrosis,	Amiodarone is lipophilic and has class I, II, III, and IV effects.

Antiarrhythmics- \quad Verapamil, diltiazem.
calcium channel
blockers (class IV)
(class IV)
MECHANISM \downarrow conduction velocity, \uparrow ERP, \uparrow PR interval.

CLINICALUSE Prevention of nodal arrhythmias (eg, SVT), rate control in atrial fibrillation.
adverse effects Constipation, flushing, edema, cardiovascular effects (HF, AV block, sinus node depression).

Other antiarrhythmics

Adenosine	$\uparrow \mathrm{K}^{+}$out of cells \rightarrow hyperpolarizing the cell and $\downarrow \mathrm{I}_{\mathrm{Ca}}$. Drug of choice in diagnosing/terminating certain forms of SVT. Very short acting $(\sim 15$ sec $)$. Effects blunted by theophylline and caffeine (both are adenosine receptor antagonists). Adverse effects include flushing, hypotension, chest pain, sense of impending doom, bronchospasm.
$\mathbf{M g}^{\mathbf{2 +}}$	Effective in torsades de pointes and digoxin toxicity.

HIGH-YIELD SYSTEMS

Endocrine

"We have learned that there is an endocrinology of elation and despair, a chemistry of mystical insight, and, in relation to the autonomic nervous system, a meteorology and even . . . an astro-physics of changing moods." - Aldous (Leonard) Huxley

DEmbryology	306
D Anatomy	306
D Physiology	308
D Pathology	317
DPharmacology	334

ENDOCRINE-EMBRYOLOGY

Thyroid development

Thyroid diverticulum arises from floor of primitive pharynx and descends into neck. Connected to tongue by thyroglossal duct, which normally disappears but may persist as cysts or the pyramidal lobe of thyroid. Foramen cecum is normal remnant of thyroglossal duct. Most common ectopic thyroid tissue site is the tongue (lingual thyroid). Removal may result in hypothyroidism if it is the only thyroid tissue present.
Thyroglossal duct cyst A presents as an anterior midline neck mass that moves with swallowing or protrusion of the tongue (vs persistent cervical sinus leading to branchial cleft cyst in lateral neck).
Thyroid tissue is derived from endoderm. Parafollicular cells (aka, C cells) of the thyroid are derived from neural crest.

DENDOCRINE—ANATOMY

Adrenal cortex and Adrenal cortex (derived from mesoderm) and medulla (derived from neural crest). medulla

GFR corresponds with Salt $\left(\mathrm{Na}^{+}\right)$, Sugar (glucocorticoids), and Sex (androgens).
"The deeper you go, the sweeter it gets."

Pituitary gland

Anterior pituitary (adenohypophysis)	Secretes FSH, LH, ACTH, TSH, prolactin, GH. Melanotropin (MSH) secreted from intermediate lobe of pituitary. Derived from oral ectoderm (Rathke pouch). - α subunit-hormone subunit common to TSH, LH, FSH, and hCG. - β subunit-determines hormone specificity.	ACTH and MSH are derivatives of proopiomelanocortin (POMC). FLAT PiG: FSH, LH, ACTH, TSH, PRL, GH. B-FLAT: Basophils-FSH, LH, ACTH, TSH. Acidophils: GH, PRL.
Posterior pituitary (neurohypophysis)	Stores and releases vasopressin (antidiuretic hormone, or ADH) and oxytocin, both made in the hypothalamus (supraoptic and paraventricular nuclei) and transported to posterior pituitary via neurophysins (carrier proteins). Derived from neuroectoderm.	

Endocrine pancreas cell types

Islets of Langerhans are collections of α, β, and
δ endocrine cells. Islets arise from pancreatic buds.

- $\alpha=$ glucagon (peripheral)
- $\beta=$ insulin (central)
- $\delta=$ somatostatin (interspersed)

Insulin (β cells) inside.

ENDOCRINE—PHYSIOLOGY

Insulin

SOURCE
FUNCTION

Released from pancreatic β cells.

Binds insulin receptors (tyrosine kinase activity (1), inducing glucose uptake (carriermediated transport) into insulin-dependent tissue 2 and gene transcription.
Anabolic effects of insulin:

- \uparrow glucose transport in skeletal muscle and adipose tissue
- \uparrow glycogen synthesis and storage
- \uparrow triglyceride synthesis
- $\uparrow \mathrm{Na}^{+}$retention (kidneys)
- \uparrow protein synthesis (muscles)
- \uparrow cellular uptake of K^{+}and amino acids
- \downarrow glucagon release
- \downarrow lipolysis in adipose tissue

Unlike glucose, insulin does not cross placenta.

Insulin-dependent glucose transporters:

- GLUT-4: adipose tissue, striated muscle (exercise can also increase GLUT-4 expression)
Insulin-independent transporters:
- GLUT-l: RBCs, brain, cornea, placenta
- GLUT-2 (bidirectional): β islet cells, liver, kidney, small intestine
- GLUT-3: brain, placenta
- GLUT-5 (fructose): spermatocytes, GI tract

Brain utilizes glucose for metabolism normally and ketone bodies during starvation. RBCs always utilize glucose because they lack mitochondria for aerobic metabolism.
BRICK L (insulin-independent glucose uptake): Brain, RBCs, Intestine, Cornea, Kidney, Liver.

Glucose is the major regulator of insulin release. \uparrow insulin response with oral vs IV glucose because of incretins such as glucagon-like peptide l (GLP-l), which are released after meals and $\uparrow \beta$ cell sensitivity to glucose.
Glucose enters β cells $\mathbf{3} \rightarrow \uparrow$ ATP generated from glucose metabolism 4 closes K^{+}channels (target of sulfonylureas) $\boldsymbol{5}$ and depolarizes β cell membrane $\boldsymbol{6}$. Voltage-gated Ca^{2+} channels open $\rightarrow \mathrm{Ca}^{2+}$ influx $\boldsymbol{\square}$ and stimulation of insulin exocytosis 8

Glucagon

SOURCE	Made by α cells of pancreas.
FUNCTION	Catabolic effects of glucagon: $=$ Glycogenolysis, gluconeogenesis
Regulation	Sipolysis and ketone production

Hypothalamic-pituitary hormones

hormone	function	Clinical notes
CRH	\uparrow ACTH, MSH, β-endorphin	\downarrow in chronic exogenous steroid use
Dopamine	\downarrow prolactin, TSH	Dopamine antagonists (eg, antipsychotics) can cause galactorrhea due to hyperprolactinemia
GHRH	\uparrow GH	Analog (tesamorelin) used to treat HIV-associated lipodystrophy
GnRH	\uparrow FSH, LH	Suppressed by hyperprolactinemia Tonic GnRH suppresses HPG axis Pulsatile GnRH leads to puberty, fertility
Prolactin	\downarrow GnRH	Pituitary prolactinoma \rightarrow amenorrhea, osteoporosis, hypogonadism, galactorrhea
Somatostatin	\downarrow GH, TSH	Analogs used to treat acromegaly
TRH	\uparrow TSH, prolactin	

Prolactin

SOURCE	Secreted mainly by anterior pituitary.	Structurally homologous to growth hormone.
FUNCTION	Stimulates milk production in breast; inhibits ovulation in females and spermatogenesis in males by inhibiting GnRH synthesis and release.	Excessive amounts of prolactin associated with \downarrow libido.
REGULATION	Prolactin secretion from anterior pituitary is tonically inhibited by dopamine from hypothalamus. Prolactin in turn inhibits its own secretion by \uparrow dopamine synthesis and secretion from hypothalamus. TRH \uparrow prolactin secretion $\left(\right.$ eg, in l° or 2°	Dopamine agonists (eg, bromocriptine) inhibit prolactin secretion and can be used in treatment of prolactinoma.
	Dopamine antagonists (eg, most antipsychotics)	
and estrogens (eg, OCPs, pregnancy) stimulate		
prolactin secretion.		

Growth hormone (somatotropin)

source	Secreted by anterior pituitary.	
function	Stimulates linear growth and muscle mass through IGF-1 (somatomedin C) secretion by liver. \uparrow insulin resistance (diabetogenic).	
regulation	Released in pulses in response to growth hormone-releasing hormone (GHRH). Secretion \uparrow during exercise, deep sleep, puberty, hypoglycemia. Secretion inhibited by glucose and somatostatin release via negative feedback by somatomedin.	Excess secretion of GH (eg, pituitary adenoma) may cause acromegaly (adults) or gigantism (children). Treat with somatostatin analogs (eg, octreotide) or surgery.
Appetite regulation		
Ghrelin	Stimulates hunger (orexigenic effect) and GH release (via GH secretagog receptor). Produced by stomach. Sleep deprivation or Prader-Willi syndrome $\rightarrow \uparrow$ ghrelin production.	Ghrelin makes you hunghre.
Leptin	Satiety hormone. Produced by adipose tissue. Mutation of leptin gene \rightarrow congenital obesity. Sleep deprivation or starvation $\rightarrow \downarrow$ leptin production.	Leptin keeps you thin.
Endocannabinoids	Act at cannabinoid receptors in hypothalamus and nucleus accumbens, two key brain areas for the homeostatic and hedonic control of food intake $\rightarrow \uparrow$ appetite.	The munchies.

Antidiuretic hormone

Source	Synthesized in hypothalamus (supraoptic nuclei), stored and secreted by posterior pituitary.	
Function	Regulates serum osmolarity (V_{2}-receptors) and blood pressure (V_{1}-receptors). Primary function is serum osmolarity regulation (ADH \downarrow serum osmolarity, \uparrow urine osmolarity) via regulation of aquaporin channel insertion in principal cells of renal collecting duct.	ADH level is \downarrow in central diabetes insipidus (DI), normal or \uparrow in nephrogenic DI. Nephrogenic DI can be caused by mutation in V_{2}-receptor. Desmopressin acetate (ADH analog) is a treatment for central DI and nocturnal enuresis.

Adrenal steroids and congenital adrenal hyperplasias

${ }^{\text {a All congenital adrenal enzyme deficiencies are characterized by an enlargement of both adrenal glands due to } \uparrow \text { ACTH }}$ stimulation (in response to \downarrow cortisol).

Cortisol

SOURCE	Adrenal zona fasciculata.	Bound to corticosteroid-binding globulin.
FUNCTION	\uparrow Blood pressure: - Upregulates α_{1}-receptors on arterioles $\rightarrow \uparrow$ sensitivity to norepinephrine and epinephrine - At high concentrations, can bind to mineralocorticoid (aldosterone) receptors \uparrow Insulin resistance (diabetogenic) \uparrow Gluconeogenesis, lipolysis, and proteolysis \downarrow Fibroblast activity (causes striae) \downarrow Inflammatory and Immune responses: - Inhibits production of leukotrienes and prostaglandins - Inhibits WBC adhesion \rightarrow neutrophilia - Blocks histamine release from mast cells - Reduces eosinophils - Blocks IL-2 production \downarrow Bone formation (\downarrow osteoblast activity)	Cortisol is a BIG FIB. Exogenous corticosteroids can cause reactivation of TB and candidiasis (blocks IL-2 production).
Regulation	CRH (hypothalamus) stimulates ACTH release (pituitary) \rightarrow cortisol production in adrenal zona fasciculata. Excess cortisol \downarrow CRH, ACTH, and cortisol secretion.	Chronic stress induces prolonged secretion.

Calcium homeostasis
Plasma Ca^{2+} exists in three forms:

- Ionized ($\sim 45 \%$)
- Bound to albumin ($\sim 40 \%$)
- Bound to anions ($\sim 15 \%$)
\uparrow in $\mathrm{pH} \rightarrow \uparrow$ affinity of albumin (\uparrow negative charge) to bind $\mathrm{Ca}^{2+} \rightarrow$ hypocalcemia (cramps, pain, paresthesias, carpopedal spasm).

Vitamin D (cholecalciferol)

SOURCE	D_{3} from exposure of skin to sun, ingestion of fish and plants. D_{2} from ingestion of plants, fungi, yeasts. Both converted to $25-\mathrm{OH}$ in liver and to $1,25-(\mathrm{OH})_{2}$ (active form) in kidney.	Deficiency \rightarrow rickets in kids, osteomalacia in adults. Caused by malabsorption, \downarrow sunlight, poor diet, chronic kidney failure. $24,25-(\mathrm{OH})_{2} \mathrm{D}_{3}$ is an inactive form of vitamin D . PTH leads to $\uparrow \mathrm{Ca}^{2+}$ reabsorption and $\downarrow \mathrm{PO}_{4}{ }^{3-}$ reabsorption in the kidney, whereas 1,25-(OH) ${ }_{2} \mathrm{D}_{3}$ leads to \uparrow absorption of both Ca^{2+} and PO_{4}^{3-} in the gut.
FUNCTION	\uparrow absorption of dietary Ca^{2+} and PO_{4}^{3-}. Enhances bone mineralization.	
regulation	\uparrow PTH, $\downarrow \mathrm{Ca}^{2+}, \downarrow \mathrm{PO}_{4}{ }^{3-} \rightarrow \uparrow 1,25-(\mathrm{OH})_{2}$ production.	
	$1,25-(\mathrm{OH})_{2}$ feedback inhibits its own production.	

Parathyroid hormone

Chief cells of parathyroid.
\uparrow bone resorption of Ca^{2+} and $\mathrm{PO}_{4}{ }^{3-}$.
\uparrow kidney reabsorption of Ca^{2+} in distal convoluted tubule.
\downarrow reabsorption of $\mathrm{PO}_{4}{ }^{3-}$ in proximal convoluted tubule.
$\uparrow 1,25-(\mathrm{OH})_{2} \mathrm{D}_{3}$ (calcitriol) production by stimulating kidney l α-hydroxylase in proximal convoluted tubule.

PTH \uparrow serum $\mathrm{Ca}^{2+}, \downarrow$ serum $\left(\mathrm{PO}_{4}{ }^{3-}\right), \uparrow$ urine $\left(\mathrm{PO}_{4}{ }^{3-}\right), \uparrow$ urine cAMP.
\uparrow RANK-L (receptor activator of NH-kB ligand) secreted by osteoblasts and osteocytes. Binds RANK (receptor) on osteoclasts and their precursors to stimulate osteoclasts and $\uparrow \mathrm{Ca}^{2+}$ \rightarrow bone resorption. Intermittent PTH release can also stimulate bone formation.
PTH $=$ Phosphate Trashing Hormone. PTH-related peptide (PTHrP) functions like PTH and is commonly increased in malignancies (eg, squamous cell carcinoma of the lung, renal cell carcinoma).

Calcitonin

SOURCE	Parafollicular cells $(\mathrm{C}$ cells) of thyroid.	Calcitonin opposes actions of PTH. Not
FUNCTION	\downarrow bone resorption of Ca^{2+}.	important in normal Ca^{2+} homeostasis.
REGULATION	\uparrow serum $\mathrm{Ca}^{2+} \rightarrow$ calcitonin secretion.	Calcitonin tones down Ca^{2+} levels.

Thyroid hormones
($\mathrm{T}_{3} / \mathrm{T}_{4}$)
SOURCE

FUNCTION

REGULATION

Iodine-containing hormones that control the body's metabolic rate.

Follicles of thyroid. Most T_{3} formed in target tissues.
Bone growth (synergism with GH)
CNS maturation
$\uparrow \beta_{1}$ receptors in heart $=\uparrow \mathrm{CO}, \mathrm{HR}, \mathrm{SV}$, contractility
\uparrow basal metabolic rate via $\uparrow \mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase activity $\rightarrow \uparrow \mathrm{O}_{2}$ consumption, RR , body temperature
\uparrow glycogenolysis, gluconeogenesis, lipolysis
TRH (hypothalamus) stimulates TSH (pituitary), which stimulates follicular cells. May also be stimulated by thyroid-stimulating immunoglobulin (TSI) in Graves disease. Negative feedback by free $\mathrm{T}_{3}, \mathrm{~T}_{4}$ to anterior pituitary \downarrow sensitivity to TRH. Wolff-Chaikoff effect-excess iodine temporarily inhibits thyroid peroxidase $\rightarrow \downarrow$ iodine organification $\rightarrow \downarrow \mathrm{T}_{3} / \mathrm{T}_{4}$ production.
T_{3} functions-4 B's:
Brain maturation
Bone growth
β-adrenergic effects
Basal metabolic rate \uparrow
Thyroxine-binding globulin (TBG) binds most $\mathrm{T}_{3} / \mathrm{T}_{4}$ in blood; only free hormone is active. \downarrow TBG in hepatic failure, steroids; \uparrow TBG in pregnancy or OCP use (estrogen \uparrow TBG).
T_{4} is major thyroid product; converted to T_{3} in peripheral tissue by 5 '-deiodinase.
T_{3} binds nuclear receptor with greater affinity than T_{4}.
Thyroid peroxidase is the enzyme responsible for oxidation and organification of iodide as well as coupling of monoiodotyrosine (MIT) and di-iodotyrosine (DIT). DIT + DIT $=\mathrm{T}_{4}$. DIT + MIT $=\mathrm{T}_{3}$.
Propylthiouracil inhibits both thyroid peroxidase and 5'-deiodinase. Methimazole inhibits thyroid peroxidase only.

Signaling pathways of endocrine hormones

cAMP	FSH, LH, ACTH, TSH, CRH, hCG, ADH (V_{2}-receptor), MSH, PTH, calcitonin, GHRH, glucagon	FLAT ChAMP
cGMP	BNP, ANP, EDRF (NO)	BAD GraMPa Think vasodilators
IP_{3}	GnRH, Oxytocin, ADH (V_{1}-receptor), TRH, Histamine (H_{1}-receptor), Angiotensin II, Gastrin	GOAT HAG
Intracellular receptor	Progesterone, Estrogen, Testosterone, Cortisol, Aldosterone, $\mathrm{T}_{3} / \mathrm{T}_{4}$, Vitamin D	PET CAT on TV
Receptor tyrosine kinase	Insulin, IGF-1, FGF, PDGF, EGF	MAP kinase pathway Think growth factors
Nonreceptor tyrosine kinase	Prolactin, Immunomodulators (eg, cytokines IL-2, IL-6, IFN), GH, G-CSF, Erythropoietin, Thrombopoietin	JAK/STAT pathway Think acidophils and cytokines PIGGLET

Signaling pathway of steroid hormones

Steroid hormones are lipophilic and therefore must circulate bound to specific binding globulins, which \uparrow their solubility. In men, \uparrow sex hormone-binding globulin (SHBG) lowers free testosterone \rightarrow gynecomastia.
In women, \downarrow SHBG raises free testosterone \rightarrow hirsutism.
OCPs, pregnancy $\rightarrow \uparrow$ SHBG.

(H) Hormone

Cushing syndrome

etiology	\uparrow cortisol due to a variety of causes: - Exogenous corticosteroids—result in \downarrow ACTH, bilateral adrenal atrophy. Most common cause. - Primary adrenal adenoma, hyperplasia, or carcinoma-result in \downarrow ACTH, atrophy of uninvolved adrenal gland. Can also present with pseudohyperaldosteronism. - ACTH-secreting pituitary adenoma (Cushing disease); paraneoplastic ACTH secretion (eg, small cell lung cancer, bronchial carcinoids)-result in \uparrow ACTH, bilateral adrenal hyperplasia. Cushing disease is responsible for the majority of endogenous cases of Cushing syndrome.
FINDINGS	Hypertension, weight gain, moon facies A, abdominal striae B and truncal obesity, buffalo hump, skin changes (thinning, striae), osteoporosis, hyperglycemia (insulin resistance), amenorrhea, immunosuppression.
DIAGNOSIS	Screening tests include: \uparrow free cortisol on 24-hr urinalysis, \uparrow midnight salivary cortisol, and no suppression with overnight low-dose dexamethasone test. Measure serum ACTH. If \downarrow, suspect adrenal tumor or exogenous glucocorticoids. If \uparrow, distinguish between Cushing disease and ectopic ACTH secretion with a high-dose (8 mg) dexamethasone suppression test and CRH stimulation test. Ectopic secretion will not decrease with dexamethasone because the source is resistant to negative feedback; ectopic secretion will not increase with CRH because pituitary ACTH is suppressed.

Adrenal insufficiency

Inability of adrenal glands to generate enough glucocorticoids +/- mineralocorticoids for the body's needs. Symptoms include weakness, fatigue, orthostatic hypotension, muscle aches, weight loss, GI disturbances, sugar and/ or salt cravings. Treatment: glucocorticoid/ mineralocorticoid replacement.

Diagnosis involves measurement of serum electrolytes, morning/random serum cortisol and ACTH (low cortisol, high ACTH in 1° adrenal insufficiency; low cortisol, low ACTH in $2^{\circ} / 3^{\circ}$ adrenal insufficiency due to pituitary/ hypothalamic disease), and response to ACTH stimulation test.
Alternatively, can use metyrapone stimulation test: metyrapone blocks last step of cortisol synthesis (ll-deoxycortisol \rightarrow cortisol). Normal response is \downarrow cortisol and compensatory \uparrow ACTH and ll-deoxycortisol. In 1° adrenal insufficiency, ACTH is \uparrow but ll-deoxycortisol remains \downarrow after test. In $2^{\circ} / 3^{\circ}$ adrenal insufficiency, both ACTH and 11-deoxycortisol remain \downarrow after test.
Primary Pigments the skin/mucosa.
Associated with autoimmune polyglandular syndromes.
Waterhouse-Friderichsen syndrome-acute 1° adrenal insufficiency due to adrenal hemorrhage associated with septicemia (usually Neisseria meningitidis), DIC, endotoxic shock.

Secondary adrenal insufficiency	Seen with \downarrow pituitary ACTH production. No skin/mucosal hyperpigmentation, no hyperkalemia (aldosterone synthesis preserved).	Secondary Spares the skin/mucosa.
Tertiary adrenal insufficiency	Seen in patients with chronic exogenous steroid use, precipitated by abrupt withdrawal. Aldosterone synthesis unaffected.	Tertiary from Treatment.

Hyperaldosteronism	Increased secretion of aldosterone from adrenal gland. Clinical features include hypertension, \downarrow or normal K^{+}, metabolic alkalosis. No edema due to aldosterone escape mechanism.
Primary hyperaldosteronism	Seen with adrenal adenoma (Conn syndrome) or idiopathic adrenal hyperplasia. \uparrow aldosterone, \downarrow renin.
Secondary hyperaldosteronism	Seen in patients with renovascular hypertension, juxtaglomerular cell tumor (due to independent activation of renin-angiotensin-aldosterone system). \uparrow aldosterone, \uparrow renin.

Neuroendocrine tumors

Group of neoplasms originating from Kulchitsky and enterochromaffin-like cells. Occur in various organs (eg, thyroid: medullary carcinoma; lungs: small cell carcinoma; pancreas: islet cell tumor; adrenals: pheochromocytoma). Cells contain amine precursor uptake decarboxylase (APUD) and secrete different hormones (eg, 5-HIAA, neuron-specific enolase [NSE], chromogranin A).

Neuroblastoma

Most common tumor of the adrenal medulla in children, usually <4 years old. Originates from neural crest cells. Occurs anywhere along the sympathetic chain \mathbb{A}.
Most common presentation is abdominal distension and a firm, irregular mass that can cross the midline (vs Wilms tumor, which is smooth and unilateral). Less likely to develop hypertension than with pheochromocytoma. Can also present with opsoclonus-myoclonus syndrome ("dancing eyes-dancing feet").
\uparrow HVA and VMA (catecholamine metabolites) in urine. Homer-Wright rosettes B characteristic of neuroblastoma and medulloblastoma. Bombesin and NSE \oplus. Associated with overexpression of $\mathrm{N}-m y c$ oncogene. Classified as an APUD tumor.

Pheochromocytoma

Most common tumor of the adrenal medulla in	Rule of 10's:
adults A. Derived from chromaffin cells (arise	10% malignant
from neural crest).	10% bilateral
Up to 25\% of cases associated with germline	10% extra-adrenal
mutations (eg, NF-1, VHL, RET [MEN 2A,	10% calcify
2B]).	10% kids

Symptoms
FINDINGS
treatment

Most tumors secrete epinephrine, norepinephrine, and dopamine, which can cause episodic hypertension.
Symptoms occur in "spells"-relapse and remit.
\uparrow catecholamines and metanephrines in urine and plasma.
Irreversible α-antagonists (eg, phenoxybenzamine) followed by β-blockers prior to tumor resection. α-blockade must be achieved before giving β-blockers to avoid a hypertensive crisis.

Episodic hyperadrenergic symptoms (5 P's):
Pressure (\uparrow BP)
Pain (headache)
Perspiration
Palpitations (tachycardia) Pallor

Phenoxybenzamine (16 letters) is given for pheochromocytoma (also 16 letters).

Hypothyroidism vs hyperthyroidism

	Hypothyroidism	Hyperthyroidism
SIGNs/symptoms	Cold intolerance (\downarrow heat production)	Heat intolerance (\uparrow heat production)
Weight gain, \downarrow appetite	Weight loss, \uparrow appetite	

Causes of goiter

| Smooth/diffuse | Nodular |
| :--- | :--- | :--- |
| Graves disease | Toxic multinodular goiter |
| Hashimoto thyroiditis | Thyroid adenoma |
| Iodine deficiency | Thyroid cancer |
| TSH-secreting pituitary adenoma | Thyroid cyst |

Hypothyroidism

Hashimoto thyroiditis
Congenital
hypothyroidism
(cretinism)

Subacute granulomatous thyroiditis (de Quervain)

Riedel thyroiditis

Most common cause of hypothyroidism in iodine-sufficient regions; an autoimmune disorder with antithyroid peroxidase (antimicrosomal) and antithyroglobulin antibodies. Associated with HLADR5. \uparrow risk of non-Hodgkin lymphoma (typically of B-cell origin).
May be hyperthyroid early in course due to thyrotoxicosis during follicular rupture.
Histologic findings: Hürthle cells, lymphoid aggregates with germinal centers A.
Findings: moderately enlarged, nontender thyroid.
Severe fetal hypothyroidism due to maternal hypothyroidism, thyroid agenesis, thyroid dysgenesis (most common cause in US), iodine deficiency, dyshormonogenetic goiter.
Findings: Pot-bellied, Pale, Puffy-faced child with Protruding umbilicus, Protuberant tongue, and Poor brain development: the 6 P's B C.
Self-limited disease often following a flu-like illness (eg, viral infection).
May be hyperthyroid early in course, followed by hypothyroidism.
Histology: granulomatous inflammation.
Findings: \uparrow ESR, jaw pain, very tender thyroid. (de Quervain is associated with pain.)
Thyroid replaced by fibrous tissue with inflammatory infiltrate D. Fibrosis may extend to local structures (eg, trachea, esophagus), mimicking anaplastic carcinoma. $1 / 3$ are hypothyroid.
Considered a manifestation of IgG_{4}-related systemic disease (eg, autoimmune pancreatitis, retroperitoneal fibrosis, noninfectious aortitis).
Findings: fixed, hard (rock-like), painless goiter.
Other causes

Iodine deficiency 国, goitrogens (eg, amiodarone, lithium), Wolff-Chaikoff effect (thyroid gland downregulation in response to \uparrow iodide).

Hyperthyroidism

Thyroid adenoma

Benign solitary growth of the thyroid. Most are nonfunctional ("cold"), can rarely cause hyperthyroidism via autonomous thyroid hormone production ("hot" or "toxic"). Most common histology is follicular \boldsymbol{A}; absence of capsular or vascular invasion (unlike follicular carcinoma).

Thyroid cancer
Treated with thyroidectomy. Complications of surgery include hoarseness (due to recurrent laryngeal nerve damage), hypocalcemia (due to removal of parathyroid glands), and transection of recurrent and superior laryngeal nerves (during ligation of inferior thyroid artery and superior laryngeal artery, respectively).
Papillary carcinoma Most common, excellent prognosis. Empty-appearing nuclei with central clearing ("Orphan

Follicular carcinoma

Medullary carcinoma

Undifferentiated/ anaplastic carcinoma

Diagnosis of parathyroid disease

Hypoparathyroidism Due to accidental surgical excision of parathyroid glands, autoimmune destruction, or DiGeorge syndrome. Findings: tetany, hypocalcemia, hyperphosphatemia.
Chvostek sign-tapping of facial nerve (tap the Cheek) \rightarrow contraction of facial muscles. Trousseau sign—occlusion of brachial artery with BP cuff (cuff the Triceps) \rightarrow carpal spasm. Pseudohypoparathyroidism type 1A (Albright hereditary osteodystrophy)—unresponsiveness of kidney to PTH \rightarrow hypocalcemia despite \uparrow PTH levels. Characterized by shortened 4th/5th digits, short stature. Autosomal dominant. Due to defective G_{s} protein α-subunit causing end-organ resistance to PTH. Defect must be inherited from mother due to imprinting. Pseudopseudohypoparathyroidism—physical exam features of Albright hereditary osteodystrophy but without end-organ PTH resistance. Occurs when defective G_{s} protein α-subunit is inherited from father.

Familial hypocalciuric hypercalcemia

Defective Ca^{2+}-sensing receptor (CaSR) in multiple tissues (eg, parathyroids, kidneys). Higher than normal Ca^{2+} levels required to suppress PTH. Excessive renal Ca^{2+} reuptake \rightarrow mild hypercalcemia and hypocalciuria with normal to \uparrow PTH levels.

Hyperparathyroidism

Primary hyperparathyroidism A	Usually due to parathyroid adenoma or hyperplasia. Hypercalcemia, hypercalciuria (renal stones), hypophosphatemia, \uparrow PTH, \uparrow ALP, \uparrow cAMP in urine. Most often asymptomatic. May present with weakness and constipation ("groans"), abdominal/flank pain (kidney stones, acute pancreatitis), depression ("psychiatric overtones").	Osteitis fibrosa cystica-cystic bone spaces filled with brown fibrous tissue A ("brown tumor" consisting of osteoclasts and deposited hemosiderin from hemorrhages; causes bone pain). "Stones, bones, groans, and psychiatric overtones."
Secondary hyperparathyroidism	2° hyperplasia due to $\downarrow \mathrm{Ca}^{2+}$ absorption and/or $\uparrow \mathrm{PO}_{4}{ }^{3-}$, most often in chronic renal disease (causes hypovitaminosis D $\rightarrow \downarrow \mathrm{Ca}^{2+}$ absorption). Hypocalcemia, hyperphosphatemia in chronic renal failure (vs hypophosphatemia with most other causes), \uparrow ALP, \uparrow PTH.	Renal osteodystrophy-renal disease $\rightarrow 2^{\circ}$ and 3° hyperparathyroidism \rightarrow bone lesions.
Tertiary hyperparathyroidism	Refractory (autonomous) hyperparathyroidism resulting from chronic renal disease. $\uparrow \uparrow$ PTH, $\uparrow \mathrm{Ca}^{2+}$.	

Pituitary adenoma

Benign tumor, most commonly prolactinoma (arises from lactotrophs). Adenoma A may be functional (hormone producing) or nonfunctional (silent). Nonfunctional tumors present with mass effect (bitemporal hemianopia, hypopituitarism, headache). Functional tumor presentation is based on the hormone produced.
Treatment for prolactinoma: dopamine agonists (eg, ergot alkaloids such as bromocriptine, cabergoline), transsphenoidal resection.

Nelson syndrome

Enlargement of existing ACTH-secreting pituitary adenoma after bilateral adrenalectomy for refractory Cushing disease (due to removal of cortisol feedback mechanism). Presents with hyperpigmentation, headaches and bitemporal hemianopia. Treatment: pituitary irradiation or surgical resection.

Acromegaly	Excess GH in adults. Typically caused by pituita	denoma.
findings	Large tongue with deep furrows, deep voice, large hands and feet, coarsening of facial features with aging \boldsymbol{A}, frontal bossing, diaphoresis (excessive sweating), impaired glucose tolerance (insulin resistance). \uparrow risk of colorectal polyps and cancer.	\uparrow GH in children \rightarrow gigantism (\uparrow linear bone growth). HF most common cause of death.
diagnosis	\uparrow serum IGF-1; failure to suppress serum GH following oral glucose tolerance test; pituitary mass seen on brain MRI.	
treatment	Pituitary adenoma resection. If not cured, treat with octreotide (somatostatin analog) or pegvisomant (growth hormone receptor antagonist).	

Laron syndrome (dwarfism)

Defective growth hormone receptors $\rightarrow \downarrow$ linear growth. \uparrow GH, \downarrow IGF-l. Clinical features include short height, small head circumference, characteristic facies with saddle nose and prominent forehead, delayed skeletal maturation, small genitalia.

Diabetes insipidus Characterized by intense thirst and polyuria with inability to concentrate urine due to lack of ADH (central) or failure of response to circulating ADH (nephrogenic).

	Central DI	Nephrogenic DI
ETIOLOGY	Pituitary tumor, autoimmune, trauma, surgery, ischemic encephalopathy, idiopathic	Hereditary (ADH receptor mutation), 2° to hypercalcemia, hypokalemia, lithium, demeclocycline (ADH antagonist)
FINDINGS		Normal or \uparrow ADH levels
	UDH Urine specific gravity <1.006	Urine specific gravity <1.006 Serum osmolality $>290 \mathrm{mOsm} / \mathrm{kg}$
Hyperosmotic volume contraction		
WATER DEPRIVATION TESTa		

${ }^{a}$ No water intake for 2-3 hr followed by hourly measurements of urine volume and osmolarity and plasma Na^{+}concentration and osmolarity. ADH analog (desmopressin acetate) is administered if serum osmolality $>295-300 \mathrm{mOsm} / \mathrm{kg}$, plasma $\mathrm{Na}^{+} \geq 145$, or urine osmolality does not rise despite a rising plasma osmolality.

Syndrome of inappropriate antidiuretic hormone secretion

Characterized by:

- Excessive free water retention
- Euvolemic hyponatremia with continued urinary Na^{+}excretion
- Urine osmolality > serum osmolality

Body responds to water retention with
\downarrow aldosterone and \uparrow ANP and BNP
$\rightarrow \uparrow$ urinary Na^{+}secretion \rightarrow normalization
of extracellular fluid volume \rightarrow euvolemic hyponatremia. Very low serum Na^{+}levels can lead to cerebral edema, seizures. Correct slowly to prevent osmotic demyelination syndrome (formerly known as central pontine myelinolysis).

Causes include:

- Ectopic ADH (eg, small cell lung cancer)
- CNS disorders/head trauma
- Pulmonary disease
- Drugs (eg, cyclophosphamide)

Treatment: fluid restriction, salt tablets, IV hypertonic saline, diuretics, conivaptan, tolvaptan, demeclocycline.

Hypopituitarism Undersecretion of pituitary hormones due to:

- Nonsecreting pituitary adenoma, craniopharyngioma
- Sheehan syndrome-ischemic infarct of pituitary following postpartum bleeding; pregnancyinduced pituitary growth $\rightarrow \uparrow$ susceptibility to hypoperfusion. Usually presents with failure to lactate, absent menstruation, cold intolerance
- Empty sella syndrome-atrophy or compression of pituitary (which lies in the sella turcica), often idiopathic, common in obese women
- Pituitary apoplexy-sudden hemorrhage of pituitary gland, often in the presence of an existing pituitary adenoma. Usually presents with sudden onset severe headache, visual impairment (eg, bitemporal hemianopia, diplopia due to CN III palsy), and features of hypopituitarism.
- Brain injury
- Radiation

Treatment: hormone replacement therapy (corticosteroids, thyroxine, sex steroids, human growth hormone).

Diabetes mellitus

Type 1 vs type 2 diabetes mellitus

Variable	Type 1	Type 2
1^{10} defect	Autoimmune destruction of β cells (eg, due to glutamic acid decarboxylase antibodies)	\uparrow resistance to insulin, progressive pancreatic β-cell failure
InSULIN Neçssary in treatment	Always	Sometimes
AGE (EXCEPTIONS COMMONLY ocCur)	<30 yr	$>40 \mathrm{yr}$
ASSOCIATION with obesity	No	Yes
Geneit Preilisposition	Relatively weak (50% concordance in identical twins), polygenic	Relatively strong (90% concordance in identical twins), polygenic
ASSOCIATION WITH HLA SYSTEM	Yes (HLA-DR3 and -DR4)	No
glucose intolerance	Severe	Mild to moderate
insulin sensitivity	High	Low
ketoacidosis	Common	Rare
β-cell numbers in theislets	\downarrow	Variable (with amyloid deposits)
Serum msulin level	\downarrow	Variable
classic symptoms of polyuria, Polydipsia, polyphagia, welght loss	Common	Sometimes
Histology	Islet leukocytic infiltrate	Islet amyloid polypeptide (IAPP) deposits

Diabetic ketoacidosis	One of the most feared complications of diabetes. Usually due to insulin noncompliance or \uparrow insulin requirements from \uparrow stress (eg, infection). Excess fat breakdown and \uparrow ketogenesis from \uparrow free fatty acids, which are then made into ketone bodies (β-hydroxybutyrate > acetoacetate). Usually occurs in type 1 diabetes, as endogenous insulin in type 2 diabetes usually prevents lipolysis.
SIGNS/SYMPTOMS	DKA is Deadly: Delirium/psychosis, Kussmaul respirations (rapid/deep breathing), Abdominal pain/nausea/vomiting, Dehydration. Fruity breath odor (due to exhaled acetone).
LABS	Hyperglycemia, $\uparrow \mathrm{H}^{+}, \downarrow \mathrm{HCO}_{3}^{-}$(\uparrow anion gap metabolic acidosis), \uparrow blood ketone levels, leukocytosis. Hyperkalemia, but depleted intracellular K^{+}due to transcellular shift from \downarrow insulin and acidosis (therefore total body K^{+}is depleted).
COMPLICATIONS	Life-threatening mucormycosis (usually caused by Rhizopus infection), cerebral edema, cardiac arrhythmias, heart failure.
treatment	IV fluids, IV insulin, and K^{+}(to replete intracellular stores); glucose if necessary to prevent hypoglycemia.

Hyperosmolar hyperglycemia nonketotic syndrome

State of profound hyperglycemia-induced dehydration and \uparrow serum osmolarity, classically seen in elderly type 2 diabetics with limited ability to drink. Hyperglycemia \rightarrow excessive osmotic diuresis \rightarrow dehydration \rightarrow eventual onset of HHNS. Symptoms: thirst, polyuria, lethargy, focal neurological deficits (eg, seizures), can progress to coma and death if left untreated. Labs: hyperglycemia (often $>600 \mathrm{mg} / \mathrm{dL}$), \uparrow serum osmolarity ($>320 \mathrm{mOsm} / \mathrm{kg}$), no acidosis ($\mathrm{pH}>$ 7.3 , ketone production inhibited by presence of insulin). Treatment: aggressive IV fluids, insulin therapy.

Glucagonoma

Tumor of pancreatic α cells \rightarrow overproduction of glucagon. Presents with dermatitis (necrolytic migratory erythema), diabetes (hyperglycemia), DVT, declining weight, depression. Treatment: octreotide, surgery.

Insulinoma
Tumor of pancreatic β cells \rightarrow overproduction of insulin \rightarrow hypoglycemia. May see Whipple triad: low blood glucose, symptoms of hypoglycemia (eg, lethargy, syncope, diplopia), and resolution of symptoms after normalization of glucose levels. Symptomatic patients have \downarrow blood glucose and \uparrow C-peptide levels (vs exogenous insulin use). $\sim 10 \%$ of cases associated with MEN 1 syndrome. Treatment: surgical resection.

Somatostatinoma
Tumor of pancreatic δ cells \rightarrow overproduction of somatostatin $\rightarrow \downarrow$ secretion of secretin, cholecystokinin, glucagon, insulin, gastrin. May present with diabetes/glucose intolerance, steatorrhea, gallstones. Treatment: surgical resection; somatostatin analogs (eg, octreotide) for symptom control.

Carcinoid syndrome

Rare syndrome caused by carcinoid tumors (neuroendocrine cells \boldsymbol{A}; note prominent rosettes [arrow]), especially metastatic small bowel tumors, which secrete high levels of serotonin $(5-\mathrm{HT})$. Not seen if tumor is limited to GI tract (5-HT undergoes first-pass metabolism in liver). Results in recurrent diarrhea, cutaneous flushing, asthmatic wheezing, right-sided valvular heart disease (tricuspid regurgitation, pulmonic stenosis). $\uparrow 5$-hydroxyindoleacetic acid (5-HIAA) in urine, niacin deficiency (pellagra).
Treatment: surgical resection, somatostatin analog (eg, octreotide).

Rule of $1 / 3 \mathrm{~s}$:
1/3 metastasize
1/3 present with 2nd malignancy $1 / 3$ are multiple
Most common malignancy in the small intestine.

Zollinger-Ellison syndrome

Gastrin-secreting tumor (gastrinoma) of pancreas or duodenum. Acid hypersecretion causes recurrent ulcers in duodenum and jejunum. Presents with abdominal pain (peptic ulcer disease, distal ulcers), diarrhea (malabsorption). Positive secretin stimulation test: gastrin levels remain elevated after administration of secretin, which normally inhibits gastrin release. May be associated with MEN 1.

Multiple endocrine neoplasias	All MEN syndromes have autosomal dominant "All MEN are dominant" (or so they think).	eritance.
SUBTYPE	CHARACTERISTICS	COMMENTS
MEN 1	Pituitary tumors (prolactin or GH) Pancreatic endocrine tumors-ZollingerEllison syndrome, insulinomas, VIPomas, glucagonomas (rare) Parathyroid adenomas Associated with mutation of MEN1 (menin, a tumor suppressor, chromosome 11)	
MEN 2A	Parathyroid hyperplasia Medullary thyroid carcinoma-neoplasm of parafollicular or C cells; secretes calcitonin; prophylactic thyroidectomy required Pheochromocytoma (secretes catecholamines) Associated with mutation in RET (codes for receptor tyrosine kinase) in cells of neural crest origin	
MEN 2B	Medullary thyroid carcinoma Pheochromocytoma Mucosal neuromas (oral/intestinal ganglioneuromatosis) Associated with marfanoid habitus; mutation in RET gene	

MEN $1=3$ P's: Pituitary, Parathyroid, and Pancreas
MEN 2A $=2$ P's: Parathyroids and
Pheochromocytoma
MEN 2B = 1 P: Pheochromocytoma

ENDOCRINE—PHARMACOLOGY

Diabetes mellitus drugs	Treatment strategies: Type 1 DM-low-carbohydrate diet Type 2 DM-dietary modification insulin replacement Gestational DM (GDM) - dietary modification fails	nsulin replacement d exercise for weight loss; oral ag difications, exercise, insulin rep	ents, non-insulin injectables, acement if lifestyle
DRUGGLASSES	ACtion	CLINCAL USE	RISKS/COMCRRNS
Insulin preparations			
Insulin, rapid acting Lispro, Aspart, Glulisine	Binds insulin receptor (tyrosine kinase activity) rapidly, no LAG. Liver: \uparrow glucose stored as glycogen. Muscle: \uparrow glycogen, protein synthesis; $\uparrow \mathrm{K}^{+}$uptake. Fat: \uparrow TG storage.	Type 1 DM, type 2 DM, GDM (postprandial glucose control).	Hypoglycemia, lipodystrophy, rare hypersensitivity reactions.
Insulin, short acting Regular		Type 1 DM, type 2 DM, GDM, DKA (IV), hyperkalemia (+ glucose), stress hyperglycemia.	
Insulin, intermediate acting NPH		Type 1 DM, type 2 DM, GDM.	
Insulin, long acting Detemir, glargine		Type 1 DM, type 2 DM, GDM (basal glucose control).	
Oral hypoglycemic drugs			
Biguanides Metformin	Exact mechanism unknown. \downarrow gluconeogenesis, \uparrow glycolysis, \uparrow peripheral glucose uptake (\uparrow insulin sensitivity).	Oral. First-line therapy in type 2 DM , causes modest weight loss. Can be used in patients without islet function.	GI upset; most serious adverse effect is lactic acidosis (thus contraindicated in renal insufficiency).
Sulfonylureas First generation: chlorpropamide, tolbutamide Second generation: glimepiride, glipizide, glyburide	Close K^{+}channel in β-cell membrane \rightarrow cell depolarizes \rightarrow insulin release via $\uparrow \mathrm{Ca}^{2+}$ influx.	Stimulate release of endogenous insulin in type 2 DM. Require some islet function, so useless in type 1 DM.	Risk of hypoglycemia \uparrow in renal failure, weight gain. First generation: disulfiramlike effects. Second generation: hypoglycemia.
Glitazones/ thiazolidinediones Pioglitazone, rosiglitazone	\dagger insulin sensitivity in peripheral tissue. Binds to PPAR- γ nuclear transcription regulator. ${ }^{\text {a }}$	Used as monotherapy in type 2 DM or combined with above agents. Safe to use in renal impairment.	Weight gain, edema. Hepatotoxicity, HF, \uparrow risk of fractures.

Diabetes mellitus drugs (continued)

DRUG CLASSES	ACTION	CLINICAL USE	RISKS/CONCERNS
Oral hypoglycemic drugs (continued)			
Meglitinides Nateglinide, repaglinide	Stimulate postprandial insulin release by binding to K^{+}channels on β-cell membranes (site differs from sulfonylureas).	Used as monotherapy in type 2 DM or combined with metformin.	Hypoglycemia (\uparrow risk with renal failure), weight gain.
GLP-1 analogs Exenatide, liraglutide (sc injection)	\uparrow glucose-dependent insulin release, \downarrow glucagon release, \downarrow gastric emptying, \uparrow satiety.	Type 2 DM.	Nausea, vomiting, pancreatitis; modest weight loss.
DPP-4 inhibitors Linagliptin, saxagliptin, sitagliptin	Inhibits DPP-4 enzyme that deactivates GLP-1, thereby \uparrow glucose-dependent insulin release, \downarrow glucagon release, \downarrow gastric emptying, \uparrow satiety.	Type 2 DM.	Mild urinary or respiratory infections; weight neutral.
Amylin analogs Pramlintide (sc injection)	\downarrow gastric emptying, \downarrow glucagon.	Type 1 DM, type 2 DM.	Hypoglycemia (in setting of mistimed prandial insulin), nausea.
Sodium-glucose co-transporter 2 (SGLT-2) inhibitors Canagliflozin, dapagliflozin, empagliflozin	Block reabsorption of glucose in PCT.	Type 2 DM.	Glucosuria, UTIs, vaginal yeast infections, hyperkalemia, dehydration (orthostatic hypotension).
α-glucosidase inhibitors Acarbose, miglitol	Inhibit intestinal brush-border α-glucosidases. Delayed carbohydrate hydrolysis and glucose absorption $\rightarrow \downarrow$ postprandial hyperglycemia.	Type 2 DM.	GI disturbances.

${ }^{a}$ Genes activated by PPAR- γ regulate fatty acid storage and glucose metabolism. Activation of PPAR- $\gamma \uparrow$ insulin sensitivity and levels of adiponectin.

Thionamides	Propylthiouracil (PTU), methimazole.
MECHANSM	Block thyroid peroxidase, inhibiting the oxidation of iodide and the organification (coupling) of iodine \rightarrow inhibition of thyroid hormone synthesis. Propylthiouracil also blocks 5'-deiodinase $\rightarrow \downarrow$ peripheral conversion of T_{4} to T_{3}.
CIINCAL USE	Hyperthyroidism. PTU blocks Peripheral conversion and is used in Pregnancy.
ADVERSE EFFECTS	Skin rash, agranulocytosis (rare), aplastic anemia, hepatotoxicity. Methimazole is a possible teratogen (can cause aplasia cutis).

Levothyroxine $\left(T_{4}\right)$, triiodothyronine $\left(T_{3}\right)$

MECHANISM	Thyroid hormone replacement.
ClINCAL USE	Hypothyroidism, myxedema. Used off-label as weight loss supplements.
ADVERSE EFFECTS	Tachycardia, heat intolerance, tremors, arrhythmias.

Hypothalamic/pituitary drugs	
DRUG	CLINICALUSE
ADH antagonists (conivaptan, tolvaptan)	SIADH, block action of ADH at V_{2}-receptor.
Desmopressin acetate	Central (not nephrogenic) DI.
GH	GH deficiency, Turner syndrome.
Oxytocin Stimulates labor, uterine contractions, milk let-down; controls uterine hemorrhage. Somatostatin (octreotide) Acromegaly, carcinoid syndrome, gastrinoma, glucagonoma, esophageal varices.	

Demeclocycline

MECHANISM	ADH antagonist (member of tetracycline family).
CLINICAL USE	SIADH.
ADVERSE EFFECTS	Nephrogenic DI, photosensitivity, abnormalities of bone and teeth.

Glucocorticoids	Beclomethasone, dexamethasone, hydrocortisone, methylprednisolone, prednisone, triamcinolone.
MECHANISM	Metabolic, catabolic, anti-inflammatory, and immunosuppressive effects mediated by interactions with glucocorticoid response elements, inhibition of phospholipase A_{2}, and inhibition of transcription factors such as NF-кB.
CLINICAL USE	Adrenal insufficiency, inflammation, immunosuppression, asthma.

Fludrocortisone

MECHANISM	Synthetic analog of aldosterone with little glucocorticoid effects.
CLIIICAL USE	Mineralocorticoid replacement in l° adrenal insufficiency.
ADVERSE EFFECTS	Similar to glucocorticoids; also edema, exacerbation of heart failure, hyperpigmentation.

Cinacalcet

MECHANISM	Sensitizes Ca^{2+}-sensing receptor (CaSR) in parathyroid gland to circulating $\mathrm{Ca}^{2+} \rightarrow \downarrow \mathrm{PTH}$.
CLIIICALUSE	1° or 2° hyperparathyroidism.
ADVERSE EFFECTS	Hypocalcemia.

HIGH-YIELD SYSTEMS

Gastrointestinal

"A good set of bowels is worth more to a man than any quantity of brains."
-Josh Billings
"Man should strive to have his intestines relaxed all the days of his life."
-Moses Maimonides
"Is life worth living? It all depends on the liver."

PEmbryology	338
> Anatomy	339
> Physiology	350
D Pathology	353
D Pharmacology	374

GASTROINTESTINAL—EMBRYOLOGY

Normal gastrointestinal embryology

Foregut-pharynx to duodenum.
Midgut-duodenum to proximal $2 / 3$ of transverse colon.
Hindgut-distal $1 / 3$ of transverse colon to anal canal above pectinate line.
Midgut development:

- 6th week—physiologic midgut herniates through umbilical ring
- 10th week-returns to abdominal cavity + rotates around superior mesenteric artery (SMA), total 270° counterclockwise

Ventral wall defects

Developmental defects due to failure of:

- Rostral fold closure-sternal defects
- Lateral fold closure-omphalocele, gastroschisis
- Caudal fold closure-bladder exstrophy

Gastroschisis-extrusion of abdominal contents through abdominal folds (typically right of umbilicus); not covered by peritoneum.

Omphalocele-persistence of herniation of abdominal contents into umbilical cord, sealed by peritoneum \boldsymbol{A}.

Tracheoesophageal anomalies

Esophageal atresia (EA) with distal tracheoesophageal fistula (TEF) is the most common (85\%). Polyhydramnios in utero. Neonates drool, choke, and vomit with first feeding. TEF allows air to enter stomach (visible on CXR). Cyanosis is 2° to laryngospasm (to avoid reflux-related aspiration). Clinical test: failure to pass nasogastric tube into stomach.
In H-type, the fistula resembles the letter H. In pure EA the CXR shows gasless abdomen.

Intestinal atresia

Presents with bilious vomiting and abdominal distension within first l-2 days of life.
Duodenal atresia-failure to recanalize \rightarrow dilation of stomach and proximal duodenum ("double bubble" on x-ray A). Associated with Down syndrome.
Jejunal and ileal atresia—disruption of mesenteric vessels \rightarrow ischemic necrosis \rightarrow segmental resorption (bowel discontinuity or "apple peel").

Hypertrophic pyloric stenosis

Most common cause of gastric outlet obstruction in infants (1:600). Palpable "olive" mass in epigastric region and nonbilious projectile vomiting at $\sim 2-6$ weeks old. More common in firstborn males; associated with exposure to macrolides. Results in hypokalemic hypochloremic metabolic alkalosis (2° to vomiting of gastric acid and subsequent volume contraction). Treatment is surgical incision (pyloromyotomy).

Pancreas and spleen embryology

Pancreas—derived from foregut. Ventral pancreatic buds contribute to uncinate process and main pancreatic duct. The dorsal pancreatic bud alone becomes the body, tail, isthmus, and accessory pancreatic duct. Both the ventral and dorsal buds contribute to pancreatic head.
Annular pancreas-ventral pancreatic bud abnormally encircles 2nd part of duodenum; forms a ring of pancreatic tissue that may cause duodenal narrowing A and nonbilious vomiting. Pancreas divisum - ventral and dorsal parts fail to fuse at 8 weeks. Common anomaly; mostly asymptomatic, but may cause chronic abdominal pain and/or pancreatitis.
Spleen-arises in mesentery of stomach (hence is mesodermal) but has foregut supply (celiac trunk \rightarrow splenic artery).

- GASTROINTESTINAL—ANATOMY

Retroperitoneal structures

Retroperitoneal structures include GI structures that lack a mesentery and non-GI structures. Injuries to retroperitoneal structures can cause blood or gas accumulation in retroperitoneal space.

SAD PUCKER:

Suprarenal (adrenal) glands [not shown] Aorta and IVC
Duodenum (2nd through 4th parts)
Pancreas (except tail)
Ureters [not shown]
Colon (descending and ascending)
Kidneys
Esophagus (thoracic portion) [not shown]
Rectum (partially) [not shown]

Important gastrointestinal ligaments

Portal triad (within hepatoduodena ligament			- Stomach Spleen Gastrosplenic ligament - Visceral peritoneum \qquad Splenorenal ligament - Left adrenal gland Left kidney
LIGAMENT	CONNECTS	STRUCTURES CONTAINED	OTES
Falciform	Liver to anterior abdominal wall	Ligamentum teres hepatis (derivative of fetal umbilical vein)	erivative of ventral mesentery
Hepatoduodenal	Liver to duodenum	Portal triad: proper hepatic artery, portal vein, common bile duct	Pringle maneuver-ligament may be compressed between thumb and index finger placed in omental foramen to control bleeding Borders the omental foramen, which connects the greater and lesser sacs
Gastrohepatic	Liver to lesser curvature of stomach	Gastric arteries	Separates greater and lesser sacs on the right May be cut during surgery to access lesser sac
Gastrocolic (not shown)	Greater curvature and transverse colon	Gastroepiploic arteries	Part of greater omentum
Gastrosplenic	Greater curvature and spleen	Short gastrics, left gastroepiploic vessels	Separates greater and lesser sacs on the left Part of greater omentum
Splenorenal	Spleen to posterior abdominal wall	Splenic artery and vein, tail of pancreas	

Digestive tract anatomy

Layers of gut wall (inside to outside-MSMS):

- Mucosa-epithelium, lamina propria, muscularis mucosa
- Submucosa-includes Submucosal nerve plexus (Meissner), Secretes fluid
- Muscularis externa-includes Myenteric nerve plexus (Auerbach), Motility
- Serosa (when intraperitoneal), adventitia (when retroperitoneal)

Ulcers can extend into submucosa, inner or outer muscular layer. Erosions are in the mucosa only.
Frequencies of basal electric rhythm (slow waves):

- Stomach-3 waves/min
- Duodenum-12 waves/min
- Ileum-8-9 waves/min

Digestive tract histology

\(\left.\left.$$
\begin{array}{l|l}\hline \text { Esophagus } & \text { Nonkeratinized stratified squamous epithelium. } \\
\hline \text { Stomach } & \begin{array}{l}\text { Gastric glands. }\end{array}
$$

\hline Villi and microvilli \uparrow absorptive surface.

Brunner glands\left(\mathrm{HCO}_{3}--secreting cells of submucosa) and crypts of Lieberkühn.\right.\end{array}\right] $$
\begin{array}{ll}\text { Plicae circulares and crypts of Lieberkühn. }\end{array}
$$\right] .\)| Peyer patches (lymphoid aggregates in lamina propria, submucosa), plicae circulares (proximal |
| :--- |
| ileum), and crypts of Lieberkühn. |
| Largest number of goblet cells in the small intestine. |
| Ileum |

Abdominal aorta and branches

Arteries supplying GI structures branch anteriorly. Arteries supplying non-GI structures branch laterally and posteriorly.

Superior mesenteric

 artery syndromeCharacterized by intermittent intestinal obstruction symptoms (primarily postprandial pain) when transverse (third) portion of duodenum is compressed between SMA and aorta. Typically occurs in conditions associated with diminished mesenteric fat (eg, low body weight/malnutrition).

Gastrointestinal blood supply and innervation

EMBRYONIC GUT REGION	ARTERY	PARASYMPATHETIC INAERVATION	VERTEBRAL LEVEL	STRUCTURES SUPPLIED

Celiac trunk

Branches of celiac trunk: common hepatic, splenic, and left gastric. These constitute the main blood supply of the stomach.
Strong anastomoses exist between:

- Left and right gastroepiploics
- Left and right gastrics

Portosystemic anastomoses

Varices of gut, butt, and caput (medusae) are commonly seen with portal hypertension.
Treatment with a transjugular intrahepatic portosystemic shunt (TIPS) (4) between the portal vein and hepatic vein relieves portal hypertension by shunting blood to the systemic circulation, bypassing the liver.

Pectinate (dentate) Formed where endoderm (hindgut) meets ectoderm.
line

Above pectinate line-internal hemorrhoids, adenocarcinoma.
Arterial supply from superior rectal artery (branch of IMA).
Venous drainage: superior rectal vein \rightarrow inferior mesenteric vein \rightarrow portal system.

Below pectinate line-external hemorrhoids, anal fissures, squamous cell carcinoma.
Arterial supply from inferior rectal artery (branch of internal pudendal artery).
Venous drainage: inferior rectal vein \rightarrow internal pudendal vein \rightarrow internal iliac vein \rightarrow common iliac vein \rightarrow IVC.

Internal hemorrhoids receive visceral innervation and are therefore not painful. Lymphatic drainage to internal iliac lymph nodes.

External hemorrhoids receive somatic innervation (inferior rectal branch of pudendal nerve) and are therefore painful if thrombosed. Lymphatic drainage to superficial inguinal nodes.

Anal fissure-tear in the anal mucosa below the Pectinate line. Pain while Pooping; blood on toilet Paper. Located Posteriorly because this area is Poorly Perfused. Associated with lowfiber diets and constipation.

Apical surface of hepatocytes faces bile canaliculi. Basolateral surface faces sinusoids. Kupffer cells, which are specialized macrophages, form the lining of these sinusoids (black arrows in A; yellow arrow shows hepatic venule).
Hepatic stellate (Ito) cells in space of Disse store vitamin A (when quiescent) and produce extracellular matrix (when activated).

Zone I-periportal zone:

- Affected lst by viral hepatitis
- Ingested toxins (eg, cocaine)

Zone II-intermediate zone:

- Yellow fever

Zone III—pericentral vein (centrilobular) zone:

- Affected lst by ischemia
- Contains cytochrome P-450 system
- Most sensitive to metabolic toxins
- Site of alcoholic hepatitis

Biliary structures

Gallstones (filling defects, red arrows in A) that reach the confluence of the common bile and pancreatic ducts at the ampulla of Vater can block both the common bile and pancreatic ducts (double duct sign), causing both cholangitis and pancreatitis, respectively.
Tumors that arise in head of pancreas (usually ductal adenocarcinoma) can cause obstruction of common bile duct \rightarrow painless jaundice.

Femoral region

ORGANIZATION	Lateral to medial: Nerve-Artery-Vein- Lymphatics.	You go from lateral to medial to find your NAVeL.
Femoral triangle	Contains femoral nerve, artery, vein.	Venous near the penis.
Femoral sheath	Fascial tube 3-4 cm below inguinal ligament. Contains femoral vein, artery, and canal (deep inguinal lymph nodes) but not femoral nerve.	

Inguinal canal

Hernias	A protrusion of peritoneum through an opening, usually at a site of weakness. Contents may be at risk for incarceration (not reducible back into abdomen/pelvis) and strangulation (ischemia and necrosis). Complicated hernias can present with tenderness, erythema, fever.	
Diaphragmatic hernia	Abdominal structures enter the thorax; may occur due to congenital defect of pleuroperitoneal membrane \boldsymbol{A}, or as a result of trauma. Commonly occurs on left side due to relative protection of right hemidiaphragm by liver. Most commonly a hiatal hernia, in which stomach herniates upward through the esophageal hiatus of the diaphragm.	Sliding hiatal hernia is most common. Gastroesophageal junction is displaced upward; "hourglass stomach." Paraesophageal hernia—gastroesophageal junction is usually normal. Fundus protrudes into the thorax.
Indirect inguinal hernia B	Goes through the internal (deep) inguinal ring, external (superficial) inguinal ring, and into the scrotum. Enters internal inguinal ring lateral to inferior epigastric vessels. Occurs in infants owing to failure of processus vaginalis to close (can form hydrocele). Much more common in males B.	An indirect inguinal hernia follows the path of descent of the testes. Covered by all 3 layers of spermatic fascia.
Direct inguinal hernia	Protrudes through the inguinal (Hesselbach) triangle. Bulges directly through abdominal wall medial to inferior epigastric vessels. Goes through the external (superficial) inguinal ring only. Covered by external spermatic fascia. Usually in older men.	MDs don't LIe: Medial to inferior epigastric vessels $=$ Direct hernia. Lateral to inferior epigastric vessels = Indirect hernia.
Femoral hernia	Protrudes below inguinal ligament through femoral canal below and lateral to pubic tubercle. More common in females.	More likely to present with incarceration or strangulation than inguinal hernias.
		Inguinal (Hesselbach) triangle: - Inferior epigastric vessels - Lateral border of rectus abdominis - Inguinal ligament

GASTROINTESTINAL—PHYSIOLOGY

Gastrointestinal regulatory substances

REGULATORY SUBSTANCE	SOURCE	ACTION	REGULATION	NOTES
Gastrin	```G cells (antrum of stomach, duodenum)```	\uparrow gastric H^{+}secretion \uparrow growth of gastric mucosa \uparrow gastric motility	\uparrow by stomach distention/ alkalinization, amino acids, peptides, vagal stimulation via gastrin-releasing peptide (GRP) \downarrow by $\mathrm{pH}<1.5$	\uparrow by chronic PPI use. \uparrow in chronic atrophic gastritis (eg, H pylori). $\uparrow \uparrow$ in Zollinger-Ellison syndrome (gastrinoma).
Somatostatin	D cells (pancreatic islets, GI mucosa)	\downarrow gastric acid and pepsinogen secretion \downarrow pancreatic and small intestine fluid secretion \downarrow gallbladder contraction \downarrow insulin and glucagon release	\uparrow by acid \downarrow by vagal stimulation	Inhibits secretion of various hormones (encourages somato-stasis). Octreotide is an analog used to treat acromegaly, carcinoid syndrome, and variceal bleeding.
Cholecystokinin	I cells (duodenum, jejunum)	\uparrow pancreatic secretion \uparrow gallbladder contraction \downarrow gastric emptying \uparrow sphincter of Oddi relaxation	\uparrow by fatty acids, amino acids	Acts on neural muscarinic pathways to cause pancreatic secretion.
Secretin	S cells (duodenum)	\uparrow pancreatic HCO_{3}^{-} secretion \downarrow gastric acid secretion \uparrow bile secretion	\uparrow by acid, fatty acids in lumen of duodenum	$\uparrow \mathrm{HCO}_{3}{ }^{-}$neutralizes gastric acid in duodenum, allowing pancreatic enzymes to function.
Glucosedependent insulinotropic peptide	K cells (duodenum, jejunum)	Exocrine: \downarrow gastric H^{+}secretion Endocrine: \uparrow insulin release	\uparrow by fatty acids, amino acids, oral glucose	Also known as gastric inhibitory peptide (GIP). Oral glucose load leads to \uparrow insulin compared to IV equivalent due to GIP secretion.
Motilin	Small intestine	Produces migrating motor complexes (MMCs)	\uparrow in fasting state	Motilin receptor agonists (eg, erythromycin) are used to stimulate intestinal peristalsis.
Vasoactive intestinal polypeptide	Parasympathetic ganglia in sphincters, gallbladder, small intestine	\uparrow intestinal water and electrolyte secretion \uparrow relaxation of intestinal smooth muscle and sphincters	\uparrow by distention and vagal stimulation \downarrow by adrenergic input	VIPoma-non- α, non- β islet cell pancreatic tumor that secretes VIP. Watery Diarrhea, Hypokalemia, and Achlorhydria (WDHA syndrome).
Nitric oxide		\uparrow smooth muscle relaxation, including lower esophageal sphincter (LES)		Loss of NO secretion is implicated in \uparrow LES tone of achalasia.
Ghrelin	Stomach	\uparrow appetite	\uparrow in fasting state \downarrow by food	\uparrow in Prader-Willi syndrome. \downarrow after gastric bypass surgery.

Gastrointestinal secretory products

PRODUCT	SOURCE	ACTION	REGULATION	NOTES
Intrinsic factor	Parietal cells (stomach)	Vitamin B_{12}-binding protein (required for B_{12} uptake in terminal ileum)		Autoimmune destruction of parietal cells \rightarrow chronic gastritis and pernicious anemia.
Gastric acid	Parietal cells (stomach)	\downarrow stomach pH	\uparrow by histamine, ACh, gastrin \downarrow by somatostatin, GIP, prostaglandin, secretin	
Pepsin	Chief cells (stomach)	Protein digestion	\uparrow by vagal stimulation, local acid	Pepsinogen (inactive) is converted to pepsin (active) in the presence of H^{+}.
Bicarbonate	Mucosal cells (stomach, duodenum, salivary glands, pancreas) and Brunner glands (duodenum)	Neutralizes acid	\uparrow by pancreatic and biliary secretion with secretin	Trapped in mucus that covers the gastric epithelium.

Locations of gastrointestinal secretory cells

Gastrin \uparrow acid secretion primarily through its effects on enterochromaffin-like (ECL) cells (leading to histamine release) rather than through its direct effect on parietal cells.

Pancreatic secretions Isotonic fluid; low flow \rightarrow high Cl^{-}, high flow \rightarrow high $\mathrm{HCO}_{3}{ }^{-}$.

ENZYME	ROLE	NOTES
α-amylase	Starch digestion	Secreted in active form
Lipases	Fat digestion	
Proteases	Protein digestion	Includes trypsin, chymotrypsin, elastase, carboxypeptidases Secreted as proenzymes also known as zymogens
Trypsinogen	Converted to active enzyme trypsin \rightarrow activation of other proenzymes and cleaving of additional trypsinogen molecules into active	Converted to trypsin by enterokinase/ enteropeptidase, a brush-border enzyme on duodenal and jejunal mucosa

Carbohydrate absorption

Only monosaccharides (glucose, galactose, fructose) are absorbed by enterocytes. Glucose and galactose are taken up by SGLTl (Na^{+}dependent). Fructose is taken up by facilitated diffusion by GLUT-5. All are transported to blood by GLUT-2.
D-xylose absorption test: distinguishes GI mucosal damage from other causes of malabsorption.

Vitamin/mineral absorption	Absorbed as Fe^{2+} in duodenum.	Iron Fist, Bro
Iron	Absorbed in small bowel.	Clinically relevant in patients with small bowel disease or after resection.
Folate	Absorbed in terminal ileum along with bile salts, requires intrinsic factor.	
B_{12}		

Unencapsulated lymphoid tissue \boldsymbol{A} found in lamina propria and submucosa of ileum. Contain specialized M cells that sample and present antigens to immune cells.
B cells stimulated in germinal centers of Peyer patches differentiate into IgA-secreting plasma cells, which ultimately reside in lamina propria. IgA receives protective secretory component and is then transported across the epithelium to the gut to deal with intraluminal antigen.

Think of IgA, the Intra-gut Antibody. And always say "secretory IgA."

Bile
Composed of bile salts (bile acids conjugated to glycine or taurine, making them water soluble), phospholipids, cholesterol, bilirubin, water, and ions. Cholesterol 7α-hydroxylase catalyzes rate-limiting step of bile acid synthesis.

Functions:

- Digestion and absorption of lipids and fat-soluble vitamins
- Cholesterol excretion (body's only means of eliminating cholesterol)
- Antimicrobial activity (via membrane disruption)

Bilirubin

Heme is metabolized by heme oxygenase to biliverdin, which is subsequently reduced to bilirubin.
Unconjugated bilirubin is removed from blood by liver, conjugated with glucuronate, and excreted in bile.
Direct bilirubin-conjugated with glucuronic acid; water soluble.
Indirect bilirubin-unconjugated; water insoluble.

國

GASTROINTESTINAL—PATHOLOGY

Salivary gland tumors
Most commonly benign and in parotid gland. Tumors in smaller glands more likely malignant.
Typically present as painless mass/swelling. Facial pain or paralysis suggests malignant involvement of CN VII.

- Pleomorphic adenoma (benign mixed tumor)—most common salivary gland tumor A. Composed of chondromyxoid stroma and epithelium and recurs if incompletely excised or ruptured intraoperatively.
- Mucoepidermoid carcinoma-most common malignant tumor, has mucinous and squamous components.
- Warthin tumor (papillary cystadenoma lymphomatosum)—benign cystic tumor with germinal centers.

Achalasia

Failure of relaxation of LES due to loss of myenteric (Auerbach) plexus. High LES resting pressure and uncoordinated or absent peristalsis \rightarrow progressive dysphagia to solids and liquids (vs obstruction-solids only). Barium swallow shows dilated esophagus with an area of distal stenosis. Associated with \uparrow risk of esophageal cancer, especially squamous cell carcinoma.

A-chalasia $=$ absence of relaxation.
"Bird's beak" on barium swallow A.
2° achalasia may arise from Chagas disease (T cruzi infection) or extraesophageal malignancies (mass effect or paraneoplastic).

Esophageal pathologies

Boerhaave syndrome Transmural, usually distal esophageal rupture with pneumomediastinum (arrows in A) due to violent retching; surgical emergency.

Eosinophilic esophagitis

Esophageal strictures

Esophageal varices

Esophagitis

Gastroesophageal

 reflux diseaseMallory-Weiss syndrome
Plummer-Vinson syndrome
Sclerodermal esophageal dysmotility

Infiltration of eosinophils in the esophagus often in atopic patients. Food allergens \rightarrow dysphagia, food impaction. Esophageal rings and linear furrows often seen on endoscopy. Unresponsive to GERD therapy.
Associated with caustic ingestion and acid reflux.
Dilated submucosal veins B in lower $1 / 3$ of esophagus 2° to portal hypertension. Common in cirrhotics, may be source of life-threatening hematemesis.
Associated with reflux, infection in immunocompromised (Candida: white pseudomembrane; HSV-1: punched-out ulcers; CMV: linear ulcers), caustic ingestion, or medications.
Commonly presents as heartburn, regurgitation, dysphagia. May also present as chronic cough, hoarseness (laryngopharyngeal reflux). Associated with asthma. Transient decreases in LES tone.
Mucosal lacerations at the gastroesophageal junction due to severe vomiting. Leads to hematemesis that can be painful. Usually found in alcoholics and bulimics.
Triad of Dysphagia, Iron deficiency anemia, and Esophageal webs. May be associated with glossitis. Increased risk of esophageal squamous cell carcinoma ("Plumbers" DIE).
Esophageal smooth muscle atrophy $\rightarrow \downarrow$ LES pressure and dysmotility \rightarrow acid reflux and dysphagia \rightarrow stricture, Barrett esophagus, and aspiration. Part of CREST syndrome.

Barrett esophagus

B

Specialized intestinal metaplasia A-replacement of nonkeratinized stratified squamous epithelium with intestinal epithelium (nonciliated columnar with goblet cells [stained blue in [B]) in distal esophagus. Due to chronic reflux esophagitis (GERD). Associated with \uparrow risk of esophageal adenocarcinoma.

Esophageal cancer
Typically presents with progressive dysphagia (first solids, then liquids) and weight loss; poor prognosis.

CANCER	PART OF ESOPHAGUS AFFECTED	RISK FACTORS	PREVALENCE
Squamous cell carcinoma	Upper $2 / 3$	Alcohol, hot liquids, caustic strictures, smoking, achalasia	More common worldwide
Adenocarcinoma	Lower $1 / 3$	Chronic GERD, Barrett esophagus, obesity, smoking, achalasia	More common in America

Gastritis

Acute gastritis	Erosions can be caused by: - NSAIDs $-\downarrow$ PGE $_{2} \rightarrow \downarrow$ gastric mucosa protection - Burns (Curling ulcer)-hypovolemia \rightarrow mucosal ischemia - Brain injury (Cushing ulcer) $-\uparrow$ vagal stimulation $\rightarrow \uparrow \mathrm{ACh} \rightarrow \uparrow \mathrm{H}^{+}$production	Especially common among alcoholics and patients taking daily NSAIDs (eg, patients with rheumatoid arthritis). Burned by the Curling iron. Always Cushion the brain.
Chronic gastritis	Mucosal inflammation, often leading to atrophy (hypochlorhydria \rightarrow hypergastrinemia) and intestinal metaplasia (\uparrow risk of gastric cancers).	
H pylori	Most common. \uparrow risk of peptic ulcer disease, MALT lymphoma.	Affects antrum first and spreads to body of stomach.
Autoimmune	Autoantibodies to parietal cells and intrinsic factor. \uparrow risk of pernicious anemia.	Affects body/fundus of stomach.

Ménétrier disease

Gastric hyperplasia of mucosa \rightarrow hypertrophied rugae (looking like brain gyri \boldsymbol{A}), excess mucus production with resultant protein loss and parietal cell atrophy with \downarrow acid production. Precancerous.

Gastric cancer

Most commonly gastric adenocarcinoma; lymphoma, GI stromal tumor, carcinoid (rare). Early aggressive local spread with node/liver metastases. Often presents late, with weight loss, early satiety, and in some cases acanthosis nigricans or Leser-Trélat sign.

- Intestinal—associated with H pylori, dietary nitrosamines (smoked foods), tobacco smoking, achlorhydria, chronic gastritis. Commonly on lesser curvature; looks like ulcer with raised margins.
- Diffuse-not associated with H pylori; signet ring cells (mucin-filled cells with peripheral nuclei) A; stomach wall grossly thickened and leathery (linitis plastica).

Virchow node-involvement of left supraclavicular node by metastasis from stomach.
Krukenberg tumor-bilateral metastases to ovaries. Abundant mucin-secreting, signet ring cells.
Sister Mary Joseph nodule—subcutaneous periumbilical metastasis.

Peptic ulcer disease

	Gastric ulcer	Duodenal ulcer
PAIN	Can be Greater with meals—weight loss	Decreases with meals-weight gain
HPYLORIINFECTION	$\sim 70 \%$	$\sim 90 \%$
MECHANISM	\downarrow mucosal protection against gastric acid	\downarrow mucosal protection or \uparrow gastric acid secretion
OTHER CAUSES	NSAIDs	Zollinger-Ellison syndrome
RISK OF CARCINOMA	\uparrow	Generally benign
OTHER	Biopsy margins to rule out malignancy	Hypertrophy of Brunner glands

Ulcer complications

Hemorrhage	Gastric, duodenal (posterior $>$ anterior). Most common complication. Ruptured gastric ulcer on the lesser curvature of stomach \rightarrow bleeding from left gastric artery. An ulcer on the posterior wall of duodenum \rightarrow bleeding from gastroduodenal artery.
Obstruction	Pyloric channel, duodenal
Perforation	Duodenal (anterior > posterior). May see free air under diaphragm A with referred pain to the shoulder via phrenic nerve.
A	

Malabsorption syndromes	Can cause diarrhea, steatorrhea, weight loss, weakness, vitamin and mineral deficiencies. Screen for fecal fat (eg, Sudan stain).	
Celiac disease A	Gluten-sensitive enteropathy, celiac sprue. Autoimmune-mediated intolerance of gliadin (gluten protein found in wheat) \rightarrow malabsorption and steatorrhea. Associated with HLA-DQ2, HLA-DQ8, northern European descent, dermatitis herpetiformis, \downarrow bone density. Findings: IgA anti-tissue transglutaminase, anti-endomysial, antideamidated gliadin peptide antibodies; villous atrophy (arrow in A shows blunting), crypt hyperplasia (double arrows in \boldsymbol{A}), and intraepithelial lymphocytosis. Moderately \uparrow risk of malignancy (eg, T-cell lymphoma).	\downarrow mucosal absorption primarily affects distal duodenum and/or proximal jejunum. D-xylose test: passively absorbed in proximal small intestine; blood and urine levels \downarrow with mucosa defects or bacterial overgrowth, normal in pancreatic insufficiency. Treatment: gluten-free diet.
Lactose intolerance	Lactase deficiency. Normal-appearing villi, except when 2° to injury at tips of villi (eg, viral enteritis). Osmotic diarrhea with \downarrow stool pH (colonic bacteria ferment lactose).	Lactose hydrogen breath test: \oplus for lactose malabsorption if postlactose breath hydrogen value rises > 20 ppm compared with baseline.
Pancreatic insufficiency	Due to chronic pancreatitis, cystic fibrosis, obstructing cancer. Causes malabsorption of fat and fat-soluble vitamins (A, D, E, K) as well as vitamin B_{12}.	\downarrow duodenal pH (bicarbonate) and fecal elastase.
Tropical sprue	Similar findings as celiac sprue (affects small bowel), but responds to antibiotics. Cause is unknown, but seen in residents of or recent visitors to tropics.	\downarrow mucosal absorption affecting duodenum and jejunum but can involve ileum with time. Associated with megaloblastic anemia due to folate deficiency and, later, B_{12} deficiency.
	Infection with Tropheryma whipplei (intracellular gram \oplus); PAS \oplus foamy macrophages in intestinal lamina propria [B, mesenteric nodes. Cardiac symptoms, Arthralgias, and Neurologic symptoms are common. Most often occurs in older men.	Foamy Whipped cream in a CAN.

Inflammatory bowel diseases

	Crohn disease	Ulcerative colitis
location	Any portion of the GI tract, usually the terminal ileum and colon. Skip lesions, rectal sparing.	Colitis = colon inflammation. Continuous colonic lesions, always with rectal involvement.
Gross morphology	Transmural inflammation \rightarrow fistulas. Cobblestone mucosa, creeping fat, bowel wall thickening ("string sign" on barium swallow x-ray A), linear ulcers, fissures.	Mucosal and submucosal inflammation only. Friable mucosal pseudopolyps (compare normal \mathbb{B} with diseased (C) with freely hanging mesentery. Loss of haustra \rightarrow "lead pipe" appearance on imaging.
microscopic morphology	Noncaseating granulomas and lymphoid aggregates.	Crypt abscesses and ulcers, bleeding, no granulomas.
complications	Malabsorption/malnutrition, colorectal cancer (\uparrow risk with pancolitis). Fistulas (eg, enterovesical fistulae, which can cause recurrent UTI and pneumaturia), phlegmon/abscess, strictures (causing obstruction), perianal disease.	Malabsorption/malnutrition, colorectal cancer (\uparrow risk with pancolitis). Fulminant colitis, toxic megacolon, perforation.
intestinal manfestation	Diarrhea that may or may not be bloody.	Bloody diarrhea.
Extranintestinal manifestations	Rash (pyoderma gangrenosum, erythema nodosum), eye inflammation (episcleritis, uveitis), oral ulcerations (aphthous stomatitis), arthritis (peripheral, spondylitis).	
	Kidney stones (usually calcium oxalate), gallstones.	1° sclerosing cholangitis. Associated with p-ANCA.
treatment	Corticosteroids, azathioprine, antibiotics (eg, ciprofloxacin, metronidazole), infliximab, adalimumab.	5-aminosalicylic preparations (eg, mesalamine), 6-mercaptopurine, infliximab, colectomy.
	For Crohn, think of a fat granny and an old crone skipping down a cobblestone road away from the wreck (rectal sparing).	Ulcerative colitis causes ULCCCERS: Ulcers Large intestine Continuous, Colorectal carcinoma, Crypt abscesses Extends proximally Red diarrhea Sclerosing cholangitis

Irritable bowel syndrome

Recurrent abdominal pain associated with ≥ 2 of the following:

- Pain improves with defecation
- Change in stool frequency
- Change in appearance of stool

No structural abnormalities. Most common in middle-aged women. Chronic symptoms may be diarrhea-predominant, constipation-predominant, or mixed. Pathophysiology is multifaceted.

Appendicitis

Acute inflammation of the appendix (yellow arrows in \boldsymbol{A}), can be due to obstruction by fecalith (red arrow in \boldsymbol{A}) (in adults) or lymphoid hyperplasia (in children).
Initial diffuse periumbilical pain migrates to McBurney point $(1 / 3$ the distance from right anterior superior iliac spine to umbilicus). Nausea, fever; may perforate \rightarrow peritonitis; may elicit psoas, obturator, and Rovsing signs, guarding and rebound tenderness on exam.
Differential: diverticulitis (elderly), ectopic pregnancy (use β-hCG to rule out).
Treatment: appendectomy.

Diverticula of the GI tract

Diverticulum

Blind pouch A protruding from the alimentary tract that communicates with the lumen of the gut. Most diverticula (esophagus, stomach, duodenum, colon) are acquired and are termed "false" in that they lack or have an attenuated muscularis externa. Most often in sigmoid colon.
"True" diverticulum - all 3 gut wall layers outpouch (eg, Meckel).
"False" diverticulum or pseudodiverticulumonly mucosa and submucosa outpouch. Occur especially where vasa recta perforate muscularis externa.

Diverticulitis

Diverticulosis

Many false diverticula of the colon, commonly sigmoid. Common (in $\sim 50 \%$ of people >60 years). Caused by \uparrow intraluminal pressure and focal weakness in colonic wall. Associated with low-fiber diets.
Diverticulosis with inflamed microperforations B classically causing LLQ pain, fever, leukocytosis. Treat with antibiotics.

Often asymptomatic or associated with vague discomfort.
Complications include diverticular bleeding (painless hematochezia), diverticulitis.

Complications: abscess, fistula (colovesical fistula \rightarrow pneumaturia), obstruction (inflammatory stenosis), perforation (\rightarrow peritonitis). Treat with percutaneous drainage or surgery.

Pharyngoesophageal false diverticulum A. Esophageal dysmotility causes herniation of mucosal tissue at Killian triangle between the thyropharyngeal and cricopharyngeal parts of the inferior pharyngeal constrictor. Presenting symptoms: dysphagia, obstruction, gurgling, aspiration, foul breath, neck mass. Most common in elderly males.

Elder MIKE has bad breath.
Elderly
Males
Inferior pharyngeal constrictor
Killian triangle
Esophageal dysmotility
Halitosis

Meckel diverticulum

Hirschsprung disease

True diverticulum. Persistence of the vitelline duct. May contain ectopic acid-secreting gastric mucosa and/or pancreatic tissue. Most common congenital anomaly of GI tract. Can cause melena, RLQ pain, intussusception, volvulus, or obstruction near terminal ileum. Contrast with omphalomesenteric cyst $=$ cystic dilation of vitelline duct.
Diagnosis: pertechnetate study for uptake by ectopic gastric mucosa.

The six 2's:
2 times as likely in males.
2 inches long.
2 feet from the ileocecal valve.
2% of population.
Commonly presents in first 2 years of life.
May have 2 types of epithelia (gastric/ pancreatic).

Congenital megacolon characterized by lack of ganglion cells/enteric nervous plexuses (Auerbach and Meissner plexuses) in distal segment of colon. Due to failure of neural crest cell migration. Associated with mutations in RET.
Presents with bilious emesis, abdominal distention, and failure to pass meconium within 48 hours \rightarrow chronic constipation. Normal portion of the colon proximal to the aganglionic segment is dilated, resulting in a "transition zone."

Think of Hirschsprung as a giant spring that has sprung in the colon. Risk \uparrow with Down syndrome.
Diagnosed by rectal suction biopsy.
Treatment: resection.

Malrotation

Anomaly of midgut rotation during fetal development \rightarrow improper positioning of bowel, formation of fibrous bands (Ladd bands). Can lead to volvulus, duodenal obstruction.

Volvulus

Twisting of portion of bowel around its mesentery; can lead to obstruction and infarction A. Can occur throughout the GI tract. Midgut volvulus more common in infants and children. Sigmoid volvulus more common in elderly.

Intussusception

Telescoping \boldsymbol{A} of proximal bowel segment into distal segment, commonly at ileocecal junction. Compromised blood supply \rightarrow intermittent abdominal pain often with "currant jelly" stools. Unusual in adults (associated with intraluminal mass or tumor that acts as lead point that is pulled into the lumen). Majority of cases occur in children (usually idiopathic; may be associated with recent viral infection, such as adenovirus \rightarrow Peyer patch hypertrophy \rightarrow lead point; most common pathologic lead point is Meckel diverticulum). Abdominal emergency in early childhood, with bull's-eye appearance on ultrasound.

Other intestinal disorders

Acute mesenteric ischemia	Critical blockage of intestinal blood flow (often embolic occlusion of SMA) \rightarrow small bowel necrosis \rightarrow abdominal pain out of proportion to physical findings. May see red "currant jelly" stools.
Chronic mesenteric ischemia	"Intestinal angina": atherosclerosis of celiac artery, SMA, or IMA \rightarrow intestinal hypoperfusion \rightarrow postprandial epigastric pain \rightarrow food aversion and weight loss.
Colonic ischemia	Reduction in intestinal blood flow causes ischemia. Crampy abdominal pain followed by hematochezia. Commonly occurs at watershed areas (splenic flexure, distal colon). Typically affects elderly.
Angiodysplasia	Tortuous dilation of vessels \rightarrow hematochezia. Most often found in cecum, terminal ileum, ascending colon. More common in older patients. Confirmed by angiography.
Adhesion	Fibrous band of scar tissue; commonly forms after surgery; most common cause of small bowel obstruction. Can have well-demarcated necrotic zones.
Ileus	Intestinal hypomotility without obstruction \rightarrow constipation and \downarrow flatus; distended/tympanic abdomen with \downarrow bowel sounds. Associated with abdominal surgeries, opiates, hypokalemia, sepsis. Treatment: bowel rest, electrolyte correction, cholinergic drugs (stimulate intestinal motility).
Meconium ileus	In cystic fibrosis, meconium plug obstructs intestine, preventing stool passage at birth.
Necrotizing enterocolitis	Seen in premature, formula-fed infants with immature immune system. Necrosis of intestinal mucosa (primarily colonic) with possible perforation, which can lead to pneumatosis intestinalis, free air in abdomen, portal venous gas.

Colonic polyps	Growths of tissue within the colon A. May be neoplastic or non-neoplastic. Grossly characterized as flat, sessile, or pedunculated (on a stalk) on the basis of protrusion into colonic lumen. Generally classified by histologic type.
HISTOLOGIITYPE	Characteristics
Hyperplastic	Non-neoplastic. Generally smaller and majority located in rectosigmoid area.
Hamartomatous	Generally non-neoplastic; solitary lesions do not have a significant risk of malignant transformation. Growths of normal colonic tissue with distorted architecture. Associated with Peutz-Jeghers syndrome and juvenile polyposis.
Adenomatous	Neoplastic, via chromosomal instability pathway with mutations in APC and KRAS. Tubular [B histology has less malignant potential than villous ©; tubulovillous has intermediate malignant potential. Usually asymptomatic; may present with occult bleeding.
Serrated	Premalignant, via CpG hypermethylation phenotype pathway with microsatellite instability and mutations in BRAF. "Saw-tooth" pattern of crypts on biopsy. Up to 20% of cases of sporadic CRC.

Polyposis syndromes

Familial adenomatous polyposis

Gardner syndrome

Turcot syndrome
Peutz-Jeghers syndrome

Juvenile polyposis syndrome

Autosomal dominant mutation of APC tumor suppressor gene on chromosome 5q. 2-hit hypothesis. Thousands of polyps arise starting after puberty; pancolonic; always involves rectum. Prophylactic colectomy or else 100% progress to CRC.
FAP + osseous and soft tissue tumors, congenital hypertrophy of retinal pigment epithelium, impacted/supernumerary teeth.

FAP + malignant CNS tumor. Turcot $=$ Turban.
Autosomal dominant syndrome featuring numerous hamartomas throughout GI tract, along with hyperpigmented mouth, lips, hands, genitalia. Associated with \uparrow risk of breast and GI cancers (eg, colorectal, stomach, small bowel, pancreatic).
Autosomal dominant syndrome in children (typically <5 years old) featuring numerous hamartomatous polyps in the colon, stomach, small bowel. Associated with \uparrow risk of CRC.

Lynch syndrome

Previously known as hereditary nonpolyposis colorectal cancer (HNPCC). Autosomal dominant mutation of DNA mismatch repair genes with subsequent microsatellite instability. $\sim 80 \%$ progress to CRC. Proximal colon is always involved. Associated with endometrial, ovarian, and skin cancers.

Colorectal cancer

EPIDEMIOLOGY	Most patients are >50 years old. $\sim 25 \%$ have a family history.	
RISk Factors	Adenomatous and serrated polyps, familial cancer syndromes, IBD, tobacco use, diet of processed meat with low fiber.	
PResentation	Rectosigmoid > ascending > descending. Ascending-exophytic mass, iron deficiency anemia, weight loss. Descending-infiltrating mass, partial obstruction, colicky pain, hematochezia. Rarely, presents with Streptococcus bovis bacteremia.	Right side bleeds; left side obstructs.
diagvosis	Iron deficiency anemia in males (especially >50 years old) and postmenopausal females raises suspicion. Screen patients > 50 years old with colonoscopy \boldsymbol{A}, flexible sigmoidoscopy, fecal occult blood test, or fecal DNA test. "Apple core" lesion seen on barium enema x-ray B. CEA tumor marker: good for monitoring recurrence, should not be used for screening.	

Molecular

 pathogenesis of colorectal cancerChromosomal instability pathway: mutations in APC cause FAP and most sporadic CRC (via adenoma-carcinoma sequence; (firing) order of events is AK-53).
Microsatellite instability pathway: mutations or methylation of mismatch repair genes (eg, MLHl) cause Lynch syndrome and some sporadic CRC (via serrated polyp pathway).

Chromosomal instability pathway

Cirrhosis and portal hypertension

Cirrhosis—diffuse bridging fibrosis (via stellate cells) and regenerative nodules (red arrows in A; blue arrow shows splenomegaly) disrupt normal architecture of liver; \uparrow risk for hepatocellular carcinoma (HCC). Etiologies include alcohol (60-70\% of cases in the US), nonalcoholic steatohepatitis, chronic viral hepatitis, autoimmune hepatitis, biliary disease, genetic/metabolic disorders.
Portal hypertension \wedge^{\uparrow} pressure in portal venous system. Etiologies include cirrhosis (most common cause in Western countries), vascular obstruction (eg, portal vein thrombosis, BuddChiari syndrome), schistosomiasis.

Serum markers of liver pathology

ENZYMES RELEASED IN LIVER damage	
Aspartate aminotransferase and alanine aminotransferase	\uparrow in most liver disease: ALT > AST \uparrow in alcoholic liver disease: AST > ALT AST > ALT in nonalcoholic liver disease suggests progression to advanced fibrosis or cirrhosis
Alkaline phosphatase	\uparrow in cholestasis (eg, biliary obstruction), infiltrative disorders, bone disease
γ-glutamyl transpeptidase	\uparrow in various liver and biliary diseases (just as ALP can), but not in bone disease; associated with alcohol use
FUNCTIONAL LIVER MARKERS	
Bilirubin	\uparrow in various liver diseases (eg, biliary obstruction, alcoholic or viral hepatitis, cirrhosis), hemolysis
Albumin	\downarrow in advanced liver disease
Prothrombin	\uparrow in advanced liver disease (\downarrow production of clotting factors)
Platelets	\downarrow in advanced liver disease (\downarrow thrombopoietin, liver sequestration) and portal hypertension (splenomegaly/splenic sequestration)

Reye syndrome

Rare, often fatal childhood hepatic encephalopathy. Findings: mitochondrial abnormalities, fatty liver (microvesicular fatty change), hypoglycemia, vomiting, hepatomegaly, coma. Associated with viral infection (especially VZV and influenza B) that has been treated with aspirin. Mechanism: aspirin metabolites $\downarrow \beta$-oxidation by reversible inhibition of mitochondrial enzymes. Avoid aspirin in children, except in those with Kawasaki disease.

Alcoholic liver disease

Non-alcoholic fatty

liver disease

Metabolic syndrome (insulin resistance); obesity \rightarrow fatty infiltration of hepatocytes \boldsymbol{A} \rightarrow cellular "ballooning" and eventual necrosis. May cause cirrhosis and HCC. Independent of alcohol use.

ALT > AST (Lipids)

Hepatic

 encephalopathyCirrhosis \rightarrow portosystemic shunts $\rightarrow \downarrow \mathrm{NH}_{3}$ metabolism \rightarrow neuropsychiatric dysfunction. Spectrum from disorientation/asterixis (mild) to difficult arousal or coma (severe). Triggers:

- $\uparrow \mathrm{NH}_{3}$ production and absorption (due to dietary protein, GI bleed, constipation, infection).
- $\downarrow \mathrm{NH}_{3}$ removal (due to renal failure, diuretics, bypassed hepatic blood flow post-TIPS).

Treatment: lactulose ($\uparrow \mathrm{NH}_{4}^{+}$generation) and rifaximin or neomycin $\left(\downarrow \mathrm{NH}_{4}^{+}\right.$producing gut bacteria).

Hepatocellular carcinoma/hepatoma

Most common 1° malignant tumor of liver in adults A. Associated with HBV (+/cirrhosis) and all other causes of cirrhosis (including HCV, alcoholic and non-alcoholic fatty liver disease, autoimmune disease, hemochromatosis, α_{1}-antitrypsin deficiency) and specific carcinogens (eg, aflatoxin from Aspergillus). May lead to Budd-Chiari
 syndrome.
Findings: jaundice, tender hepatomegaly, ascites, polycythemia, anorexia. Spreads hematogenously.
Diagnosis: $\uparrow \alpha$-fetoprotein; ultrasound or contrast CT/MRI B, biopsy.

Other liver tumors

Hepatic adenoma

Angiosarcoma

Metastases

Common, benign liver tumor A; typically occurs at age 30-50 years. Biopsy contraindicated because of risk of hemorrhage.

Rare, benign liver tumor, often related to oral contraceptive or anabolic steroid use; may regress spontaneously or rupture (abdominal pain and shock).
Malignant tumor of endothelial origin; associated with exposure to arsenic, vinyl chloride.
GI malignancies, breast and lung cancer. Most common overall.

Budd-Chiari syndrome Thrombosis or compression of hepatic veins with centrilobular congestion and necrosis \rightarrow congestive liver disease (hepatomegaly, ascites, varices, abdominal pain, liver failure). Absence of JVD. Associated with hypercoagulable states, polycythemia vera, postpartum state, HCC. May cause nutmeg liver (mottled appearance).

Physiologic neonatal jaundice

At birth, immature UDP-glucuronosyltransferase \rightarrow unconjugated hyperbilirubinemia \rightarrow jaundice/ kernicterus (bilirubin deposition in brain, particularly basal ganglia).
Occurs after first 24 hours of life and usually resolves without treatment in $1-2$ weeks. Treatment: phototherapy (non-UV) isomerizes unconjugated bilirubin to water-soluble form.

Hereditary hyperbilirubinemias
(1) Gilbert syndrome
(2) Crigler-Najjar
syndrome, type I

(3) Dubin-Johnson syndrome
syndrome, type I

All autosomal recessive.

Mildly \downarrow UDP-glucuronosyltransferase conjugation and impaired bilirubin uptake. Asymptomatic or mild jaundice. \uparrow unconjugated bilirubin without overt hemolysis. Bilirubin \uparrow with fasting and stress.
Absent UDP-glucuronosyltransferase. Presents early in life; patients die within a few years. Findings: jaundice, kernicterus (bilirubin deposition in brain), \uparrow unconjugated bilirubin. Treatment: plasmapheresis and phototherapy.
Conjugated hyperbilirubinemia due to defective liver excretion. Grossly black liver. Benign.

Type II is less severe and responds to phenobarbital, which \uparrow liver enzyme synthesis.

Very common. No clinical consequences.

Wilson disease (hepatolenticular degeneration)

Recessive mutations in hepatocyte copper-transporting ATPase (ATP7B gene; chromosome 13) \rightarrow inadequate copper excretion into bile and blood (\downarrow serum ceruloplasmin, \uparrow urine copper). Copper accumulates, especially in liver, brain, cornea, kidneys, joints.
Presents before age 40 with liver disease (eg, hepatitis, acute liver failure, cirrhosis), neurologic disease (eg, dysarthria, dystonia, tremor, parkinsonism), psychiatric disease, Kayser-Fleischer rings (deposits in Descemet membrane of cornea) A, hemolytic anemia, renal disease (eg, Fanconi syndrome).
Treatment: chelation with penicillamine or trientine, oral zinc.

Hemochromatosis

Recessive mutations in HFE gene (C282Y > H63D, chromosome 6) \rightarrow abnormal iron sensing and \uparrow intestinal absorption (\uparrow ferritin, \uparrow iron, \downarrow TIBC $\rightarrow \uparrow$ transferrin saturation). Iron overload can also be 2° to chronic transfusion therapy (eg, β-thalassemia major). Iron accumulates, especially in liver, pancreas, skin, heart, pituitary, joints. Hemosiderin (iron) can be identified on liver MRI or biopsy with Prussian blue stain A.
Presents after age 40 when total body iron $>20 \mathrm{~g}$; iron loss through menstruation slows progression in women. Classic triad of cirrhosis, diabetes mellitus, skin pigmentation ("bronze diabetes"). Also causes dilated cardiomyopathy (reversible), hypogonadism, arthropathy (calcium pyrophosphate deposition; especially metacarpophalangeal joints). HCC is common cause of death.
Treatment: repeated phlebotomy, chelation with deferasirox, deferoxamine, oral deferiprone.

Biliary tract disease
May present with pruritus, jaundice, dark urine, light-colored stool, hepatosplenomegaly. Typically with cholestatic pattern of LFTs (\uparrow conjugated bilirubin, \uparrow cholesterol, \uparrow ALP).

	Pathology	EPIIEMIOLOGY	AdDITIONAL FEATURES
Primary sclerosing cholangitis	Unknown cause of concentric "onion skin" bile duct fibrosis \rightarrow alternating strictures and dilation with "beading" of intra- and extrahepatic bile ducts on ERCP, magnetic resonance cholangiopancreatography (MRCP).	Classically in middle-aged men with IBD.	Associated with ulcerative colitis. p-ANCA \oplus. $\uparrow \operatorname{IgM}$. Can lead to 2° biliary cirrhosis. \uparrow risk of cholangiocarcinoma and gallbladder cancer.
Primary biliary cirrhosis	Autoimmune reaction \rightarrow lymphocytic infiltrate + granulomas \rightarrow destruction of intralobular bile ducts.	Classically in middle-aged women.	Anti-mitochondrial antibody \oplus, $\uparrow \mathrm{IgM}$. Associated with other autoimmune conditions (eg, Sjögren syndrome, Hashimoto thyroiditis, CREST, rheumatoid arthritis, celiac disease).
Secondary biliary cirrhosis	Extrahepatic biliary obstruction $\rightarrow \uparrow$ pressure in intrahepatic ducts \rightarrow injury/ fibrosis and bile stasis.	Patients with known obstructive lesions (gallstones, biliary strictures, pancreatic carcinoma).	May be complicated by ascending cholangitis.

Gallstones

 (cholelithiasis)
\uparrow cholesterol and/or bilirubin, \downarrow bile salts, and gallbladder stasis all cause stones \boldsymbol{A}.
2 types of stones:

- Cholesterol stones (radiolucent with 10-20\% opaque due to calcifications) - 80% of stones. Associated with obesity, Crohn disease, advanced age, estrogen therapy, multiparity, rapid weight loss, Native American origin.
- Pigment stones (black = radiopaque, Ca^{2+} bilirubinate, hemolysis; brown = radiolucent, infection)-seen in patients with Crohn disease, chronic hemolysis, alcoholic cirrhosis, advanced age, biliary infections, total parenteral nutrition (TPN).
Uncomplicated disease manifests as biliary colic-neurohormonal activation (eg, by CCK after a fatty meal) triggers contraction of gallbladder, forcing a stone into the cystic duct. May present without pain (eg, in diabetics).
Diagnose with ultrasound B. Treat with cholecystectomy if symptomatic.

Risk factors (4 F's):

1. Female
2. Fat
3. Fertile (pregnant)
4. Forty

Most common complication is cholecystitis; also acute pancreatitis, ascending cholangitis.
Charcot triad of cholangitis:

- Jaundice
- Fever
- RUQ pain

Can cause fistula between gallbladder and gastrointestinal tract \rightarrow air in biliary tree (pneumobilia) \rightarrow passage of gallstones into intestinal tract \rightarrow obstruction of ileocecal valve (gallstone ileus).

Cholecystitis

Acute or chronic inflammation of gallbladder usually from cholelithiasis (stone at neck of gallbladder [red arrow in A] with gallbladder wall thickening [yellow arrows]). Gallstones most commonly blocking the cystic duct $\rightarrow 2^{\circ}$ infection; rarely acalculous due to ischemia and stasis, or 1° infection (CMV). Murphy sign \oplus : inspiratory arrest on RUQ palpation due to pain. \uparrow ALP if bile duct becomes involved (eg, ascending cholangitis).
Diagnose with ultrasound or cholescintigraphy (HIDA, or hepatobiliary iminodiacetic acid scan).

Porcelain gallbladder

Calcified gallbladder due to chronic cholecystitis; usually found incidentally on imaging A. Treatment: prophylactic cholecystectomy due to high rates of gallbladder cancer (mostly adenocarcinoma).

Acute pancreatitis

Autodigestion of pancreas by pancreatic enzymes (A shows pancreas [yellow arrows] surrounded by edema [red arrows]).
Causes: Idiopathic, Gallstones, Ethanol, Trauma, Steroids, Mumps, Autoimmune disease, Scorpion sting, Hypercalcemia/Hypertriglyceridemia (> $1000 \mathrm{mg} / \mathrm{dL}$), ERCP, Drugs (eg, sulfa drugs, NRTIs, protease inhibitors). I GET SMASHED.
Diagnosis by 2 of 3 criteria: acute epigastric pain often radiating to the back, \uparrow serum amylase or lipase (more specific) to $3 \times$ upper limit of normal, or characteristic imaging findings.
Complications: pseudocyst B (lined by granulation tissue, not epithelium), necrosis, hemorrhage, infection, organ failure (ARDS, shock, renal failure), hypocalcemia (precipitation of Ca^{2+} soaps).

Chronic pancreatitis

Chronic inflammation, atrophy, calcification of the pancreas \boldsymbol{A}. Major causes are alcohol abuse and idiopathic. Mutations in CFTR (cystic fibrosis) can cause chronic pancreatic insufficiency. Can lead to pancreatic insufficiency \rightarrow steatorrhea, fat-soluble vitamin deficiency, diabetes mellitus. Amylase and lipase may or may not be elevated (almost always elevated in acute pancreatitis).

Pancreatic adenocarcinoma

Very aggressive tumor arising from pancreatic ducts (disorganized glandular structure with cellular infiltration \boldsymbol{A}); often metastatic at presentation, with average survival ~ 1 year after diagnosis. Tumors more common in pancreatic head B (\rightarrow obstructive jaundice). Associated with CA 19-9 tumor marker (also CEA, less specific).
Risk factors:

- Tobacco use
- Chronic pancreatitis (especially >20 years)
- Diabetes
- Age > 50 years
- Jewish and African-American males

Often presents with:

- Abdominal pain radiating to back
- Weight loss (due to malabsorption and anorexia)
- Migratory thrombophlebitis-redness and tenderness on palpation of extremities (Trousseau syndrome)
- Obstructive jaundice with palpable, nontender gallbladder (Courvoisier sign)

Treatment: Whipple procedure, chemotherapy, radiation therapy.

GASTROINTESTINAL—PHARMACOLOGY

Acid suppression therapy

H_{2} blockers

Cimetidine, ranitidine, famotidine, nizatidine. Take H_{2} blockers before you dine. Think "table for 2" to remember H_{2}.
MECHANISM \quad Reversible block of histamine H_{2}-receptors $\rightarrow \downarrow \mathrm{H}^{+}$secretion by parietal cells.

Peptic ulcer, gastritis, mild esophageal reflux.
ADVERSEEFFECTS Cimetidine is a potent inhibitor of cytochrome P-450 (multiple drug interactions); it also has antiandrogenic effects (prolactin release, gynecomastia, impotence, \downarrow libido in males); can cross blood-brain barrier (confusion, dizziness, headaches) and placenta. Both cimetidine and ranitidine \downarrow renal excretion of creatinine. Other H_{2} blockers are relatively free of these effects.

Proton pump inhibitors Omeprazole, lansoprazole, esomeprazole, pantoprazole, dexlansoprazole.
mechanism
clinical use
AdVERSE Effects

Irreversibly inhibit $\mathrm{H}^{+} / \mathrm{K}^{+}$ATPase in stomach parietal cells.
Peptic ulcer, gastritis, esophageal reflux, Zollinger-Ellison syndrome.
\uparrow risk of C difficile infection, pneumonia. \downarrow serum Mg^{2+} with long-term use.

Antacid use	Can affect absorption, bioavailability, or urinary excretion of other drugs by altering gastric and urinary pH or by delaying gastric emptying. All can cause hypokalemia. Overuse can also cause the following problems.		
Aluminum hydroxide	Constipation and hypophosphatemia; proximal muscle weakness, osteodystrophy, seizures		Aluminimum amount of feces.
:---:			

Misoprostol

mechanism	A PGE_{1} analog. \uparrow production and secretion of gastric mucous barrier, \downarrow acid production.
Cluncal use	Prevention of NSAID-induced peptic ulcers (NSAIDs block PGE ${ }_{1}$ production); maintenance of a PDA. Also used off-label for induction of labor (ripens cervix).
adverse effects	Diarrhea. Contraindicated in women of childbearing potential (abortifacient).

Octreotide

MECHANSM	Long-acting somatostatin analog; inhibits secretion of various splanchnic vasodilatory hormones.
ClINICAL USE	Acute variceal bleeds, acromegaly, VIPoma, carcinoid tumors.
ADVERSE EFFECTS	Nausea, cramps, steatorrhea. \uparrow risk of cholelithiasis due to CCK inhibition.
Osmotic laxatives	Magnesium hydroxide, magnesium citrate, polyethylene glycol, lactulose.
MECHANSM	Provide osmotic load to draw water into the GI lumen.
CIIICAL USE	Constipation. Lactulose also treats hepatic encephalopathy since gut flora degrade it into metabolites (lactic acid and acetic acid) that promote nitrogen excretion as NH${ }^{+}$.

Sulfasalazine

MECHANSM	A combination of sulfapyridine (antibacterial) and 5-aminosalicylic acid (anti-inflammatory). Activated by colonic bacteria.
CLINCAL USE	Ulcerative colitis, Crohn disease (colitis component).
ADVERSE EFFECTS	Malaise, nausea, sulfonamide toxicity, reversible oligospermia.

Loperamide		
mechansm	Agonist at μ-opioid receptors; slows gut motility. P	oor CNS penetration (low addictive potential).
clincal use	Diarrhea.	
adverse effects	Constipation, nausea.	
Ondansetron		
mechansm	5- HT_{3} antagonist; \downarrow vagal stimulation. Powerful central-acting antiemetic.	At a party but feeling queasy? Keep on dancing with ondansetron!
clincal use	Control vomiting postoperatively and in patients undergoing cancer chemotherapy.	
adverse effects	Headache, constipation, QT interval prolongation.	

Metoclopramide

MECHANSM	D_{2} receptor antagonist. \uparrow resting tone, contractility, LES tone, motility. Does not influence colon transport time.
ClINCAL usE	Diabetic and postsurgery gastroparesis, antiemetic.

Orlistat

MECHANISM	Inhibits gastric and pancreatic lipase $\rightarrow \downarrow$ breakdown and absorption of dietary fats.
Clincal USE	Weight loss.
ADVERSE EFFECTS	Steatorrhea, \downarrow absorption of fat-soluble vitamins.

Ursodiol (ursodeoxycholic acid)

MECHANSM Nontoxic bile acid. \uparrow bile secretion, \downarrow cholesterol secretion and reabsorption.
clincal USE Primary biliary cirrhosis, gallstone prevention or dissolution.

HIGH-YIELD SYSTEMS

Hematology and Oncology

"Of all that is written, I love only what a person has written with his own blood."
-Friedrich Nietzsche
"I used to get stressed out, but my cancer has put everything into perspective."
-Delta Goodrem
"The best blood will at some time get into a fool or a mosquito."
-Austin O'Malley
"Carcinoma works cunningly from the inside out. Detection and treatment often work more slowly and gropingly, from the outside in."
-Christopher Hitchens

Study tip: When reviewing oncologic drugs, focus on mechanisms and side effects rather than details of clinical uses, which may be lower yield.

D Anatomy	378
D Physiology	381
D Pathology	386
D Pharmacology	405

Erythrocyte

Carries O_{2} to tissues and CO_{2} to lungs. Anucleate and lacks organelles; biconcave A, with large surface area-to-volume ratio for rapid gas exchange. Life span of 120 days. Source of energy is glucose (90% used in glycolysis, 10% used in HMP shunt). Membrane contains $\mathrm{Cl}^{-} / \mathrm{HCO}_{3}{ }^{-}$antiporter, which allows RBCs to export $\mathrm{HCO}_{3}{ }^{-}$and transport CO_{2} from the periphery to the lungs for elimination.

Eryth $=$ red; cyte $=$ cell.
Erythrocytosis $=$ polycythemia $=\uparrow$ hematocrit.
Anisocytosis = varying sizes.
Poikilocytosis $=$ varying shapes.
Reticulocyte $=$ immature RBC; reflects erythroid proliferation.
Bluish color on Wright-Giemsa stain of reticulocytes represents residual ribosomal RNA.

Thrombocyte (platelet)

Involved in 1° hemostasis. Small cytoplasmic fragment \boldsymbol{A} derived from megakaryocytes. Life span of $8-10$ days. When activated by endothelial injury, aggregates with other platelets and interacts with fibrinogen to form platelet plug. Contains dense granules (ADP, Ca^{2+}) and α granules (vWF, fibrinogen, fibronectin). Approximately $1 / 3$ of platelet pool is stored in the spleen.

Thrombocytopenia or \downarrow platelet function results in petechiae.
vWF receptor: GpIb.
Fibrinogen receptor: GpIIb/IIIa.

Leukocyte

Divided into granulocytes (neutrophil, eosinophil, basophil) and mononuclear cells (monocytes, lymphocytes).
WBC differential from highest to lowest (normal ranges per USMLE):
Neutrophils (54-62\%)
Lymphocytes (25-33\%)
Monocytes (3-7\%)
Eosinophils (1-3\%)
Basophils (0-0.75\%)

Leuk $=$ white; $c y t e=$ cell.

Neutrophils Like Making Everything Better.

Neutrophil

Acute inflammatory response cell. Increased in bacterial infections. Phagocytic. Multilobed nucleus A. Specific granules contain leukocyte alkaline phosphatase (LAP), collagenase, lysozyme, and lactoferrin. Azurophilic granules (lysosomes) contain proteinases, acid phosphatase, myeloperoxidase, and β-glucuronidase.

Hypersegmented neutrophils (nucleus has 6+ lobes) are seen in vitamin B_{12} / folate deficiency. \uparrow band cells (immature neutrophils) reflect states of \uparrow myeloid proliferation (bacterial infections, CML).

Important neutrophil chemotactic agents: C5a, IL-8, LTB_{4}, kallikrein, platelet-activating factor.

Differentiates into macrophage in tissues. Large, kidney-shaped nucleus A. Extensive "frosted glass" cytoplasm.

Mono $=$ one (nucleus); cyte $=$ cell.
Monocyte: in the blood.

Macrophage

Phagocytoses bacteria, cellular debris, and senescent RBCs. Long life in tissues. Macrophages differentiate from circulating blood monocytes \boldsymbol{A}. Activated by γ-interferon. Can function as antigen-presenting cell via MHC II.

Macro $=$ large; phage $=$ eater.
Macrophage: in the tissue.
Important component of granuloma formation (eg, TB, sarcoidosis).
Lipid A from bacterial LPS binds CD14 on macrophages to initiate septic shock.

Eosinophil

Defends against helminthic infections (major basic protein). Bilobate nucleus. Packed with large eosinophilic granules of uniform size A. Highly phagocytic for antigenantibody complexes.
Produces histaminase and major basic protein (MBP, a helminthotoxin).

Eosin $=$ pink dye; philic $=$ loving.
Causes of eosinophilia = NAACP:
Neoplasia
Asthma
Allergic processes
Chronic adrenal insufficiency
Parasites (invasive)

Mediates allergic reaction. Densely basophilic granules A contain heparin (anticoagulant) and histamine (vasodilator). Leukotrienes synthesized and released on demand.

Basophilic—staining readily with basic stains. Basophilia is uncommon, but can be a sign of myeloproliferative disease, particularly CML.

Mediates allergic reaction in local tissues. Mast cells contain basophilic granules Δ and originate from the same precursor as basophils but are not the same cell type. Can bind the Fc portion of IgE to membrane. IgE crosslinks upon antigen binding \rightarrow degranulation \rightarrow release of histamine, heparin, tryptase, and eosinophil chemotactic factors.

Involved in type I hypersensitivity reactions. Cromolyn sodium prevents mast cell degranulation (used for asthma prophylaxis).

Dendritic cell

Highly phagocytic APC A. Functions as link between innate and adaptive immune systems. Expresses MHC class II and Fc receptors on surface. Called Langerhans cell in the skin.

Lymphocyte

Refers to B cells, T cells, and NK cells. B cells and T cells mediate adaptive immunity. NK cells are part of the innate immune response. Round, densely staining nucleus with small amount of pale cytoplasm A.

B cell

Part of humoral immune response. Originates from stem cells in bone marrow and matures in marrow. Migrates to peripheral lymphoid tissue (follicles of lymph nodes, white pulp of spleen, unencapsulated lymphoid tissue). When antigen is encountered, B cells differentiate into plasma cells (which produce antibodies) and memory cells. Can function as an APC via MHC II.
$B=$ Bone marrow.

Mediates cellular immune response. Originates from stem cells in the bone marrow, but matures in the thymus. T cells differentiate into cytotoxic T cells (express CD8, recognize MHC I), helper T cells (express CD4, recognize MHC II), and regulatory T cells. CD28 (costimulatory signal) necessary for T-cell activation. The majority of circulating lymphocytes are T cells (80\%).

T is for Thymus.
CD4+ helper T cells are the primary target of HIV.
$\mathrm{MHC} \times \mathrm{CD}=8(\mathrm{eg}, \mathrm{MHC} 2 \times \mathrm{CD} 4=8$, and $\mathrm{MHC} 1 \times \mathrm{CD} 8=8$).

Produces large amounts of antibody specific to a particular antigen. "Clock-face" chromatin distribution and eccentric nucleus, abundant RER, and well-developed Golgi apparatus (yellow arrows in \boldsymbol{A}). Found in bone marrow and normally do not circulate in peripheral blood.

Multiple myeloma is a plasma cell cancer.

- HEMATOLOGY AND ONCOLOGY—PHYSIOLOGY

Fetal erythropoiesis Fetal erythropoiesis occurs in:

- Yolk sac (3-8 weeks)
- Liver (6 weeks-birth)
- Spleen (10-28 weeks)
- Bone marrow (18 weeks to adult)

Hemoglobin
development
Embryonic globins: ζ and ε.

Fetal hemoglobin $(\mathrm{HbF})=\alpha_{2} \gamma_{2}$. From fetal to adult hemoglobin: Adult hemoglobin $\left(\mathrm{HbA}_{1}\right)=\alpha_{2} \beta_{2}$.
HbF has higher affinity for O_{2} due to less avid binding of $2,3-\mathrm{BPG}$, allowing HbF to extract O_{2} from maternal hemoglobin $\left(\mathrm{HbA}_{1}\right.$ and HbA_{2}) across the placenta.

Blood groups

Group antigens on
RBC surface
Antibodies in plasma
Clinical relevance

Rh hemolytic disease of the newborn

IgM does not cross placenta; IgG does cross placenta.
Rh \ominus mothers exposed to fetal $\mathrm{Rh} \oplus$ blood (often during delivery) may make anti-D IgG. In subsequent pregnancies, anti-D IgG crosses the placenta \rightarrow hemolytic disease of the newborn (erythroblastosis fetalis) in the next fetus that is $\mathrm{Rh} \oplus$. Administration of anti-D IgG (RhoGAM) to $\mathrm{Rh} \ominus$ pregnant women during third trimester prevents maternal anti-D IgG production.
Rh \odot mothers have anti-D IgG only if previously exposed to $\mathrm{Rh} \oplus$ blood.

ABO hemolytic disease Most common form. Usually occurs in a type O mother with a type A, B, or $A B$ fetus. Can occur in of the newborn a first pregnancy as maternal anti-A and/or anti-B IgG antibodies are formed early in life. Does not
worsen with future pregnancies. Presents as mild jaundice in the neonate within 24 hours of birth; treatment is phototherapy or exchange transfusion.

Hemoglobin electrophoresis

On a gel, hemoglobin migrates from the negatively charged cathode to the positively charged anode. HbA migrates the farthest, followed by HbS , followed by HbC . This is because the missense mutations in HbS and HbC replace glutamic acid Θ with valine (neutral) and lysine \oplus, respectively, impacting the net protein charge.

Coagulation and kinin pathways

Coagulation cascade components

Anticoagulation

2. destruction of coagulation factors

Warfarin inhibits the enzyme vitamin K epoxide reductase.
Neonates lack enteric bacteria, which produce vitamin K.
Vitamin K deficiency: \downarrow synthesis of factors II, VII, IX, X, protein C, protein S.
vWF carries/protects VIII.
Antithrombin inhibits activated forms of factors II, VII, IX, X, XI, XII.
Heparin enhances the activity of antithrombin. Principal targets of antithrombin: thrombin and factor Xa.
Factor V Leiden mutation produces a factor V resistant to inhibition by activated protein C. tPA is used clinically as a thrombolytic.

Platelet plug formation (primary hemostasis)

Thrombogenesis

- HEMATOLOGY AND ONCOLOGY—PATHOLOGY

Pathologic RBC forms

TYPE	EXAMPLE	ASSOCIATED Pathology	Notes
Acanthocyte ("spur cell")		Liver disease, abetalipoproteinemia (states of cholesterol dysregulation).	Acantho $=$ spiny.
Basophilic stippling		Lead poisoning, sideroblastic anemias, myelodysplastic syndromes.	
Dacrocyte ("teardrop cell")		Bone marrow infiltration (eg, myelofibrosis).	RBC "sheds a tear" because it's mechanically squeezed out of its home in the bone marrow.
Degmacyte ("bite cell")	圂	G6PD deficiency.	
Echinocyte ("burr cell")		End-stage renal disease, liver disease, pyruvate kinase deficiency.	Different from acanthocyte; its projections are more uniform and smaller.
Elliptocyte		Hereditary elliptocytosis, usually asymptomatic; caused by mutation in genes encoding RBC membrane proteins (eg, spectrin).	
Macro-ovalocyte		Megaloblastic anemia (also hypersegmented PMNs), marrow failure.	

Pathologic RBC forms (continued)

Other RBC abnormalities

TYPE	EXAMPLE	ASSOCIATED PATHOLOGY	NOTES
Heinz bodies	A.	Seen in G6PD deficiency.	Oxidation of Hb -SH groups to $-\mathrm{S}-\mathrm{S}-\rightarrow \mathrm{Hb}$ precipitation (Heinz bodies), with subsequent phagocytic damage to RBC membrane \rightarrow bite cells.
Howell-Jolly bodies	B	Seen in patients with functional hyposplenia or asplenia.	Basophilic nuclear remnants found in RBCs. Howell-Jolly bodies are normally removed from RBCs by splenic macrophages.

Anemias

On a peripheral blood smear, a lymphocyte nucleus is approximately the same size as a normocytic RBC. If RBC is larger han lymphocyte nucleus, consider macrocytosis; if RBC is smaller, consider microcytosis.
${ }^{\text {a }}$ Copper deficiency can cause a microcytic sideroblastic anemia.

Microcytic (MCV < 80 fL), hypochromic anemia

Iron deficiency	\downarrow iron due to chronic bleeding (eg, GI loss, menorrhagia), malnutrition, absorption disorders, or \uparrow demand (eg, pregnancy) $\rightarrow \downarrow$ final step in heme synthesis. Labs: \downarrow iron, \uparrow TIBC, \downarrow ferritin. Microcytosis and hypochromasia (central pallor) A. Symptoms: fatigue, conjunctival pallor B, pica (consumption of nonfood substances), spoon nails (koilonychia). May manifest as Plummer-Vinson syndrome (triad of iron deficiency anemia, esophageal webs, and dysphagia).
α-thalassemia	Defect: α-globin gene deletions $\rightarrow \downarrow \alpha$-globin synthesis. cis deletion (both deletions occur on same chromosome) prevalent in Asian populations; trans deletion (deletions occur on separate chromosomes) prevalent in African populations. 4 allele deletion: No α-globin. Excess γ-globin forms γ_{4} (Hb Barts). Incompatible with life (causes hydrops fetalis). 3 allele deletion: inheritance of chromosome with cis deletion + a chromosome with 1 allele deleted $\rightarrow \mathrm{HbH}$ disease. Very little α-globin. Excess β-globin forms $\beta_{4}(\mathrm{HbH})$. 2 allele deletion: less clinically severe anemia. 1 allele deletion: no anemia (clinically silent).

Microcytic (MCV < 80 fL), hypochromic anemia (continued)

	DESCRIPTION	FINDINGS
Megaloblastic anemia	Impaired DNA synthesis \rightarrow maturation of nucleus of precursor cells in bone marrow delayed relative to maturation of cytoplasm.	RBC macrocytosis, hypersegmented neutrophils A, glossitis.

Normocytic, normochromic anemia	Normocytic, normochromic anemias are classified as nonhemolytic or hemolytic. The hemolytic anemias are further classified according to the cause of the hemolysis (intrinsic vs extrinsic to the RBC) and by the location of the hemolysis (intravascular vs extravascular).
Intravascular hemolysisFindings: \downarrow haptoglobin, \uparrow LDH, schistocytes and \uparrow reticulocytes on blood smear. Characteristic hemoglobinuria, hemosiderinuria, and urobilinogen in urine. May also see \uparrow unconjugated bilirubin. Notable causes are mechanical hemolysis (eg, prosthetic valve), paroxysmal nocturnal hemoglobinuria, microangiopathic hemolytic anemias.	
Extravascular	Findings: macrophages in spleen clear RBCs. Spherocytes in peripheral smear, \uparrow LDH, no hemoglobinuria/hemosiderinuria, \uparrow unconjugated bilirubin, which can cause jaundice. Can present with urobilinogen in urine.

Nonhemolytic, normocytic anemia

	DESCRIPTION	FINDINGS
Anemia of chronic disease	Inflammation $\rightarrow \uparrow$ hepcidin (released by liver, binds ferroportin on intestinal mucosal cells and macrophages, thus inhibiting iron transport) $\rightarrow \downarrow$ release of iron from macrophages and \downarrow iron absorption from gut. Associated with conditions such as rheumatoid arthritis, SLE, neoplastic disorders, and chronic kidney disease.	\downarrow iron, \downarrow TIBC, \uparrow ferritin. Normocytic, but can become microcytic. Treatment: EPO (chronic kidney disease only).
Aplastic anemia	Caused by failure or destruction of myeloid stem cells due to: - Radiation and drugs (benzene, chloramphenicol, alkylating agents, antimetabolites) - Viral agents (parvovirus B19, EBV, HIV, hepatitis viruses) - Fanconi anemia (DNA repair defect causing bone marrow failure); also short stature, \uparrow incidence of tumors/leukemia, café-au-lait spots, thumb/radial defects - Idiopathic (immune mediated, 1° stem cell defect); may follow acute hepatitis	\downarrow reticulocyte count, \uparrow EPO. Pancytopenia characterized by severe anemia, leukopenia, and thrombocytopenia. Normal cell morphology, but hypocellular bone marrow with fatty infiltration \boldsymbol{A} (dry bone marrow tap). Symptoms: fatigue, malaise, pallor, purpura, mucosal bleeding, petechiae, infection. Treatment: withdrawal of offending agent, immunosuppressive regimens (eg, antithymocyte globulin, cyclosporine), bone marrow allograft, RBC/platelet transfusion, bone marrow stimulation (eg, GM-CSF).

Intrinsic hemolytic anemia

	DESCRIPTION	FINDINGS
Hereditary spherocytosis	Extravascular hemolysis due to defect in proteins interacting with RBC membrane skeleton and plasma membrane (eg, ankyrin, band 3 , protein 4.2 , spectrin). Results in small, round RBCs with less surface area and no central pallor (\uparrow MCHC) \rightarrow premature removal by spleen.	Splenomegaly, aplastic crisis (parvovirus B19 infection). Labs: osmotic fragility test \oplus. Normal to $\downarrow \mathrm{MCV}$ with abundance of cells. Treatment: splenectomy.
G6PD deficiency	Most common enzymatic disorder of RBCs. Causes extravascular and intravascular hemolysis. X-linked recessive. Defect in G6PD $\rightarrow \downarrow$ glutathione $\rightarrow \uparrow$ RBC susceptibility to oxidant stress. Hemolytic anemia following oxidant stress (eg, sulfa drugs, antimalarials, infections, fava beans).	Back pain, hemoglobinuria a few days after oxidant stress. Labs: blood smear shows RBCs with Heinz bodies and bite cells. "Stress makes me eat bites of fava beans with Heinz ketchup."
Pyruvate kinase deficiency	Autosomal recessive. Defect in pyruvate kinase $\rightarrow \downarrow$ ATP \rightarrow rigid RBCs \rightarrow extravascular hemolysis.	Hemolytic anemia in a newborn.
HbC disease	Glutamic acid-to-lysine mutation in β-globin. Causes extravascular hemolysis.	Patients with HbSC (l of each mutant gene) have milder disease than HbSS patients. Labs (homozygotes): blood smear shows hemoglobin crystals inside RBCs and target cells.
Paroxysmal nocturnal hemoglobinuria	\uparrow complement-mediated intravascular RBC lysis (impaired synthesis of GPI anchor for decay-accelerating factor that protects RBC membrane from complement). Acquired mutation in a hematopoietic stem cell. \uparrow incidence of acute leukemias.	Triad: Coombs Θ hemolytic anemia, pancytopenia, and venous thrombosis. Labs: CD55/59 \ominus RBCs on flow cytometry. Treatment: eculizumab (terminal complement inhibitor).
Sickle cell anemia (A) $10{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{N}$	HbS point mutation causes a single amino acid replacement in β chain (substitution of glutamic acid with valine). Causes extravascular and intravascular hemolysis. Pathogenesis: low O_{2}, high altitude, or acidosis precipitates sickling (deoxygenated HbS polymerizes) \rightarrow anemia and vaso-occlusive disease. Newborns are initially asymptomatic because of $\uparrow \mathrm{HbF}$ and $\downarrow \mathrm{HbS}$. Heterozygotes (sickle cell trait) also have resistance to malaria. 8% of African Americans carry an HbS allele. Sickle cells are crescent-shaped RBCs A. "Crew cut" on skull x-ray due to marrow expansion from \uparrow erythropoiesis (also seen in thalassemias).	Complications in sickle cell disease: - Aplastic crisis (due to parvovirus B19). - Autosplenectomy (Howell-Jolly bodies) $\rightarrow \uparrow$ risk of infection by encapsulated organisms (eg, S pneumoniae). - Splenic infarct/sequestration crisis. - Salmonella osteomyelitis. - Painful crises (vaso-occlusive): dactylitis [B (painful swelling of hands/feet), priapism, acute chest syndrome, avascular necrosis, stroke. - Renal papillary necrosis ($\downarrow \mathrm{PO}_{2}$ in papilla) and microhematuria (medullary infarcts). Diagnosis: hemoglobin electrophoresis. Treatment: hydroxyurea ($\uparrow \mathrm{HbF}$), hydration.

Extrinsic hemolytic anemia

	DESCRIPTION			FINDINGS	
Autoimmune hemolytic anemia A $0^{\circ} 0^{\circ}$	Warm (IgG) - chronic anemia seen in SLE and CLL and with certain drugs (eg, α-methyldopa) ("warm weather is Great"). Cold (IgM and complement)—acute anemia triggered by cold; seen in CLL, Mycoplasma pneumonia infections, and infectious Mononucleosis ("cold weather is MMMiserable"). RBC agglutinates A may cause painful, blue fingers and toes with cold exposure. Many warm and cold AIHAs are idiopathic in etiology.			Autoimmune hemolytic anemias are usually Coombs \oplus. Direct Coombs test-anti-Ig antibody (Coombs reagent) added to patient's blood. RBCs agglutinate if RBCs are coated with Ig. Indirect Coombs test-normal RBCs added to patient's serum. If serum has anti-RBC surface Ig, RBCs agglutinate when Coombs reagent added.	
		Patient component	Reagent(s)	$\longrightarrow \underset{\substack{\oplus \\ \text { Result } \\ \text { (agglutination) }}}{\text { and }}$	Result (no agglutination)
			Anti-human globulin (Coombs reagent)	\oplus Result Anti-RBC Ab present	Θ Result Anti-RBC Ab absent
		Patient serum +/-anti-donor RBC Ab	Donor blood ${ }_{\prec}^{\gamma \lambda}$ Anti-human globulin (Coombs reagent)	\oplus Result Anti-donor RBC Ab present	Θ Result Anti-donor RBC Ab absent
Microangiopathic anemia	Pathogenesis: RBCs are damaged when passing through obstructed or narrowed vessel lumina. Seen in DIC, TTP/HUS, SLE, and malignant hypertension.			Schistocytes (eg, "helmet cells") are seen on peripheral blood smear due to mechanical destruction (schisto $=$ to split) of RBCs.	
Macroangiopathic anemia	Prosthetic heart valves and aortic stenosis may also cause hemolytic anemia 2° to mechanical destruction of RBCs.			Schistocytes on peripheral blood smear.	
Infections	\uparrow destruction of RBCs (eg, malaria, Babesia).				

Lab values in anemia

	Iron deficiency	Chronic disease	Hemo- chromatosis	Pregnancy/ OCP use
Serum iron	$\downarrow\left(1^{\circ}\right)$	\downarrow	$\uparrow\left(l^{\circ}\right)$	-
Transferrin or TIBC	\uparrow	\downarrow a	\downarrow	$\uparrow\left(1^{\circ}\right)$
Ferritin	\downarrow	$\uparrow\left(1^{\circ}\right)$	\uparrow	-
\% transferrin saturation (serum iron/TIBC)	$\downarrow \downarrow$	-	$\uparrow \uparrow$	\downarrow

Transferrin-transports iron in blood.
TIBC-indirectly measures transferrin.
Ferritin -1° iron storage protein of body.
${ }^{\text {a }}$ Evolutionary reasoning-pathogens use circulating iron to thrive. The body has adapted a system in which iron is stored within the cells of the body and prevents pathogens from acquiring circulating iron.

Leukopenias

CELL TYPE	CELL COUNT	CAUSES
Neutropenia	Absolute neutrophil count <1500 cells $/ \mathrm{mm}^{3}$. Severe infections typical when <500 cells $/ \mathrm{mm}^{3}$	Sepsis/postinfection, drugs (including chemotherapy), aplastic anemia, SLE, radiation
Lymphopenia	Absolute lymphocyte count < 1500 cells $/ \mathrm{mm}^{3}$ (<3000 cells $/ \mathrm{mm}^{3}$ in children)	HIV, DiGeorge syndrome, SCID, SLE, corticosteroids, ${ }^{\text {a }}$ radiation, sepsis, postoperative
Eosinopenia	Absolute eosinophil count <30 cells $/ \mathrm{mm}^{3}$	Cushing syndrome, corticosteroids ${ }^{\text {a }}$
${ }^{\text {a }}$ Corticosteroids cause neutrophilia, despite causing eosinopenia and lymphopenia. Corticosteroids \downarrow activation of neutrophil adhesion molecules, impairing migration out of the vasculature to sites of inflammation. In contrast, corticosteroids sequester eosinophils in lymph nodes and cause apoptosis of lymphocytes.		

Left shift

\uparrow neutrophil precursors, such as band cells and metamyelocytes, in peripheral blood. Usually seen with neutrophilia in the acute response to infection or inflammation. Called leukoerythroblastic reaction when left shift is seen with immature RBCs; occurs with severe anemia (physiologic response) or marrow response (eg, fibrosis, tumor taking up space in marrow).

A left shift is a shift to a more immature cell in the maturation process.

Heme synthesis, porphyrias, and lead poisoning

[^6]| Iron poisoning | High mortality rate with accidental ingestion by children (adult iron tablets may look like candy). |
| :--- | :--- |
| MECHANISM | Cell death due to peroxidation of membrane lipids. |
| SYMPTOMS/IIGNS | Nausea, vomiting, gastric bleeding, lethargy, scarring leading to GI obstruction. |
| TREATMENT | Chelation (eg, IV deferoxamine, oral deferasirox) and dialysis. |

Coagulation disorders PT-tests function of common and extrinsic pathway (factors I, II, V, VII, and X). Defect $\rightarrow \uparrow$ PT. INR (international normalized ratio) -calculated from PT. $1=$ normal, $>1=$ prolonged. Most common test used to follow patients on warfarin.
PTT-tests function of common and intrinsic pathway (all factors except VII and XIII). Defect $\rightarrow \uparrow$ PTT.

DISORDER	PT	PTT	MECHANISM AND COMMENTS
Hemophilia A, B, or C A	-	\uparrow	Intrinsic pathway coagulation defect. - A: deficiency of factor VIII $\rightarrow \uparrow$ PTT; X-linked recessive. - B: deficiency of factor IX $\rightarrow \uparrow$ PTT; X-linked recessive. - C: deficiency of factor XI $\rightarrow \uparrow$ PTT; autosomal recessive. Macrohemorrhage in hemophilia-hemarthroses (bleeding into joints, such as knee A), easy bruising, bleeding after trauma or surgery (eg, dental procedures). Treatment: desmopressin + factor VIII concentrate (A); factor IX concentrate (B); factor XI concentrate (C).
Vitamin K deficiency	\uparrow	\uparrow	General coagulation defect. Bleeding time normal. \downarrow activity of factors II, VII, IX, X, protein C, protein S.

Platelet disorders
Defects in platelet plug formation $\rightarrow \uparrow$ bleeding time (BT).
Platelet abnormalities \rightarrow microhemorrhage: mucous membrane bleeding, epistaxis, petechiae, purpura, \uparrow bleeding time, possibly decreased platelet count (PC).

DISORDER	PC	BT	MECHANISM AND COMMENTS
Bernard-Soulier syndrome	$-/ \downarrow$	\uparrow	Defect in platelet plug formation. Large platelets. \downarrow GpIb \rightarrow defect in platelet-to-vWF adhesion.
Glanzmann thrombasthenia	-	\uparrow	Defect in platelet plug formation. \downarrow GpIIb/IIIa \rightarrow defect in platelet-to-platelet aggregation. Labs: blood smear shows no platelet clumping.
Hemolytic-uremic syndrome	\downarrow	\uparrow	Characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. Typical HUS is seen in children, accompanied by diarrhea and commonly caused by Shiga toxin-producing E coli (STEC) (eg, Ol57:H7). HUS in adults does not present with diarrhea; STEC infection not required.
Same spectrum as TTP, with a similar clinical presentation and same initial			
treatment of plasmapheresis.			

Mixed platelet and coagulation disorders

DISORDER	PC	BT	PT	PTT	MECHANISM AND COMMENTS
von Willebrand disease	-	\uparrow	-	$\dagger^{\text {a }}$	Intrinsic pathway coagulation defect: $\downarrow \mathrm{vWF}$ $\rightarrow \uparrow$ PTT (vWF acts to carry/protect factor VIII). Defect in platelet plug formation: \downarrow vWF \rightarrow defect in platelet-to-vWF adhesion. Autosomal dominant. Mild but most common inherited bleeding disorder. No platelet aggregation with ristocetin cofactor assay. Treatment: desmopressin, which releases vWF stored in endothelium.
Disseminated intravascular coagulation	\downarrow	\uparrow	\uparrow	\uparrow	Widespread activation of clotting \rightarrow deficiency in clotting factors \rightarrow bleeding state. Causes: Sepsis (gram Θ), Trauma, Obstetric complications, acute Pancreatitis, Malignancy, Nephrotic syndrome, Transfusion (STOP Making New Thrombi). Labs: schistocytes, \uparrow fibrin degradation products (D-dimers), \downarrow fibrinogen, \downarrow factors V and VIII.

${ }^{\text {aPTT may also be normal in von Willebrand disease. }}$

Hereditary thrombosis syndromes leading to hypercoagulability

DISEASE	DESCRIPTION
Antithrombin deficiency	Inherited deficiency of antithrombin: has no direct effect on the PT, PTT, or thrombin time but diminishes the increase in PTT following heparin administration. Can also be acquired: renal failure/nephrotic syndrome \rightarrow antithrombin loss in urine $\rightarrow \downarrow$ inhibition of factors IIa and Xa.
Factor V Leiden	Production of mutant factor $V(G \rightarrow$ A DNA point mutation \rightarrow Arg506Gln mutation near the cleavage site) that is resistant to degradation by activated protein C. Most common cause of inherited hypercoagulability in Caucasians. Complications include DVT, cerebral vein thromboses, recurrent pregnancy loss.
Protein C or S deficiency	\downarrow ability to inactivate factors Va and VIIIa. \uparrow risk of thrombotic skin necrosis with hemorrhage after administration of warfarin. If this occurs, think protein C deficiency. Together, protein C Cancels, and protein S Stops, Coagulation.
Prothrombin gene mutation	Mutation in 3^{\prime} untranslated region $\rightarrow \uparrow$ production of prothrombin $\rightarrow \uparrow$ plasma levels and venous clots.

Blood transfusion therapy

COMPONENT	DOSAGE EFFECT	CLINICAL USE
Packed RBCs	$\uparrow \mathrm{Hb}$ and O_{2} carrying capacity	Acute blood loss, severe anemia
Platelets	\uparrow platelet count $\left(\uparrow \sim 5000 / \mathrm{mm}^{3} / \mathrm{unit}\right)$	Stop significant bleeding (thrombocytopenia, qualitative platelet defects $)$
Fresh frozen plasma	\uparrow coagulation factor levels	DIC, cirrhosis, immediate warfarin reversal
Cryoprecipitate	Contains fibrinogen, factor VIII, factor XIII, vWF, and fibronectin	Coagulation factor deficiencies involving fibrinogen and factor VIII

Blood transfusion risks include infection transmission (low), transfusion reactions, iron overload (may lead to 2° hemochromatosis), hypocalcemia (citrate is a Ca^{2+} chelator), and hyperkalemia (RBCs may lyse in old blood units).

Leukemia vs lymphoma

Leukemia

Lymphoma

Lymphoid or myeloid neoplasm with widespread involvement of bone marrow. Tumor cells are usually found in peripheral blood.
Discrete tumor mass arising from lymph nodes. Presentations often blur definitions.

Hodgkin vs non-Hodgkin lymphoma	Hodgkin	Non-Hodgkin
	Localized, single group of nodes; contiguous spread (stage is strongest predictor of prognosis). Many patients have a relatively good prognosis.	Multiple lymph nodes involved; extranodal involvement common; noncontiguous spread.
	Characterized by Reed-Sternberg cells.	Majority involve B cells; a few are of T-cell lineage.
	Bimodal distribution-young adulthood and >55 years; more common in men except for nodular sclerosing type.	Can occur in children and adults.
	Associated with EBV.	May be associated with HIV and autoimmune diseases.
	Constitutional ("B") signs/symptoms: low-grade fever, night sweats, weight loss.	May present with constitutional signs/symptoms.

Reed-Sternberg cells

Distinctive tumor giant cell seen in Hodgkin lymphoma; binucleate or bilobed with the 2 halves as mirror images ("owl eyes" A). 2 owl eyes $\times 15=30$. RS cells are CD15+ and CD30+ B-cell origin. Necessary but not sufficient for a diagnosis of Hodgkin lymphoma.

Non-Hodgkin lymphoma

TYPE	OCCURS IN	GENETICS	COMments
Neoplasms of mature B cells			
Burkitt lymphoma	Adolescents or young adults	$\begin{aligned} & \mathrm{t}(8 ; 14) \text {-translocation } \\ & \text { of c-myc }(8) \text { and } \\ & \text { heavy-chain } \operatorname{Ig}(14) \end{aligned}$	"Starry sky" appearance, sheets of lymphocytes with interspersed "tingible body" macrophages (arrows in A). Associated with EBV. Jaw lesion B in endemic form in Africa; pelvis or abdomen in sporadic form.
Diffuse large B-cell lymphoma	Usually older adults, but 20% in children		Most common type of non-Hodgkin lymphoma in adults.
Follicular lymphoma	Adults	$\begin{aligned} & \mathrm{t}(14 ; 18)-\text { translocation } \\ & \text { of heavy-chain Ig (14) } \\ & \text { and BCL-2 (18) } \end{aligned}$	Indolent course; $\mathrm{Bcl}-2$ inhibits apoptosis. Presents with painless "waxing and waning" lymphadenopathy. Follicular architecture: small cleaved cells (grade l), large cells (grade 3), or mixture (grade 2).
Mantle cell lymphoma	Adult males	$\mathrm{t}(11 ; 14)$-translocation of cyclin Dl (11) and heavy-chain $\operatorname{Ig}(14)$	Very aggressive, patients typically present with late-stage disease.
Primary central nervous system lymphoma	Adults	Most commonly associated with HIV/ AIDS	Considered an AIDS-defining illness. Variable presentation: confusion, memory loss, seizures. Mass lesion(s) on MRI, needs to be distinguished from toxoplasmosis via CSF analysis or other lab tests.
Neoplasms of mature T cells			
Adult T-cell lymphoma	Adults	Caused by HTLV (associated with IV drug abuse)	Adults present with cutaneous lesions; especially affects populations in Japan, West Africa, and the Caribbean. Lytic bone lesions, hypercalcemia.
Mycosis fungoides/ Sézary syndrome	Adults		Mycosis fungoides presents with skin patches plaques (cutaneous T-cell lymphoma), characterized by atypical CD4+ cells with "cerebriform" nuclei. May progress to Sézary syndrome (T-cell leukemia).

Multiple myeloma

Monoclonal plasma cell ("fried egg" appearance) cancer that arises in the marrow and produces large amounts of $\operatorname{IgG}(55 \%)$ or $\operatorname{IgA}(25 \%)$. Most common 1° tumor arising within bone in people $>40-50$ years old. Associated with:

- \uparrow susceptibility to infection
- Primary amyloidosis (AL)
- Punched-out lytic bone lesions on x-ray A
- M spike on serum protein electrophoresis
- Ig light chains in urine (Bence Jones protein)
- Rouleaux formation B (RBCs stacked like poker chips in blood smear)
Numerous plasma cells © with "clock-face" chromatin and intracytoplasmic inclusions containing immunoglobulin.
Monoclonal gammopathy of undetermined significance (MGUS) -monoclonal expansion of plasma cells, asymptomatic, may lead to multiple myeloma. No "CRAB" findings. Patients with MGUS develop multiple myeloma at a rate of $1-2 \%$ per year.

Think CRAB:
HyperCalcemia
Renal involvement
Anemia
Bone lytic lesions/Back pain
Multiple Myeloma: Monoclonal M protein spike
Distinguish from Waldenström macroglobulinemia $\rightarrow \mathrm{M}$ spike $=\mathrm{IgM}$
\rightarrow hyperviscosity syndrome (eg, blurred vision, Raynaud phenomenon); no "CRAB" findings.

Myelodysplastic syndromes

Stem-cell disorders involving ineffective hematopoiesis \rightarrow defects in cell maturation of all nonlymphoid lineages. Caused by de novo mutations or environmental exposure (eg, radiation, benzene, chemotherapy). Risk of transformation to AML.

Leukemias	Unregulated growth and differentiation of WBCs in bone marrow \rightarrow marrow failure \rightarrow anemia $(\downarrow$ RBCs), infections (\downarrow mature WBCs), and hemorrhage (\downarrow platelets). Usually presents with \uparrow circulating WBCs (malignant leukocytes in blood); rare cases present with normal/ \downarrow WBCs. Leukemic cell infiltration of liver, spleen, lymph nodes, and skin (leukemia cutis) possible.
TYPE	NOTES
Lymphoid neoplasms	
Acute lymphoblastic leukemia/lymphoma	Most frequently occurs in children; less common in adults (worse prognosis). T-cell ALL can present as mediastinal mass (presenting as SVC-like syndrome). Associated with Down syndrome. Peripheral blood and bone marrow have $\uparrow \uparrow \uparrow$ lymphoblasts \boldsymbol{A}. TdT+ (marker of pre-T and pre-B cells), CDl0+ (marker of pre-B cells). Most responsive to therapy. May spread to CNS and testes. $\mathrm{t}(12 ; 21) \rightarrow$ better prognosis.
Chronic lymphocytic leukemia/small lymphocytic lymphoma	Age: >60 years. Most common adult leukemia. CD20+, CD5+B-cell neoplasm. Often asymptomatic, progresses slowly; smudge cells \boldsymbol{B} in peripheral blood smear; autoimmune hemolytic anemia. CLL = Crushed Little Lymphocytes (smudge cells). Richter transformation-SLL/CLL transformation into an aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL).
Hairy cell leukemia	Age: Adult males. Mature B-cell tumor. Cells have filamentous, hair-like projections (fuzzy appearing on LM C). Causes marrow fibrosis \rightarrow dry tap on aspiration. Patients usually present with massive splenomegaly. Stains TRAP (tartrate-resistant acid phosphatase) \oplus. TRAP stain largely replaced with flow cytometry. Treatment: cladribine, pentostatin.
Myeloid neoplasms	
Acute myelogenous leukemiaa	Median onset 65 years. Auer rods \mathbf{D}; myeloperoxidase \oplus cytoplasmic inclusions seen mostly in APL (formerly M3 AML); $\uparrow \uparrow \uparrow$ circulating myeloblasts on peripheral smear; adults. Risk factors: prior exposure to alkylating chemotherapy, radiation, myeloproliferative disorders, Down syndrome. $\mathrm{t}(15 ; 17) \rightarrow$ APL subtype responds to all-trans retinoic acid (vitamin A), inducing differentiation of promyelocytes; DIC is a common presentation.
Chronic myelogenous leukemia	Occurs across the age spectrum with peak incidence 45-85 years, median age at diagnosis 64 years. Defined by the Philadelphia chromosome ($\mathrm{t}[9 ; 22], B C R-A B L$) and myeloid stem cell proliferation. Presents with dysregulated production of mature and maturing granulocytes (eg, neutrophils, metamyelocytes, myelocytes, basophils E) and splenomegaly. May accelerate and transform to AML or ALL ("blast crisis"). Very low LAP as a result of low activity in malignant neutrophils (vs benign neutrophilia [leukemoid reaction], in which LAP is \uparrow). Responds to bcr-abl tyrosine kinase inhibitors (eg, imatinib).

Chromosomal translocations

TRANSLOCATION	ASSOCIATED DISORDER	
$\mathrm{t}(8 ; 14)$	Burkitt lymphoma (c-myc activation)	
$\mathrm{t}(9 ; 22)$ (Philadelphia chromosome)	CML (BCR-ABL hybrid), rarely ALL	Philadelphia CreaML cheese. The Ig heavy chain genes on chromosome 14 are constitutively expressed. When other genes (eg, $c-m y c$ and $B C L-2)$ are translocated
		next to this heavy chain gene region, they are overexpressed.
$t(11 ; 14)$	Mantle cell lymphoma (cyclin Dl activation)	
$t(14 ; 18)$	Follicular lymphoma (BCL-2 activation)	
$t(15 ; 17)$	APL (M3 type of AML)	

Langerhans cell
histiocytosis

Collective group of proliferative disorders of dendritic (Langerhans) cells. Presents in a child as lytic bone lesions \boldsymbol{A} and skin rash or as recurrent otitis media with a mass involving the mastoid bone. Cells are functionally immature and do not effectively stimulate primary T cells via antigen presentation. Cells express S-100 (mesodermal origin) and CDla. Birbeck granules ("tennis rackets" or rod shaped on EM) are characteristic B.

Chronic myeloproliferative disorders

Polycythemia vera

Essential

 thrombocythemiaMyelofibrosis

The myeloproliferative disorders (polycythemia vera, essential thrombocythemia, myelofibrosis, and CML) are malignant hematopoietic neoplasms with varying impacts on WBCs and myeloid cell lines. Associated with V617F JAK2 mutation.
A form of 1° polycythemia. Disorder of \uparrow hematocrit. May present as intense itching after hot shower. Rare but classic symptom is erythromelalgia (severe, burning pain and red-blue coloration) due to episodic blood clots in vessels of the extremities \boldsymbol{A}. Responds to aspirin. $\downarrow \mathrm{EPO}$ (vs 2° polycythemia, which presents with endogenous or artificially $\uparrow \mathrm{EPO}$).
Characterized by massive proliferation of megakaryocytes and platelets. Symptoms include bleeding and thrombosis. Blood smear shows markedly increased number of platelets, which may be large or otherwise abnormally formed B. Erythromelalgia may occur.
Obliteration of bone marrow with fibrosis \mathbb{C} due to \uparrow fibroblast activity. Often associated with massive splenomegaly and "teardrop" RBCs \boldsymbol{D}. "Bone marrow is crying because it's fibrosed and is a dry tap."

	RBCs	WBCs	PLATELETS	PHILADELPHIA CHROMOSOME	JAK2 MUTATIONS
Polycythemia vera	\uparrow	\uparrow	\uparrow	Θ	\oplus
Essential thrombocythemia	-	-	\uparrow	\ominus	$\oplus(30-50 \%)$
Myelofibrosis	\downarrow	Variable	Variable	Θ	$\oplus(30-50 \%)$
CML	\downarrow	\uparrow	\uparrow	\oplus	Θ
	A				

Polycythemia

	PLASMA VOLUME	RBC MASS	0_{2} SAATURATION	EPO LEVELS	ASSOCIATIONS
Relative	\downarrow	-	-	-	Dehydration, burns.
Appropriate absolute	-	\uparrow	\downarrow	\uparrow	Lung disease, congenital heart disease, high altitude.
Inappropriate absolute	-	\uparrow	-	\uparrow	Malignancy (eg, renal cell carcinoma, hepatocellular carcinoma), hydronephrosis. Due to ectopic EPO secretion.
Polycythemia vera	\uparrow	$\uparrow \uparrow$	-	\downarrow	EPO \downarrow in PCV due to negative feedback suppressing renal EPO production.

HEMATOLOGY AND ONCOLOGY—PHARMACOLOGY

Heparin	
mechanism	Lowers the activity of thrombin and factor Xa. Short half-life.
Clinical use	Immediate anticoagulation for pulmonary embolism (PE), acute coronary syndrome, MI, deep venous thrombosis (DVT). Used during pregnancy (does not cross placenta). Follow PTT.
ADVERSE EFFECTS	Bleeding, thrombocytopenia (HIT), osteoporosis, drug-drug interactions. For rapid reversal (antidote), use protamine sulfate (positively charged molecule that binds negatively charged heparin).
notes	Low-molecular-weight heparins (eg, enoxaparin, dalteparin) and fondaparinux act more on factor Xa, have better bioavailability, and 2-4 times longer half-life; can be administered subcutaneously and without laboratory monitoring. Not easily reversible. Heparin-induced thrombocytopenia (HIT) - development of IgG antibodies against heparinbound platelet factor 4 (PF4). Antibody-heparin-PF4 complex activates platelets \rightarrow thrombosis and thrombocytopenia.
Direct thrombin inhibitors	Bivalirudin (related to hirudin, the anticoagulant used by leeches).
mechanism	Directly inhibits activity of free and clot-associated thrombin.
Clinical use	Venous thromboembolism, atrial fibrillation. Can be used in HIT. Does not require lab monitoring.
ADVERSE EfFECTS	Bleeding; no specific reversal agent. Can attempt to use activated prothrombin complex concentrates (PCC) and/or fibrinolytics (eg, tranexamic acid).

Warfarin	
MECHANISM	Interferes with $\boldsymbol{\gamma}$-carboxylation of vitamin K- dependent cloting factors II, VII, IX, and X, and proteins C and S. Metabolism affected by polymorphisms in the gene for vitamin K epoxide reductase complex (VKORCl). In laboratory assay, has effect on EXtrinsic pathway and \uparrow PT. Long half-life.
Chronic anticoagulation (eg, venous thromboembolism prophylaxis, and prevention of stroke in atrial fibrillation). Not used in pregnant women (because warfarin, unlike heparin, crosses placenta). Follow PT/INR.	The EX-PresidenT went to war(farin).

Heparin vs warfarin

	Heparin	Warfarin
STRUCTURE	Large, anionic, acidic polymer	Small, amphipathic molecule
ROUTE OF ADMIIISTRATION	Parenteral (IV, SC)	Oral
SITEOF ACTION	Blood	Liver
ONSET OF ACTION	Rapid (seconds)	Slow, limited by half-lives of normal clotting factors
MECHANISM OF ACTION	Activates antithrombin, which \downarrow the action of IIa (thrombin) and factor Xa	Impairs synthesis of vitamin K-dependent clotting factors II, VII, IX, and X, and anti- clotting proteins C and S
DURATION OF ACTION	Acute (hours)	Chronic (days)
INHIBITS COAGULATION IN vITRO	Yes	No
AGENTS FOR REVERSAL	Protamine sulfate	Vitamin K, fresh frozen plasma
MONITORING	PTT (intrinsic pathway)	PT/INR (extrinsic pathway)
CROSSES PLACENTA	No	Yes (teratogenic)

Direct factor Xa inhibitors	ApiXaban, rivaroXaban.
mechanism	Bind to and directly inhibit factor Xa.
clincal use	Treatment and prophylaxis for DVT and PE (rivaroxaban); stroke prophylaxis in patients with atrial fibrillation. Oral agents do not usually require coagulation monitoring.
adverse effects	Bleeding (no reversal agent available).
Thrombolytics	Alteplase (tPA), reteplase (rPA), streptokinase, tenecteplase (TNK-tPA).
mechanism	Directly or indirectly aid conversion of plasminogen to plasmin, which cleaves thrombin and fibrin clots. \uparrow PT, \uparrow PTT, no change in platelet count.
cluncal use	Early MI, early ischemic stroke, direct thrombolysis of severe PE.
adverse fffects	Bleeding. Contraindicated in patients with active bleeding, history of intracranial bleeding, recent surgery, known bleeding diatheses, or severe hypertension. Treat toxicity with aminocaproic acid, an inhibitor of fibrinolysis. Fresh frozen plasma and cryoprecipitate can also be used to correct factor deficiencies.

ADP receptor inhibitors Clopidogrel, prasugrel, ticagrelor (reversible), ticlopidine.

MECHANISM	Inhibit platelet aggregation by irreversibly blocking ADP receptors. Prevent expression of glycoproteins IIb/IIIa on platelet surface.
CLINICALUSE	Acute coronary syndrome; coronary stenting. \downarrow incidence or recurrence of thrombotic stroke.
ADVERSEEFFECTS	Neutropenia (ticlopidine). TTP may be seen.

Cilostazol, dipyridamole

MECHANISM	Phosphodiesterase III inhibitor; \uparrow cAMP in platelets, resulting in inhibition of platelet aggregation; vasodilators.
CLIIICALUSE	Intermittent claudication, coronary vasodilation, prevention of stroke or TIAs (combined with aspirin), angina prophylaxis.
ADVERSEEFFECTS	Nausea, headache, facial flushing, hypotension, abdominal pain.

Glycoprotein IIb/IIla Abciximab, eptifibatide, tirofiban.
inhibitors

MECHANISM	Bind to the glycoprotein receptor IIb/IIIa on activated platelets, preventing aggregation. Abciximab is made from monoclonal antibody Fab fragments.
CLINICAL USE	Unstable angina, percutaneous transluminal coronary angioplasty.
ADVERSE EFFECTS	Bleeding, thrombocytopenia.

Cancer drugs-cell cycle

Cancer drugs-targets

Antimetabolites

DRUG	MECHANISM ${ }^{\text {a }}$	CLINICAL USE	ADVERSE EFFECTS
Azathioprine, 6-mercaptopurine	Purine (thiol) analogs $\rightarrow \downarrow$ de novo purine synthesis. Activated by HGPRT. Azathioprine is metabolized into 6-MP.	Preventing organ rejection, rheumatoid arthritis, IBD, SLE; used to wean patients off steroids in chronic disease and to treat steroid-refractory chronic disease.	Myelosuppression, GI, liver. Azathioprine and 6-MP are metabolized by xanthine oxidase; thus both have \uparrow toxicity with allopurinol or febuxostat.
Cladribine	Purine analog \rightarrow multiple mechanisms (eg, inhibition of DNA polymerase, DNA strand breaks).	Hairy cell leukemia.	Myelosuppression, nephrotoxicity, and neurotoxicity.
Cytarabine (arabinofuranosyl cytidine)	Pyrimidine analog \rightarrow inhibition of DNA polymerase.	Leukemias (AML), lymphomas.	Myelosuppression with megaloblastic anemia. CYTarabine causes panCYTopenia.
5-fluorouracil	Pyrimidine analog bioactivated to 5-FdUMP, which covalently complexes folic acid. This complex inhibits thymidylate synthase $\rightarrow \downarrow$ dTMP $\rightarrow \downarrow$ DNA synthesis.	Colon cancer, pancreatic cancer, basal cell carcinoma (topical). Effects enhanced with the addition of leucovorin.	Myelosuppression-worsened with the addition of leucovorin (folinic acid).
Methotrexate	Folic acid analog that competitively inhibits dihydrofolate reductase $\rightarrow \downarrow$ dTMP $\rightarrow \downarrow$ DNA synthesis.	Cancers: leukemias (ALL), lymphomas, choriocarcinoma, sarcomas. Non-neoplastic: ectopic pregnancy, medical abortion (with misoprostol), rheumatoid arthritis, psoriasis, IBD, vasculitis.	Myelosuppression, which is reversible with leucovorin "rescue." Hepatotoxicity. Mucositis (eg, mouth ulcers). Pulmonary fibrosis.

${ }^{a}$ All are S-phase specific.

Antitumor antibiotics

DRUG	MECHANISM	CLINICALUSE	ADVERSE EFFECTS
Bleomycin	Induces free radical formation \rightarrow breaks in DNA strands.	Testicular cancer, Hodgkin lymphoma.	Pulmonary fibrosis, skin hyperpigmentation. Minimal myelosuppression.
Dactinomycin (actinomycin D)	Intercalates in DNA.	Wilms tumor, Ewing sarcoma, rhabdomyosarcoma. Used for childhood tumors ("children act out").	Myelosuppression.
Doxorubicin, daunorubicin	Generate free radicals. Intercalate in DNA \rightarrow breaks in DNA $\rightarrow \downarrow$ replication.	Solid tumors, leukemias, lymphomas.	Cardiotoxicity (dilated cardiomyopathy), myelosuppression, alopecia.
		Dexrazoxane (iron chelating agent), used to prevent cardiotoxicity.	

Alkylating agents

DRUG	MECHANISM	CLINICALUSE	ADVERSE EFFECTS
Busulfan	Cross-links DNA.	CML. Also used to ablate patient's bone marrow before bone marrow transplantation.	Severe myelosuppression (in almost all cases), pulmonary fibrosis, hyperpigmentation.
Cyclophosphamide, ifosfamide	Cross-link DNA at guanine N-7. Require bioactivation by liver.	Solid tumors, leukemia, lymphomas.	Myelosuppression; hemorrhagic cystitis, prevented with mesna (thiol group of mesna
Nitrosoureas Carmustine, lomustine, semustine, streptozocin)	Require bioactivation. Cross blood-brain barrier \rightarrow CNS. Cross-link DNA.	Brain tumors (including glioblastoma multiforme).	N-acetylcysteine.

Microtubule inhibitors

DRUG	MECHANISM	CLINICALUSE	ADVERSEEFFECTS
Paclitaxel, other taxols	Hyperstabilize polymerized microtubules in M phase so that mitotic spindle cannot break down (anaphase cannot occur).	Ovarian and breast carcinomas.	Myelosuppression, neuropathy, hypersensitivity.
Vincristine, vinblastine	Vinca alkaloids that bind β-tubulin and inhibit its polymerization into microtubules \rightarrow prevent mitotic spindle formation	Solid tumors, leukemias, Hodgkin (vinblastine) and non-Hodgkin (vincristine) (M-phase arrest).	lymphas. (areflexia, peripheral neuritis), constipation (including
			paralytic ileus).

Cisplatin, carboplatin

MECHANISM	Cross-link DNA.
CLINICAL USE	Testicular, bladder, ovary, and lung carcinomas.
ADVERSE EFFECTS	Nephrotoxicity, peripheral neuropathy, ototoxicity. Prevent nephrotoxicity with amifostine (free radical scavenger) and chloride (saline) diuresis.

Etoposide, teniposide

MECHANISM	Etoposide inhibits topoisomerase II $\rightarrow \uparrow$ DNA degradation.
CLINICAL USE	Solid tumors (particularly testicular and small cell lung cancer), leukemias, lymphomas.
ADVERSEEFFECTS	Myelosuppression, alopecia.

Irinotecan, topotecan

| MECHANISM | Inhibit topoisomerase I and prevent DNA unwinding and replication. |
| :--- | :--- | :--- |
| CLINICAL USE | Colon cancer (irinotecan); ovarian and small cell lung cancers (topotecan). |
| ADVERSEEFFECTS | Severe myelosuppression, diarrhea. |

Hydroxyurea

MECHANISM	Inhibits ribonucleotide reductase $\rightarrow \downarrow$ DNA Synthesis (S-phase specific).
CLINICAL USE	Melanoma, CML, sickle cell disease $(\uparrow \mathrm{HbF})$.
ADVERSEEFFECTS	Severe myelosuppression.

Prednisone, prednisolone

| MECHANISM | Various; bind intracytoplasmic steroid receptor; alter gene transcription. |
| :--- | :--- | CLINICAL USE | Most commonly used glucocorticoids in cancer chemotherapy. Used in CLL, non-Hodgkin |
| :--- |
| lymphoma (part of combination chemotherapy regimen). Also used as immunosuppressants (eg, |
| in autoimmune diseases). |

Bevacizumab

MECHANISM	Monoclonal antibody against VEGF. Inhibits angiogenesis.
CLIIICAL USE	Solid tumors (colorectal cancer, renal cell carcinoma).
ADVERSE EFFECTS	Hemorrhage, blood clots, and impaired wound healing.

Erlotinib

MECHANISM	EGFR tyrosine kinase inhibitor.
CLINICAL USE	Non-small cell lung carcinoma.
ADVERSE EFFECTS	Rash.

Cetuximab

MECHANISM	Monoclonal antibody against EGFR.
CLINICAL USE	Stage IV colorectal cancer (wild-type KRAS), head and neck cancer.
ADVERSE EFFECTS	Rash, elevated LFTs, diarrhea.

Imatinib

MECHANISM	Tyrosine kinase inhibitor of BCR-ABL (Philadelphia chromosome fusion gene in CML) and c-kit $($ common in GI stromal tumors).
CLINICAL USE	CML, GI stromal tumors.
ADVERSE	Fluid retention.

Rituximab

mechanism
Clinical use
adverse effects

Monoclonal antibody against CD20, which is found on most B-cell neoplasms.
Non-Hodgkin lymphoma, CLL, ITP, rheumatoid arthritis.
\uparrow risk of progressive multifocal leukoencephalopathy.

Tamoxifen, raloxifene

MECHANSM	Selective estrogen receptor modulators (SERMs)-receptor antagonists in breast and agonists in bone. Block the binding of estrogen to ER \oplus cells.
CLINCAL usE	Breast cancer treatment (tamoxifen only) and prevention. Raloxifene also useful to prevent osteoporosis.
ADVERSE Effects	Tamoxifen - partial agonist in endometrium, which \uparrow the risk of endometrial cancer; "hot flashes." Raloxifene - no \uparrow in endometrial carcinoma because it is an estrogen receptor antagonist in endometrial tissue. Both \uparrow risk of thromboembolic events (eg, DVT, PE).

Trastuzumab (Herceptin)

MECHANISM	Monoclonal antibody against HER-2 (c-erbB2), a tyrosine kinase receptor. Helps kill cancer cells that overexpress HER-2, through inhibition of HER2-initiated cellular signaling and antibody- dependent cytotoxicity.
CLINICAL USE	HER-2 \oplus breast cancer and gastric cancer (tras2zumab).
ADVERSEEFFECTS	Cardiotoxicity. "Heartceptin" damages the heart.

Vemurafenib

MECHANISM	Small molecule inhibitor of BRAF oncogene \oplus melanoma. VEmuRAF-enib is for V600E-
mutated BRAF inhibition.	
CLINICALUSE	Metastatic melanoma.

Common chemotoxicities

Cisplatin/Carboplatin \rightarrow ototoxicity (and
nephrotoxicity)
Vincristine \rightarrow peripheral neuropathy Bleomycin, Busulfan \rightarrow pulmonary fibrosis
Doxorubicin \rightarrow cardiotoxicity
Trastuzumab \rightarrow cardiotoxicity
Cisplatin/Carboplatin \rightarrow nephrotoxic (and acoustic nerve damage)

CYclophosphamide \rightarrow hemorrhagic cystitis

5-FU \rightarrow myelosuppression
6-MP \rightarrow myelosuppression
Methotrexate \rightarrow myelosuppression

HIGH-YIELD SYSTEMS

Musculoskeletal, Skin, and Connective Tissue

"Rigid, the skeleton of habit alone upholds the human frame."

-Virginia Woolf
"Beauty may be skin deep, but ugly goes clear to the bone."
-Redd Foxx
"The function of muscle is to pull and not to push, except in the case of the genitals and the tongue."
> Anatomy and
Physiology
-Leonardo da Vinci

- MUSCULOSKELETAL, SKIN, AND CONNECTIVE TISSUE—ANATOMY AND PHYSIOLOGY

Knee exam	ACL: extends from lateral femoral condyle to anterior tibia. PCL: extends from medial femoral condyle to posterior tibia. Perform knee exam with patient supine.		
TEST	Proceevire		
Anterior drawer sign	Bending knee at 90° angle, \uparrow anterior gliding of tibia due to ACL injury. Lachman test is similar, but at 30° angle.		ACL tear Anterior drawer sign
Posterior drawer sign	Bending knee at 90° angle, \uparrow posterior gliding of tibia due to PCL injury.		PCL tear Posterior drawer sign
Abnormal passive abduction	Knee either extended or at $\sim 30^{\circ}$ angle, lateral (valgus) force \rightarrow medial space widening of tibia \rightarrow MCL injury.		MCL tear
Abnormal passive adduction	Knee either extended or at $\sim 30^{\circ}$ angle, medial (varus) force \rightarrow lateral space widening of tibia \rightarrow LCL injury.	Interna rotation	LCLtear
McMurray test	During flexion and extension of knee with rotation of tibia/foot: - Pain, "popping" on external rotation \rightarrow medial meniscal tear - Pain, "popping" on internal rotation \rightarrow lateral meniscal tear	Externa rotation Internal rotation	Medial tear Lateral tear

Common knee conditions

"Unhappy triad"	Common injury in contact sports due to lateral force applied to a planted leg. Classically, consists of damage to the ACL A, MCL, and medial meniscus (attached to MCL); however, lateral meniscus injury is more common. Presents with acute knee pain and signs of joint injury/ instability.
Prepatellar bursitis	Inflammation of knee's largest sac of synovial fluid B. Can be caused by repeated trauma or pressure from excessive kneeling.
Baker cyst	Popliteal fluid collection in gastrocnemius-semimembranous bursa Commonly communicating with synovial space and related to chronic joint disease.

Rotator cuff muscles

Shoulder muscles that form the rotator cuff:

- Supraspinatus (suprascapular nerve) abducts arm initially (before the action of the deltoid); most common rotator cuff injury \boldsymbol{A} (trauma or degeneration and impingement \rightarrow tendinopathy or tear), assessed by "empty/full can" test.
- Infraspinatus (suprascapular nerve)-laterally rotates arm; pitching injury.
- teres minor (axillary nerve) -adducts and laterally rotates arm.
- Subscapularis (upper and lower subscapular nerves) - medially rotates and adducts arm.
Innervated primarily by C5-C6.
mine vate prinarty by

SItS (small t is for teres minor).

Posterior \longrightarrow Anterior

Overuse injuries of the elbow

Medial epicondylitis Repetitive flexion (forehand shots) or idiopathic \rightarrow pain near medial epicondyle. (golfer's elbow)
Lateral epicondylitis Repetitive extension (backhand shots) or idiopathic \rightarrow pain near lateral epicondyle. (tennis elbow)

Wrist bones | Scaphoid, Lunate, Triquetrum, |
| :--- |
| Pisiform, Hamate, Capitate, Trapezoid, |
| Trapezium A. (So Long To Pinky, Here |
| Comes The Thumb). |
| Scaphoid (palpated in anatomic snuff box) is |
| the most commonly fractured carpal bone |
| (typically from a fall on an outstretched hand) |
| and is prone to avascular necrosis owing to |
| retrograde blood supply. |
| Dislocation of lunate may cause acute carpal |
| tunnel syndrome. |
| A fall on an outstretched hand that damages |
| the hook of the hamate can cause ulnar nerve |
| injury. |

Entrapment of median nerve in carpal tunnel; nerve compression \rightarrow paresthesia, pain, and
numbness in distribution of median nerve (thenar eminence atrophies but sensation spared,
because palmar cutaneous branch enters the hand external to carpal tunnel). Associated with
syndrome
pregnancy, rheumatoid arthritis, hypothyroidism, diabetes, dialysis-related amyloidosis; may be
associated with repetitive use.

Upper extremity nerves

NERVE	CAUSES OF INJURY	PRESENTATION
Axillary (C5-C6)	Fractured surgical neck of humerus; anterior dislocation of humerus	Flattened deltoid Loss of arm abduction at shoulder (>15 degrees) Loss of sensation over deltoid muscle and lateral arm
Musculocutaneous (C5-C7)	Upper trunk compression	Loss of forearm flexion and supination Loss of sensation over lateral forearm
Radial (C5-T1)	Midshaft fracture of humerus; compression of axilla, eg, due to crutches or sleeping with arm over chair ("Saturday night palsy")	Wrist drop: loss of elbow, wrist, and finger extension \downarrow grip strength (wrist extension necessary for maximal action of flexors) Loss of sensation over posterior arm/forearm and dorsal hand
Median (C5-T1)	Supracondylar fracture of humerus (proximal lesion); carpal tunnel syndrome and wrist laceration (distal lesion)	"Ape hand" and "Pope's blessing" Loss of wrist flexion, flexion of lateral fingers, thumb opposition, lumbricals of 2nd and 3rd digits Loss of sensation over thenar eminence and dorsal and palmar aspects of lateral $31 / 2$ fingers with proximal lesion Tinel sign (tingling on percussion) in carpal tunnel syndrome
Ulnar (C8-T1)	Fracture of medial epicondyle of humerus "funny bone" (proximal lesion); fractured hook of hamate (distal lesion)	"Ulnar claw" on digit extension Radial deviation of wrist upon flexion (proximal lesion) Loss of wrist flexion, flexion of medial fingers, abduction and adduction of fingers (interossei), actions of medial 2 lumbrical muscles Loss of sensation over medial $1^{1 / 2}$ fingers including hypothenar eminence
Recurrent branch of median nerve (C5-T1)	Superficial laceration of palm	"Ape hand" Loss of thenar muscle group: opposition, abduction, and flexion of thumb No loss of sensation

Palm of hand

Brachial plexus lesions

CONDITION	INJURY	CAUSES	MUSCLE DEFICIT	FUNCTIONAL DEFIIIT	PRESENTATION
Erb palsy ("waiter's tip")	Traction or tear of upper ("Erb-er") trunk: C5-C6 roots	Infants-lateral traction on neck during delivery Adults-trauma	Deltoid, supraspinatus Infraspinatus Biceps brachii	Abduction (arm hangs by side) Lateral rotation (arm medially rotated) Flexion, supination (arm extended and pronated)	
Klumpke palsy	Traction or tear of lower trunk: C8-Tl root	Infants-upward force on arm during delivery Adults-trauma (eg, grabbing a tree branch to break a fall)	Intrinsic hand muscles: lumbricals, interossei, thenar, hypothenar	Total claw hand: lumbricals normally flex MCP joints and extend DIP and PIP joints	
Thoracic outlet syndrome	Compression of lower trunk and subclavian vessels	Cervical rib, Pancoast tumor	Same as Klumpke palsy	Atrophy of intrinsic hand muscles; ischemia, pain, and edema due to vascular compression	
Winged scapula	Lesion of long thoracic nerve	Axillary node dissection after mastectomy, stab wounds	Serratus anterior	Inability to anchor scapula to thoracic cage \rightarrow cannot abduct arm above horizontal position	

Distortions of the hand At rest, a balance exists between the extrinsic flexors and extensors of the hand, as well as the intrinsic muscles of the hand-particularly the lumbrical muscles (flexion of MCP, extension of DIP and PIP joints).
"Clawing" - seen best with distal lesions of median or ulnar nerves. Remaining extrinsic flexors of the digits exaggerate the loss of the lumbricals \rightarrow fingers extend at MCP, flex at DIP and PIP joints.
Deficits less pronounced in proximal lesions; deficits present during voluntary flexion of the digits.

PRESENTATION				
CONTEXT	Extending fingers/at rest	Making a fist	Extending fingers/at rest	Making a fist
LOCATION Of LESION	Distal ulnar nerve	Proximal median nerve	Distal median nerve	Proximal ulnar nerve
SIGN	"Ulnar claw"	"Pope's blessing"	"Median claw"	"OK gesture" (with digits l-3 flexed)

Note: Atrophy of the thenar eminence (unopposable thumb \rightarrow "ape hand") can be seen in median nerve lesions, while atrophy of the hypothenar eminence can be seen in ulnar nerve lesions.

Hand muscles

Thenar (median) - Opponens pollicis, Abductor pollicis brevis, Flexor pollicis brevis, superficial head (deep head by ulnar nerve).
Hypothenar (ulnar)-Opponens digiti minimi, Abductor digiti minimi, Flexor digiti minimi brevis.
Dorsal interossei-abduct the fingers.
Palmar interossei-adduct the fingers.
Lumbricals—flex at the MCP joint, extend PIP and DIP joints.

Both groups perform the same functions:
Oppose, Abduct, and Flex (OAF).
$\mathrm{DAB}=$ Dorsals ABduct.
PAD = Palmars ADduct.

Lower extremity nerves

NERVE	CAUSE OF INJURY	PRESENTATION
Obturator (L2-L4)	Pelvic surgery	\downarrow thigh sensation (medial) and \downarrow adduction.
Femoral (L2-L4)	Pelvic fracture	\downarrow thigh flexion and leg extension.
Common peroneal (L4-S2)	Trauma or compression of lateral aspect of leg, fibular neck fracture	Foot drop-inverted and plantarflexed at rest, loss of eversion and dorsiflexion. "Steppage gait." Loss of sensation on dorsum of foot.
Tibial (L4-S3)	Knee trauma, Baker cyst (proximal lesion); tarsal tunnel syndrome (distal lesion)	Inability to curl toes and loss of sensation on sole of foot. In proximal lesions, foot everted at rest with loss of inversion and plantarflexion.
Superior gluteal (L4-S1) Normal Trendelenburg sign	Iatrogenic injury during intramuscular injection to upper medial gluteal region	Trendelenburg sign/gait-pelvis tilts because weight-bearing leg cannot maintain alignment of pelvis through hip abduction. Lesion is contralateral to the side of the hip that drops, ipsilateral to extremity on which the patient stands.
Inferior gluteal (L5-S2)	Posterior hip dislocation	Difficulty climbing stairs, rising from seated position. Loss of hip extension.

Superior gluteal nerve innervates gluteus medius, gluteus minimus, and tensor fascia latae. Inferior gluteal nerve innervates gluteus maximus.
PED $=$ Peroneal Everts and Dorsiflexes; if injured, foot dropPED.
TIP = Tibial Inverts and Plantarflexes; if injured, can't stand on TIPtoes.
Sciatic nerve (L4-S3) innervates posterior thigh, splits into common peroneal and tibial nerves.
Pudendal nerve (S2-S4) innervates perineum. Can be blocked with local anesthetic during childbirth using the ischial spine as a landmark for injection.
Choose superolateral gluteal quadrant as intramuscular injection site to avoid nerve injury.

Signs of lumbosacral radiculopathy

Paresthesias and weakness in distribution of specific lumbar or sacral spinal nerves. Often due to intervertebral disc herniation in which the nerve associated with the inferior vertebral body is impinged (eg, herniation of L3-L4 disc affects the L4 spinal nerve).

DISCLEVEL	FINDINGS
L3-L4	Weakness of knee extension, \downarrow patellar reflex L4-L5 Weakness of dorsiflexion, difficulty in heel- walking
Weakness of plantarflexion, difficulty in toe- walking, \downarrow Achilles reflex	

Neurovascular pairing Nerves and arteries are frequently named together by the bones/regions with which they are associated. The following are exceptions to this naming convention.

LOCATION	NERVE	ARTERY
Axilla/lateral thorax	Long thoracic	Lateral thoracic
Surgical neck of humerus	Axillary	Posterior circumflex
Midshaft of humerus	Radial	Median
Distal humerus/ cubital fossa	Tibial	Brachial
Popliteal fossa	Tibial	Popliteal
Posterior to medial malleolus	Posterior tibial	

Muscle conduction to contraction

T-tubules are extensions of plasma membrane juxtaposed with terminal cisternae of the sarcoplasmic reticulum.
In skeletal muscle, 1 T-tubule +2 terminal cisternae $=$ triad.
In cardiac muscle, 1 T-tubule +1 terminal cisterna $=$ dyad.

1. Action potential depolarization opens presynaptic voltage-gated Ca^{2+} channels, inducing neurotransmitter release.
2. Postsynaptic ligand binding leads to muscle cell depolarization in the motor end plate.
3. Depolarization travels along muscle cell and down the T-tubule.
4. Depolarization of the voltage-sensitive dihydropyridine receptor, mechanically coupled to the ryanodine receptor on the sarcoplasmic reticulum, induces a conformational change in both receptors, causing Ca^{2+} release from sarcoplasmic reticulum.
5. Released Ca^{2+} binds to troponin C , causing a conformational change that moves tropomyosin out of the myosin-binding groove on actin filaments.
6. Myosin releases bound ADP and $\mathrm{P}_{\mathrm{i}} \rightarrow$ displacement of myosin on the actin filament (power stroke). Contraction results in shortening of \mathbf{H} and I bands and between Z lines (HIZ shrinkage), but the A band remains the same length (A band is Always the same length) A.
7. Binding of a new ATP molecule causes detachment of myosin head from actin filament. Hydrolysis of bound ATP \rightarrow ADP, myosin head adopts high-energy position ("cocked") for the next contraction cycle.

Types of muscle fibers

Type 1 muscle	Slow twitch; red fibers resulting from \uparrow mitochondria and myoglobin concentration (\uparrow oxidative phosphorylation) \rightarrow sustained contraction. Proportion \uparrow after endurance training.	Think "1 slow red ox."
Type 2 muscle	Fast twitch; white fibers resulting from \downarrow mitochondria and myoglobin concentration (\uparrow anaerobic glycolysis). Proportion \uparrow after weight/resistance training.	

Smooth muscle contraction

Bone formation

Endochondral ossification

Bones of axial skeleton, appendicular skeleton, and base of skull. Cartilaginous model of bone is first made by chondrocytes. Osteoclasts and osteoblasts later replace with woven bone and then remodel to lamellar bone. In adults, woven bone occurs after fractures and in Paget disease. Defective in achondroplasia.
Membranous
Bones of calvarium and facial bones. Woven bone formed directly without cartilage. Later remodeled to lamellar bone.

Cell biology of bone

Osteoblast	Builds bone by secreting collagen and catalyzing mineralization in alkaline environment via ALP. Differentiates from mesenchymal stem cells in periosteum.
Osteoclast	Dissolves bone by secreting H^{+}and collagenases. Differentiates from a fusion of monocyte/ macrophage lineage precursors.
Parathyroid hormone	At low, intermittent levels, exerts anabolic effects (building bone) on osteoblasts and osteoclasts (indirect). Chronically \uparrow PTH levels (l° hyperparathyroidism) cause catabolic effects (osteitis fibrosa cystica).
Estrogen	Inhibits apoptosis in bone-forming osteoblasts and induces apoptosis in bone-resorbing osteoclasts. Estrogen deficiency (surgical or postmenopausal), excess cycles of remodeling, and bone resorption lead to osteoporosis.

Achondroplasia

Failure of longitudinal bone growth (endochondral ossification) \rightarrow short limbs. Membranous ossification is not affected \rightarrow large head relative to limbs. Constitutive activation of fibroblast growth factor receptor (FGFR3) actually inhibits chondrocyte proliferation. $>85 \%$ of mutations occur sporadically; autosomal dominant with full penetrance (homozygosity is lethal). Most common cause of dwarfism.

Osteoporosis

Normal vertebrae

Mild compression fracture

Trabecular (spongy) and cortical bone lose mass and interconnections despite normal bone mineralization and lab values (serum Ca^{2+} and $\mathrm{PO}_{4}{ }^{3-}$).
Most commonly due to \uparrow bone resorption related to \downarrow estrogen levels and old age. Can be secondary to drugs (eg, steroids, alcohol, anticonvulsants, anticoagulants, thyroid replacement therapy) or other medical conditions (eg, hyperparathyroidism, hyperthyroidism, multiple myeloma, malabsorption syndromes).
Diagnosed by a bone mineral density scan (dualenergy x-ray absorptiometry) with a T-score of ≤-2.5 or by a fragility fracture of hip or vertebra.
Prophylaxis: regular weight-bearing exercise and adequate Ca^{2+} and vitamin D intake throughout adulthood.
Treatment: bisphosphonates, teriparatide, SERMs, rarely calcitonin; denosumab (monoclonal antibody against RANKL).

Osteopetrosis (marble bone disease)

Failure of normal bone resorption due to defective osteoclasts \rightarrow thickened, dense bones that are prone to fracture. Bone fills marrow space \rightarrow pancytopenia, extramedullary hematopoiesis. Mutations (eg, carbonic anhydrase II) impair ability of osteoclast to generate acidic environment necessary for bone resorption. X-rays show bone-in-bone ("stone" bone) appearance \boldsymbol{A}. Can result in cranial nerve impingement and palsies as a result of narrowed foramina. Bone marrow transplant is potentially curative as osteoclasts are derived from monocytes.

Osteomalacia/rickets Defective mineralization of osteoid (osteomalacia) or cartilaginous growth plates (rickets, only in children). Most commonly due to vitamin D deficiency.
X-rays show osteopenia and "Looser zones" (pseudofractures) in osteomalacia, epiphyseal widening and metaphyseal cupping/fraying in rickets. Children with rickets have bow legs \boldsymbol{A}, bead-like costochondral junctions (rachitic rosary), craniotabes (soft skull).
\downarrow vitamin $\mathrm{D} \rightarrow \downarrow$ serum $\mathrm{Ca}^{2+} \rightarrow \uparrow$ PTH secretion $\rightarrow \downarrow$ serum $\mathrm{PO}_{4}{ }^{3-}$.
Hyperactivity of osteoblasts $\rightarrow \uparrow$ ALP.

Paget disease of bone (osteitis deformans)

Common, localized disorder of bone remodeling caused by \uparrow osteoclastic activity followed by \uparrow osteoblastic activity that forms poor-quality bone. Serum Ca^{2+}, phosphorus, and PTH levels are normal. \uparrow ALP. Mosaic pattern of woven and lamellar bone (osteocytes with lacunae in chaotic juxtapositions); long bone chalk-stick fractures. \uparrow blood flow from \uparrow arteriovenous shunts may cause high-output heart failure. \uparrow risk of osteogenic sarcoma.

Hat size can be increased due to skull thickening \mathbf{A}; hearing loss is common due to auditory foramen narrowing.
Stages of Paget disease:

- Lytic-osteoclasts
- Mixed—osteoclasts + osteoblasts
- Sclerotic-osteoblasts
- Quiescent-minimal osteoclast/osteoblast activity

Osteonecrosis (avascular necrosis)

Infarction of bone and marrow, usually very painful. Most common site is femoral head \boldsymbol{A} (due to insufficiency of medial circumflex femoral artery). Causes include Corticosteroids, Alcoholism, Sickle cell disease, Trauma, "the Bends" (caisson/ decompression disease), LEgg-Calvé-Perthes disease (idiopathic), Gaucher disease, Slipped capital femoral epiphysis-CAST Bent LEGS.

Lab values in bone disorders

DISORDER	SERUM Ca $^{2+}$	PO_{4}^{3-}	ALP	PTH	COMMENTS
Osteoporosis	-	-	-	-	\downarrow bone mass

Primary bone tumors

tumortype	EPIDEMIOLOGY/LOCATION	Characteristics
Benign tumors		
Osteochondroma	Most common benign bone tumor. Males <25 years old.	Bony exostosis with cartilaginous (chondroid) cap \boldsymbol{A}. Rarely transforms to chondrosarcoma.
Giant cell tumor	20-40 years old. Epiphyseal end of long bones. Often around knee. "Osteoclastoma."	Locally aggressive benign tumor. "Soap bubble" appearance on x-ray B. Multinucleated giant cells.
Malignant tumors		
Osteosarcoma (osteogenic sarcoma)	2nd most common 1° malignant bone tumor (after multiple myeloma). Bimodal distribution: $10-20$ years old $\left(1^{\circ}\right),>65$ $\left(2^{\circ}\right)$. Predisposing factors: Paget disease of bone, bone infarcts, radiation, familial retinoblastoma, Li-Fraumeni syndrome (germline p53 mutation). Metaphysis of long bones, often around knee C.	Codman triangle (from elevation of periosteum) or sunburst pattern on x-ray. Aggressive. Treat with surgical en bloc resection (with limb salvage) and chemotherapy.
Ewing sarcoma	Boys <15 years old. Commonly appears in diaphysis of long bones, pelvis, scapula, ribs.	Anaplastic small blue cell malignant tumor \mathbf{D}. Extremely aggressive with early metastases, but responsive to chemotherapy. "Onion skin" periosteal reaction in bone. Associated with $t(11 ; 22)$ translocation causing fusion protein EWS-FLI 1. $11+22=33$ (Patrick Ewing's jersey number).

Osteoarthritis and rheumatoid arthritis

	Osteoarthritis	Rheumatoid arthritis
pathogenesis	Mechanical-wear and tear destroys articular cartilage ("degenerative joint disease"). Chondrocytes mediate degradation and inadequate repair.	Autoimmune-inflammatory cytokines and cells induce pannus (proliferative granulation tissue) formation, which erodes articular cartilage and bone.
PREDISPOSING FACTORS	Age, female, obesity, joint trauma.	Female, HLA-DR4, smoking, silica exposure. \oplus rheumatoid factor (anti-IgG antibody; in 80\%), anti-cyclic citrullinated peptide antibody (more specific).
Presentation	Pain in weight-bearing joints after use (eg, at the end of the day), improving with rest. Asymmetric joint involvement. Knee cartilage loss begins medially ("bowlegged"). No systemic symptoms.	Pain, swelling, and morning stiffness lasting >1 hour, improving with use. Symmetric joint involvement. Systemic symptoms (fever, fatigue, weight loss). Extraarticular manifestations common.*
Joint findings	Osteophytes (bone spurs), joint space narrowing, subchondral sclerosis and cysts. Synovial fluid non-inflammatory ($\mathrm{WBC}<2000 / \mathrm{mm}^{3}$). Involves DIP (Heberden nodes A) and PIP (Bouchard nodes), and lst CMC; not MCP.	Erosions, juxtaarticular osteopenia, joint space narrowing, soft tissue swelling, subchondral cysts. Deformities include subluxation, fingers with ulnar deviation, swan neck B, and boutonniere. Synovial fluid inflammatory (WBC > 2000/ mm^{3}). Involves MCP, PIP, wrist; not DIP or lst CMC.
treatment	Acetaminophen, NSAIDs, intra-articular glucocorticoids.	NSAIDs, glucocorticoids, disease-modifying agents (methotrexate, sulfasalazine, hydroxychloroquine, leflunomide), biologic agents (eg, TNF- α inhibitors).

*Extraarticular manifestations include rheumatoid nodules (fibrinoid necrosis with palisading histiocytes) in subcutaneous tissue and lung (+ pneumoconiosis \rightarrow Caplan syndrome), interstitial lung disease, pleuritis, pericarditis, anemia of chronic disease, neutropenia + splenomegaly (Felty syndrome), AA amyloidosis, Sjögren syndrome, scleritis, carpal tunnel syndrome.

Calcium pyrophosphate deposition disease

Deposition of calcium pyrophosphate crystals within the joint space. Occurs in patients >50 years old; both sexes affected equally. Usually idiopathic, sometimes associated with hemochromatosis, hyperparathyroidism, joint trauma.
Pain and swelling with acute inflammation (pseudogout) and/or chronic degeneration (pseudoosteoarthritis). Knee most commonly affected joint.
Chondrocalcinosis (cartilage calcification) on x-ray.
Crystals are rhomboid and weakly \oplus birefringent under polarized light (blue when parallel to light) \boldsymbol{A}.
Acute treatment: NSAIDs, colchicine, glucocorticoids.
Prophylaxis: colchicine.

Autoimmune disorder characterized by destruction of exocrine glands (especially lacrimal and salivary) by lymphocytic infiltrates \boldsymbol{A}. Predominantly affects females 40-60 years old.
Findings:

- Inflammatory joint pain
- Keratoconjunctivitis sicca (\downarrow tear production and subsequent corneal damage)
- Xerostomia (\downarrow saliva production)
- Presence of antinuclear antibodies: SS-A (anti-Ro) and/or SS-B (anti-La)
- Bilateral parotid enlargement

A common 1° disorder or a 2° syndrome associated with other autoimmune disorders (eg, rheumatoid arthritis, SLE, systemic sclerosis).
Complications: dental caries; mucosa-associated lymphoid tissue (MALT) lymphoma (may present as parotid enlargement).

Septic arthritis

S aureus, Streptococcus, and Neisseria gonorrhoeae are common causes. Affected joint is swollen A, red, and painful. Synovial fluid purulent ($\mathrm{WBC}>50,000 / \mathrm{mm}^{3}$).
Gonococcal arthritis-STI that presents as either purulent arthritis (eg, knee) or triad of polyarthralgias, tenosynovitis (eg, hand), dermatitis (eg, pustules).

Seronegative spondyloarthritis

Arthritis without rheumatoid factor (no anti-IgG antibody). Strong association with HLA-B27 (MHC class I serotype). Subtypes (PAIR) share variable occurrence of inflammatory back pain (associated with morning stiffness, improves with exercise), peripheral arthritis, enthesitis (inflamed insertion sites of tendons, eg, Achilles), dactylitis ("sausage fingers"), uveitis.

Psoriatic arthritis	Associated with skin psoriasis and nail lesions. Asymmetric and patchy involvement \boldsymbol{A}. Dactylitis and "pencil-in-cup" deformity of DIP on x-ray B.	Seen in fewer than $1 / 3$ of patients with psoriasis.
Ankylosing spondylitis	Symmetric involvement of spine and sacroiliac joints \rightarrow ankylosis (joint fusion), uveitis, aortic regurgitation.	Bamboo spine (vertebral fusion) C. More common in males.
Inflammatory bowel disease	Crohn disease and ulcerative colitis are often associated with spondyloarthritis.	
Reactive arthritis	Formerly known as Reiter syndrome. Classic triad: - Conjunctivitis - Urethritis - Arthritis	"Can't see, can't pee, can't bend my knee." Post-GI (Shigella, Salmonella, Yersinia, Campylobacter) or Chlamydia infections.

Aymptoms	Classic presentation: rash, joint pain, and fever, most commonly in a female of reproductive age and African-American descent. Libman-Sacks Endocarditis—nonbacterial, verrucous thrombi usually on mitral or aortic valve (LSE in SLE). Lupus nephritis (glomerular deposition of antiDNA immune complexes) can be nephritic or nephrotic (hematuria or proteinuria). Most common and severe type is diffuse proliferative. Common causes of death in SLE: - Cardiovascular disease - Infections - Renal disease	RASH OR PAIN: Rash (malar A or discoid) Arthritis (nonerosive) Serositis Hematologic disorders (eg, cytopenias) Oral/nasopharyngeal ulcers Renal disease Photosensitivity Antinuclear antibodies Immunologic disorder (anti-dsDNA, anti-Sm, antiphospholipid) Neurologic disorders (eg, seizures, psychosis)
Finoligs	Antinuclear antibodies (ANA)	Sensitive, not specific
	Anti-dsDNA antibodies	Specific, poor prognosis (renal disease)
	Anti-Smith antibodies	Specific, not prognostic (directed against snRNPs)
	Antihistone antibodies	Sensitive for drug-induced lupus (eg, hydralazine, procainamide)
	$\downarrow \mathrm{C} 3, \mathrm{C} 4$, and CH_{50} due to immune complex formation.	
treatment	NSAIDs, steroids, immunosuppressants, hydroxychloroquine.	

Antiphospholipid	1° or 2° autoimmune disorder (most commonly
in SLE).	
syndrome	Diagnose based on clinical criteria including
history of thrombosis (arterial or venous)	
or spontaneous abortion along with	
laboratory findings of lupus anticoagulant,	
anticardiolipin, anti- β_{2} glycoprotein antibodies.	
	Treat with systemic anticoagulation.

Antiphospholipid syndrome
1° or 2° autoimmune disorder (most commonly in SLE).
Diagnose based on clinical criteria including history of thrombosis (arterial or venous) or spontaneous abortion along with laboratory findings of lupus anticoagulant,

Treat with systemic anticoagulation.

Anticardiolipin antibodies and lupus anticoagulant can cause false-positive VDRL/RPR and prolonged PTT.

Mixed connective tissue disease

Features of SLE, systemic sclerosis, and/or polymyositis. Associated with anti-Ul RNP antibodies (speckled ANA).

Sarcoidosis

Characterized by immune-mediated, widespread noncaseating granulomas \boldsymbol{A}, elevated serum ACE levels, and elevated CD4+/CD8+ ratio in bronchoalveolar lavage fluid. More common in African-American females. Often asymptomatic except for enlarged lymph nodes. Findings on CXR of bilateral adenopathy and coarse reticular opacities [B; CT of the chest better demonstrates the extensive hilar and mediastinal adenopathy [C.
Associated with restrictive lung disease (interstitial fibrosis), erythema nodosum, lupus pernio (skin lesions on face resembling lupus), Bell palsy, epithelioid granulomas containing microscopic Schaumann and asteroid bodies, uveitis, hypercalcemia (due to $\uparrow l \alpha$-hydroxylase-mediated vitamin D activation in macrophages).
Treatment: steroids (if symptomatic).

Polymyalgia rheumatica

SYMPtoms	Pain and stiffness in shoulders and hips, often with fever, malaise, weight loss. Does not cause muscular weakness. More common in women >50 years old; associated with giant cell (temporal) arteritis.
FIndings	\uparrow ESR, \uparrow CRP, normal CK.
TREATMENT	Rapid response to low-dose corticosteroids.

Fibromyalgia
Most commonly seen in females 20-50 years old. Chronic, widespread musculoskeletal pain associated with stiffness, paresthesias, poor sleep, fatigue, cognitive disturbance ("fibro fog"). Treatment: regular exercise, antidepressants (TCAs, SNRIs), anticonvulsants.

Polymyositis/ dermatomyositis	\uparrow CK, \oplus ANA, \oplus anti-Jo-1, \oplus anti-SRP, \oplus anti-Mi-2 antibodies. Treatment: steroids followed by long-term immunosuppressant therapy (eg, methotrexate).
Polymyositis	Progressive symmetric proximal muscle weakness, characterized by endomysial inflammation with CD8+ T cells. Most often involves shoulders.
Dermatomyositis	Similar to polymyositis, but also involves malar rash (similar to SLE), Gottron papules \boldsymbol{A}, heliotrope (erythematous periorbital) rash B, "shawl and face" rash C, "mechanic's hands." \uparrow risk of occult malignancy. Perimysial inflammation and atrophy with CD4+ T cells.
Neuromuscular junction diseases	
	Myasthenia gravis Lambert-Eaton myasthenic syndrome
Frequency	Most common NMJ disorder Uncommon
PATHOPHYSIOLOGY	Autoantibodies to postsynaptic ACh receptor Autoantibodies to presynaptic Ca^{2+} channel $\rightarrow \downarrow$ ACh release
Clinical	Ptosis, diplopia, weakness Proximal muscle weakness, autonomic Worsens with muscle use symptoms (dry mouth, impotence) Improves with muscle use
ASSOCIATED WITH	Thymoma, thymic hyperplasia Small cell lung cancer
AChe inhibitor administration	Reverses symptoms (edrophonium to diagnose, Minimal effect pyridostigmine to treat)

Myositis ossificans

Heterotopic ossification of skeletal muscle following muscular trauma \boldsymbol{A}. Most often seen in upper or lower extremity. May present as suspicious "mass" at site of known trauma or as incidental finding on radiography.

Scleroderma (systemic sclerosis)

Triad of autoimmunity, noninflammatory vasculopathy, and collagen deposition with fibrosis. Commonly sclerosis of skin, manifesting as puffy, taut skin \boldsymbol{A} without wrinkles, fingertip pitting B. Also sclerosis of renal, pulmonary (most common cause of death), cardiovascular, GI systems. 75% female. 2 major types:

- Diffuse scleroderma-widespread skin involvement, rapid progression, early visceral involvement. Associated with anti-Scl-70 antibody (anti-DNA topoisomerase I antibody).
- Limited scleroderma-limited skin involvement confined to fingers and face. Also with CREST syndrome: Calcinosis [C, Raynaud phenomenon, Esophageal dysmotility, Sclerodactyly, and Telangiectasia. More benign clinical course. Associated with anti-centromere antibody.

Raynaud phenomenon

\downarrow blood flow to the skin due to arteriolar (small vessel) vasospasm in response to cold or stress: color change from white (ischemia) to blue (hypoxia) to red (reperfusion). Most often in the fingers A and toes. Called Raynaud disease when 1° (idiopathic), Raynaud syndrome when 2° to a disease process such as mixed connective tissue disease, SLE, or CREST (limited form of systemic sclerosis) syndrome. Digital ulceration (critical ischemia) seen in 2° Raynaud syndrome. Treat with Ca^{2+} channel blockers.

- MUSCULOSKELETAL, SKIN, AND CONNECTIVE TISSUE—DERMATOLOGY

Skin layers

Skin has 3 layers: epidermis, dermis, subcutaneous fat (hypodermis, subcutis).
Epidermis layers from surface to base A:

- Stratum Corneum (keratin)
- Stratum Lucidum
- Stratum Granulosum
- Stratum Spinosum (desmosomes)
- Stratum Basale (stem cell site)

Dermatologic macroscopic terms (morphology)

LESION	CHARACTERISTICS	EXAMPLES
Macule	Flat lesion with well-circumscribed change in skin color $<1 \mathrm{~cm}$	Freckle, labial macule A
Patch	Macule > 1 cm	Large birthmark (congenital nevus) B
Papule	Elevated solid skin lesion $<1 \mathrm{~cm}$	Mole (nevus) C, acne
Plaque	Papule $>1 \mathrm{~cm}$	Psoriasis D
Vesicle	Small fluid-containing blister $<1 \mathrm{~cm}$	Chickenpox (varicella), shingles (zoster) E
Bulla	Large fluid-containing blister $>1 \mathrm{~cm}$	Bullous pemphigoid F
Pustule	Vesicle containing pus	Pustular psoriasis \mathbb{G}
Wheal	Transient smooth papule or plaque	Hives (urticaria) [H
Scale	Flaking off of stratum corneum	Eczema, psoriasis, SCC П
Crust	Dry exudate	Impetigo J

Dermatologic microscopic terms

LESION	CHARACTERISTICS	EXAMPLES
Hyperkeratosis	\uparrow thickness of stratum corneum	Psoriasis, calluses
Parakeratosis	Hyperkeratosis with retention of nuclei in stratum corneum	Psoriasis
Hypergranulosis	\uparrow thickness of stratum granulosum	Lichen planus
Spongiosis	Epidermal accumulation of edematous fluid in intercellular spaces	Eczematous dermatitis
Acantholysis	Separation of epidermal cells	Pemphigus vulgaris
Acanthosis	Epidermal hyperplasia $(\uparrow$ spinosum $)$	Acanthosis nigricans

Pigmented skin disorders

Common skin disorders

Acne	Pilosebaceous follicles with \uparrow sebum, keratin, Propionibacterium acnes \rightarrow obstruction (comedones) and inflammation (papules/pustules \boldsymbol{A}, nodules, cysts). Treatment includes retinoids, benzoyl peroxide, antibiotics.
Atopic dermatitis (eczema)	Pruritic eruption, commonly on skin flexures. Often associated with other atopic diseases (asthma, allergic rhinitis, food allergies); \uparrow serum IgE. Usually appears on face in infancy B and then antecubital fossae C.
Allergic contact dermatitis	Type IV hypersensitivity reaction that follows exposure to allergen. Lesions occur at site of contact (eg, nickel D, poison ivy, neomycin E).
Melanocytic nevus	Common mole. Benign, but melanoma can arise in congenital or atypical moles. Intradermal nevi are papular \boldsymbol{F}. Junctional nevi are flat macules G.
Psoriasis	Papules and plaques with silvery scaling \boldsymbol{H}, especially on knees and elbows. Acanthosis with parakeratotic scaling (nuclei still in stratum corneum), Munro microabscesses. \uparrow stratum spinosum, \downarrow stratum granulosum. Auspitz sign (arrow in \square) —pinpoint bleeding spots from exposure of dermal papillae when scales are scraped off. Can be associated with nail pitting and psoriatic arthritis.
Rosacea	Inflammatory facial skin disorder characterized by erythematous papules and pustules J, but no comedones. May be associated with facial flushing in response to external stimuli (eg, alcohol, heat). Phymatous rosacea can cause rhinophyma (bulbous deformation of nose).
Seborrheic keratosis	Flat, greasy, pigmented squamous epithelial proliferation with keratin-filled cysts (horn cysts) K. Looks "stuck on." Lesions occur on head, trunk, and extremities. Common benign neoplasm of older persons. Leser-Trélat sign L-sudden appearance of multiple seborrheic keratoses, indicating an underlying malignancy (eg, GI, lymphoid).
Verrucae	Warts; caused by HPV. Soft, tan-colored, cauliflower-like papules 国. Epidermal hyperplasia, hyperkeratosis, koilocytosis. Condyloma acuminatum on genitals \mathbb{N}.
Urticaria	Hives. Pruritic wheals that form after mast cell degranulation © Characterized by superficial dermal edema and lymphatic channel dilation.

Vascular tumors of skin

Skin infections

Bacterial infections	
Impetigo	Very superficial skin infection. Usually from S aureus or S pyogenes. Highly contagious. Honeycolored crusting \boldsymbol{A}. Bullous impetigo has bullae and is usually caused by S aureus.
Erysipelas	Infection involving upper dermis and superficial lymphatics, usually from S pyogenes. Presents with well-defined demarcation between infected and normal skin [C.
Cellulitis	Acute, painful, spreading infection of deeper dermis and subcutaneous tissues. Usually from S pyogenes or S aureus. Often starts with a break in skin from trauma or another infection \mathbb{D}.
Abscess	Collection of pus from a walled-off infection within deeper layers of skin E. Offending organism is almost always S aureus.
Necrotizing fasciitis	Deeper tissue injury, usually from anaerobic bacteria or S pyogenes. Results in crepitus from methane and CO_{2} production. "Flesh-eating bacteria." Causes bullae and a purple color to the skin \mathbf{F}.
Staphylococcal scalded skin syndrome	Exotoxin destroys keratinocyte attachments in stratum granulosum only (vs toxic epidermal necrolysis, which destroys epidermal-dermal junction). Characterized by fever and generalized erythematous rash with sloughing of the upper layers of the epidermis that heals completely. \oplus Nikolsky sign. Seen in newborns and children, adults with renal insufficiency.
Viral infections	
Herpes	Herpes virus infections (HSVl and HSV2) of skin can occur anywhere from mucosal surfaces to normal skin. These include herpes labialis, herpes genitalis, herpetic whitlow Hㅣ (finger).
Molluscum contagiosum	Umbilicated papules \square caused by a poxvirus. While frequently seen in children, it may be sexually transmitted in adults.
Varicella zoster virus	Causes varicella (chickenpox) and zoster (shingles). Varicella presents with multiple crops of lesions in various stages from vesicles to crusts. Zoster is a reactivation of the virus in dermatomal distribution (unless it is disseminated).
Hairy leukoplakia	Irregular, white, painless plaques on lateral tongue that cannot be scraped off J. EBV mediated. Occurs in HIV-positive patients, organ transplant recipients. Contrast with thrush (scrapable) and leukoplakia (precancerous).

Blistering skin disorders

Pemphigus vulgaris
Potentially fatal autoimmune skin disorder with IgG antibody against desmoglein (component of desmosomes).
Flaccid intraepidermal bullae \boldsymbol{A} caused by acantholysis (keratinocytes in stratum spinosum are connected by desmosomes); oral mucosa also involved.
Immunofluorescence reveals antibodies around epidermal cells in a reticular (net-like) pattern [B. Nikolsky sign \oplus (separation of epidermis upon manual stroking of skin).

Bullous pemphigoid

Less severe than pemphigus vulgaris. Involves IgG antibody against hemidesmosomes (epidermal basement membrane; antibodies are "bullow" the epidermis).
Tense blisters containing eosinophils affect skin but spare oral mucosa.
Immunofluorescence reveals linear pattern at epidermal-dermal junction \mathbf{D}.
Nikolsky sign Θ.
Dermatitis herpetiformis
Erythema multiforme
Pruritic papules, vesicles, and bullae (often found on elbows) E. Deposits of IgA at tips of dermal papillae. Associated with celiac disease. Treatment: dapsone, gluten-free diet.
Associated with infections (eg, Mycoplasma pneumoniae, HSV), drugs (eg, sulfa drugs, β-lactams, phenytoin), cancers, autoimmune disease. Presents with multiple types of lesions-macules, papules, vesicles, target lesions (look like targets with multiple rings and dusky center showing epithelial disruption)
Characterized by fever, bullae formation and necrosis, sloughing of skin at dermal-epidermal junction, high mortality rate. Typically 2 mucous membranes are involved \boldsymbol{H}, and targetoid skin lesions may appear, as seen in erythema multiforme. Usually associated with adverse drug reaction. A more severe form of Stevens-Johnson syndrome (SJS) with $>30 \%$ of the body surface area involved is toxic epidermal necrolysis П J (TEN). 10-30\% involvement denotes SJS-TEN.

Miscellaneous skin disorders

Acanthosis nigricans	Epidermal hyperplasia causing symmetric, hyperpigmented thickening of skin, especially in axilla or on neck A B. Associated with insulin resistance (eg, diabetes, obesity, Cushing syndrome), visceral malignancy (eg, gastric adenocarcinoma).
Actinic keratosis	Premalignant lesions caused by sun exposure. Small, rough, erythematous or brownish papules or plaques C Disk of squamous cell carcinoma is proportional to degree of epithelial dysplasia.
Erythema nodosum	Painful inflammatory lesions of subcutaneous fat, usually on anterior shins. Often idiopathic, but can be associated with sarcoidosis, coccidioidomycosis, histoplasmosis, TB, streptococcal infections E, leprosy F, inflammatory bowel disease.
Lichen Planus	Pruritic, Purple, Polygonal Planar Papules and Plaques are the 6 P's of lichen Planus (G). Mucosal involvement manifests as Wickham striae (reticular white lines). Sawtooth infiltrate of lymphocytes at dermal-epidermal junction. Associated with hepatitis C.
Pityriasis rosea	"Herald patch" I followed days later by other scaly erythematous plaques, often in a "Christmas tree" distribution on trunk J. Multiple plaques with collarette scale. Self-resolving in 6-8 weeks.
Sunburn	Acute cutaneous inflammatory reaction due to excessive UV irradiation. Causes DNA mutations, inducing apoptosis of keratinocytes. UVB is dominant in sunBurn, UVA in tAnning and photoAging. Can lead to impetigo, skin cancers (basal cell carcinoma, squamous cell carcinoma, melanoma).

Skin cancer

Most common skin cancer. Found in sun-exposed areas of body (eg, face). Locally invasive, but rarely metastasizes. Pink, pearly nodules, commonly with telangiectasias, rolled borders, central crusting or ulceration \boldsymbol{A}. BCCs also appear as nonhealing ulcers with infiltrating growth B or as a scaling plaque (superficial BCC) ©. Basal cell tumors have "palisading" nuclei \mathbf{D}.

Squamous cell carcinoma

Second most common skin cancer. Associated with excessive exposure to sunlight, immunosuppression, and occasionally arsenic exposure. Commonly appears on face \boldsymbol{E}, lower
lip [F], ears, hands. Locally invasive, may spread to lymph nodes, and will rarely metastasize. Ulcerative red lesions with frequent scale. Associated with chronic draining sinuses.
Histopathology: keratin "pearls" [G.
Actinic keratosis, a scaly plaque, is a precursor to squamous cell carcinoma.
Keratoacanthoma is a variant that grows rapidly ($4-6$ weeks) and may regress spontaneously over months [1].

Melanoma

Common tumor with significant risk of metastasis. S-100 tumor marker. Associated with sunlight exposure; fair-skinned persons are at \uparrow risk. Depth of tumor correlates with risk of metastasis. Look for the ABCDEs: Asymmetry, Border irregularity, Color variation, Diameter $>6 \mathrm{~mm}$, and Evolution over time. At least 4 different types of melanoma, including superficial spreading II, nodular 』ు, lentigo maligna \mathbb{K}, and acral lentiginous [L]. Often driven by activating mutation in BRAF kinase. Primary treatment is excision with appropriately wide margins. Metastatic or unresectable melanoma in patients with BRAF V600E mutation may benefit from vemurafenib, a BRAF kinase inhibitor.

MUSCULOSKELETAL, SKIN, AND CONNECTIVE TISSUE—PHARMACOLOGY

Arachidonic acid pathway

LTB_{4} is a neutrophil chemotactic agent.
PGI_{2} inhibits platelet aggregation and promotes vasodilation.

Neutrophils arrive "B4" others. Platelet-Gathering Inhibitor.

Acetaminophen

MECHANISM	Reversibly inhibits cyclooxygenase, mostly in CNS. Inactivated peripherally.
CLINICALUSE	Antipyretic, analgesic, but not anti-inflammatory. Used instead of aspirin to avoid Reye syndrome in children with viral infection.
ADVERSE EFFECTS	Overdose produces hepatic necrosis; acetaminophen metabolite (NAPQI) depletes glutathione and forms toxic tissue byproducts in liver. N-acetylcysteine is antidote-regenerates glutathione.

Aspirin

mechanism	NSAID that irreversibly inhibits cyclooxygenase (both COX-1 and COX-2) by covalent acetylation $\rightarrow \downarrow$ synthesis of TXA ${ }_{2}$ and prostaglandins. \uparrow bleeding time. No effect on PT, PTT. Effect lasts until new platelets are produced.
CLINICAL USE	Low dose (< $300 \mathrm{mg} /$ day): \downarrow platelet aggregation. Intermediate dose ($300-2400 \mathrm{mg} /$ day): antipyretic and analgesic. High dose (2400-4000 mg/day): anti-inflammatory.
ADVERSE EFFECTS	Gastric ulceration, tinnitus (CN VIII). Chronic use can lead to acute renal failure, interstitial nephritis, GI bleeding. Risk of Reye syndrome in children treated with aspirin for viral infection. Causes respiratory alkalosis early, but transitions to mixed metabolic acidosis-respiratory alkalosis.

Celecoxib

mechanism	Reversibly inhibits specifically the cyclooxygenase (COX) isoform 2, which is found in inflammatory cells and vascular endothelium and mediates inflammation and pain; spares COX-1, which helps maintain gastric mucosa. Thus, does not have the corrosive effects of other NSAIDs on the GI lining. Spares platelet function as TXA_{2} production is dependent on COX-l.
ClINICAL USE	Rheumatoid arthritis, osteoarthritis.
ADVERSE EFFECTS	\uparrow risk of thrombosis. Sulfa allergy.
NSAIDs	Ibuprofen, naproxen, indomethacin, ketorolac, diclofenac, meloxicam, piroxicam.
mechanism	Reversibly inhibit cyclooxygenase (both COX-1 and COX-2). Block prostaglandin synthesis.
ClINICAL USE	Antipyretic, analgesic, anti-inflammatory. Indomethacin is used to close a PDA.
adverse effects	Interstitial nephritis, gastric ulcer (prostaglandins protect gastric mucosa), renal ischemia (prostaglandins vasodilate afferent arteriole).

Leflunomide

MECHANISM	Reversibly inhibits dihydroorotate dehydrogenase, preventing pyrimidine synthesis. Suppresses T-cell proliferation.
CLINICAL USE	Rheumatoid arthritis, psoriatic arthritis.
ADVERSE EFFECTS	Diarrhea, hypertension, hepatotoxicity, teratogenicity.

Bisphosphonates	Alendronate, ibandronate, risedronate, zoledronate.
MECHANISM	Pyrophosphate analogs; bind hydroxyapatite in bone, inhibiting osteoclast activity.
CLINICALUSE	Osteoporosis, hypercalcemia, Paget disease of bone, metastatic bone disease, osteogenesis imperfecta.
ADVERSE EFFECTS	Esophagitis (if taken orally, patients are advised to take with water and remain upright for 30 minutes), osteonecrosis of jaw, atypical stress fractures.

Teriparatide

MECHANISM	Recombinant PTH analog given subcutaneously daily. \uparrow osteoblastic activity.
CLINICALUSE	Osteoporosis. Causes \uparrow bone growth compared to antiresorptive therapies (eg, bisphosphonates).
ADVERSE EFFECTS	Transient hypercalcemia.

Gout drugs

TNF- α inhibitors	All TNF- α inhibitors predispose to infection, including reactivation of latent TB, since TNF is important in granuloma formation and stabilization.	
DRUG	MECHANISM	CLINICALUSE
Etanercept	Fusion protein (receptor for TNF- $\alpha+\operatorname{IgG}$ Fc produced by recombinant DNA.	Rheumatoid arthritis, psoriasis, ankylosing Etanercept is a TNF decoy receptor.

Rasburicase

MECHANISM

CLINICAL USE

Recombinant uricase that catalyzes metabolism of uric acid to allantoin.
Prevention and treatment of tumor lysis syndrome.

HIGH-YIELD SYSTEMS

Neurology

"Estimated amount of glucose used by an adult human brain each day, expressed in MGMs: 250."
-Harper's Index
"He has two neurons held together by a spirochete."
-Anonymous
"Anything's possible if you've got enough nerve."
-J.K. Rowling, Harry Potter and the Order of the Phoenix
"I like nonsense; it wakes up the brain cells."
> Embryology
> Anatomy and Physiology
> Ophthalmology
> Pathology
Pharmacology
—Dr. Seuss

- NEUROLOGY-EMBRYOLOGY

Neural development

Notochord induces overlying ectoderm to differentiate into neuroectoderm and form neural plate.
Neural plate gives rise to neural tube and neural crest cells.
Day 18 Notochord becomes nucleus pulposus of intervertebral disc in adults.
$\left.\begin{array}{l}\text { Alar plate (dorsal): sensory } \\ \text { Basal plate (ventral): motor }\end{array}\right]$ Same orientation as spinal cord.

Regional specification of developing brain

CNS/PNS origins

Neuroectoderm—CNS neurons, ependymal cells (inner lining of ventricles, make CSF), oligodendroglia, astrocytes.
Neural crest-PNS neurons, Schwann cells.
Mesoderm—Microglia (like Macrophages).

Forebrain anomalies

Anencephaly
Spina bifida occulta (most common)

Malformation of anterior neural tube \rightarrow no forebrain, open calvarium. Clinical findings: \uparrow AFP, polyhydramnios (no swallowing center in brain). Associated with maternal type liabetes. Maternal folate supplementation \downarrow risk.
Holoprosencephaly Failure of left and right hemispheres to separate; usually occurs during weeks 5-6. May be related to mutations in sonic hedgehog signaling pathway. Moderate form has cleft lip/palate, most severe form results in cyclopia. Seen in Patau syndrome and fetal alcohol syndrome.

Posterior fossa malformations

Chiari II malformation Herniation of low-lying cerebellar vermis through foramen magnum with aqueductal stenosis \rightarrow hydrocephalus. Usually associated with lumbosacral meningomyelocele (paralysis/sensory loss at and below the level of the lesion).
Dandy-Walker syndrome

Agenesis of cerebellar vermis with cystic enlargement of 4th ventricle (fills the enlarged posterior fossa (A). Associated with noncommunicating hydrocephalus, spina bifida.

Syringomyelia

Tongue development

Posterior tongue

Cystic cavity (syrinx) within central canal of spinal cord (yellow arrow in A). Fibers crossing in anterior white commissure (spinothalamic tract) are typically damaged first. Results in a "cape-like," bilateral loss of pain and temperature sensation in upper extremities (fine touch sensation is preserved). Associated with Chiari malformations (red arrow in \boldsymbol{A}), trauma, and tumors.

1st and 2nd branchial arches form anterior $2 / 3$ (thus sensation via $\mathrm{CN} \mathrm{V}_{3}$, taste via $\mathrm{CN} V I I$). 3rd and 4th branchial arches form posterior ${ }^{1 / 3}$ (thus sensation and taste mainly via CN IX, extreme posterior via CN X).
Motor innervation is via CN XII to hyoglossus (retracts and depresses tongue), genioglossus (protrudes tongue), and styloglossus (draws sides of tongue upward to create a trough for swallowing).
Motor innervation is via CN X to palatoglossus (elevates posterior tongue during swallowing).

Syrinx $=$ tube, as in syringe.
Most common at C8-Tl.
Chiari I malformation-cerebellar tonsillar ectopia $>3-5 \mathrm{~mm}$; congenital, usually asymptomatic in childhood, manifests with headaches and cerebellar symptoms.

Taste-CN VII, IX, X (solitary nucleus).
Pain-CN V 3 , IX, X.
Motor-CN X, XII.

NEUROLOGY—ANATOMY AND PHYSIOLOGY

Neurons | Signal-transmitting cells of the nervous system. Permanent cells—do not divide in adulthood. |
| :--- |
| Signal-relaying cells with dendrites (receive input), cell bodies, and axons (send output). Cell bodies |
| and dendrites can be seen on Nissl staining (stains RER). RER is not present in the axon. |
| Injury to axon \rightarrow Wallerian degeneration - degeneration distal to injury and axonal retraction |
| proximally; allows for potential regeneration of axon (if in PNS). |

Astrocytes

Physical support, repair, K^{+}metabolism, removal of excess neurotransmitter, component of bloodbrain barrier, glycogen fuel reserve buffer. Reactive gliosis in response to neural injury. Astrocyte marker: GFAP. Derived from neuroectoderm.

Microglia

Phagocytic scavenger cells of CNS
(mesodermal, mononuclear origin). Activated in response to tissue damage. Not readily discernible by Nissl stain.

HIV-infected microglia fuse to form multinucleated giant cells in CNS.

Myelin

\uparrow conduction velocity of signals transmitted down axons \rightarrow saltatory conduction of action potential at the nodes of Ranvier, where there are high concentrations of Na^{+}channels. CNS—oligodendrocytes; PNS—Schwann cells.

Wraps and insulates axons \boldsymbol{A} : \uparrow space constant and \uparrow conduction velocity.

Schwann cells

Each Schwann cell myelinates only l PNS axon. May be injured in Guillain-Barré syndrome. Also promote axonal regeneration. Derived from neural crest.
\uparrow conduction velocity via saltatory conduction at the nodes of Ranvier, where there is a high concentration of Na^{+}channels.

Vestibular schwannoma-typically located on CN VIII in internal acoustic meatus, may extend to cerebellopontine angle.

Oligodendroglia

Myelinates axons of neurons in CNS. Each oligodendrocyte can myelinate many axons (~ 30). Predominant type of glial cell in white matter.

Derived from neuroectoderm.
"Fried egg" appearance histologically. Injured in multiple sclerosis, progressive multifocal leukoencephalopathy (PML), leukodystrophies.

Sensory receptors

RECEPTOR TYPE	SENSORY NEURON FIBER TYPE	LOCATION	SENSES
Free nerve endings	C-slow, unmyelinated fibers A δ-fast, myelinated fibers	All skin, epidermis, some viscera	Pain, temperature
Meissner corpuscles	Large, myelinated fibers; adapt quickly	Glabrous (hairless) skin	Dynamic, fine/light touch, position sense
Pacinian corpuscles	Large, myelinated fibers; adapt quickly	Deep skin layers, ligaments, joints	Vibration, pressure
Merkel discs	Large, myelinated fibers; adapt slowly	Finger tips, superficial skin	Pressure, deep static touch (eg, shapes, edges), position sense
Ruffini corpuscles	Dendritic endings with capsule; adapt slowly	Finger tips, joints	Pressure, slippage of objects along surface of skin, joint angle change

Peripheral nerve

Endoneurium—invests single nerve fiber layers (inflammatory infiltrate in Guillain-Barré syndrome).
Perineurium (Permeability barrier) -surrounds a fascicle of nerve fibers. Must be rejoined in microsurgery for limb reattachment.
Epineurium-dense connective tissue that surrounds entire nerve (fascicles and blood vessels).

Endo $=$ inner.
Peri $=$ around.
Epi $=$ outer.

Neurotransmitters

	LOCATION OF SYNTHESIS	ANXIETY	DEPRESSION	SCHIZOPHRENIA	ALZHEIMER DISEASE	huntington DISEASE	PARKINSON DISEASE
Acetylcholine	Basal nucleus of Meynert				\downarrow	\downarrow	\uparrow
Dopamine	Ventral tegmentum, SNpc		\downarrow	\uparrow		\uparrow	\downarrow
GABA	Nucleus accumbens	\downarrow				\downarrow	
Norepinephrine	Locus ceruleus	\uparrow	\downarrow				
Serotonin	Raphe nucleus	\downarrow	\downarrow				\uparrow

Blood-brain barrier

Prevents circulating blood substances (eg, bacteria, drugs) from reaching the CSF/ CNS. Formed by 3 structures:

- Tight junctions between nonfenestrated capillary endothelial cells
- Basement membrane
- Astrocyte foot processes

Glucose and amino acids cross slowly by carriermediated transport mechanisms.
Nonpolar/lipid-soluble substances cross rapidly via diffusion.

A few specialized brain regions with fenestrated capillaries and no blood-brain barrier allow molecules in blood to affect brain function (eg, area postrema-vomiting after chemo; OVLT—osmotic sensing) or neurosecretory products to enter circulation (eg, neurohypophysis-ADH release).
Infarction and/or neoplasm destroys endothelial cell tight junctions \rightarrow vasogenic edema.
Other notable barriers include:

- Blood-testis barrier
- Maternal-fetal blood barrier of placenta

Hypothalamus	The hypothalamus wears TAN HATS-Thirst and water balance, Adenohypophysis control (regulates anterior pituitary), Neurohypophysis releases hormones produced in the hypothalamus, Hunger, Autonomic regulation, Temperature regulation, Sexual urges. Inputs (areas not protected by blood-brain barrier): OVLT (organum vasculosum of the lamina terminalis; senses change in osmolarity), area postrema (found in medulla, responds to emetics). Supraoptic nucleus primarily makes ADH. Paraventricular nucleus primarily makes oxytocin. Hypothalamus makes ADH and oxytocin. They are carried by neurophysins down axons to posterior pituitary, where they are stored and released.
Lateral area	Hunger. Destruction \rightarrow anorexia, failure If you zap your lateral area, you shrink laterally. to thrive (infants). Stimulated by ghrelin, inhibited by leptin.
Ventromedial area	Satiety. Destruction (eg, craniopharyngioma) \rightarrow If you zap your ventromedial area, you grow hyperphagia. Stimulated by leptin. ventrally and medially.
Anterior hypothalamus	$\begin{array}{cc}\text { Cooling, parasympathetic. } & \begin{array}{c}\text { Anterior nucleus }=\text { cool off (cooling, } \\ \text { pArasympathetic). } \mathrm{A} / \mathrm{C}=\text { anterior cooling. }\end{array}\end{array}$
Posterior hypothalamus	Heating, sympathetic. Posterior nucleus = get fired up (heating, sympathetic). If you zap your posterior hypothalamus, you become a poikilotherm (cold-blooded, like a snake).
Suprachiasmatic nucleus	Circadian rhythm. You need sleep to be charismatic (chiasmatic).

Sleep physiology	Sleep cycle is regulated by the circadian rhyth of hypothalamus. Circadian rhythm control norepinephrine: $\mathrm{SCN} \rightarrow$ norepinephrine rel by environment (eg, light). Two stages: rapid-eye movement (REM) and due to activity of PPRF (paramedian pontine sleep occurs every 90 minutes, and duration Alcohol, benzodiazepines, and barbiturates ar norepinephrine also \downarrow REM sleep. Treat bedwetting (sleep enuresis) with oral de because of the latter's adverse effects. Benzodiazepines are useful for night terrors a	hich is driven by suprachiasmatic nucleus (SCN) urnal release of ACTH, prolactin, melatonin, \rightarrow pineal gland \rightarrow melatonin. SCN is regulated EM. Extraocular movements during REM sleep cular formation/conjugate gaze center). REM ough the night. \uparrow ACh in REM. ciated with \downarrow REM sleep and delta wave sleep; ressin (ADH analog); preferred over imipramine epwalking.
SLEEP STAGE (\% OF TOTAL SLEEP tIME IN YOUNG ADULTS)	description	EEG Waveform
Awake (eyes open)	Alert, active mental concentration	Beta (highest frequency, lowest amplitude)
Awake (eyes closed)		Alpha
Non-REM sleep		
Stage N1 (5\%)	Light sleep	Theta
Stage N2 (45\%)	Deeper sleep; when bruxism occurs	Sleep spindles and K complexes
Stage N3 (25\%)	Deepest non-REM sleep (slow-wave sleep); when sleepwalking, night terrors, and bedwetting occur	Delta (lowest frequency, highest amplitude)
REM sleep (25\%)	Loss of motor tone, \uparrow brain O_{2} use, \uparrow and variable pulse and blood pressure; when dreaming, nightmares, and penile/clitoral tumescence occur; may serve memory processing function	Beta At night, BATS Drink Blood

Thalamus Major relay for all ascending sensory information except olfaction.				
Nucleus	INPUT	Senses	destination	mnemonic
Ventral postero- lateral nucleus	Spinothalamic and dorsal columns/ medial lemniscus	Pain, temperature pressure, touch, vibration, proprioception	1° somatosensory cortex	
Ventral postero- Medial nucleus	Trigeminal and gustatory pathway	Face sensation, taste	1° somatosensory cortex	Makeup goes on the face (VPM)
Lateral geniculate nucleus	CN II	Vision	Calcarine sulcus	Lateral $=$ Light
Medial geniculate nucleus	Superior olive and inferior colliculus of tectum	Hearing	Auditory cortex of temporal lobe	Medial $=$ Music
Ventral lateral nucleus	Basal ganglia, cerebellum	Motor	Motor cortex	

Limbic system

Collection of neural structures involved in emotion, long-term memory, olfaction, behavior modulation, ANS function. Structures include hippocampus (red arrows in A), amygdala, fornix, mammillary bodies, cingulate gyrus (blue arrows in A). Responsible for Feeding, Fleeing, Fighting, Feeling, and Sex.

The famous 5 F's.

Commonly altered by drugs (eg, antipsychotics) and movement disorders (eg, Parkinson disease).
Dopaminergic pathways

Pathway	SYMPTOMS OF ALTERED ACTIVITY	NOTES
Mesocortical	\downarrow activity \rightarrow "negative" symptoms (eg, flat affect, limited speech).	Antipsychotic drugs have limited effect.
Mesolimbic	\uparrow activity \rightarrow "positive" symptoms (eg, delusions, hallucinations).	Primary therapeutic target of antipsychotic drugs $\rightarrow \downarrow$ positive symptoms (eg, in schizophrenia).
Nigrostriatal	\downarrow activity \rightarrow extrapyramidal symptoms (eg, dystonia, akathisia, parkinsonism, tardive dyskinesia).	Major dopaminergic pathway in brain. Significantly affected by movement disorders and antipsychotic drugs.
Tuberoinfundibular	\downarrow activity $\rightarrow \uparrow$ prolactin $\rightarrow \downarrow$ libido, sexual dysfunction, galactorrhea, gynecomastia (in men).	

Cerebellum

Modulates movement; aids in coordination and balance.
Input:

- Contralateral cortex via middle cerebellar peduncle.
- Ipsilateral proprioceptive information via inferior cerebellar peduncle from spinal cord.
Output:
- Sends information to contralateral cortex to modulate movement. Output nerves $=$ Purkinje cells \rightarrow deep nuclei of cerebellum \rightarrow contralateral cortex via superior cerebellar peduncle.
- Deep nuclei (lateral \rightarrow medial)—Dentate, Emboliform, Globose, Fastigial ("Don't Eat Greasy Foods").

Lateral lesions-affect voluntary movement of extremities; when injured, propensity to fall toward injured (ipsilateral) side.
Medial lesions-involvement of midline structures (vermal cortex, fastigial nuclei) and/or flocculonodular lobe \rightarrow truncal ataxia (wide-based cerebellar gait), nystagmus, head tilting. Generally result in bilateral motor deficits affecting axial and proximal limb musculature.

Basal ganglia

Important in voluntary movements and making postural adjustments.
Receives cortical input, provides negative feedback to cortex to modulate movement.
Striatum $=$ putamen (motor) + caudate (cognitive).
Lentiform $=$ putamen + globus pallidus.
D_{1}-Receptor $=$ D1Rect pathway.
Indirect $=$ Inhibitory.

\square	Stimulatory
\square	Inhibitory
SNc	Substantia nigra pars compacta
GPe	Globus pallidus externus
GPi	Globus pallidus internus
STN	Subthalamic nucleus
D_{1}	Dopamine D_{1} receptor
D_{2}	Dopamine D_{2} receptor

Excitatory pathway-cortical inputs stimulate the striatum, stimulating the release of GABA, which inhibits GABA release from the GPi, disinhibiting the thalamus via the GPi (\uparrow motion).
Inhibitory pathway-cortical inputs stimulate the striatum, releasing GABA that disinhibits STN via GPe inhibition, and STN stimulates GPi to inhibit the thalamus (\downarrow motion).
Dopamine binds to D_{1}, stimulating the excitatory pathway, and to D_{2}, inhibiting the inhibitory pathway $\rightarrow \uparrow$ motion.

Movement disorders

DISORDER	PRESENTATION	CHARACTERISTICLESION	NOTES
Athetosis	Slow, writhing movements; especially seen in fingers	Basal ganglia (eg, Huntington)	Writhing, snake-like movement.
Chorea	Sudden, jerky, purposeless movements	Basal ganglia (eg, Huntington)	Chorea = dancing.

Parkinson disease

Degenerative disorder of CNS associated with Lewy bodies (composed of α-synuclein-intracellular eosinophilic inclusions (A) and loss of dopaminergic neurons (ie, depigmentation) of substantia nigra pars compacta.

Parkinson TRAPS your body:

Tremor (pill-rolling tremor at rest)
Rigidity (cogwheel)
Akinesia (or bradykinesia)
Postural instability
Shuffling gait

Huntington disease

Autosomal dominant trinucleotide repeat disorder on chromosome 4. Symptoms manifest between ages 20 and 50; characterized by choreiform movements, aggression, depression, dementia (sometimes initially mistaken for substance abuse). \uparrow dopamine, \downarrow GABA, \downarrow ACh in brain. Neuronal death via NMDA-R binding and glutamate excitotoxicity. Atrophy of caudate and putamen with hydrocephalus ex vacuo A.

Expansion of CAG repeats (anticipation). Caudate loses ACh and GABA.

Cerebral cortex functions

Aphasia Aphasia—higher-order language deficit (inability to understand/speak/read/write). Dysarthria-motor inability to speak (movement deficit).

TYPE	SPEECH FLIUDITY	COMPREEENSION	Repetition	COMments
Broca	Nonfluent	Intact	Impaired	Broca $=$ Broken Boca (boca $=$ mouth in Spanish). Broca area in inferior frontal gyrus of frontal lobe.
Wernicke	Fluent	Impaired	Impaired	Wernicke is Wordy but makes no sense. Wernicke area in superior temporal gyrus of temporal lobe.
Conduction	Fluent	Intact	Impaired	Can be caused by damage to arcuate fasciculus.
Global	Nonfluent	Impaired	Impaired	Arcuate fasciculus; Broca and Wernicke areas affected.
Transcortical motor	Nonfluent	Intact	Intact	Affects frontal lobe around Broca area, but Broca area is spared.
Transcortical sensory	Fluent	Impaired	Intact	Affects temporal lobe around Wernicke area, but Wernicke area is spared.
Transcortical, mixed	Nonfluent	Impaired	Intact	Broca and Wernicke areas and arcuate fasciculus remain intact; surrounding watershed areas affected.

Common brain lesions

AREA OF LESION	CONSEQUENCE	NOTES
Amygdala (bilateral)	Klüver-Bucy syndrome-disinhibited behavior (eg, hyperphagia, hypersexuality, hyperorality).	Associated with HSV-l encephalitis.
Frontal lobe	Disinhibition and deficits in concentration, orientation, judgment; may have reemergence of primitive reflexes.	
Nondominant parietal cortex	Hemispatial neglect syndrome (agnosia of the contralateral side of the world).	
Dominant parietal cortex	Agraphia, acalculia, finger agnosia, left-right disorientation.	Gerstmann syndrome.
Reticular activating system (midbrain)	Reduced levels of arousal and wakefulness (eg, coma).	
Mammillary bodies (bilateral)	Wernicke-Korsakoff syndrome-confusion, ophthalmoplegia, ataxia; memory loss (anterograde and retrograde amnesia), confabulation, personality changes.	Associated with thiamine $\left(\mathrm{B}_{1}\right)$ deficiency and excessive alcohol use; can be precipitated by giving glucose without B_{1} to a B_{1}-deficient patient. Wernicke problems come in a CAN of beer: Confusion, Ataxia, Nystagmus.
Basal ganglia	May result in tremor at rest, chorea, athetosis.	Parkinson disease, Huntington disease.
Cerebellar hemisphere	Intention tremor, limb ataxia, loss of balance; damage to cerebellum \rightarrow ipsilateral deficits; fall toward side of lesion.	Degeneration associated with chronic alcohol use. Cerebellar hemispheres are laterally located-affect lateral limbs.
Cerebellar vermis	Truncal ataxia, dysarthria.	Vermis is centrally located-affects central body.
Subthalamic nucleus	Contralateral hemiballismus.	
Hippocampus (bilateral)	Anterograde amnesia-inability to make new memories.	
Paramedian pontine reticular formation	Eyes look away from side of lesion.	
Frontal eye fields	Eyes look toward lesion.	

Homunculus

Cerebral perfusion

Brain perfusion relies on tight autoregulation.
Cerebral perfusion is primarily driven by $\mathrm{PCO}_{2}\left(\mathrm{PO}_{2}\right.$ also modulates perfusion in severe hypoxia).
Cerebral perfusion relies on a pressure gradient between mean arterial pressure (MAP) and ICP. \downarrow blood pressure or \uparrow ICP $\rightarrow \downarrow$ cerebral perfusion pressure (CPP).

Topographic representation of motor (shown) and sensory areas in the cerebral cortex. Distorted appearance is due to certain body regions being more richly innervated and thus having \uparrow cortical representation.

Therapeutic hyperventilation $\rightarrow \downarrow \mathrm{PcO}_{2}$
\rightarrow vasoconstriction $\rightarrow \downarrow$ cerebral blood flow
$\rightarrow \downarrow$ intracranial pressure (ICP). May be used to treat acute cerebral edema (eg, 2° to stroke) unresponsive to other interventions. $\mathrm{CPP}=\mathrm{MAP}-\mathrm{ICP}$. If $\mathrm{CPP}=0$, there is no cerebral perfusion \rightarrow brain death.

Cerebral arteries-cortical distribution

\square
\square

\square Posterior cerebral artery (supplies posterior and inferior surfaces)\end{array}\right.\)

Watershed zones
Between anterior cerebral/middle cerebral, posterior cerebral/middle cerebral arteries. Damage by severe hypotension \rightarrow upper leg/upper arm weakness, defects in higher-order visual processing.

Circle of Willis
System of anastomoses between anterior and posterior blood supplies to brain.

Effects of strokes

ARTERY	AREA OF LESION	SYMPTOMS	NOTES
Anterior circulation			
Middle cerebral artery	```Motor and sensory cortices-upper limb and face. Temporal lobe (Wernicke area); frontal lobe (Broca area).```	Contralateral paralysis and sensory loss-face and upper limb. Aphasia if in dominant (usually left) hemisphere. Hemineglect if lesion affects nondominant (usually right) side.	
Anterior cerebral artery	Motor and sensory cortices-lower limb.	Contralateral paralysis and sensory loss-lower limb.	
Lenticulostriate artery	Striatum, internal capsule.	Contralateral paralysis and/or sensory loss-face and body. Absence of cortical signs (eg, neglect, aphasia, visual field loss).	Common location of lacunar infarcts, 2° to unmanaged hypertension.
Posterior circulation			
Anterior spinal artery	Lateral corticospinal tract. Medial lemniscus. Caudal medulla-hypoglossal nerve.	Contralateral paralysis-upper and lower limbs. \downarrow contralateral proprioception. Ipsilateral hypoglossal dysfunction (tongue deviates ipsilaterally).	Medial medullary syndromecaused by infarct of paramedian branches of ASA and/or vertebral arteries.
Posterior inferior cerebellar artery	Lateral medulla-vestibular nuclei, lateral spinothalamic tract, spinal trigeminal nucleus, nucleus ambiguus, sympathetic fibers, inferior cerebellar peduncle.	Vomiting, vertigo, nystagmus; \downarrow pain and temperature sensation from ipsilateral face and contralateral body; dysphagia, hoarseness, \downarrow gag reflex; ipsilateral Horner syndrome; ataxia, dysmetria.	Lateral medullary (Wallenberg) syndrome. Nucleus ambiguus effects are specific to PICA lesions. "Don't pick a (PICA) horse (hoarseness) that can't eat (dysphagia)."
Anterior inferior cerebellar artery	Lateral pons-cranial nerve nuclei (vestibular nuclei, facial nucleus, spinal trigeminal nucleus, cochlear nuclei), spinothalamic tract, corticospinal tract, sympathetic fibers. Middle and inferior cerebellar peduncles.	Vomiting, vertigo, nystagmus. Paralysis of face, \downarrow lacrimation, salivation, \downarrow taste from anterior $2 / 3$ of tongue. Ipsilateral \downarrow pain and temperature of the face, contralateral \downarrow pain and temperature of the body. Ataxia, dysmetria.	Lateral pontine syndrome. Facial nucleus effects are specific to AICA lesions. "Facial droop means AICA’s pooped."
Basilar artery	Pons, medulla, lower midbrain, corticospinal and corticobulbar tracts, ocular cranial nerve nuclei, paramedian pontine reticular formation.	Preserved consciousness, vertical eye movement, blinking; quadriplegia, loss of voluntary facial, mouth, and tongue movements.	"Locked-in syndrome."
Posterior cerebral artery	Occipital cortex, visual cortex.	Contralateral hemianopia with macular sparing.	

Aneurysms	Abnormal dilation of an artery due to weakening of vessel wall.
Saccular (berry) aneurysm	Occurs at bifurcations in the circle of Willis. Most common site is junction of anterior communicating artery and anterior cerebral artery. Rupture (most common complication) \rightarrow subarachnoid hemorrhage ("worst headache of my life") or hemorrhagic stroke. Associated with ADPKD, Ehlers-Danlos syndrome. Other risk factors: advanced age, hypertension, smoking, race (\uparrow risk in blacks).
Charcot-Bouchard microaneurysm	Common, associated with chronic hypertension; affects small vessels (eg, in basal ganglia, thalamus); not seen on angiogram.

Effects of saccular aneurysms	Usually clinically silent until rupture \rightarrow subarachnoid hemorrhage (eg, thunderclap headache). Can also cause symptoms via direct compression on surrounding structures by growing aneurysm.
ARTERY	ASSOCIATED SYMPTOMS
Anterior communicating artery	Compression may cause bitemporal hemianopia (compression of optic chiasm); visual acuity deficits. Rupture may cause ischemia in ACA distribution \rightarrow contralateral lower extremity hemiparesis, sensory deficits.
Posterior communicating artery	Compression may cause ipsilateral CN III palsy \rightarrow mydriasis ("blown pupil"); may also see ptosis, "down and out" eye.
Middle cerebral artery	Rupture may cause ischemia in MCA distribution \rightarrow contralateral upper extremity and facial hemiparesis, sensory deficits.

Central post-stroke pain syndrome

Neuropathic pain due to thalamic lesions. Initial paresthesias followed in weeks to months by allodynia (ordinarily painless stimuli cause pain) and dysesthesia. Occurs in 10% of stroke patients.

Intracranial hemorrhage

Epidural hematoma Rupture of middle meningeal artery (branch of maxillary artery), often 2° to skull fracture A. Lucid interval. Rapid expansion under systemic arterial pressure \rightarrow transtentorial herniation, CN III palsy.
CT shows biconvex (lentiform), hyperdense blood collection B not crossing suture lines.

Subdural hematoma

Subarachnoid
hemorrhage

Intraparenchymal hemorrhage

Rupture of bridging veins. Can be acute (traumatic, high-energy impact \rightarrow hyperdense on CT) or chronic (associated with mild trauma, cerebral atrophy, elderly, alcoholism \rightarrow hypodense on CT). Also seen in shaken babies. Predisposing factors: brain atrophy, trauma.
Crescent-shaped hemorrhage that crosses suture lines (red arrows in \mathbb{C} and \mathbf{D}). Can cause midline shift (blue arrow in C), findings of "acute on chronic" hemorrhage (blue arrow in \mathbf{D}).
Rupture of an aneurysm (such as a saccular aneurysm E) or arteriovenous malformation. Rapid time course. Patients complain of "worst headache of my life." Bloody or yellow (xanthochromic) spinal tap. 4-10 days after hemorrhage, vasospasm (narrowing of blood vessels) can occur \rightarrow ischemic infarct; nimodipine used for prevention F. \uparrow risk of developing communicating and/ or obstructive hydrocephalus.
Most commonly caused by systemic hypertension. Also seen with amyloid angiopathy (recurrent lobar hemorrhagic stroke in elderly), vasculitis, neoplasm. May be 2° to reperfusion injury in ischemic stroke. Typically occurs in basal ganglia \mathbf{G} and internal capsule (Charcot-Bouchard aneurysm of lenticulostriate vessels), but can be lobar ㅐㅐ.

Ischemic brain

 disease/strokeIrreversible damage begins after 5 minutes of hypoxia. Most vulnerable: hippocampus, neocortex, cerebellum, watershed areas. Irreversible neuronal injury. Ischemic hypoxia-"hypocampus" is most vulnerable.
Stroke imaging: Noncontrast CT to exclude hemorrhage (before tPA can be given). CT detects ischemic changes in 6-24 hr. Diffusion-weighted MRI can detect ischemia within 3-30 min.

TIMESINCE ISCHEMIC EVENT	12-48 HOURS	24-72 HOURS	3-5 DAYS	1 -2 WEEKS	>2 WEEKS
Histologic features	Red neurons	Necrosis + neutrophils	Macrophages (microglia)	Reactive gliosis + vascular proliferation	Glial scar

Ischemic stroke

Transient ischemic attack

Acute blockage of vessels \rightarrow disruption of blood flow and subsequent ischemia \rightarrow liquefactive necrosis.
3 types:

- Thrombotic-due to a clot forming directly at site of infarction (commonly the MCA A), usually over an atherosclerotic plaque.
- Embolic-embolus from another part of the body obstructs vessel. Can affect multiple vascular territories. Examples: atrial fibrillation; DVT with patent foramen ovale.
- Hypoxic-due to hypoperfusion or hypoxemia. Common during cardiovascular surgeries, tends to affect watershed areas.
Treatment: tPA (if within 3-4.5 hr of onset and no hemorrhage/risk of hemorrhage). Reduce risk with medical therapy (eg, aspirin, clopidogrel); optimum control of blood pressure, blood sugars, lipids; and treat conditions that \uparrow risk (eg, atrial fibrillation).
Brief, reversible episode of focal neurologic dysfunction without acute infarction $(\ominus \mathrm{MRI}$), with the majority resolving in <15 minutes; deficits due to focal ischemia.

Large venous channels that run through the dura. Drain blood from cerebral veins and receive CSF from arachnoid granulations. Empty into internal jugular vein.

Venous sinus thrombosis—presents with signs/symptoms of \uparrow ICP (eg, headache, seizures, focal neurologic deficits). May lead to venous hemorrhage. Associated with hypercoagulable states (eg, pregnancy, OCP use, factor V Leiden).

Ventricular system

Lateral ventricle \rightarrow 3rd ventricle via right and left interventricular foramina of Monro. 3rd ventricle \rightarrow 4th ventricle via cerebral aqueduct (of Sylvius).
4th ventricle \rightarrow subarachnoid space via:

- Foramina of Luschka = Lateral.
- Foramen of Magendie = Medial. CSF is made by ependymal cells of choroid plexus; it is reabsorbed by arachnoid granulations and then drains into dural venous sinuses.

Idiopathic intracranial hypertension (pseudotumor cerebri)

\uparrow ICP with no apparent cause on imaging (eg, hydrocephalus, obstruction of CSF outflow). Risk factors include being a woman of childbearing age, vitamin A excess, danazol, tetracycline. Findings: headache, diplopia (usually from CN VI palsy), without change in mental status. Papilledema seen on fundoscopy. Lumbar puncture reveals \uparrow opening pressure and provides headache relief.
Treatment: weight loss, acetazolamide, topiramate, invasive procedures for refractory cases (eg, repeat lumbar puncture, CSF shunt placement, optic nerve fenestration surgery).

Spinal nerves
There are 31 pairs of spinal nerves in total: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, 1 coccygeal.
Nerves Cl-C7 exit above the corresponding vertebra. C8 spinal nerve exits below C 7 and above Tl. All other nerves exit below (eg, C3 exits above the 3rd cervical vertebra; L2 exits below the 2nd lumbar vertebra).

Vertebral disc herniation-nucleus pulposus (soft central disc) herniates through annulus fibrosus (outer ring); usually occurs posterolaterally at L4-L5 or L5-Sl. Compression of Sl nerve root \rightarrow absent ankle reflex.

Spinal cord—lower extent

In adults, spinal cord ends at lower border of L1-L2 vertebrae. Subarachnoid space (which contains the CSF) extends to lower border of S2 vertebra. Lumbar puncture is usually performed between L3-L4 or L4-L5 (level of cauda equina).

Goal of lumbar puncture is to obtain sample of CSF without damaging spinal cord. To keep the cord alive, keep the spinal needle between L3 and L5.

Spinal cord and associated tracts

Legs (Lumbosacral) are Lateral in Lateral corticospinal, spinothalamic tracts A.
Dorsal columns are organized as you are, with hands at sides. Arms outside, legs inside.

Spinal tract anatomy Remember, ascending tracts synapse and then cross. and functions

TRACT AND FUNCTION	1ST-ORDER NEURON	SYNAPSE 1	2ND-ORDER NEURON	SYNAPSE2	3RD-ORDER NEURON
Dorsal column Ascending: pressure, vibration, fine touch, and proprioception	Sensory nerve ending \rightarrow cell body in dorsal root ganglion \rightarrow enters spinal cord, ascends ipsilaterally in dorsal column	Ipsilateral nucleus cuneatus or gracilis (medulla)	Decussates in medulla \rightarrow ascends contralaterally in medial lemniscus	VPL (thalamus)	Sensory cortex
Spinothalamic tract Ascending Lateral: pain, temperature Anterior: crude touch, pressure	Sensory nerve ending (A δ and C fibers) \rightarrow cell body in dorsal root ganglion \rightarrow enters spinal cord	Ipsilateral gray matter (spinal cord)	Decussates at anterior white commissure \rightarrow ascends contralaterally	VPL (thalamus)	Sensory cortex
Lateral corticospinal tract Descending: voluntary movement of contralateral limbs	UMN: cell body in 1° motor cortex \rightarrow descends ipsilaterally (through internal capsule), most fibers decussate at caudal medulla (pyramidal decussation) \rightarrow descends contralaterally	Cell body of anterior horn (spinal cord)	LMN: leaves spinal cord	NMJ	

Motor neuron signs

SIGN	UMN LESION	LMN LESION	COMMENTS
Weakness	+	+	Lower motor neuron $=$ everything lowered
(less muscle mass, \downarrow muscle tone, \downarrow reflexes,			
Atrophy	-	+	downgoing toes).
Fasciculations	-	+	Upper motor neuron $=$ everything up (tone,
Reflexes	\uparrow	\downarrow	DTRs, toes).
Tone	\uparrow	\downarrow	Fasciculations $=$ muscle twitching.
Babinski	+	-	Positive Babinski is normal in infants.
Spastic paralysis	+	-	
Flaccid paralysis	-	-	
Clasp knife spasticity	+		

Spinal cord lesions
DISEASE

Poliomyelitis and Werdnig-Hoffmann
disease

CHARACTERISTICS

Congenital degeneration of anterior horns of spinal
cord. LMN lesions only. "Floppy baby" with marked
hypotonia and tongue fasciculations. Infantile type
has median age of death of 7 months. Autosomal
recessive inheritance.

Poliomyelitis \rightarrow asymmetric weakness.
Werdnig-Hoffmann disease \rightarrow symmetric weakness.

Poliomyelitis

Caused by poliovirus (fecal-oral transmission). Replicates in oropharynx and small intestine before spreading via bloodstream to CNS. Infection causes destruction of cells in anterior horn of spinal cord (LMN death).
Signs of LMN lesion: weakness, hypotonia, flaccid paralysis, fasciculations, hyporeflexia, muscle atrophy. Signs of infection: malaise, headache, fever, nausea, etc.
CSF shows \uparrow WBCs and slight \uparrow of protein (with no change in CSF glucose). Virus recovered from stool or throat.

Friedreich ataxia

Autosomal recessive trinucleotide repeat disorder $(\mathrm{GAA})_{\mathrm{n}}$ on chromosome 9 in gene that encodes frataxin (iron binding protein). Leads to impairment in mitochondrial functioning. Degeneration of multiple spinal cord tracts \rightarrow muscle weakness and loss of DTRs, vibratory sense, proprioception. Staggering gait, frequent falling, nystagmus, dysarthria, pes cavus, hammer toes, diabetes mellitus, hypertrophic cardiomyopathy (cause of death). Presents in childhood with kyphoscoliosis A.

Friedreich is Fratastic (frataxin): he's your favorite frat brother, always staggering and falling but has a sweet, big heart. Ataxic GAAit.

Brown-Séquard

 syndrome

Lesion

Hemisection of spinal cord. Findings:

- Ipsilateral UMN signs below level of lesion (due to corticospinal tract damage)
- Ipsilateral loss of tactile, vibration, proprioception sense below level of lesion (due to dorsal column damage)
- Contralateral pain and temperature loss below level of lesion (due to spinothalamic tract damage)
- Ipsilateral loss of all sensation at level of lesion
- Ipsilateral LMN signs (eg, flaccid paralysis) at level of lesion
If lesion occurs above Tl , patient may present with ipsilateral Horner syndrome due to damage of oculosympathetic pathway.

C2-posterior half of a skull "cap."
C3-high turtleneck shirt.
C4-low-collar shirt.
C6-includes thumbs.
T4-at the nipple.
T7-at the xiphoid process.
T10-at the umbilicus (important for early
appendicitis pain referral).
Ll —at the inguinal ligament.
L4-includes the kneecaps.
S2, S3, S4-erection and sensation of penile and anal zones.

Diaphragm and gallbladder pain referred to the right shoulder via phrenic nerve.

Thumbs up sign on left hand looks like a six for C6. T4 at the teat pore.

T10 at the belly butten.
L1 is IL (Inguinal Ligament).
Down on ALL 4's (L4).
"S2, 3, 4 keep the penis off the floor."

Biceps = C5 nerve root.
Triceps = C7 nerve root.
Patella $=\mathrm{L} 4$ nerve root.
Achilles $=\mathrm{Sl}$ nerve root.

Reflexes count up in order:
Sl, 2-"buckle my shoe" (Achilles reflex)
L3, 4-"kick the door" (patellar reflex)
C5, 6-"pick up sticks" (biceps reflex)
C7, 8-"lay them straight" (triceps reflex)
Additional reflexes:
L1, L2-"testicles move" (cremaster reflex)
S3, S4-"winks galore" (anal wink reflex)

Primitive reflexes
CNS reflexes that are present in a healthy infant, but are absent in a neurologically intact adult. Normally disappear within lst year of life. These "primitive" reflexes are inhibited by a mature/ developing frontal lobe. They may reemerge in adults following frontal lobe lesions \rightarrow loss of inhibition of these reflexes.

Moro reflex	"Hang on for life" reflex-abduct/extend arms when startled, and then draw together			
Rooting reflex	Movement of head toward one side if cheek or mouth is stroked (nipple seeking)			
Sucking reflex	Sucking response when roof of mouth is touched			
Palmar reflex	Curling of fingers if palm is stroked		Plantar reflex	Dorsiflexion of large toe and fanning of other toes with plantar stimulation Babinski sign - presence of this reflex in an adult, which may signify a UMN lesion
:---	:---			
Galant reflex	Stroking along one side of the spine while newborn is in ventral suspension (face down) causes lateral flexion of lower body toward stimulated side			

Brain stem-ventral view

4 CN are in above pons (I, II, III, IV).
4 CN are in pons (V, VI, VII, VIII).
4 CN are in medulla (IX, X, XI, XII).
4 CN nuclei are medial (III, IV, VI, XII). "Factors of 12, except 1 and 2."

Brain stem—dorsal view (cerebellum removed)

Pineal gland-melatonin secretion, circadian rhythms.
Superior colliculi-conjugate vertical gaze center.
Inferior colliculi-auditory.
Parinaud syndrome-paralysis of conjugate vertical gaze due to lesion in superior colliculi (eg, stroke, hydrocephalus, pinealoma).

Your eyes are above your ears, and the superior colliculus (visual) is above the inferior colliculus (auditory).

Cranial nerve nuclei

Located in tegmentum portion of brain stem
(between dorsal and ventral portions):

- Midbrain—nuclei of CN III, IV
- Pons-nuclei of CN V, VI, VII, VIII
- Medulla-nuclei of CN IX, X, XII
- Spinal cord—nucleus of CN XI

Lateral nuclei $=$ sensory (aLar plate).
-Sulcus limitans-
Medial nuclei $=$ Motor (basal plate).

Cranial nerve and vessel pathways

Divisions of CN V exit owing to Standing Room Only

Cranial nerves

Nerve	CN	FUNCTION	TYPE	MNEMONIC
Olfactory	I	Smell (only CN without thalamic relay to cortex)	Sensory	Some
Optic	II	Sight	Sensory	Say
Oculomotor	III	Eye movement (SR, IR, MR, IO), pupillary constriction (sphincter pupillae: Edinger-Westphal nucleus, muscarinic receptors), accommodation, eyelid opening (levator palpebrae)	Motor	Marry
Trochlear	IV	Eye movement (SO)	Motor	Money
Trigeminal	V	Mastication, facial sensation (ophthalmic, maxillary, mandibular divisions), somatosensation from anterior $2 / 3$ of tongue	Both	But
Abducens	VI	Eye movement (LR)	Motor	My
Facial	VII	Facial movement, taste from anterior $2 / 3$ of tongue, lacrimation, salivation (submandibular and sublingual glands), eyelid closing (orbicularis oculi), auditory volume modulation (stapedius)	Both	Brother
Vestibulocochlear	VIII	Hearing, balance	Sensory	Says
Glossopharyngeal	IX	Taste and sensation from posterior $1 / 3$ of tongue, swallowing, salivation (parotid gland), monitoring carotid body and sinus chemo- and baroreceptors, and elevation of pharynx/larynx (stylopharyngeus)	Both	Big
Vagus	X	Taste from supraglottic region, swallowing, soft palate elevation, midline uvula, talking, coughing, parasympathetics to thoracoabdominal viscera, monitoring aortic arch chemo- and baroreceptors	Both	Brains
Accessory	XI	Head turning, shoulder shrugging (SCM, trapezius)	Motor	Matter
Hypoglossal	XII	Tongue movement	Motor	Most

Vagal nuclei

| NUCLEUS | FUNCTION | CRANIAL NERVES |
| :--- | :--- | :--- | :--- |
| Nucleus Solitarius | Visceral Sensory information (eg, taste,
 baroreceptors, gut distention) | VII, IX, X |
| Nucleus aMbiguus | Motor innervation of pharynx, larynx, upper
 esophagus (eg, swallowing, palate elevation) | IX, X, XI (cranial portion) |
| Dorsal motor nucleus | Sends autonomic (parasympathetic) fibers to
 heart, lungs, upper GI | X |

Cranial nerve reflexes

REFLEX	AFFERENT	EFFERENT
Corneal	V_{1} ophthalmic (nasociliary branch)	VII (temporal branch: orbicularis oculi)
Lacrimation	V_{1} (loss of reflex does not preclude emotional	VII
tears)	V_{3} (sensory-muscle spindle from masseter)	V_{3} (motor-masseter)
Jaw jerk	II	III
Pupillary	IX	X
Gag		

Common cranial nerve lesions

CN V motor lesion	Jaw deviates toward side of lesion due to unopposed force from the opposite pterygoid muscle.
CN X Iesion	Uvula deviates away from side of lesion. Weak side collapses and uvula points away.
CN XI lesion	Weakness turning head to contralateral side of lesion (SCM). Shoulder droop on side of lesion (trapezius).
The left SCM contracts to help turn the head to the right.	

Mastication muscles 3 muscles close jaw: Masseter, teMporalis, Medial pterygoid. 1 opens: lateral pterygoid. All are innervated by trigeminal nerve $\left(\mathrm{V}_{3}\right)$.

M's Munch.
Lateral Lowers (when speaking of pterygoids with respect to jaw motion).
"It takes more muscle to keep your mouth shut."

Facial nerve lesions

Upper motor neuron
Iesion

Destruction of motor cortex or connection
between motor cortex and facial nucleus in
pons \rightarrow contralateral paralysis of lower muscles
of facial expression. Forehead is spared due to
its bilateral UMN innervation.

Destruction of facial nucleus or CN VII
anywhere along its course \rightarrow ipsilateral
paralysis of upper and lower muscles of
facial expression A, hyperacusis, loss of taste
sensation to anterior tongue.

Clinical syndrome of peripheral CN VII (LMN)
lesion. Depending on lesion location and
severity, may cause partial or complete loss of
function.
When idiopathic (most common), called Bell
palsy. May also be caused by Lyme disease,
herpes simplex, herper zoster (Ramsay Hunt
syndrome), sarcoidosis, tumors, diabetes
mellitus. Treatment is corticosteroids,
acyclovir. Most patients have gradual recovery
of function.

Cavernous sinus

Collection of venous sinuses on either side of pituitary. Blood from eye and superficial cortex \rightarrow cavernous sinus \rightarrow internal jugular vein.
CNs III, IV, V_{1}, VI, and occasionally V_{2} plus postganglionic sympathetic pupillary fibers en route to orbit all pass through cavernous sinus. Cavernous portion of internal carotid artery is also here. Cavernous sinus syndrome—presents with variable ophthalmoplegia, \downarrow corneal sensation, Horner syndrome and occasional decreased maxillary sensation. 2° to pituitary tumor mass effect, carotid-cavernous fistula, or cavernous sinus thrombosis related to infection CN VI is most susceptible to injury.

Auditory physiology

Outer ear	Visible portion of ear (pinna), includes auditory canal and eardrum. Transfers sound waves via vibration of eardrum.
Middle ear	Air-filled space with three bones called the ossicles (malleus, incus, stapes). Ossicles conduct and amplify sound from eardrum to inner ear.
Inner ear	Snail-shaped, fluid-filled cochlea. Contains basilar membrane that vibrates 2° to sound waves. Vibration transduced via specialized hair cells \rightarrow auditory nerve signaling \rightarrow brain stem. Each frequency leads to vibration at specific location on basilar membrane (tonotopy): - Low frequency heard at apex near helicotrema (wide and flexible). - High frequency heard best at base of cochlea (thin and rigid).

Hearing loss

	RINNETEST	WEBERTEST
Conductive	Abnormal (bone > air)	Localizes to affected ear
Sensorineural	Normal (air > bone)	Localizes to unaffected ear
Noise-induced	Damage to stereociliated cells in organ of Corti; loss of high-frequency hearing lst; sudden extremely loud noises can produce hearing loss due to tympanic membrane rupture.	

Cholesteatoma

Overgrowth of desquamated keratin debris within the middle ear space (\boldsymbol{A}, blue arrows); may erode ossicles, mastoid air cells \rightarrow conductive hearing loss.

- NEUROLOGY-OPHTHALMOLOGY

Normal eye

Aqueous humor pathway

Refractive errors	Common cause of impaired vision, correctable with glasses.
Hyperopia	Eye too short for refractive power of cornea and lens \rightarrow light focused behind retina.
Myopia	Eye too long for refractive power of cornea and lens \rightarrow light focused in front of retina.
Astigmatism	Abnormal curvature of cornea \rightarrow different refractive power at different axes.
Presbyopia	Age-related impaired accommodation (focusing on near objects), primarily due to \downarrow lens elasticity. Often necessitates "reading glasses."

Cataract

Painless, often bilateral, opacification of lens \boldsymbol{A}, often resulting in \downarrow vision. Acquired risk factors: \uparrow age, smoking, excessive alcohol use, excessive sunlight, prolonged corticosteroid use, diabetes mellitus, trauma, infection; congenital risk factors: classic galactosemia, galactokinase deficiency, trisomies (13, 18, 21), ToRCHeS infections (eg, rubella), Marfan syndrome, Alport syndrome, myotonic dystrophy, neurofibromatosis 2.

Conjunctivitis

Inflammation of the conjunctiva \rightarrow red eye \boldsymbol{A}.
Allergic-itchy eyes, bilateral.
Bacterial—pus; treat with antibiotics.
Viral—most common, often adenovirus; sparse mucous discharge, swollen preauricular node; selfresolving.

Uveitis

Inflammation of uvea, specific name based on location within affected eye. Anterior uveitis: iritis; intermediate uveitis: pars planitis; posterior uveitis: choroiditis and/or retinitis. May have hypopyon (accumulation of pus in anterior chamber A) or conjunctival redness. Associated with systemic inflammatory disorders (eg, sarcoidosis, rheumatoid arthritis, juvenile idiopathic arthritis, HLA-B27-associated conditions).

Age-related macular degeneration

Degeneration of macula (central area of retina). Causes distortion (metamorphopsia) and eventual loss of central vision (scotomas).

- Dry (nonexudative, $>80 \%$)-deposition of yellowish extracellular material in and between Bruch membrane and retinal pigment epithelium ("drusen") A with gradual \downarrow in vision. Prevent progression with multivitamin and antioxidant supplements.
- Wet (exudative, $10-15 \%$) -rapid loss of vision due to bleeding 2° to choroidal neovascularization. Treat with anti-VEGF (vascular endothelial growth factor) injections (eg, ranibizumab).

Diabetic retinopathy

Retinal damage due to chronic hyperglycemia. Two types:

- Nonproliferative-damaged capillaries leak blood \rightarrow lipids and fluid seep into retina \rightarrow hemorrhages (blue arrows in \boldsymbol{A}) and macular edema. Treatment: blood sugar control.
- Proliferative-chronic hypoxia results in new blood vessel formation with resultant traction on retina. Treatment: peripheral retinal photocoagulation, surgery, anti-VEGF.

Retinal vein occlusion

Blockage of central or branch retinal vein due to compression from nearby arterial atherosclerosis. Retinal hemorrhage and venous engorgement (blue arrows in A), edema in affected area.

Retinal detachment

Separation of neurosensory layer of retina (photoreceptor layer with rods and cones) from outermost pigmented epithelium (normally shields excess light, supports retina) \rightarrow degeneration of photoreceptors \rightarrow vision loss. May be 2° to retinal breaks, diabetic traction, inflammatory effusions. Visualized on fundoscopy as crinkling of retinal tissue A and changes in vessel direction.
Breaks more common in patients with high myopia and/or history of head trauma. Often preceded by posterior vitreous detachment ("flashes" and "floaters") and eventual monocular loss of vision like a "curtain drawn down." Surgical emergency.

```
Central retinal artery Acute, painless monocular vision loss. Retina cloudy with attenuated vessels and "cherry-red" spot
```

Acute, painless monocular vision loss. Retina cloudy with attenuated vessels and "cherry-red" spot at fovea (center of macula) A. Evaluate for embolic source (eg, carotid artery atherosclerosis, cardiac vegetations, patent foramen ovale).
occlusion

Retinitis pigmentosa

Inherited retinal degeneration. Painless, progressive vision loss beginning with night blindness (rods affected first). Bone spicule-shaped deposits around macula A.

Retinitis

Retinal edema and necrosis (blue arrows in A) leading to scar. Often viral (CMV, HSV, VZV), but can be bacterial or parasitic. May be associated with immunosuppression.

Papilledema

Optic disc swelling (usually bilateral) due to \uparrow ICP (eg, 2° to mass effect). Enlarged blind spot and elevated optic disc with blurred margins \boldsymbol{A}.

Pupillary control

Miosis	Constriction, parasympathetic: - 1st neuron: Edinger-Westphal nucleus to ciliary ganglion via CN III - 2nd neuron: short ciliary nerves to pupillary sphincter muscles
Pupillary light reflex	Light in either retina sends a signal via CN II to pretectal nuclei (dashed lines in image) in midbrain that activates bilateral EdingerWestphal nuclei; pupils contract bilaterally (consensual reflex). Result: illumination of 1 eye results in bilateral pupillary constriction.
Mydriasis	Dilation, sympathetic: - 1st neuron: hypothalamus to ciliospinal center of Budge (C8-T2) - 2nd neuron: exit at Tl to superior cervical ganglion (travels along cervical sympathetic chain near lung apex, subclavian vessels) - 3rd neuron: plexus along internal carotid, through cavernous sinus; enters orbit as long ciliary nerve to pupillary dilator muscles. Sympathetic fibers also innervate smooth muscle of eyelids (minor retractors) and sweat glands of forehead and face.

Marcus Gunn pupil

Afferent pupillary defect-due to optic nerve damage or severe retinal injury. \downarrow bilateral pupillary constriction when light is shone in affected eye relative to unaffected eye. Tested with "swinging flashlight test."

Horner syndrome

Sympathetic denervation of face \rightarrow :

- Ptosis (slight drooping of eyelid: superior tarsal muscle)
- Anhidrosis (absence of sweating) and flushing of affected side of face
- Miosis (pupil constriction)

Associated with lesion of spinal cord above Tl (eg, Pancoast tumor, Brown-Séquard syndrome, late-stage syringomyelia). Any interruption results in Horner syndrome.

PAM is horny (Horner).
Ptosis, anhidrosis, and miosis (rhyming).

Ocular motility

CN VI innervates the Lateral Rectus. CN IV innervates the Superior Oblique. CN III innervates the Rest.
The "chemical formula" $\mathrm{LR}_{6} \mathrm{SO}_{4} \mathrm{R}_{3}$. The superior oblique abducts, intorts, and depresses while adducted.

To test each muscle, ask patient to move his/ her eye in the path diagrammed below, from neutral position toward the muscle being tested.

Obliques go Opposite (left SO and IO tested with patient looking right).
IOU: IO tested looking Up.

CN III, IV, VI palsies

1. Right anopia
2. Bitemporal hemianopia (pituitary lesion, chiasm)
3. Left homonymous hemianopia
4. Left upper quadrantic anopia (right temporal lesion, MCA)
5. Left lower quadrantic anopia (right parietal lesion, MCA)
6. Left hemianopia with macular sparing (PCA infarct)
7. Central scotoma (eg, macular degeneration)

Meyer loop-inferior retina; loops around inferior horn of lateral ventricle.
Dorsal optic radiation-superior retina; takes shortest path via internal capsule.

Visual field defects

Internuclear ophthalmoplegia

Medial longitudinal fasciculus (MLF): pair of tracts that allows for crosstalk between CN VI and CN III nuclei. Coordinates both eyes to move in same horizontal direction. Highly myelinated (must communicate quickly so eyes move at same time). Lesions may be unilateral or bilateral (latter classically seen in multiple sclerosis).
Lesion in MLF = internuclear ophthalmoplegia (INO), a conjugate horizontal gaze palsy. Lack of communication such that when CN VI nucleus activates ipsilateral lateral rectus, contralateral CN III nucleus does not stimulate medial rectus to fire. Abducting eye gets nystagmus (CN VI overfires to stimulate CN III). Convergence normal.

MLF in MS.
When looking left, the left nucleus of CN VI fires, which contracts the left lateral rectus and stimulates the contralateral (right) nucleus of CN III via the right MLF to contract the right medial rectus.
Directional term (eg, right INO, left INO) refers to which eye is paralyzed.

Right INO (right MLF lesion)

Impaired adduction
Nystagmus (convergence normal)

Dementia
\downarrow in cognitive ability, memory, or function with intact consciousness.

DISEASE	DESCRIPTION	HISTOLOGI//GROSS FINDINGS
Alzheimer disease	Most common cause in elderly. Down syndrome patients have an \uparrow risk of developing Alzheimer. Associated with the following altered proteins: - ApoE2: \downarrow risk of sporadic form - ApoE4: \uparrow risk of sporadic form - APP, presenilin-1, presenilin-2: familial forms (10%) with earlier onset	Widespread cortical atrophy. Narrowing of gyri and widening of sulci. \downarrow ACh. Senile plaques \boldsymbol{A} in gray matter: extracellular β-amyloid core; may cause amyloid angiopathy \rightarrow intracranial hemorrhage; $\mathrm{A} \beta$ (amyloid- β) synthesized by cleaving amyloid precursor protein (APP). Neurofibrillary tangles B: intracellular, hyperphosphorylated tau protein $=$ insoluble cytoskeletal elements; number of tangles correlates with degree of dementia.
Frontotemporal dementia	Early changes in personality and behavior (behavioral variant), or aphasia (primary progressive aphasia). May have associated movement disorders (eg, parkinsonism, ALS-like UMN/LMN degeneration). Previously known as Pick disease.	Frontotemporal lobe degeneration. Inclusions of hyperphosphorylated tau (round Pick bodies; C) or ubiquitinated TDP-43.
Lewy body dementia	Initially dementia and visual hallucinations ("haLewycinations") followed by parkinsonian features.	Intracellular Lewy bodies (insoluble aggregates of α-synuclein) primarily in cortex.
Vascular dementia	Result of multiple arterial infarcts and/or chronic ischemia. Step-wise decline in cognitive ability with lateonset memory impairment. 2nd most common cause of dementia in elderly.	MRI or CT shows multiple cortical and/or subcortical infarcts.
Creutzfeldt-Jakob disease	Rapidly progressive (weeks to months) dementia with myoclonus ("startle myoclonus").	Spongiform cortex. Prions ($\mathrm{PrP}^{\mathrm{C}} \rightarrow \mathrm{PrP}^{\text {sc }}$ sheet $[\beta$-pleated sheet resistant to proteases]).
Other causes	Syphilis; HIV; hypothyroidism; vitamins B_{1}, B_{3}, or B_{12} deficiency; Wilson disease; normal pressure hydrocephalus.	

Osmotic demyelination syndrome (central pontine myelinolysis)

Acute paralysis, dysarthria, dysphagia, diplopia, loss of consciousness. Can cause "locked-in syndrome." Massive axonal demyelination in pontine white matter $A 2^{\circ}$ to osmotic changes. Commonly iatrogenic, caused by overly rapid correction of hyponatremia. In contrast, correcting hypernatremia too quickly results in cerebral edema/herniation.

Correcting serum Na^{+}too fast:

- "From low to high, your pons will die" (osmotic demyelination syndrome)
- "From high to low, your brain will blow" (cerebral edema/herniation)

Multiple sclerosis

Autoimmune inflammation and demyelination of CNS (brain and spinal cord). Patients can present with optic neuritis (sudden loss of vision resulting in Marcus Gunn pupils), INO, hemiparesis, hemisensory symptoms, bladder/bowel dysfunction. Relapsing and remitting course. Most often affects women in their 20 s and 30 s ; more common in whites living further from equator.
Charcot triad of MS is a SIN:

- Scanning speech
- Intention tremor (also Incontinence and Internuclear ophthalmoplegia)
- Nystagmus

FINDINGS

TREATMENT
\uparrow IgG level and myelin basic protein in CSF. Oligoclonal bands are diagnostic. MRI is gold standard. Periventricular plaques A (areas of oligodendrocyte loss and reactive gliosis) with destruction of axons. Multiple white matter lesions separated in space and time.

Slow progression with disease-modifying therapies (eg, β-interferon, glatiramer, natalizumab). Treat acute flares with IV steroids. Symptomatic treatment for neurogenic bladder (catheterization, muscarinic antagonists), spasticity (baclofen, $\mathrm{GABA}_{\mathrm{B}}$ receptor agonists), pain (opioids).

Acute inflammatory demyelinating polyradiculopathy

Most common subtype of Guillain-Barré syndrome. Autoimmune condition that destroys Schwann cells \rightarrow inflammation and demyelination of peripheral nerves and motor fibers. Results in symmetric ascending muscle weakness/paralysis beginning in lower extremities. Facial paralysis in 50% of cases. May see autonomic dysregulation (eg, cardiac irregularities, hypertension, hypotension) or sensory abnormalities. Almost all patients survive; the majority recover completely after weeks to months.
Findings: \uparrow CSF protein with normal cell count (albuminocytologic dissociation). \uparrow protein may cause papilledema.

Associated with infections (eg, Campylobacter jejuni, viral) \rightarrow autoimmune attack of peripheral myelin due to molecular mimicry, inoculations, and stress, but no definitive link to pathogens.
Respiratory support is critical until recovery. Additional treatment: plasmapheresis, IV immunoglobulins. No role for steroids.

Other demyelinating and dysmyelinating diseases	
Acute disseminated (postinfectious) encephalomyelitis	Multifocal periventricular inflammation and demyelination after infection or vaccination. Presents with rapidly progressive multifocal neurologic symptoms, altered mental status.
Charcot-Marie-Tooth disease	Also known as hereditary motor and sensory neuropathy (HMSN). Group of progressive hereditary nerve disorders related to the defective production of proteins involved in the structure and function of peripheral nerves or the myelin sheath. Typically autosomal dominant inheritance pattern and associated with foot deformities (pes cavus), lower extremity weakness and sensory deficits.
Krabbe disease	Autosomal recessive lysosomal storage disease due to deficiency of galactocerebrosidase. Buildup of galactocerebroside and psychosine destroys myelin sheath. Findings: peripheral neuropathy, developmental delay, optic atrophy, globoid cells.
Metachromatic	
leukodystrophy	Autosomal recessive lysosomal storage disease, most commonly due to arylsulfatase A deficiency. Buildup of sulfatides \rightarrow impaired production and destruction of myelin sheath. Findings: central and peripheral demyelination with ataxia, dementia.
Progressive multifocal	
leukoencephalopathy	Demyelination of CNS due to destruction of oligodendrocytes. Seen in 2-4\% of AIDS patients (reactivation of latent JC virus infection). Rapidly progressive, usually fatal. \uparrow risk associated with natalizumab, rituximab.

Adrenoleukodystrophy X-linked genetic disorder typically affecting males. Disrupts metabolism of very-long-chain fatty acids \rightarrow excessive buildup in nervous system, adrenal gland, testes. Progressive disease that can lead to long-term coma/death and adrenal gland crisis.

Seizures	Characterized by synchronized, high-freque	ng. Variety of forms.
Partial (focal) seizures	Affect single area of the brain. Most commonly originate in medial temporal lobe. Often preceded by seizure aura; can secondarily generalize. Types: - Simple partial (consciousness intact)motor, sensory, autonomic, psychic - Complex partial (impaired consciousness)	Epilepsy—a disorder of recurrent seizures (febrile seizures are not epilepsy). Status epilepticus-continuous or recurring seizure(s) that may result in brain injury; defined as $>5 \mathrm{~min}$. Causes of seizures by age: - Children-genetic, infection (febrile), trauma, congenital, metabolic - Adults-tumor, trauma, stroke, infection - Elderly-stroke, tumor, trauma, metabolic, infection
Generalized seizures	Diffuse. Types: - Absence (petit mal) - 3 Hz , no postictal confusion, blank stare - Myoclonic-quick, repetitive jerks - Tonic-clonic (grand mal)-alternating stiffening and movement - Tonic-stiffening " Atonic-"drop" seizures (falls to floor); commonly mistaken for fainting	

Headaches	Pain due to irritation of structures such as the dura, cranial nerves, or extracranial structures. More common in females, except cluster headaches.		
CLASSIFICATION	LOCALIZATION	DURATION	DESCRIPTON

Other causes of headache include subarachnoid hemorrhage ("worst headache of my life"), meningitis, hydrocephalus, neoplasia, arteritis.
${ }^{\text {a }}$ Compare with trigeminal neuralgia, which produces repetitive, unilateral, shooting pain in the distribution of CN V that lasts (typically) for <1 minute.

Vertigo	Sensation of spinning while actually stationary. Subtype of "dizziness," but distinct from "lightheadedness."
Peripheral vertigo	More common. Inner ear etiology (eg, semicircular canal debris, vestibular nerve infection, Ménière disease). Positional testing \rightarrow delayed horizontal nystagmus.
Central vertigo	Brain stem or cerebellar lesion (eg, stroke affecting vestibular nuclei or posterior fossa tumor). Findings: directional change of nystagmus, skew deviation, diplopia, dysmetria. Positional testing \rightarrow immediate nystagmus in any direction; may change directions. Focal neurologic findings.

Neurocutaneous disorders

Sturge-Weber
syndrome
(encephalotrigeminal
angiomatosis)

Congenital, non-inherited (somatic), developmental anomaly of neural crest derivatives due to activating mutation of GNAQ gene. Affects small (capillary-sized) blood vessels \rightarrow port-wine stain of the face \boldsymbol{A} (nevus flammeus, a non-neoplastic "birthmark" in $\mathrm{CN} \mathrm{V}_{1} / \mathrm{V}_{2}$ distribution); ipsilateral leptomeningeal angioma $B \rightarrow$ seizures/epilepsy; intellectual disability; and episcleral hemangioma $\rightarrow \uparrow$ IOP \rightarrow early-onset glaucoma.
STURGE-Weber: Sporadic, port-wine Stain; Tram track calcifications (opposing gyri); Unilateral; Retardation (intellectual disability); Glaucoma; GNAQ gene; Epilepsy.
Tuberous sclerosis HAMARTOMAS: Hamartomas in CNS and skin; Angiofibromas [C; Mitral regurgitation; Ash-leaf spots D; cardiac Rhabdomyoma; (Tuberous sclerosis); autosomal dOminant; Mental retardation
 subependymal astrocytomas and ungual fibromas.
Neurofibromatosis typel (von
Recklinghausen disease)
von Hippel-Lindau disease

Café-au-lait spots [\mathbf{F}, Lisch nodules (pigmented iris hamartomas [G]), cutaneous neurofibromas [H], optic gliomas, pheochromocytomas. Mutated NFl tumor suppressor gene (neurofibromin, a negative regulator of $R A S$) on chromosome 17. Neurofibromas are derived from neural crest cells.

Hemangioblastomas (high vascularity with hyperchromatic nuclei ■) in retina, brain stem, cerebellum, spine $\mathbb{\text { ; angiomatosis (eg, cavernous hemangiomas in skin, mucosa, organs); }}$ bilateral renal cell carcinomas; pheochromocytomas.

Adult primary brain tumors

Glioblastoma
multiforme (grade IV
astrocytoma)
Meningioma
Hemangioblastoma

Schwannoma

Oligodendroglioma

Pituitary adenoma

Common, highly malignant 1° brain tumor with ~ 1-year median survival. Found in cerebral hemispheres A. Can cross corpus callosum ("butterfly glioma").
"Pseudopalisading" pleomorphic tumor cells B—border central areas of necrosis and hemorrhage. Stain astrocytes for GFAP.
Common, typically benign 1° brain tumor. Most often occurs near surfaces of brain and parasagittal region. Arises from arachnoid cells, is extra-axial (external to brain parenchyma), and may have a dural attachment ("tail" C). Often asymptomatic; may present with seizures or focal neurologic signs. Resection and/or radiosurgery.
Spindle cells concentrically arranged in a whorled pattern; psammoma bodies \mathbf{D} (laminated calcifications).
Most often cerebellar E. Associated with von Hippel-Lindau syndrome when found with retinal angiomas. Can produce erythropoietin $\rightarrow 2^{\circ}$ polycythemia.
Closely arranged, thin-walled capillaries with minimal intervening parenchyma \boldsymbol{F}.
Classically at the cerebellopontine angle \mathbf{G}, but can be along any peripheral nerve. Often localized to CN VIII \rightarrow vestibular schwannoma. Bilateral vestibular schwannomas found in NF-2. Resection or stereotactic radiosurgery.
Schwann cell origin H, S-100 \oplus.
Relatively rare, slow growing. Most often in frontal lobes ■. "Chicken-wire" capillary pattern. Oligodendrocytes $=$ "fried egg" cells - round nuclei with clear cytoplasm J. Often calcified.
Most commonly prolactinoma \mathbf{K} (lactotroph adenoma) or nonfunctioning adenoma. Bitemporal hemianopia due to pressure on optic chiasm (L shows normal visual field above, patient's perspective below). Hyper- or hypopituitarism are sequelae.
Hyperplasia of a single type of endocrine cell found in pituitary (ie, lactotroph, gonadotroph, somatotroph, corticotroph).

Childhood primary brain tumors

Pilocytic (low-grade) astrocytoma	Usually well circumscribed. In children, most often found in posterior fossa A (eg, cerebellum). May be supratentorial. GFAP \oplus. Benign; good prognosis. Rosenthal fibers-eosinophilic, corkscrew fibers B. Cystic + solid (gross).
Medulloblastoma	Highly malignant cerebellar tumor C. A form of primitive neuroectodermal tumor. Can compress 4th ventricle, causing noncommunicating hydrocephalus. Can send "drop metastases" to spinal cord. Homer-Wright rosettes, small blue cells \mathbf{D}.
Ependymoma	Ependymal cell tumors most commonly found in 4th ventricle Ean cause hydrocephalus. Poor prognosis. Characteristic perivascular rosettes [F. Rod-shaped blepharoplasts (basal ciliary bodies) found near nucleus.
Craniopharyngioma	Childhood tumor, may be confused with pituitary adenoma (both can cause bitemporal hemianopia). Most common childhood supratentorial tumor. Derived from remnants of Rathke pouch. Calcification is common \mathbb{G}. Cholesterol crystals found in "motor oil"-like fluid within tumor.
Pinealoma	Tumor of pineal gland. Can cause Parinaud syndrome (compression of tectum \rightarrow vertical gaze palsy); obstructive hydrocephalus (compression of cerebral aqueduct); precocious puberty in males (β-hCG production). Histologically similar to germ cell tumors (eg, testicular seminoma).

Herniation syndromes

Cingulate (subfalcine) herniation under Can compress anterior cerebral artery. falx cerebri
2 Downward transtentorial (central) herniation
(3) Uncal herniation

4 Cerebellar tonsillar herniation into the foramen magnum

Caudal displacement of brain stem \rightarrow rupture of paramedian basilar artery branches \rightarrow Duret hemorrhages. Usually fatal.

Uncus $=$ medial temporal lobe. Compresses ipsilateral CN III (blown pupil, "down-andout" gaze), ipsilateral PCA (contralateral homonymous hemianopia with macular sparing), contralateral crus cerebri at the Kernohan notch (ipsilateral paresis; a "false localization" sign).

Coma and death result when these herniations compress the brain stem.
> NEUROLOGY—PHARMACOLOGY

Glaucoma drugs	\downarrow IOP via \downarrow amount of aqueous humor (inhibit synthesis/secretion or \uparrow drainage).	
DRUG	MECHANISM	ADVERSEEFFECTS

Opioid analgesics	Morphine, fentanyl, codeine, loperamide, methadone, meperidine, dextromethorphan, diphenoxylate, pentazocine.
MECHANISM	Act as agonists at opioid receptors $(\mu=\beta$-endorphin, $\delta=$ enkephalin, $\kappa=$ dynorphin) to modulate synaptic transmission-open K^{+}channels, close Ca^{2+} channels $\rightarrow \downarrow$ synaptic transmission. Inhibit release of ACh, norepinephrine, $5-\mathrm{HT}$, glutamate, substance P.
CLINICALUSE	Pain, cough suppression (dextromethorphan), diarrhea (loperamide, diphenoxylate), acute pulmonary edema, maintenance programs for heroin addicts (methadone, buprenorphine + naloxone).
Addiction, respiratory depression, constipation, miosis (except meperidine \rightarrow mydriasis), additive	
CNS depression with other drugs. Tolerance does not develop to miosis and constipation. Toxicity	
treated with naloxone or naltrexone (opioid receptor antagonist).	

Pentazocine

MECHANISM	K-opioid receptor agonist and μ-opioid receptor antagonist.
CIIIICAL USE	Analgesia for moderate to severe pain.
ADVERSEEFFECTS	Can cause opioid withdrawal symptoms if patient is also taking full opioid antagonist (competition
	for opioid receptors).

Butorphanol

KECHANISM	K-opioid receptor agonist and μ-opioid receptor partial agonist; produces analgesia.
CIINICALUSE	Severe pain (eg, migraine, labor). Causes less respiratory depression than full opioid agonists.
ADVERSEEFFECTS	Can cause opioid withdrawal symptoms if patient is also taking full opioid agonist (competition for opioid receptors). Overdose not easily reversed with naloxone.

Tramadol

MECHANISM	Very weak opioid agonist; also inhibits 5-HT and norepinephrine reuptake (works on multiple neurotransmitters-"tram it all" in with tramadol).
CLINICAL USE	Chronic pain.
ADVERSEEFFECTS	Similar to opioids. Decreases seizure threshold. Serotonin syndrome.

	PARTIAL （FOCAL）		Generalized			MECHANISM	SIDE EFFECTS	NOTES
	$\stackrel{\text { 山 }}{\stackrel{u}{0}}$	$\begin{aligned} & \text { x } \\ & \stackrel{\rightharpoonup}{0} \\ & \sum_{0}^{2} \end{aligned}$	颜	$\begin{aligned} & \text { 岂 } \\ & \text { 岕 } \end{aligned}$	$\begin{gathered} \text { 总 } \\ \text { 总 } \\ \text { 宏炭 } \end{gathered}$			
Ethosuximide				\checkmark		Blocks thalamic T－type Ca^{2+} channels	GI，fatigue，headache，urticaria， Stevens－Johnson syndrome． EFGHIJ－Ethosuximide causes Fatigue，GI distress，Headache， Itching，and Stevens－Johnson syndrome	Sucks to have Silent （absence）Seizures
Benzodiazepines （eg，diazepam， lorazepam， midazolam）					$\begin{aligned} & * * \\ & \checkmark \\ & \checkmark \end{aligned}$	$\uparrow \mathrm{GABA}_{\mathrm{A}}$ action	Sedation，tolerance，dependence， respiratory depression	Also for eclampsia seizures（1st line is MgSO_{4} ）
Phenobarbital	\checkmark	\checkmark	\checkmark			$\uparrow \mathrm{GABA}_{\mathrm{A}}$ action	Sedation，tolerance，dependence， induction of cytochrome P－450， cardiorespiratory depression	1 lst line in neonates
Phenytoin， fosphenytoin	\checkmark	\checkmark	\checkmark		****	Blocks Na^{+}channels；zero－ order kinetics	Neurologic：nystagmus，diplopia，ataxia，sedation，peripheral neuropathy．Dermatologic：hirsutism，Stevens－Johnson syndrome，gingival hyperplasia，DRESS syndrome． Musculoskeletal：osteopenia，SLE－like syndrome． Hematologic：megaloblastic anemia．Reproductive： teratogenesis（fetal hydantoin syndrome）．Other：cytochrome P－450 induction	
Carbamazepine	\checkmark	*	\checkmark			Blocks Na^{+}channels	Diplopia，ataxia，blood dyscrasias （agranulocytosis，aplastic anemia）， liver toxicity，teratogenesis， induction of cytochrome P－450， SIADH，Stevens－Johnson syndrome	lst line for trigeminal neuralgia
Valproic acid	\checkmark	\checkmark	\checkmark	\checkmark		$\uparrow \mathrm{Na}^{+}$channel inactivation， \uparrow GABA concentration by inhibiting GABA transaminase	GI distress，rare but fatal hepatotoxicity（measure LFTs）， pancreatitis，neural tube defects，tremor，weight gain， contraindicated in pregnancy	Also used for myoclonic seizures，bipolar disorder，migraine prophylaxis
Vigabatrin	\checkmark	\checkmark				\uparrow GABA by irreversibly inhibiting GABA transaminase		
Gabapentin	\checkmark	\checkmark				Primarily inhibits high－ voltage－activated Ca^{2+} channels；designed as GABA analog	Sedation，ataxia	Also used for peripheral neuropathy， postherpetic neuralgia
Topiramate	\checkmark	\checkmark	\checkmark			Blocks Na^{+}channels， \uparrow GABA action	Sedation，mental dulling，kidney stones，weight loss	Also used for migraine prevention
Lamotrigine	\checkmark	\checkmark	\checkmark	\checkmark		Blocks voltage－gated Na^{+} channels	Stevens－Johnson syndrome（must be titrated slowly）	
Levetiracetam	\checkmark	\checkmark	\checkmark			Unknown；may modulate GABA and glutamate release		
Tiagabine	\checkmark	\checkmark				\uparrow GABA by inhibiting reuptake		
＊＝1st line；＊＊$=1$ st line for acute；＊＊＊＊$=1$ st line for prophylaxis．								

Barbiturates	Phenobarbital, pentobarbital, thiopental, secobarbital.
MECHANISM	Facilitate $\mathrm{GABA}_{\mathrm{A}}$ action by \uparrow duration of Cl^{-}channel opening, thus \downarrow neuron firing (barbidurates \uparrow duration). Contraindicated in porphyria.
CLINICALUSE	Sedative for anxiety, seizures, insomnia, induction of anesthesia (thiopental).
ADVERSEEFFECTS	Respiratory and cardiovascular depression (can be fatal); CNS depression (can be exacerbated by alcohol use); dependence; drug interactions (induces cytochrome P-450). Overdose treatment is supportive (assist respiration and maintain BP).

Benzodiazepines	Diazepam, lorazepam, triazolam, temazepam, ox alprazolam.	zepam, midazolam, chlordiazepoxide,
MECHANISM	Facilitate GABA $_{\mathrm{A}}$ action by \uparrow frequency of Cl^{-}channel opening. \downarrow REM sleep. Most have long half-lives and active metabolites (exceptions: Alprazolam, Triazolam, Oxazepam, and Midazolam are short acting \rightarrow higher addictive potential).	"Frenzodiazepines" \uparrow frequency. Benzos, barbs, and alcohol all bind the $\mathrm{GABA}_{\mathrm{A}}$ receptor, which is a ligand-gated Cl^{-} channel. ATOM.
Clinical use	Anxiety, spasticity, status epilepticus (lorazepam and diazepam), eclampsia, detoxification (especially alcohol withdrawal-DTs), night terrors, sleepwalking, general anesthetic (amnesia, muscle relaxation), hypnotic (insomnia).	
AdVERSE Effectis	Dependence, additive CNS depression effects with alcohol. Less risk of respiratory depression and coma than with barbiturates. Treat overdose with flumazenil (competitive antagonist at GABA benzodiazepine receptor). Can precipitate seizures by causing acute benzodiazepine withdrawal.	

Nonbenzodiazepine Zolpidem, Zaleplon, esZopiclone. "All ZZZs put you to sleep."

hypnotics

MECHANISM
Act via the BZ1 subtype of the GABA receptor. Effects reversed by flumazenil. Sleep cycle less affected as compared with benzodiazepine hypnotics.

CLINICALUSE
Insomnia.
ADVERSE EFFECTS
Ataxia, headaches, confusion. Short duration because of rapid metabolism by liver enzymes. Unlike older sedative-hypnotics, cause only modest day-after psychomotor depression and few amnestic effects. \downarrow dependence risk than benzodiazepines.

Anesthetics-general principles

CNS drugs must be lipid soluble (cross the blood-brain barrier) or be actively transported.
Drugs with \downarrow solubility in blood $=$ rapid induction and recovery times.
Drugs with \uparrow solubility in lipids $=\uparrow$ potency $=\frac{1}{\text { MAC }}$
MAC $=$ Minimal Alveolar Concentration (of inhaled anesthetic) required to prevent 50% of subjects from moving in response to noxious stimulus (eg, skin incision).
Examples: nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ has \downarrow blood and lipid solubility, and thus fast induction and low potency. Halothane, in contrast, has \uparrow lipid and blood solubility, and thus high potency and slow induction.

Inhaled anesthetics	Desflurane, halothane, enflurane, isoflurane, sevoflurane, methoxyflurane, $\mathrm{N}_{2} \mathrm{O}$.
MECHANISM	Mechanism unknown.
EFFECTS	Myocardial depression, respiratory depression, nausea/emesis, \uparrow cerebral blood flow (\downarrow cerebral metabolic demand).
ADVERSEEFFECTS	Hepatotoxicity (halothane), nephrotoxicity (methoxyflurane), proconvulsant (enflurane), expansion of trapped gas in a body cavity ($\left.\mathrm{N}_{2} \mathrm{O}\right)$. Malignant hyperthermia-rare, life-threatening condition in which inhaled anesthetics or succinylcholine induce fever and severe muscle contractions. Susceptibility is often inherited as autosomal dominant with variable penetrance. Mutations in voltage-sensitive ryanodine receptor cause $\uparrow \mathrm{Ca}^{2+}$ release from sarcoplasmic reticulum. Treatment: dantrolene, a ryanodine receptor antagonist.

Intravenous anesthetics	The Mighty King Proposes Foolishly to Oprah.
Barbiturates (Thiopental)	High potency, high lipid solubility, rapid entry into brain. Used for induction of anesthesia and short surgical procedures. Effect terminated by rapid redistribution into tissue and fat. \downarrow cerebral blood flow.
Benzodiazepines (Midazolam)	Used for endoscopy; used adjunctively with gaseous anesthetics and narcotics. May cause severe postoperative respiratory depression, \downarrow BP (treat overdose with flumazenil), anterograde amnesia.
Arylcyclohexylamines (Ketamine)	PCP analogs that act as dissociative anesthetics. Block NMDA receptors. Cardiovascular stimulants. Cause disorientation, hallucination, bad dreams. \uparrow cerebral blood flow.
Propofol	Used for sedation in ICU, rapid anesthesia induction, short procedures. Less postoperative nausea than thiopental. Potentiates GABA
Opioids	Morphine, fentanyl used with other CNS depressants during general anesthesia.

Local anesthetics	Esters-procaine, cocaine, tetracaine, benzocaine. Amides-lIdocaIne, mepIvacaIne, bupIvacaIne (amIdes have 2 I's in name).
mechanism	Block Na^{+}channels by binding to specific receptors on inner portion of channel. Most effective in rapidly firing neurons. 3° amine local anesthetics penetrate membrane in uncharged form, then bind to ion channels as charged form. Can be given with vasoconstrictors (usually epinephrine) to enhance local action $-\downarrow$ bleeding, \uparrow anesthesia by \downarrow systemic concentration. In infected (acidic) tissue, alkaline anesthetics are charged and cannot penetrate membrane effectively \rightarrow need more anesthetic. Order of nerve blockade: small-diameter fibers > large diameter. Myelinated fibers > unmyelinated fibers. Overall, size factor predominates over myelination such that small myelinated fibers $>$ small unmyelinated fibers $>$ large myelinated fibers $>$ large unmyelinated fibers. Order of loss: (1) pain, (2) temperature, (3) touch, (4) pressure.
cluncal use	Minor surgical procedures, spinal anesthesia. If allergic to esters, give amides.
adverse effects	CNS excitation, severe cardiovascular toxicity (bupivacaine), hypertension, hypotension, arrhythmias (cocaine), methemoglobinemia (benzocaine).

Neuromuscular blocking drugs
Depolarizing

Muscle paralysis in surgery or mechanical ventilation. Selective for motor (vs autonomic) nicotinic receptor.
Succinylcholine-strong ACh receptor agonist; produces sustained depolarization and prevents muscle contraction.
Reversal of blockade:
" Phase I (prolonged depolarization) -no antidote. Block potentiated by cholinesterase inhibitors.

- Phase II (repolarized but blocked; ACh receptors are available, but desensitized) - may be reversed with cholinesterase inhibitors.
Complications include hypercalcemia, hyperkalemia, malignant hyperthermia.
Nondepolarizing
Tubocurarine, atracurium, mivacurium, pancuronium, vecuronium, rocuronium-competitive antagonists - compete with ACh for receptors.
Reversal of blockade-neostigmine (must be given with atropine to prevent muscarinic effects such as bradycardia), edrophonium, and other cholinesterase inhibitors.

Dantrolene

MECHANSM	Prevents release of Ca^{2+} from the sarcoplasmic reticulum of skeletal muscle by binding to the ryanodine receptor.
CIINCAL USE	Malignant hyperthermia and neuroleptic malignant syndrome (a toxicity of antipsychotic drugs).

Baclofen

mechansm Activates $\mathrm{GABA}_{\mathrm{B}}$ receptors at spinal cord level, inducing skeletal muscle relaxation.
CLINCALUSE Muscle spasms (eg, acute low back pain).

Cyclobenzaprine

L-dopa (levodopa)/carbidopa

MECHANISM	\uparrow level of dopamine in brain. Unlike dopamine, L-dopa can cross blood-brain barrier and is converted by dopa decarboxylase in the CNS to dopamine. Carbidopa, a peripheral DOPA decarboxylase inhibitor, is given with L-dopa to \uparrow the bioavailability of L-dopa in the brain and to limit peripheral side effects.
CIIICALUSE	Parkinson disease.

Selegiline, rasagiline

MECHANISM	Selectively inhibit MAO-B (metabolize dopamine) $\rightarrow \uparrow$ dopamine availability.
CLINICAL USE	Adjunctive agent to L-dopa in treatment of Parkinson disease.
ADVERSE EFFECTS	May enhance adverse effects of L-dopa.

Alzheimer drugs

Memantine	
Mechansm	NMDA receptor antagonist; helps prevent excitotoxicity (mediated by Ca^{2+}).
ADVERE EFFECTS	Dizziness, confusion, hallucinations.
Donepezil, galantamine, rivastigmine, tacrine	
MECHANSM	AChE inhibitors.
ADVERSE	Nausea, dizziness, insomnia.

Huntington disease Tetrabenazine and reserpine-inhibit vesicular monoamine transporter (VMAT) $\rightarrow \downarrow$ dopamine drugs
vesicle packaging and release.
Haloperidol $-\mathrm{D}_{2}$ receptor antagonist.

Riluzole	Treatment for ALS that modestly \uparrow survival by \downarrow glutamate excitotoxicity via an unclear mechanism.	For Lou Gehrig disease, give rilouzole.
Triptans	Sumatriptan	
mechanism	5- $\mathrm{HT}_{1 \mathrm{~B} / 1 \mathrm{D}}$ agonists. Inhibit trigeminal nerve activation; prevent vasoactive peptide release; induce vasoconstriction.	A SUMo wrestler TRIPs ANd falls on your head.
CLINICAL USE	Acute migraine, cluster headache attacks.	
ADVERSE EFFECTS	Coronary vasospasm (contraindicated in patients with CAD or Prinzmetal angina), mild paresthesia.	

HIGH-YIELD PRINCIPLES IN

Psychiatry

"A Freudian slip is when you say one thing but mean your mother."
-Anonymous
"Men will always be mad, and those who think they can cure them are the maddest of all."
-Voltaire
"Anyone who goes to a psychiatrist ought to have his head examined."

- Samuel Goldwyn
"Words of comfort, skillfully administered, are the oldest therapy known to man."
-Louis Nizer

-

Classical conditioning Learning in which a natural response (salivation) is elicited by a conditioned, or learned, stimulus (bell) that previously was presented in conjunction with an unconditioned stimulus (food).

Usually deals with involuntary responses.
Pavlov's classical experiments with dogsringing the bell provoked salivation.

Operant conditioning	Learning in which a particular action is elicited because it produces a punishment or reward. Usually deals with voluntary responses.
Reinforcement	Target behavior (response) is followed by desired reward (positive reinforcement) or removal of aversive stimulus (negative reinforcement).
Punishment	Repeated application of aversive stimulus (positive punishment) or removal of desired reward (negative punishment) to extinguish unwanted behavior.
Extinction	Discontinuation of reinforcement (positive or negative) eventually eliminates behavior. Can occur in operant or classical conditioning.

Transference and countertransference

Transference	Patient projects feelings about formative or other important persons onto physician (eg, psychiatrist is seen as parent).
Countertransference	Doctor projects feelings about formative or other important persons onto patient (eg, patient reminds physician of younger sibling).

Ego defenses Mental processes (unconscious or conscious) used to resolve conflict and prevent undesirable feelings (eg, anxiety, depression).

IMMATURE DEFENSES	DESCRIPTION	EXAMPLE
Acting out	Expressing unacceptable feelings and thoughts through actions.	Tantrums.
Denial	Avoiding the awareness of some painful reality.	A common reaction in newly diagnosed AIDS and cancer patients.
Displacement	Transferring avoided ideas and feelings to a neutral person or object (vs projection).	Mother yells at her child, because her husband yelled at her.
Dissociation	Temporary, drastic change in personality, memory, consciousness, or motor behavior to avoid emotional stress.	Extreme forms can result in dissociative identity disorder (multiple personality disorder).
Fixation	Partially remaining at a more childish level of development (vs regression).	Adults fixating on video games.
Idealization	Expressing extremely positive thoughts of self and others while ignoring negative thoughts.	A patient boasts about his physician and his accomplishments while ignoring any flaws.
Identification	Modeling behavior after another person who is more powerful (though not necessarily admired).	Abused child later becomes a child abuser.

Ego defenses (continued)

ImMature defenses	DESCRIPTION	EXAMPLE
Intellectualization	Using facts and logic to emotionally distance oneself from a stressful situation.	In a therapy session, patient diagnosed with cancer focuses only on rates of survival.
Isolation (of affect)	Separating feelings from ideas and events.	Describing murder in graphic detail with no emotional response.
Passive aggression	Failing to meet the needs/expectations of others as an indirect show of opposition.	Disgruntled employee is repeatedly late to work.
Projection	Attributing an unacceptable internal impulse to an external source (vs displacement).	A man who wants to cheat on his wife accuses his wife of being unfaithful.
Rationalization	Proclaiming logical reasons for actions actually performed for other reasons, usually to avoid self-blame.	After getting fired, claiming that the job was not important anyway.
Reaction formation	Replacing a warded-off idea or feeling by an (unconsciously derived) emphasis on its opposite (vs sublimation).	A patient with libidinous thoughts enters a monastery.
Regression	Involuntarily turning back the maturational clock and going back to earlier modes of dealing with the world (vs fixation).	Seen in children under stress such as illness, punishment, or birth of a new sibling (eg, bedwetting in a previously toilet-trained child when hospitalized).
Repression	Involuntarily withholding an idea or feeling from conscious awareness (vs suppression).	A 20 -year-old does not remember going to counseling during his parents' divorce 10 years earlier.
Splitting	Believing that people are either all good or all bad at different times due to intolerance of ambiguity. Commonly seen in borderline personality disorder.	A patient says that all the nurses are cold and insensitive but that the doctors are warm and friendly.
MATURE DfFenses		
Sublimation	Replacing an unacceptable wish with a course of action that is similar to the wish but does not conflict with one's value system (vs reaction formation).	Teenager's aggression toward his father is redirected to perform well in sports.
Altruism	Alleviating negative feelings via unsolicited generosity.	Mafia boss makes large donation to charity.
Suppression	Intentionally withholding an idea or feeling from conscious awareness (vs repression); temporary.	Choosing to not worry about the big game until it is time to play.
Humor	Appreciating the amusing nature of an anxietyprovoking or adverse situation.	Nervous medical student jokes about the boards.
	Mature adults wear a SASH.	

PSYCHIATRY—PATHOLOGY

Psychiatric genetics Both genetic and environmental factors are involved in development of most psychiatric disorders. For example, in bipolar disorder and schizophrenia, lifetime risk in general population ($\sim 1 \%$) < parent or sibling of someone affected $(\sim 10 \%)<$ monozygotic twin of someone affected ($\sim 50 \%$).

Infant deprivation effects

Long-term deprivation of affection results in:

- Failure to thrive
- Poor language/socialization skills
- Lack of basic trust
- Reactive attachment disorder (infant withdrawn/unresponsive to comfort)

The 4 W's: Weak, Wordless, Wanting (socially), Wary.
Deprivation for >6 months can lead to irreversible changes.
Severe deprivation can result in infant death.

Child abuse

	Physical abuse	Sexual abuse
EVIDENCE	Fractures (eg, ribs, long bone spiral, multiple in different stages of healing), bruises (eg, trunk, ear, neck; in pattern of implement), burns (eg, cigarette, buttocks/thighs), subdural hematomas, retinal hemorrhages. During exam, children often avoid eye contact.	Genital, anal, or oral trauma; STIs; UTIs.
ABUSER	Usually biological mother.	Known to victim, usually male.
EPIDEMIOLOGY	40% of deaths in children < l year old.	Peak incidence 9-12 years old.

Child neglect Failure to provide a child with adequate food, shelter, supervision, education, and/or affection. Most common form of child maltreatment. Evidence: poor hygiene, malnutrition, withdrawal, impaired social/emotional development, failure to thrive.
As with child abuse, suspected child neglect must be reported to local child protective services.

Vulnerable child syndrome

Parents perceive the child as especially susceptible to illness or injury. Usually follows a serious illness or life-threatening event. Can result in missed school or overuse of medical services.

Childhood and early-onset disorders

Attention-deficit hyperactivity disorder	Onset before age 12. Limited attention span and poor impulse control. Characterized by hyperactivity, impulsivity, and/or inattention in multiple settings (school, home, places of worship, etc). Normal intelligence, but commonly coexists with difficulties in school. Continues into adulthood in as many as 50% of individuals. Treatment: stimulants (eg, methylphenidate) +/cognitive behavioral therapy (CBT); alternatives include atomoxetine, guanfacine, clonidine.
Autism spectrum disorder	Characterized by poor social interactions, social communication deficits, repetitive/ritualized behaviors, restricted interests. Must present in early childhood. May be accompanied by intellectual disability; rarely accompanied by unusual abilities (savants). More common in boys. Associated with \uparrow head/brain size.
Rett syndrome	X-linked dominant disorder seen almost exclusively in girls (affected males die in utero or shortly after birth). Symptoms usually become apparent around ages l-4, including regression characterized by loss of development, loss of verbal abilities, intellectual disability, ataxia, stereotyped hand-wringing.
Conduct disorder	Repetitive and pervasive behavior violating the basic rights of others or societal norms (eg, aggression to people and animals, destruction of property, theft). After age 18, many of these patients will meet criteria for diagnosis of antisocial personality disorder. Treatment for both: psychotherapy such as CBT.
Oppositional defiant disorder	Enduring pattern of hostile, defiant behavior toward authority figures in the absence of serious violations of social norms. Treatment: psychotherapy such as CBT.
Separation anxiety disorder	Common onset at 7-9 years. Overwhelming fear of separation from home or loss of attachment figure. May lead to factitious physical complaints to avoid going to or staying at school. Treatment: CBT, play therapy, family therapy.
Tourette syndrome	Onset before age 18. Characterized by sudden, rapid, recurrent, nonrhythmic, stereotyped motor and vocal tics that persist for >1 year. Coprolalia (involuntary obscene speech) found in only $10-20 \%$ of patients. Associated with OCD and ADHD. Treatment: psychoeducation, behavioral therapy. For intractable and distressing tics, high-potency antipsychotics (eg, fluphenazine, pimozide), tetrabenazine, guanfacine, and clonidine may be used.

Neurotransmitter changes with disease	DISORDER	Neurotransmitter changes
	Alzheimer disease	\downarrow ACh
		\uparrow glutamate
	Anxiety	\uparrow norepinephrine \downarrow GABA, $\downarrow 5-\mathrm{HT}$
	Depression	\downarrow norepinephrine $\downarrow 5$-HT, \downarrow dopamine
	Huntington disease	\downarrow GABA \downarrow ACh \uparrow dopamine
	Parkinson disease	\downarrow dopamine \uparrow ACh
	Schizophrenia	\uparrow dopamine
	Understanding these	macologic treatment cod

Orientation
Patient's ability to know who he or she is, where he or she is, and the date and time.
Common causes of loss of orientation: alcohol, drugs, fluid/electrolyte imbalance, head trauma, hypoglycemia, infection, nutritional deficiencies.

Order of loss: 1st-time; 2nd—place; last— person.

Amnesias

Retrograde amnesia Inability to remember things that occurred before a CNS insult.

Anterograde amnesia Inability to remember things that occurred after a CNS insult (\downarrow acquisition of new memory).
Korsakoff syndrome Amnesia (anterograde > retrograde) caused by vitamin B_{1} deficiency and associated destruction of mammillary bodies. Seen in alcoholics as a late neuropsychiatric manifestation of Wernicke encephalopathy. Confabulations are characteristic.

Dissociative amnesia Inability to recall important personal information, usually subsequent to severe trauma or stress. May be accompanied by dissociative fugue (abrupt travel or wandering during a period of dissociative amnesia, associated with traumatic circumstances).

Dissociative disorders

Dissociative identity disorder

Depersonalization/ derealization disorder

Formerly known as multiple personality disorder. Presence of 2 or more distinct identities or personality states. More common in women. Associated with history of sexual abuse, PTSD, depression, substance abuse, borderline personality, somatoform conditions.
Persistent feelings of detachment or estrangement from one's own body, thoughts, perceptions, and actions (depersonalization) or one's environment (derealization).

Delirium

"Waxing and waning" level of consciousness with acute onset; rapid \downarrow in attention span and level of arousal. Characterized by disorganized thinking, hallucinations (often visual), illusions, misperceptions, disturbance in sleepwake cycle, cognitive dysfunction.
Usually 2° to other illness (eg, CNS disease, infection, trauma, substance abuse/withdrawal, metabolic/electrolyte disturbances, hemorrhage, urinary/fecal retention).
Most common presentation of altered mental status in inpatient setting. Commonly, diffuse slowing EEG.
Treatment is aimed at identifying and addressing underlying condition. Haloperidol may be used as needed. Use benzodiazepines for alcohol withdrawal.

Delirium $=$ changes in sensorium .
May be caused by medications (eg, anticholinergics), especially in the elderly. Reversible.

T-A-DA approach (Tolerate, Anticipate, Don't Agitate) helpful for management.

Dementia

\downarrow in intellectual function without affecting level of consciousness. Characterized by memory deficits, apraxia, aphasia, agnosia, loss of abstract thought, behavioral/personality changes, impaired judgment. A patient with dementia can develop delirium (eg, patient with Alzheimer disease who develops pneumonia is at \uparrow risk for delirium).
Irreversible causes: Alzheimer disease, Lewy body dementia, Huntington disease, Pick disease, cerebral infarct, Creutzfeldt-Jakob disease, chronic substance abuse (due to neurotoxicity of drugs).
Reversible causes: hypothyroidism, depression, vitamin B_{12} deficiency, normal pressure hydrocephalus, neurosyphilis.
\uparrow incidence with age. EEG usually normal.
"Dememtia" is characterized by memory loss. Usually irreversible.
In elderly patients, depression and hypothyroidism may present like dementia (pseudodementia). Screen for depression and measure TSH, B_{12} levels.

Psychosis	Distorted perception of reality characterized by delusions, hallucinations, and/or disorganized thinking. Can occur in patients with medical illness, psychiatric illness, or both.
Delusions	Unique, false beliefs that persist despite the facts (eg, thinking aliens are communicating with you). Types include persecutory, referential, grandiose, erotomanic, somatic.
Disorganized thought	Speech may be incoherent ("word salad"), tangential, or derailed ("loose associations").
Hallucinations	Perceptions in the absence of external stimuli (eg, seeing a light that is not actually present). Contrast with illusions, misperceptions of real external stimuli. Types include: - Visual-more commonly a feature of medical illness (eg, drug intoxication) than psychiatric illness. - Auditory-more commonly a feature of psychiatric illness (eg, schizophrenia) than medical illness. - Olfactory-often occur as an aura of temporal lobe epilepsy (eg, burning rubber) and in brain tumors. - Gustatory-rare, but seen in epilepsy. - Tactile-common in alcohol withdrawal and stimulant use (eg, cocaine, amphetamines), delusional parasitosis, "cocaine crawlies." - Hypnagogic-occurs while going to sleep. Sometimes seen in narcolepsy. " Hypnopompic-occurs while waking from sleep ("pompous upon awakening"). Sometimes seen in narcolepsy.

Schizophrenia

Chronic mental disorder with periods of psychosis, disturbed behavior and thought, and decline in functioning lasting >6 months. Associated with \uparrow dopaminergic activity, \downarrow dendritic branching.
Diagnosis requires at least 2 of the following, and at least 1 of these should include $1-3$ (first 4 are "positive symptoms"):

1. Delusions
2. Hallucinations-often auditory
3. Disorganized speech
4. Disorganized or catatonic behavior
5. Negative symptoms (affective flattening, avolition, anhedonia, asociality, alogia)
Brief psychotic disorder-lasting < l month, usually stress related.
Schizophreniform disorder-lasting 1-6 months.
Schizoaffective disorder—> 2 weeks of hallucinations or delusions without major mood episode (major depression or mania), plus periods of concurrent major mood episode with schizophrenic symptoms.

Frequent cannabis use is associated with psychosis/schizophrenia in teens.
Lifetime prevalence -1.5% (males $=$ females, African Americans $=$ Caucasians). Presents earlier in men (late teens to early 20 s vs late 20 s to early 30 s in women). Patients are at \uparrow risk for suicide.
Ventriculomegaly on brain imaging.
Treatment: atypical antipsychotics (eg, risperidone) are first line.

Delusional disorder
Fixed, persistent, false belief system lasting > 1 month. Functioning otherwise not impaired (eg, a woman who genuinely believes she is married to a celebrity when, in fact, she is not). Can be shared by individuals in close relationships (folie à deux).

Mood disorder

Characterized by an abnormal range of moods or internal emotional states and loss of control over them. Severity of moods causes distress and impairment in social and occupational functioning. Includes major depressive disorder, bipolar disorder, dysthymic disorder, and cyclothymic disorder. Episodic superimposed psychotic features (delusions or hallucinations) may be present.

Manic episode

Distinct period of abnormally and persistently elevated, expansive, or irritable mood and abnormally and persistently \uparrow activity or energy lasting at least 1 week. Often disturbing to patient.
Diagnosis requires hospitalization or at least 3 of the following (manics DIG FAST):

- Distractibility
- Irresponsibility—seeks pleasure without regard to consequences (hedonistic)
- Grandiosity-inflated self-esteem
- Flight of ideas-racing thoughts
- \uparrow in goal-directed Activity/psychomotor Agitation
- \downarrow need for Sleep
- Talkativeness or pressured speech

Hypomanic episode Like manic episode except mood disturbance is not severe enough to cause marked impairment in social and/or occupational functioning or to necessitate hospitalization. No psychotic features. Lasts at least 4 consecutive days.

Bipolar disorder (manic depression)

Bipolar I defined by presence of at least 1 manic episode $+/$ - a hypomanic or depressive episode.
Bipolar II defined by presence of a hypomanic and a depressive episode.
Patient's mood and functioning usually return to normal between episodes. Use of antidepressants can precipitate mania. High suicide risk. Treatment: mood stabilizers (eg, lithium, valproic acid, carbamazepine), atypical antipsychotics.
Cyclothymic disorder-milder form of bipolar disorder lasting at least 2 years, fluctuating between mild depressive and hypomanic symptoms.

Major depressive disorder

May be self-limited disorder, with major depressive episodes usually lasting 6-12 months. Episodes characterized by at least 5 of the following 9 symptoms for 2 or more weeks (symptoms must include patientreported depressed mood or anhedonia). Treatment: CBT and SSRIs are first line. SNRIs, mirtazapine, bupropion can also be considered. Electroconvulsive therapy (ECT) in select patients.

Persistent depressive disorder (dysthymia) -

 depression, often milder, lasting at least 2 years.SIG E CAPS:

- Depressed mood
- Sleep disturbance
- Loss of Interest (anhedonia)
- Guilt or feelings of worthlessness
- Energy loss and fatigue
- Concentration problems
- Appetite/weight changes
- Psychomotor retardation or agitation
- Suicidal ideations

Patients with depression typically have the
following changes in their sleep stages:

- \downarrow slow-wave sleep
$-\downarrow$ REM latency
- \uparrow REM early in sleep cycle
- \uparrow total REM sleep
- Repeated nighttime awakenings
- Early-morning wakening (terminal insomnia)

Depression with

 atypical featuresDiffers from classical forms of depression. Characterized by mood reactivity (being able to experience improved mood in response to positive events, albeit briefly), "reversed" vegetative symptoms (hypersomnia, hyperphagia), leaden paralysis (heavy feeling in arms and legs), long-standing interpersonal rejection sensitivity. Most common subtype of depression. Treatment: CBT and SSRIs are first line. MAO inhibitors are effective but not first line because of their risk profile.

Postpartum mood disturbances	Onset within 4 weeks of delivery.
Maternal (postpartum) "blues"	$50-85 \%$ incidence rate. Characterized by depressed affect, tearfulness, and fatigue starting 2-3 days after delivery. Usually resolves within 10 days. Treatment: supportive. Follow up to assess for possible postpartum depression.
Postpartum	
depression	$10-15 \%$ incidence rate. Characterized by depressed affect, anxiety, and poor concentration. Treatment: CBT and SSRIs are first line.
Postpartum psychosis	$0.1-0.2 \%$ incidence rate. Characterized by mood-congruent delusions, hallucinations, and thoughts of harming the baby or self. Risk factors include history of bipolar or psychotic disorder, first pregnancy, family history, recent discontinuation of psychotropic medication. Treatment: hospitalization and initiation of atypical antipsychotic; if insufficient, ECT may be used.

Grief Normal grief is characterized by shock, denial, guilt, sadness, anxiety, yearning, and somatic symptoms. Hallucinations of the deceased person are common. Duration varies widely; usually <6 months.
Pathologic grief is persistent and causes functional impairment. Can meet criteria for major depressive episode.

Electroconvulsive therapy

Used mainly for treatment-refractory depression, depression with psychotic symptoms, and acutely suicidal patients. Produces grand mal seizure in an anesthetized patient. Adverse effects include disorientation, temporary headache, partial anterograde/retrograde amnesia usually resolving in 6 months. Safe in pregnancy.

Risk factors for suicide	Sex (male)	SAD PERSONS are more likely to complete
completion	Age (young adult or elderly)	suicide.
	Depression	Most common method in US is firearms; access
	Previous attempt	to guns \uparrow risk of suicide completion.
	Ethanol or drug use	Women try more often; men succeed more
	Rational thinking loss (psychosis)	often.
	Sickness (medical illness)	
	Organized plan	
	No spouse or other social support	
	Stated future intent	

Anxiety disorder

Inappropriate experience of fear/worry and its physical manifestations (anxiety) incongruent with the magnitude of the perceived stressor. Symptoms interfere with daily functioning. Includes panic disorder, phobias, generalized anxiety disorder, and selective mutism. Treatment: CBT, SSRIs, SNRIs.

Panic disorder
Defined by recurrent panic attacks (periods of intense fear and discomfort peaking in 10 minutes with at least 4 of the following): Palpitations, Paresthesias, dePersonalization or derealization, Abdominal distress or Nausea, Intense fear of dying, Intense fear of losing control or "going crazy," light-headedness, Chest pain, Chills, Choking, Sweating, Shaking, Shortness of breath. Strong genetic component. Treatment: CBT, SSRIs, and venlafaxine are first line. Benzodiazepines occasionally used in acute setting.

PANICS.

Diagnosis requires attack followed by 1 month (or more) of 1 (or more) of the following:

- Persistent concern of additional attacks
- Worrying about consequences of attack
- Behavioral change related to attacks

Symptoms are the systemic manifestations of fear.

Specific phobia

Severe, persistent fear or anxiety due to presence or anticipation of a specific object or situation. Person recognizes fear is excessive. Can be treated with systematic desensitization.

Social anxiety disorder-exaggerated fear of embarrassment in social situations (eg, public speaking, using public restrooms). Treatment: CBT, SSRIs, venlafaxine. For only occasional anxiety-inducing situations, benzodiazepine or β-blocker.

Agoraphobia-exaggerated fear of open or enclosed places, using public transportation, being in line or in crowds, or leaving home alone. Associated with panic disorder. Treatment: CBT, SSRIs, MAO inhibitors.

Generalized anxiety

 disorderAnxiety lasting > 6 months unrelated to a specific person, situation, or event. Associated with restlessness, irritability, sleep disturbance, fatigue, muscle tension, difficulty concentrating. Treatment: CBT, SSRIs, SNRIs are first line. Buspirone, TCAs, benzodiazepines are second line.
Adjustment disorder-emotional symptoms (anxiety, depression) causing impairment following an identifiable psychosocial stressor (eg, divorce, illness) and lasting <6 months (>6 months in presence of chronic stressor). Treatment: CBT, SSRIs.

Obsessive-compulsive Recurring intrusive thoughts, feelings, or sensations (obsessions) that cause severe distress; disorder relieved in part by the performance of repetitive actions (compulsions). Ego-dystonic: behavior inconsistent with one's own beliefs and attitudes (vs obsessive-compulsive personality disorder). Associated with Tourette syndrome. Treatment: CBT, SSRIs, and clomipramine are first line.
Body dysmorphic disorder-preoccupation with minor or imagined defect in appearance \rightarrow significant emotional distress or impaired functioning; patients often repeatedly seek cosmetic treatment. Treatment: CBT.

Post-traumatic stress

 disorderExposure to prior trauma (eg, witnessing death, experiencing serious injury or rape) \rightarrow intrusive reexperiencing of the event (nightmares, flashbacks), avoidance of associated stimuli, changes in cognition or mood (fear, horror), and persistently \uparrow arousal. Disturbance lasts >1 month with significant distress or impaired social-occupational functioning. Treatment: CBT, SSRIs, and venlafaxine are first line.

Acute stress disorder-lasts between 3 days and 1 month. Treatment: CBT; pharmacotherapy is usually not indicated.

Malingering Patient consciously fakes, profoundly exaggerates, or claims to have a disorder in order to attain a specific 2° (external) gain (eg, avoiding work, obtaining compensation). Poor compliance with treatment or follow-up of diagnostic tests. Complaints cease after gain (vs factitious disorder).

Factitious disorders	Patient consciously creates physical and/or psychological symptoms in order to assume "sick role" and to get medical attention (l° [internal] gain).
Factitious disorder imposed on self (Munchausen syndrome)	Chronic factitious disorder with predominantly physical signs and symptoms. Characterized by a history of multiple hospital admissions and willingness to undergo invasive procedures.
Factitious disorder imposed on another (Munchausen syndrome by proxy)	Illness in a child or elderly patient is caused or fabricated by the caregiver. Motivation is to assume a sick proxy. Form of child/elder abuse.

Somatic symptom and Category of disorders characterized by physical symptoms causing significant distress and related disorders impairment. Both illness production and motivation are unconscious drives. Symptoms not intentionally produced or feigned. More common in women.

Somatic symptom disorder

Conversion disorder (functional neurologic symptom disorder) disorder

Variety of bodily complaints (eg, pain, fatigue) lasting for months to years. Associated with excessive, persistent thoughts and anxiety about symptoms. May co-occur with medical illness.
Loss of sensory or motor function (eg, paralysis, blindness, mutism), often following an acute stressor; patient is aware of but sometimes indifferent toward symptoms ("la belle indifférence"); more common in females, adolescents, and young adults.

Illness anxiety Excessive preoccupation with acquiring or having a serious illness, often despite medical evaluation and reassurance; minimal somatic symptoms.
Pseudocyesis not pregnant.

Personality

Personality trait

Personality disorder

An enduring, repetitive pattern of perceiving, relating to, and thinking about the environment and oneself.

Inflexible, maladaptive, and rigidly pervasive pattern of behavior causing subjective distress and/or impaired functioning; person is usually not aware of problem. Usually presents by early adulthood.
Three clusters, A, B, and C; remember as Weird, Wild, and Worried based on symptoms.

Cluster A personality		
disorders	Odd or eccentric; inability to develop meaningful social relationships. No psychosis; genetic association with schizophrenia.	"Weird" (Accusatory, Aloof, Awkward).
Paranoid	Pervasive distrust and suspiciousness; projection is the major defense mechanism.	
Schizoid	Voluntary social withdrawal, limited emotional expression, content with social isolation (vs avoidant).	Schizoid = distant.
Schizotypal	Eccentric appearance, odd beliefs or magical thinking, interpersonal awkwardness.	Schizotypal = magical thinking.

Cluster B personality disorders	Dramatic, emotional, or erratic; genetic association with mood disorders and substance abuse.	"Wild" (Bad to the Bone).
Antisocial	Disregard for and violation of rights of others, criminality, impulsivity; males $>$ females; must be ≥ 18 years old and have history of conduct disorder before age 15 . Conduct disorder if <18 years old.	Antisocial $=$ sociopath.
Borderline	Unstable mood and interpersonal relationships, impulsivity, self-mutilation, suicidality, sense of emptiness; females > males; splitting is a major defense mechanism.	Treatment: dialectical behavior therapy.
Histrionic	Excessive emotionality and excitability, attention seeking, sexually provocative, overly concerned with appearance.	
Narcissistic	Grandiosity, sense of entitlement; lacks empathy and requires excessive admiration; often demands the "best" and reacts to criticism with rage.	

Cluster C personality disorders	Anxious or fearful; genetic association with anxiety disorders.	"Worried" (Cowardly, Compulsive, Clingy).	
Avoidant	Hypersensitive to rejection, socially inhibited, timid, feelings of inadequacy, desires relationships with others (vs schizoid).		
Obsessive-compulsive	Preoccupation with order, perfectionism, and control; ego-syntonic: behavior consistent with one's own beliefs and attitudes (vs OCD).	Patients often get stuck in abusive relationships.	
Dependent	Submissive and clingy, excessive need to be taken care of, low self-confidence.		

Eating disorders	Most common in young females.
Anorexia nervosa	Excessive dieting, exercise, or binge eating/purging with BMI $<18.5 \mathrm{~kg} / \mathrm{m}^{2} ;$ intense fear of gaining weight; and distortion or orevvaluation of body image. Associated with \downarrow bone density, severe weight loss, metatarsal stress fractures, amenorrhea (due to loss of pulsatile GnRH secretion), lanugo, anemia, electrolyte disturbances. Commonly coexists with depression. Psychotherapy and nutritional rehabilitation are firs line. Refeeding syndrome (\uparrow insulin \rightarrow hypophosphatemia \rightarrow cardiac complications) can occur in significantly malnourished patients.
Bulimia nervosa	Binge eating with recurrent inappropriate compensatory behaviors (eg, self-induced vomiting, using laxatives or diuretics, fasting, excessive exercise) occurring weekly for at least 3 months and overvaluation of body image. Body weight often maintained within normal range. Associated with parotitis, enamel erosion, electrolyte disturbances, alkalosis, dorsal hand calluses from induced vomiting (Russell sign). Treatment: psychotherapy, nutritional rehabilitation, antidepressants.
Binge eating disorder	Regular episodes of excessive, uncontrollable eating without inappropriate compensatory behaviors. \uparrow risk of diabetes. Treatment: psychotherapy such as CBT is first-line; SSRIs.

Gender dysphoria Strong, persistent cross-gender identification that leads to persistent discomfort with sex assigned at birth, causing significant distress and/or impaired functioning. Transgender individuals may have gender dysphoric disorder.
Transsexualism - desire to live as the opposite sex, often through surgery or hormone treatment.
Transvestism - paraphilia, not gender dysphoria. Wearing clothes (eg, vest) of the opposite sex (cross-dressing).

Sexual dysfunction

Includes sexual desire disorders (hypoactive sexual desire or sexual aversion), sexual arousal disorders (erectile dysfunction), orgasmic disorders (anorgasmia, premature ejaculation), sexual pain disorders (dyspareunia, vaginismus).
Differential diagnosis includes:

- Drugs (eg, antihypertensives, neuroleptics, SSRIs, ethanol)
- Diseases (eg, depression, diabetes, STIs)
- Psychological (eg, performance anxiety)

Sleep terror disorder Periods of terror with screaming in the middle of the night; occurs during slow-wave/deep (stage N3) sleep. Most common in children. Occurs during non-REM sleep (no memory of arousal) as opposed to nightmares that occur during REM sleep (memory of a scary dream). Cause unknown, but triggers include emotional stress, fever, or lack of sleep. Usually self limited.

Narcolepsy	Disordered regulation of sleep-wake cycles; 1° characteristic is excessive daytime sleepiness (awaken feeling rested). Caused by \downarrow hypocretin (orexin) production in lateral hypothalamus. Also associated with: - Hypnagogic (just before sleep) or hypnopompic (just before awakening) hallucinations. - Nocturnal and narcoleptic sleep episodes that start with REM sleep. - Cataplexy (loss of all muscle tone following strong emotional stimulus, such as laughter) in some patients. Strong genetic component. Treatment: daytime stimulants (eg, amphetamines, modafinil) and nighttime sodium oxybate (GHB).

Hypnagogic-going to sleep
Hypnopompic-"pompous upon awakening"

Substance use disorder	Maladaptive pattern of substance use defined as 2 or more of the following signs in 1 year: - Tolerance-need more to achieve same effect - Withdrawal - Substance taken in larger amounts, or over longer time, than desired - Persistent desire or unsuccessful attempts to cut down - Significant energy spent obtaining, using, or recovering from substance - Important social, occupational, or recreational activities reduced because of substance use - Continued use despite knowing substance causes physical and/or psychological problems - Craving - Recurrent use in physically dangerous situations - Failure to fulfill major obligations at work, school, or home due to use - Social or interpersonal conflicts related to substance use

Stages of change in overcoming substance addiction

1. Precontemplation-not yet acknowledging that there is a problem
2. Contemplation-acknowledging that there is a problem, but not yet ready or willing to make a change
3. Preparation/determination-getting ready to change behaviors
4. Action/willpower-changing behaviors
5. Maintenance-maintaining the behavior changes
6. Relapse-returning to old behaviors and abandoning new changes

Psychoactive drug intoxication and withdrawal

DRUG	Intoxication	WITHDRAWAL
Depressants		
	Nonspecific: mood elevation, \downarrow anxiety, sedation, behavioral disinhibition, respiratory depression.	Nonspecific: anxiety, tremor, seizures, insomnia.
Alcohol	Emotional lability, slurred speech, ataxia, coma, blackouts. Serum γ-glutamyltransferase (GGT)-sensitive indicator of alcohol use. AST value is twice ALT value.	Mild alcohol withdrawal: symptoms similar to other depressants. Severe alcohol withdrawal can cause autonomic hyperactivity and DTs (5-15\% mortality rate). Treatment for DTs: benzodiazepines.
Opioids	Euphoria, respiratory and CNS depression, \downarrow gag reflex, pupillary constriction (pinpoint pupils), seizures (overdose). Most common cause of drug overdose death. Treatment: naloxone, naltrexone.	Sweating, dilated pupils, piloerection ("cold turkey"), fever, rhinorrhea, yawning, nausea, stomach cramps, diarrhea ("flu-like" symptoms). Treatment: long-term support, methadone, buprenorphine.
Barbiturates	Low safety margin, marked respiratory depression. Treatment: symptom management (eg, assist respiration, $\uparrow \mathrm{BP}$).	Delirium, life-threatening cardiovascular collapse.
Benzodiazepines	Greater safety margin. Ataxia, minor respiratory depression. Treatment: flumazenil (benzodiazepine receptor antagonist, but rarely used as it can precipitate seizures).	Sleep disturbance, depression, rebound anxiety, seizure.
Stimulants		
	Nonspecific: mood elevation, psychomotor agitation, insomnia, cardiac arrhythmias, tachycardia, anxiety.	Nonspecific: post-use "crash," including depression, lethargy, \uparrow appetite, sleep disturbance, vivid nightmares.
Amphetamines	Euphoria, grandiosity, pupillary dilation, prolonged wakefulness and attention, hypertension, tachycardia, anorexia, paranoia, fever. Severe: cardiac arrest, seizures. Treatment: benzodiazepines for agitation and seizures.	
Cocaine	Impaired judgment, pupillary dilation, hallucinations (including tactile), paranoid ideations, angina, sudden cardiac death. Treatment: α-blockers, benzodiazepines. β-blockers not recommended.	
Caffeine	Restlessness, \uparrow diuresis, muscle twitching.	Headache, difficulty concentrating, flu-like symptoms.
Nicotine	Restlessness.	Irritability, anxiety, restlessness, difficulty concentrating. Treatment: nicotine patch, gum, or lozenges; bupropion/varenicline.

Psychoactive drug intoxication and withdrawal (continued)

DRUG	intoxication	WITHDRAWAL
Hallucinogens		
Phencyclidine	Violence, impulsivity, psychomotor agitation, nystagmus, tachycardia, hypertension, analgesia, psychosis, delirium, seizures. Trauma is most common complication. Treatment: benzodiazepines, rapid-acting antipsychotic.	
Lysergic acid diethylamide	Perceptual distortion (visual, auditory), depersonalization, anxiety, paranoia, psychosis, possible flashbacks.	
Marijuana (cannabinoid)	Euphoria, anxiety, paranoid delusions, perception of slowed time, impaired judgment, social withdrawal, \uparrow appetite, dry mouth, conjunctival injection, hallucinations. Pharmaceutical form is dronabinol (tetrahydrocannabinol isomer): used as antiemetic (chemotherapy) and appetite stimulant (in AIDS).	Irritability, anxiety, depression, insomnia, restlessness, \downarrow appetite. Generally detectable in urine for up to 1 month.
MDMA (ecstasy)	Hallucinogenic stimulant: euphoria, disinhibition, hyperactivity. Life-threatening effects include hypertension, tachycardia, hyperthermia, hyponatremia, serotonin syndrome.	Depression, fatigue, change in appetite, difficulty concentrating, anxiety.

Heroin addiction Users at \uparrow risk for hepatitis, HIV, abscesses, bacteremia, right-heart endocarditis. Treatment is
Methadone Long-acting oral opiate used for heroin detoxification or long-term maintenance.
Naloxone + Antagonist + partial agonist. Naloxone is not orally bioavailable, so withdrawal symptoms occur buprenorphine only if injected (lower abuse potential).
Naltrexone Long-acting opioid antagonist used for relapse prevention once detoxified.

Alcoholism	Physiologic tolerance and dependence with symptoms of withdrawal (tremor, tachycardia, hypertension, malaise, nausea, DTs) when intake is interrupted. Complications: alcoholic cirrhosis, hepatitis, pancreatitis, peripheral neuropathy, testicular atrophy. Treatment: disulfiram (to condition the patient to abstain from alcohol use), acamprosate, naltrexone, supportive care. Support groups such as Alcoholics Anonymous are helpful in sustaining abstinence and supporting patient and family.
Wernicke-Korsakoff	Caused by vitamin B_{1} (thiamine) deficiency. Triad of confusion, ophthalmoplegia, ataxia (Wernicke encephalopathy). May progress to irreversible memory loss, confabulation, personality change
syndrome	(Korsakoff syndrome). Associated with periventricular hemorrhage/necrosis of mammillary bodies. Treatment: IV vitamin B_{1}.
Mallory-Weiss	Partial thickness tear at gastroesophageal junction caused by excessive/forceful vomiting. Often sresents with hematemesis and misdiagnosed as ruptured esophageal varices.

Delirium tremens
 Life-threatening alcohol withdrawal syndrome that peaks 2-4 days after last drink.
 Characterized by autonomic hyperactivity (eg, tachycardia, tremors, anxiety, seizures). Classically occurs in hospital setting (eg, 2-4 days postsurgery) in alcoholics not able to drink as inpatients. Treatment: benzodiazepines.
 Alcoholic hallucinosis is a distinct condition characterized by visual hallucinations 12-48 hours after last drink. Treatment: benzodiazepines (eg, chlordiazepoxide, lorazepam, diazepam).

PSYCHIATRY—PHARMACOLOGY

Preferred medications for selected psychiatric conditions	PSychatric conotion	preferred drugs
	ADHD	Stimulants (methylphenidate, amphetamines)
	Alcohol withdrawal	Benzodiazepines (eg, chlordiazepoxide, lorazepam, diazepam)
	Bipolar disorder	Lithium, valproic acid, atypical antipsychotics
	Bulimia nervosa	SSRIs
	Depression	SSRIs
	Generalized anxiety disorder	SSRIs, SNRIs
	Obsessive-compulsive disorder	SSRIs, venlafaxine, clomipramine
	Panic disorder	SSRIs, venlafaxine, benzodiazepines
	PTSD	SSRIs, venlafaxine
	Schizophrenia	Atypical antipsychotics
	Social anxiety disorder	SSRIs, venlafaxine Performance only: β-blockers, benzodiazepines
	Tourette syndrome	Antipsychotics (eg, fluphenazine, pimozide), tetrabenazine

CNS stimulants

Methylphenidate, dextroamphetamine, methamphetamine.
MECHANISM
\uparrow catecholamines in the synaptic cleft, especially norepinephrine and dopamine.
CLINICAL USE
ADHD, narcolepsy, appetite control.

Antipsychotics (neuroleptics)	Haloperidol, trifluoperazine, fluphenazine, t	orpromazine (haloperidol + "-azines").
mechanism	All typical antipsychotics block dopamine D_{2} receptors (\uparrow [cAMP]).	High potency: Trifluoperazine, Fluphenazine, Haloperidol (Try to Fly High) - neurologic side effects (eg, extrapyramidal symptoms [EPS]).
cunical use	Schizophrenia (primarily positive symptoms), psychosis, bipolar disorder, delirium, Tourette syndrome, Huntington disease, OCD.	
Adverse effects	Highly lipid soluble and stored in body fat; thus, very slow to be removed from body.	(Cheating Thieves are low) - non-neurologic side effects (anticholinergic, antihistamine, and α_{1}-blockade effects).
	dyskinesias). Treatment: benztropine, diphenhydramine, benzodiazepines.	Chlorpromazine-Corneal deposits; Thioridazine-reTinal deposits; haloperidolNMS, tardive dyskinesia.
	\rightarrow galactorrhea, oligomenorrhea, gynecomastia).	Onset of EPS: ADAPT - Hours to days: Acute Dystonia (muscle
	Side effects arising from blocking muscarinic (dry mouth, constipation), α_{1} (orthostatic	- Days to months: Akathisia (restlessness) and Parkinsonism (bradykinesia). - Months to years: Tardive dyskinesia
	Can cause QT prolongation.	For NMS, think FEVER: Fever
отнеR Toxictites	Neuroleptic malignant syndrome (NMS) rigidity, myoglobinuria, autonomic instability, hyperpyrexia. Treatment: dantrolene, D_{2} agonists (eg, bromocriptine).	Encephalopathy
		Vitals unstable
		Enzymes \uparrow
		Rigidity of muscles
	Tardive dyskinesia-orofacial chorea as a result of long-term antipsychotic use.	

Atypical antipsychotics	Aripiprazole, asenapine, clozapine, iloperidone, lurasidone, olanzapine, paliperidone, quetiapine, risperidone, ziprasidone.	
mechanism	Not completely understood. Most are D_{2} antagonists; aripiprazole is D_{2} partial agonist. Varied effects on $5-\mathrm{HT}_{2}$, dopamine, and α - and H_{1}-receptors.	
clincal use	Schizophrenia-both positive and negative symptoms. Also used for bipolar disorder, OCD, anxiety disorder, depression, mania, Tourette syndrome.	
adverse effects	All-prolonged QT interval, fewer EPS and anticholinergic side effects than typical antipsychotics.	Must watch bone marrow clozely with clozapine.
	```"-pines" - metabolic syndrome (weight gain, diabetes, hyperlipidemia). Clozapine-agranulocytosis (monitor WBC weekly).```	Olanzapine $\rightarrow$ Obesity
	Risperidone-hyperprolactinemia (amenorrhea, galactorrhea, gynecomastia).	

Lithium

MECHANISM	Not established; possibly related to inhibition of   phosphoinositol cascade.	LMNOP_Lithium side effects:   Movement (tremor)
CLINICAL USE	Mood stabilizer for bipolar disorder; blocks   relapse and acute manic events.	Nephrogenic diabetes insipidus   HypOthyroidism
ADVERSE EFFECTS	Tremor, hypothyroidism, polyuria (causes   nephrogenic diabetes insipidus), teratogenesis.	Pregnancy problems

## Buspirone

MECHANISM

Stimulates $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptors.
CLINICAL USE
Generalized anxiety disorder. Does not cause sedation, addiction, or tolerance. Takes 1-2 weeks to take effect. Does not interact with alcohol (vs barbiturates, benzodiazepines).

## Antidepressants



Selective serotonin   reuptake inhibitors	Fluoxetine, paroxetine, sertraline, citalopram.	Flashbacks paralyze senior citizens.
MECHANSM	5-HT-specific reuptake inhibitors.	It normally takes 4-8 weeks for antidepressants
Clo have an effect.		

Serotonin- Venlafaxine, desvenlafaxine, duloxetine, levomilnacipran, milnacipran.
norepinephrine
reuptake inhibitors

MECHANSM	Inhibit 5-HT and norepinephrine reuptake.
CLIICAL USE	Depression, general anxiety disorder, diabetic neuropathy. Venlafaxine is also indicated for social   anxiety disorder, panic disorder, PTSD, OCD.
ADVERSE EFFECTS	$\uparrow$ BP most common; also stimulant effects, sedation, nausea.

## Serotonin syndrome

Can occur with any drug that $\uparrow$ 5-HT (eg, MAO inhibitors, SNRIs, TCAs). Characterized by 3 A's: neuromuscular Activity (clonus, hyperreflexia, hypertonia, tremor, seizure), Autonomic stimulation (hyperthermia, diaphoresis, diarrhea), and Agitation. Treatment: cyproheptadine ( $5-\mathrm{HT}_{2}$ receptor antagonist).

Tricyclic
antidepressants

MECHANSM	Block reuptake of norepinephrine and 5-HT.
CLINCAL USE	Major depression, OCD (clomipramine), peripheral neuropathy, chronic pain, migraine   prophylaxis.
ADVERSE EFFECTS	Sedation, $\alpha_{1}$-blocking effects including postural hypotension, and atropine-like (anticholinergic)   side effects (tachycardia, urinary retention, dry mouth). $3^{\circ}$ TCAs (amitriptyline) have more   anticholinergic effects than $2^{\circ}$ TCAs (nortriptyline). Can prolong QT interval.   Tri-C's: Convulsions, Coma, Cardiotoxicity (arrhythmia due to Na ${ }^{+}$channel inhibition);   also respiratory depression, hyperpyrexia. Confusion and hallucinations in elderly due to   anticholinergic side effects (use nortriptyline). Treatment: NaHCO3 to prevent arrhythmia.


Monoamine oxidase inhibitors	Tranylcypromine, Phenelzine, Isocarboxazid, Selegiline (selective MAO-B inhibitor). (MAO Takes Pride In Shanghai).
mechansm	Nonselective MAO inhibition $\uparrow$ levels of amine neurotransmitters (norepinephrine, 5 -HT, dopamine).
clincal use	Atypical depression, anxiety.
adverse effects	Hypertensive crisis (most notably with ingestion of tyramine, which is found in many foods such as aged cheese and wine); CNS stimulation. Contraindicated with SSRIs, TCAs, St. John's wort, meperidine, dextromethorphan (to prevent serotonin syndrome).   Wait 2 weeks after stopping MAO inhibitors before starting serotonergic drugs or stopping dietary restrictions.
Atypical antidepressants	
Bupropion	$\uparrow$ norepinephrine and dopamine via unknown mechanism. Also used for smoking cessation. Toxicity: stimulant effects (tachycardia, insomnia), headache, seizures in anorexic/bulimic patients. No sexual side effects.
Mirtazapine	$\alpha_{2}$-antagonist $\left(\uparrow\right.$ release of NE and 5 - HT ), potent $5-\mathrm{HT}_{2}$ and $5-\mathrm{HT}_{3}$ receptor antagonist and $\mathrm{H}_{1}$ antagonist. Toxicity: sedation (which may be desirable in depressed patients with insomnia), $\uparrow$ appetite, weight gain (which may be desirable in elderly or anorexic patients), dry mouth.
Trazodone	Primarily blocks $5-\mathrm{HT}_{2}, \alpha_{1}$-adrenergic, and $\mathrm{H}_{1}$ receptors; also weakly inhibits 5 -HT reuptake. Used primarily for insomnia, as high doses are needed for antidepressant effects. Toxicity: sedation, nausea, priapism, postural hypotension. Called traZZZobone due to sedative and male-specific side effects.
Varenicline	Nicotinic ACh receptor partial agonist. Used for smoking cessation. Toxicity: sleep disturbance.

## HIGH-YIELD SYSTEMS

## Renal

"But I know all about love already. I know precious little still about kidneys."
-Aldous Huxley, Antic Hay
"This too shall pass. Just like a kidney stone."
-Hunter Madsen
"I drink too much. The last time I gave a urine sample it had an olive in it."

D Embryology
> Anatomy

Physiology
> Pathology
> Pharmacology
-Rodney Dangerfield

- RENAL—EMBRYOLOGY

Kidney embryology Pronephros-week 4; then degenerates.
Mesonephros-functions as interim kidney for lst trimester; later contributes to male genital system.
Metanephros-permanent; first appears in 5th week of gestation; nephrogenesis continues through 32-36 weeks of gestation.

- Ureteric bud-derived from caudal end of mesonephric duct; gives rise to ureter, pelvises, calyces, collecting ducts; fully canalized by 10th week
- Metanephric mesenchyme (ie, metanephric blastema)-ureteric bud interacts with this
 tissue; interaction induces differentiation and formation of glomerulus through to distal convoluted tubule (DCT)
- Aberrant interaction between these 2 tissues may result in several congenital malformations of the kidney
Ureteropelvic junction-last to canalize $\rightarrow$ most common site of obstruction (hydronephrosis) in fetus.

Potter sequence (syndrome)


Oligohydramnios $\rightarrow$ compression of developing fetus $\rightarrow$ limb deformities, facial anomalies (eg, low-set ears and retrognathia $\boldsymbol{A}$, flattened nose), compression of chest and lack of amniotic fluid aspiration into fetal lungs $\rightarrow$ pulmonary hypoplasia (cause of death).
Causes include ARPKD, obstructive uropathy (eg, posterior urethral valves), bilateral renal agenesis, chronic placental insufficiency.

Babies who can't "Pee" in utero develop Potter sequence.
POTTER sequence associated with:
Pulmonary hypoplasia
Oligohydramnios (trigger)
Twisted face
Twisted skin
Extremity defects
Renal failure (in utero)


Unilateral renal agenesis

Ureteric bud fails to develop and induce differentiation of metanephric mesenchyme $\rightarrow$ complete absence of kidney and ureter. Often diagnosed prenatally via ultrasound.

Multicystic dysplastic kidney

Ureteric bud fails to induce differentiation of metanephric mesenchyme $\rightarrow$ nonfunctional kidney consisting of cysts and connective tissue. Often diagnosed prenatally via ultrasound.

## Duplex collecting

 systemBifurcation of ureteric bud before it enters the metanephric blastema creates a Y-shaped bifid ureter. Duplex collecting system can alternatively occur through two ureteric buds reaching and interacting with metanephric blastema. Strongly associated with vesicoureteral reflux and/or ureteral obstruction, $\uparrow$ risk for UTIs.

## Congenital solitary

 functioning kidneyCondition of being born with only one functioning kidney. Majority asymptomatic with compensatory hypertrophy of contralateral kidney, but anomalies in contralateral kidney are common.

## - RENAL-ANATOMY

## Kidney anatomy and glomerular structure


*Components of glomerular filtration barrier.
Cross-section of glomerulus A

## Ureters: course



Ureters $\AA$ pass under uterine artery or under vas deferens (retroperitoneal).
Gynecologic procedures (eg, ligation of uterine or ovarian vessels) may damage ureter $\rightarrow$ ureteral obstruction or leak.

Left kidney is taken during donor transplantation because it has a longer renal vein.
Afferent $=$ Arriving.
Efferent $=$ Exiting.
Renal blood flow: renal artery $\rightarrow$ segmental artery $\rightarrow$ interlobar artery $\rightarrow$ arcuate artery $\rightarrow$ interlobular artery $\rightarrow$ afferent arteriole
$\rightarrow$ glomerulus $\rightarrow$ efferent arteriole $\rightarrow$ vasa rectal peritubular capillaries $\rightarrow$ venous outflow.


## RENAL—PHYSIOLOGY

## Fluid compartments



HIKIN': HIgh K+ INtracellularly.
60-40-20 rule (\% of body weight for average person):

- $60 \%$ total body water
- $40 \%$ ICF
- 20\% ECF

Plasma volume can be measured by radiolabeling albumin.
Extracellular volume can be measured by inulin or mannitol.
Osmolality $=285-295 \mathrm{mOsm} / \mathrm{kg} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.

Glomerular filtration barrier


Responsible for filtration of plasma according to size and net charge.
Composed of:

- Fenestrated capillary endothelium (size barrier)
- Fused basement membrane with heparan sulfate (negative charge and size barrier)
- Epithelial layer consisting of podocyte foot processes A (negative charge barrier)

Charge barrier is lost in nephrotic syndrome
$\rightarrow$ albuminuria, hypoproteinemia, generalized edema, hyperlipidemia.

## Renal clearance

$\mathrm{C}_{\mathrm{x}}=\mathrm{U}_{\mathrm{x}} \mathrm{V} / \mathrm{P}_{\mathrm{x}}=$ volume of plasma from which the substance is completely cleared per unit time. If $\mathrm{C}_{\mathrm{x}}<$ GFR: net tubular reabsorption of X. If $\mathrm{C}_{\mathrm{x}}>$ GFR: net tubular secretion of X . If $\mathrm{C}_{\mathrm{x}}=$ GFR: no net secretion or reabsorption.
$\mathrm{C}_{\mathrm{x}}=$ clearance of $\mathrm{X}(\mathrm{mL} / \mathrm{min})$.
$\mathrm{U}_{\mathrm{x}}=$ urine concentration of $\mathrm{X}(\mathrm{eg}, \mathrm{mg} / \mathrm{mL})$.
$P_{x}=$ plasma concentration of $X(e g, m g / m L)$.
$\mathrm{V}=$ urine flow rate ( $\mathrm{mL} / \mathrm{min}$ ).

Glomerular filtration rate

Inulin clearance can be used to calculate GFR because it is freely filtered and is neither reabsorbed nor secreted.
$\mathrm{GFR}=\mathrm{U}_{\text {inulin }} \times \mathrm{V} / \mathrm{P}_{\text {inulin }}=\mathrm{C}_{\text {inulin }}$
$=\mathrm{K}_{\mathrm{f}}\left[\left(\mathrm{P}_{\mathrm{GC}}-\mathrm{P}_{\mathrm{BS}}\right)-\left(\pi_{\mathrm{GC}}-\pi_{\mathrm{BS}}\right)\right]$
( $\mathrm{GC}=$ glomerular capillary; $\mathrm{BS}=$ Bowman space.) $\pi_{\mathrm{BS}}$ normally equals zero; $\mathrm{K}_{\mathrm{f}}=$ filtration constant. Normal GFR $\approx 100 \mathrm{~mL} / \mathrm{min}$.
Creatinine clearance is an approximate measure of GFR. Slightly overestimates GFR because creatinine is moderately secreted by renal tubules.
Incremental reductions in GFR define the stages of chronic kidney disease.


## Effective renal plasma

Effective renal plasma flow (eRPF) can be estimated using para-aminohippuric acid (PAH)
flow
clearance because between filtration and secretion there is nearly $100 \%$ excretion of all PAH that enters the kidney.
$e \mathrm{RPF}=\mathrm{U}_{\mathrm{PAH}} \times \mathrm{V} / \mathrm{P}_{\mathrm{PAH}}=\mathrm{C}_{\mathrm{PAH}}$.
Renal blood flow $(\mathrm{RBF})=$ RPF/(l - Hct $)$.
Plasma $=1-$ hematocrit.
eRPF underestimates true renal plasma flow (RPF) slightly.

Filtration
Filtration fraction $(\mathrm{FF})=$ GFR/RPF. Normal FF $=20 \%$.
Filtered load $(\mathrm{mg} / \mathrm{min})=\mathrm{GFR}(\mathrm{mL} / \mathrm{min})$ $\times$ plasma concentration $(\mathrm{mg} / \mathrm{mL})$.

GFR can be estimated with creatinine clearance.
RPF is best estimated with PAH clearance.


## Changes in glomerular dynamics

Effect	GFR	RPF	FF (GFR/RPF)
Afferent arteriole constriction	$\downarrow$	$\downarrow$	-
Efferent arteriole constriction	$\uparrow$	$\downarrow$	$\uparrow$
$\uparrow$ plasma protein concentration	$\downarrow$	-	$\downarrow$
$\downarrow$ plasma protein concentration	$\uparrow$	-	$\uparrow$
Constriction of ureter	$\downarrow$	-	$\downarrow$
Dehydration	$\downarrow$	$\downarrow$	$\uparrow$

## Calculation of reabsorption and secretion rate

Filtered load $=\mathrm{GFR} \times \mathrm{P}_{\mathrm{x}}$.
Excretion rate $=\mathrm{V} \times \mathrm{U}_{\mathrm{x}}$.
Reabsorption $=$ filtered - excreted.
Secretion $=$ excreted - filtered.
$\mathrm{FE}_{\mathrm{Na}}=\mathrm{Na}^{+}$excreted $/ \mathrm{Na}^{+}$filtered $=\mathrm{V} \times \mathrm{U}_{\mathrm{Na}} / \mathrm{GFR} \times \mathrm{P}_{\mathrm{Na}}\left(\mathrm{GFR}=\mathrm{U}_{\mathrm{Cr}} \times \mathrm{V} / \mathrm{P}_{\mathrm{Cr}}\right)=$
$\mathrm{P}_{\mathrm{Cr}} \times \mathrm{U}_{\mathrm{Na}} / \mathrm{U}_{\mathrm{Cr}} \times \mathrm{P}_{\mathrm{Na}}$

## Glucose clearance

Glucose at a normal plasma level (range 60-120 $\mathrm{mg} / \mathrm{dL}$ ) is completely reabsorbed in proximal convoluted tubule (PCT) by $\mathrm{Na}^{+} / g l u c o s e$ cotransport.
In adults, at plasma glucose of $\sim 200 \mathrm{mg} / \mathrm{dL}$, glucosuria begins (threshold). At rate of $\sim 375 \mathrm{mg} / \mathrm{min}$, all transporters are fully saturated $\left(\mathrm{T}_{\mathrm{m}}\right)$.
Normal pregnancy may decrease ability of PCT to reabsorb glucose and amino acids $\rightarrow$ glucosuria and aminoaciduria.

Glucosuria is an important clinical clue to diabetes mellitus.
Splay is the region of substance clearance between threshold and $\mathrm{T}_{\mathrm{m}}$; due to the heterogeneity of nephrons.


## Nephron physiology



Early DCT—reabsorbs $\mathrm{Na}^{+}, \mathrm{Cl}^{-}$. Makes urine fully dilute (hypotonic).
PTH $-\uparrow \mathrm{Ca}^{2+} / \mathrm{Na}^{+}$exchange $\rightarrow \mathrm{Ca}^{2+}$ reabsorption.
$5-10 \% \mathrm{Na}^{+}$reabsorbed.


Collecting tubule - reabsorbs $\mathrm{Na}^{+}$in exchange for secreting $\mathrm{K}^{+}$and $\mathrm{H}^{+}$(regulated by aldosterone).
Aldosterone-acts on mineralocorticoid receptor $\rightarrow$ mRNA $\rightarrow$ protein synthesis. In principal cells: $\uparrow$ apical $\mathrm{K}^{+}$conductance, $\uparrow \mathrm{Na}^{+} / \mathrm{K}^{+}$pump, $\uparrow$ epithelial $\mathrm{Na}^{+}$channel ( ENaC ) activity $\rightarrow$ lumen negativity $\rightarrow \mathrm{K}^{+}$secretion. In $\alpha$-intercalated cells: lumen negativity $\rightarrow \uparrow \mathrm{H}^{+}$ATPase activity $\rightarrow \uparrow \mathrm{H}^{+}$ secretion $\rightarrow \uparrow \mathrm{HCO}_{3}^{-} / \mathrm{Cl}^{-}$exchanger activity. ADH-acts at $\mathrm{V}_{2}$ receptor $\rightarrow$ insertion of aquaporin $\mathrm{H}_{2} \mathrm{O}$ channels on apical side. $3-5 \% \mathrm{Na}^{+}$reabsorbed.

Renal tubular defects	Fanconi syndrome is first (PCT), the rest are in alphabetic order.
Fanconi syndrome	Generalized reabsorptive defect in PCT.   Associated with $\uparrow$ excretion of nearly all amino acids, glucose, $\mathrm{HCO}_{3}{ }^{-}$, and $\mathrm{PO}_{4}{ }^{3-}$. May result in metabolic acidosis (proximal renal tubular acidosis).   Causes include hereditary defects (eg, Wilson disease, tyrosinemia, glycogen storage disease, cystinosis), ischemia, multiple myeloma, nephrotoxins/drugs (eg, ifosfamide, cisplatin, tenofovir, expired tetracyclines), lead poisoning.
Bartter syndrome	Reabsorptive defect in thick ascending loop of Henle. Autosomal recessive. Affects $\mathrm{Na}^{+} / \mathrm{K}^{+} / 2 \mathrm{Cl}^{-}$ cotransporter. Presents similarly to chronic loop diuretic use.   Results in hypokalemia and metabolic alkalosis with hypercalciuria.
Gitelman syndrome	Reabsorptive defect of NaCl in DCT. Similar to using lifelong thiazide diuretics.   Autosomal recessive. Less severe than Bartter syndrome. Leads to hypokalemia, hypomagnesemia, metabolic alkalosis, hypocalciuria.
Liddle syndrome	Gain of function mutation $\rightarrow \uparrow \mathrm{Na}^{+}$reabsorption in collecting tubules ( $\uparrow$ activity of epithelial $\mathrm{Na}^{+}$ channel). Presents like hyperaldosteronism, but aldosterone is nearly undetectable.   Autosomal dominant. Results in hypertension, hypokalemia, metabolic alkalosis, $\downarrow$ aldosterone. Treatment: Amiloride.
Syndrome of   Apparent Mineralocorticoid Excess	Hereditary deficiency of $11 \beta$-hydroxysteroid dehydrogenase, which normally converts cortisol (can activate mineralocorticoid receptors) to cortisone (inactive on mineralocorticoid receptors) in cells containing mineralocorticoid receptors. Excess cortisol in these cells from enzyme deficiency $\rightarrow \uparrow$ mineralocorticoid receptor activity $\rightarrow$ hypertension, hypokalemia, metabolic alkalosis. Low serum aldosterone levels. Can acquire disorder from glycyrrhetinic acid (present in licorice), which blocks activity of $11 \beta$-hydroxysteroid dehydrogenase.   Treatment: corticosteroids (exogenous corticosteroids $\downarrow$ endogenous cortisol production   $\rightarrow \downarrow$ mineralocorticoid receptor activation).   Cortisol tries to be the SAME as aldosterone.

## Relative concentrations along proximal convoluted tubules

[TF/P] > 1 when solute is reabsorbed less quickly than water
[TF/P] = 1 when solute and water are reabsorbed at the same rate
[TF/P] < 1 when solute is reabsorbed more quickly than water


Tubular inulin $\uparrow$ in concentration (but not amount) along the PCT as a result of water reabsorption. $\mathrm{Cl}^{-}$reabsorption occurs at a slower rate than $\mathrm{Na}^{+}$in early PCT and then matches the rate of $\mathrm{Na}^{+}$ reabsorption more distally. Thus, its relative concentration $\uparrow$ before it plateaus.

## Renin-angiotensin-aldosterone system



Renin	Secreted by JG cells in response to $\downarrow$ renal arterial pressure and $\uparrow$ renal sympathetic discharge $\left(\beta_{1}\right.$   effect).
AT IIAffects baroreceptor function; limits reflex bradycardia, which would normally accompany its pressor   effects. Helps maintain blood volume and blood pressure.	
ANP, BNPReleased from atria (ANP) and ventricles (BNP) in response to $\uparrow$ volume; may act as a "check"   on renin-angiotensin-aldosterone system; relaxes vascular smooth muscle via cGMP $\rightarrow \uparrow$ GFR,   $\downarrow$ renin. Dilates afferent arteriole, constricts efferent arteriole, promotes natriuresis.	
ADHPrimarily regulates osmolarity; also responds to low blood volume states.	
Aldosterone	Primarily regulates ECF volume and $\mathrm{Na}^{+}$content; responds to low blood volume states.

## Juxtaglomerular apparatus

Consists of mesangial cells, JG cells (modified smooth muscle of afferent arteriole) and the macula densa ( NaCl sensor, part of DCT). JG cells secrete renin in response to $\downarrow$ renal blood pressure and $\uparrow$ sympathetic tone $\left(\beta_{1}\right)$. Macula densa cells sense $\downarrow \mathrm{NaCl}$ delivery to DCT $\rightarrow \uparrow$ renin release $\rightarrow$ efferent arteriole vasoconstriction $\rightarrow \uparrow$ GFR.

JGA maintains GFR via renin-angiotensinaldosterone system.
$\beta$-blockers can decrease BP by inhibiting $\beta_{1}$-receptors of the JGA $\rightarrow \downarrow$ renin release.

## Kidney endocrine functions

Erythropoietin
Released by interstitial cells in peritubular capillary bed in response to hypoxia.

Caciferol
PCT cells convert 25-OH vitamin $\mathrm{D}_{3}$ to $1,25-$ $(\mathrm{OH})_{2}$ vitamin $\mathrm{D}_{3}$ (calcitriol, active form).

Prostaglandins

Dopamine

Paracrine secretion vasodilates the afferent arterioles to $\uparrow$ RBF.

Stimulates RBC proliferation in bone marrow. Erythropoietin often supplemented in chronic kidney disease.


NSAIDs block renal-protective prostaglandin synthesis $\rightarrow$ constriction of afferent arteriole and $\downarrow$ GFR; this may result in acute renal failure in low renal blood flow states.

## Hormones acting on kidney



Potassium shifts	Shlit $\mathrm{k}^{+}$Out of (cell (causing hyperkalemia)	SHIFTS ${ }^{+}$INTo cell (causing hypokalemia)
	Digitalis (blocks $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase)	
	HyperOsmolarity	Hypo-osmolarity
	Lysis of cells (eg, crush injury, rhabdomyolysis, tumor lysis syndrome)	
	Acidosis	Alkalosis
	$\beta$-blocker	$\beta$-adrenergic agonist ( $\uparrow \mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase)
	High blood Sugar (insulin deficiency)	Insulin ( $\uparrow \mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase)
	Patient with hyperkalemia? DO LAßS.	Insulin shifts $\mathrm{K}^{+}$into cells
Electrolyte disturbances		
electrolyte	Low serum concentration	high serum concentration
$\mathrm{Na}^{+}$	Nausea and malaise, stupor, coma, seizures	Irritability, stupor, coma
$\mathrm{K}^{+}$	U waves and flattened T waves on ECG, arrhythmias, muscle cramps, spasm, weakness	Wide QRS and peaked $T$ waves on ECG, arrhythmias, muscle weakness
$\mathrm{Ca}^{2+}$	Tetany, seizures, QT prolongation, twitching (Chvostek sign), spasm (Trousseau sign)	Stones (renal), bones (pain), groans (abdominal pain), thrones ( $\uparrow$ urinary frequency), psychiatric overtones (anxiety, altered mental status), but not necessarily calciuria
$\mathrm{Mg}^{2+}$	Tetany, torsades de pointes, hypokalemia	$\downarrow$ DTRs, lethargy, bradycardia, hypotension, cardiac arrest, hypocalcemia
$\mathrm{PO}_{4}{ }^{3-}$	Bone loss, osteomalacia (adults), rickets (children)	Renal stones, metastatic calcifications, hypocalcemia

## Features of renal disorders

CONDITION	BLOOD PRESSURE	PLASMA RENIN	ALDOSTERONE	SERUM $\mathrm{Mg}^{2+}$
Bartter syndrome	-	$\uparrow$	$\uparrow$	
Gitelman syndrome	-	$\uparrow$	$\uparrow$	$\downarrow$
Liddle syndrome	$\uparrow$	$\downarrow$	$\downarrow$	$\downarrow$
SIADH	$\uparrow$	$\downarrow$	$\downarrow$	
Primary   hyperaldosteronism   (Conn syndrome)	$\uparrow$	$\downarrow$	$\uparrow$	
Renin-secreting tumor	$\uparrow$	$\uparrow$	$\uparrow$	

## Acid-base physiology

|  | pH | $\mathrm{PCO}_{2}$ | $\left[\mathrm{HCO}_{3}{ }^{-}\right]$ | COMPENSATORY RESPONSE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Metabolic acidosis | $\downarrow$ | $\downarrow$ | $\downarrow$ | Hyperventilation (immediate) |
| Metabolic alkalosis | $\uparrow$ | $\uparrow$ | $\uparrow$ | Hypoventilation (immediate) |
| Respiratory acidosis | $\downarrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ renal $\left[\mathrm{HCO}_{3}{ }^{-}\right]$reabsorption (delayed) |
| Respiratory alkalosis | $\uparrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ renal $\left[\mathrm{HCO}_{3}{ }^{-}\right]$reabsorption (delayed) |

Key: $\uparrow \downarrow=1^{\circ}$ disturbance; $\downarrow \uparrow=$ compensatory response.
Henderson-Hasselbalch equation: $\mathrm{pH}=6.1+\log \frac{\left[\mathrm{HCO}_{3}{ }^{-}\right]}{0.03 \mathrm{PCO}_{2}}$
Predicted respiratory compensation for a simple metabolic acidosis can be calculated using the Winters formula. If measured $\mathrm{PCO}_{2}>$ predicted $\mathrm{PCO}_{2} \rightarrow$ concomitant respiratory acidosis; if measured $\mathrm{PcO}_{2}<$ predicted $\mathrm{PCO}_{2} \rightarrow$ concomitant respiratory alkalosis:

$$
\mathrm{PCO}_{2}=1.5\left[\mathrm{HCO}_{3}^{-}\right]+8 \pm 2
$$

## Acidosis/alkalosis



Renal tubular acidosis	A disorder of the renal tubules that leads to normal anion gap (hyperchloremic) metabolic acidosis.
RTA TYPE	NOTES
Distal renal tubular acidosis (type 1)	Urine $\mathrm{pH}>5.5$. Defect in ability of $\alpha$ intercalated cells to secrete $\mathrm{H}^{+} \rightarrow$ no new $\mathrm{HCO}_{3}^{-}$is generated $\rightarrow$ metabolic acidosis. Associated with hypokalemia, $\uparrow$ risk for calcium phosphate kidney stones (due to $\uparrow$ urine pH and $\uparrow$ bone turnover).   Causes: amphotericin B toxicity, analgesic nephropathy, congenital anomalies (obstruction) of urinary tract.
Proximal renal tubular acidosis (type 2)	Urine $\mathrm{pH}<5.5$. Defect in $\mathrm{PCT}_{\mathrm{HCO}}^{3}{ }^{-}$reabsorption $\rightarrow \uparrow$ excretion of $\mathrm{HCO}_{3}^{-}$in urine and subsequent metabolic acidosis. Urine is acidified by $\alpha$-intercalated cells in collecting tubule. Associated with hypokalemia, $\uparrow$ risk for hypophosphatemic rickets.   Causes: Fanconi syndrome and carbonic anhydrase inhibitors.
Hyperkalemic renal tubular acidosis (type 4)	Urine $\mathrm{pH}<5.5$. Hypoaldosteronism $\rightarrow$ hyperkalemia $\rightarrow \downarrow \mathrm{NH}_{3}$ synthesis in PCT $\rightarrow \downarrow \mathrm{NH}_{4}{ }^{+}$ excretion.   Causes: $\downarrow$ aldosterone production (eg, diabetic hyporeninism, ACE inhibitors, ARBs, NSAIDs, heparin, cyclosporine, adrenal insufficiency) or aldosterone resistance (eg, $\mathrm{K}^{+}$-sparing diuretics, nephropathy due to obstruction, TMP/SMX).

## RENAL-PATHOLOGY

Casts in urine	Presence of casts indicates that hematuria/pyuria is of glomerular or renal tubular origin.   Bladder cancer, kidney stones $\rightarrow$ hematuria, no casts.   Acute cystitis $\rightarrow$ pyuria, no casts.
RBC casts	Glomerulonephritis, malignant hypertension.
WBC casts	Tubulointerstitial inflammation, acute pyelonephritis, transplant rejection.
Fatty casts ("oval fat   bodies")	Nephrotic syndrome. Associated with "Maltese cross" sign.
Granular ("muddy   brown") casts	Acute tubular necrosis.
Waxy casts	End-stage renal disease/chronic renal failure.
Hyaline casts	Nonspecific, can be a normal finding, often seen in concentrated urine samples.

## Nomenclature of glomerular disorders

TYPE	CHARACTERISTICS	EXAMPLE
Focal	$<50 \%$ of glomeruli are involved	Focal segmental glomerulosclerosis
Diffuse	$>50 \%$ of glomeruli are involved	Diffuse proliferative glomerulonephritis
Proliferative	Hypercellular glomeruli	Membranoproliferative glomerulonephritis
Membranous	Thickening of glomerular basement membrane (GBM)	Membranous nephropathy
Primary glomerular disease	A $l^{\circ}$ disease of the kidney specifically impacting the glomeruli	Minimal change disease
Secondary glomerular disease	A systemic disease or disease of another organ system that also impacts the glomeruli	SLE, diabetic nephropathy

## Glomerular diseases



GRAMS OF PROTEIN EXCRETED PER DAY (g/day)

Nephritic syndrome	Nephrltic syndrome $=$ Inflammatory process. When it involves glomeruli, it leads to hematuria and RBC casts in urine. Associated with azotemia, oliguria, hypertension (due to salt retention), proteinuria.	
Acute poststreptococcal glomerulonephritis	LM-glomeruli enlarged and hypercellular A. IF-("starry sky") granular appearance ("lumpy-bumpy") B due to $\operatorname{IgG}, \mathrm{IgM}$, and C3 deposition along GBM and mesangium. EM-subepithelial immune complex (IC) humps.	Most frequently seen in children. Occurs ~ 2-4 weeks after group A streptococcal infection of pharynx or skin. Resolves spontaneously. Type III hypersensitivity reaction.   Presents with peripheral and periorbital edema, cola-colored urine, hypertension.   Positive strep titers/serologies, $\downarrow$ complement levels due to consumption.
Rapidly progressive (crescentic) glomerulonephritis	LM and IF-crescent moon shape C. Crescents consist of fibrin and plasma proteins (eg, C3b) with glomerular parietal cells, monocytes, macrophages.   Several disease processes may result in this pattern, in particular:   - Goodpasture syndrome-type II hypersensitivity; antibodies to GBM and alveolar basement membrane $\rightarrow$ linear IF   - Granulomatosis with polyangiitis (Wegener)   - Microscopic polyangiitis	Poor prognosis. Rapidly deteriorating renal function (days to weeks).   Hematuria/hemoptysis.   Treatment: emergent plasmapheresis.   PR3-ANCA/c-ANCA. Pauci-immune (no Ig/C3 deposition).   MPO-ANCA/p-ANCA. Pauci-immune (no Ig/C3 deposition).
Diffuse proliferative glomerulonephritis	Due to SLE or membranoproliferative glomerulonephritis.   LM—"wire looping" of capillaries.   EM-subendothelial and sometimes intramembranous IgG-based ICs often with C3 deposition.   IF-granular.	A common cause of death in SLE (think "wire lupus"). DPGN and MPGN often present as nephrotic syndrome and nephritic syndrome concurrently.
IgA nephropathy (Berger disease)	LM-mesangial proliferation.   EM-mesangial IC deposits.   IF-IgA-based IC deposits in mesangium.   Renal pathology of Henoch-Schönlein purpura.	Episodic gross hematuria that occurs concurrently with respiratory or GI tract infections (IgA is secreted by mucosal linings). Not to be confused with Buerger disease (thromboangiitis obliterans).

## Nephritic syndrome (continued)


$\mathrm{LM}=$ light microscopy; $\mathrm{EM}=$ electron microscopy; $\mathrm{IF}=$ immunofluorescence.

Nephrotic syndrome

## Focal segmental glomerulosclerosis

Minimal change
disease (lipoid nephrosis)

NephrOtic syndrome—massive prOteinuria (>3.5 g/day) with hypoalbuminemia, resulting edema, hyperlipidemia. Frothy urine with fatty casts. Due to podocyte damage disrupting glomerular filtration charge barrier. May be $1^{\circ}$ (eg, direct sclerosis of podocytes) or $2^{\circ}$ (systemic process [eg, diabetes] secondarily damages podocytes). Associated with hypercoagulable state (eg, thromboembolism) due to antithrombin (AT) III loss in urine and $\uparrow$ risk of infection (due to loss of immunoglobulins in urine and soft tissue compromise by edema).
Severe nephritic syndrome may present with nephrotic syndrome features (nephritic-nephrotic syndrome) if damage to GBM is severe enough to damage charge barrier.

LM—normal glomeruli (lipid may be seen in PCT cells).
IF $\Theta$.
EM—effacement of foot processes A.

Most common cause of nephrotic syndrome in children. Often $1^{\circ}$ (idiopathic) and may be triggered by recent infection, immunization, immune stimulus. Rarely, may be $2^{\circ}$ to lymphoma (eg, cytokine-mediated damage). $1^{\circ}$ disease has excellent response to corticosteroids.
LM—segmental sclerosis and hyalinosis B. Most common cause of nephrotic syndrome in IF—often $\Theta$, but may be $\oplus$ for nonspecific focal African Americans and Hispanics. Can be $1^{\circ}$ deposits of $\mathrm{IgM}, \mathrm{C} 3, \mathrm{Cl}$..
EM-effacement of foot process similar to minimal change disease. (idiopathic) or $2^{\circ}$ to other conditions (eg, HIV infection, sickle cell disease, heroin abuse, massive obesity, interferon treatment, chronic kidney disease due to congenital malformations). $1^{\circ}$ disease has inconsistent response to steroids. May progress to chronic renal disease.
Membranous nephropathy (membranous glomerulonephritis)

LM-diffuse capillary and GBM thickening $\mathbf{C}$. IF-granular as a result of immune complex deposition. Nephrotic presentation of SLE. EM-"spike and dome" appearance with subepithelial deposits.

## Amyloidosis

Diabetic glomerulonephropathy

LM - Congo red stain shows apple-green birefringence under polarized light due to amyloid deposition in the mesangium.

Most common cause of $1^{\circ}$ nephrotic syndrome in Caucasian adults. Can be $1^{\circ}$ (eg, antibodies to phospholipase $\mathrm{A}_{2}$ receptor) or $2^{\circ}$ to drugs (eg, NSAIDs, penicillamine), infections (eg, HBV, HCV), SLE, or solid tumors. $1^{\circ}$ disease has poor response to steroids. May progress to chronic renal disease.

Kidney is the most commonly involved organ (systemic amyloidosis). Associated with chronic conditions that predispose to amyloid deposition (eg, AL amyloid, AA amyloid).
Nonenzymatic glycosylation of GBM
$\rightarrow \uparrow$ permeability, thickening.

Nonenzymatic glycosylation of efferent arterioles
$\rightarrow \uparrow$ GFR $\rightarrow$ mesangial expansion.
Most common cause of end-stage renal disease in the United States.


Kidney Can lead to severe complications such as hydronephrosis, pyelonephritis. Presents with unilateral flank stones tenderness, colicky pain radiating to groin, hematuria. Treat and prevent by encouraging fluid intake. Most common kidney stone presentation: calcium oxalate stone in patient with hypercalciuria and normocalcemia.

Content	PRECIPITATES WITH	X-RAY FINDINGS	CT FINDINGS	URINE CRYSTAL	NOTES
Calcium	Calcium oxalate: hypocitraturia	Radiopaque	Radiopaque	Shaped like envelope A or dumbbell	Calcium stones most common ( $80 \%$ ); calcium oxalate more common than calcium phosphate stones.   Hypocitraturia often associated with $\downarrow$ urine pH . Can result from ethylene glycol (antifreeze) ingestion, vitamin C abuse, hypocitraturia, malabsorption (eg, Crohn disease). Treatment: thiazides, citrate, low-sodium diet.
	Calcium phosphate: $\uparrow \mathrm{pH}$	Radiopaque	Radiopaque	Wedgeshaped prism	Treatment: thiazides.
Ammonium magnesium phosphate	$\uparrow \mathrm{pH}$	Radiopaque	Radiopaque	Coffin lid B	Also known as struvite; account for $15 \%$ of stones. Caused by infection with urease $\oplus$ bugs (eg, Proteus mirabilis, Staphylococcus saprophyticus, Klebsiella) that hydrolyze urea to ammonia $\rightarrow$ urine alkalinization. Commonly form staghorn calculi $\mathbb{C}$. Treatment: eradication of underlying infection, surgical removal of stone.
Uric acid	$\downarrow \mathrm{pH}$	RadiolUcent	Minimally visible	Rhomboid D or rosettes	About $5 \%$ of all stones. Risk factors: $\downarrow$ urine volume, arid climates, acidic pH .   Visible on ultrasound. Strong association with hyperuricemia (eg, gout). Often seen in diseases with $\uparrow$ cell turnover, such as leukemia.   Treatment: alkalinization of urine, allopurinol.
Cystine	$\downarrow \mathrm{pH}$	Radiolucent	Sometimes visible	Hexagonal E	Hereditary (autosomal recessive) condition in which Cystine-reabsorbing PCT transporter loses function, causing cystinuria. Transporter defect also results in poor reabsorption of Ornithine, Lysine, Arginine (COLA). Cystine is poorly soluble, thus stones form in urine. Usually begins in childhood. Can form staghorn calculi. Sodium cyanide nitroprusside test $\oplus$.   "SIXtine" stones have SIX sides.   Treatment: low sodium diet, alkalinization of urine, chelating agents if refractory.



Hydronephrosis


Distention/dilation of renal pelvis and calyces A. Usually caused by urinary tract obstruction (eg, renal stones, BPH, cervical cancer, injury to ureter); other causes include retroperitoneal fibrosis, vesicoureteral reflux. Dilation occurs proximal to site of pathology. Serum creatinine becomes elevated only if obstruction is bilateral or if patient has only one kidney. Leads to compression and possible atrophy of renal cortex and medulla.

Originates from PCT cells $\rightarrow$ polygonal clear cells $\boldsymbol{A}$ filled with accumulated lipids and carbohydrates. Often golden-yellow B due to $\uparrow$ lipid content. Most common in men 50-70 years old. $\uparrow$ incidence with smoking and obesity. Manifests clinically with hematuria, palpable mass, $2^{\circ}$ polycythemia, flank pain, fever, weight loss. Invades renal vein then IVC and spreads hematogenously; metastasizes to lung and bone.
Treatment: resection if localized disease. Immunotherapy (eg, aldesleukin) or targeted therapy for advanced/metastatic disease. Resistant to chemotherapy and radiation therapy.


Most common $1^{\circ}$ renal malignancy C. Associated with gene deletion on chromosome 3 (sporadic or inherited as von Hippel-Lindau syndrome). $\mathrm{RCC}=3$ letters = chromosome 3 . Associated with paraneoplastic syndromes (eg, ectopic EPO, ACTH, PTHrP, renin).
"Silent" cancer because commonly presents as a metastatic neoplasm.

## Renal oncocytoma



Benign epithelial cell tumor arising from collecting ducts (arrows in A point to wellcircumscribed mass with central scar). Large eosinophilic cells with abundant mitochondria without perinuclear clearing B (vs chromophobe renal cell carcinoma). Presents with painless hematuria, flank pain, abdominal mass.
Often resected to exclude malignancy (eg, renal cell carcinoma).


Most common renal malignancy of early childhood (ages 2-4). Contains embryonic glomerular structures. Presents with large, palpable, unilateral flank mass A and/or hematuria.
"Loss of function" mutations of tumor suppressor genes WT1 or WT2 on chromosome 11.
May be a part of several syndromes:

- WAGR complex: Wilms tumor, Aniridia (absence of iris), Genitourinary malformations, mental Retardation/intellectual disability (WTl deletion)
- Denys-Drash: Wilms tumor, early-onset nephrotic syndrome, male pseudohermaphroditism (WTl mutation)
- Beckwith-Wiedemann: Wilms tumor, macroglossia, organomegaly, hemihypertrophy (WT2 mutation)


## Transitional cell carcinoma



Most common tumor of urinary tract system (can occur in renal calyces, renal pelvis, ureters, and bladder) A B. Painless hematuria (no casts) suggests bladder cancer.
Associated with problems in your Pee SAC: Phenacetin, Smoking, Aniline dyes, and Cyclophosphamide.


## Squamous cell carcinoma of the bladder

Chronic irritation of urinary bladder $\rightarrow$ squamous metaplasia $\rightarrow$ dysplasia and squamous cell carcinoma.
Risk factors include Schistosoma haematobium infection (Middle East), chronic cystitis, smoking, chronic nephrolithiasis. Presents with painless hematuria.

Urinary incontinence	
Stress incontinence	Outlet incompetence (urethral hypermobility or intrinsic sphincteric deficiency) $\rightarrow$ leak with   $\uparrow$ intra-abdominal pressure (eg, sneezing, lifting). $\uparrow$ risk with obesity, vaginal delivery, prostate   surgery. $\oplus$ bladder stress test (directly observed leakage from urethra upon coughing or Valsalva   maneuver). Treatment: pelvic floor muscle strengthening (Kegel) exercises, weight loss, pessaries.
Urgency incontinence	Overactive bladder (detrusor instability) $\rightarrow$ leak with urge to void immediately. Treatment: Kegel   exercises, bladder training (timed voiding, distraction or relaxation techniques), antimuscarinics   (eg, oxybutynin).
Mixed incontinence	Features of both stress and urgency incontinence.

## Urinary tract infection (acute bacterial cystitis)

Inflammation of urinary bladder. Presents as suprapubic pain, dysuria, urinary frequency, urgency. Systemic signs (eg, high fever, chills) are usually absent.
Risk factors include female gender (short urethra), sexual intercourse ("honeymoon cystitis"), indwelling catheter, diabetes mellitus, impaired bladder emptying.
Causes:

- E coli (most common).
- Staphylococcus saprophyticus - seen in sexually active young women (E coli is still more common in this group).
- Klebsiella.
- Proteus mirabilis-urine has ammonia scent.

Lab findings: $\oplus$ leukocyte esterase. $\oplus$ nitrites (indicate gram $\Theta$ organisms, especially E coli). Sterile pyuria and $\Theta$ urine cultures suggest urethritis by Neisseria gonorrhoeae or Chlamydia trachomatis.

## Pyelonephritis

## Acute pyelonephritis

Neutrophils infiltrate renal interstitium A. Affects cortex with relative sparing of glomeruli/vessels. Presents with fevers, flank pain (costovertebral angle tenderness), nausea/vomiting, chills. Causes include ascending UTI ( E coli is most common), hematogenous spread to kidney. Presents with WBCs in urine $+/-$ WBC casts. CT would show striated parenchymal enhancement B Risk factors include indwelling urinary catheter, urinary tract obstruction, vesicoureteral reflux, diabetes mellitus, pregnancy.
Complications include chronic pyelonephritis, renal papillary necrosis, perinephric abscess, urosepsis.
Treatment: antibiotics.

## Chronic

pyelonephritis
The result of recurrent episodes of acute pyelonephritis. Typically requires predisposition to infection such as vesicoureteral reflux or chronically obstructing kidney stones.

Coarse, asymmetric corticomedullary scarring, blunted calyx. Tubules can contain eosinophilic casts resembling thyroid tissue (thyroidization of kidney).
Xanthogranulomatous pyelonephritis—rare; characterized by widespread kidney damage due to granulomatous tissue containing foamy macrophages.


Acute generalized cortical infarction of both kidneys. Likely due to a combination of vasospasm and DIC.

Associated with obstetric catastrophes (eg, abruptio placentae), septic shock.

Renal osteodystrophy Hypocalcemia, hyperphosphatemia, and failure of vitamin D hydroxylation associated with chronic renal disease $\rightarrow 2^{\circ}$ hyperparathyroidism. Hyperphosphatemia also independently $\downarrow$ serum $\mathrm{Ca}^{2+}$ by causing tissue calcifications, whereas $\downarrow 1,25-(\mathrm{OH})_{2} \mathrm{D}_{3} \rightarrow \downarrow$ intestinal $\mathrm{Ca}^{2+}$ absorption. Causes subperiosteal thinning of bones.

Acute kidney injury Acute kidney injury is defined as an abrupt decline in renal function as measured by $\uparrow$ creatinine (acute renal failure) and $\uparrow$ BUN.


Consequences of renal failure

Inability to make urine and excrete nitrogenous wastes. Consequences (MAD HUNGER):

- Metabolic Acidosis
- Dyslipidemia (especially $\uparrow$ triglycerides)
- Hyperkalemia
- Uremia-clinical syndrome marked by $\uparrow$ BUN:
- Nausea and anorexia
- Pericarditis
- Asterixis
- Encephalopathy
- Platelet dysfunction
- $\mathrm{Na}^{+} / \mathrm{H}_{2} \mathrm{O}$ retention (HF, pulmonary edema, hypertension)
- Growth retardation and developmental delay
- Erythropoietin failure (anemia)
- Renal osteodystrophy

2 forms of renal failure: acute (eg, ATN) and chronic (eg, hypertension, diabetes mellitus, congenital anomalies).

## Acute interstitial nephritis (tubulointerstitial nephritis)

Acute interstitial renal inflammation. Pyuria (classically eosinophils) and azotemia occurring after administration of drugs that act as haptens, inducing hypersensitivity (eg, diuretics, penicillin derivatives, proton pump inhibitors, sulfonamides, rifampin, NSAIDs). Less commonly may be $2^{\circ}$ to other processes such as systemic infections (eg, mycoplasma) or autoimmune diseases (eg, Sjögren syndrome, SLE, sarcoidosis).

Associated with fever, rash, hematuria, and costovertebral angle tenderness, but can be asymptomatic.
Remember these P's:

- Pee (diuretics)
- Pain-free (NSAIDs)
- Penicillins and cephalosporins
- Proton pump inhibitors
- RifamPin

Acute tubular necrosis


Most common cause of acute kidney injury in hospitalized patients. Spontaneously resolves in many cases. Can be fatal, especially during initial oliguric phase. $\uparrow$ FENa.
Key finding: granular ("muddy brown") casts A. 3 stages:

1. Inciting event
2. Maintenance phase-oliguric; lasts l-3 weeks; risk of hyperkalemia, metabolic acidosis, uremia
3. Recovery phase-polyuric; BUN and serum creatinine fall; risk of hypokalemia

Can be caused by ischemic or nephrotoxic injury:

- Ischemic $-2^{\circ}$ to $\downarrow$ renal blood flow (eg, hypotension, shock, sepsis, hemorrhage, HF). Results in death of tubular cells that may slough into tubular lumen B (PCT and thick ascending limb are highly susceptible to injury).
- Nephrotoxic- $2^{\circ}$ to injury resulting from toxic substances (eg, aminoglycosides, radiocontrast agents, lead, cisplatin), crush injury (myoglobinuria), hemoglobinuria. PCT is particularly susceptible to injury.

Renal papillary necrosis


Sloughing of necrotic renal papillae $\triangle \rightarrow$ gross hematuria and proteinuria. May be triggered by recent infection or immune stimulus. Associated with sickle cell disease or trait, acute pyelonephritis, NSAIDs, diabetes mellitus.

SAAD papa with papillary necrosis:
Sickle cell disease or trait
Acute pyelonephritis
Analgesics (NSAIDs)
Diabetes mellitus

## Renal cyst disorders

Autosomal dominant polycystic kidney disease	Numerous cysts in cortex and medulla $A$ causing bilateral enlarged kidneys ultimately destroy kidney parenchyma. Presents with flank pain, hematuria, hypertension, urinary infection, progressive renal failure in $\sim 50 \%$ of individuals.   Mutation in PKD1 ( $85 \%$ of cases, chromosome 16) or PKD2 (15\% of cases, chromosome 4). Death from complications of chronic kidney disease or hypertension (caused by $\uparrow$ renin production). Associated with berry aneurysms, mitral valve prolapse, benign hepatic cysts.   Treatment: ACE inhibitors or ARBs.
Autosomal recessive polycystic kidney disease	Cystic dilation of collecting ducts B. Often presents in infancy. Associated with congenital hepatic fibrosis. Significant oliguric renal failure in utero can lead to Potter sequence. Concerns beyond neonatal period include systemic hypertension, progressive renal insufficiency, and portal hypertension from congenital hepatic fibrosis.
Medullary cystic disease	Inherited disease causing tubulointerstitial fibrosis and progressive renal insufficiency with inability to concentrate urine. Medullary cysts usually not visualized; shrunken kidneys on ultrasound. Poor prognosis.
Simple vs complex renal cysts	Simple cysts are filled with ultrafiltrate (anechoic on ultrasound C). Very common and account for majority of all renal masses. Found incidentally and typically asymptomatic. Complex cysts, including those that are septated, enhanced, or have solid components on imaging require follow-up or removal due to risk of renal cell carcinoma.



## - RENAL—PHARMACOLOGY

## Diuretics: site of action



## Mannitol



## Loop diuretics

## Furosemide, bumetanide, torsemide




Diuretics: electrolyte changes

Urine NaCl	$\uparrow$ with all diuretics (strength varies based on potency of diuretic effect). Serum NaCl may decrease as a result.
Urine $\mathrm{K}^{+}$	$\uparrow$ especially with loop and thiazide diuretics. Serum $\mathrm{K}^{+}$may decrease as a result.
Blood pH	$\downarrow$ (acidemia): carbonic anhydrase inhibitors: $\downarrow \mathrm{HCO}_{3}^{-}$reabsorption. $\mathrm{K}^{+}$sparing: aldosterone blockade prevents $\mathrm{K}^{+}$secretion and $\mathrm{H}^{+}$secretion. Additionally, hyperkalemia leads to $\mathrm{K}^{+}$entering all cells (via $\mathrm{H}^{+} / \mathrm{K}^{+}$exchanger) in exchange for $\mathrm{H}^{+}$exiting cells.   $\uparrow$ (alkalemia): loop diuretics and thiazides cause alkalemia through several mechanisms:   - Volume contraction $\rightarrow \uparrow$ AT II $\rightarrow \uparrow \mathrm{Na}^{+} / \mathrm{H}^{+}$exchange in PCT $\rightarrow \uparrow \mathrm{HCO}_{3}{ }^{-}$reabsorption ("contraction alkalosis")   - $\mathrm{K}^{+}$loss leads to $\mathrm{K}^{+}$exiting all cells (via $\mathrm{H}^{+} / \mathrm{K}^{+}$exchanger) in exchange for $\mathrm{H}^{+}$entering cells   - In low $\mathrm{K}^{+}$state, $\mathrm{H}^{+}$(rather than $\mathrm{K}^{+}$) is exchanged for $\mathrm{Na}^{+}$in cortical collecting tubule   $\rightarrow$ alkalosis and "paradoxical aciduria"
Urine $\mathrm{Ca}^{2+}$	$\uparrow$ with loop diuretics: $\downarrow$ paracellular $\mathrm{Ca}^{2+}$ reabsorption $\rightarrow$ hypocalcemia. $\downarrow$ with thiazides: enhanced $\mathrm{Ca}^{2+}$ reabsorption.


Angiotensinconverting enzyme inhibitors	Captopril, enalapril, lisinopril, ramipril.	
mechanism	Inhibit ACE $\rightarrow \downarrow$ AT II $\rightarrow \downarrow$ GFR by preventing constriction of efferent arterioles. $\uparrow$ renin due to loss of negative feedback. Inhibition of ACE also prevents inactivation of bradykinin, a potent vasodilator.	
clincal use	Hypertension, HF ( $\downarrow$ mortality), proteinuria, diabetic nephropathy. Prevent unfavorable heart remodeling as a result of chronic hypertension.	In diabetic nephropathy, $\downarrow$ intraglomerular pressure, slowing GBM thickening.
adverse effects	Cough, Angioedema (due to $\uparrow$ bradykinin; contraindicated in Cl esterase inhibitor deficiency), Teratogen (fetal renal malformations), $\uparrow$ Creatinine ( $\downarrow$ GFR), Hyperkalemia, and Hypotension. Used with caution in bilateral renal artery stenosis, because ACE inhibitors will further $\downarrow$ GFR $\rightarrow$ renal failure.	Captopril's CATCHH.

Angiotensin II receptor Losartan, candesartan, valsartan.

## blockers

MECHANSM	Selectively block binding of angiotensin II to AT $_{1}$ receptor. Effects similar to ACE inhibitors, but   ARBs do not increase bradykinin.
CLINCAL USE	Hypertension, HF , proteinuria, or diabetic nephropathy with intolerance to ACE inhibitors (eg,   cough, angioedema).
ADVERSE EFFECTS	Hyperkalemia, $\downarrow$ GFR, hypotension; teratogen.

Aliskiren

MECHANSM	Direct renin inhibitor, blocks conversion of angiotensinogen to angiotensin I.
CLINCAL USE	Hypertension.
ADVERSE EFFECTS	Hyperkalemia, $\downarrow$ GFR, hypotension. Relatively contraindicated in patients already taking ACE   inhibitors or ARBs.

NOTES

## HIGH-YIELD SYSTEMS

## Reproductive

"Artificial insemination is when the farmer does it to the cow instead of the bull."
"Whoever called it necking was a poor judge of anatomy." $\quad$-Student essay
"See, the problem is that God gives men a brain and a penis, and only enough blood to run one at a time."
-Robin Williams
"I think you can say that life is a system in which proteins and nucleic acids interact in ways that allow the structure to grow and reproduce. It's that growth and reproduction, the ability to make more of yourself, that's important."
-Andrew H. Knloo

Pmbryology	562
PAnatomy	573
PPhysiology	577
Pathology	585
Pharmacology	600

## - REPRODUCTIVE-EMBRYOLOGY

## Important genes of embryogenesis

Sonic hedgehog geneProduced at base of limbs in zone of polarizing activity. Involved in patterning along   anteroposterior axis and CNS development; mutation can cause holoprosencephaly.
Wnt-7 gene
Produced at apical ectodermal ridge (thickened ectoderm at distal end of each developing limb).
Necessary for proper organization along dorsal-ventral axis.

Early fetal development

Early embryonic
development


Within week 1	hCG secretion begins around the time of   implantation of blastocyst.	Blastocyst "sticks" at day 6
Within week 2	Bilaminar disc (epiblast, hypoblast).	2 weeks $=2$ layers.

## Embryologic derivatives

Ectoderm		External/outer layer
Surface ectoderm	Epidermis; adenohypophysis (from Rathke pouch); lens of eye; epithelial linings of oral cavity, sensory organs of ear, and olfactory epithelium; epidermis; anal canal below the pectinate line; parotid, sweat, mammary glands.	Craniopharyngioma-benign Rathke pouch tumor with cholesterol crystals, calcifications.
Neuroectoderm	Brain (neurohypophysis, CNS neurons, oligodendrocytes, astrocytes, ependymal cells, pineal gland), retina spinal cord.	Neuroectoderm-think CNS.
Neural crest	PNS (dorsal root ganglia, cranial nerves, autonomic ganglia, Schwann cells), melanocytes, chromaffin cells of adrenal medulla, parafollicular (C) cells of thyroid, pia and arachnoid, bones of the skull, odontoblasts, aorticopulmonary septum, endocardial cushions.	Neural crest-think PNS and non-neural structures nearby.
Mesoderm	Muscle, bone, connective tissue, serous linings of body cavities (eg, peritoneum), spleen (derived from foregut mesentery), cardiovascular structures, lymphatics, blood, wall of gut tube, upper vagina, kidneys, adrenal cortex, dermis, testes, ovaries. Notochord induces ectoderm to form neuroectoderm (neural plate). Its only postnatal derivative is the nucleus pulposus of the intervertebral disc.	Middle/"meat" layer.   Mesodermal defects = VACTERL:   Vertebral defects   Anal atresia   Cardiac defects   Tracheo-Esophageal fistula   Renal defects   Limb defects (bone and muscle)
Endoderm	Gut tube epithelium (including anal canal above the pectinate line), most of urethra and lower vagina (derived from urogenital sinus), luminal epithelial derivatives (eg, lungs, liver, gallbladder, pancreas, eustachian tube, thymus, parathyroid, thyroid follicular cells).	"Enternal" layer.

Types of errors in organ morphogenesis

| Agenesis | Absent organ due to absent primordial tissue. |
| :--- | :--- | :--- |
| Aplasia | Absent organ despite presence of primordial tissue. |
| Hypoplasia | Incomplete organ development; primordial tissue present. |
| Disruption | $2^{\circ}$ breakdown of previously normal tissue or structure (eg, amniotic band syndrome). |
| Deformation | Extrinsic disruption; occurs after embryonic period. |
| Malformation | Intrinsic disruption; occurs during embryonic period (weeks 3-8). |
| Sequence | Abnormalities result from a single $1^{\circ}$ embryologic event (eg, oligohydramnios $\rightarrow$ Potter sequence). |


Teratogens	Most susceptible in 3rd-8th weeks (embryonic period-organogenesis) of pregnancy. Before week 3, "all-or-none" effects. After week 8, growth and function affected.	
teratogen	Effects on fetus	NOTES
Medications		
ACE inhibitors	Renal damage	
Alkylating agents	Absence of digits, multiple anomalies	
Aminoglycosides	Ototoxicity	A mean guy hit the baby in the ear.
Antiepileptic drugs	Neural tube defects, cardiac defects, cleft palate, skeletal abnormalities (eg, phalanx/nail hypoplasia, facial dysmorphism)	High-dose folate supplementation recommended. Most commonly valproate, carbamazepine, phenytoin, phenobarbital.
Diethylstilbestrol	Vaginal clear cell adenocarcinoma, congenital Müllerian anomalies	
Folate antagonists	Neural tube defects	Includes trimethoprim, methotrexate, antiepileptic drugs.
Isotretinoin	Multiple severe birth defects	Contraception mandatory. IsoTERATinoin.
Lithium	Ebstein anomaly (apical displacement of tricuspid valve)	
Methimazole	Aplasia cutis congenita	
Tetracyclines	Discolored teeth, inhibited bone growth	"Teethracyclines."
Thalidomide	Limb defects (phocomelia, micromelia"flipper" limbs)	Limb defects with "tha-limb-domide."
Warfarin	Bone deformities, fetal hemorrhage, abortion, ophthalmologic abnormalities	Do not wage warfare on the baby; keep it heppy with heparin (does not cross placenta).
Substance abuse		
Alcohol	Common cause of birth defects and intellectual disability; fetal alcohol syndrome	
Cocaine	Low birth weight, preterm birth, IUGR, placental abruption	Cocaine $\rightarrow$ vasoconstriction.
Smoking (nicotine, CO)	Low birth weight (leading cause in developed countries), preterm labor, placental problems, IUGR, SIDS	Nicotine $\rightarrow$ vasoconstriction. $\mathrm{CO} \rightarrow$ impaired $\mathrm{O}_{2}$ delivery.
Other		
lodine (lack or excess)	Congenital goiter or hypothyroidism (cretinism)	
Maternal diabetes	Caudal regression syndrome (anal atresia to sirenomelia), congenital heart defects, neural tube defects, macrosomia	
Methylmercury	Neurotoxicity	Highest in swordfish, shark, tilefish, king mackerel.
Vitamin A excess	Extremely high risk for spontaneous abortions and birth defects (cleft palate, cardiac)	
X-rays	Microcephaly, intellectual disability	Minimized by lead shielding.

Fetal alcohol syndrome


Leading cause of intellectual disability in the US. Newborns of alcohol-consuming mothers have $\uparrow$ incidence of congenital abnormalities, including pre- and postnatal developmental retardation, microcephaly, facial abnormalities $\boldsymbol{A}$ (eg, smooth philtrum, thin vermillion border [upper lip], small palpebral fissures), limb dislocation, heart defects. Heart-lung fistulas and holoprosencephaly in most severe form. Mechanism is failure of cell migration.

## Twinning

Dizygotic ("fraternal") twins arise from 2 eggs that are separately fertilized by 2 different sperm (always 2 zygotes) and will have 2 separate amniotic sacs and 2 separate placentas (chorions). Monozygotic ("identical") twins arise from 1 fertilized egg (l egg + l sperm) that splits in early pregnancy. The timing of cleavage determines chorionicity (number of chorions) and amnionicity (number of amnions).

$1^{\circ}$ site of nutrient and gas exchange between mother and fetus.
Fetal component

Cytotrophoblast
Syncytiotrophoblast

Inner layer of chorionic villi.
Outer layer of chorionic villi; synthesizes and secretes hormones, eg, hCG (structurally similar to LH ; stimulates corpus luteum to secrete progesterone during first trimester).

Cytotrophoblast makes Cells.
Syncytiotrophoblast synthesizes hormones. Lacks MHC-I expression $\rightarrow \downarrow$ chance of attack by maternal immune system.

## Maternal component

Decidua basalis
Derived from endometrium. Maternal blood in lacunae.



Aortic arch derivatives Develop into arterial system.

1st	Part of maxillary artery (branch of external   carotid).	lst arch is maximal.
2nd	Stapedial artery and hyoid artery.	Second = Stapedial.
3rd	Common Carotid artery and proximal part of   internal Carotid artery.	C is 3rd letter of alphabet.
4th	On left, aortic arch; on right, proximal part of   right subclavian artery.	4th arch (4 limbs) = systemic.
6th	Proximal part of pulmonary arteries and (on left   only) ductus arteriosus.	6th arch = pulmonary and the pulmonary-to-



Branchial (pharyngeal) Composed of branchial clefts, arches, pouches. apparatus Branchial clefts-derived from ectoderm. Also called branchial grooves. Branchial arches-derived from mesoderm (muscles, arteries) and neural crest (bones, cartilage).
Branchial pouches-derived from endoderm.
CAP covers outside to inside:
Clefts = ectoderm
Arches $=$ mesoderm + neural crest
Pouches $=$ endoderm


## Branchial cleft derivatives

1st cleft develops into external auditory meatus.
2nd through 4th clefts form temporary cervical sinuses, which are obliterated by proliferation of 2nd arch mesenchyme.
Persistent cervical sinus $\rightarrow$ branchial cleft cyst within lateral neck, anterior to sternocleidomastoid muscle. Immobile during swallowing.

## Branchial arch derivatives

ARCH	CARTILAGE	MUSCLES	NERVEs ${ }^{\text {a }}$	ABNORMALITES/COMMENTS
1st arch	Maxillary process   $\rightarrow$ Maxilla, zygoMatic bone   Mandibular process   $\rightarrow$ Meckel cartilage   $\rightarrow$ Mandible,   Malleus and incus, sphenoMandibular ligament	Muscles of Mastication (temporalis, Masseter, lateral and Medial pterygoids), Mylohyoid, anterior belly of digastric, tensor tympani, tensor veli palatini	$\begin{aligned} & \mathrm{CN} \mathrm{~V}_{2} \text { and } \mathrm{V}_{3} \\ & \text { chew } \end{aligned}$	Pierre Robin sequencemicrognathia, glossoptosis, cleft palate, airway obstruction   Treacher Collins syndrome-neural crest dysfunction $\rightarrow$ mandibular hypoplasia, facial abnormalities
2nd arch	Reichert cartilage: Stapes, Styloid process, lesser horn of hyoid, Stylohyoid ligament	Muscles of facial expression, Stapedius, Stylohyoid, platySma, posterior belly of digastric	CN VII (facial expression) smile	
3rd arch	Greater horn of hyoid	Stylopharyngeus (think of stylopharyngeus innervated by glossopharyngeal nerve)	CN IX (stylopharyngeus) swallow stylishly	
4th-6th arches	Arytenoids, Cricoid, Corniculate, Cuneiform, Thyroid (used to sing and ACCCT)	4th arch: most pharyngeal constrictors; cricothyroid, levator veli palatini 6th arch: all intrinsic muscles of larynx except cricothyroid	4th arch: CN   X (superior laryngeal branch) simply swallow 6th arch: CN X (recurrent laryngeal branch) speak	Arches 3 and 4 form posterior $1 / 3$ of tongue; arch 5 makes no major developmental contributions

${ }^{a}$ These are the only CNs with both motor and sensory components (except $\mathrm{V}_{2}$, which is sensory only).
When at the restaurant of the golden arches, children tend to first chew (1), then smile (2), then swallow stylishly (3) or simply swallow (4), and then speak (6).

## Branchial pouch derivatives

POUCH	DERIVATIVES	NOTES	Mnemonic
1st pouch	Middle ear cavity, eustachian tube, mastoid air cells.	lst pouch contributes to endoderm-lined structures of ear.	Ear, tonsils, bottom-to-top:   1 (ear),   2 (tonsils),   3 dorsal (bottom for inferior parathyroids),   3 ventral (to = thymus),   4 (top = superior parathyroids).
2nd pouch	Epithelial lining of palatine tonsil.		
3rd pouch	Dorsal wings $\rightarrow$ inferior parathyroids.   Ventral wings $\rightarrow$ thymus.	3rd pouch contributes to 3 structures (thymus, left and right inferior parathyroids). 3rd-pouch structures end up below 4th-pouch structures.	
4th pouch	Dorsal wings $\rightarrow$ superior parathyroids. Ventral wings   $\rightarrow$ ultimobranchial body   $\rightarrow$ parafollicular (C) cells of thyroid.		
DiGeorge syndrome	Chromosome 22q11 deletion. Aberrant development of 3rd and 4th pouches $\rightarrow$ T-cell deficiency (thymic aplasia) and hypocalcemia (failure of parathyroid development). Associated with cardiac defects (conotruncal anomalies).		

## Cleft lip and cleft palate

Cleft lip-failure of fusion of the maxillary and medial nasal processes (formation of $1^{\circ}$ palate).
Cleft palate-failure of fusion of the two lateral palatine shelves or failure of fusion of lateral palatine shelves with the nasal septum and/or median palatine shelf (formation of $2^{\circ}$ palate).

Cleft lip and cleft palate have distinct, multifactorial etiologies, but often occur together.


Cleft palate (partial)

## Genital embryology



## SRY gene


(1) No Sertoli cells or lack of Müllerian inhibitory factor $\rightarrow$ develop both male and female internal genitalia and male external genitalia
(2) $5 \alpha$-reductase deficiency-inability to convert testosterone into DHT $\rightarrow$ male internal genitalia, ambiguous external genitalia until puberty (when $\uparrow$ testosterone levels cause masculinization)

## Uterine (Müllerian duct) anomalies

Septate uterus

Bicornuate uterus
Uterus didelphys

Common anomaly vs normal $\boldsymbol{A}$ uterus. Incomplete resorption of septum $\boldsymbol{B} \cdot \downarrow$ fertility. Treat with septoplasty.
Incomplete fusion of Müllerian ducts $\mathbf{C}$. $\uparrow$ risk of complicated pregnancy.
Complete failure of fusion $\rightarrow$ double uterus, vagina, and cervix $\mathbf{D}$. Pregnancy possible.


Normal



Septate



Bicornuate


Didelphys


## Male/female genital homologs



## Congenital penile abnormalities

## Hypospadias



Epispadias


Abnormal opening of penile urethra on ventral surface of penis due to failure of urethral folds to fuse.

Abnormal opening of penile urethra on dorsal surface of penis due to faulty positioning of genital tubercle.

Hypospadias is more common than epispadias. Associated with inguinal hernia and cryptorchidism.
Hypo is below.
Exstrophy of the bladder is associated with Epispadias.
When you have Epispadias, you hit your Eye when you pEE .

## Descent of testes and ovaries

	MALE REMNANT	FEMALE REMNANT
Gubernaculum (band   of fibrous tissue)	Anchors testes within scrotum.	Ovarian ligament + round ligament of uterus.
Processus vaginalis   (evagination of   peritoneum)	Forms tunica vaginalis.	Obliterated.

## REPRODUCTIVE-ANATOMY

## Gonadal drainage

Venous drainage	```Left ovary/testis \(\rightarrow\) left gonadal vein \(\rightarrow\) left renal vein \(\rightarrow\) IVC. Right ovary/testis \(\rightarrow\) right gonadal vein \(\rightarrow\) IVC.```	"Left gonadal vein takes the Longest way." Because the left spermatic vein enters the left renal vein at a $90^{\circ}$ angle, flow is less laminar
Lymphatic drainage	Ovaries/testes $\rightarrow$ para-aortic lymph nodes. Body of uterus/cervix/superior bladder   $\rightarrow$ external iliac nodes.   Prostate/cervix/corpus cavernosum/proximal   vagina $\rightarrow$ internal iliac nodes.   Distal vagina/vulva/scrotum/distal anus   $\rightarrow$ superficial inguinal nodes.   Glans penis $\rightarrow$ deep inguinal nodes.	on left than on right $\rightarrow$ left venous pressure $>$ right venous pressure $\rightarrow$ varicocele more common on the left.

## Female reproductive anatomy



LIGAMENT	CONNECTS	STRUCTURES CONTAINED	NOTES
Infundibulopelvic   ligament (suspensory   ligament of the   ovary)	Ovaries to lateral   pelvic wall	Ovarian vessels	Ligate vessels during oophorectomy to avoid   bleeding.
Cardinal ligament (not   labeled)	Cervix to side wall of   pelvis	Uterine vessels	Ureter courses retroperitoneally, close to gonadal   vessels $\rightarrow$ at risk of injury during ligation of   ovarian vessels.
Round ligament of the   uterus	Uterine fundus to labia   majora	Ureter at risk of injury during ligation of uterine   vessels in hysterectomy.	
Broad ligament	Uterus, fallopian tubes,   and ovaries to pelvic   side wall	Ovaries, fallopian   tubes, round   ligaments of uterus	Sampsong
Fold of peritoneum that comprises the			
mesosalpinx, mesometrium, and mesovarium.			


Female reproductive epithelial histology	tissue	histology/notes
	Vagina	Stratified squamous epithelium, nonkeratinized
A	Ectocervix	Stratified squamous epithelium, nonkeratinized
	Transformation zone	Squamocolumnar junction A (most common area for cervical cancer)
	Endocervix	Simple columnar epithelium
	Uterus	Simple columnar epithelium with long tubular glands in proliferative phase; coiled glands in secretory phase
	Fallopian tube	Simple columnar epithelium, ciliated
	Ovary, outer surface	Simple cuboidal epithelium (germinal epithelium covering surface of ovary)

## Male reproductive anatomy



Pathway of sperm during ejaculationSEVEN UP:
Seminiferous tubules
Epididymis
Vas deferens
Ejaculatory ducts
(Nothing)
Urethra
Penis

## Urethral injury

Suspect if blood seen at urethral meatus.
Posterior urethra-membranous urethra prone to injury from pelvic fracture. Injury can cause urine to leak into retropubic space.
Anterior urethra-bulbar and penile urethra at risk of damage due to perineal straddle injury. Can cause urine to leak beneath deep fascia of Buck. If fascia is torn, urine escapes into superficial perineal space.

Autonomic innervation of the male sexual response

Erection-Parasympathetic nervous system (pelvic nerve):

- $\mathrm{NO} \rightarrow \uparrow$ cGMP $\rightarrow$ smooth muscle relaxation $\rightarrow$ vasodilation $\rightarrow$ proerectile.
- Norepinephrine $\rightarrow \uparrow\left[\mathrm{Ca}^{2+}\right]_{\text {in }} \rightarrow$ smooth muscle contraction $\rightarrow$ vasoconstriction $\rightarrow$ antierectile.
Emission-Sympathetic nervous system
(hypogastric nerve).
Ejaculation-visceral and Somatic nerves (pudendal nerve).

Point, Squeeze, and Shoot.
PDE-5 inhibitors (eg, sildenafil) $\downarrow$ cGMP breakdown.

## Seminiferous tubules



- REPRODUCTIVE—PHYSIOLOGY


## Estrogen

SOURCE	Ovary $($ l $7 \beta$-estradiol $)$, placenta (estriol), adipose	Potency: estradiol $>$ estrone $>$ estriol
	tissue (estrone via aromatization).	
FUNCTION	Development of genitalia and breast, female fat	Pregnancy:
	distribution.	50 -fold $\uparrow$ in estradiol and estrone
	Growth of follicle, endometrial proliferation,	$=1000$-fold $\uparrow$ in estriol (indicator of fetal well-
	$\uparrow$ myometrial excitability.	being)

$\uparrow$ transport proteins, SHBG; $\uparrow$ HDL; $\downarrow$ LDL.


## Progesterone

SOURCE
FUNCTION

Corpus luteum, placenta, adrenal cortex, testes.
Stimulation of endometrial glandular secretions and spiral artery development.
Maintenance of pregnancy.
$\downarrow$ myometrial excitability.
Production of thick cervical mucus, which inhibits sperm entry into uterus.
$\uparrow$ body temperature.
Inhibition of gonadotropins (LH, FSH).
Uterine smooth muscle relaxation (preventing contractions).
$\downarrow$ estrogen receptor expression.
Prevents endometrial hyperplasia.

Fall in progesterone after delivery disinhibits prolactin $\rightarrow$ lactation. $\uparrow$ progesterone is indicative of ovulation.
Progesterone is pro-gestation.
Prolactin is pro-lactation.

## Oogenesis

$1^{\circ}$ oocytes begin meiosis I during fetal life and complete meiosis I just prior to ovulation.
Meiosis I is arrested in prOphase I for years until Ovulation ( $1^{\circ}$ oocytes).
Meiosis II is arrested in metaphase II until fertilization ( $2^{\circ}$ oocytes). "An egg met a sperm." If fertilization does not occur within 1 day, the $2^{\circ}$ oocyte degenerates.


Ovulation
$\uparrow$ estrogen, $\uparrow$ GnRH receptors on anterior pituitary. Estrogen surge then stimulates LH release $\rightarrow$ ovulation (rupture of follicle).
$\uparrow$ temperature (progesterone induced).

Mittelschmerz-transient mid-cycle ovulatory pain ("Middle hurts"); classically associated with peritoneal irritation (eg, follicular swelling/rupture, fallopian tube contraction). Can mimic appendicitis.

Menstrual cycle
Follicular phase can vary in length. Luteal phase is 14 days. Ovulation day +14 days $=$ menstruation.
Follicular growth is fastest during 2nd week of the follicular phase.
Estrogen stimulates endometrial proliferation.
Progesterone maintains endometrium to support implantation.
$\downarrow$ progesterone $\rightarrow \downarrow$ fertility.


## Dysmenorrhea

Oligomenorrhea
Polymenorrhea

## Metrorrhagia

Menorrhagia
Menometrorrhagia

Pain with menses; often associated with endometriosis.
> 35-day cycle.
<21-day cycle.
Frequent or irregular menstruation.
Heavy menstrual bleeding; > 80 mL blood loss or $>7$ days of menses.
Heavy, irregular menstruation.

## Pregnancy

Fertilization most commonly occurs in upper end of fallopian tube (the ampulla). Occurs within 1 day of ovulation.
Implantation within the wall of the uterus occurs 6 days after fertilization. Syncytiotrophoblasts secrete hCG, which is detectable in blood 1 week after conception and on home test in urine 2 weeks after conception.
Gestational age-calculated from date of last menstrual period.
Embryonic age-calculated from date of conception (gestational age minus 2 weeks).
Physiologic adaptations in pregnancy:

- $\uparrow$ cardiac output ( $\uparrow$ preload, $\downarrow$ afterload, $\uparrow \mathrm{HR} \rightarrow \uparrow$ placental and renal perfusion)
- Anemia ( $\uparrow \uparrow$ plasma, $\uparrow$ RBCs $\rightarrow \downarrow$ viscosity)
- Hypercoagulability (to $\downarrow$ blood loss at delivery)
- Hyperventilation (eliminate fetal $\mathrm{CO}_{2}$ )


Placental hormone secretion generally increases over the course of pregnancy, but hCG peaks at 8-10 weeks.
hCG

SOURCE
function

Syncytiotrophoblast of placenta.
Maintains corpus luteum (and thus progesterone) for first 8 -10 weeks of pregnancy by acting like LH (otherwise no luteal cell stimulation $\rightarrow$ abortion). After $8-10$ weeks, placenta synthesizes its own estriol and progesterone and corpus luteum degenerates.
Used to detect pregnancy because it appears early in urine (see above).
Has identical $\alpha$ subunit as LH, FSH, TSH (states of $\uparrow$ hCG can cause hyperthyroidism). $\beta$ subunit is unique (pregnancy tests detect $\beta$ subunit). hCG is $\uparrow$ in multiple gestations, hydatidiform moles, choriocarcinomas, and Down syndrome; hCG is $\downarrow$ in ectopic/failing pregnancy, Edward syndrome, and Patau syndrome.

## Apgar score

Appearance

Defined as $<2500 \mathrm{~g}$. Caused by prematurity or intrauterine growth restriction (IUGR). Associated with $\uparrow$ risk of sudden infant death syndrome (SIDS) and with $\uparrow$ overall mortality. Other problems include impaired thermoregulation and immune function, hypoglycemia, polycythemia, and impaired neurocognitive/emotional development. Complications include infections, respiratory distress syndrome, necrotizing enterocolitis, intraventricular hemorrhage, and persistent fetal circulation.

## Lactation

After labor, the $\downarrow$ in progesterone and estrogen disinhibits lactation. Suckling is required to
maintain milk production, since $\uparrow$ nerve stimulation $\rightarrow \uparrow$ oxytocin and prolactin.
Prolactin-induces and maintains lactation and $\downarrow$ reproductive function.
Oxytocin—assists in milk letdown; also promotes uterine contractions.
Breast milk is the ideal nutrition for infants $<6$ months old. Contains maternal immunoglobulins (conferring passive immunity; mostly $\operatorname{IgA}$ ), macrophages, lymphocytes. Breast milk reduces infant infections and is associated with $\downarrow$ risk for child to develop asthma, allergies, diabetes mellitus, and obesity. Exclusively breastfed infants require vitamin D supplementation.
Breastfeeding $\downarrow$ maternal risk of breast and ovarian cancer and facilitates mother-child bonding.

Diagnosed by amenorrhea for 12 months. $\downarrow$ estrogen production due to age-linked decline in number of ovarian follicles. Average age at onset is 51 years (earlier in smokers). Usually preceded by 4-5 years of abnormal menstrual cycles. Source of estrogen (estrone) after menopause becomes peripheral conversion of androgens, $\uparrow$ androgens $\rightarrow$ hirsutism.
$\uparrow \uparrow$ FSH is specific for menopause (loss of negative feedback on FSH due to $\downarrow$ estrogen).

Hormonal changes: $\downarrow$ estrogen, $\uparrow \uparrow$ FSH, $\uparrow$ LH (no surge), $\uparrow$ GnRH.
Causes HAVOCS: Hot flashes, Atrophy of the Vagina, Osteoporosis, Coronary artery disease, Sleep disturbances.
Menopause before age 40 suggests $1^{\circ}$ ovarian insufficiency (premature ovarian failure).

Androgens	Testosterone, dihydrotestosterone (DHT), andr	one.
SOURCE	DHT and testosterone (testis), AnDrostenedione (ADrenal)	Potency: DHT > testosterone > androstenedione.
function	Testosterone:   - Differentiation of epididymis, vas deferens, seminal vesicles (internal genitalia, except prostate).   - Growth spurt: penis, seminal vesicles, sperm, muscle, RBCs.   - Deepening of voice.   - Closing of epiphyseal plates (via estrogen converted from testosterone).   - Libido.   DHT:   - Early-differentiation of penis, scrotum, prostate.   - Late-prostate growth, balding, sebaceous gland activity.	Testosterone is converted to DHT by $5 \alpha$-reductase, which is inhibited by finasteride. In the male, androgens are converted to estrogen by cytochrome P-450 aromatase (primarily in adipose tissue and testis).   Aromatase is the key enzyme in conversion of androgens to estrogen.   Exogenous testosterone $\rightarrow$ inhibition of hypothalamic-pituitary-gonadal axis $\rightarrow \downarrow$ intratesticular testosterone $\rightarrow \downarrow$ testicular size $\rightarrow$ azoospermia.

## Spermatogenesis

Spermatogenesis begins at puberty with spermatogonia. Full development takes 2 months. Occurs in seminiferous tubules. Produces spermatids that undergo spermiogenesis (loss of cytoplasmic contents, gain of acrosomal cap) to form mature spermatozoon.
"Gonium" is going to be a sperm; "Zoon" is "Zooming" to egg.

			Spermiogenesis	
Spermatogonium Diploid (2N, 2C)	$1^{\circ}$ spermatocyte Diploid (2N, 4C)	$2^{\circ}$ spermatocyte Haploid (1N, 2C)	Spermatid Haploid (1N, 1C)	Mature spermatozoon Haploid (1N, 1C)



## Tanner stages of sexual development

Tanner stage is assigned independently to genitalia, pubic hair, and breast (eg, a person can have Tanner stage 2 genitalia, Tanner stage 3 pubic hair).



Diagnosing disorders	Testosterone	LH	Diagnosis
of sex hormones	$\uparrow$	$\uparrow$	Defective androgen receptor
	$\uparrow$	$\downarrow$	Testosterone-secreting tumor, exogenous
		$\uparrow$	steroids
	$\downarrow$	$\downarrow$	$1^{\circ}$ hypogonadism
	$\downarrow$	Hypogonadotropic hypogonadism	


Other disorders of sex   development	Disagreement between the phenotypic (external genitalia) and gonadal (testes vs ovaries) sex.   Include terms pseudohermaphrodite, hermaphrodite, and intersex.
46, XX DSD	Ovaries present, but external genitalia are virilized or ambiguous. Due to excessive and   inappropriate exposure to androgenic steroids during early gestation (eg, congenital adrenal   hyperplasia or exogenous administration of androgens during pregnancy).
46, XY DSD	Testes present, but external genitalia are female or ambiguous. Most common form is androgen   insensitivity syndrome (testicular feminization).


Placental aromatase
deficiency
:---
(ambiguous genitalia), $\uparrow$ serum testosterone and androstenedione. Can present with maternal
virilization during pregnancy (fetal androgens cross the placenta).

Androgen insensitivity Defect in androgen receptor resulting in normal-appearing female; female external genitalia with syndrome (46,XY) scant sexual hair, rudimentary vagina; uterus and fallopian tubes absent. Patients develop normal functioning testes (often found in labia majora; surgically removed to prevent malignancy). $\uparrow$ testosterone, estrogen, LH (vs sex chromosome disorders).

## 5 $\alpha$-reductase deficiency

Autosomal recessive; sex limited to genetic males (46,XY). Inability to convert testosterone to DHT. Ambiguous genitalia until puberty, when $\uparrow$ testosterone causes masculinization $/ \uparrow$ growth of external genitalia. Testosterone/estrogen levels are normal; LH is normal or $\uparrow$. Internal genitalia are normal.

Kallmann syndrome Failure to complete puberty; a form of hypogonadotropic hypogonadism. Defective migration of GnRH cells and formation of olfactory bulb; $\downarrow$ synthesis of GnRH in the hypothalamus; anosmia; $\downarrow$ GnRH, FSH, LH, testosterone. Infertility (low sperm count in males; amenorrhea in females).

Hydatidiform mole


Cystic swelling of chorionic villi and proliferation of chorionic epithelium (only trophoblast). Presents with vaginal bleeding, uterine enlargement more than expected, pelvic pressure/pain. Associated with hCG-mediated sequelae: early preeclampsia (before 20 weeks), theca-lutein cysts, hyperemesis gravidarum, hyperthyroidism.
Treatment: dilation and curettage and methotrexate. Monitor $\beta$-hCG.

	Complete mole	Partial mole
KARYOTYPE	46,XX; 46,XY	69,XXX; 69,XXY; 69,XYY
components	Most commonly enucleated egg + single sperm (subsequently duplicates paternal DNA)	2 sperm + 1 egg
FETAL PARTS	No	Yes (partial = fetal parts)
UTERINE SIZE	$\uparrow$	-
hcg	$\uparrow \uparrow \uparrow \uparrow$	$\uparrow$
IMAGING	"Honeycombed" uterus or "clusters of grapes" A, "snowstorm" on ultrasound B	Fetal parts
RISK OF MALIGNANCY (GESTATIONAL TROPHOBLASTIC NEOPLASIA)	15-20\%	$<5 \%$
RISk of Choriocarcinoma	2\%	Rare

Choriocarcinoma


Rare; can develop during or after pregnancy in mother or baby. Malignancy of trophoblastic tissue A (cytotrophoblasts, syncytiotrophoblasts); no chorionic villi present. $\uparrow$ frequency of bilateral/ multiple theca-lutein cysts. Presents with abnormal $\uparrow \beta$-hCG, shortness of breath, hemoptysis. Hematogenous spread to lungs.

## Pregnancy complications

Placental abruption (abruptio placentae)

Premature separation (partial or complete) of placenta from uterine wall before delivery of infant. Risk factors: trauma (eg, motor vehicle accident), smoking, hypertension, preeclampsia, cocaine abuse.
Presentation: abrupt, painful bleeding (concealed or apparent) in third trimester; possible DIC, maternal shock, fetal distress. Life threatening for mother and fetus.


Complete abruption with concealed hemorrhage


Partial abruption with apparent hemorrhage

Placenta accreta/ increta/percreta

## Placenta previa

Defective decidual layer $\rightarrow$ abnormal attachment and separation after delivery. Risk factors: prior C-section, inflammation, placenta previa. Three types distinguishable by the depth of penetration:
Placenta accreta—placenta attaches to myometrium without penetrating it; most common type.
Placenta increta—placenta penetrates into myometrium.
Placenta percreta-placenta penetrates ("perforates") through myometrium and into
 uterine serosa (invades entire uterine wall); can result in placental attachment to rectum or bladder.
Presentation: often detected on ultrasound prior to delivery. No separation of placenta after delivery $\rightarrow$ postpartum bleeding (can cause Sheehan syndrome).
Attachment of placenta to lower uterine segment over (or $<2 \mathrm{~cm}$ from) internal cervical os. Risk factors: multiparity, prior C-section. Associated with painless thirdtrimester bleeding.


## Pregnancy complications (continued)

Vasa previa	Fetal vessels run over, or in close proximity to, cervical os. May result in vessel rupture, exsanguination, fetal death. Presents with triad of membrane rupture, painless vaginal bleeding, fetal bradycardia (< 110 beats $/ \mathrm{min}$ ). Emergency C-section usually indicated. Frequently associated with velamentous umbilical cord insertion (cord inserts in chorioamniotic membrane rather than placenta $\rightarrow$ fetal vessels travel to placenta unprotected by Wharton jelly).	
Postpartum hemorrhage	Due to 4 T's: Tone (uterine atony; most common), Trauma (lacerations, incisions, uterine rupture), Thrombin (coagulopathy), Tissue (retained products of conception).	
Ectopic pregnancy	Most often in ampulla of fallopian tube ( $A$ shows $10-\mathrm{mm}$ embryo in oviduct at 7 weeks of gestation). Suspect with history of amenorrhea, lower-than-expected rise in hCG based on dates, and sudden lower abdominal pain; confirm with ultrasound. Often clinically mistaken for appendicitis.	Pain +/- bleeding. Risk factors:   - Prior ectopic pregnancy   - History of infertility   - Salpingitis (PID)   - Ruptured appendix   - Prior tubal surgery

## Amniotic fluid abnormalities

Polyhydramnios Too much amniotic fluid; associated with fetal malformations (eg, esophageal/duodenal atresia, anencephaly; both result in inability to swallow amniotic fluid), maternal diabetes, fetal anemia, multiple gestations.
Oligohydramnios
Too little amniotic fluid; associated with placental insufficiency, bilateral renal agenesis, posterior urethral valves (in males) and resultant inability to excrete urine. Any profound oligohydramnios can cause Potter sequence.

## Hypertension in pregnancy

Gestational hypertension (pregnancy-induced hypertension)	BP $>140 / 90 \mathrm{~mm} \mathrm{Hg}$ after 20th week of gestation. No pre-existing hypertension. No proteinuria or end-organ damage.	Treatment: antihypertensives (Hydralazine, $\alpha$-Methyldopa, Labetalol, Nifedipine), deliver at 37-39 weeks. Hypertensive Moms Love Nifedipine.
Preeclampsia	New-onset hypertension with either proteinuria or end-organ dysfunction after 20th week of gestation ( $<20$ weeks suggests molar pregnancy). May proceed to eclampsia (+ seizures) and/or HELLP syndrome.   Caused by abnormal placental spiral arteries   $\rightarrow$ endothelial dysfunction, vasoconstriction, ischemia.   Incidence $\uparrow$ in patients with pre-existing hypertension, diabetes, chronic renal disease, autoimmune disorders.   Complications: placental abruption, coagulopathy, renal failure, uteroplacental insufficiency, eclampsia.	Treatment: antihypertensives, IV magnesium sulfate (to prevent seizure); definitive is delivery of fetus.
Eclampsia	Preeclampsia + maternal seizures.   Maternal death due to stroke, intracranial hemorrhage, or ARDS.	Treatment: IV magnesium sulfate, antihypertensives, immediate delivery.
HELLP syndrome	Hemolysis, Elevated Liver enzymes, Low Platelets. A manifestation of severe preeclampsia. Blood smear shows schistocytes. Can lead to hepatic subcapsular hematomas $\rightarrow$ rupture $\rightarrow$ severe hypotension.	Treatment: immediate delivery.

## Gynecologic tumor epidemiology

Incidence (US)—endometrial > ovarian > cervical; cervical cancer is more common worldwide due to lack of screening or HPV vaccination.
Worst prognosis—ovarian > endometrial > cervical.

## Vaginal tumors

Squamous cell   carcinoma $(S C C)$	Usually $2^{\circ}$ to cervical SCC; $1^{\circ}$ vaginal carcinoma rare.
Clear cell   adenocarcinoma	Affects women who had exposure to DES in utero.
Sarcoma botryoides   (embryonal   rhabdomyosarcoma   variant)	Affects girls $<4$ years old; spindle-shaped cells; desmin $\oplus$.

## Cervical pathology

Dysplasia and carcinoma in situ


Invasive carcinoma

Disordered epithelial growth; begins at basal layer of squamocolumnar junction (transformation zone) and extends outward. Classified as CIN 1, CIN 2, or CIN 3 (severe dysplasia or carcinoma in situ), depending on extent of dysplasia. Associated with HPV 16 and HPV 18, which produce both the E6 gene product (inhibits $p 53$ suppressor gene) and E7 gene product (inhibits $R B$ suppressor gene). May progress slowly to invasive carcinoma if left untreated. Typically asymptomatic (detected with Pap smear) or presents as abnormal vaginal bleeding (often postcoital).
Risk factors: multiple sexual partners (\#1), smoking, starting sexual intercourse at young age, HIV infection.

Often squamous cell carcinoma. Pap smear can catch cervical dysplasia (koilocytes A) before it progresses to invasive carcinoma. Diagnose via colposcopy and biopsy. Lateral invasion can block ureters $\rightarrow$ renal failure.

Premature ovarian   failure	Premature atresia of ovarian follicles in women   of reproductive age. Patients present with signs   of menopause after puberty but before age 40.

Most common causes of anovulation

Pregnancy, polycystic ovarian syndrome, obesity, HPO axis abnormalities, premature ovarian failure, hyperprolactinemia, thyroid disorders, eating disorders, competitive athletics, Cushing syndrome, adrenal insufficiency.

Polycystic ovarian syndrome (SteinLeventhal syndrome)


Hyperinsulinemia and/or insulin resistance hypothesized to alter hypothalamic hormonal feedback response $\rightarrow \uparrow \mathrm{LH}: \mathrm{FSH}, \uparrow$ androgens (eg, testosterone) from theca interna cells, $\downarrow$ rate of follicular maturation $\rightarrow$ unruptured follicles (cysts) + anovulation. Common cause of subfertility in women. Enlarged, bilateral cystic ovaries A; presents with amenorrhea/oligomenorrhea, hirsutism, acne, $\downarrow$ fertility. Associated with obesity. $\uparrow$ risk of endometrial cancer $2^{\circ}$ to unopposed estrogen from repeated anovulatory cycles.
Treatment: weight reduction, OCPs, clomiphene citrate, ketoconazole, spironolactone.

## Ovarian cysts

Follicular cyst	Distention of unruptured graafian follicle. May be associated with hyperestrogenism, endometrial   hyperplasia. Most common ovarian mass in young women.
Theca-lutein cyst	Often bilateral/multiple. Due to gonadotropin stimulation. Associated with choriocarcinoma and   hydatidiform moles.

Ovarian neoplasms

Most common adnexal mass in women $>55$ years old. Can be benign or malignant. Arise from surface epithelium, germ cells, or sex cord stromal tissue.
Majority of malignant tumors are epithelial (serous cystadenocarcinoma most common). Risk $\uparrow$ with advanced age, infertility, endometriosis, PCOS, genetic predisposition (BRCA-1 or BRCA2 mutation, Lynch syndrome, strong family history). Risk $\downarrow$ with previous pregnancy, history of breastfeeding, OCPs, tubal ligation. Presents with adnexal mass, abdominal distension, bowel obstruction, pleural effusion. Monitor response to therapy/relapse by measuring CA 125 levels (not good for screening).

## Benign ovarian neoplasms

Serous cystadenoma
Mucinous cystadenoma
Endometrioma Endometriosis (ectopic endometrial tissue) within ovary with cyst formation. Presents with pelvic pain, dysmenorrhea, dyspareunia; symptoms may vary with menstrual cycle. "Chocolate cyst" endometrioma filled with dark, reddish-brown blood. Complex mass on ultrasound.
Mature cystic
teratoma
(dermoid cyst)

Brenner tumor Looks like bladder. Solid tumor that is pale yellow-tan and appears encapsulated. "Coffee bean" nuclei on H\&E stain.

Fibromas
Bundles of spindle-shaped fibroblasts. Meigs syndrome-triad of ovarian fibroma, ascites, hydrothorax. "Pulling" sensation in groin.
Thecoma Like granulosa cell tumors, may produce estrogen. Usually presents as abnormal uterine bleeding in a postmenopausal woman.


## Ovarian neoplasms (continued)



## Endometrial conditions

Polyp	Well-circumscribed collection of endometrial tissue within uterine wall. May contain smooth muscle cells. Can extend into endometrial cavity in the form of a polyp. May be asymptomatic or present with painless abnormal uterine bleeding.
Adenomyosis	Extension of endometrial tissue (glandular) into uterine myometrium. Caused by hyperplasia of basal layer of endometrium. Presents with dysmenorrhea, menorrhagia, uniformly enlarged, soft, globular uterus.   Treatment: GnRH agonists, hysterectomy.
Leiomyoma (fibroid)	Most common tumor in females. Often presents with multiple discrete tumors $\boldsymbol{A}$. $\uparrow$ incidence in African Americans. Benign smooth muscle tumor; malignant transformation to leiomyosarcoma is rare. Estrogen sensitive-tumor size $\uparrow$ with pregnancy and $\downarrow$ with menopause. Peak occurrence at 20-40 years old. May be asymptomatic, cause abnormal uterine bleeding, or result in miscarriage. Severe bleeding may lead to iron deficiency anemia. Whorled pattern of smooth muscle bundles with well-demarcated borders B.
Endometrial hyperplasia	Abnormal endometrial gland proliferation C usually caused by excess estrogen stimulation. $\uparrow$ risk for endometrial carcinoma; nuclear atypia is greater risk factor than complex (vs simple) architecture. Presents as postmenopausal vaginal bleeding. Risk factors include anovulatory cycles, hormone replacement therapy, polycystic ovarian syndrome, granulosa cell tumor.
Endometrial carcinoma	Most common gynecologic malignancy D. Peak occurrence at 55-65 years old. Presents with vaginal bleeding. Typically preceded by endometrial hyperplasia. Risk factors include prolonged use of estrogen without progestins, obesity, diabetes, hypertension, nulliparity, late menopause, Lynch syndrome.
Endometritis	Inflammation of endometrium $\boldsymbol{E}$ associated with retained products of conception following delivery, miscarriage, abortion, or with foreign body (eg, IUD). Retained material in uterus promotes infection by bacterial flora from vagina or intestinal tract. Treatment: gentamicin + clindamycin $+/-$ ampicillin.
Endometriosis	Non-neoplastic endometrial glands/stroma outside endometrial cavity $\boldsymbol{F}$. Can be found anywhere; most common sites are ovary (frequently bilateral), pelvis, peritoneum. In ovary, appears as endometrioma (blood-filled "chocolate cyst"). May be due to retrograde flow, metaplastic transformation of multipotent cells, transportation of endometrial tissue via lymphatic system. Characterized by cyclic pelvic pain, bleeding, dysmenorrhea, dyspareunia, dyschezia (pain with defecation), infertility; normal-sized uterus.   Treatment: NSAIDs, OCPs, progestins, GnRH agonists, danazol, laparoscopic removal.



## Breast pathology



Malignant breast tumors	Commonly postmenopausal. Usually arise from terminal duct lobular unit. Overexpression of estrogen/progesterone receptors or $c$-erbB2 (HER-2, an EGF receptor) is common; triple negative (ER $\Theta, \operatorname{PR} \Theta$, and Her $2 / \mathrm{Neu} \Theta$ ) more aggressive; type affects therapy and prognosis. Axillary lymph node involvement indicating metastasis is the most important prognostic factor in early-stage disease. Most often located in upper-outer quadrant of breast.	Risk factors: $\uparrow$ estrogen exposure, $\uparrow$ total number of menstrual cycles, older age at lst live birth, obesity ( $\uparrow$ estrogen exposure as adipose tissue converts androstenedione to estrone), BRCAl and BRCA2 gene mutations, African American ethnicity ( $\uparrow$ risk for triple $\Theta$ breast cancer).
TYPE	Characteristics	Notes
Noninvasive		
Ductal carcinoma in situ	Fills ductal lumen (black arrow in $\boldsymbol{A}$ indicates neoplastic cells in duct; blue arrow shows engorged blood vessel). Arises from ductal atypia. Often seen early as microcalcifications on mammography.	Early malignancy without basement membrane penetration.
Comedocarcinoma	Ductal, central necrosis (arrow in [B). Subtype of DCIS.	
Paget disease	Results from underlying DCIS or invasive breast cancer. Eczematous patches on nipple [C. Paget cells $=$ intraepithelial adenocarcinoma cells.	
Invasive		
Invasive ductal carcinoma	Firm, fibrous, "rock-hard" mass with sharp margins and small, glandular, duct-like cells D. Grossly, see classic "stellate" infiltration.	Most common ( $\sim 75 \%$ of all breast cancers).
Invasive lobular carcinoma	Orderly row of cells ("Indian file" $\mathbf{E}$ ), due to $\downarrow$ E-cadherin expression.	Often bilateral with multiple lesions in the same location.
Medullary carcinoma	Fleshy, cellular, lymphocytic infiltrate.	Good prognosis.
Inflammatory breast cancer	Dermal lymphatic invasion by breast carcinoma. Peau d'orange (breast skin resembles orange peel [F); neoplastic cells block lymphatic drainage.	Poor prognosis ( $50 \%$ survival at 5 years). Often mistaken for mastitis or Paget disease.

## Malignant breast tumors (continued)



Penile pathology

Peyronie disease	Abnormal curvature of penis due to fibrous plaque within tunica albuginea. Associated with   erectile dysfunction. Can cause pain, anxiety. Consider surgical repair once curvature stabilizes.   Distinct from penile fracture (rupture of corpora cavernosa due to forced bending).
Ischemic priapism	Painful sustained erection lasting $>4$ hours. Associated with sickle cell disease (sickled RBCs   get trapped in vascular channels), medications (eg, sildenafil, trazodone). Treat immediately   with corporal aspiration, intracavernosal phenylephrine, or surgical decompression to prevent   ischemia.
Squamous cell	More common in Asia, Africa, South America. Precursor in situ lesions: Bowen disease (in   penile shaft, presents as leukoplakia), erythroplasia of Queyrat (cancer of glans, presents as   erythroplakia), Bowenoid papulosis (carcinoma in situ of unclear malignant potential, presenting   as reddish papules). Associated with HPV and lack of circumcision.

## Cryptorchidism

Undescended testis (one or both); impaired spermatogenesis (since sperm develop best at temperatures $<37^{\circ} \mathrm{C}$ ); can have normal testosterone levels (Leydig cells are unaffected by temperature); associated with $\uparrow$ risk of germ cell tumors. Prematurity $\uparrow$ risk of cryptorchidism. $\downarrow$ inhibin $\mathrm{B}, \uparrow \mathrm{FSH}, \uparrow \mathrm{LH}$; testosterone $\downarrow$ in bilateral cryptorchidism, normal in unilateral.

## Varicocele



Dilated veins in pampiniform plexus due to $\uparrow$ venous pressure; most common cause of scrotal enlargement in adult males; most often on left side because of $\uparrow$ resistance to flow from left gonadal vein drainage into left renal vein; can cause infertility because of $\uparrow$ temperature; diagnosed by standing clinical exam (distension on inspection and "bag of worms" on palpation) or ultrasound with Doppler A; does not transilluminate.
Treatment: varicocelectomy, embolization.

Extragonadal germ cell Arise in midline locations. In adults, most commonly in retroperitoneum, mediastinum, pineal, and tumors suprasellar regions. In infants and young children, sacrococcygeal teratomas are most common.

Scrotal masses	Benign scrotal lesions present as testicular masses that can be transilluminated (vs solid testicular   tumors).
Congenital hydrocele	Common cause of scrotal swelling in infants,   due to incomplete obliteration of processus   vaginalis.
Acquired hydrocele	Scrotal fluid collection usually $2^{\circ}$ to infection,   trauma, tumor. If bloody $\rightarrow$ hematocele.
Cyst due to dilated epididymal duct or rete	Paratesticular fluctuant nodule.
testis.	


Testicular germ cell tumors	$\sim 95 \%$ of all testicular tumors. Most often occur in young men. Risk factors: cryptorchidism, Klinefelter syndrome. Can present as a mixed germ cell tumor. Testicular mass that does not transilluminate.
Seminoma	Malignant; painless, homogenous testicular enlargement; most common testicular tumor. Does not occur in infancy. Large cells in lobules with watery cytoplasm and "fried egg" appearance. $\uparrow$ placental ALP. Radiosensitive. Late metastasis, excellent prognosis.
Yolk sac (endodermal sinus) tumor	Yellow, mucinous. Aggressive malignancy of testes, analogous to ovarian yolk sac tumor. SchillerDuval bodies resemble primitive glomeruli. $\uparrow$ AFP is highly characteristic. Most common testicular tumor in boys $<3$ years old.
Choriocarcinoma	Malignant, $\uparrow$ hCG. Disordered syncytiotrophoblastic and cytotrophoblastic elements. Hematogenous metastases to lungs and brain. May produce gynecomastia, symptoms of hyperthyroidism (hCG is structurally similar to LH, FSH, TSH).
Teratoma	Unlike in females, mature teratoma in adult males may be malignant. Benign in children.
Embryonal carcinoma	Malignant, hemorrhagic mass with necrosis; painful; worse prognosis than seminoma. Often glandular/papillary morphology. "Pure" embryonal carcinoma is rare; most commonly mixed with other tumor types. May be associated with $\uparrow \mathrm{hCG}$ and normal AFP levels when pure ( $\uparrow \mathrm{AFP}$ when mixed).

## Testicular non-germ $5 \%$ of all testicular tumors. Mostly benign.

## cell tumors

Leydig cell	Golden brown color; contains Reinke crystals (eosinophilic cytoplasmic inclusions). Produce   androgens or estrogens $\rightarrow$ gynecomastia in men, precocious puberty in boys.
Sertoli cell	Androblastoma from sex cord stroma.

## Benign prostatic hyperplasia

Common in men $>50$ years old. Characterized by smooth, elastic, firm nodular enlargement (hyperplasia not hypertrophy) of periurethral (lateral and middle) lobes, which compress the urethra into a vertical slit. Not premalignant. Often presents with $\uparrow$ frequency of urination, nocturia, difficulty starting and stopping urine stream, dysuria. May lead to distention and hypertrophy of bladder, hydronephrosis, UTIs. $\uparrow$ free prostate-specific antigen (PSA).
Treatment: $\alpha_{1}$-antagonists (terazosin, tamsulosin), which cause relaxation of smooth muscle; $5 \alpha$-reductase inhibitors (eg, finasteride); tadalafil.


## Prostatitis

Dysuria, frequency, urgency, low back pain. Warm, tender, enlarged prostate. Acute: bacterial (eg, E coli); chronic: bacterial or abacterial.

## Prostatic adenocarcinoma

Common in men > 50 years old. Arises most often from posterior lobe (peripheral zone) of prostate gland and is most frequently diagnosed by $\uparrow$ PSA and subsequent needle core biopsies. Prostatic acid phosphatase (PAP) and PSA are useful tumor markers ( $\uparrow$ total PSA, with $\downarrow$ fraction of free PSA). Osteoblastic metastases in bone may develop in late stages, as indicated by lower back pain and $\uparrow$ serum ALP and PSA.

## - REPRODUCTIVE—PHARMACOLOGY

## Control of reproductive hormones



## Leuprolide

MECHANISM	GnRH analog with agonist properties when used in pulsatile fashion; antagonist properties when used in continuous fashion (downregulates GnRH receptor in pituitary $\rightarrow \downarrow$ FSH/LH).	Leuprolide can be used in lieu of GnRH.
CLINICAL USE	Uterine fibroids, endometriosis, precocious puberty, prostate cancer, infertility.	

\(\left.\begin{array}{l|l}\hline Estrogens \& Ethinyl estradiol, DES, mestranol. <br>

\hline MECHANISM \& Bind estrogen receptors.\end{array}\right]\)| Hypogonadism or ovarian failure, menstrual abnormalities, hormone replacement therapy in |
| :--- |
| Costmenopausal women; use in men with androgen-dependent prostate cancer. |

## Selective estrogen receptor modulators

Clomiphene	Antagonist at estrogen receptors in hypothalamus. Prevents normal feedback inhibition and   $\uparrow$ release of LH and FSH from pituitary, which stimulates ovulation. Used to treat infertility due   to anovulation (eg, PCOS). May cause hot flashes, ovarian enlargement, multiple simultaneous   pregnancies, visual disturbances.
Tamoxifen	Antagonist at breast; agonist at bone, uterus; $\uparrow$ risk of thromboembolic events and endometrial   cancer. Used to treat and prevent recurrence of ER/PR $\oplus$ breast cancer.
Raloxifene	Antagonist at breast, uterus; agonist at bone; $\uparrow$ risk of thromboembolic events but no increased risk   of endometrial cancer (vs tamoxifen); used primarily to treat osteoporosis.


Aromatase inhibitors	Anastrozole, letrozole, exemestane.
MECHANISM	Inhibit peripheral conversion of androgens to estrogen.
CLIIICALUSE	ER $\oplus$ breast cancer in postmenopausal women.

[^7]| Progestins | Levonorgestrel, medroxyprogesterone, etonogestrel, norethindrone, megestrol, and many others <br> when combined with estrogen. |
| :--- | :--- |
| MECHANISM | Bind progesterone receptors, $\downarrow$ growth and $\uparrow$ vascularization of endometrium, thicken cervical <br> mucus. |
| CLINICALUSE |  |

## Copper intrauterine device

MECHANISM	Produces local inflammatory reaction toxic to sperm and ova, preventing fertilization and   implantation; hormone free.
CLINICAL USE	Long-acting reversible contraception. Most effective emergency contraception.
ADVERSE EFFECTS	Heavier or longer menses, dysmenorrhea. Risk of PID with insertion (contraindicated in active   pelvic infection).

Terbutaline, ritodrine $\quad \beta_{2}$-agonists that relax the uterus; used to $\downarrow$ contraction frequency in women during labor.

## Danazol

MECHANISM	Synthetic androgen that acts as partial agonist at androgen receptors.
CLIIICAL USE	Endometriosis, hereditary angioedema.
ADVERSEEFFECTS	Weight gain, edema, acne, hirsutism, masculinization, $\downarrow$ HDL levels, hepatotoxicity.

## Testosterone, methyltestosterone

MECHANISM	Agonists at androgen receptors.
CLIIICALUSE	Treat hypogonadism and promote development of $2^{\circ}$ sex characteristics; stimulate anabolism to   promote recovery after burn or injury.
ADVERSEEFFECTS	Causes masculinization in females; $\downarrow$ intratesticular testosterone in males by inhibiting release of
	LH (via negative feedback) $\rightarrow$ gonadal atrophy. Premature closure of epiphyseal plates. $\uparrow$ LDL,
$\downarrow$ HDL.	


Antiandrogens	Testosterone $\xrightarrow{5 \alpha \text {-reductase }}$ DHT (more potent).	
Finasteride	$5 \alpha$-reductase inhibitor ( $\downarrow$ conversion of testosterone to DHT). Used for BPH and malepattern baldness.	
Flutamide	Nonsteroidal competitive inhibitor at androgen receptors. Used for prostate carcinoma.	
Ketoconazole	Inhibits steroid synthesis (inhibits 17,20-desmolase).	Used for polycystic ovarian syndrome to reduce androgenic symptoms. Both have side effects of gynecomastia and amenorrhea.
Spironolactone	Inhibits steroid binding, $17 \alpha$-hydroxylase, and 17,20-desmolase.	

Tamsulosin $\quad \alpha_{1}$-antagonist used to treat BPH by inhibiting smooth muscle contraction. Selective for $\alpha_{1 A, D}$ receptors (found on prostate) vs vascular $\alpha_{1 B}$ receptors.
Phosphodiesterase $\quad$ Sildenafil, vardenafil, tadalafil.
type 5 inhibitors

mechanism	Inhibit PDE-5 $\rightarrow \uparrow$ cGMP $\rightarrow$ prolonged smooth muscle relaxation in response to NO $\rightarrow \uparrow$ blood flow in corpus cavernosum of penis, $\downarrow$ pulmonary vascular resistance.	Sildenafil, vardenafil, and tadalafil fill the penis.
Clinical use	Erectile dysfunction, pulmonary hypertension, BPH (tadalafil only).	
ADVERSE EfFects	Headache, flushing, dyspepsia, cyanopia (blue-tinted vision). Risk of life-threatening hypotension in patients taking nitrates.	"Hot and sweaty," but then Headache, Heartburn, Hypotension.

## Minoxidil

MECHANSM	Direct arteriolar vasodilator.
CLINCAL USE	Androgenetic alopecia; severe refractory hypertension.

## HIGH-YIELD SYSTEMS

## Respiratory

"There's so much pollution in the air now that if it weren't for our lungs, there'd be no place to put it all."
-Robert Orben
"Mars is essentially in the same orbit. Somewhat the same distance from the Sun, which is very important. We have seen pictures where there are canals, we believe, and water. If there is water, that means there is oxygen. If there is oxygen, that means we can breathe."
-Former Vice President Dan Quayle

DEmbryology	606
DAnatomy	608
DPhysiology	610
Pathology	616
DPharmacology	627

"Whenever I feel blue, I start breathing again."
-L. Frank Baum
"Life is not the amount of breaths you take; it's the moments that take your breath away."

- RESPIRATORY—EMBRYOLOGY

Lung development	Occurs in five periods. Initial development includes development of lung bud from distal end of respiratory diverticulum during week 4. Lung bud divides into two bronchial buds that branch off into bronchi.	
Stage	Important terms	NOTES
Embryonic (weeks 4-7)	Lung bud $\rightarrow$ trachea $\rightarrow$ mainstem bronchi $\rightarrow$ secondary (lobar) bronchi $\rightarrow$ tertiary (segmental) bronchi.	Errors at this stage can lead to TE fistula.
Pseudoglandular (weeks 5-16)	Endodermal tubules $\rightarrow$ terminal bronchioles. Surrounded by modest capillary network.	Respiration impossible, incompatible with life.
Canalicular (weeks 16-26)	Terminal bronchioles $\rightarrow$ respiratory bronchioles $\rightarrow$ alveolar ducts. Surrounded by prominent capillary network.	Airways increase in diameter. Respiration capable at 25 weeks.
Saccular (weeks 26-birth)	Alveolar ducts $\rightarrow$ terminal sacs. Terminal sacs separated by $1^{\circ}$ septae. Pneumocytes develop.	
Alveolar (weeks 32-8 years)	Terminal sacs $\rightarrow$ adult alveoli (due to $2^{\circ}$ septation).   In utero, "breathing" occurs via aspiration and expulsion of amniotic fluid $\rightarrow \uparrow$ vascular resistance through gestation.   At birth, fluid gets replaced with air $\rightarrow \downarrow$ in pulmonary vascular resistance.	At birth: 20-70 million alveoli.   By 8 years: 300-400 million alveoli.



## Congenital lung malformations

Pulmonary hypoplasia Poorly developed bronchial tree with abnormal histology usually involving right lung. Associated with congenital diaphragmatic hernia, bilateral renal agenesis (Potter sequence [syndrome]).
Bronchogenic cysts Caused by abnormal budding of the foregut and dilation of terminal or large bronchi. Discrete, round, sharply defined and air-filled densities on CXR. Drain poorly and cause chronic infections.

## Pneumocytes

Type I cells	97\% of alveolar surfaces. Line the alveoli. Squamous; thin for optimal gas diffusion.	Collapsing pressure $(P)=\frac{2(\text { surface tension })}{\text { radius }}$
Type II cells	Secrete pulmonary surfactant $\rightarrow \downarrow$ alveolar surface tension, prevents alveolar collapse, $\downarrow$ lung recoil, and $\uparrow$ compliance. Cuboidal and clustered $\boldsymbol{A}$. Also serve as precursors to type I cells and other type II cells. Type II cells proliferate during lung damage.	Alveoli have $\uparrow$ tendency to collapse on expiration as radius $\downarrow$ (law of Laplace).   Pulmonary surfactant is a complex mix of lecithins, the most important of which is dipalmitoylphosphatidylcholine.   Surfactant synthesis begins around week 26 of gestation, but mature levels are not achieved until around week 35 .
Club cells	Nonciliated; low-columnar/cuboidal with secretory granules. Secrete component of surfactant; degrade toxins; act as reserve cells.	

## Neonatal respiratory distress syndrome



Surfactant deficiency $\rightarrow \uparrow$ surface tension $\rightarrow$ alveolar collapse ("ground-glass" appearance of lung fields) A. Screening tests for fetal lung maturity: lecithin-sphingomyelin (L/S) ratio in amniotic fluid ( $>2$ is healthy; $<1.5$ predictive of NRDS), foam stability index test, surfactantalbumin ratio. Persistently low $\mathrm{O}_{2}$ tension $\rightarrow$ risk of PDA.
Risk factors: prematurity, maternal diabetes (due to $\uparrow$ fetal insulin), C-section delivery ( $\downarrow$ release of fetal glucocorticoids).
Complications: metabolic acidosis, PDA, necrotizing enterocolitis.
Treatment: maternal steroids before birth; artificial surfactant for infant.
Therapeutic supplemental $\mathrm{O}_{2}$ can result in Retinopathy of prematurity, Intraventricular hemorrhage, Bronchopulmonary dysplasia (RIB).


- RESPIRATORY—ANATOMY


## Respiratory tree

## Conducting zone

Large airways consist of nose, pharynx, larynx, trachea, and bronchi. Small airways consist of bronchioles that further divide into terminal bronchioles (large numbers in parallel $\rightarrow$ least airway resistance).
Warms, humidifies, and filters air but does not participate in gas exchange $\rightarrow$ "anatomic dead space."
Cartilage and goblet cells extend to end of bronchi.
Pseudostratified ciliated columnar cells primarily make up epithelium of bronchus and extend to beginning of terminal bronchioles, then transition to cuboidal cells. Clear mucus and debris from lungs (mucociliary escalator).
Airway smooth muscle cells extend to end of terminal bronchioles (sparse beyond this point).
Respiratory zone
Lung parenchyma; consists of respiratory bronchioles, alveolar ducts, and alveoli. Participates in gas exchange.
Mostly cuboidal cells in respiratory bronchioles, then simple squamous cells up to alveoli. Cilia terminate in respiratory bronchioles. Alveolar macrophages clear debris and participate in immune response.


## Lung relations

Right lung has 3 lobes; Left has Less Lobes (2) and Lingula (homolog of right middle lobe). Right lung is more common site for inhaled foreign body because the right main stem bronchus is wider and more vertical than the left.

If you aspirate a peanut:

- While upright-enters inferior segment of right inferior lobe.
- While supine-enters superior segment of right inferior lobe.

Instead of a middle lobe, the left lung has a space occupied by the heart.
The relation of the pulmonary artery to the bronchus at each lung hilum is described by RALS—Right Anterior; Left Superior.


Diaphragm structures Structures perforating diaphragm:


- At T8: IVC
- At T10: esophagus, vagus (CN 10; 2 trunks)
- At T12: aorta (red), thoracic duct (white), azygos vein (blue) ("At T-1-2 it's the red, white, and blue")
Diaphragm is innervated by C3, 4, and 5 (phrenic nerve). Pain from diaphragm irritation (eg, air, blood, or pus in peritoneal cavity) can be referred to shoulder (C5) and trapezius ridge ( $\mathrm{C} 3,4$ ).

Number of letters $=\mathrm{T}$ level:
T8: vena cava
T10: "oesophagus"
T12: aortic hiatus
I (IVC) ate (8) ten (10) eggs (esophagus) at (aorta) twelve (12).
C3, 4, 5 keeps the diaphragm alive.
Other bifurcations:

- The common carotid bifourcates at C4.
- The trachea bifourcates at T4.
- The abdominal aorta bifourcates at L4.
- RESPIRATORY—PHYSIOLOGY



## Determination of physiologic dead space

$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{T}} \times \frac{\mathrm{PaCO}_{2}-\mathrm{PECO}_{2}}{\mathrm{PaCO}_{2}}$
$\mathrm{V}_{\mathrm{D}}=$ physiologic dead space $=$ anatomic dead space of conducting airways plus alveolar dead space; apex of healthy lung is largest contributor of alveolar dead space. Volume of inspired air that does not take part in gas exchange.
$\mathrm{V}_{\mathrm{T}}=$ tidal volume.
$\mathrm{PaCO}_{2}=$ arterial $\mathrm{PCO}_{2}$.
$\mathrm{PECO}_{2}=$ expired air $\mathrm{PCO}_{2}$.

Taco, Paco, Peco, Paco (refers to order of variables in equation)
Physiologic dead space-approximately equivalent to anatomic dead space in normal lungs. May be greater than anatomic dead space in lung diseases with $\dot{V} / \underline{Q}$ defects. Pathologic dead space-when part of the respiratory zone becomes unable to perform gas exchange. Ventilated but not perfused.

## Ventilation

Minute ventilation	Total volume of gas entering lungs per minute	Normal values:   $\left(V_{E}\right)$
$V_{E}=V_{T} \times R R$	Respiratory rate $(R R)=12-20$ breaths/min	
Alveolar ventilation	$V_{0}$ Volume of gas per unit time that reaches alveoli	$V_{T}=500 \mathrm{~mL} / \mathrm{breath}$
$\left(V_{A}\right)$	$\mathrm{V}_{\mathrm{A}}=\left(\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{D}}\right) \times \mathrm{RR}$	

## Lung and chest wall

Elastic recoil-tendency for lungs to collapse inward and chest wall to spring outward. At FRC, inward pull of lung is balanced by outward pull of chest wall, and system pressure is atmospheric.
Elastic properties of both chest wall and lungs determine their combined volume.
At FRC, airway and alveolar pressures are 0 , and intrapleural pressure is negative (prevents pneumothorax). PVR is at minimum.
Compliance-change in lung volume for a change in pressure; expressed as $\Delta \mathrm{V} /$ $\Delta \mathrm{P}$ and is inversely proportional to wall stiffness. High compliance $=$ lung easier to fill, lower compliance = lung harder to fill. $\downarrow$ in pulmonary fibrosis, pneumonia, pulmonary edema; $\uparrow$ in emphysema, normal aging. Surfactant increases compliance. Hysteresis-lung inflation curve follows a different curve than the lung deflation curve due to need to overcome surface tension forces in inflation.


Compliant lungs comply (cooperate) and fill easily with air.

## Hemoglobin



Hemoglobin ( Hb ) is composed of 4 polypeptide subunits ( $2 \alpha$ and $2 \beta$ ) and exists in 2 forms:

- T (taut; deoxygenated) form has low affinity for $\mathrm{O}_{2}$, thus promoting release/unloading of $\mathrm{O}_{2}$.
- R (relaxed; oxygenated) form has high affinity for $\mathrm{O}_{2}(300 \times)$. Hb exhibits positive cooperativity and negative allostery.
$\uparrow \mathrm{Cl}^{-}, \mathrm{H}^{+}, \mathrm{CO}_{2}, 2,3-\mathrm{BPG}$, and temperature favor taut form over relaxed form (shifts dissociation curve right $\rightarrow \uparrow \mathrm{O}_{2}$ unloading).

Fetal Hb ( $2 \alpha$ and $2 \gamma$ subunits) has a higher affinity for $\mathrm{O}_{2}$ than adult Hb , driving diffusion of oxygen across the placenta from mother to fetus. $\uparrow \mathrm{O}_{2}$ affinity results from $\downarrow$ affinity of HbF for 2,3-BPG.
Taut in Tissues.
Relaxed in Respiratory area.

Hemoglobin acts as buffer for $\mathrm{H}^{+}$ions.

## Hemoglobin modifications

## Carboxyhemoglobin Form of Hb bound to CO in place of $\mathrm{O}_{2}$.

 Causes $\downarrow$ oxygen-binding capacity with left shift in oxygen-hemoglobin dissociation curve. $\downarrow \mathrm{O}_{2}$ unloading in tissues.CO binds competitively to Hb and with $200 \times$ greater affinity than $\mathrm{O}_{2}$.
Treat with $100 \% \mathrm{O}_{2}$ and hyperbaric $\mathrm{O}_{2}$.

## Oxygen-hemoglobin dissociation curve

Sigmoidal shape due to positive cooperativity (ie, tetrameric Hb molecule can bind $4 \mathrm{O}_{2}$ molecules and has higher affinity for each subsequent $\mathrm{O}_{2}$ molecule bound). Myoglobin is monomeric and thus does not show positive cooperativity; curve lacks sigmoidal appearance.
When curve shifts to the right, $\downarrow$ affinity of Hb for $\mathrm{O}_{2}$ (facilitates unloading of $\mathrm{O}_{2}$ to tissue).
An $\uparrow$ in all factors (including $\mathrm{H}^{+}$) causes a shift of the curve to the right.
$\mathrm{A} \downarrow$ in all factors (including $\mathrm{H}^{+}$) causes a left shift $\rightarrow \downarrow \mathrm{O}_{2}$ unloading $\rightarrow$ renal hypoxia $\rightarrow \uparrow$ EPO synthesis $\rightarrow$ compensatory erythrocytosis. Lower $=$ Left.
Fetal Hb has higher affinity for $\mathrm{O}_{2}$ than adult Hb , so its dissociation curve is shifted left.

Right shift-ACE BATs right handed:
Acid
$\mathrm{CO}_{2}$
Exercise
2,3-BPG
Altitude
Temperature


```
Oxygen content of \(\quad \mathrm{O}_{2}\) content \(=\left(1.34 \times \mathrm{Hb} \times \mathrm{SaO}_{2}\right)+\left(0.003 \times \mathrm{PaO}_{2}\right)\)
blood
\(\mathrm{Hb}=\) hemoglobin level
\(\mathrm{SaO}_{2}=\) arterial \(\mathrm{O}_{2}\) saturation
\(\mathrm{PaO}_{2}=\) partial pressure of \(\mathrm{O}_{2}\)
Normally g g Hb can bind \(1.34 \mathrm{~mL} \mathrm{O}_{2}\); normal Hb amount in blood is \(15 \mathrm{~g} / \mathrm{dL}\).
\(\mathrm{O}_{2}\) binding capacity \(\approx 20.1 \mathrm{~mL} \mathrm{O} / \mathrm{dL}\) blood.
With \(\downarrow \mathrm{Hb}\) there is \(\downarrow \mathrm{O}_{2}\) content of arterial blood, but no change in \(\mathrm{O}_{2}\) saturation and \(\mathrm{PaO}_{2}\). \(\mathrm{O}_{2}\) delivery to tissues \(=\) cardiac output \(\times \mathrm{O}_{2}\) content of blood.
```

	Hb concentration	$\%_{2}$ sat of Hb	Dissolved $\mathrm{O}_{2}$   $\left(\mathrm{PaO}_{2}\right)$	Total $\mathrm{O}_{2}$ content
CO poisoning	Normal	$\downarrow(\mathrm{CO}$ competes   with $\left.\mathrm{O}_{2}\right)$	Normal	$\downarrow$
Anemia	$\downarrow$	Normal	Normal	$\downarrow$
Polycythemia	$\uparrow$	Normal	Normal	$\uparrow$

Pulmonary circulation Normally a low-resistance, high-compliance system. $\mathrm{PO}_{2}$ and $\mathrm{PcO}_{2}$ exert opposite effects on pulmonary and systemic circulation. A $\downarrow$ in $\mathrm{PAO}_{2}$ causes a hypoxic vasoconstriction that shifts blood away from poorly ventilated regions of lung to well-ventilated regions of lung.
Perfusion limited $-\mathrm{O}_{2}$ (normal health), $\mathrm{CO}_{2}$, $\mathrm{N}_{2} \mathrm{O}$. Gas equilibrates early along the length of the capillary. Diffusion can be $\uparrow$ only if blood flow $\uparrow$.
Diffusion limited $-\mathrm{O}_{2}$ (emphysema, fibrosis), CO. Gas does not equilibrate by the time blood reaches the end of the capillary.


Pulmonary vascular
resistance
$\mathrm{R}=$ resistance
$\mathrm{P}_{\text {pulm artery }}=$ pressure in pulmonary artery
$\mathrm{P}_{\text {Latrium }} \approx$ pulmonary capillary wedge pressure
$\eta$ = viscosity of blood; l = vessel length; $r=$ vessel radius

Alveolar gas equation $\begin{aligned} & \mathrm{PAO}_{2}=\mathrm{PIO}_{2}-\frac{\mathrm{PaCO}_{2}}{\mathrm{R}} \\ & \approx 150 \mathrm{~mm} \mathrm{Hg} \\ & \\ &-\frac{\mathrm{PaCO}_{2}}{0.8}\end{aligned}$
${ }^{a}$ At sea level breathing room air
$\mathrm{PAO}_{2}=$ alveolar $\mathrm{Po}_{2}(\mathrm{~mm} \mathrm{Hg})$
$\mathrm{PIO}_{2}=\mathrm{PO}_{2}$ in inspired air $(\mathrm{mm} \mathrm{Hg})$
$\mathrm{PaCO}_{2}=$ arterial $\mathrm{PCO}_{2}(\mathrm{~mm} \mathrm{Hg})$
$\mathrm{R}=$ respiratory quotient $=\mathrm{CO}_{2}$ produced $/ \mathrm{O}_{2}$ consumed
A-a gradient $=\mathrm{PAO}_{2}-\mathrm{PaO}_{2}=10-15 \mathrm{~mm} \mathrm{Hg}$ $\uparrow$ A-a gradient may occur in hypoxemia; causes include shunting, V̇/Q் mismatch, fibrosis (impairs diffusion)

## Oxygen deprivation

Hypoxia ( $\downarrow \mathrm{O}_{2}$ delivery to tissue)	Hypoxemia $\left(\downarrow \mathrm{PaO}_{2}\right)$	Ischemia (loss of blood flow)
$\downarrow \downarrow$ cardiac output	Normal A-a gradient	Impeded arterial flow
Hypoxemia	- High altitude	$\downarrow$ venous drainage
Anemia	- Hypoventilation (eg, opioid use)	
CO poisoning	$\uparrow$ A-a gradient	
	$=$ V/ف mismatch	
	$=$ Diffusion limitation (eg, fibrosis)	
	$=$ Right-to-left shunt	

## $\dot{\mathbf{V}} / \mathbf{Q}$ mismatch

Ideally, ventilation is matched to perfusion (ie, $\dot{V} / \underline{Q}=1)$ for adequate gas exchange.
Lung zones:

- V/X at apex of lung $=3$ (wasted ventilation)
- $\dot{\mathrm{V}} / \dot{\mathrm{Q}}$ at base of lung $=0.6$ (wasted perfusion)

Both ventilation and perfusion are greater at the base of the lung than at the apex of the lung.
With exercise ( $\uparrow$ cardiac output), there is vasodilation of apical capillaries $\rightarrow \dot{\mathrm{V}} / \underline{Q}$ ratio approaches 1 .
Certain organisms that thrive in high $\mathrm{O}_{2}$ (eg, TB) flourish in the apex.
$\dot{V} / \underline{Q}=0=$ "oirway" obstruction (shunt). In shunt, $100 \% \mathrm{O}_{2}$ does not improve $\mathrm{PaO}_{2}$ (eg, foreign body aspiration).
$\dot{\mathrm{V}} / \underline{\mathrm{Q}}=\infty=$ blood flow obstruction (physiologic dead space). Assuming < $100 \%$ dead space, $100 \% \mathrm{O}_{2}$ improves $\mathrm{PaO}_{2}$ (eg, pulmonary embolus).


## $\mathrm{CO}_{2}$ transport

$\mathrm{CO}_{2}$ is transported from tissues to lungs in 3 forms:

- $\mathrm{HCO}_{3}^{-}$(90\%).
- Carbaminohemoglobin or $\mathrm{HbCO}_{2}(5 \%)$. $\mathrm{CO}_{2}$ bound to Hb at N -terminus of globin (not heme). $\mathrm{CO}_{2}$ binding favors taut form ( $\mathrm{O}_{2}$ unloaded).
- Dissolved $\mathrm{CO}_{2}$ (5\%).

In lungs, oxygenation of Hb promotes dissociation of $\mathrm{H}^{+}$from Hb . This shifts equilibrium toward $\mathrm{CO}_{2}$ formation; therefore, $\mathrm{CO}_{2}$ is released from RBCs (Haldane effect). In peripheral tissue, $\uparrow \mathrm{H}^{+}$from tissue metabolism shifts curve to right, unloading $\mathrm{O}_{2}$ (Bohr effect).
Majority of blood $\mathrm{CO}_{2}$ is carried as $\mathrm{HCO}_{3}{ }^{-}$in the plasma.


## Response to high altitude

$\downarrow$ atmospheric oxygen $\left(\mathrm{PO}_{2}\right) \rightarrow \downarrow \mathrm{PaO}_{2} \rightarrow \uparrow$ ventilation $\rightarrow \downarrow \mathrm{PaCO}_{2} \rightarrow$ respiratory alkalosis $\rightarrow$ altitude sickness.
Chronic $\uparrow$ in ventilation.
$\uparrow$ erythropoietin $\rightarrow \uparrow$ hematocrit and Hb (chronic hypoxia).
$\uparrow$ 2,3-BPG (binds to Hb so that Hb releases more $\mathrm{O}_{2}$ ).
Cellular changes ( $\uparrow$ mitochondria).
$\uparrow$ renal excretion of $\mathrm{HCO}_{3}^{-}$to compensate for respiratory alkalosis (can augment with acetazolamide).
Chronic hypoxic pulmonary vasoconstriction results in pulmonary hypertension and RVH.

Response to exercise $\quad \uparrow \mathrm{CO}_{2}$ production.
$\uparrow \mathrm{O}_{2}$ consumption.
$\uparrow$ ventilation rate to meet $\mathrm{O}_{2}$ demand.
$\dot{V} / \underline{Q}$ ratio from apex to base becomes more uniform.
$\uparrow$ pulmonary blood flow due to $\uparrow$ cardiac output.
$\downarrow \mathrm{pH}$ during strenuous exercise ( $2^{\circ}$ to lactic acidosis).
No change in $\mathrm{PaO}_{2}$ and $\mathrm{PaCO}_{2}$, but $\uparrow$ in venous $\mathrm{CO}_{2}$ content and $\downarrow$ in venous $\mathrm{O}_{2}$ content.

- RESPIRATORY—PATHOLOGY


## Rhinosinusitis



Obstruction of sinus drainage into nasal cavity $\rightarrow$ inflammation and pain over affected area (typically maxillary sinuses $\boldsymbol{A}$, which drain into the middle meatus, in adults). Most common acute cause is viral URI; may cause superimposed bacterial infection, most commonly $S$ pneumoniae, $H$ influenzae, $M$ catarrhalis.

## Epistaxis

Nose bleed. Most commonly occurs in anterior segment of nostril (Kiesselbach plexus). Lifethreatening hemorrhages occur in posterior segment (sphenopalatine artery, a branch of maxillary artery).

Head and neck cancer Mostly squamous cell carcinoma. Risk factors include tobacco, alcohol, HPV-16 (oropharyngeal), EBV (nasopharyngeal). Field cancerization: carcinogen damages wide mucosal area $\rightarrow$ multiple tumors.

Deep venous
thrombosis


Blood clot within a deep vein $\rightarrow$ swelling, redness A, warmth, pain. Predisposed by Virchow triad (SHE):

- Stasis (eg, post-op, long drive/flight)
- Hypercoagulability (eg, defect in coagulation cascade proteins, such as factor V Leiden)
- Endothelial damage (exposed collagen triggers clotting cascade)
D-dimer lab test used clinically to rule out DVT (high sensitivity, low specificity).

Most pulmonary emboli arise from proximal deep veins of lower extremity.
Homan sign—dorsiflexion of foot $\rightarrow$ calf pain.
Use unfractionated heparin or low-molecularweight heparins (eg, enoxaparin) for prophylaxis and acute management.
Use oral anticoagulants (eg, warfarin, rivaroxaban) for treatment (long-term prevention).
Imaging test of choice is compression ultrasound.

## Pulmonary emboli

$\dot{\mathrm{V}} / \dot{\underline{Q}}$ mismatch $\rightarrow$ hypoxemia $\rightarrow$ respiratory alkalosis. Sudden-onset dyspnea, chest pain, tachypnea, tachycardia. Large emboli or saddle embolus A may cause sudden death. Lines of Zahn are interdigitating areas of pink (platelets, fibrin) and red (RBCs) found only in thrombi formed before death; help distinguish pre- and postmortem thrombi B.
Types: Fat, Air, Thrombus, Bacteria, Amniotic fluid, Tumor.
Fat emboli-associated with long bone fractures and liposuction; classic triad of hypoxemia, neurologic abnormalities, petechial rash. Amniotic fluid emboli-can lead to DIC, especially postpartum.
Air emboli-nitrogen bubbles precipitate in ascending divers (caisson disease, decompression sickness); treat with hyperbaric $\mathrm{O}_{2}$; or, can be iatrogenic $2^{\circ}$ to invasive procedures (eg, central line placement).

CT pulmonary angiography is imaging test of choice for PE (look for filling defects)


Obstructive lung diseases	Obstruction of air flow resulting in air trapping in lungs. Airways close prematurely at high lung volumes $\rightarrow \uparrow$ RV and $\uparrow$ FRC, $\uparrow$ TLC. PFTs: $\downarrow \downarrow \mathrm{FEV}_{1}, \downarrow$ FVC $\rightarrow \downarrow \mathrm{FEV}_{1} /$ FVC ratio (hallmark), $\dot{\mathrm{V}} / \underline{Q}$ mismatch. Chronic, hypoxic pulmonary vasoconstriction can lead to cor pulmonale.	
TYPE	PATHOLOGY	OTHER
Chronic bronchitis ("blue bloater")	Hyperplasia of mucus-secreting glands in bronchi $\rightarrow$ Reid index (thickness of mucosal gland layer to thickness of wall between epithelium and cartilage) $>50 \%$.	Productive cough for $>3$ (not necessarily consecutive) months per year for $>2$ consecutive years.   Findings: wheezing, crackles, cyanosis (earlyonset hypoxemia due to shunting), late-onset dyspnea, $\mathrm{CO}_{2}$ retention (hypercapnia), $2^{\circ}$ polycythemia.   Chronic complications: pulmonary hypertension, cor pulmonale.
Emphysema ("pink puffer")	Enlargement of air spaces, $\downarrow$ recoil,   $\uparrow$ compliance, $\downarrow$ diffusing capacity for CO resulting from destruction of alveolar walls (arrow in A). Two types:   - Centriacinar-associated with smoking B C. Frequently in upper lobes.   - Panacinar-associated with $\alpha_{1}$-antitrypsin deficiency. Frequently in lower lobes.	$\uparrow$ elastase activity $\rightarrow$ loss of elastic fibers   $\rightarrow \uparrow$ lung compliance.   Exhalation through pursed lips to $\uparrow$ airway pressure and prevent airway collapse during respiration.   Barrel-shaped chest $\boldsymbol{D}$. X-ray shows $\uparrow$ AP diameter, flattened diaphragm, $\uparrow$ lung field lucency.
Asthma	Bronchial hyperresponsiveness causes reversible bronchoconstriction. Smooth muscle hypertrophy, Curschmann spirals (shed epithelium forms whorled mucus plugs), and CharcotLeyden crystals (eosinophilic, hexagonal, double-pointed, needle-like crystals formed from breakdown of eosinophils in sputum).	Can be triggered by viral URIs, allergens, stress. Clinical diagnosis can be supported by spirometry and methacholine challenge. Findings: cough, wheezing, tachypnea, dyspnea, hypoxemia, $\downarrow$ inspiratory/expiratory ratio, pulsus paradoxus, mucus plugging $\boldsymbol{F}$. Peribronchial cuffing on CXR.
Bronchiectasis	Chronic necrotizing infection of bronchi $\rightarrow$ permanently dilated airways, purulent sputum, recurrent infections, hemoptysis, digital clubbing.	Associated with bronchial obstruction, poor ciliary motility (eg, smoking, Kartagener syndrome), cystic fibrosis G, allergic bronchopulmonary aspergillosis.



## Restrictive lung

 diseases

Restricted lung expansion causes $\downarrow$ lung volumes ( $\downarrow$ FVC and TLC). PFTs: FEV $/$ /FVC ratio $\geq 80 \%$.
Types:

- Poor breathing mechanics (extrapulmonary, peripheral hypoventilation, normal A-a gradient):
- Poor muscular effort-polio, myasthenia gravis, Guillain-Barré syndrome
- Poor structural apparatus-scoliosis, morbid obesity
- Interstitial lung diseases (pulmonary $\downarrow$ diffusing capacity, $\uparrow$ A-a gradient):
- Acute respiratory distress syndrome (ARDS)
- Neonatal respiratory distress syndrome (NRDS; hyaline membrane disease)
- Pneumoconioses (eg, anthracosis, silicosis, asbestosis)
- Sarcoidosis: bilateral hilar lymphadenopathy, noncaseating granuloma; $\uparrow$ ACE and $\mathrm{Ca}^{2+}$
- Idiopathic pulmonary fibrosis $\boldsymbol{A}$ (repeated cycles of lung injury and wound healing with $\uparrow$ collagen deposition, "honeycomb" lung appearance and digital clubbing)
- Goodpasture syndrome
- Granulomatosis with polyangiitis (Wegener)
- Pulmonary Langerhans cell histiocytosis (eosinophilic granuloma)
- Hypersensitivity pneumonitis
- Drug toxicity (bleomycin, busulfan, amiodarone, methotrexate)

Flow volume loops Obstructive lung volumes > normal ( $\uparrow$ TLC, $\uparrow$ FRC, $\uparrow$ RV); restrictive lung volumes < normal. In both obstructive and restrictive, $\mathrm{FEV}_{1}$ and FVC are reduced. In obstructive, however, $\mathrm{FEV}_{1}$ is more dramatically reduced compared to FVC, resulting in a $\downarrow \mathrm{FEV} \mathrm{F}_{1} / \mathrm{FVC}$ ratio.


Hypersensitivity pneumonitis

Mixed type III/IV hypersensitivity reaction to environmental antigen $\rightarrow$ dyspnea, cough, chest tightness, headache. Often seen in farmers and those exposed to birds.


Acute respiratory distress syndrome


Clinical syndrome characterized by acute onset respiratory failure, bilateral lung opacities, $\downarrow \mathrm{PaO}_{2} / \mathrm{FIO}_{2}$, no evidence of HF/fluid overload. SPARTAS: Sepsis, Pancreatitis, Pneumonia, Aspiration, uRemia, Trauma, Amniotic fluid embolism, Shock. Endothelial damage $\rightarrow \uparrow$ alveolar capillary permeability $\rightarrow$ protein-rich leakage into alveoli $\rightarrow$ diffuse alveolar damage and noncardiogenic pulmonary edema (normal PCWP) A. Results in formation of intra-alveolar hyaline membranes B. Initial damage due to release of neutrophilic substances toxic to alveolar wall, activation of coagulation cascade, and oxygen-derived free radicals.
Management: mechanical ventilation with low tidal volumes, address underlying cause.


Sleep apnea $\quad$ Repeated cessation of breathing $>10$ seconds during sleep $\rightarrow$ disrupted sleep $\rightarrow$ daytime somnolence. Normal $\mathrm{PaO}_{2}$ during the day.
Nocturnal hypoxia $\rightarrow$ systemic/pulmonary hypertension, arrhythmias (atrial fibrillation/flutter), sudden death.
Hypoxia $\rightarrow \uparrow$ EPO release $\rightarrow \uparrow$ erythropoiesis.

Obstructive sleep	Respiratory effort against airway obstruction. Associated with obesity, loud snoring. Caused by
apnea	excess parapharyngeal tissue in adults, adenotonsillar hypertrophy in children. Treatment: weight
loss, CPAP surgery	

Central sleep apnea No respiratory effort due to CNS injury/toxicity, HF, opioids.

```
Obesity
 hypoventilation
 syndrome
```

Obesity $\left(\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m}^{2}\right) \rightarrow$ hypoventilation $(\downarrow$ respiratory rate $) \rightarrow \downarrow \mathrm{PaO}_{2}$ and $\uparrow \mathrm{PaCO}_{2}$ during sleep; $\uparrow \mathrm{PaCO}_{2}$ during waking hours (retention).

Pulmonary   hypertension	Normal mean pulmonary artery pressure $=10-14 \mathrm{~mm} \mathrm{Hg}$; pulmonary hypertension $\geq 25 \mathrm{~mm} \mathrm{Hg}$ at   rest. Results in arteriosclerosis, medial hypertrophy, intimal fibrosis of pulmonary arteries. Course:   severe respiratory distress $\rightarrow$ cyanosis and RVH $\rightarrow$ death from decompensated cor pulmonale.
ETIOLOGIES	Idiopathic PAH.
Pulmonary arterial   hypertension	Heritable PAH—often due to an inactivating mutation in BMPR2 gene (normally inhibits vascular   smooth muscle proliferation); poor prognosis.   Other causes include drugs (eg, amphetamines, cocaine), connective tissue disease, HIV infection,   portal hypertension, congenital heart disease, schistosomiasis.
Left heart disease	Causes include systolic/diastolic dysfunction and valvular disease (eg, mitral lung).
Lung diseases or   hypoxia	Destruction of lung parenchyma (eg, COPD), hypoxemic vasoconstriction (eg, obstructive sleep   apnea, living in high altitude).
Chronic	
thromboembolic	Recurrent microthrombi $\rightarrow \downarrow$ cross-sectional area of pulmonary vascular bed.

## Lung—physical findings

ABNORMALITY	BREATH SOUNDS	PERCUSSION	FREMITUS	TRACHEAL DEVIATION
Pleural effusion	$\downarrow$	Dull	$\downarrow$	- or away from side of   lesion (if large)
Atelectasis (bronchial   obstruction)	$\downarrow$	Dull	$\downarrow$	Toward side of lesion


Pleural effusions	Excess accumulation of fluid between pleural layers $\boldsymbol{A} \rightarrow$ restricted lung expansion during   inspiration. Can be treated with thoracentesis to remove fluid $\boldsymbol{B}$.
Transudate	protein content. Due to $\uparrow$ hydrostatic pressure (eg, HF) or $\downarrow$ oncotic pressure (eg, nephrotic   syndrome, cirrhosis).
$\uparrow$ protein content, cloudy. Due to malignancy, pneumonia, collagen vascular disease, trauma   (occurs in states of $\uparrow$ vascular permeability). Must be drained due to risk of infection.	
Lymphatic	Also known as chylothorax. Due to thoracic duct injury from trauma or malignancy. Milky-   appearing fluid; $\uparrow$ triglycerides.

Pneumothorax

Primary spontaneous pneumothorax
Secondary spontaneous pneumothorax
Traumatic pneumothorax
Tension pneumothorax

Accumulation of air in pleural space A. Unilateral chest pain and dyspnea, unilateral chest expansion, $\downarrow$ tactile fremitus, hyperresonance, diminished breath sounds, all on the affected side.

Due to rupture of apical subpleural bleb or cysts. Occurs most frequently in tall, thin, young males.

Due to diseased lung (eg, bullae in emphysema, infections), mechanical ventilation with use of high pressures $\rightarrow$ barotrauma.

Caused by blunt (eg, rib fracture) or penetrating (eg, gunshot) trauma.

Can be any of the above. Air enters pleural space but cannot exit. Increasing trapped air $\rightarrow$ tension pneumothorax. Trachea deviates away from affected lung B. Needs immediate needle decompression and chest tube placement.


Pneumonia

TYPE	TYpical organsms	Characteristics
Lobar	S pneumoniae most frequently, also Legionella, Klebsiella	Intra-alveolar exudate $\rightarrow$ consolidation $\boldsymbol{A}$; may involve entire lobe $B$ or lung.
Bronchopneumonia	S pneumoniae, S aureus, H influenzae, Klebsiella	Acute inflammatory infiltrates [C from bronchioles into adjacent alveoli; patchy distribution involving $\geq 1$ lobe D.
Interstitial (atypical) pneumonia	Mycoplasma, Chlamydia, Legionella, viruses   (RSV, CMV, influenza, adenovirus)	Diffuse patchy inflammation localized to interstitial areas at alveolar walls; diffuse distribution involving $\geq 1$ lobe E. Generally follows a more indolent course ("walking" pneumonia).



Lung abscess


Localized collection of pus within parenchyma A. Caused by aspiration of oropharyngeal contents (especially in patients predisposed to loss of consciousness [eg, alcoholics, epileptics]) or bronchial obstruction (eg, cancer).
Treatment: clindamycin.

Air-fluid levels B often seen on CXR. Fluid levels common in cavities; presence suggests cavitation. Due to anaerobes (eg, Bacteroides, Fusobacterium, Peptostreptococcus) or $S$ aureus. Lung abscess $2^{\circ}$ to aspiration is most often found in right lung. Location depends on patient's position during aspiration:

- Upright $\rightarrow$ basal segments of right lower lobe
- Supine $\rightarrow$ posterior segments of right upper lobe or superior segment of right lower lobe


## Mesothelioma

Malignancy of the pleura associated with asbestosis. May result in hemorrhagic pleural effusion (exudative), pleural thickening.

Psammoma bodies seen on histology.
Cytokeratin and calretinin $\oplus$ in almost all mesotheliomas, $\Theta$ in most carcinomas. Smoking not a risk factor.

Pancoast tumor (superior sulcus tumor)


Carcinoma that occurs in the apex of lung $\boldsymbol{A}$ may cause Pancoast syndrome by invading cervical sympathetic chain.
Compression of locoregional structures may cause array of findings:

- Recurrent laryngeal nerve $\rightarrow$ hoarseness
- Superior cervical ganglion $\rightarrow$ Horner syndrome (ipsilateral ptosis, miosis, anhidrosis)
- Superior vena cava $\rightarrow$ SVC syndrome
- Sensorimotor deficit

Superior vena cava syndrome


An obstruction of the SVC that impairs blood drainage from the head ("facial plethora"; note blanching after fingertip pressure in A), neck (jugular venous distention), and upper extremities (edema). Commonly caused by malignancy (eg, Pancoast tumor) and thrombosis from indwelling catheters B. Medical emergency. Can raise intracranial pressure (if obstruction is severe) $\rightarrow$ headaches, dizziness, $\uparrow$ risk of aneurysm/rupture of intracranial arteries.


## Lung cancer

Leading cause of cancer death.
Presentation: cough, hemoptysis, bronchial obstruction, wheezing, pneumonic "coin" lesion on CXR or noncalcified nodule on CT.
Sites of metastases from lung cancer: adrenals, brain, bone (pathologic fracture), liver (jaundice, hepatomegaly).
In the lung, metastases (usually multiple lesions) are more common than $1^{\circ}$ neoplasms. Most often from breast, colon, prostate, and bladder cancer.

SPHERE of complications:
Superior vena cava syndrome
Pancoast tumor
Horner syndrome
Endocrine (paraneoplastic)
Recurrent laryngeal nerve compression (hoarseness)
Effusions (pleural or pericardial) Risk factors include smoking, secondhand smoke, radon, asbestos, family history.
Squamous and Small cell carcinomas are Sentral (central) and often caused by Smoking.

TYPE	LOCATION	CHARACTERISTICS	HISTOLOGY
Small cell			
Small cell (oat cell) carcinoma	Central	Undifferentiated $\rightarrow$ very aggressive.   May produce ACTH (Cushing syndrome), SIADH, or Antibodies against presynaptic $\mathrm{Ca}^{2+}$ channels (LambertEaton myasthenic syndrome) or neurons (paraneoplastic myelitis, encephalitis, subacute cerebellar degeneration). Amplification of myc oncogenes common. Managed with chemotherapy $+/-$ radiation.	Neoplasm of neuroendocrine Kulchitsky cells $\rightarrow$ small dark blue cells $\boldsymbol{A}$.   Chromogranin $\mathrm{A} \oplus$, neuron-specific enolase $\oplus$.
Non-small cell			
Adenocarcinoma	Peripheral	Most common lung cancer in nonsmokers and overall (except for metastases). Activating mutations include KRAS, EGFR, and ALK. Associated with hypertrophic osteoarthropathy (clubbing).   Bronchioloalveolar subtype (adenocarcinoma in situ): CXR often shows hazy infiltrates similar to pneumonia; better prognosis.   Bronchial carcinoid and bronchioloalveolar cell carcinoma have lesser association with smoking.	Glandular pattern on histology, often stains mucin $\oplus B$.   Bronchioloalveolar subtype: grows along alveolar septa $\rightarrow$ apparent "thickening" of alveolar walls. Tall, columnar cells containing mucus.
Squamous cell carcinoma	Central	Hilar mass arising from bronchus $\mathbf{C}$; Cavitation; Cigarettes; hyperCalcemia (produces PTHrP).	Keratin pearls $\boldsymbol{D}$ and intercellular bridges
Large cell carcinoma	Peripheral	Highly anaplastic undifferentiated tumor; poor prognosis. Less responsive to chemotherapy; removed surgically.	Pleomorphic giant cells E.   Can secrete $\beta$-hCG.
Bronchial carcinoid tumor	-	Excellent prognosis; metastasis rare.   Symptoms due to mass effect or carcinoid syndrome (flushing, diarrhea, wheezing).	Nests of neuroendocrine cells; chromogranin A $\oplus$.



- RESPIRATORY—PHARMACOLOGY

Antihistamines	Reversible inhibitors of $\mathrm{H}_{1}$ histamine receptors.	
First generation	Diphenhydramine, dimenhydrinate, chlorpheniramine.	Names contain "-en/-ine" or "-en/-ate."
clincal uses	Allergy, motion sickness, sleep aid.	
adverse effects	Sedation, antimuscarinic, anti- $\alpha$-adrenergic.	
Second generation	Loratadine, fexofenadine, desloratadine, cetirizine.	Names usually end in "-adine."
clincal uses	Allergy.	
adverse effects	Far less sedating than lst generation because of $\downarrow$ entry into CNS.	

## Expectorants

Guaifenesin	Expectorant-thins respiratory secretions; does not suppress cough reflex.
$N$-acetylcysteine	Mucolytic-liquefies mucus in COPD patients by disrupting disulfide bonds. Also used as an   antidote for acetaminophen overdose.

## Dextromethorphan

Antitussive (antagonizes NMDA glutamate receptors). Synthetic codeine analog. Has mild opioid effect when used in excess. Naloxone can be given for overdose. Mild abuse potential. May cause serotonin syndrome if combined with other serotonergic agents.

## Pseudoephedrine, phenylephrine

MECHANISM	$\alpha$-adrenergic agonists, used as nasal decongestants.
CLIIICALUSE	Reduce hyperemia, edema, nasal congestion; open obstructed eustachian tubes. Pseudoephedrine   also illicitly used to make methamphetamine.
ADVERSEEFFECTS	Hypertension. Can also cause CNS stimulation/anxiety (pseudoephedrine).

## Pulmonary hypertension drugs

DRUG	MECHANISM	CLINICAL NOTES
BosENtan	Competitively antagonizes ENdothelin-l   receptors $\rightarrow \downarrow$ pulmonary vascular resistance.	Hepatotoxic (monitor LFTs).
Sildenafil	Inhibits cGMP PDE-5 and prolongs vasodilatory   effect of nitric oxide.	Also used to treat erectile dysfunction.
Epoprostenol, iloprost	$\mathrm{PGI}_{2}$ (prostacyclin) with direct vasodilatory   effects on pulmonary and systemic arterial   vascular beds. Inhibits platelet aggregation.	Side effects: flushing, jaw pain.



## HIGH-YIELD SYSTEMS

## Rapid Review

"Study without thought is vain: thought without study is dangerous."
-Confucius
"It is better, of course, to know useless things than to know nothing."
-Lucius Annaeus Seneca
"For every complex problem there is an answer that is clear, simple, and wrong."
-H. L. Mencken

The following tables represent a collection of high-yield associations of diseases with their clinical findings, treatments, and pathophysiology. They serve as a quick review before the exam to tune your senses to commonly tested cases.

## - Classic

>Classic Labs/
Findings
> Classic/Relevant Treatments


 ,

CLASSIC PRESENTATIONS

Clincal Presentation	diagnosis/IISASE
Abdominal pain, ascites, hepatomegaly	Budd-Chiari syndrome (posthepatic venous thrombosis)
Abdominal pain, diarrhea, leukocytosis, recent antibiotic use	Clostridium difficile infection
Achilles tendon xanthoma	Familial hypercholesterolemia ( $\downarrow$ LDL receptor signaling)
Adrenal hemorrhage, hypotension, DIC	Waterhouse-Friderichsen syndrome (meningococcemia)
Anaphylaxis following blood transfusion	IgA deficiency
Anterior "drawer sign" $\oplus$	Anterior cruciate ligament injury
Arachnodactyly, lens dislocation (upward), aortic dissection, hyperflexible joints	Marfan syndrome (fibrillin defect)
Athlete with polycythemia	$2^{\circ}$ to erythropoietin injection
Back pain, fever, night sweats	Pott disease (vertebral TB)
Bilateral acoustic schwannomas	Neurofibromatosis type 2
Bilateral hilar adenopathy, uveitis	Sarcoidosis (noncaseating granulomas)
Black eschar on face of patient with diabetic ketoacidosis	Mucor or Rhizopus fungal infection
Blue sclera	Osteogenesis imperfecta (type I collagen defect)
Bluish line on gingiva	Burton line (lead poisoning)
Bone pain, bone enlargement, arthritis	Paget disease of bone ( $\uparrow$ osteoblastic and osteoclastic activity)
Bounding pulses, wide pulse pressure, diastolic heart murmur, head bobbing	Aortic regurgitation
"Butterfly" facial rash and Raynaud phenomenon in a young female	Systemic lupus erythematosus
Café-au-lait spots, Lisch nodules (iris hamartoma), cutaneous neurofibromas, pheochromocytomas, optic gliomas	Neurofibromatosis type I
Café-au-lait spots (unilateral), polyostotic fibrous dysplasia, precocious puberty, multiple endocrine abnormalities	McCune-Albright syndrome (mosaic G-protein signaling mutation)
Calf pseudohypertrophy	Muscular dystrophy (most commonly Duchenne, due to X-linked recessive frameshift mutation of dystrophin gene)
Cervical lymphadenopathy, desquamating rash, coronary aneurysms, red conjunctivae and tongue, hand-foot changes	Kawasaki disease (treat with IVIG and aspirin)
"Cherry-red spots" on macula	Tay-Sachs (ganglioside accumulation) or Niemann-Pick (sphingomyelin accumulation), central retinal artery occlusion
Chest pain on exertion	Angina (stable: with moderate exertion; unstable: with minimal exertion or at rest)
Chest pain, pericardial effusion/friction rub, persistent fever following MI	Dressler syndrome (autoimmune-mediated post-MI fibrinous pericarditis, 2 weeks to several months after acute episode)
Chest pain with ST depressions on EKG	Unstable angina ( $\Theta$ troponins) or NSTEMI ( $\oplus$ troponins)
Child uses arms to stand up from squat	Duchenne muscular dystrophy (Gowers sign)
Child with fever later develops red rash on face that spreads to body	Erythema infectiosum/fifth disease ("slapped cheeks" appearance, caused by parvovirus B19)
Chorea, dementia, caudate degeneration	Huntington disease (autosomal dominant CAG repeat expansion)
Chorioretinitis, hydrocephalus, intracranial calcifications	Congenital toxoplasmosis


CLINICAL PRESENTATION	DIAGNOSII/DISEASE
Chronic exercise intolerance with myalgia, fatigue, painful cramps, myoglobinuria	McArdle disease (skeletal muscle glycogen phosphorylase deficiency)
Cold intolerance	Hypothyroidism
Conjugate horizontal gaze palsy, horizontal diplopia	Internuclear ophthalmoplegia (damage to MLF; may be unilateral or bilateral)
Continuous "machine-like" heart murmur	PDA (close with indomethacin; keep open with PGE analogs)
Cutaneous/dermal edema due to connective tissue deposition	Myxedema (caused by hypothyroidism, Graves disease [pretibial])
Cutaneous flushing, diarrhea, bronchospasm	Carcinoid syndrome (right-sided cardiac valvular lesions, $\uparrow$ 5-HIAA)
Dark purple skin/mouth nodules in a patient with AIDS	Kaposi sarcoma, associated with HHV-8
Deep, labored breathing/hyperventilation	Diabetic ketoacidosis (Kussmaul respirations)
Dermatitis, dementia, diarrhea	Pellagra (niacin [vitamin $\mathrm{B}_{3}$ ] deficiency)
Dilated cardiomyopathy, edema, alcoholism or malnutrition	Wet beriberi (thiamine [vitamin $\mathrm{B}_{1}$ ] deficiency)
Dog or cat bite resulting in infection	Pasteurella multocida (cellulitis at inoculation site)
Dry eyes, dry mouth, arthritis	Sjögren syndrome (autoimmune destruction of exocrine glands)
Dysphagia (esophageal webs), glossitis, iron deficiency anemia	Plummer-Vinson syndrome (may progress to esophageal squamous cell carcinoma)
Elastic skin, hypermobility of joints, $\uparrow$ bleeding tendency	Ehlers-Danlos syndrome (type V collagen defect, type III collagen defect seen in vascular subtype of ED)
Enlarged, hard left supraclavicular node	Virchow node (abdominal metastasis)
Episodic vertigo, tinnitus, hearing loss	Meniere disease
Erythroderma, lymphadenopathy, hepatosplenomegaly, atypical T cells	Mycosis fungoides (cutaneous T-cell lymphoma) or Sézary syndrome (mycosis fungoides + malignant T cells in blood)
Facial muscle spasm upon tapping	Chvostek sign (hypocalcemia)
Fat, female, forty, and fertile	Cholelithiasis (gallstones)
Fever, chills, headache, myalgia following antibiotic treatment for syphilis	Jarisch-Herxheimer reaction (rapid lysis of spirochetes results in endotoxin release)
Fever, cough, conjunctivitis, coryza, diffuse rash	Measles
Fever, night sweats, weight loss	B symptoms (staging) of lymphoma
Fibrous plaques in soft tissue of penis with abnormal curvature	Peyronie disease (connective tissue disorder)
Golden brown rings around peripheral cornea	Wilson disease (Kayser-Fleischer rings due to copper accumulation)
Gout, intellectual disability, self-mutilating behavior in a boy	Lesch-Nyhan syndrome (HGPRT deficiency, X-linked recessive)
Hamartomatous GI polyps, hyperpigmentation of mouth/feet/hands/genitalia	Peutz-Jeghers syndrome (inherited, benign polyposis can cause bowel obstruction; $\uparrow$ cancer risk, mainly GI)
Hepatosplenomegaly, pancytopenia, osteoporosis, aseptic necrosis of femoral head, bone crises	Gaucher disease (glucocerebrosidase deficiency)

CLINICALPRESENTATION

Hereditary nephritis, sensorineural hearing loss,
cataracts


Hyperphagia, hypersexuality, hyperorality,
hyperdocility

Hyperreflexia, hypertonia, Babinski sign present
Hyporeflexia, hypotonia, atrophy, fasciculations
Hypoxemia, polycythemia, hypercapnia
Indurated, ulcerated genital lesion
Infant with cleft lip/palate, microcephaly or
holoprosencephaly, polydactyly, cutis aplasia
Infant with hypoglycemia, hepatomegaly
Infant with microcephaly, rocker-bottom feet, clenched
hands, and structural heart defect
Jaundice, palpable distended non-tender gallbladder
Large rash with bull's-eye appearance
Lucid interval after traumatic brain injury
Male child, recurrent infections, no mature B cells
Mucosal bleeding and prolonged bleeding time
Muffled heart sounds, distended neck veins, hypotension
Multiple colon polyps, osteomas/soft tissue tumors, impacted/
supernumerary teeth

Myopathy (infantile hypertrophic cardiomyopathy), exercise intolerance
Neonate with arm paralysis following difficult birth

No lactation postpartum, absent menstruation, cold intolerance
Nystagmus, intention tremor, scanning speech, bilateral internuclear ophthalmoplegia
Painful blue fingers/toes, hemolytic anemia

Painful fingers/toes changing color from blue to white to red with cold or stress
Painful, raised red lesions on pads of fingers/toes

DIAGNOIIS/DISEASE
Alport syndrome (mutation in collagen IV)

## Klüver-Bucy syndrome (bilateral amygdala lesion)

## UMN damage <br> LMN damage

Chronic bronchitis (hyperplasia of mucous cells, "blue bloater")
Nonpainful: chancre ( $1^{\circ}$ syphilis, Treponema pallidum)
Painful, with exudate: chancroid (Haemophilus ducreyi)
Patau syndrome (trisomy 13)
Cori disease (debranching enzyme deficiency) or Von Gierke disease (glucose-6-phosphatase deficiency, more severe) Edwards syndrome (trisomy 18)

Courvoisier sign (distal malignant obstruction of biliary tree)
Erythema chronicum migrans from Ixodes tick bite (Lyme disease: Borrelia)
Epidural hematoma (middle meningeal artery rupture)
Bruton disease (X-linked agammaglobulinemia)
Glanzmann thrombasthenia (defect in platelet aggregation due to lack of GpIIb/IIIa)
Beck triad of cardiac tamponade
Gardner syndrome (subtype of FAP)

Pompe disease (lysosomal $\alpha$-1,4-glucosidase deficiency)
Erb-Duchenne palsy (superior trunk [C5-C6] brachial plexus injury: "waiter's tip")
Sheehan syndrome (pituitary infarction)
Multiple sclerosis
Cold agglutinin disease (autoimmune hemolytic anemia caused by Mycoplasma pneumoniae, infectious mononucleosis, CLL)
Raynaud phenomenon (vasospasm in extremities)
Osler nodes (infective endocarditis, immune complex deposition)

CLINICAL PRESENTATION	DIAGNOSII/DISEASE
Painless erythematous lesions on palms and soles	Janeway lesions (infective endocarditis, septic emboli/ microabscesses)
Painless jaundice	Cancer of the pancreatic head obstructing bile duct
Palpable purpura on buttocks/legs, joint pain, abdominal pain (child), hematuria	Henoch-Schönlein purpura (IgA vasculitis affecting skin and kidneys)
Pancreatic, pituitary, parathyroid tumors	MEN 1 (autosomal dominant)
Periorbital and/or peripheral edema, proteinuria (> $3.5 \mathrm{~g} /$ day ), hypoalbuminemia, hypercholesterolemia	Nephrotic syndrome
Pink complexion, dyspnea, hyperventilation	Emphysema ("pink puffer," centriacinar [smoking] or panacinar [ $\alpha_{1}$-antitrypsin deficiency])
Polyuria, renal tubular acidosis type II, growth failure, electrolyte imbalances, hypophosphatemic rickets	Fanconi syndrome (multiple combined dysfunction of the proximal convoluted tubule)
Pruritic, purple, polygonal planar papules and plaques (6 P's)	Lichen planus
Ptosis, miosis, anhidrosis	Horner syndrome (sympathetic chain lesion)
Pupil accommodates but doesn't react	Neurosyphilis (Argyll Robertson pupil)
Rapidly progressive limb weakness that ascends following GI/ upper respiratory infection	Guillain-Barré syndrome (acute inflammatory demyelinating polyradiculopathy subtype)
Rash on palms and soles	Coxsackie A, $2^{\circ}$ syphilis, Rocky Mountain spotted fever
Recurrent cold (noninflamed) abscesses, unusual eczema, high serum IgE	Hyper-IgE syndrome (Job syndrome: neutrophil chemotaxis abnormality)
Red "currant jelly" sputum in alcoholic or diabetic patients	Klebsiella pneumoniae pneumonia
Red "currant jelly" stools	Acute mesenteric ischemia (adults), intussusception (children)
Red, itchy, swollen rash of nipple/areola	Paget disease of the breast (sign of underlying neoplasm)
Red urine in the morning, fragile RBCs	Paroxysmal nocturnal hemoglobinuria
Renal cell carcinoma (bilateral), hemangioblastomas, angiomatosis, pheochromocytoma	von Hippel-Lindau disease (dominant tumor suppressor gene mutation)
Resting tremor, rigidity, akinesia, postural instability, shuffling gait	Parkinson disease (loss of dopaminergic neurons in substantia nigra pars compacta)
Retinal hemorrhages with pale centers	Roth spots (bacterial endocarditis)
Severe jaundice in neonate	Crigler-Najjar syndrome (congenital unconjugated hyperbilirubinemia)
Severe RLQ pain with palpation of LLQ	Rovsing sign (acute appendicitis)
Severe RLQ pain with deep tenderness	McBurney sign (acute appendicitis)
Short stature, café au lait spots, thumb/radial defects, $\uparrow$ incidence of tumors/leukemia, aplastic anemia	Fanconi anemia (genetic loss of DNA crosslink repair; often progresses to AML)
Single palmar crease	Down syndrome
Situs inversus, chronic sinusitis, bronchiectasis, infertility	Kartagener syndrome (dynein arm defect affecting cilia)
Skin hyperpigmentation, hypotension, fatigue	$1^{\circ}$ adrenocortical insufficiency (eg, Addison disease) causes $\uparrow$ ACTH and $\uparrow \alpha$-MSH production)
Slow, progressive muscle weakness in boys	Becker muscular dystrophy (X-linked missense mutation in dystrophin; less severe than Duchenne)


CLIIICAL PRESENTATION	DIAGNOSII/DISEASE
Small, irregular red spots on buccal/lingual mucosa with blue-white centers	Koplik spots (measles [rubeola] virus)
Smooth, moist, painless, wart-like white lesions on genitals	Condylomata lata ( $2^{\circ}$ syphilis)
Splinter hemorrhages in fingernails	Bacterial endocarditis
"Strawberry tongue"	Scarlet fever, Kawasaki disease
Streak ovaries, congenital heart disease, horseshoe kidney, cystic hygroma at birth, short stature, webbed neck, lymphedema	Turner syndrome (45, XO)
Sudden swollen/painful big toe joint, tophi	Gout/podagra (hyperuricemia)
Swollen gums, mucosal bleeding, poor wound healing, petechiae	Scurvy (vitamin C deficiency: can't hydroxylate proline/lysine for collagen synthesis)
Swollen, hard, painful finger joints	Osteoarthritis (osteophytes on PIP [Bouchard nodes], DIP [Heberden nodes])
Systolic ejection murmur (crescendo-decrescendo)	Aortic stenosis
Telangiectasias, recurrent epistaxis, skin discoloration, arteriovenous malformations, GI bleeding, hematuria	Osler-Weber-Rendu syndrome
Thyroid and parathyroid tumors, pheochromocytoma	MEN 2A (autosomal dominant RET mutation)
Thyroid tumors, pheochromocytoma, ganglioneuromatosis	MEN 2B (autosomal dominant RET mutation)
Toe extension/fanning upon plantar scrape	Babinski sign (UMN lesion)
Unilateral facial drooping involving forehead	LMN facial nerve (CN VII) palsy; UMN lesions spare the forehead
Urethritis, conjunctivitis, arthritis in a male	Reactive arthritis associated with HLA-B27
Vascular birthmark (port-wine stain) of the face	Nevus flammeus (benign, but associated with Sturge-Weber syndrome)
Vomiting blood following gastroesophageal lacerations	Mallory-Weiss syndrome (alcoholic and bulimic patients)
Weight loss, diarrhea, arthritis, fever, adenopathy	Whipple disease (Tropheryma whipplei)
"Worst headache of my life"	Subarachnoid hemorrhage

## CLASSIC LABS/FINDINGS

LAB/DIAGNOSTIC FINDING	DIAGNOSIS/DISEASE
$\uparrow$ AFP in amniotic fluid/maternal serum	Dating error, anencephaly, spina bifida (neural tube defects)
Anticentromere antibodies	Scleroderma (CREST)
Anti-desmoglein (anti-desmosome) antibodies	Pemphigus vulgaris (blistering)
Anti-glomerular basement membrane antibodies	Goodpasture syndrome (glomerulonephritis and hemoptysis)   Antihistone antibodies   Anti-IgG antibodies   Drug-induced SLE (eg, hydralazine, isoniazid, phenytoin,   procainamide)
Antimitochondrial antibodies (AMAs)	Rheumatoid arthritis (systemic inflammation, joint pannus,   boutonnière deformity)
$l^{\circ}$ biliary cirrhosis (female, cholestasis, portal hypertension)	


LAB/DIAGNOSTIC FINDING	DIAGNOSII/DISEASE
Antineutrophil cytoplasmic antibodies (ANCAs)	Microscopic polyangiitis and eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome) (MPO-ANCA/ p-ANCA); granulomatosis with polyangiitis (Wegener; PR3-ANCA/c-ANCA)
Antinuclear antibodies (ANAs: anti-Smith and anti-dsDNA)	SLE (type III hypersensitivity)
Antiplatelet antibodies	Idiopathic thrombocytopenic purpura
Anti-topoisomerase antibodies	Diffuse systemic scleroderma
Anti-transglutaminase/anti-gliadin/anti-endomysial antibodies	Celiac disease (diarrhea, weight loss)
"Apple core" lesion on barium enema x-ray	Colorectal cancer (usually left-sided)
Atypical lymphocytes	EBV
Azurophilic peroxidase $\oplus$ granular inclusions in granulocytes and myeloblasts	Auer rods (AML, especially the promyelocytic [M3] type)
Bacitracin response	Sensitive: S pyogenes (group A); resistant: S agalactiae (group B)
"Bamboo spine" on x -ray	Ankylosing spondylitis (chronic inflammatory arthritis: HLA-B27)
Basophilic nuclear remnants in RBCs	Howell-Jolly bodies (due to splenectomy or nonfunctional spleen)
Basophilic stippling of RBCs	Lead poisoning or sideroblastic anemia
Bloody or yellow tap on lumbar puncture	Subarachnoid hemorrhage
"Boot-shaped" heart on x-ray	Tetralogy of Fallot (due to RVH)
Branching gram $\oplus$ rods with sulfur granules	Actinomyces israelii
Bronchogenic apical lung tumor on imaging	Pancoast tumor (can compress cervical sympathetic chain and cause Horner syndrome)
"Brown" tumor of bone	Hyperparathyroidism or osteitis fibrosa cystica (deposited hemosiderin from hemorrhage gives brown color)
Cardiomegaly with apical atrophy	Chagas disease (Trypanosoma cruzi)
Cellular crescents in Bowman capsule	Rapidly progressive crescentic glomerulonephritis
"Chocolate cyst" of ovary	Endometriosis (frequently involves both ovaries)
Circular grouping of dark tumor cells surrounding pale neurofibrils	Homer-Wright rosettes (neuroblastoma, medulloblastoma)
Colonies of mucoid Pseudomonas in lungs	Cystic fibrosis (autosomal recessive mutation in CFTR gene   $\rightarrow$ fat-soluble vitamin deficiency and mucous plugs)
$\downarrow$ AFP in amniotic fluid/maternal serum	Down syndrome or other chromosomal abnormalities
Degeneration of dorsal column fibers	Tabes dorsalis ( $3^{\circ}$ syphilis), subacute combined degeneration (dorsal columns, lateral corticospinal, spinocerebellar tracts affected)
"Delta wave" on EKG, short PR interval, supraventricular tachycardia	Wolff-Parkinson-White syndrome (Bundle of Kent bypasses AV node)
Depigmentation of neurons in substantia nigra	Parkinson disease (basal ganglia disorder: rigidity, resting tremor, bradykinesia)
Desquamated epithelium casts in sputum	Curschmann spirals (bronchial asthma; can result in whorled mucous plugs)

## LAB/DIAGNOSTIC FINDING

Disarrayed granulosa cells arranged around collections of eosinophilic fluid
Dysplastic squamous cervical cells with "raisinoid" nuclei and hyperchromasia
Electrical alternans (alternating amplitude on EKG)
Enlarged cells with intranuclear inclusion bodies
Enlarged thyroid cells with ground-glass nuclei with central clearing
Eosinophilic cytoplasmic inclusion in liver cell
Eosinophilic cytoplasmic inclusion in neuron
Eosinophilic globule in liver

Eosinophilic inclusion bodies in cytoplasm of hippocampal and cerebellar neurons
Extracellular amyloid deposition in gray matter of brain
Giant B cells with bilobed nuclei with prominent inclusions ("owl's eye")
Glomerulus-like structure surrounding vessel in germ cells
"Hair on end" ("Crew-cut") appearance on x-ray
hCG elevated

Heart nodules (granulomatous)
Heterophile antibodies
Hexagonal, double-pointed, needle-like crystals in bronchial secretions

## High level of d-dimers

Hilar lymphadenopathy, peripheral granulomatous lesion in middle or lower lung lobes (can calcify)
"Honeycomb lung" on x-ray or CT
Hypercoagulability (leading to migrating DVTs and vasculitis)
Hypersegmented neutrophils
Hypertension, hypokalemia, metabolic alkalosis
Hypochromic, microcytic anemia
Intranuclear eosinophilic droplet-like bodies
Iron-containing nodules in alveolar septum
Keratin pearls on a skin biopsy
Large granules in phagocytes, immunodeficiency
"Lead pipe" appearance of colon on abdominal imaging
Linear appearance of $\operatorname{IgG}$ deposition on glomerular and alveolar basement membranes

## DIAGNOSIS/DISEASE

Call-Exner bodies (granulosa cell tumor of the ovary)

## Koilocytes (HPV: predisposes to cervical cancer)

## Pericardial tamponade

"Owl eye" appearance of CMV
"Orphan Annie" eyes nuclei (papillary carcinoma of the thyroid)
Mallory body (alcoholic liver disease)
Lewy body (Parkinson disease and Lewy body dementia)
Councilman body (viral hepatitis, yellow fever), represents hepatocyte undergoing apoptosis
Negri bodies of rabies

## Senile plaques (Alzheimer disease)

Reed-Sternberg cells (Hodgkin lymphoma)
Schiller-Duval bodies (yolk sac tumor)
$\beta$-thalassemia, sickle cell disease (marrow expansion)
Choriocarcinoma, hydatidiform mole (occurs with and without embryo, and multiple pregnancy)
Aschoff bodies (rheumatic fever)
Infectious mononucleosis (EBV)
Bronchial asthma (Charcot-Leyden crystals: eosinophilic granules)
DVT, PE, DIC
Ghon complex ( $1^{\circ} \mathrm{TB}$ : Mycobacterium bacilli)

## Interstitial pulmonary fibrosis

Trousseau syndrome (adenocarcinoma of pancreas or lung)
Megaloblastic anemia ( $\mathrm{B}_{12}$ deficiency: neurologic symptoms; folate deficiency: no neurologic symptoms)
$1^{\circ}$ hyperaldosteronism (Conn syndrome)
Iron deficiency anemia, lead poisoning, thalassemia (fetal hemoglobin sometimes present)
Cowdry type A bodies (HSV or VZV)
Ferruginous bodies (asbestosis: $\uparrow$ chance of mesothelioma)
Squamous cell carcinoma
Chédiak-Higashi disease (congenital failure of phagolysosome formation)
Ulcerative colitis (loss of haustra)
Goodpasture syndrome

B/DIAGNOSTIC FINDIN
Low serum ceruloplasmin   "Lumpy bumpy" appearance of glomeruli on immunofluorescence
Mammary gland ("blue domed") cyst
Monoclonal antibody spike
Mucin-filled cell with peripheral nucleus
Narrowing of bowel lumen on barium x-ray
Necrotizing vasculitis (lungs) and necrotizing glomerulonephritis
Needle-shaped, $\Theta$ birefringent crystals
Nodular hyaline deposits in glomeruli
Novobiocin response
"Nutmeg" appearance of liver
"Onion skin" periosteal reaction
Optochin response
Podocyte fusion or "effacement" on electron microscopy
Polished, "ivory-like" appearance of bone at cartilage erosion
Protein aggregates in neurons from hyperphosphorylation of tau protein
Psammoma bodies
Pseudopalisading tumor cells on brain biopsy
Raised periosteum (creating a "Codman triangle")
RBC casts in urine
Rectangular, crystal-like, cytoplasmic inclusions in Leydig cells
Recurrent infections, eczema, thrombocytopenia
Renal epithelial casts in urine
Rhomboid crystals, $\oplus$ birefringent
Rib notching (inferior surface, on x-ray)
Ring-enhancing brain lesion on CT/MRI in AIDS
Sheets of medium-sized lymphoid cells with scattered pale, tingible body-laden macrophages ("starry sky" histology)
Silver-staining spherical aggregation of tau proteins in neurons

Low serum ceruloplasmin"Lumpy bumpy" appearance of glomeruli onimmunofluorescence
Lytic ("punched-out") bone lesions on x-ray
Mammary gland ("blue domed") cyst
Monoclonal antibody spike
Mucin-filled cell with peripheral nucleus
Narrowing of bowel lumen on barium x-ray
Necrotizing vasculitis (lungs) and necrotizing
glomerulonephritis
Needle-shaped, $\Theta$ birefringent crystals
Nodular hyaline deposits in glomeruli
Novobiocin response
"Nutmeg" appearance of liver
"Onion skin" periosteal reaction
Optochin response
Podocyte fusion or "effacement" on electron microscopy
Polished, "ivory-like" appearance of bone at cartilage erosion
Protein aggregates in neurons from hyperphosphorylation of
tau protein
Psammoma bodies
Pseudopalisading tumor cells on brain biopsy
Raised periosteum (creating a "Codman triangle")
RBC casts in urine
Rectangular, crystal-like, cytoplasmic inclusions in Leydig cells
Recurrent infections, eczema, thrombocytopenia
Renal epithelial casts in urine
Rhomboid crystals, $\oplus$ birefringent
Rib notching (inferior surface, on x-ray)
Ring-enhancing brain lesion on CT/MRI in AIDS
Sheets of medium-sized lymphoid cells with scattered pale,
tingible body-laden macrophages ("starry sky" histology)
Silver-staining spherical aggregation of tau proteins in
neurons

DIAGNOSIS/DISEASE
Wilson disease (hepatolenticular degeneration)
Poststreptococcal glomerulonephritis (due to deposition of IgG, IgM, and C3)
Multiple myeloma

## Fibrocystic change of the breast

- Multiple myeloma (usually IgG or IgA)
- Monoclonal gammopathy of undetermined significance (MGUS consequence of aging)
- Waldenström (M protein = IgM) macroglobulinemia
- Primary amyloidosis
"Signet ring" (gastric carcinoma)
"String sign" (Crohn disease)
Granulomatosis with polyangiitis (Wegener; PR3-ANCA/ c-ANCA) and Goodpasture syndrome (anti-basement membrane antibodies)
Gout (monosodium urate crystals)
Kimmelstiel-Wilson nodules (diabetic nephropathy)
Sensitive: S epidermidis; resistant: S saprophyticus
Chronic passive congestion of liver due to right heart failure or Budd-Chiari syndrome
Ewing sarcoma (malignant small blue cell tumor)
Sensitive: S pneumoniae; resistant: viridans streptococci (S mutans, $S$ sanguis)
Minimal change disease (child with nephrotic syndrome)
Eburnation (osteoarthritis resulting in bony sclerosis)
Neurofibrillary tangles (Alzheimer disease) and Pick bodies (Pick disease)
Meningiomas, papillary thyroid carcinoma, mesothelioma, papillary serous carcinoma of the endometrium and ovary
Glioblastoma multiforme
Aggressive bone lesion (eg, osteosarcoma, Ewing sarcoma, osteomyelitis)


## Glomerulonephritis

Reinke crystals (Leydig cell tumor)
Wiskott-Aldrich syndrome
Intrinsic renal failure (eg, ischemia or toxic injury)
Pseudogout (calcium pyrophosphate dihydrate crystals)

## Coarctation of the aorta

Toxoplasma gondii, CNS lymphoma
Burkitt lymphoma ( $\mathrm{t}[8: 14]$ c-myc activation, associated with EBV; "starry sky" made up of malignant cells)
Pick bodies (Pick disease: progressive dementia, changes in personality)

LAB/DIAGNOSTIC FINDING	DIAGNOSIS/DISEASE
"Soap bubble" in femur or tibia on x-ray   "Spikes" on basement membrane, "dome-like" subepithelial   deposits	Giant cell tumor of bone (generally benign)   Stacks of RBCs
"Steeple" sign on frontal CXR	Rouleaux formation (high ESR, multiple myeloma)
Stippled vaginal epithelial cells	Croup (parainfluenza virus)
Streptococcus bovis bacteremia   "Tennis racket"-shaped cytoplasmic organelles (EM) in   Langerhans cells	Clue cells" (Gardnerella vaginalis)
Thousands of polyps on colonoscopy	Colon cancer
Thrombi made of white/red layers	Familial adenomatous polyposis (autosomal dominant,
mutation of APC gene)	

## - CLASSIC/RELEVANT TREATMENTS

CONDITION	COMMON TREATMENT(S)		
Absence seizures	Ethosuximide		
Acute gout attack	NSAIDs, colchicine, glucocorticoids		
Acute promyelocytic leukemia (M3)	All-trans retinoic acid   ADHD   Methylphenidate, CBT, atomoxetine, guanfacine, clonidine   Alcoholism   Alcohol withdrawal   Anorexia   Arrhythmia in damaged cardiac tissue   Benign prostatic hyperplasia   Bipolar disorder		Nutrition, psychotherapy, mirtazapine
:---			


CONDITION	COMMON TREATMENT(S)
Breast cancer in postmenopausal woman	Aromatase inhibitor (anastrozole)
Buerger disease	Smoking cessation
Bulimia nervosa	SSRIs
Candida albicans	Topical azoles (vaginitis); nystatin, fluconazole, caspofungin (oral/esophageal); fluconazole, caspofungin, amphotericin B (systemic)
Carcinoid syndrome	Octreotide
Chlamydia trachomatis	Doxycycline (+ ceftriaxone for gonorrhea coinfection), erythromycin eye drops (prophylaxis in infants)
Chronic gout	Xanthine oxidase inhibitors (eg, allopurinol, febuxostat); pegloticase; probenecid
Chronic hepatitis B or C	IFN- $\alpha$ (HBV and HCV); ribavirin, simeprevir, sofosbuvir (HCV)
Chronic myelogenous leukemia	Imatinib
Clostridium botulinum	Antitoxin
Clostridium difficile	Oral metronidazole; if refractory, oral vancomycin
Clostridium tetani	Antitoxin
CMV	Ganciclovir, foscarnet, cidofovir
Crohn disease	Corticosteroids, infliximab, azathioprine
Cryptococcus neoformans	Fluconazole (in AIDS patients)
Cyclophosphamide-induced hemorrhagic cystitis	Mesna
Depression	SSRIs (first-line)
Diabetes insipidus	Desmopressin (central); hydrochlorothiazide, indomethacin, amiloride (nephrogenic)
Diabetes mellitus type 1	Dietary intervention (low carbohydrate) + insulin replacement
Diabetes mellitus type 2	Dietary intervention, oral hypoglycemics, and insulin (if refractory)
Diabetic ketoacidosis	Fluids, insulin, $\mathrm{K}^{+}$
Drug of choice for anticoagulation during pregnancy	Heparin
Enterococci	Vancomycin, aminopenicillins/cephalosporins
Erectile dysfunction	Sildenafil, tadalafil, vardenafil
ER $\oplus$ breast cancer	Tamoxifen
Ethylene glycol/methanol intoxication	Fomepizole (alcohol dehydrogenase inhibitor)
Haemophilus influenzae (B)	Rifampin (prophylaxis)
Generalized anxiety disorder	SSRIs, SNRIs (first line); buspirone (second line)
Granulomatosis with polyangiitis (Wegener)	Cyclophosphamide, corticosteroids
Heparin reversal	Protamine sulfate
HER2/neu $\oplus$ breast cancer	Trastuzumab
Hyperaldosteronism	Spironolactone


CONDITION	COMMON TREATMENT(S)
Hypercholesterolemia	Statin (first-line)
Hypertriglyceridemia	Fibrate
Immediate anticoagulation	Heparin
Infertility	Leuprolide, GnRH (pulsatile), clomiphene
Influenza	Oseltamivir, zanamivir
Kawasaki disease	IVIG, high-dose aspirin
Legionella pneumophila	Macrolides (eg, azithromycin)
Long-term anticoagulation	Warfarin, dabigatran, rivaroxaban and apixaban
Malaria	Chloroquine, mefloquine, atovaquone/proguanil (for blood schizont), primaquine (for liver hypnozoite)
Malignant hyperthermia	Dantrolene
Medical abortion	Mifepristone
Migraine	Abortive therapies (eg, sumatriptan, NSAIDs); prophylaxis (eg, propranolol, topiramate, CCBs , amitriptyline)
Multiple sclerosis	Disease-modifying therapies (eg, $\beta$-interferon, natalizumab); for acute flares, use IV steroids
Mycobacterium tuberculosis	RIPE (rifampin, isoniazid, pyrazinamide, ethambutol)
Neisseria gonorrhoeae	Ceftriaxone (add doxycycline to cover likely concurrent C trachomatis)
Neisseria meningitidis	Penicillin/ceftriaxone, rifampin (prophylaxis)
Neural tube defect prevention	Prenatal folic acid
Osteomalacia/rickets	Vitamin D supplementation
Osteoporosis	Calcium/vitamin D supplementation (prophylaxis); bisphosphonates, PTH analogs, SERMs, calcitonin, denosumab (treatment)
Patent ductus arteriosus	Close with indomethacin; keep open with PGE analogs
Pheochromocytoma	$\alpha$-antagonists (eg, phenoxybenzamine)
Pneumocystis jirovecii	TMP-SMX (prophylaxis and treatment in immunosuppressed patients)
Prolactinoma	Cabergoline/bromocriptine (dopamine agonists)
Prostate adenocarcinoma/uterine fibroids	Leuprolide, GnRH (continuous)
Prostate adenocarcinoma	Flutamide
Pseudomonas aeruginosa	Antipseudomonal penicillins, aminoglycosides, carbapenems
Pulmonary arterial hypertension (idiopathic)	Sildenafil, bosentan, epoprostenol
Rickettsia rickettsii	Doxycycline, chloramphenicol
Schizophrenia (negative symptoms)	Atypical antipsychotics
Schizophrenia (positive symptoms)	Typical and atypical antipsychotics
SIADH	Fluid restriction, IV hypertonic saline, conivaptan/tolvaptan, demeclocycline


CONDITIIN	COMMON TREATMENT(S)
Sickle cell disease	Hydroxyurea ( $\uparrow$ fetal hemoglobin)
Sporothrix schenckii	Itraconazole, oral potassium iodide
Stable angina	Sublingual nitroglycerin
Staphylococcus aureus	MSSA: nafcillin, oxacillin, dicloxacillin (antistaphylococcal penicillins); MRSA: vancomycin, daptomycin, linezolid, ceftaroline
Streptococcus bovis	Penicillin prophylaxis; evaluation for colon cancer if linked to endocarditis
Streptococcus pneumoniae	Penicillin/cephalosporin (systemic infection, pneumonia), vancomycin (meningitis)
Streptococcus pyogenes	Penicillin prophylaxis
Temporal arteritis	High-dose steroids
Tonic-clonic seizures	Levetiracetam, phenytoin, valproate, carbamazepine
Toxoplasma gondii	Sulfadiazine + pyrimethamine
Treponema pallidum	Penicillin
Trichomonas vaginalis	Metronidazole (patient and partner)
Trigeminal neuralgia (tic douloureux)	Carbamazepine
Ulcerative colitis	5-ASA preparations (eg, mesalamine), 6-mercaptopurine, infliximab, colectomy
UTI prophylaxis	TMP-SMX
Warfarin reversal	Fresh frozen plasma (acute), vitamin K (non-acute)

## KEY ASSOCIATIONS

DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS
Actinic (solar) keratosis	Precursor to squamous cell carcinoma
Acute gastric ulcer associated with CNS injury	Cushing ulcer ( $\uparrow$ intracranial pressure stimulates vagal gastric   $\mathrm{H}^{+}$secretion)
Acute gastric ulcer associated with severe burns	Curling ulcer (greatly reduced plasma volume results in   sloughing of gastric mucosa)
Age ranges for patient with ALL/CLL/AML/CML	ALL: child, CLL: adult > 60, AML: adult ~65, CML: adult   $45-85$
Alternating areas of transmural inflammation and normal   colon	Skip lesions (Crohn disease)
Aortic aneurysm, abdominal	Atherosclerosis
Aortic aneurysm, ascending or arch	syphilis (syphilitic aortitis), vasa vasorum destruction
Aortic aneurysm, thoracic	Hypertension   Aortic dissection   Atrophy of the mammillary bodies
Wernicke encephalopathy (thiamine deficiency causing   ataxia, ophthalmoplegia, and confusion)	


DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS
Autosplenectomy (fibrosis and shrinkage)	Sickle cell disease (hemoglobin S)
Bacteria associated with gastritis, peptic ulcer disease, and gastric malignancies (eg, adenocarcinoma, MALToma)	H pylori
Bacterial meningitis (adults and elderly)	$S$ pneumoniae
Bacterial meningitis (newborns and kids)	Group B streptococcus/E coli (newborns), S pneumoniae/N meningitidis (kids/teens)
Bilateral ovarian metastases from gastric carcinoma	Krukenberg tumor (mucin-secreting signet ring cells)
Bleeding disorder with GpIb deficiency	Bernard-Soulier syndrome (defect in platelet adhesion to von Willebrand factor)
Brain tumor (adults)	Supratentorial: metastasis, astrocytoma (including glioblastoma multiforme), meningioma, schwannoma
Brain tumor (kids)	Infratentorial: medulloblastoma (cerebellum) or supratentorial: craniopharyngioma
Breast cancer	Invasive ductal carcinoma
Breast mass	Fibrocystic change, carcinoma (in postmenopausal women)
Breast tumor (benign, young woman)	Fibroadenoma
Cardiac $1^{\circ}$ tumor (kids)	Rhabdomyoma, often seen in tuberous sclerosis
Cardiac manifestation of lupus	Marantic/thrombotic endocarditis (nonbacterial)
Cardiac tumor (adults)	Metastasis, myxoma ( $90 \%$ in left atrium; "ball and valve")
Cerebellar tonsillar herniation	Chiari II malformation
Chronic arrhythmia	Atrial fibrillation (associated with high risk of emboli)
Chronic atrophic gastritis (autoimmune)	Predisposition to gastric carcinoma (can also cause pernicious anemia)
Clear cell adenocarcinoma of the vagina	DES exposure in utero
Congenital adrenal hyperplasia, hypotension	21-hydroxylase deficiency
Congenital cardiac anomaly	VSD
Congenital conjugated hyperbilirubinemia (black liver)	Dubin-Johnson syndrome (inability of hepatocytes to secrete conjugated bilirubin into bile)
Constrictive pericarditis	TB (developing world); idiopathic, viral illness (developed world)
Coronary artery involved in thrombosis	LAD $>$ RCA $>$ circumflex
Cretinism	Iodine deficit/congenital hypothyroidism
Cushing syndrome	- Iatrogenic (from corticosteroid therapy)   - Adrenocortical adenoma (secretes excess cortisol)   - ACTH-secreting pituitary adenoma (Cushing disease)   - Paraneoplastic (due to ACTH secretion by tumors)
Cyanosis (early; less common)	Tetralogy of Fallot, transposition of great vessels, truncus arteriosus
Death in CML	Blast crisis
Death in SLE	Lupus nephropathy


DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS
Dementia	Alzheimer disease, multiple infarcts (vascular dementia)
Demyelinating disease in young women	Multiple sclerosis
DIC	Severe sepsis, obstetric complications, cancer, burns, trauma, major surgery, acute pancreatitis, APL
Diverticulum in pharynx	Zenker diverticulum (diagnosed by barium swallow)
Ejection click	Aortic stenosis
Esophageal cancer	Squamous cell carcinoma (worldwide); adenocarcinoma (US)
Food poisoning (exotoxin mediated)	S aureus, B cereus
Gastric cancer	Adenocarcinoma
Glomerulonephritis (adults)	Berger disease (IgA nephropathy)
Gynecologic malignancy	Endometrial carcinoma (most common in US); cervical carcinoma (most common worldwide)
Heart murmur, congenital	Mitral valve prolapse
Heart valve in bacterial endocarditis	Mitral > aortic (rheumatic fever), tricuspid (IV drug abuse)
Helminth infection (US)	Enterobius vermicularis, Ascaris lumbricoides
Hematoma-epidural	Rupture of middle meningeal artery (trauma; lentiform shaped)
Hematoma-subdural	Rupture of bridging veins (crescent shaped)
Hemochromatosis	Multiple blood transfusions or hereditary HFE mutation (can result in heart failure, "bronze diabetes," and $\uparrow$ risk of hepatocellular carcinoma)
Hepatocellular carcinoma	Cirrhotic liver (associated with hepatitis B and C and with alcoholism)
Hereditary bleeding disorder	von Willebrand disease
Hereditary harmless jaundice	Gilbert syndrome (benign congenital unconjugated hyperbilirubinemia)
HLA-B27	Psoriatic arthritis, ankylosing spondylitis, IBD-associated arthritis, reactive arthritis (formerly Reiter syndrome)
HLA-DR3	Diabetes mellitus type 1, SLE, Graves disease, Hashimoto thyroiditis, Addison disease
HLA-DR4	Diabetes mellitus type 1, rheumatoid arthritis, Addison disease
Holosystolic murmur	VSD, tricuspid regurgitation, mitral regurgitation
Hypercoagulability, endothelial damage, blood stasis	Virchow triad ( $\uparrow$ risk of thrombosis)
Hypertension, $2^{\circ}$	Renal artery stenosis, chronic kidney disease (eg, polycystic kidney disease, diabetic nephropathy), hyperaldosteronism
Hypoparathyroidism	Accidental excision during thyroidectomy
Hypopituitarism	Pituitary adenoma (usually benign tumor)
Infection $2^{\circ}$ to blood transfusion	Hepatitis C
Infections in chronic granulomatous disease	S aureus, E coli, Aspergillus (catalase $\oplus$ )


DISEASE/FINDING	MOSt COMMON/IMPORTANT ASSOCIATIONS
Intellectual disability	Down syndrome, fragile X syndrome
Kidney stones	- Calcium = radiopaque   - Struvite (ammonium) = radiopaque (formed by urease $\oplus$ organisms such as Klebsiella, Proteus species, and S saprophyticus)   - Uric acid = radiolucent   - Cystine = radiolucent
Late cyanotic shunt (uncorrected left to right becomes right to left)	Eisenmenger syndrome (caused by ASD, VSD, PDA; results in pulmonary hypertension/polycythemia)
Liver disease	Alcoholic cirrhosis
Lysosomal storage disease	Gaucher disease
Male cancer	Prostatic carcinoma
Malignancy associated with noninfectious fever	Hodgkin lymphoma
Malignancy (kids)	ALL, medulloblastoma (cerebellum)
Metastases to bone	Prostate, breast > lung > thyroid
Metastases to brain	Lung $>$ breast $>$ genitourinary $>$ melanoma $>$ GI
Metastases to liver	Colon >> stomach, pancreas
Microcytic anemia	Iron deficiency
Mitochondrial inheritance	Disease occurs in both males and females, inherited through females only
Mitral valve stenosis	Rheumatic heart disease
Mixed (UMN and LMN) motor neuron disease	Amyotrophic lateral sclerosis
Myocarditis	Coxsackie B
Nephrotic syndrome (adults)	Focal segmental glomerulosclerosis
Nephrotic syndrome (kids)	Minimal change disease
Neuron migration failure	Kallmann syndrome (hypogonadotropic hypogonadism and anosmia)
Nosocomial pneumonia	S aureus, Pseudomonas, other enteric gram $\ominus$ rods
Obstruction of male urinary tract	BPH
Opening snap	Mitral stenosis
Opportunistic infection in AIDS	Pneumocystis jirovecii pneumonia
Osteomyelitis	S aureus (most common overall)
Osteomyelitis in sickle cell disease	Salmonella
Osteomyelitis with IV drug use	Pseudomonas, Candida, S aureus
Ovarian tumor (benign, bilateral)	Serous cystadenoma
Ovarian tumor (malignant)	Serous cystadenocarcinoma
Pancreatitis (acute)	Gallstones, alcohol
Pancreatitis (chronic)	Alcohol (adults), cystic fibrosis (kids)
Pelvic inflammatory disease	C trachomatis, N gonorrhoeae
Philadelphia chromosome $\mathrm{t}(9 ; 22)$ (BCR-ABL)	CML (may sometimes be associated with ALL/AML)
Pituitary tumor	Prolactinoma, somatotropic adenoma


DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS
$1^{\circ}$ amenorrhea	Turner syndrome (45, XO or $45, \mathrm{XO} / 46, \mathrm{XX}$ mosaic)
$1^{\circ}$ bone tumor (adults)	Multiple myeloma
$1^{\circ}$ hyperaldosteronism	Adenoma of adrenal cortex
$1^{\circ}$ hyperparathyroidism	Adenomas, hyperplasia, carcinoma
$1^{\circ}$ liver cancer	Hepatocellular carcinoma (chronic hepatitis, cirrhosis, hemochromatosis, $\alpha_{1}$-antitrypsin deficiency, Wilson disease)
Pulmonary hypertension	Idiopathic, heritable, left heart disease (eg, HF), lung disease (eg, COPD), hypoxemic vasoconstriction (eg, OSA), thromboembolic (eg, PE)
Recurrent inflammation/thrombosis of small/medium vessels in extremities	Buerger disease (strongly associated with tobacco)
Refractory peptic ulcers and high gastrin levels	Zollinger-Ellison syndrome (gastrinoma of duodenum or pancreas), associated with MENl
Renal tumor	Renal cell carcinoma: associated with von Hippel-Lindau and cigarette smoking; paraneoplastic syndromes (EPO, renin, PTHrP, ACTH)
Right heart failure due to a pulmonary cause	Cor pulmonale
S3 heart sound	$\uparrow$ ventricular filling pressure (eg, mitral regurgitation, HF), common in dilated ventricles
S4 heart sound	Stiff/hypertrophic ventricle (aortic stenosis, restrictive cardiomyopathy)
$2^{\circ}$ hyperparathyroidism	Hypocalcemia of chronic kidney disease
Sexually transmitted disease	C trachomatis (usually coinfected with N gonorrhoeae)
SIADH	Small cell carcinoma of the lung
Site of diverticula	Sigmoid colon
Sites of atherosclerosis	```Abdominal aorta > coronary artery > popliteal artery \(>\) carotid artery```
t(14;18)	Follicular lymphomas (BCL-2 activation, anti-apoptotic oncogene)
t $(8 ; 14)$	Burkitt lymphoma (c-myc fusion, transcription factor oncogene)
$\mathrm{t}(9 ; 22)$	Philadelphia chromosome, CML (BCR-ABL activation, tyrosine kinase oncogene)
Temporal arteritis	Risk of ipsilateral blindness due to occlusion of ophthalmic artery; polymyalgia rheumatica
Testicular tumor	Seminoma (malignant, radiosensitive), $\uparrow$ placental ALP
Thyroid cancer	Papillary carcinoma (childhood irradiation)
Tumor in women	Leiomyoma (estrogen dependent, not precancerous)
Tumor of infancy	Strawberry hemangioma (grows rapidly and regresses spontaneously by childhood)
Tumor of the adrenal medulla (adults)	Pheochromocytoma (usually benign)
Tumor of the adrenal medulla (kids)	Neuroblastoma (malignant)
Type of Hodgkin lymphoma	Nodular sclerosing (vs mixed cellularity, lymphocytic predominance, lymphocytic depletion)


DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS
Type of non-Hodgkin lymphoma	Diffuse large B-cell lymphoma
UTI	E coli, Staphylococcus saprophyticus (young women)
Vertebral compression fracture	Osteoporosis (type I: postmenopausal woman; type II: elderly   man or woman)
Viral encephalitis affecting temporal lobe	HSV-1
Vitamin deficiency (US)	Folate (pregnant women are at high risk; body stores only 3-to   4-month supply; prevents neural tube defects)

## EQUATION REVIEW

TOPLC	EQUATION	PAGE
Sensitivity	Sensitivity $=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})$	33
Specificity	Specificity $=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})$	33
Positive predictive value	$\mathrm{PPV}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})$	33
Negative predictive value	$\mathrm{NPV}=\mathrm{TN} /(\mathrm{FN}+\mathrm{TN})$	33
Odds ratio (for case-control studies $)$	$\mathrm{OR}=\frac{\mathrm{a} / \mathrm{c}}{\mathrm{b} / \mathrm{d}}=\frac{\mathrm{ad}}{\mathrm{bc}}$	34
Relative risk	$\mathrm{RR}=\frac{\mathrm{a} /(\mathrm{a}+\mathrm{b})}{\mathrm{c} /(\mathrm{c}+\mathrm{d})}$	34
Attributable risk	$\mathrm{AR}=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{b}}-\frac{\mathrm{c}}{\mathrm{c}+\mathrm{d}}$	34
Relative risk reduction	$\mathrm{RRR}=1-\mathrm{RR}$	34
Absolute risk reduction	$\mathrm{ARR}=\frac{\mathrm{c}}{\mathrm{c}+\mathrm{d}}-\frac{\mathrm{a}}{\mathrm{a}+\mathrm{b}}$	34
Number needed to treat	$\mathrm{NNT}=1 / \mathrm{ARR}$	34
Number needed to harm	$\mathrm{NNH}=1 / \mathrm{AR}$	34
Hardy-Weinberg equilibrium	$\mathrm{p}^{2}+2 \mathrm{pq}+\mathrm{q}^{2}=1$	
$\mathrm{p}+\mathrm{q}=1$		


TOPIC	Equation	PAGE
Cardiac output	$\mathrm{CO}=\frac{\text { rate of } \mathrm{O}_{2} \text { consumption }}{\text { arterial } \mathrm{O}_{2} \text { content }- \text { venous } \mathrm{O}_{2} \text { content }}$	266
	$\mathrm{CO}=$ stroke volume $\times$ heart rate	266
Mean arterial pressure	MAP $=$ cardiac output $\times$ total peripheral resistance	266
	MAP $=2 / 3$ diastolic $+1 / 3$ systolic	266
Stroke volume	$\mathrm{SV}=\mathrm{EDV}-\mathrm{ESV}$	266
Ejection fraction	$\mathrm{EF}=\frac{\mathrm{SV}}{\mathrm{EDV}}=\frac{\mathrm{EDV}-\mathrm{ESV}}{\mathrm{EDV}}$	267
Resistance	$\text { Resistance }=\frac{\text { driving pressure }(\Delta \mathrm{P})}{\text { flow }(\mathrm{Q})}=\frac{8 \eta(\text { viscosity }) \times \text { length }}{\pi \mathrm{r}^{4}}$	268
Capillary fluid exchange	$\mathrm{J}_{\mathrm{v}}=$ net fluid flow $=\mathrm{K}_{\mathrm{f}}\left[\left(\mathrm{P}_{\mathrm{c}}-\mathrm{P}_{\mathrm{i}}\right)-\varsigma\left(\pi_{\mathrm{c}}-\pi_{\mathrm{i}}\right)\right]$	281
Renal clearance	$\mathrm{C}_{\mathrm{x}}=\mathrm{U}_{\mathrm{x}} \mathrm{V} / \mathrm{P}_{\mathrm{x}}$	533
Glomerular filtration rate	$\begin{aligned} & \mathrm{GFR}=\mathrm{U}_{\text {inulin }} \times \mathrm{V} / \mathrm{P}_{\text {inulin }}=\mathrm{C}_{\text {inulin }} \\ & \mathrm{GFR}=\mathrm{K}_{\mathrm{f}}\left[\left(\mathrm{P}_{\mathrm{GC}}-\mathrm{P}_{\mathrm{BS}}\right)-\left(\pi_{\mathrm{GC}}-\pi_{\mathrm{BS}}\right)\right] \end{aligned}$	534
Effective renal plasma flow	$e \mathrm{RPF}=\mathrm{U}_{\mathrm{PAH}} \times \frac{\mathrm{V}}{\mathrm{P}_{\mathrm{PAH}}}=\mathrm{C}_{\mathrm{PAH}}$	534
Renal blood flow	$\mathrm{RBF}=\frac{\mathrm{RPF}}{1-\mathrm{Hct}}$	534
Filtration fraction	$\mathrm{FF}=\frac{\mathrm{GFR}}{\mathrm{RPF}}$	535
Henderson-Hasselbalch equation (for extracellular pH )	$\mathrm{pH}=6.1+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{0.03 \mathrm{PCO}_{2}}$	543
Winters formula	$\mathrm{PCO}_{2}=1.5\left[\mathrm{HCO}_{3}{ }^{-}\right]+8 \pm 2$	543
Physiologic dead space	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{T}} \times \frac{\mathrm{PaCO}_{2}-\mathrm{PECO}_{2}}{\mathrm{PaCO}_{2}}$	610
Pulmonary vascular resistance	$\mathrm{PVR}=\frac{\mathrm{P}_{\text {pulm artery }}-\mathrm{P}_{\mathrm{L} \text { atrium }}}{\text { cardiac output }}$	614
Alveolar gas equation	$\mathrm{PAO}_{2}=\mathrm{PIO}_{2}-\frac{\mathrm{PaCO}_{2}}{\mathrm{R}}$	614

NOTES

## SECTION IV

## Top-Rated Review Resources

"Some books are to be tasted, others to be swallowed, and some few to be chewed and digested."

- Sir Francis Bacon
"Always read something that will make you look good if you die in the middle of it."
-P.J. O'Rourke
"So many books, so little time."
-Frank Zappa
"If one cannot enjoy reading a book over and over again, there is no use in reading it at all."
-Oscar Wilde
> How to Use the
Database 650
Question Banks
Question Books ..... 652
- Internet Sites ..... 652
- Mobile Apps ..... 652
Comprehensive ..... 653
Anatomy, Embryology, and Neuroscience ..... 653
> Biochemistry ..... 654
Histology ..... 655
> Microbiology and Immunology ..... 655
Pathology ..... 656
Pharmacology ..... 657
Physiology ..... 657


## - HOW TO USE THE DATABASE

This section is a database of top-rated basic science review books, sample examination books, software, websites, and apps that have been marketed to medical students studying for the USMLE Step 1. For each recommended resource, we list (where applicable) the Title, the First Author (or editor), the Current Publisher, the Copyright Year, the Number of Pages, the Approximate List Price, the Format of the resource, and the Number of Test Questions. Finally, each recommended resource receives a Rating. Within each section, resources are arranged first by Rating and then alphabetically by the first author within each Rating group.

For a complete list of resources, including summaries that describe their overall style and utility, go to www.firstaidteam.com/bonus.

A letter rating scale with six different grades reflects the detailed student evaluations for Rated Resources. Each rated resource receives a rating as follows:

## A+ Excellent for boards review.

A
A- Very good for boards review; choose among the group.
B+ Good, but use only after exhausting better resources.
B
B- Fair, but there are many better resources in the discipline; or lowyield subject material.

The Rating is meant to reflect the overall usefulness of the resource in helping medical students prepare for the USMLE Step 1 . This is based on a number of factors, including:

- The cost
- The readability of the text
- The appropriateness and accuracy of the material
- The quality and number of sample questions
- The quality of written answers to sample questions
- The quality and appropriateness of the illustrations (eg, graphs, diagrams, photographs)
- The length of the text (longer is not necessarily better)
- The quality and number of other resources available in the same discipline
- The importance of the discipline for the USMLE Step 1

Please note that ratings do not reflect the quality of the resources for purposes other than reviewing for the USMLE Step 1. Many books with lower ratings are well written and informative but are not ideal for boards
preparation. We have not listed or commented on general textbooks available in the basic sciences.

Evaluations are based on the cumulative results of formal and informal surveys of thousands of medical students at many medical schools across the country. The ratings represent a consensus opinion, but there may have been a broad range of opinion or limited student feedback on any particular resource.

Please note that the data listed are subject to change in that:

- Publishers' prices change frequently.
- Bookstores often charge an additional markup.
- New editions come out frequently, and the quality of updating varies.
- The same book may be reissued through another publisher.

We actively encourage medical students and faculty to submit their opinions and ratings of these basic science review materials so that we may update our database. (See p. xvii, How to Contribute.) In addition, we ask that publishers and authors submit for evaluation review copies of basic science review books, including new editions and books not included in our database. We also solicit reviews of new books or suggestions for alternate modes of study that may be useful in preparing for the examination, such as flash cards, computer software, commercial review courses, apps, and Web sites.

## Disclaimer/Conflict of Interest Statement

No material in this book, including the ratings, reflects the opinion or influence of the publisher. All errors and omissions will gladly be corrected if brought to the attention of the authors through our blog at www.firstaidteam.com. Please note that USMLE-Rx and the entire First Aid for the USMLE series are publications by the senior authors of this book; the following ratings are based solely on recommendations from the student authors of this book as well as data from the student survey and feedback forms.

TOP-RATED REVIEW RESOURCES

## Question Banks

		AUTHOR	PUBLISHER	TYPE
$\mathbf{A}^{+}$	USMLEWorld Qbank	USMLEWorld	www.usmleworld.com	Test/2200 q
$\mathbf{A}$	USMLE-Rx Qmax	MedIQ Learning	www.usmle-rx.com	Test/2300 q
$\mathbf{A}^{-}$	Kaplan Qbank	\$99-\$299		
$\mathbf{B}^{+}$	USMLE Consult	Kaplan	www.kaplanmedical.com	Test/2200 q

## Question Books

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathbf{A}^{-}$	First Aid Q\&A for the USMLE Step 1	Le	McGraw-Hill, 2012, 784 pages	Test/1000 q	$\$ 46.00$
$\mathbf{B}^{+}$	Kaplan USMLE Step 1 Qbook	Kaplan	Kaplan, 2013, 456 pages	Test/850 q	
$\mathbf{B}^{+}$	PreTest Clinical Vignettes for the USMLE   Step 1	McGraw-Hill	McGraw-Hill, 2010, 318 pages	Test/322 q	$\$ 39.90$

## Internet Sites

		AUTHOR	PUBLISHER	TYPE	PRICE
A	First Aid Step 1 Express		www.usmle-rx.com	Review/Test	$\begin{aligned} & \$ 99.00- \\ & \$ 249.00 \end{aligned}$
$B^{+}$	Firecracker	Firecracker Inc.	www.firecracker.me	Review/   Test/1500 q	\$117-\$500
$\mathrm{B}^{+}$	SketchyMedical		www.SketchyMedical.com	Review	\$99-\$159
$B^{+}$	WebPath: The Internet Pathology Laboratory		library.med.utah.edu/WebPath/	Review/ Test/1300 q	Free
B	Blue Histology		www.lab.anhb.uwa.edu.au/mb140	Review/Test	Free
B	Dr. Najeeb Lectures		www.drnajeeblectures.com	Review	\$49
B	Medical School Pathology		www.medicalstudentpathology.com	Review	Free
B	The Pathology Guy	Friedlander	www.pathguy.com	Review	Free
B	The Whole Brain Atlas	Johnson	www.med.harvard.edu/aanlib/	Review	Free
B	Radiopaedia.org		www.radiopaedia.org	Cases/Test	Free
$B^{-}$	Digital Anatomist Project: Interactive Atlases	University of Washington	www9.biostr.washington.edu/da.html	Review	Free
$B^{-}$	Picmonic		http://www.picmonic.com	Review	\$24.99/month

## Mobile Apps

		AUTHOR	PUBLISHER
$\mathbf{A}$	Anki	http://ankisrs.net	TYPE
$\mathbf{B}^{+}$	Cram Fighter	www.cramfighter.com	Flash cards
$\mathbf{B}$	Osmosis	www.osmosis.org	Study plan

## Comprehensive

		AUTHOR	PUBLISHER	TYPE	PRICE
A	First Aid for the Basic Sciences: General Principles	Le	McGraw-Hill, 2011, 576 pages	Review	\$72.00
A	First Aid for the Basic Sciences: Organ Systems	Le	McGraw-Hill, 2011, 880 pages	Review	\$93.00
A	medEssentials for the USMLE Step 1	Manley	Kaplan, 2012, 588 pages	Review	\$54.99
$\mathrm{A}^{-}$	USMLE Step 1 Secrets	Brown	Elsevier, 2012, 880 pages	Review	\$42.95
$\mathrm{A}^{-}$	First Aid Cases for the USMLE Step 1	Le	McGraw-Hill, 2012, 448 pages	Cases	\$50.00
$\mathrm{B}^{+}$	Step-Up to USMLE Step 12015	Jenkins	Lippincott Williams \& Wilkins, 2014, 528 pages	Review	\$52.99
B $^{+}$	Cracking the USMLE Step 1	Princeton Review	Princeton Review, 2013, 832 pages	Review	\$44.99
B $^{+}$	USMLE Images for the Boards: A Comprehensive Image-Based Review	Tully	Elsevier, 2012, 296 pages	Review	\$42.95
B	First Aid Step 1 Flash Facts		https://www.usmle-rx.com	Flash cards	\$49.00-\$99.00
B	Déjà Review: USMLE Step 1	Naheedy	McGraw-Hill, 2010, 412 pages	Review	\$24.00
B-	USMLE Step 1 Made Ridiculously Simple	Carl	MedMaster, 2014, 400 pages	$\begin{aligned} & \text { Review/Test } \\ & 100 \mathrm{q} \end{aligned}$	\$29.95

Anatomy, Embryology, and Neuroscience

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathbf{A}^{-}$	High-Yield Embryology	Dudek	Lippincott Williams \& Wilkins, 2013, 176 pages	Review	\$37.99
$\mathrm{A}^{-}$	High-Yield Neuroanatomy	Fix	Lippincott Williams \& Wilkins, 2008, 160 pages	Review/ Test/50 q	\$35.99
$\mathrm{A}^{-}$	Anatomy-An Essential Textbook	Gilroy	Thieme, 2013, 504 pages	Text/ Test/400 q	\$44.99
$\mathbf{A}^{-}$	Atlas of Anatomy	Gilroy	Thieme, 2012, 704 pages	Text	\$79.99
$\mathrm{B}^{+}$	High-Yield Gross Anatomy	Dudek	Lippincott Williams \& Wilkins, 2014, 320 pages	Review	\$37.99
B ${ }^{+}$	Clinical Anatomy Made Ridiculously Simple	Goldberg	MedMaster, 2012, 175 pages	Review	\$29.95
B ${ }^{+}$	PreTest Neuroscience	Siegel	McGraw-Hill, 2013, 412 pages	Test/500 q	\$37.00
$\mathrm{B}^{+}$	Crash Course: Anatomy	Stenhouse	Elsevier, 2015, 288 pages	Review	\$44.99
$\mathrm{B}^{+}$	Déjà Review: Neuroscience	Tremblay	McGraw-Hill, 2010, 266 pages	Review	\$24.00
$\mathrm{B}^{+}$	USMLE Road Map: Neuroscience	White	McGraw-Hill, 2008, 224 pages	Review/   Test/300 q	\$40.00
B	BRS Embryology	Dudek	Lippincott Williams \& Wilkins, 2014, 336 pages	Review/ Test/220 q	\$50.99
B	Anatomy Flash Cards: Anatomy on the Go	Gilroy	Thieme, 2013, 565 flash cards	Flash cards	\$59.99

## Anatomy, Embryology, and Neuroscience (continued)

		AUTHOR	PUBLISHER	TYPE	PRICE
B	Clinical Neuroanatomy Made Ridiculously   Simple	Goldberg	MedMaster, 2014, 90 pages   +CD-ROM	Review/Test/   Few q	$\$ 25.95$
B	Rapid Review: Gross and Developmental   Anatomy	Moore	Elsevier, 2010, 304 pages	Review/   Test/450 q	$\$ 42.95$
B	Case Files: Anatomy	Toy	McGraw-Hill, 2014, 402 pages	Cases	$\$ 35.00$
B	Case Files: Neuroscience	Toy	McGraw-Hill, 2014, 418 pages	Cases	$\$ 35.00$
B-	Gray's Anatomy for Students Flash Cards	Drake	Elsevier, 2015, 350 flash cards	Flash cards	$\$ 39.99$
B-	Netter's Anatomy Flash Cards	Hansen	Saunders, 2014, 674 flash cards	Flash cards	$\$ 39.95$

## Behavioral Science

		AUTHOR	PUBLISHER	TYPE	PRICE
A	High-Yield Behavioral Science	Fadem	Lippincott Williams \& Wilkins, 2012, 144 pages	Review	\$36.99
$\mathrm{A}^{-}$	BRS Behavioral Science	Fadem	Lippincott Williams \& Wilkins, 2013, 336 pages	Review/   Test/700 q	\$49.99
$\mathrm{A}^{-}$	High-Yield Biostatistics, Epidemiology, and Public Health	Glaser	Lippincott Williams \& Wilkins, 2013, 168 pages	Review	\$41.99
$\mathrm{A}^{-}$	Clinical Biostatistics and Epidemiology Made Ridiculously Simple	Weaver	MedMaster, 2011, 104 pages	Review	\$22.95
$\mathrm{B}^{+}$	USMLE Medical Ethics	Fischer	Kaplan, 2012, 216 pages	Cases	\$42.99
$\mathrm{B}^{+}$	Jekel's Epidemiology, Biostatistics, Preventive Medicine, and Public Health	Katz	Saunders, 2013, 420 pages	Review/   Test/477 q	\$59.95
B	Déjà Review: Behavioral Science	Quinn	McGraw-Hill, 2010, 240 pages	Review	\$24.00

## Biochemistry

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathrm{A}^{-}$	Lange Flash Cards Biochemistry and Genetics	Baron	McGraw-Hill, 2013, 184 flash cards	Flash cards	\$38.00
$\mathrm{A}^{-}$	Rapid Review: Biochemistry	Pelley	Elsevier, 2010, 208 pages	Review/   Test/350 a	\$42.95
$\mathbf{B}^{+}$	Lippincott's Illustrated Reviews: Biochemistry	Ferrier	Lippincott Williams \& Wilkins, 2013, 560 pages	Review/   Test/500 q	\$75.99
B ${ }^{+}$	Déjà Review: Biochemistry	Manzoul	McGraw-Hill, 2010, 206 pages	Review	\$24.00
$\mathrm{B}^{+}$	Medical Biochemistry-An Illustrated Review	Panini	Thieme, 2013,441 pages	Review/ Test/400 q	\$39.99
$\mathrm{B}^{+}$	PreTest Biochemistry and Genetics	Wilson	McGraw-Hill, 2013, 592 pages	Test/500 q	\$36.00
B	Clinical Biochemistry Made Ridiculously Simple	Goldberg	MedMaster, 2010, 95 pages + foldout	Review	\$24.95
B	BRS Biochemistry, Molecular Biology, and Genetics	Lieberman	Lippincott Williams \& Wilkins, 2013, 432 pages	Review/Test	\$49.99

## Biochemistry (continued)

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathbf{B}^{-}$	Case Files: Biochemistry	Toy	McGraw-Hill, 2014, 480 pages	Cases	$\$ 35.00$
$\mathbf{B}^{-}$	High-Yield Biochemistry	Wilcox	Lippincott Williams \& Wilkins, 2009,   $128 ~ p a g e s ~$	Review	$\$ 40.99$

Cell Biology and Histology

		AUTHOR	PUBLSHER	TYPE	PRICE
A $^{-}$	High-Yield Cell and Molecular Biology	Dudek	Lippincott Williams \& Wilkins, 2010,   151 pages	Review	$\$ 36.99$
B	Elsevier's Integrated Review: Genetics	Adkison	Elsevier, 2011, 272 pages	Review	$\$ 42.95$
B	High-Yield Genetics	Dudek	Lippincott Williams \& Wilkins, 2008,   134 pages	Review	$\$ 36.99$
B	BRS Cell Biology and Histology	Gartner	Lippincott Williams \& Wilkins, 2014,   432 pages	Review/   Test/320 q	$\$ 45.99$
B	PreTest Anatomy, Histology, and Cell   Biology	Klein	McGraw-Hill, 2010, 654 pages	Test/500 q	$\$ 37.00$
B	USMLE Road Map: Genetics	Sack	McGraw-Hill, 2008, 224 pages	Review	$\$ 40.00$
B	Déjà Review: Histology and Cell Biology	Song	McGraw-Hill, 2010, 300 pages	Review	$\$ 24.00$
B	Crash Course: Cell Biology and Genetics	Stubbs	Elsevier, 2015, 216 pages	Review	$\$ 46.99$
B-	Wheater's Functional Histology	Young	Elsevier, 2013, 464 pages	Text	$\$ 82.95$

## Microbiology and Immunology

		AUTHOR	PUBLISHER	TYPE	PRICE
A	Déjà Review: Microbiology \& Immunology	Chen	McGraw-Hill, 2010, 424 pages	Review	\$24.00
A	Clinical Microbiology Made Ridiculously Simple	Gladwin	MedMaster, 2014, 400 pages	Review	\$36.95
A	Lange Microbiology \& Infectious Diseases Flash Cards	Somers	McGraw-Hill, 2010, 189 flash cards	Flash cards	\$43.00
$\mathrm{A}^{-}$	Basic Immunology	Abbas	Elsevier, 2012,336 pages	Review	\$71.95
$\mathrm{A}^{-}$	Microcards: Microbiology Flash Cards	Harpavat	Lippincott Williams \& Wilkins, 2011, 310 flash cards	Flash cards	\$46.99
$\mathbf{A}^{-}$	Medical Microbiology and Immunology Flash Cards	Rosenthal	Elsevier, 2008, 324 flash cards	Flash cards	\$39.95
$\mathbf{B}^{+}$	Elsevier's Integrated Immunology and Microbiology	Actor	Elsevier, 2011, 192 pages	Review	\$42.95
$\mathbf{B}^{+}$	Lippincott's Illustrated Reviews: Immunology	Doan	Lippincott Williams \& Wilkins, 2012, 384 pages	Review/Test/   Few q	\$65.99
$\mathrm{B}^{+}$	Lippincott's Illustrated Reviews: Microbiology	Harvey	Lippincott Williams \& Wilkins, 2012, 448 pages	Review/Test/ Few q	\$67.99
$\mathbf{B}^{+}$	Review of Medical Microbiology and Immunology	Levinson	McGraw-Hill, 2014, 800 pages	Review/   Test/654 q	\$55.00

## Microbiology and Immunology (continued)

		AUTHOR	PUBLISHER	TYPE	PRICE
B	The Big Picture: Medical Microbiology	Chamberlain	McGraw-Hill, 2008, 456 pages	Review/100 q	$\$ 65.00$
B	Case Studies in Immunology: Clinical   Companion	Geha	Garland Science, 2011, 376 pages	Cases	$\$ 59.00$
B	Pretest: Microbiology	Kettering	McGraw-Hill, 2013, 480 pages	Test/500 q	$\$ 36.00$
B	Rapid Review: Microbiology and   Immunology	Rosenthal	Elsevier, 2010, 240 pages	Review/	$\$ 42.95$
B	Case Files: Microbiology	Toy	McGraw-Hill, 2014, 401 pages	Cases	$\$ 35.00$

Pathology

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathbf{A}^{+}$	Rapid Review: Pathology	Goljan	Elsevier, 2013, 784 pages	Review/   Test/400 q	\$55.95
$\mathbf{A}^{+}$	Pathoma: Fundamentals of Pathology	Sattar	Pathoma, 2011, 218 pages	Review/ Lecture	\$82.95
$\mathrm{A}^{-}$	Lange Pathology Flash Cards	Baron	McGraw-Hill, 2013, 300 flash cards	Flash cards	\$39.00
$\mathrm{A}^{-}$	Déjà Review: Pathology	Davis	McGraw-Hill, 2010, 474 pages	Review	\$24.00
$\mathrm{A}^{-}$	Lippincott's Illustrated Q\&A Review of Rubin's Pathology	Fenderson	Lippincott Williams \& Wilkins, 2010, 336 pages	Test/1000 q	\$57.99
$\mathrm{A}^{-}$	The Big Picture: Pathology	Kemp	McGraw-Hill, 2007, 512 pages	Review/   Test/130 q	\$61.00
$\mathrm{A}^{-}$	Robbins and Cotran Review of Pathology	Klatt	Elsevier, 2014, 504 pages	Test/1100 q	\$49.95
$\mathrm{A}^{-}$	BRS Pathology	Schneider	Lippincott Williams \& Wilkins, 2013, 480 pages	Review/   Test/450 q	\$49.99
$\mathrm{A}^{-}$	Color Atlas of Physiology	Silbernag	Thieme, 2015, 472 pages	Review	\$49.99
$\mathrm{A}^{-}$	Crash Course: Pathology	Xiu	Elsevier, 2012, 356 pages	Review	\$44.95
$\mathrm{B}^{+}$	Cases \& Concepts Step 1: Pathophysiology Review	Caughey	Lippincott Williams \& Wilkins, 2009, 376 pages	Cases	\$48.99
$\mathrm{B}^{+}$	Case Files: Pathology	Toy	McGraw-Hill, 2008, 456 pages	Cases	\$38.00
B	PreTest Pathology	Brown	McGraw-Hill, 2010, 612 pages	Test/500 q	\$37.00
B	High-Yield Histopathology	Dudek	Lippincott Williams \& Wilkins, 2011, 328 pages	Review	\$36.00
B	Pathophysiology of Disease: Introduction to Clinical Medicine	McPhee	McGraw-Hill, 2014, 784 pages	Text	\$78.00
B	Haematology at a Glance	Mehta	Blackwell Science, 2014, 136 pages	Review	\$46.95
B	Pocket Companion to Robbins and Cotran Pathologic Basis of Disease	Mitchell	Elsevier, 2011, 800 pages	Review	\$40.95

## Pharmacology

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathrm{A}^{-}$	Lange Pharmacology Flash Cards	Baron	McGraw-Hill, 2013, 230 flash cards	Flash cards	\$39.00
$\mathbf{A}^{-}$	Master the Boards USMLE Step 1 Pharmacology Flashcards	Fischer	Kaplan, 2015, 408 flash cards	Flash cards	\$54.99
$\mathrm{A}^{-}$	Déjà Review: Pharmacology	Gleason	McGraw-Hill, 2010, 236 pages	Review	\$24.00
$\mathrm{A}^{-}$	Lippincott's Illustrated Reviews: Pharmacology	Harvey	Lippincott Williams \& Wilkins, 2014, 680 pages	Review/   Test/380 q	\$69.99
$\mathbf{A}^{-}$	PharmCards: Review Cards for Medical Students	Johannsen	Lippincott Williams \& Wilkins, 2010, 240 flash cards	Flash cards	\$44.99
$\mathrm{B}^{+}$	Crash Course: Pharmacology	Battista	Elsevier, 2015, 236 pages	Review	\$44.99
$\mathrm{B}^{+}$	Pharmacology Flash Cards	Brenner	Elsevier, 2012, 200 flash cards	Flash cards	\$39.95
$\mathrm{B}^{+}$	Elsevier's Integrated Pharmacology	Kester	Elsevier, 2011, 264 pages	Review	\$42.95
$\mathrm{B}^{+}$	Rapid Review: Pharmacology	Pazdernik	Elsevier, 2010, 360 pages	Review/   Test/450 q	\$42.95
$\mathrm{B}^{+}$	BRS Pharmacology	Rosenfeld	Lippincott Williams \& Wilkins, 2013, 384 pages	Review/   Test/200 q	\$49.99
B	PreTest Pharmacology	Shlafer	McGraw-Hill, 2013, 567 pages	Test/500 q	\$36.00
B	Case Files: Pharmacology	Toy	McGraw-Hill, 2013, 453 pages	Cases	\$35.00
B	Katzung \& Trevor's Pharmacology: Examination and Board Review	Trevor	McGraw-Hill, 2015, 592 pages	Review/ Test/1000 q	\$54.00
B	High-Yield Pharmacology	Weiss	Lippincott Williams \& Wilkins, 2009, 160 pages	Review	\$35.99

Physiology

		AUTHOR	PUBLISHER	TYPE	PRICE
A $^{+}$	BRS Physiology	Costanzo	Lippincott Williams \& Wilkins, 2014,   328 pages	Review/   Test/350 q	$\$ 51.99$
A	Acid-Base, Fluids, and Electrolytes Made   Ridiculously Simple	Preston	MedMaster, 2010, 156 pages	Review	$\$ 22.95$
A- $^{-}$	Physiology	Costanzo	Saunders, 2013, 520 pages	Text	$\$ 62.95$
B+ $^{+}$	BRS Physiology Cases and Problems	Costanzo	Lippincott Williams \& Wilkins, 2012,   $368 ~ p a g e s ~$	Cases	$\$ 49.99$
$\mathbf{B}^{+}$	Déjà Review: Physiology	Gould	McGraw-Hill, 2010, 298 pages	Review	$\$ 24.00$
$\mathbf{B}^{+}$	The Big Picture: Medical Physiology	Kibble	McGraw-Hill, 2009, 448 pages	Review/	$\$ 58.00$
B+	PreTest Physiology	Metting	McGraw-Hill, 2013, 505 pages	Test/108 q	
B	Rapid Review: Physiology q	$\$ 36.00$			
B	Vander's Renal Physiology	Brown	Elsevier, 2011, 288 pages	Test/350 q	$\$ 42.95$
B	Endocrine Physiology	McGraw-Hill, 2013, 240 pages	Text	$\$ 45.00$	
B	Netter's Physiology Flash Cards	Mulroney	Saunders, 2009, 200+ flash cards	Flash cards	$\$ 39.95$

Physiology (continued)

		AUTHOR	PUBLLSHER	TYPE	PRICE
B	Case Files: Physiology	Toy	McGraw-Hill, 2008, 456 pages	Cases	$\$ 37.00$
B	Pulmonary Pathophysiology: The   Essentials	West	Lippincott Williams \& Wilkins, 2012,   208 pages	Review/   Test/50 q	$\$ 51.99$
B $^{-}$Clinical Physiology Made Ridiculously   Simple	Goldberg	MedMaster, 2010, 160 pages	Review	$\$ 24.95$	

## Abbreviations and Symbols

ABBREVIATION	MEANING
$\oplus$	positive
$\ominus$	negative
$1^{\circ}$	primary
$2^{\circ}$	secondary
$3^{\circ}$	tertiary
A-a	alveolar-arterial [gradient]
AA	Alcoholics Anonymous, amyloid A
AAMC	Association of American Medical Colleges
Ab	antibody
ABP	androgen-binding protein
ACA	anterior cerebral artery
Acetyl-CoA	acetyl coenzyme A
ACD	anemia of chronic disease
ACE	angiotensin-converting enzyme
ACh	acetylcholine
AChE	acetylcholinesterase
ACL	anterior cruciate ligament
ACom	anterior communicating [artery]
ACTH	adrenocorticotropic hormone
ADA	adenosine deaminase, Americans with Disabilities Act
ADH	antidiuretic hormone
ADHD	attention-deficit hyperactivity disorder
ADP	adenosine diphosphate
ADPKD	autosomal-dominant polycystic kidney disease
AFP	$\alpha$-fetoprotein
Ag	antigen, silver
AICA	anterior inferior cerebellar artery
AIDS	acquired immunodeficiency syndrome
AIHA	autoimmune hemolytic anemia
AL	amyloid light [chain]
ALA	aminolevulinic acid
ALL	acute lymphoblastic (lymphocytic) leukemia
ALP	alkaline phosphatase
$\alpha_{1}, \alpha_{2}$	sympathetic receptors
ALS	amyotrophic lateral sclerosis
ALT	alanine transaminase
AMA	American Medical Association, antimitochondrial antibody
AML	acute myelogenous (myeloid) leukemia
AMP	adenosine monophosphate
ANA	antinuclear antibody
ANCA	antineutrophil cytoplasmic antibody
ANOVA	analysis of variance
ANP	atrial natriuretic peptide


ABBREVIATION	MEANING
ANS	autonomic nervous system
anti-CCP	anti-cyclic citrullinated peptide
AOA	American Osteopathic Association
AP	action potential, A \& P [ribosomal binding sites]
APAF-1	apoptotic protease activating factor 1
APC	antigen-presenting cell, activated protein C
Apo	apolipoprotein
APP	amyloid precursor protein
APRT	adenine phosphoribosyltransferase
APSAC	anistreplase
aPTT	activated partial thromboplastin time
APUD	amine precursor uptake decarboxylase
AR	attributable risk, autosomal recessive, aortic regurgitation
ara-C	arabinofuranosyl cytidine (cytarabine)
ARB	angiotensin receptor blocker
ARDS	acute respiratory distress syndrome
Arg	arginine
ARMD	age-related macular degeneration
ARPKD	autosomal-recessive polycystic kidney disease
AS	aortic stenosis
ASA	anterior spinal artery
ASD	atrial septal defect
ASO	anti-streptolysin O
AST	aspartate transaminase
AT	angiotensin, antithrombin
ATCase	aspartate transcarbamoylase
ATN	acute tubular necrosis
ATP	adenosine triphosphate
ATPase	adenosine triphosphatase
ATTR	transthyretin-mediated amyloidosis
AV	atrioventricular
AZT	azidothymidine
$\beta_{1}, \beta_{2}$	sympathetic receptors
BAL	British anti-Lewisite [dimercaprol]
BCG	bacille Calmette-Guérin
$\mathrm{BH}_{4}$	tetrahydrobiopterin
BIMS	Biometric Identity Management System
BM	basement membrane
BMI	body-mass index
BMR	basal metabolic rate
BP	bisphosphate, blood pressure
BPG	bisphosphoglycerate
BPH	benign prostatic hyperplasia
BT	bleeding time
BUN	blood urea nitrogen


ABBREVIATION	MEANING
$\mathrm{Ca}^{2+}$	calcium ion
CAD	coronary artery disease
CAF	common application form
CALLA	common acute lymphoblastic leukemia antigen
cAMP	cyclic adenosine monophosphate
CBG	corticosteroid-binding globulin
Cbl	cobalamin
CBSE	Comprehensive Basic Science Examination
CBSSA	Comprehensive Basic Science Self-Assessment
CBT	computer-based test, cognitive behavioral therapy
CCK	cholecystokinin
CCS	computer-based case simulation
CD	cluster of differentiation
CDK	cyclin-dependent kinase
cDNA	complementary deoxyribonucleic acid
CEA	carcinoembryonic antigen
CETP	cholesteryl-ester transfer protein
CF	cystic fibrosis
CFTR	cystic fibrosis transmembrane conductance regulator
CFX	circumflex [artery]
CGD	chronic granulomatous disease
cGMP	cyclic guanosine monophosphate
CGN	cis-Golgi network
$\mathrm{C}_{\mathrm{H}} 1-\mathrm{C}_{\mathrm{H}}{ }^{3}$	constant regions, heavy chain [antibody]
ChAT	choline acetyltransferase
$\chi^{2}$	chi-squared
CI	confidence interval
CIN	candidate identification number, carcinoma in situ, cervical intraepithelial neoplasia
CIS	Communication and Interpersonal Skills
CK	clinical knowledge, creatine kinase
CK-MB	creatine kinase, MB fraction
$\mathrm{C}_{\mathrm{L}}$	constant region, light chain [antibody]
CL	clearance
$\mathrm{Cl}^{-}$	chloride ion
CLL	chronic lymphocytic leukemia
CML	chronic myelogenous (myeloid) leukemia
CMV	cytomegalovirus
CN	cranial nerve
$\mathrm{CN}^{-}$	cyanide ion
CNS	central nervous system
CNV	copy number variation
CO	carbon monoxide, cardiac output
$\mathrm{CO}_{2}$	carbon dioxide
CoA	coenzyme A
COLlAl	collagen, type I, alpha l
COLlA2	collagen, type I, alpha 2
COMT	catechol-O-methyltransferase
COOH	carboxyl group
COP	coat protein
COPD	chronic obstructive pulmonary disease
CoQ	coenzyme Q
COX	cyclooxygenase
$\mathrm{C}_{\mathrm{p}}$	plasma concentration
CPAP	continuous positive airway pressure


ABBREVIATION	MEANING
CPK	creatine phosphokinase
CPR	cardiopulmonary resuscitation
Cr	creatinine
CRC	colorectal cancer
CREST	calcinosis, Raynaud phenomenon, esophageal dysfunction, sclerosis, and telangiectasias [syndrome]
CRH	corticotropin-releasing hormone
CRP	C-reactive protein
CS	clinical skills
C-section	cesarean section
CSF	cerebrospinal fluid
CT	computed tomography
CTP	cytidine triphosphate
CVA	cerebrovascular accident
CVID	common variable immunodeficiency
CXR	chest x-ray
Cys	cysteine
DAF	decay-accelerating factor
DAG	diacylglycerol
dATP	deoxyadenosine triphosphate
DCIS	ductal carcinoma in situ
DCT	distal convoluted tubule
ddC	dideoxycytidine [zalcitabine]
ddI	didanosine
DES	diethylstilbestrol
DHAP	dihydroxyacetone phosphate
DHB	dihydrobiopterin
DHEA	dehydroepiandrosterone
DHF	dihydrofolic acid
DHS	Department of Homeland Security
DHT	dihydrotestosterone
DI	diabetes insipidus
DIC	disseminated intravascular coagulation
DIP	distal interphalangeal [joint]
DKA	diabetic ketoacidosis
Dlco	diffusing capacity for carbon monoxide
DM	diabetes mellitus
DNA	deoxyribonucleic acid
dNTP	deoxynucleotide triphosphate
DO	doctor of osteopathy
DPGN	diffuse proliferative glomerulonephritis
DPM	doctor of podiatric medicine
DPP-4	dipeptidyl peptidase-4
DPPC	dipalmitoylphosphatidylcholine
DS	double stranded
dsDNA	double-stranded deoxyribonucleic acid
dsRNA	double-stranded ribonucleic acid
d4T	didehydrodeoxythymidine [stavudine]
dTMP	deoxythymidine monophosphate
DTR	deep tendon reflex
DTs	delirium tremens
dUDP	deoxyuridine diphosphate
dUMP	deoxyuridine monophosphate
DVT	deep venous thrombosis
EBV	Epstein-Barr virus


ABBREVIATION	MEANING
EC	ejection click
ECF	extracellular fluid
ECFMG	Educational Commission for Foreign Medical Graduates
ECG	electrocardiogram
ECL	enterochromaffin-like [cell]
ECM	extracellular matrix
ECT	electroconvulsive therapy
$E D_{50}$	median effective dose
EDRF	endothelium-derived relaxing factor
EDTA	ethylenediamine tetra-acetic acid
EDV	end-diastolic volume
EEG	electroencephalogram
EF	ejection fraction
EGF	epidermal growth factor
EHEC	enterohemorrhagic E coli
ELISA	enzyme-linked immunosorbent assay
EM	electron micrograph/microscopy
EMB	eosin-methylene blue
Epi	epinephrine
EPO	erythropoietin
EPS	extrapyramidal system
ER	endoplasmic reticulum, estrogen receptor
ERAS	Electronic Residency Application Service
ERCP	endoscopic retrograde cholangiopancreatography
ERP	effective refractory period
eRPF	effective renal plasma flow
ERT	estrogen replacement therapy
ERV	expiratory reserve volume
ESR	erythrocyte sedimentation rate
ESRD	end-stage renal disease
ESV	end-systolic volume
ETEC	enterotoxigenic E coli
EtOH	ethyl alcohol
EV	esophageal vein
F	bioavailability
FA	fatty acid
Fab	fragment, antigen-binding
FAD	flavin adenine dinucleotide
$\mathrm{FAD}^{+}$	oxidized flavin adenine dinucleotide
$\mathrm{FADH}_{2}$	reduced flavin adenine dinucleotide
FAP	familial adenomatous polyposis
F1,6BP	fructose-1,6-bisphosphate
F2,6BP	fructose-2,6-bisphosphate
FBPase	fructose bisphosphatase
Fc	fragment, crystallizable
FcR	Fc receptor
5f-dUMP	5-fluorodeoxyuridine monophosphate
$\mathrm{Fe}^{2+}$	ferrous ion
$\mathrm{Fe}^{3+}$	ferric ion
FENa	excreted fraction of filtered sodium
$\mathrm{FEV}_{1}$	forced expiratory volume in 1 second
FF	filtration fraction
FFA	free fatty acid
FGF	fibroblast growth factor
FGFR	fibroblast growth factor receptor


ABBREVIATION	MEANING
FISH	fluorescence in situ hybridization
FKBP	FK506 binding protein
FLAIR	fluid-attenuated inversion recovery
f-met	formylmethionine
FMG	foreign medical graduate
FMN	flavin mononucleotide
FN	false negative
FNHTR	febrile nonhemolytic transfusion reaction
FP	false positive
FlP	fructose-l-phosphate
F6P	fructose-6-phosphate
FRC	functional residual capacity
FSH	follicle-stimulating hormone
FSMB	Federation of State Medical Boards
FTA-ABS	fluorescent treponemal antibody-absorbed
5-FU	5-fluorouracil
FVC	forced vital capacity
GABA	$\gamma$-aminobutyric acid
Gal	galactose
GBM	glomerular basement membrane
GC	glomerular capillary
G-CSF	granulocyte colony-stimulating factor
GERD	gastroesophageal reflux disease
GFAP	glial fibrillary acid protein
GFR	glomerular filtration rate
GGT	$\gamma$-glutamyl transpeptidase
GH	growth hormone
GHB	$\gamma$-hydroxybutyrate
GHRH	growth hormone-releasing hormone
$\mathrm{G}_{\mathrm{I}}$	G protein, I polypeptide
GI	gastrointestinal
GIP	gastric inhibitory peptide
GIST	gastrointestinal stromal tumor
GLUT	glucose transporter
GM	granulocyte macrophage
GM-CSF	granulocyte-macrophage colony stimulating factor
GMP	guanosine monophosphate
GnRH	gonadotropin-releasing hormone
GP	glycoprotein
G3P	glucose-3-phosphate
G6P	glucose-6-phosphate
G6PD	glucose-6-phosphate dehydrogenase
GPe	globus pallidus externa
GPi	globus pallidus interna
GPI	glycosyl phosphatidylinositol
GRP	gastrin-releasing peptide
$\mathrm{G}_{\text {S }}$	G protein, S polypeptide
GS	glycogen synthase
GSH	reduced glutathione
GSSG	oxidized glutathione
GTP	guanosine triphosphate
GTPase	guanosine triphosphatase
GU	genitourinary
$\mathrm{H}^{+}$	hydrogen ion
$\mathrm{H}_{1}, \mathrm{H}_{2}$	histamine receptors


ABBREVIATION	MEANING
$\mathrm{H}_{2} \mathrm{~S}$	hydrogen sulfide
HAART	highly active antiretroviral therapy
HAV	hepatitis A virus
HAVAb	hepatitis A antibody
Hb	hemoglobin
$\mathrm{Hb}^{+}$	oxidized hemoglobin
$\mathrm{Hb}^{-}$	ionized hemoglobin
HBcAb	hepatitis B core antibody
HBcAg	hepatitis $B$ core antigen
HBeAb	hepatitis B early antibody
HBeAg	hepatitis $B$ early antigen
HBsAb	hepatitis B surface antibody
HBsAg	hepatitis $B$ surface antigen
$\mathrm{HbCO}_{2}$	carbaminohemoglobin
HBV	hepatitis B virus
HCC	hepatocellular carcinoma
hCG	human chorionic gonadotropin
$\mathrm{HCO}_{3}{ }^{-}$	bicarbonate
Het	hematocrit
HCTZ	hydrochlorothiazide
HCV	hepatitis C virus
HDL	high-density lipoprotein
HDV	hepatitis D virus
H\&E	hematoxylin and eosin
HEV	hepatitis E virus
HF	heart failure
Hfr	high-frequency recombination [cell]
HGPRT	hypoxanthine-guanine phosphoribosyltransferase
HHb	human hemoglobin
HHV	human herpesvirus
5-HIAA	5-hydroxyindoleacetic acid
HIE	hypoxic ischemic encephalopathy
His	histidine
HIT	heparin-induced thrombocytopenia
HIV	human immunodeficiency virus
HL	hepatic lipase
HLA	human leukocyte antigen
HMG-CoA	hydroxymethylglutaryl-coenzyme A
HMP	hexose monophosphate
HMSN	hereditary motor and sensory neuropathy
HMWK	high-molecular-weight kininogen
HNPCC	hereditary nonpolyposis colorectal cancer
$h n R N A$	heterogeneous nuclear ribonucleic acid
$\mathrm{H}_{2} \mathrm{O}$	water
$\mathrm{H}_{2} \mathrm{O}_{2}$	hydrogen peroxide
HPA	hypothalamic-pituitary-adrenal [axis]
HPL	human placental lactogen
HPO	hypothalamic-pituitary-ovarian [axis]
HPV	human papillomavirus
HR	heart rate
HRE	hormone receptor element
HSV	herpes simplex virus
5-HT	5-hydroxytryptamine (serotonin)
HTLV	human T-cell leukemia virus
HTN	hypertension


ABBREVIATION	MEANING
HTR	hemolytic transfusion reaction
HUS	hemolytic-uremic syndrome
HVA	homovanillic acid
HZV	herpes zoster virus
IBD	inflammatory bowel disease
IBS	irritable bowel syndrome
IC	inspiratory capacity, immune complex
$\mathrm{I}_{\mathrm{Ca}}$	calcium current [heart]
$\mathrm{I}_{\mathrm{f}}$	funny current [heart]
ICA	internal carotid artery
ICAM	intracellular adhesion molecule
ICD	implantable cardioverter defibrillator
ICE	Integrated Clinical Encounter
ICF	intracellular fluid
ICP	intracranial pressure
ID	identification
$\mathrm{ID}_{50}$	median infective dose
IDDM	insulin-dependent diabetes mellitus
IDL	intermediate-density lipoprotein
I/E	inspiratory/expiratory [ratio]
IF	immunofluorescence, initiation factor
IFN	interferon
Ig	immunoglobulin
IGF	insulin-like growth factor
$\mathrm{I}_{\mathrm{K}}$	potassium current [heart]
IL	interleukin
IM	intramuscular
IMA	inferior mesenteric artery
IMED	International Medical Education Directory
IMG	international medical graduate
IMP	inosine monophosphate
IMV	inferior mesenteric vein
$\mathrm{I}_{\mathrm{Na}}$	sodium current [heart]
INO	internuclear ophthalmoplegia
INR	International Normalized Ratio
IO	inferior oblique [muscle]
IOP	intraocular pressure
$\mathrm{IP}_{3}$	inositol triphosphate
IPV	inactivated polio vaccine
IR	current $\times$ resistance [Ohm's law], inferior rectus [muscle]
IRV	inspiratory reserve volume
ITP	idiopathic thrombocytopenic purpura
IUD	intrauterine device
IUGR	intrauterine growth restriction
IV	intravenous
IVC	inferior vena cava
IVDU	intravenous drug use
IVIG	intravenous immunoglobulin
JAK/STAT	Janus kinase/signal transducer and activator of transcription [pathway]
JGA	juxtaglomerular apparatus
JVD	jugular venous distention
JVP	jugular venous pulse
K ${ }^{+}$	potassium ion
KatG	catalase-peroxidase produced by M tuberculosis


ABBREVIATION	MEANING
$\mathrm{K}_{\mathrm{e}}$	elimination constant
$\mathrm{K}_{\mathrm{f}}$	filtration constant
KG	ketoglutarate
$\mathrm{K}_{\mathrm{m}}$	Michaelis-Menten constant
KOH	potassium hydroxide
L	left
LA	left atrial, left atrium
LAD	left anterior descending [artery]
LAF	left anterior fascicle
LCA	left coronary artery
LCAT	lecithin-cholesterol acyltransferase
LCFA	long-chain fatty acid
LCL	lateral collateral ligament
LCME	Liaison Committee on Medical Education
LCMV	lymphocytic choriomeningitis virus
LCX	left circumflex artery
LD	loading dose
$\mathrm{LD}_{50}$	median lethal dose
LDH	lactate dehydrogenase
LDL	low-density lipoprotein
LES	lower esophageal sphincter
LFA	leukocyte function-associated antigen
LFT	liver function test
LGN	lateral geniculate nucleus
LGV	left gastric vein
LH	luteinizing hormone
LLQ	left lower quadrant
LM	light microscopy
LMN	lower motor neuron
LOS	lipooligosaccharide
LP	lumbar puncture
LPL	lipoprotein lipase
LPS	lipopolysaccharide
LR	lateral rectus [muscle]
LT	labile toxin leukotriene
LV	left ventricle, left ventricular
Lys	lysine
$\mathrm{M}_{1}-\mathrm{M}_{5}$	muscarinic (parasympathetic) ACh receptors
MAC	membrane attack complex, minimal alveolar concentration
MALT	mucosa-associated lymphoid tissue
MAO	monoamine oxidase
MAOI	monoamine oxidase inhibitor
MAP	mean arterial pressure, mitogen-activated protein
MASP	mannose-binding lectin-associated serine protease
MBL	mannose-binding lectin
MC	midsystolic click
MCA	middle cerebral artery
MCAT	Medical College Admissions Test
MCHC	mean corpuscular hemoglobin concentration
MCL	medial collateral ligament
MCP	metacarpophalangeal [joint]
MCV	mean corpuscular volume
MD	maintenance dose
MELAS syndrome	mitochondrial encephalopathy, lactic acidosis, and strokelike episodes


ABBREVIATION	MEANING
MEN	multiple endocrine neoplasia
$\mathrm{Mg}^{2+}$	magnesium ion
MGN	medial geniculate nucleus
$\mathrm{MgSO}_{4}$	magnesium sulfate
MGUS	monoclonal gammopathy of undetermined significance
MHC	major histocompatibility complex
MI	myocardial infarction
MIF	müllerian inhibiting factor
MLCK	myosin light-chain kinase
MLF	medial longitudinal fasciculus
MMC	migrating motor complex
MMR	measles, mumps, rubella [vaccine]
MOPP	mechlorethamine-vincristine (Oncovin)-prednisoneprocarbazine [chemotherapy]
6-MP	6-mercaptopurine
MPGN	membranoproliferative glomerulonephritis
MPO	myeloperoxidase
MPO-ANCA/ p-ANCA	perinuclear antineutrophil cytoplasmic antibody
MR	medial rectus [muscle], mitral regurgitation
MRI	magnetic resonance imaging
miRNA	microribonucleic acid
mRNA	messenger ribonucleic acid
MRSA	methicillin-resistant $S$ aureus
MS	mitral stenosis, multiple sclerosis
MSH	melanocyte-stimulating hormone
MSM	men who have sex with men
mtDNA	mitochondrial DNA
mtRNA	mitochondrial RNA
mTOR	mammalian target of rapamycin
MTP	metatarsophalangeal [joint]
MTX	methotrexate
MUA/P	Medically Underserved Area and Population
$\mathrm{MVO}_{2}$	myocardial oxygen consumption
MVP	mitral valve prolapse
N/A	not applicable
$\mathrm{Na}^{+}$	sodium ion
NAD	nicotinamide adenine dinucleotide
NAD ${ }^{+}$	oxidized nicotinamide adenine dinucleotide
NADH	reduced nicotinamide adenine dinucleotide
NADP ${ }^{+}$	oxidized nicotinamide adenine dinucleotide phosphate
NADPH	reduced nicotinamide adenine dinucleotide phosphate
NBME	National Board of Medical Examiners
NBOME	National Board of Osteopathic Medical Examiners
NBPME	National Board of Podiatric Medical Examiners
NC	no change
NE	norepinephrine
NF	neurofibromatosis
NFAT	nuclear factor of activated T-cell
$\mathrm{NH}_{3}$	ammonia
$\mathrm{NH}_{4}^{+}$	ammonium
NIDDM	non-insulin-dependent diabetes mellitus
NK	natural killer [cells]
$\mathrm{N}_{\mathrm{M}}$	muscarinic ACh receptor in neuromuscular junction
NMDA	N -methyl-D-aspartate
NMJ	neuromuscular junction


Abbreviation	MEANING
NMS	neuroleptic malignant syndrome
$\mathrm{N}_{\mathrm{N}}$	nicotinic ACh receptor in autonomic ganglia
NRMP	National Residency Matching Program
NNRTI	non-nucleoside reverse transcriptase inhibitor
NO	nitric oxide
$\mathrm{N}_{2} \mathrm{O}$	nitrous oxide
NPH	neutral protamine Hagedorn, normal pressure hydrocephalus
NPV	negative predictive value
NRI	norepinephrine receptor inhibitor
NRTI	nucleoside reverse transcriptase inhibitor
NSAID	nonsteroidal anti-inflammatory drug
NSE	neuron-specific enolase
NSTEMI	non-ST-segment elevation myocardial infarction
OAA	oxaloacetic acid
OCD	obsessive-compulsive disorder
OCP	oral contraceptive pill
OH	hydroxy
$\mathrm{OH}_{2}$	dihydroxy
$1,25-\mathrm{OH} \mathrm{D} 3$	calcitriol (active form of vitamin D)
$25-\mathrm{OH} \mathrm{D} 3$	storage form of vitamin D
$3^{\prime} \mathrm{OH}$	hydroxyl
OMT	osteopathic manipulative technique
OPV	oral polio vaccine
OR	odds ratio
OS	opening snap
OTC	ornithine transcarbamoylase
OVLT	organum vasculosum of the lamina terminalis
P-body	processing body (cytoplasmic)
P-450	cytochrome P-450 family of enzymes
PA	posteroanterior
PABA	para-aminobenzoic acid
$\mathrm{PaCO}_{2}$	arterial $\mathrm{Pco}_{2}$
$\mathrm{PaCO}_{2}$	alveolar $\mathrm{PcO}_{2}$
PAH	para-aminohippuric acid
PAN	polyarteritis nodosa
$\mathrm{PaO}_{2}$	partial pressure of oxygen in arterial blood
$\mathrm{PaO}_{2}$	partial pressure of oxygen in alveolar blood
PAP	Papanicolaou [smear], prostatic acid phosphatase
PAS	periodic acid-Schiff
PBP	penicillin-binding protein
PC	plasma colloid osmotic pressure, platelet count, pyruvate carboxylase
PCA	posterior cerebral artery
PCL	posterior cruciate ligament
$\mathrm{PcO}_{2}$	partial pressure of carbon dioxide
PCom	posterior communicating [artery]
PCOS	polycystic ovarian syndrome
PCP	phencyclidine hydrochloride, Pneumocystis jirovecii pneumonia
PCR	polymerase chain reaction
PCT	proximal convoluted tubule
PCWP	pulmonary capillary wedge pressure
PD	posterior descending [artery]
PDA	patent ductus arteriosus, posterior descending artery
PDC	pyruvate dehydrogenase complex


ABBREVIATION	MEANING
PDE	phosphodiesterase
PDGF	platelet-derived growth factor
PDH	pyruvate dehydrogenase
PE	pulmonary embolism
PECAM	platelet-endothelial cell adhesion molecule
$\mathrm{Pecor}_{2}$	expired air $\mathrm{PcO}_{2}$
PEP	phosphoenolpyruvate
PF	platelet factor
PFK	phosphofructokinase
PFT	pulmonary function test
PG	phosphoglycerate
$\mathrm{P}_{\mathrm{i}}$	plasma interstitial osmotic pressure, inorganic phosphate
PICA	posterior inferior cerebellar artery
PID	pelvic inflammatory disease
$\mathrm{PiO}_{2}$	$\mathrm{PO}_{2}$ in inspired air
PIP	proximal interphalangeal [joint]
$\mathrm{PIP}_{2}$	phosphatidylinositol 4,5-bisphosphate
PKD	polycystic kidney disease
PKR	interferon- $\alpha$-induced protein kinase
PKU	phenylketonuria
PLP	pyridoxal phosphate
PLS	Personalized Learning System
PML	progressive multifocal leukoencephalopathy
PMN	polymorphonuclear [leukocyte]
$\mathrm{P}_{\text {net }}$	net filtration pressure
PNET	primitive neuroectodermal tumor
PNS	peripheral nervous system
$\mathrm{PO}_{2}$	partial pressure of oxygen
$\mathrm{PO}_{4}$	salt of phosphoric acid
$\mathrm{PO}_{4}{ }^{3-}$	phosphate
PPAR	peroxisome proliferator-activated receptor
PPD	purified protein derivative
PPI	proton pump inhibitor
PPV	positive predictive value
$\begin{gathered} \text { PR3-ANCA/ } \\ \text { c-ANCA } \end{gathered}$	cytoplasmic antineutrophil cytoplasmic antibody
PrP	prion protein
PRPP	phosphoribosylpyrophosphate
PSA	prostate-specific antigen
PSS	progressive systemic sclerosis
PT	prothrombin time
PTH	parathyroid hormone
PTHrP	parathyroid hormone-related protein
PTSD	post-traumatic stress disorder
PTT	partial thromboplastin time
PV	plasma volume, venous pressure
PVC	polyvinyl chloride
PVR	pulmonary vascular resistance
R	correlation coefficient, right, R variable [group]
$\mathrm{R}_{3}$	Registration, Ranking, \& Results [system]
RA	right atrium
RAAS	renin-angiotensin-aldosterone system
RANK-L	receptor activator of nuclear factor-к B ligand
RAS	reticular activating system
RBC	blood


ABBREVIATION	MEANING
RBF	renal blood flow
RCA	right coronary artery
REM	rapid eye movement
RER	rough endoplasmic reticulum
Rh	rhesus antigen
RLQ	right lower quadrant
RNA	ribonucleic acid
RNP	ribonucleoprotein
ROS	reactive oxygen species
RPF	renal plasma flow
RPGN	rapidly progressive glomerulonephritis
RPR	rapid plasma reagin
RR	relative risk, respiratory rate
rRNA	ribosomal ribonucleic acid
RS	Reed-Sternberg [cells]
RSV	respiratory syncytial virus
RTA	renal tubular acidosis
RUQ	right upper quadrant
RV	residual volume, right ventricle, right ventricular
RVH	right ventricular hypertrophy
Rx	medical prescription
[S]	substrate concentration
SA	sinoatrial
SAA	serum amyloid-associated [protein]
SAM	S-adenosylmethionine
SARS	severe acute respiratory syndrome
SAT	Scholastic Aptitude Test
SC	subcutaneous
SCC	squamous cell carcinoma
SCD	sudden cardiac death
SCID	severe combined immunodeficiency disease
SCJ	squamocolumnar junction
SCM	sternocleidomastoid muscle
SCN	suprachiasmatic nucleus
SD	standard deviation
SEM	standard error of the mean
SEP	Spoken English Proficiency
SER	smooth endoplasmic reticulum
SERM	selective estrogen receptor modulator
SGLT	sodium-glucose transporter
SHBG	sex hormone-binding globulin
SIADH	syndrome of inappropriate [secretion of] antidiuretic hormone
SIDS	sudden infant death syndrome
SLE	systemic lupus erythematosus
SLL	small lymphocytic lymphoma
SLT	Shiga-like toxin
SMA	superior mesenteric artery
SMX	sulfamethoxazole
SNARE	soluble NSF attachment protein receptor
SNc	substantia nigra pars compacta
SNP	single nucleotide polymorphism
SNr	substantia nigra pars reticulata
SNRI	serotonin and norepinephrine receptor inhibitor
snRNP	small nuclear ribonucleoprotein


ABBREVIATION	MEANING
SO	superior oblique [muscle]
SOAP	Supplemental Offer and Acceptance Program
spp.	species
SR	superior rectus [muscle]
SS	single stranded
ssDNA	single-stranded deoxyribonucleic acid
SSPE	subacute sclerosing panencephalitis
SSRI	selective serotonin reuptake inhibitor
ssRNA	single-stranded ribonucleic acid
SSSS	staphylococcal scalded-skin syndrome
ST	Shiga toxin
STEMI	ST-segment elevation myocardial infarction
STI	sexually transmitted infection
STN	subthalamic nucleus
SV	splenic vein, stroke volume
SVC	superior vena cava
SVT	supraventricular tachycardia
$\mathrm{t}_{1 / 2}$	half-life
$\mathrm{T}_{3}$	triiodothyronine
$\mathrm{T}_{4}$	thyroxine
TAPVR	total anomalous pulmonary venous return
TB	tuberculosis
TBG	thyroxine-binding globulin
3TC	dideoxythiacytidine [lamivudine]
TCA	tricarboxylic acid [cycle], tricyclic antidepressant
Tc cell	cytotoxic T cell
TCR	T-cell receptor
TDF	tenofovir disoproxil fumarate
TdT	terminal deoxynucleotidyl transferase
TFT	thyroid function test
TG	triglyceride
TGA	trans-Golgi apparatus
TGF	transforming growth factor
TGN	trans-Golgi network
Th cell	helper T cell
THF	tetrahydrofolic acid
TI	therapeutic index
TIA	transient ischemic attack
TIBC	total iron-binding capacity
TIPS	transjugular intrahepatic portosystemic shunt
TLC	total lung capacity
Tm	maximum rate of transport
TMP	trimethoprim
TN	true negative
TNF	tumor necrosis factor
TNM	tumor, node, metastases [staging]
TOEFL	Test of English as a Foreign Language
ToRCHeS	Toxoplasma gondii, rubella, CMV, HIV, HSV-2, syphilis
TP	true positive
tPA	tissue plasminogen activator
TPP	thiamine pyrophosphate
TPR	total peripheral resistance
TR	tricuspid regurgitation
TRAP	tartrate-resistant acid phosphatase
TRH	thyrotropin-releasing hormone


ABBREVIATION	MEANING
tRNA	transfer ribonucleic acid
TSH	thyroid-stimulating hormone
TSI	triple sugar iron
TSS	toxic shock syndrome
TSST	toxic shock syndrome toxin
TTP	thrombotic thrombocytopenic purpura
TTR	transthyretin
TV	tidal volume
Tx	translation [factor]
TXA	thromboxane A2
UCV	Underground Clinical Vignettes
UDP	uridine diphosphate
UMN	upper motor neuron
UMP	uridine monophosphate
UPD	uniparental disomy
URI	upper respiratory infection
USMLE	United States Medical Licensing Examination
UTI	urinary tract infection
UTP	uridine triphosphate
UV	ultraviolet
$\dot{V}_{1}, \dot{\text { V }} 2$	Vasopressin receptors
VA	Veterans Affairs
VC	vital capacity
V	volume of distribution
VD	physiologic dead space
V(D)J	heavy-chain hypervariable region [antibody]
VDRL	Venereal Disease Research Laboratory


ABBREVIATION	MEANING
VEGF	vascular endothelial growth factor
$\mathrm{V}_{\mathrm{H}}$	variable region, heavy chain [antibody]
VHL	von Hippel-Lindau [disease]
VIP	vasoactive intestinal peptide
VIPoma	vasoactive intestinal polypeptide-secreting tumor
VJ	light-chain hypervariable region [antibody]
VL	ventral lateral [nucleus]; variable region, light chain [antibody]
VLDL	very low density lipoprotein
VMA	vanillylmandelic acid
VMAT	vesicular monoamine transporter
$\mathrm{V}_{\text {max }}$	maximum velocity
VPL	ventral posterior nucleus, lateral
VPM	ventral posterior nucleus, medial
VPN	vancomycin, polymyxin, nystatin [media]
$\dot{V} / \underline{\text { Q }}$	ventilation/perfusion [ratio]
VRE	vancomycin-resistant enterococcus
VSD	ventricular septal defect
$\mathrm{V}_{\mathrm{T}}$	tidal volume
vWF	von Willebrand factor
VZV	varicella-zoster virus
WBC	white blood cell
VMAT	vesicular monoamine transporter
XR	X-linked recessive
XX	normal complement of sex chromosomes for female
XY	normal complement of sex chromosomes for male
ZDV	zidovudine [formerly AZT]

## Image Acknowledgments

In this edition, in collaboration with MedIQ Learning, LLC, and a variety of other partners, we are pleased to include the following clinical images and diagrams for the benefit of integrative student learning.
國 Portions of this book identified with the symbol are copyright © USMLE-Rx.com (MedIQ Learning, LLC).
[ $\mathbb{D}$ Portions of this book identified with the symbol 通 are copyright © Dr. Richard Usatine and are provided under license through MedIQ Learning, LLC.
$\boldsymbol{*}$ Portions of this book identified with the symbol $\boldsymbol{*}$ are listed below by page number.
This symbol refers to material that is available in the public domain.
This symbol refers to the Creative Commons Attribution license, full text at http://creativecommons.org/licenses/by/4.0/legalcode. This symbol @o refers to the Creative Commons Attribution-Share Alike license, full text at: http://creativecommons.org/licenses/by-sa/4.0/ legalcode.

## Biochemistry

60 Cilia structure. Courtesy of Louisa Howard and Michael Binder. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

63 Osteogenesis imperfecta: Image A. Skeletal deformities in lower body of child. This image is a derivative work, adapted from the following source, available under 뜰: Vanakker OM, Hemelsoet D, De Paepe. Hereditary connective tissue diseases in young adult stroke: a comprehensive synthesis. Stroke Res Treat 2011;712903. doi 10.4061/2011/712903. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

63 Osteogenesis imperfecta: Image B. Skeletal deformities in upper extremity of child. This image is a derivative work, adapted from the following source, available under ■. Vanakker OM, Hemelsoet D, De Paepe. Hereditary connective tissue diseases in young adult stroke: a comprehensive synthesis. Stroke Res Treat 2011;712903. doi $10.4061 / 2011 / 712903$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

63 Osteogenesis imperfecta: Image C. Blue sclera. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Fred H, van Dijk H. Images of memorable cases: cases $40,41 \& 42$. Connexions website. December 3, 2008. Available at: http://cnx.org/content/ $\mathrm{ml} 5020 / 1.3$ /. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

63 Ehlers-Danlos syndrome. Finger hypermobility. This image is a derivative work, adapted from the following source, available under Courtesy of Piotr Dołżonek. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

68 Obstructive lung disease: Image E. Curschmann spirals. 주 Courtesy of Dr. James Heilman.

73 Muscular dystrophies. Fibrofatty replacement of muscle. Courtesy of the US Department of Health and Human Services and Dr. Edwin P. Ewing, Jr. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

78 Vitamin $\mathrm{B}_{3}$ (niacin). Pellagra. This image is a derivative work, adapted from the following source, available under 은: van Dijk HA, Fred H. Images of memorable cases: case 2. Connexions website. Dec 4, 2008. Available at: http://cnx.org/ contents/3d3dcb2e-8e98-496f-9lc2-fe94e93428al@3@3/.

81 Vitamin D. X-ray of lower extremity in child with rickets. This image is a derivative work, adapted from the following source, available under 용․․ Courtesy of Dr. Michael L. Richardson. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @®o.

82 Malnutrition. Child with kwashiorkor. Courtesy of the US Department of Health and Human Services and Dr. Lyle Conrad.

96 Alkaptonuria. Pigment granules on dorsum of hand. This image is a derivative work, adapted from the following source, available under ©. Vasudevan B, Sawhney MPS, Radhakrishnan S. Alkaptonuria associated with degenerative collagenous palmar plaques. Indian J Dermatol 2009;54:299-301. doi 10.4103/00195154.55650 .

96 Cystinuria. Hexagonal stones in urine. This image is a derivative work, adapted from the following source, available under Courtesy of Cayla Devine.

100 Lysosomal storage diseases：Image A．Angiokeratomas．This image is a derivative work，adapted from the following source， available under Burlina AP，Sims KB，Politei JM，et al． Early diagnosis of peripheral nervous system involvement in Fabry disease and treatment of neuropathic pain：the report of an expert panel．BMC Neurol 2011；11：61．doi 10．1186／1471－ 2377－11－61．The image may have been modified by cropping， labeling，and／or captions．All rights to this adaptation by MedIQ Learning，LLC are reserved．

100 Lysosomal storage diseases：Image B．Gaucher cells in Gaucher disease．This image is a derivative work，adapted from the following source，available under－ـ은：Sokołowska B，Skomra D，Czartoryska B．et al．Gaucher disease diagnosed after bone marrow trephine biopsy－a report of two cases．Folia Histochemica et Cytobiologica 2011；49：352－356．doi 10．5603／ FHC．2011．0048．The image may have been modified by cropping，labeling，and／or captions．All rights to this adaptation by MedIQ Learning，LLC are reserved．

100 Lysosomal storage diseases：Image C．Foam cells in Niemann－ Pick disease．This image is a derivative work，adapted from the
 boosts joint destruction in chronic arthritis．An experimental model aggravated by foam macrophage infiltration．Prieto－Potin I，Roman－Blas JA，Martinez－Calatrava MJ，et al．Arthritis Res Ther 2013；15：R81．doi 10．1186／ar4261．

100 Lysosomal storage diseases：Image D．＂Cherry－red＂spot on macula in Tay－Sachs disease．This image is a derivative work， adapted from the following source，available under 은： Courtesy of Dr．Jonathan Trobe．

## Microbiology

110 Stains：Image A．Trypanosoma lewisi on Giemsa stain． Courtesy of the US Department of Health and Human Services and Dr．Mae Melvin．

110 Stains：Image B．Tropheryma whipplei on periodic acid－schiff stain．This image is a derivative work，adapted from the following source，available under $\boldsymbol{\sim}$ ：Dr．Ed Uthman．

110 Stains：Image C．Mycobacterium tuberculosis on Ziehl－Neelsen stain．Courtesy of the US Department of Health and Human Services and Dr．George P．Kubica．

110 Stains：Image D．Cryptococcus neoformans on India ink stain． Courtesy of the US Department of Health and Human Services．

110 Stains：Image E．Coccidioides immitis on silver stain． Courtesy of the US Department of Health and Human Services and Dr．Edwin P．Ewing，Jr．

112 Encapsulated bacteria．Capsular swelling of Streptococcus pneumoniae using the Neufeld－Quellung test．Courtesy of the US Department of Health and Human Services．

112 Catalase－positive organisms．Oxygen bubbles released during catalase reaction．This image is a derivative work，adapted from the following source，available under＠＠．．Courtesy of Stefano Nase．The image may have been modified by cropping，labeling， and／or captions．MedIQ Learning，LLC makes this image available under＠응．

114 Bacterial spores．This image is a derivative work，adapted from the following source，available under ．．․：．Jones SW，Paredes CJ，Tracy B．The transcriptional program underlying the physiology of clostridial sporulation．Genome Biol 2008；9：R114． doi 10．1186／gb－2008－9－7－rl14．
$119 \boldsymbol{\alpha}$－hemolytic bacteria．$\alpha$－hemolysis．This image is a derivative work，adapted from the following source，available under＠o． Courtesy of Y．Tambe．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠ロ®．
$119 \beta$－hemolytic bacteria．$\beta$－hemolysis．This image is a derivative work，adapted from the following source，available under＠ロ๐． Courtesy of Y．Tambe．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠®．

119 Staphylococcus aureus．Gram stain．Courtesy of the US Department of Health and Human Services and Dr．Richard Facklam．

120 Streptococcus pneumoniae．Courtesy of the US Department of Health and Human Services and Dr．Mike Miller．

120 Streptococcus pyogenes（group A streptococci）．Gram stain．This image is a derivative work，adapted from the following source， available under＠๑．Courtesy of Y．Tambe．The image may have been modified by cropping，labeling，and／or captions． MedIQ Learning，LLC makes this image available under＠o．

121 Bacillus anthracis．Ulcer with black eschar．Courtesy of the US Department of Health and Human Services and James H． Steele．

122 Clostridia（with exotoxins）：Image A．Gas gangrene due to Clostridium perfringens infection．This image is a derivative work，adapted from the following source，available under 요울 Courtesy of Engelbert Schröpfer，Stephan Rauthe，and Thomas Meyer．
122 Clostridia（with exotoxins）：Image B．Pseudomembranous enterocolitis on colonoscopy．This image is a derivative work， adapted from the following source，available under＠ロ． Courtesy of Klinikum Dritter Orden für die Überlassung des Bildes zur Veröffentlichu．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠®．

123 Corynebacterium diphtheriae．Pseudomembranous pharyngitis． This image is a derivative work，adapted from the following source，available under＠＠．Courtesy of Wikimedia Commons． The image may have been modified by cropping，labeling，and／ or captions．MedIQ Learning，LLC makes this image available under＠＠

123 Listeria monocytogenes．Actin rockets．This image is a derivative work，adapted from the following source，available under
■：Schuppler M，Loessner MJ．The opportunistic pathogen Listeria monocytogenes：pathogenicity and interaction with the mucosal immune system．Int J Inflamm 2010；2010：704321．doi $10.4061 / 2010 / 704321$ ．The image may have been modified by cropping，labeling，and／or captions．All rights to this adaptation by MedIQ Learning，LLC are reserved．
123 Nocardia vs Actinomyces：Image A．Nocardia on acid－fast stain．This image is a derivative work，adapted from the following source，available under 요 ：Adhikari L，Dey S， Pal R．Mycetoma due to Nocardia farcinica．J Glob Infect Dis 2010；2：194－195．doi 0．4103／0974－777X． 62868.

123 Nocardia vs Actinomyces: Image B. Actinomyces israelii on Gram stain. Courtesy of the US Department of Health and Human Services.

124 Mycobacteria. Acid-fast stain. Courtesy of the US Department of Health and Human Services and Dr. Edwin P. Ewing, Jr.

125 Leprosy (Hansen disease): Image A. "Glove and stocking" distribution. This image is a derivative work, adapted from the following source, available under Bruno Jehle.

126 Neisseria: Image A. Photomicrograph. Courtesy of the US Department of Health and Human Services and Dr. Mike Miller.

126 Haemophilus influenzae: Image A. Epiglottitis. This image is a derivative work, adapted from the following source, available under Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

127 Legionella pneumophila. Courtesy of the US Department of Health and Human Services and Grottola A, Forghieri F, Meacci M, et al. Severe pneumonia caused by Legionella pneumophila serogroup 11, Italy. Emerg Infect Dis 2012. doi 10.3201/eid1811.120216.

127 Pseudomonas aeruginosa: Image A. Blue-green pigment. This image is a derivative work, adapted from the following source, available under @ீ. Courtesy of Hansen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @๑.

127 Pseudomonas aeruginosa: Image B. Ecthyma gangrenosum. This image is a derivative work, adapted from the following source, available under . Gencer S, Ozer S, Gul AE, et al. Ecthyma gangrenosum without bacteremia in a previously healthy man: a case report. J Med Case Rep 2008;2:14. doi 10.1186/1752-1947-2-14. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

128 Klebsiella. Courtesy of the US Department of Health and Human Services.

128 Campylobacter jejuni. Courtesy of the US Department of Health and Human Services.

129 Vibrio cholerae. This image is a derivative work, adapted from the following source, available under © Phetsouvanh R, Nakatsu M, Arakawa E, et al. Fatal bacteremia due to immotile Vibrio cholerae serogroup O21 in Vientiane, Laos - a case report. Ann Clin Microbiol Antimicrob 2008;7:10. doi 10.1186/1476-0711-710.

130 Helicobacter pylori. Courtesy of the US Department of Health and Human Services, Dr. Patricia Fields, and Dr. Collette Fitzgerald.

130 Spirochetes. Dark-field microscopic appearance. Courtesy of the US Department of Health and Human Services.

130 Lyme disease: Image A. Ixodes tick. 조 Courtesy of the US Department of Health and Human Services and Dr. Michael L. Levin.

130 Lyme disease: Image B. Erythema migrans. Courtesy of the US Department of Health and Human Services and James Gathany.

131 Syphilis: Image A. Painless chancre in $1^{\circ}$ syphilis. Courtesy of the US Department of Health and Human Services and M. Rein.

131 Syphilis: Image B. Treponeme on dark-field microscopy. 졸 Courtesy of the US Department of Health and Human Services and Renelle Woodall.

131 Syphilis: Image D. Rash on palms. This image is a derivative work, adapted from the following source, available under 뚀: Drahansky M, Dolezel M, Urbanek J, et al. Influence of skin diseases on fingerprint recognition. J Biomed Biotechnol 2012;626148. doi 10.1155/2012/626148.

131 Syphilis: Image E. Condyloma lata. Courtesy of the US Department of Health and Human Services and Susan Lindsley.

131 Syphilis: Image F. Gumma. This image is a derivative work,
 Chakir K, Benchikhi H. Granulome centro-facial révélant une syphilis tertiaire. Pan Afr Med J 2013;15:82. doi 10.11604/ pamj.2013.15.82.3011.

131 Syphilis: Image G. Congenital syphilis. Courtesy of the US Department of Health and Human Services and Dr. Norman Cole.

131 Syphilis: Image H. Hutchinson teeth. Courtesy of the US Department of Health and Human Services and Susan Lindsley.

132 Gardnerella vaginalis. Courtesy of the US Department of Health and Human Services and M. Rein.

133 Rickettsial diseases and vector-borne illnesses: Image A. Rash of Rocky Mountain spotted fever. Courtesy of the US Department of Health and Human Services.

133 Rickettsial diseases and vector-borne illnesses: Image B. Ehrlichia morulae. This image is a derivative work, adapted from the following source, available under Dantas-Torres F. Canine vector-borne diseases in Brazil. Parasit Vectors 2008;1:25. doi $10.1186 / 1756-3305-1-25$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

133 Rickettsial diseases and vector-borne illnesses: Image C. Anaplasma phagocytophilum in neutrophil. Courtesy of the US Department of Health and Human Services and Dumler JS, Choi K, Garcia-Garcia JC, et al. Human granulocytic anaplasmosis. Emerg Infect Dis 2005. doi 10.3201/ eidl112.050898.

134 Mycoplasma pneumoniae. This image is a derivative work, adapted from the following source, available under سoㅛ Rottem S, Kosower NS, Kornspan JD. Contamination of tissue cultures by Mycoplasma. In: Ceccherini-Nelli L, ed: Biomedical tissue culture. doi 10.5772/51518.

135 Systemic mycoses: Image A. Histoplasma. Courtesy of the US Department of Health and Human Services and Dr. D.T. McClenan.

135 Systemic mycoses: Image B. Blastomyces dermatitidis undergoing broad-base budding. Courtesy of the US Department of Health and Human Services and Dr. Libero Ajello.

135 Systemic mycoses: Image D. "Captain's wheel" shape of Paracoccidioides. Courtesy of the US Department of Health and Human Services and Dr. Lucille K. Georg.

136 Cutaneous mycoses: Image G. Tinea versicolor. This image is a derivative work, adapted from the following source, available under @. Courtesy of Sarah (Rosenau) Korf. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o..
137 Opportunistic fungal infections: Image A. Budding yeast of Candida albicans. This image is a derivative work, adapted from the following source, available under ©. Courtesy of Y. Tambe. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

137 Opportunistic fungal infections: Image B. Germ tubes of Candida albicans. This image is a derivative work, adapted from the following source, available under ©o. Courtesy of Y. Tambe. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @요

137 Opportunistic fungal infections: Image C. Oral thrush. ㅈm Courtesy of the US Department of Health and Human Services and Dr. Sol Silverman, Jr.
137 Opportunistic fungal infections: Image E. Conidiophores of Aspergillus fumigatus. Courtesy of the US Department of Health and Human Services.

137 Opportunistic fungal infections: Image F. Cryptococcus neoformans. Courtesy of the US Department of Health and Human Services and Dr. Leanor Haley.

137 Opportunistic fungal infections: Image G. Cryptococcus neoformans on mucicarmine stain. Courtesy of the US Department of Health and Human Services and Dr. Leanor Haley.

137 Opportunistic fungal infections: Image H. Mucor. Courtesy of the US Department of Health and Human Services and Dr. Libero Ajello.
138 Pneumocystis jirovecii: Image A. Interstitial opacities in lung. This image is a derivative work, adapted from the following source, available under Chuang C, Zhanhong X, Yinyin G, et al. Unsuspected Pneumocystis pneumonia in an HIV-seronegative patient with untreated lung cancer: circa case report. J Med Case Reports 2007;1:15. doi 10.1186/1752-1947-1-115.

138 Pneumocystis jirovecii: Image B. Ground-glass opacities on CT. This image is a derivative work, adapted from the following source, available under ©i Oikonomou A and Prassopoulos P. Mimics in chest disease: interstitial opacities. Insights Imaging 2013; 4: 9-27. doi 0.1007/s13244-012-0207-7. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

139 Protozoa-Gl infections: Image A. Giardia lamblia trophozoite. This image is a derivative work, adapted from the following source, available under س. Lipoldová M. Giardia and Vilém Dušan Lambl. PLoS Negl Trop Dis 2014;8:e2686. doi 10.1371/ journal.pntd. 0002686.

139 Protozoa-Gl infections: Image B. Giardia lamblia cyst. 즌 Courtesy of the US Department of Health and Human Services.

139 Protozoa-Gl infections: Image C. Entamoeba histolytica trophozoites. Courtesy of the US Department of Health and Human Services.

139 Protozoa-Gl infections. Image D. Entamoeba histolytica cyst. © Courtesy of the US Department of Health and Human Services.

139 Protozoa-Gl infections: Image E. Cryptosporidium oocysts. . Courtesy of the US Department of Health and Human Services.

140 Protozoa-CNS infections: Image A. Cerebral toxoplasmosis. This image is a derivative work, adapted from the following source, available under Adurthi S, Mahadevan A, Bantwal R, et al. Utility of molecular and serodiagnostic tools in cerebral toxoplasmosis with and without tuberculous meningitis in AIDS patients: a study from South India. Ann Indian Acad Neurol 2010;13:263-270. doi 10.4103/0972-2327.74197. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

140 Protozoa-CNS infections: Image B. Toxoplasma gondii tachyzoite. (3) Courtesy of the US Department of Health and Human Services and Dr. L.L. Moore, Jr.

140 Protozoa-CNS infections: Image C. Naegleria fowleri amoebas. © Courtesy of the US Department of Health and Human Services.

140 Protozoa-CNS infections: Image D. Trypanosoma brucei gambiense. Courtesy of the US Department of Health and Human Services and Dr. Mae Melvin.

141 Protozoa-hematologic infections: Image A. Plasmodium trophozoite ring form. Courtesy of the US Department of Health and Human Services.

141 Protozoa-hematologic infections: Image B. Plasmodium schizont containing merozoites. Courtesy of the US Department of Health and Human Services and Steven Glenn.

141 Protozoa-hematologic infections: Image C. Babesia. 존 Courtesy of the US Department of Health and Human Services.

142 Protozoa-others: Image A. Trypanosoma cruzi. Courtesy of the US Department of Health and Human Services and Dr. Mae Melvin.

142 Protozoa-others: Image B. Leishmania donovani. Courtesy of the US Department of Health and Human Services and Dr. Francis W. Chandler. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MediQ Learning, LLC are reserved.

142 Protozoa-Others: Image C. Trichomonas vaginalis. Courtesy of the US Department of Health and Human Services.

143 Nematodes (roundworms): Image A. Enterobius vermicularis eggs. 전 Courtesy of the US Department of Health and Human Services, B.G. Partin, and Dr. Moore.

143 Nematodes (roundworms): Image B. Ascaris lumbricoides egg. Courtesy of the US Department of Health and Human Services.

143 Nematodes (roundworms): Image C. Elephantiasis. Courtesy of the US Department of Health and Human Services.

144 Cestodes (tapeworms): Image A. Taenia solium scolex. This image is a derivative work, adapted from the following source, available under ©. Courtesy of Robert J. Galindo. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®o.

144 Cestodes (tapeworms): Image B. Neurocysticercosis. This image is a derivative work, adapted from the following source, available under Coyle CM, Tanowitz HB. Diagnosis and treatment of neurocysticercosis. Interdiscip Perspect Infect Dis 2009;2009:180742. doi 10.1155/2009/180742. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

144 Cestodes (tapeworms): Image C. Echinococcus granulosus scolex. (3) Courtesy of the US Department of Health and Human Services and Dr. L.A.A. Moore, Jr.

144 Cestodes (tapeworms): Image D. Gross hyatid cyst of Echinococcus granulosus. Courtesy of the US Department of Health and Human Services and Dr. I. Kagan.

144 Cestodes (tapeworms): Image E. Echinococcus granulosus cyst in liver. This image is a derivative work, adapted from the following source, available under $\quad$ Ma Z, Yang W, Yao Y, et al. The adventitia resection in treatment of liver hydatid cyst: a case report of a 15-year-old boy. Case Rep Surg 2014;2014:123149. doi $10.1155 / 2014 / 123149$.

144 Trematodes (flukes): Image A. Schistosoma mansoni egg with lateral spine. Courtesy of the US Department of Health and Human Services.

144 Trematodes (flukes): Image B. Schistosoma mansoni egg with terminal spine. Courtesy of the US Department of Health and Human Services.

145 Ectoparasites: Image A. Scabies. Courtesy of the US Department of Health and Human Services and J. Pledger.

145 Ectoparasites: Image B. Lice. Courtesy of the US Department of Health and Human Services and Joe Miller.

149 Herpesviruses: Image A. Keratoconjunctivitis in HSV-1 infection. This image is a derivative work, adapted from the following source, available under Yang HK, Han YK, Wee WR, et al. Bilateral herpetic keratitis presenting with unilateral neurotrophic keratitis in pemphigus foliaceus: a case report. J Med Case Rep 2011;5:328. doi 10.1186/1752-1947-5-328.

149 Herpesviruses: Image B. Herpes labialis. Courtesy of the US Department of Health and Human Services and Dr. Herrmann.

149 Herpesviruses: Image E. Shingles (varicella-zoster virus infection). This image is a derivative work, adapted from the following source, available under @잉. Courtesy of Fisle. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

149 Herpesviruses: Image F. Lymphadenopathy in VZV infection. This image is a derivative work, adapted from the following source, available under @๑. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @요.

149 Herpesviruses: Image G. Atypical lymphocytes in Epstein-Barr virus infection. This image is a derivative work, adapted from the following source, available under ©®: Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

149 Herpesviruses: Image I. Roseola. Courtesy of Emiliano Burzagli.

149 Herpesvirus: Image J. Kaposi sarcoma. Courtesy of the US Department of Health and Human Services.

150 HSV identification. Positive Tzanck smear in HSV-2 infection. This image is a derivative work, adapted from the following source, available under @๑. Courtesy of Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ロ.

152 Yellow fever virus. Aedes aegypti mosquito. Courtesy of the US Department of Health and Human Services and James Gathany.

152 Rotavirus. Courtesy of the US Department of Health and Human Services and Erskine Palmer.

153 Rubella virus. Rubella rash. Courtesy of the US Department of Health and Human Services.

154 Croup (acute laryngotracheobronchitis). Steeple sign. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

154 Measles (rubeola) virus: Image A. Koplik spots. Courtesy of the US Department of Health and Human Services. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

154 Measles (rubeola) virus: Image B. Rash of measles. Courtesy of the US Department of Health and Human Services.

155 Mumps virus. Swollen neck and parotid glands. Courtesy of the US Department of Health and Human Services.

155 Rabies virus: Image A. Transmission electron micrograph. Courtesy of the US Department of Health and Human Services Dr. Fred Murphy, and Sylvia Whitfield.

155 Rabies virus: Image B. Negri bodies. Courtesy of the US Department of Health and Human Services and Dr. Daniel P. Perl.

156 Ebola virus. Courtesy of the US Department of Health and Human Services and Cynthia Goldsmith.

161 Prions. Spongiform changes in Creutzfeld-Jacob disease. This image is a derivative work, adapted from the following source, available under @®. Courtesy of DRdoubleB. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ロ.

163 Osteomyelitis: Images A and B. This image is a derivative work, adapted from the following source, available under 은: Pandey V, Rao SP, Rao S, et al. Burkholderia pseudomallei musculoskeletal infections (melioidosis) in India. Indian J Orthop 2010;44:216-220. doi 10.4103/0019-5413.61829.

164 Common vaginal infections: Image C. Candida vulvovaginitis. (3) Courtesy of Mikael Häggström.

165 ToRCHeS infections: Image A. "Blueberry muffin" rash. This image is a derivative work, adapted from the following source, available under Benmiloud S, Elhaddou G, Belghiti ZA, et al. Blueberry muffin syndrome. Pan Afr Med J 2012;13:23. PMCID: PMC3527055.

165 ToRCHeS infections: Image B. Periventricular calcifications in congenital cytomegalovirus infection. This image is a derivative work, adapted from the following source, available under 뜬: Bonthius D, Perlman S. Congenital viral infections of the brain: lessons learned from lymphocytic choriomeningitis virus in the neonatal rat. PLoS Pathog 2007;3:el49. doi 10.1371/journal. ppat. 0030149 . The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

166 Red rashes of childhood: Image C. Child with scarlet fever. This image is a derivative work, adapted from the following source, available under were: ww.badobadop.co.uk.

167 Pelvic inflammatory disease: Image A. Purulent cervical discharge. This image is a derivative work, adapted from the following source, available under @... Courtesy of SOS-AIDS Amsterdam The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under 웅․

167 Pelvic inflammatory disease: Image B. Adhesions in Fitz-HughCurtis syndrome. Courtesy of Hic et nunc.

173 Vancomycin. Red man syndrome. This image is a derivative work, adapted from the following source, available under R-: O'Meara P, Borici-Mazi R, Morton R, et al. DRESS with delayed onset acute interstitial nephritis and profound refractory eosinophilia secondary to vancomycin. Allergy Asthma Clin Immunol 2011;7:16. doi 10.1186/1710-1492-7-16.

## Immunology

191 Sinusoids of spleen. Red and white pulp. This image is a derivative work, adapted from the following source, available under Lor: Heinrichs S, Conover LF, Bueso-Ramos CE, et al. MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy. eLife 2013;2:e00825. doi 10.7554/ eLife. 00825 . The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

209 Immunodeficiencies. Giant granules in granulocytes in ChédiakHigashi syndrome. This image is a derivative work, adapted from the following source, available under Bharti S, Bhatia P, Bansal D, et al. The accelerated phase of Chediak-Higashi syndrome: the importance of hematological evaluation. Turk J Haematol 2013;30:85-87. doi 10.4274/tjh.2012.0027. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

## Pathology

217 Necrosis: Image A. Coagulative necrosis. Courtesy of the US Department of Health and Human Services and Dr. Steven Rosenberg.

217 Necrosis: Image B. Liquefactive necrosis. Courtesy of Daftblogger.

217 Necrosis: Image C. Caseous necrosis. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뚱.

217 Necrosis: Image D. Fat necrosis. This image is a derivative work, adapted from the following source, available under ⿴囗웅. Courtesy of Patho. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @응.

217 Necrosis: Image E. Fibrinoid necrosis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 잉.

217 Necrosis: Image F. Acral gangrene. Courtesy of the US Department of Health and Human Services and William Archibald.

219 Infarcts: red vs. pale: Image B. Pale infarct. Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.

220 Chromatolysis. This image is a derivative work, adapted from the following source, available under ©.. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @o.

220 Types of calcification: Image A. Dystrophic calcification. This image is a derivative work, adapted from the following source, available under ©e: Chun J-S, Hong R, Kim J-A. Osseous metaplasia with mature bone formation of the thyroid gland: three case reports. Oncol Lett 2013;6:977-979. doi 10.3892/ ol.2013.1475. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

220 Types of calcification: Image B. Metastatic calcification. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ․ㅡㅇ.

222 Inhalational injury and sequelae. Images A (18 hours after inhalation injury) and $\mathbf{B}$ (11 days after injury). This image is a derivative work, adapted from the following source, available under 능: Bai C, Huang H, Yao X, et al. Application of flexible bronchoscopy in inhalation lung injury. Diagn Pathol 2013;8:174. doi 10.1186/1746-1596-8-174.

222 Scar formation: Image A. Hypertrophic scar. This image is a derivative work, adapted from the following source, available under Baker R, Urso-Baiarda F, Linge C, et al. Cutaneous scarring: a clinical review. Dermatol Res Pract 2009;2009: 625376. doi 10.1155/2009/625376.

222 Scar formation: Image B. Keloid scar. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Andreas Settje. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @...

223 Granulomatous diseases. Granuloma. Courtesy of Sanjay Mukhopadhyay.

225 Amyloidosis: Image A. Amyloid deposits on Congo red stain. This image is a derivative work, adapted from the following source, available under Dr. Ed Uthman.

225 Amyloidosis: Image B. Amyloid deposits on Congo red stain under polarized light. This image is a derivative work, adapted from the following source, available under 뚕. Courtesy of Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©응.

225 Amyloidosis: Image C. Amyloidosis on H\&E stain. This image is a derivative work, adapted from the following source, available under ©o. Mendoza JM, Peev V, Ponce MA, et al. Amyloid A amyloidosis with subcutaneous drug abuse. J Renal Inj Prev 014;3:11-16. doi 10.12861/jrip.2014.06.

225 Lipofuscin. This image is a derivative work, adapted from the following source, available under @®o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under 요요

227 Neoplastic progression. Cervical tissue. This image is a derivative work, adapted from the following source, available under 뜨﹎: Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

232 Psammoma bodies. Psammoma body in papillary carcinoma. Come Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.

233 Common metastases: Image A. Breast cancer metastases to brain. This image is a derivative work, adapted from the following source, available under 뚱․․ Courtesy of Jordi March i Nogué. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @으․

233 Common metastases: Image B. Thyroid cancer metastasis to brain. Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.

233 Common metastases: Image C. Multiple metastases to liver. This image is a derivative work, adapted from the following source, available under (20.0. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @잉․

233 Common metastases: Image D. Pancreatic metastases to liver. 전 Courtesy of J. Hayman.

233 Common metastases: Image E. Renal cell carcinoma metastases to bone. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under 요요

233 Common metastases: Image F. Bone metastases. This image is a derivative work, adapted from the following source, available under 는: M. Emmanuel.

## Cardiovascular

282 Congenital heart diseases: Image A. Tetralogy of Fallot. This image is a derivative work, adapted from the following source, available under Rene: Rashid AKM: Heart diseases in Down syndrome. In: Dey S, ed: Down syndrome. doi 10.5772/46009. The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

283 Congenital heart diseases: Image B. Atrial septal defect. This image is a derivative work, adapted from the following source, available under Roor Teo KSL, Disney PJ, Dundon BK, et al. Assessment of atrial septal defects in adults comparing cardiovascular magnetic resonance with transesophageal echocardiography. J Cardiovasc Magnet Resonance 2010;12:44. doi $10.1186 / 1532-429 \mathrm{X}-12-44$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

283 Congenital heart diseases: Image C. Patent ductus arteriosus. This image is a derivative work, adapted from the following source, available under ©e: Henjes CR, Nolte I, Wesfaedt P. Multidetector-row computed tomography of thoracic aortic anomalies in dogs and cats: patent ductus arteriosus and vascular rings. BMC Vet Res 2011;7:57. doi 10.1186/1746-6148-7-57.
283 Congenital heart diseases: Image D. Clubbing of fingers. Courtesy of Ann McGrath.
284 Hypertension: Image A. "String of beads" appearance in fibromuscular dysplasia. This image is a derivative work, adapted from the following source, available under Plouin PF, Perdu J, LaBatide-Alanore A, et al. Fibromuscular dysplasia. Orphanet J Rare Dis 2007;7:28. doi 10.1186/1750-1172-2-28. The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

284 Hypertension: Image B. Hypertensive nephropathy. This image is a derivative work, adapted from the following source, available under ©o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @...
285 Hyperlipidemia signs: Image C. Tendinous xanthoma. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Min.neel. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.
285 Arteriosclerosis: Image A. Hyaline type. This image is a derivative work, adapted from the following source, available under @. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

285 Arteriosclerosis: Image B. Hyperplastic type. This image is a derivative work, adapted from the following source, available under ©o. Courtesy of Paco Larosa. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

285 Arteriosclerosis: Image C. Monckeberg sclerosis (medial calcific sclerosis). This image is a derivative work, adapted from the following source, available under C.E. Couri, G.A. da Silva, J.A. Martinez, F.A. Pereira, and F. de Paula. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

286 Atherosclerosis: Image A. Carotid plaque. This image is a derivative work, adapted from the following source, available under Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

287 Aortic dissection. This image is a derivative work, adapted from the following source, available under L-: Apostolakis EE, Baikoussis NG, Katsanos K, et al. Postoperative peri-axillary seroma following axillary artery cannulation for surgical treatment of acute type A aortic dissection: case report. J Cardiothor Surg 2010;5:43. doi 0.1186/1749-8090-5-43. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

290 Myocardial infarction complications: Image A. Papillary muscle rupture. This image is a derivative work, adapted from the following source, available under Ro. Routy B, Huynh T, Fraser R, et al. Vascular endothelial cell function in catastrophic antiphospholipid syndrome: a case report and review of the literature. Case Rep Hematol 2013;2013:710365. doi 10.1155/2013/710365.

290 Myocardial infarction complications: Image B.Drawing of pseudoaneurysm. This image is a derivative work, adapted from the following source, available under ©o: Patrick J. Lynch and Dr. C. Carl Jaffe.

290 Myocardial infarction complications: Image C. Free wall rupture of left ventricle. This image is a derivative work, adapted from the following source, available under Zacarias ML, da Trindade H, Tsutsu J, et al. Left ventricular free wall impeding rupture in post-myocardial infarction period diagnosed by myocardial contrast echocardiography: case report. Cardiovasc Ultrasound 2006;4:7. doi 10.1186/1476-7120-4-7.

291 Cardiomyopathies: Image A. Dilated cardiomyopathy. This image is a derivative work, adapted from the following source, available under Geo: Gho JMIH, van Es R, Stathonikos N, et al. High resolution systematic digital histological quantification of cardiac fibrosis and adipose tissue in phospholamban p.Argl4del mutation associated cardiomyopathy. PLoS One 2014;9:e94820. doi 10.1371/journal.pone. 0094820 .

292 Heart failure. Pedal edema. This image is a derivative work, adapted from the following source, available under 용요 Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

293 Bacterial endocarditis: Image A. Janeway lesions on sole. This image is a derivative work, adapted from the following source, available under DeNanneke.

294 Rheumatic fever. Aschoff body and Anitschkow cells. This image is a derivative work, adapted from the following source, available under Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

294 Acute pericarditis. This image is a derivative work, adapted from the following source, available under ©o. Bogaert J, Francone M. Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson 2009;11:14. doi 10.1186/1532-429X-11-14. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

294 Cardiac tamponade. This image is a derivative work, adapted from the following source, available under .e: Lin E, Boire A, Hemmige V, et al. Cardiac tamponade mimicking tuberculous pericarditis as the initial presentation of chronic lymphocytic leukemia in a 58 -year-old woman: a case report. J Med Case Rep 2010;4:246. doi 10.1186/1752-1947-4-246. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

297 Vasculitides: Image A. Temporal arteritis histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Marvin. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©...

297 Vasculitides: Image B. Angiogram in patient with Takayasu arteritis. Courtesy of the US Department of Health and Human Services and Justin Ly.

297 Vasculitides: Image C. Microaneurysms in polyarteritis nodosa. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

297 Vasculitides: Image D. Strawberry tongue in patient with Kawasaki disease. This image is a derivative work, adapted from the following source, available under 응: Natr.
297 Vasculitides: Image E. Coronary artery aneurysm in Kawasaki disease. This image is a derivative work, adapted from the
 The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

297 Vasculitides: Image F. Gangrene as a consequence of Buerger disease. This image is a derivative work, adapted from the following source, available under Afsjarfard A, Mozaffar M , Malekpour F , et al. The wound healing effects of iloprost in patients with Buerger's disease: claudication and prevention of major amputations. Iran Red Crescent Med J 2011;13:420-423. PMCID PMC3371931.

297 Vasculitides: Image G. Granulomatosis with polyangiitis (formerly Wegener) and PR3-ANCA/c-ANCA. Courtesy of M.A. Little.

297 Vasculitides: Image H. Microscopic polyangiitis and MPO-ANCA/p-ANCA. Courtesy of the US Department of Health and Human Services and M.A. Little.

297 Vasculitides: Image I. Churg-Strauss syndrome histology. This image is a derivative work, adapted from the following source, available under Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®.

297 Vasculitides: Image J. Henoch-Schönlein purpura. Courtesy of Okwikikim.

## Endocrine

306 Thyroid development. Thyroglossal duct cyst. This image is a derivative work, adapted from the following source, available under Karlatti PD, Nagvekar S, Lekshmi TP, Kothari As. Migratory intralaryngeal thyroglossal duct cyst. Indian J Radiol Imaging 2010;20: 115-117. doi 10.4103/0971-3026.63053. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

306 Adrenal cortex and medulla. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

318 Adrenal insufficiency. Mucosal hyperpigmentation in $1^{\circ}$ adrenal insufficiency. Courtesy of FlatOut. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

319 Neuroblastoma: Image A. CT scan of abdomen. This image is a derivative work, adapted from the following source, available under . Koumarianou A, Oikonomopoulou P, Baka M, et al. Implications of the incidental finding of a MYCN amplified adrenal tumor: a case report and update of a pediatric disease diagnosed in adults. Case Rep Oncol Med 2013;2013:393128. doi $10.1155 / 2013 / 393128$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

319 Neuroblastoma. Image B: Homer-Wright rosettes. Image courtesy of Dr. Kristine Krafts.

320 Pheochromocytoma. This image is a derivative work, adapted from the following source, available under 뜬: Dr. Michael Feldman.

322 Hypothyroidism: Image B. Before and after treatment of congenital hypothyroidism. Courtesy of the US Department of Health and Human Services.

322 Hypothyroidism: Image C. Congenital hypothyroidism. This image is a derivative work, adapted from the following source, available under $\curvearrowleft$ : Sadasiv Swain. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

322 Hypothyroidism: Image D. Reidel thyroiditis histology. Image courtesy of Dr. Kristine Krafts.

323 Hyperthyroidism: Image B. Scalloped colloid. Image courtesy of Dr. Kristine Krafts.

324 Thyroid adenoma. Image courtesy of Dr. Kristine Krafts.
326 Hyperparathyroidism. Multiple lytic lesions. This image is a derivative work, adapted from the following source, available under 뚀: Khaoula BA, Kaouther BA, Ines C, et al. An unusual presentation of primary hyperparathyroidism: pathological fracture. Case Rep Orthop 2011;2011:521578. doi $10.1155 / 2011 / 521578$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

326 Pituitary adenoma. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org

332 Carcinoid syndrome. Carcinoid tumor histology. 졸 Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.

## Gastrointestinal

338 Intestinal atresia. "Double bubble" sign of duodenal atresia. This image is a derivative work, adapted from the following source, available under Alorainy IA, Barlas NB, Al-Boukai AA. Pictorial essay: infants of diabetic mothers. Indian J Radiol Imaging 2010;20:174-181. doi 0.4103/0971-3026.69349.

339 Pancreas and spleen embryology. Annular pancreas. This image is a derivative work, adapted from the following source, available under Mandi B, Selim S, Hassen T, et al. A rare cause of proximal intestinal obstruction in adults - annular pancreas: a case report. Pan Afr Med J 2011;10:56. PMCID PMC3290886. The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

346 Liver tissue architecture. Kupffer cells. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®.

347 Biliary structures. Gallstones. This image is a derivative work, adapted from the following source, available under @o. Courtesy of J. Guntau. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @용․

349 Hernias: Image A. Congenital diaphragmatic hernia. This image is a derivative work, adapted from the following source, available under . Tovar J. Congenital diaphragmatic hernia. Orphanet J Rare Dis 2012;7:1. doi 10.1186/1750-1172-7-1.

352 Peyer patches. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Plainpaper. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @ロ๐.

353 Salivary gland tumors: Image A. Pleomorphic adenoma histology. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @®®.

354 Achalasia. This image is a derivative work, adapted from the
 and Michael F. Vaezi. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

354 Esophageal pathologies: Image A. Pneumomediastinum in Boerhaave syndrome. This image is a derivative work, adapted from the following source, available under @@๐. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ㅇ..

354 Esophageal pathologies: Image B. Esophageal varices on endoscopy. This image is a derivative work, adapted from the following source, available under ■: Costaguta A, Alvarez F. Etiology and management of hemorrhagic complications of portal hypertension in children. Int J Hepatol 2012;2012:879163. doi 10.1155/2012/879163.

354 Esophageal pathologies: Image C. Esophageal varices on CT. This image is a derivative work, adapted from the following source, available under @๑. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @요.

355 Barrett esophagus: Image A. Endoscopy. This image is a derivative work, adapted from the following source, available under Coda S, Thillainayagam AV. State of the art in advanced endoscopic imaging for the detection and evaluation of dysplasia and early cancer of the gastrointestinal tract. Clin Exp Gastroenterol 2014;7:133-150. doi 10.2147/CEG.S58157. The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

355 Barrett esophagus: Image B. Goblet cells. This image is a derivative work, adapted from the following source, available under @o.. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ․․․

356 Ménétriere disease. This image is a derivative work, adapted from the following source, available under @o.. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

357 Ulcer complications. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

358 Malabsorption syndromes: Image B. Whipple disease. This image is a derivative work, adapted from the following source, available under @oo. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©...

359 Inflammatory bowel diseases: Image A. "String sign" on barium swallow in Crohn disease. This image is a derivative work, adapted from the following source, available under 누는: Al-Mofarreh MA, Al Mofleh IA, Al-Teimi IN, et al. Crohn's disease in a Saudi outpatient population: is it still rare? Saudi J Gastroenterol 2009;15:111-116. doi 10.4103/1319-3767.45357. The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

359 Inflammatory bowel diseases: Images $B$ (normal mucosa) and $C$ (punched-out ulcers) in ulcerative colitis. This image is a derivative work, adapted from the following source, available under 뜰: Ishikawa D, Ando T, Watanabe O, et al. Images of colonic realtime tissue sonoelastography correlate with those of colonoscopy and may predict response to therapy in patients with ulcerative colitis. BMC Gastroenterol 2011;11:29. doi 10.1186/1471-230X-11-29.

360 Appendicitis. Fecalith. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

360 Diverticula of the gastrointestinal tract: Image B. Diverticulitis. This image is a derivative work, adapted from the following source, available under ©. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under ©.

361 Zenker diverticulum. This image is a derivative work, adapted from the following source, available under Bernd Brägelmann.

362 Volvulus. This image is a derivative work, adapted from the following source, available under Co. Courtesy of herecomesdoc. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.
362 Intussusception. This image is a derivative work, adapted from the following source, available under 늘: Vasiliadis K, Kogopoulos E, Katsamakas M, et al. Ileoileal intussusception induced by a gastrointestinal stromal tumor. World J Surg Oncol 2008:6:133. doi 10.1186/1477-7819-6-133. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.
363 Colonic polyps: Image A. Colonic polyps and cancer. This image is a derivative work, adapted from the following source, available under 뜬: Emannuelm.
364 Colorectal cancer: Image A. Polyp on endoscopy. This image is a derivative work, adapted from the following source, available under Conen C-W, Hsiao K-H, Yue C-T, et al. Invasive adenocarcinoma arising from a mixed hyperplastic/adenomatous polyp and synchronous transverse colon cancer. World J Surg Oncol 2013;11:214. doi 10.1186/1477-7819-11-214.

365 Cirrhosis and portal hypertension. Splenomegaly and liver nodularity in cirrhosis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Inversitus. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @응.

367 Alcoholic liver disease: Image B. Mallory bodies. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @용.
367 Alcoholic liver disease: Image C. Sclerosis in alcoholic cirrhosis. This image is a derivative work, adapted from the following source, available under ©... Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.
367 Non-alcoholic fatty liver disease. This image is a derivative work, adapted from the following source, available under m: El-Karaksy HM, El-Koofy NM, Anwar GM, et al. Predictors of non-alcoholic fatty liver disease in obese and overweight Egyptian children: single center study. Saudi J Gastroenterol 2011;17:40-46. doi 10.4103/1319-3767.74476.

368 Hepatocellular carcinoma/hepatoma: Image A. Gross specimen. Reproduced, with permission, from Jean-Christophe Fournet and Humpath.

369 Other liver tumors. Cavernous liver hemangioma. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o…
$369 \alpha_{1}$-antitrypsin deficiency. Liver histology. This image is a derivative work, adapted from the following source, available under @요. Courtesy of Dr. Jerad M. Gardner. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.
369 Jaundice. Yellow sclera. Courtesy of the US Department of Health and Human Services and Dr. Thomas F. Sellers.

371 Hemochromatosis. Hemosiderin deposits. This image is a derivative work, adapted from the following source, available under Mathew J, Leong MY, Morley N, et al. A liver fibrosis cocktail? Psoriasis, methotrexate and genetic hemochromatosis. BMC Dermatol 2005;5:12. doi 10.1186/1471-5945-5-12.

372 Gallstones (cholelithiasis): Image. A Gross specimen. This image is a derivative work, adapted from the following source, available under M. M. Emmanuel.

372 Gallstones (cholelithiasis): Image B. Ultrasound. This image is a derivative work, adapted from the following source, available under 용. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

372 Porcelain gallbladder. This image is a derivative work, adapted from the following source, available under Fred H , van Dijk H. Images of memorable cases: case 19. Connexions website. December 4, 2008. Available at: http://cnx.org/content/ ml4939/1.3/. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

373 Acute pancreatitis: Image A. Acute exudative pancreatitis. This image is a derivative work, adapted from the following source, available under @(®). Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

373 Acute pancreatitis: Image B. Pancreatic pseudocyst. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Thomas Zimmerman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

373 Chronic pancreatitis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©.

373 Pancreatic adenocarcinoma: Image A. Histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of KGH. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©..

373 Pancreatic adenocarcinoma: Image B. CT scan. Courtesy of MBq. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

## Hematology and Oncology

378 Erythrocyte. ©ourtesy of the US Department of Health and Human Services and Drs. Noguchi, Rodgers, and Schechter.

378 Thrombocyte (platelet). This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ㅇ..

378 Neutrophil. Courtesy of the US Department of Health and Human Services B. Lennert.

379 Monocyte. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr. Graham Beards. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 웅.

379 Macrophage. Courtesy of the US Department of Health and Human Services and Dr. Francis W. Chandler. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved

379 Eosinophil. This image is a derivative work, adapted from the following source, available under Dr. Ed Uthman.

379 Basophil. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr. Erhabor Osaro. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o․

379 Mast cell. Courtesy of Wikimedia Commons.
380 Dendritic cell. This image is a derivative work, adapted from the following source, available under Cheng J-H, Lee S-Y, Lien Y-Y, et al. Immunomodulating activity of Nymphaea rubra roxb. extracts: activation of rat dendritic cells and improvement of the TH1 immune response. Int J Mol Sci 2012;13:1072210735. doi 10.3390/ijms 130910722 .

380 Lymphocyte. This image is a derivative work, adapted from the following source, available under ©o.. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 응ㅇ.
381 Plasma cell. © Courtesy of the US Department of Health and Human Services and Dr. Francis W. Chandler. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

386 Pathologic RBC forms: Image A. Acanthocyte ("spur cell"). Image courtesy of Dr. Kristine Krafts.

386 Pathologic RBC forms: Image B. Basophilic stippling. This image is a derivative work, adapted from the following source, available under : van Dijk HA, Fred HL. Images of memorable cases: case 81. Connexions website. December 3, 2008. Available at http://cnx.org/contents/3196bf3e-lele-4c4d-alacd4fc9ab65443@4@4.

386 Pathologic RBC forms: Image C. Dacrocyte ("teardrop cell"). Image courtesy of Dr. Kristine Krafts.

386 Pathologic RBC forms: Image D. Degmacyte ("bite cell"). Image courtesy of Dr. Kristine Krafts.

386 Pathologic RBC forms: Image E. Echinocyte ("burr cell"). Image courtesy of Dr. Kristine Krafts.

386 Pathologic RBC forms: Image F. Elliptocyte. Image courtesy of Dr. Kristine Krafts.

386 Pathologic RBC forms: Image G. Macro-ovalocyte. Image courtesy of Dr. Kristine Krafts.

387 Pathologic RBC forms: Image H. Ringed sideroblast. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Paulo Henrique Orlandi Mourao. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ․․․

387 Pathologic RBC forms: Image I. Schistocyte. Image courtesy of Dr. Kristine Krafts.

387 Pathologic RBC forms: Image J. Sickle cell. Courtesy of the US Department of Health and Human Services and the Sickle Cell Foundation of Georgia, Jackie George, and Beverly Sinclair.

387 Pathologic RBC forms: Image K. Spherocyte. Image courtesy of Dr. Kristine Krafts.

387 Pathologic RBC forms: Image L. Target cell. Image courtesy of Dr. Kristine Krafts.
387 Other RBC pathologies: Image A. Heinz bodies. Image courtesy of Dr. Kristine Krafts.

387 Other RBC pathologies: Image B. Howell-Jolly body. This image is a derivative work, adapted from the following source, available under ㅇ․․ Courtesy of Paulo Henrique Orlandi Mourao and Mikael Häggström. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 은.
389 Microcytic (MCV < 80 fL ), hypochromic anemia: Image C. $\beta$-thalassemia. Image courtesy of Dr. Kristine Krafts.

389 Microcytic (MCV < 80 fL), hypochromic anemia: Image D. Lead lines in lead poisoning. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

389 Microcytic ( $\mathrm{MCV}<80 \mathrm{fL}$ ), hypochromic anemia: Image E. Sideroblastic anemia. This image is a derivative work, adapted from the following source, available under @. Courtesy of Paulo Henrique Orlandi Moura. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under …
390 Macrocytic (MCV > 100 fL ) anemia. Megaloblastic anemia. This image is a derivative work, adapted from the following source, available under ©o: Dr. Ed Uthman.

392 Intrinsic hemolytic anemia: Image B. Dactylitis. This image is a derivative work, adapted from the following source, available under Pedram M, Jaseb K, Haghi S, et al. First presentation of sickle cell anemia in a 3.5 -year-old girl: a case report. Iran Red Crescent Med J 2012;14:184-185.
393 Extrinsic hemolytic anemia: Image A. Autoimmune hemolytic anemia. Image courtesy of Dr. Kristine Krafts.

395 Heme synthesis, porphyrias, and lead poisoning. Basophilic stippling in lead poisoning. This image is a derivative work, adapted from the following source, available under ©van Dijk HA, Fred HL. Images of memorable cases: case 81. Connexions website. December 3, 2008. Available at http://cnx. org/contents/3196bf3e-lele-4c4d-alac-d4fc9ab65443@4@4.

396 Coagulation disorders. Hemarthrosis. This image is a derivative work, adapted from the following source, available under Rodriguez-Merchan EC. Prevention of the musculoskeletal complications of hemophilia. Adv Prev Med 2012;2012:201271. doi $10.1155 / 2012 / 201271$.

400 Non-Hodgkin lymphoma: Image C. Mycosis fungoides. This image is a derivative work, adapted from the following source, available under Chaudhary S, Bansal C, Ranga U, et al. Erythrodermic mycosis fungoides with hypereosinophilic syndrome: a rare presentation. Ecancermedicalscience 2013;7:337. doi 10.3332/ecancer.2013.337.

401 Multiple myeloma: Image B. RBC rouleaux formation. Image courtesy of Dr. Kristine Krafts.

401 Multiple myeloma: Image C. Plasma cells. This image is a derivative work, adapted from the following source, available under Sharma A, Kaushal M, Chaturvedi NK, et al. Cytodiagnosis of multiple myeloma presenting as orbital involvement: a case report. Cytojournal 2006;3:19. doi 10.1186/1742-6413-3-19.

402 Leukemias: Image C. Hairy cell leukemia. Image courtesy of Dr. Kristine Krafts.

402 Leukemias: Image E. Chronic myelogenous leukemia. Image courtesy of Dr. Kristine Krafts.

403 Langerhans cell histiocytosis: Image A. Lytic bone lesion. This image is a derivative work, adapted from the following source, available under Den: Dehkordi NR, Rajabi P, Naimi A, et al. Langerhans cell histiocytosis following Hodgkin lymphoma: a case report from Iran. J Res Med Sci 2010;15:58-61. PMCID PMC3082786.

403 Langerhans cell histiocytosis: Image B. Birbeck granules. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

404 Chronic myeloproliferative disorders: Image A. Erythromelalgia in polycythemia vera. This image is a derivative work, adapted from the following source, available under 뜬: Fred H, van Dijk H. Images of memorable cases: case 151. Connexions website. December 4, 2008. Available at http://cnx.org/content/ m14932/1.3/.

404 Chronic myeloproliferative disorders: Image B. Essential thrombocytosis with enlarged megakaryocytes. Image courtesy of Dr. Kristine Krafts.

404 Chronic myeloproliferative disorders: Image C. Myelofibrosis. This image is a derivative work, adapted from the following source, available under 릉 Dr. Ed Uthman.

404 Chronic myeloproliferative disorders: Image D. Dacrocyte ("teardrop cell"). Image courtesy of Dr. Kristine Krafts.

406 Warfarin. Toxic effect. This image is a derivative work, adapted from the following source, available under Fred H , van Dijk H. Images of memorable cases: cases 84 and 85 . Connexions website. December 2, 2008. Available at http://cnx. org/content/m14932/1.3/.

## Musculoskeletal, Skin, and Connective Tissue

417 Common knee conditions: Image A. ACL tear. This image is a derivative work, adapted from the following source, available under Chang MJ, Chang CB, Choi J-Y, et al. Can magnetic resonance imaging findings predict the degree of knee joint laxity in patients undergoing anterior cruciate ligament reconstruction? BMC Musculoskelet Disord 2014;15:214. doi 10.1186/1471-2474-15-214. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

417 Common knee conditions: Images B (prepatellar bursitis) and C (Baker cyst). This image is a derivative work, adapted from the following source, available under Hirji Z, Hunhun JS, Choudur HN. Imaging of the bursae. J Clin Imaging Sci 2011;1:22. doi 10.4103/2156-7514.80374. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.
417 Rotator cuff muscles. Glenohumeral instability. This image is a derivative work, adapted from the following source, available under : Koike Y, Sano H, Imamura I, et al. Changes with time in skin temperature of the shoulders in healthy controls and a patient with shoulder-hand syndrome. Ups J Med Sci 2010;115:260-265. doi 10.3109/03009734.2010.503354. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

424 Muscle conduction to contraction. Human skeletal muscle. 표 Courtesy of Louisa Howard. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

426 Osteoporosis. Vertebral compression fractures of spine. This image is a derivative work, adapted from the following source, available under Sexton C, Crichlow C. Multiple myeloma: imaging evaluation of skeletal disease. J Community Hosp Intern Med Perspect 2013;3. doi 10.3402/jchimp.v3i2.21419.

426 Osteopetrosis (marble bone disease). This image is a derivative work, adapted from the following source, available under Kant P, Sharda N, Bhowate RR. Clinical and radiological findings of autosomal dominant osteopetrosis type II: a case report. Case Rep Dent 2013;2013:707343. doi 10.1155/2013/707343.

427 Osteomalacia/rickets. This image is a derivative work, adapted from the following source, available under Linglart A, Biosse-Duplan M, Briot K, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect 2014;3:R13-R30. doi 10.1530/EC-13-0103.

427 Paget disease of bone (osteitis deformans). Thickened calvarium. This image is a derivative work, adapted from the following source, available under 드﹎: Dawes L. Paget's disease. [Radiology Picture of the Day Website]. Published June 21, 2007. Available at http://www.radpod.org/2007/06/21/pagetsdisease/.

427 Osteonecrosis (avascular necrosis). Bilateral necrosis of femoral head. This image is a derivative work, adapted from the following source, available under ․․: Ding H, Chen S-B, Lin S, et al. The effect of postoperative corticosteroid administration on free vascularized fibular grafting for treating osteonecrosis of the femoral head. Sci World J 2013;708014. doi 10.1155/2013/708014. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

429 Primary bone tumors: Image A. Osteochondroma. This image is a derivative work, adapted from the following source, available under @.థ. Courtesy of Lucien Monfils. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.o.

429 Primary bone tumors: Image B. Giant cell tumor. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia. org.

429 Primary bone tumors: Image C. Osteosarcoma. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

431 Gout: Image B. Uric acid crystals under polarized light. This image is a derivative work, adapted from the following source, available under @.. Courtesy of Robert J. Galindo. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @응.

431 Gout: Image C. Podagra. This image is a derivative work, adapted from the following source, available under Roddy E. Revisiting the pathogenesis of podagra: why does gout target the foot? J Foot Ankle Res 2011;4:13. doi 10.1186/1757-1146-4-13.

431 Calcium pyrophosphate deposition disease. Calcium phosphate crystals. Image courtesy of Medical Research Council and Drs. P. Diepke and K. Swan.

432 Sjögren syndrome. Lymphocytic infiltration. Courtesy of the US Department of Health and Human Services.

432 Septic arthritis. Joint effusion. This image is a derivative work, adapted from the following source, available under 뚕․ . Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o..

433 Seronegative spondyloarthropathies: Image C, left. Bamboo spine. This image is a derivative work, adapted from the following source, available under ©. Courtesy of Stevenfruitsmaak. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @o.

433 Seronegative spondyloarthropathies: Image C, right. Bamboo spine. Courtesy of Heather Hawker.

435 Sarcoidosis: Images B (X-ray of the chest) and C (CT of the chest). This image is a derivative work, adapted from the following source, available under Lónborg J, Ward M, Gill A, et al. Utility of cardiac magnetic resonance in assessing right-sided heart failure in sarcoidosis. BMC Med Imaging 2013;13:2. doi 10.1186/1471-2342-13-2.

436 Myositis ossificans. This image is a derivative work, adapted from the following source, available under @o. Courtesy of T. Dvorak. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뚱․

437 Scleroderma (systemic sclerosis): Image C. Calcinosis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

437 Raynaud phenomenon. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Jamclaassen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽..

440 Common skin disorders: Image 0 . Urticaria. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

441 Vascular tumors: Image C. Cystic hygroma. This image is a derivative work, adapted from the following source, available under Sannoh S, Quezada E, Merer DM, et al. Cystic hygroma and potential airway obstruction in a newborn: a case report and review of the literature. Cases J 2009;2:48. doi 10.1186/1757-1626-2-48. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

442 Skin infections: Image D. Erysipelas. This image is a derivative work, adapted from the following source, available under 은: Klaus D. Peter.

443 Blistering skin disorders: Image D. Bullous pemphigoid on immunofluorescence. This image is a derivative work, adapted from the following source, available under M. Emmanuel.

445 Skin cancer: Image D. Basal cell carcinoma histopathology. This image is a derivative work, adapted from the following source, available under Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

## Neurology

451 Posterior fossa malformations. Dandy-Walker malformation. This image is a derivative work, adapted from the following source, available under ©o: Krupa K, Bekiesinska-Figatowska M. Congenital and acquired abnormalities of the corpus callosum: a pictorial essay. Biomed Res Int 2013;2013:265619. doi 10.1155/2013/265619.

452 Syringomyelia. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.
453 Myelin. Myelinated neuron. Courtesy of the Electron Microscopy Facility at Trinity College.

458 Limbic system. Brain scan. Courtesy of Kieran Maher. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

461 Parkinson disease. Lewy body in substantia nigra. This image is a derivative work, adapted from the following source, available under ـo: Werner CJ, Heyny-von Haussen R, Mall G, et al. Parkinson's disease. Proteome Sci 2008;6:8. doi 10.1186/1477-$5956-6-8$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

462 Huntington disease. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

469 Intracranial hemorrhage: Image A. Axial CT of brain showing epidural blood. This image is a derivative work, adapted from the following source, available under @(®). Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.…

469 Intracranial hemorrhage: Image B. Axial CT of brain showing skull fracture and scalp hematoma. This image is a derivative work, adapted from the following source, available under (20Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under (oㅇ.

469 Intracranial hemorrhage: Image C. Subdural hematoma. This image is a derivative work, adapted from the following source, available under ©. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©o.

469 Intracranial hemorrhage: Image E. Subarachnoid hemorrhage. This image is a derivative work, adapted from the following source, available under ــO-: Hakan T, Turk CC, Celik H. Intra-operative real time intracranial subarachnoid haemorrhage during glial tumour resection: a case report. Cases J 2008;1:306. doi 10.1186/1757-1626-1-306. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

471 Hydrocephalus: Image A. Normal pressure hydrocephalus. Image courtesy of Dr. Brian Walcott.

471 Hydrocephalus: Image B. Communicating hydrocephalus. This image is a derivative work, adapted from the following source, available under .erer Torres-Martin M, Pena-Granero C, Carceller F, et al. Homozygous deletion of TNFRSF4, TP73, PPAP2B and DPYD at 1 p and PDCD5 at 19q identified by multiplex ligation-dependent probe amplification (MLPA) analysis in pediatric anaplastic glioma with questionable oligodendroglial component. Mol Cytogenet 2014;7:1. doi 10.1186/1755-8166-7-1.

472 Spinal cord and associated tracts. Spinal cord cross-section. This image is a derivative work, adapted from the following source, available under Regents of University of Michigan Medical School.

475 Friedreich ataxia. Kyphoscoliosis. This image is a derivative work, adapted from the following source, available under ـ-: Axelrod FB, Gold-von Simson G. Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J Rare Dis 2007;2:39. doi 10.1186/1750-1172-2-39.

480 Facial nerve lesions. This image is a derivative work, adapted from the following source, available under 뜽: Socolovsky M, Paez MD, Di Masi G, et al. Bell's palsy and partial hypoglossal to facial nerve transfer: Case presentation and literature review. Surg Neurol Int 2012;3:46. doi 10.4103/2152-7806.95391.

482 Cholesteatoma. This image is a derivative work, adapted from the following source, available under Courtesy of Welleschik. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @o.

482 Normal eye. This image is a derivative work, adapted from the following source, available under Courtesy of Jan Kaláb. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @o.

483 Cataract. Juvenile cataract. This image is a derivative work, adapted from the following source, available under Roshan M, Vijaya PH, Lavanya GR, et al. A novel human CRYGD mutation in a juvenile autosomal dominant cataract. Mol Vis 2010;16:887-896. PMCID PMC2875257.

484 Glaucoma: Images A (normal optic cup) and B (optic cup in glaucoma). Image courtesy of EyeRounds.

484 Glaucoma: Image C. Closed/narrow angle glaucoma. This image is a derivative work, adapted from the following source, available under Low S, Davidson AE, Holder GE, et al. Autosomal dominant Best disease with an unusual electrooculographic light rise and risk of angle-closure glaucoma: a clinical and molecular genetic study. Mol Vis 2011;17:2272-2282. PMCID PMC3171497. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

484 Glaucoma: Image D. Acute angle closure glaucoma. This image is a derivative work, adapted from the following source, available under CImage courtesy of Dr. Jonathan Trobe.

484 Conjunctivitis. This image is a derivative work, adapted from the following source, available under Baiyeroju A, Bowman R, Gilbert C, et al. Managing eye health in young children. Community Eye Health 2010;23:4-11.

484 Uveitis. Image courtesy of EyeRounds
485 Age-related macular degeneration. Courtesy of the US Department of Health and Human Services.

485 Diabetic retinopathy. This image is a derivative work, adapted from the following source, available under Stefanini FR, Badaró E, Falabella P, et al. Anti-VEGF for the management of diabetic macular edema. J Immunol Res 2014;2014:632307. doi $10.1155 / 2014 / 632307$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

485 Retinal vein occlusion. This image is a derivative work, adapted from the following source, available under Alasil T, Rauser ME. Intravitreal bevacizumab in the treatment of neovascular glaucoma secondary to central retinal vein occlusion: a case report. Cases J 2009;2:176. doi 10.1186/1757-1626-2-176. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

485 Retinal detachment. Image courtesy of EyeRounds.
486 Retinitis pigmentosa. Image courtesy of EyeRounds.
486 Retinitis. Courtesy of the US Department of Health and Human Services.

488 Ocular motility. Testing ocular muscles. This image is a derivative work, adapted from the following source, available under @. Courtesy of Au.yousef. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

489 Cranial nerve III, IV, VI palsies: Image A. Cranial nerve III damage. This image is a derivative work, adapted from the following source, available under ـom: Hakim W, Sherman R, Rezk T, et al. An acute case of herpes zoster ophthalmicus with ophthalmoplegia. Case Rep Ophthalmol Med 1012; 2012:953910. Doi 10.1155/2012/953910.

489 Cranial nerve III, IV, VI palsies: Image B. Cranial nerve IV damage. This image is a derivative work, adapted from the following source, available under 뜽: Mendez JA, Arias CR, Sanchez D, et al. Painful ophthalmoplegia of the left eye in a 19-yearold female, with an emphasis in Tolosa-Hunt syndrome: a case report. Cases J 2009; 2: 8271. doi 10.4076/1757-1626-2-8271.

489 Cranial nerve III, IV, VI palsies: Image C. Cranial nerve VI damage This image is a derivative work, adapted from the following source, available under ㅇ..… Courtesy of Jordi March i Nogué. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @.

491 Dementia: Image B. Neurofibrillary tangles in Alzheimer disease. Image courtesy of Dr. Kristine Krafts.

491 Dementia: Image C. Pick bodies in frontotemporal dementia This image is a derivative work, adapted from the following source, available under Niedowicz DM, Nelson PT, Murphy MP. Alzheimer's disease: pathological mechanisms and recent insights. Curr Neuropharmacol 2011;9:674-684. doi 10.2174/157015911798376181.

492 Osmotic demyelination syndrome (central pontine myelinolysis). This image is a derivative work, adapted from the following source, available under Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under 응ㅁㅁ

492 Multiple sclerosis. Periventricular plaques. This image is a derivative work, adapted from the following source, available under ©-: Buzzard KA, Broadley SA, Butzkueven H. What do effective treatments for multiple sclerosis tell us about the molecular mechanisms involved in pathogenesis? Int J Mol Sci 2012;13:12665-12709. doi 10.3390/ijms131012665.

495 Neurocutaneous disorders: Image A. Sturge-Weber syndrome and port wine stain. This image is a derivative work, adapted from the following source, available under Babaji P, Bansal A, Krishna G, et al. Sturge-Weber syndrome with osteohypertrophy of maxilla. Case Rep Pediatr 2013. doi 10.1155/2013/964596.

495 Neurocutaneous disorders: Image B. Leptomeningeal angioma in Sturge-Weber syndrome. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

495 Neurocutaneous disorders: Image C. Tuberous sclerosis. This image is a derivative work, adapted from the following source, available under Fred H, van Dijk H. Images of memorable cases: case 143. Connexions website. December 4, 2008. Available at: http://cnx.org/content/m14923/1.3/.
495 Neurocutaneous disorders: Image D. Ash leaf spots in tuberous sclerosis. This image is a derivative work, adapted from the following source, available under ©o: Tonekaboni SH, Tousi P, Ebrahimi A, et al. Clinical and para clinical manifestations of tuberous sclerosis: a cross sectional study on 81 pediatric patients. Iran J Child Neurol 2012;6:25-31. PMCID PMC3943027.

495 Neurocutaneous disorders: Image E. Angiomyolipoma in tuberous sclerosis. This image is a derivative work, adapted from the following source, available under @oo. Courtesy of KGH. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ロ.

495 Neurocutaneous disorders: Image F. Café-au-lait spots in neurofibromatosis. This image is a derivative work, adapted from the following source, available under ©o. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

495 Neurocutaneous disorders: Image G. Lisch nodules in neurofibromatosis. Courtesy of the US Department of Health and Human Services.

495 Neurocutaneous disorders: Image H. Cutaneous neurofibromas. This image is a derivative work, adapted from the following source, available under .eo: Kim BK, Choi YS, Gwoo S, et al. Neurofibromatosis type 1 associated with papillary thyroid carcinoma incidentally detected by thyroid ultrasonography: a case report. J Med Case Rep 2012;6:179. doi 10.1186/1752-1947-6-179.

495 Neurocutaneous disorders: Image I. Cerebellar hemangioblastoma histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @o.

495 Neurocutaneous disorders: Image J. Cerebellar hemangioblastomas imaging. This image is a derivative work, adapted from the following source, available under 르응: Park DM, Zhuang Z, Chen L, et al. von Hippel-Lindau diseaseassociated hemangioblastomas are derived from embryologic multipotent cells. PLoS Medicine Feb. 13, 2007. doi 10.1371/ journal.pmed. 0040060.
496 Adult primary brain tumors: Image A. Glioblastoma multiforme at autopsy. Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.
496 Adult primary brain tumors: Image B. Glioblastoma multiforme histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.o.
496 Adult primary brain tumors: Image C. Dural tail in meningioma. 준 Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.

496 Adult primary brain tumors: Image D. Meningioma histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @요.

496 Adult primary brain tumors: Image E. MRI of hemangioblastoma. This image is a derivative work, adapted from the following source, available under Pare: PM, Zhuang Z, Chen L, et al. von Hippel-Lindau disease-associated hemangioblastomas are derived from embryologic multipotent cells. PLoS Med 2007;4:e60. doi 10.1371/journal.pmed. 0040060 .

496 Adult primary brain tumors: Image F. Hemangioblastoma histology. This image is a derivative work, adapted from the following source, available under @o.. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.
496 Adult primary brain tumors: Image G. MRI of schwannoma. 으 Courtesy of Wikimedia Commons.
496 Adult primary brain tumors: Image H. Schwannoma histology. This image is a derivative work, adapted from the following source, available under @... Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

496 Adult primary brain tumors: Image I. MRI of oligodendroglioma. This image is a derivative work, adapted from the following source, available under Celzo FG, Venstermans C, De Belder F, et al. Brain stones revisited - between a rock and a hard place. Insights Imaging 2013;4:625-635. doi 10.1007/ sl3244-013-0279-z.

496 Adult primary brain tumors: Image J. Oligodendroglioma histology. This image is a derivative work, adapted from the following source, available under Courtesy of Nephron. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @o.

496 Adult primary brain tumors: Image K. Prolactinoma. This image is a derivative work, adapted from the following source, available under Wang C-S, Yeh T-C, Wu T-C, et al. Pituitary macroadenoma co-existent with supraclinoid internal carotid artery cerebral aneurysm: a case report and review of the literature. Cases J 2009;2:6459. doi 10.4076/1757-1626-2-6459.

496 Adult primary brain tumors: Image L. Field of vision in bitemporal hemianopia. This image is a derivative work, adapted from the following source, available under @®๐. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

497 Childhood primary brain tumors: Image A. MRI of pilocytic astrocytoma. This image is a derivative work, adapted from the following source, available under ■. Hafez RFA. Stereotaxic gamma knife surgery in treatment of critically located pilocytic astrocytoma: preliminary result. World J Surg Oncol 2007;5:39. doi 10.1186/1477-7819-5-39.

497 Childhood primary brain tumors: Image C. CT of medulloblastoma. Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.

497 Childhood primary brain tumors: Image D. Medulloblastoma histology. This image is a derivative work, adapted from the following source, available under @ـ. Courtesy of KGH. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

497 Childhood primary brain tumors: Image E. MRI of ependymoma. This image is a derivative work, adapted from the following source, available under . Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®.

497 Childhood primary brain tumors: Image F. Ependymoma histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

497 Childhood primary brain tumors: Image G. CT of craniopharyngioma. This image is a derivative work, adapted from the following source, available under Garnet MR, Puget S, Grill J, et al. Craniopharyngioma. Orphanet J Rare Dis 2007;2:18. doi 10.1186/1750-1172-2-18.

497 Childhood primary brain tumor: Image H. Craniopharyngioma histology. This image is a derivative work, adapted from the following source, available under @(®). Courtesy of Nephron. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @o.

## Renal

530 Potter sequence (syndrome). Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.

532 Ureters: course. This image is a derivative work, adapted from the following source, available under Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.․

533 Glomerular filtration barrier. This image is a derivative work, adapted from the following source, available under Feng J, Wei H, Sun Y, et al. Regulation of podocalyxin expression in the kidney of streptozotocin-induced diabetic rats with Chinese herbs (Yishen capsule). BMC Complement Altern Med 2013;13:76. doi 10.1186/1472-6882-13-76.

547 Nephritic syndrome: Image A. Histology of acute poststreptococcal glomerulonephritis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @응.

547 Nephritic syndrome: Image B. This image is a derivative work, adapted from the following source, available under 릉: Immunofluorescence of acute poststreptococcal glomerulonephritis. Oda T, Yoshizawa N, Yamakami K, et al. The role of nephritis-associated plasmin receptor (naplr) in glomerulonephritis associated with streptococcal infection. Biomed Biotechnol 2012;2012:417675. doi 10.1155/2012/417675.

547 Nephritic syndrome: Image C. Histology of rapidly progressive glomerulonephritis. Courtesy of the US Department of Health and Human Services and Uniformed Services University of the Health Sciences.

548 Nephrotic syndrome: Image B. Histology of focal segmental glomerulosclerosis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ㅇ..

548 Nephrotic syndrome: Image D. Diabetic glomerulosclerosis with Kimmelstiel-Wilson lesions. This image is a derivative work, adapted from the following source, available under @ㅇ.. Courtesy of Doc Mari. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

549 Kidney stones: Image D. Uric acid crystals. Image courtesy of Dr. Adam Weinstein.

550 Hydronephrosis. Ultrasound. This image is a derivative work, adapted from the following source, available under @o.. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

550 Renal cell carcinoma: Image A. Histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

550 Renal cell carcinoma: Image B. Gross specimen. Courtesy of Dr. Ed Uthman.

550 Renal cell carcinoma: Image C. CT scan. This image is a derivative work, adapted from the following source, available under 뜰: Behnes CL, Schlegel C, Shoukier M, et al. Hereditary papillary renal cell carcinoma primarily diagnosed in a cervical lymph node: a case report of a 30 -year-old woman with multiple metastases. BMC Urol 2013;13:3. doi 10.1186/1471-2490-13-3.

550 Renal oncocytoma: Image A. Gross specimen. This image is a derivative work, adapted from the following source, available under ©o: M. Emmanuel.

550 Renal oncocytoma: Image B. Histology. This image is a derivative work, adapted from the following source, available under ©o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

551 Wilms tumor. This image is a derivative work, adapted from the following source, available under Refaie H, Sarhan M, Hafez A. Role of CT in assessment of unresectable Wilms tumor response after preoperative chemotherapy in pediatrics. Sci World J 2008;8:661-669. doi 10.1100/tsw.2008.96.

551 Transitional cell carcinoma: Image A. This image is a derivative work, adapted from the following source, available under 응: Geavlete B, Stanescu F, Moldoveanu C, et al. NBI cystoscopy and bipolar electrosurgery in NMIBC management-an overview of daily practice. J Med Life 2013;6:140-145. PMCID PMC3725437.

552 Pyelonephritis: Image B. CT scan. Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.

554 Acute tubular necrosis: Image A. Muddy brown casts. This image is a derivative work, adapted from the following source, available under 응. Courtesy of Dr. Serban Nicolescu.

554 Renal papillary necrosis. Courtesy of the US Department of Health and Human Services and William D. Craig, Dr. Brent J. Wagner, and Mark D. Travis.

555 Renal cyst disorders: Image C. Ultrasound of simple cyst. This image is a derivative work, adapted from the following source, available under ©. Courtesy of Nevit Dilmen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

## Reproductive

565 Fetal alcohol syndrome. Image courtesy of Teresa Kellerman.
567 Umbilical cord. Cross-section of normal umbilical cord. This image is a derivative work, adapted from the following source, available under ©... Courtesy of Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o․

572 Uterine (Müllerian) duct anomalies: Images A-D. This image is a derivative work, adapted from the following source, available under ...: Ahmadi F, Zafarani F, Haghighi H, et al. Application of 3D ultrasonography in detection of uterine abnormalities. Int J Fertil Sterili 2011; 4:144-147. PMCID PMC4023499.

574 Female reproductive epithelial histology. Transformation zone. This image is a derivative work, adapted from the following source, available under 뜬: Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.
576 Seminiferous tubules. This image is a derivative work, adapted from the following source, available under @®o. Courtesy of Dr. Anlt Rao. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 웅.
588 Pregnancy complications. Ectopic pregnancy. This image is a derivative work, adapted from the following source, available under 릉: Dr. Ed Uthman.

591 Polycystic ovarian syndrome (Stein-Leventhal syndrome). This image is a derivative work, adapted from the following source, available under Lujan ME, Chizen DR, Peppin AK, et al. Improving inter-observer variability in the evaluation of ultrasonographic features of polycystic ovaries. Reprod Biol Endocrinol 2008;6:30. doi 10.1186/1477-7827-6-30.
592 Ovarian neoplasms: Image C. Mature cystic teratoma. This image is a derivative work, adapted from the following source, available under ©o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.
593 Ovarian neoplasms: Image D. Call-Exner bodies. This image is a derivative work, adapted from the following source, available under Lo: Katoh T, Yasuda M, Hasegawa K, et al. Estrogenproducing endometrioid adenocarcinoma resembling sex cordstromal tumor of the ovary: a review of four postmenopausal cases. Diagn Pathol 2012;7:164. doi 10.1186/1746-1596-7-164.

593 Ovarian neoplasms: Image F. Yolk sac tumor. This image is a derivative work, adapted from the following source, available under @... Courtesy of Jensflorian. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @...
594 Endometrial conditions: Image A. Leiomyoma (fibroid), gross specimen. This image is a derivative work, adapted from the following source, available under Hic et nunc.
594 Endometrial conditions: Image B. Leiomyoma (fibroid) histology. This image is a derivative work, adapted from the following source, available under Londero AP, Perego P, Mangioni C, et al. Locally relapsed and metastatic uterine leiomyoma: A case report. J Med Case Rep 2008;2:308. doi 10.1186/1752-1947-2-308. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

594 Endometrial conditions: Images C (endometrial hyperplasia) and D (endometrial carcinoma). This image is a derivative work, adapted from the following source, available under 뜰: Izadi-Mood N, Yarmohammadi M, Ahmadi SA, et al. Reproducibility determination of WHO classification of endometrial hyperplasia/well differentiated adenocarcinoma and comparison with computerized morphometric data in curettage specimens in Iran. Diagn Pathol 2009;4:10. doi 10.1186/1746-1596-4-10.

594 Endometrial conditions: Image E. Endometritis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @용.

597 Malignant breast tumors: Image B. Comedocarcinoma. This image is a derivative work, adapted from the following source, available under Costarelli L, Campagna D, Mauri M, et al. Intraductal proliferative lesions of the breast-terminology and biology matter: premalignant lesions or preinvasive cancer? Int J Surg Oncol 2012;501904. doi 10.1155/2012/501904. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

597 Malignant breast tumors: Image C. Paget disease of breast. This image is a derivative work, adapted from the following source, available under ©o: Muttarak M, Siriya B, Kongmebhol P, et al. Paget's disease of the breast: clinical, imaging and pathologic findings: a review of 16 patients. Biomed Imaging Interv 1 2011;7:e16. doi 10.2349/biij.7.2.el6.

597 Malignant breast tumors: Image D. Invasive ductal carcinoma. This image is a derivative work, adapted from the following source, available under ©e: Zhou X-C, Zhou, Ye Y-H, et al. Invasive ductal breast cancer metastatic to the sigmoid colon. World J Surg Oncol 2012;10:256. doi 10.1186/1477-7819-10-256.

597 Malignant breast tumors: Image E. Invasive lobular carcinoma. This image is a derivative work, adapted from the following source, available under Franceschini G, Manno A, Mule A, et al. Gastro-intestinal symptoms as clinical manifestation of peritoneal and retroperitoneal spread of an invasive lobular breast cancer: report of a case and review of the literature. BMC Cancer 2006;6:193. doi 10.1186/1471-2407-6-193.

597 Malignant breast tumors: Image F. Peau d'orange of inflammatory breast cancer. Courtesy of the US Department of Health and Human Services.

597 Varicocele. Dilated pampiniform veins. Image courtesy of Dr. Bruce R. GIlbert.

## Respiratory

607 Pneumocytes. Type II pneumocyte. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Thomas Caceci.

607 Neonatal respiratory distress syndrome. This image is a derivative work, adapted from the following source, available under 으을 Alorainy IA, Balas NB, Al-Boukai AA. Pictorial essay: infants of diabetic mothers. Indian J Radiol Imaging 2010;20:174-181. doi 10.4103/0971-3026.69349.

616 Rhinosinusitis．This image is a derivative work，adapted from the following source，available under Strek P，Zagolski O，Sktadzien J．Fatty tissue within the maxillary sinus：a rare finding．Head Face Med 2006；2：28．doi 10．1186／1746－160X－2－28．

616 Deep venous thrombosis．This image is a derivative work，adapted from the following source，available under＠․․ Courtesy of Dr．James Heilman．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠ロ．

617 Pulmonary emboli：Image C．CT scan．This image is a derivative work，adapted from the following source，available under＠o． Courtesy of Dr．Carl Chartrand－Lefebvre．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠o．

618 Obstructive lung diseases：Image A．Emphysema histology．This image is a derivative work，adapted from the following source， available under＠ロ๐．Courtesy of Nephron．The image may have been modified by cropping，labeling，and／or captions． MedIQ Learning，LLC makes this image available under＠ロ．

618 Obstructive lung diseases：Image B．Centriacinar emphysema， gross specimen．Courtesy of the US Department of Health and Human Services and Dr．Edwin P．Ewing，Jr．

618 Obstructive lung diseases：Image C．CT of centriacinar emphysema．This image is a derivative work，adapted from the following source，available under Oikonomou A， Prassopoulo P．Mimics in chest disease：interstitial opacities． Insights Imaging 2013；4：9－27．doi 10．1007／s13244－012－0207－7．

618 Obstructive lung diseases：Image D．Barrel－shaped chest in emphysema．This image is a derivative work，adapted from the following source，available under＠ロo．Courtesy of Dr．James Heilman．The image may have been modified by cropping， labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠ロ®．

618 Obstructive lung diseases：Image F．Mucus plugs in asthma．This image is a derivative work，adapted from the following source， available under＠®．Courtesy of Dr．Yale Rosen．The image may have been modified by cropping，labeling，and／or captions． MedIQ Learning，LLC makes this image available under＠ロ．

618 Obstructive lung disease：Image G．Bronchiectasis in cystic fibrosis．This image is a derivative work，adapted from the following source，available under＠＠．Courtesy of Dr．Yale Rosen．The image may have been modified by cropping， labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠ロロ．

619 Restrictive lung diseases．This image is a derivative work，adapted from the following source，available under＠®®．Courtesy of IPFeditor．The image may have been modified by cropping， labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠ロ．

620 Pneumoconioses：Image A．Pleural plaques in asbestosis．This image is a derivative work，adapted from the following source， available under＠®．Courtesy of Dr．Yale Rosen．The image may have been modified by cropping，labeling，and／or captions． MedIQ Learning，LLC makes this image available under＠®．

620 Pneumoconioses：Image B．CT scan of asbestosis．This image is a derivative work，adapted from the following source，available
 consequences of asbestos－related diffuse pleural thickening：a review．J Occup Med Toxicol 2008；3：20．doi 10．1186／1745－6673－ 3－20．

620 Pneumoconioses：Image C．Ferruginous bodies in asbestosis．This image is a derivative work，adapted from the following source， available under＠®．Courtesy of Nephron．The image may have been modified by cropping，labeling，and／or captions． MedIQ Learning，LLC makes this image available under＠®．

621 Acute respiratory distress syndrome．X－ray of the lungs．This image is a derivative work，adapted from the following source， available under＠．Courtesy of Samir．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠o．

623 Pleural effusions：Images $A$ and $B$ ．This image is a derivative work，adapted from the following source，available under 응：Toshikazu A，Takeoka H，Nishioka K，et al．Successful management of refractory pleural effusion due to systemic immunoglobulin light chain amyloidosis by vincristine adriamycin dexamethasone chemotherapy：a case report．Med Case Rep 2010；4：322．doi 10．1186／1752－1947－4－322．

624 Pneumonia：Image B．Lobar pneumonia，gross specimen．This image is a derivative work，adapted from the following source， available under＠๐．Courtesy of Dr．Yale Rosen．The image may have been modified by cropping，labeling，and／or captions． MedIQ Learning，LLC makes this image available under＠ㅇ．．

624 Pneumonia：Image C．Acute inflammatory infiltrates in bronchopneumonia．This image is a derivative work，adapted from the following source，available under＠＠®．Courtesy of Dr． Yale Rosen．The image may have been modified by cropping， labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠o．

624 Pneumonia：Image D．Bronchopneumonia，gross specimen．This image is a derivative work，adapted from the following source， available under＠๑．Courtesy of Dr．Yale Rosen．The image may have been modified by cropping，labeling，and／or captions． MedIQ Learning，LLC makes this image available under＠®．

624 Lung abscess：Image A．Gross specimen．This image is a derivative work，adapted from the following source，available under＠๐®．Courtesy of Dr．Yale Rosen．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠o．

624 Lung abscess：Image B．X－ray．This image is a derivative work， adapted from the following source，available under ■．Dr． Yale Rosen．

625 Pancoast tumor．This image is a derivative work，adapted from the following source，available under ：Manenti G，Raguso M，D＇Onofrio S，et al．Pancoast tumor：the role of magnetic resonance imaging．Case Rep Radiol 2013；2013：479120．doi 10．1155／2013／479120．

625 Superior vena cava syndrome：Images A（blanching of skin with pressure）and $\mathbf{B}$（CT of chest）．This image is a derivative work， adapted from the following source，available under ．Shaikh I，Berg K，Kman N．Thrombogenic catheter－associated superior vena cava syndrome．Case Rep Emerg Med 2013；2013： 793054. doi $10.1155 / 2013 / 793054$ ．

626 Lung cancer: Image B. Adenocarcinoma histology. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services and Armed Forces Institute of Pathology.

626 Lung cancer: Image C. Squamous cell carcinoma. This image is a derivative work, adapted from the following source, available under @.®. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®.

626 Lung cancer: Image E. Large cell lung cancer. This image is a derivative work, adapted from the following source, available under Lo: Jala VR, Radde BN, Haribabu B, et al. Enhanced expression of G-protein coupled estrogen receptor (GPER/ GPR30) in lung cancer. BMC Cancer 2012;12:624. doi 10.1186/1471-2407-12-624.

## Index

## A

Abacavir, 184
for HIV, 186
Abciximab, 214, 407
thrombogenesis and, 385
Abdominal aorta, 342
atherosclerosis in, 286, 645
bifurcation of, 609
Abdominal aortic aneurysm, 286
Abdominal colic
lead poisoning as cause, 389
Abdominal distension
duodenal atresia as cause, 338
Abdominal pain
Budd-Chiari syndrome as cause, 368,630
cilostazol/dipyridamole as cause, 407
Clostridium difficile as cause, 630
diabetic ketoacidosis as cause, 331
ectopic pregnancy as cause, 589
Henoch-Schönlein purpura as cause, 297, 633
hypercalcemia as cause, 542
hyperparathyroidism as cause, 326
intussusception as cause, 362
irritable bowel syndrome as cause, 360
McBurney sign as, 633
Meckel diverticulum as cause, 567
pancreas divisum as cause, 339
pancreatic cancer as cause, 373
panic disorder as cause, 517
polyarteritis nodosa as cause, 296
porphyria as cause, 395
Rovsing sign as, 633
Abdominal wall, developmental defects in, 338
Abducens nerve (6th cranial nerve), 479
location in brain stem, 477
ocular motility and, 488
palsy of, 489
pathway for, 478
Abductor digiti minimi muscle, 421
Abductor pollicis brevis muscle, 421
Abetalipoproteinemia, 386
Abnormal passive abduction, 416
Abnormal passive adduction, 416
ABO blood classification, 382
ABO hemolytic disease of the newborn, 382

Abscess, 442
Absence seizures, 494
drug therapy for, 500
treatments for, 638
Absolute risk reduction (ARR), 34, 646
Absorption disorders, anemia caused by, 388
Abuse
confidentiality exceptions and, 41
dependent personality disorder and, 519
Acalculia, 464
Acamprosate
for alcoholism, 523, 638
diarrhea caused by, 252
Acanthocytes, 386
Acanthocytosis, 81
Acantholysis, 439
pemphigus vulgaris and, 443
Acanthosis, 439
psoriasis as cause, 440
Acanthosis nigricans, 229, 444
acanthosis and, 439
stomach cancer as cause, 356
Acarbose, 335
diarrhea caused by, 252
Accessory nerve (11th cranial nerve), 479
lesion in, 480
location in brain stem, 477
pathway for, 478
Accessory pancreatic duct, 339, 347
Accuracy vs. precision, $\mathbf{3 5}$
Acebutolol, 249
angina and, 299
ACE inhibitors, 559
for acute coronary syndromes, 290
Cl esterase inhibitor deficiency and, 199
for dilated cardiomyopathy, 291
dry cough caused by, 254
for heart failure, 292
for hypertension, 298
naming convention for, 255
preload/afterload, effect on, 267
as teratogens, 564
Acetaldehyde dehydrogenase, in ethanol metabolism, 83
Acetaldehyde, in ethanol metabolism, 83
Acetaminophen, 446
vs. aspirin, in pediatric patients, 446
free radical injury and, 221
necrosis caused by, 252
for osteoarthritis, 430
for tension headaches, 494
toxicity effects, 446
toxicity treatment for, 251
Acetazolamide, 254, 557
for glaucoma, 498
metabolic acidosis caused by, 543
in nephron physiology, 537
for pseudotumor cerebri, 471
site of action, 556
Acetoacetate, metabolism of, 102
Acetone breath, in diabetic ketoacidosis, 331
Acetylation, 57
Acetylcholine (ACh), 455
in Alzheimer disease, 491, 511
anticholinesterase effect on, 244
in Huntington disease, 71, 462, 511
in nervous system, 241
opioid effect on, 499
pacemaker action potential and, 275
in Parkinson disease, 511
Acetylcholine (ACh) receptor agonists, 503
Acetylcholine (ACh) receptors, 241
in cholinergic drugs, 243
Acetylcholine (AChR) receptor, 229
Acetylcholinesterase (AChE)
cholinesterase inhibitor poisoning, 244
malathion and, 183
neural tube defects and, 451
Acetylcholinesterase (AChE) inhibitors
for Alzheimer disease, 505
in cholinergic drugs, 243
for myasthenia gravis, 436
naming convention for, 255
toxicity treatment for, 251
Acetyl-CoA carboxylase, 84
vitamin $B_{7}$ and, 79
Achalasia, 354
esophageal cancer and, 355
Achilles reflex, 476
disc herniation and, 423
Achilles tendon xanthomas, 285, 630
Achlorhydria
stomach cancer and, 356
VIPomas as cause, 350

## Achondroplasia, 426

autosomal dominance of, 71
chromosome associated with, 75
endochondral ossification in, 425
AChR (acetylcholine receptor), 229
Acid-base physiology, 543
Acidemia, 543
diuretic effect on, 558
Acidic amino acids, 92
Acidosis, 543
contractility in, 267
hyperkalemia caused by, 542
Acid phosphatase, in neutrophils, 378
Acid reflux
esophageal strictures and, 354
esophagitis and, 354
$\mathrm{H}_{2}$ blockers for, 374
proton pump inhibitors for, 374
sclerodermal esophageal dysmotility as cause, 354
Acid suppression therapy, 374
Acinetobacter spp., 168
Acinetobacter baumannii, 181
Acne, 440
danazol as cause, 602
glucocorticoids as cause, 212
PCOS as cause, 591
prednisone as cause, 412
as skin papules, 438
tetracyclines for, 175
Acoustic neuromas, 453
Acoustic schwannomas, 71, 630
Acquired hydroceles, 598
Acrodermatitis enteropathica, 82
Acromegaly, 327
GH as cause, 311
octreotide for, 375
somatostatin analogs for, 309
somatostatin for, 336
Acromion, 417
ACTH. See Adrenocorticotropic hormone (ACTH)
Actin filaments in epithelial cells, 438
Acting out, as ego defense, 508
Actinic keratosis, 444, 445
key associations, 641
Actin, in cytoskeleton, 60
Actinomyces spp.
as anaerobic organism, 111
in Gram-positive algorithm, 118
morphology of, 109
vs. Nocardia spp., 123
penicillin G/V for, 170

## Actinomyces israelii

branching rods in, 169
lab findings in, 635
pigment produced by, 113
Action/willpower stage of overcoming addiction, 521
Activated carriers, 86
Active errors, 46
Active immunity, 203
Acute chest syndrome, 392
Acute cholestatic hepatitis
as drug reaction, 252
macrolides as cause, 176
Acute closure, 484
Acute coronary syndrome ADP receptor inhibitors for, 407
heparin for, 405
nitrates for, 299
treatments for, 290
Acute cystitis, 544
Acute disseminated encephalomyelitis, 493
Acute dystonia, 245
Acute gastritis, 356
Acute glomerulonephritis, 553
Acute hemolytic transfusion reactions, 206
as type II hypersensitivity reactions, 204
Acute hemorrhagic cystitis, 148
Acute inflammation, 219
Acute inflammatory demyelinating polyradiculopathy, 493
Acute intermittent porphyria, 395
Acute interstitial nephritis, 554
Acute lymphoblastic leukemia (ALL), 402
key associations, 644
methotrexate for, 409
oncogenes and, 230
Acute mesenteric ischemia, 362
presentation of, 633
Acute myeloid leukemia (AML), 402
chromosomal translocations and, 403
cytarabine for, 409
key associations, 644
myelodysplastic syndromes and, 401
Acute pancreatitis, 373
DIC and, 643
hyperparathyroidism as cause, 326
hypertriglyceridemia as cause, 105
key associations, 644
necrosis and, 217
Acute pericarditis, 294
Acute-phase proteins, 200
Acute-phase reactants, 198
Acute poststreptococcal glomerulonephritis, 546
Acute promyelocytic leukemia all-trans retinoic acid for, 77 treatments for, 638
Acute pulmonary edema, 499
Acute pyelonephritis, 552
lab findings in, 638
renal papillary necrosis and, 554
WBC casts in, 544

Acute renal failure, 553
Acute respiratory distress syndrome (ARDS), 621
acute pancreatitis as cause, 373
eclampsia as cause, 590
as inhalational injury, 222
as restrictive lung disease, 619
Acute stress disorder, 517
Acute transplant rejection, 211
Acute tubular necrosis, 554
granular casts in, 544
intrinsic renal failure caused

$$
\text { by, } 553
$$

Acyclovir, 184
Adalimumab, 214, 448
for Crohn disease, 359
Adaptive immunity, 192
Addison disease, 318
metabolic acidosis caused by, 543
presentation of, 633
Additive drug interactions, 237
Adductor longus muscle, 347
Adenine
methylation of, 48
Shiga/Shiga-like toxins and, 116
Adenocarcinomas
carcinogens causing, 231
of esophagus, 355
of gallbladder, 372
gastrointestinal, 229
of lungs, 626
nomenclature for, 228
nonbacterial thrombotic
endocarditis and, 229
of pancreas, $\mathbf{3 7 3}$
pectinate line and, 345
of prostate, 599
of stomach, 356,645
Trousseau's syndrome and, 229
Adenohypophysis, 307
embryologic derivatives of, 563
hypothalamus and, 456
Adenomas
of adrenal cortex, 645
of bone, 428
colorectal, 364
hyperparathyroidism as cause, 645
nomenclature for, 228
of pituitary, 326
in primary hyperparathyroidism, 325
of thyroid, 324
Adenomatous colonic polyps, 363
Adenomyosis of endometrium, 594
Adenopathy
Kawasaki disease as cause, 296
Whipple disease as cause, 634

## Adenosine

as antiarrhythmic drug, 304
cutaneous flushing caused by, 251
pacemaker action potential and, 275
Adenosine deaminase deficiency, 50, 209
Adenosine diphosphate (ADP), 385
Adenosine triphosphate (ATP)
ATP synthase production of, 89
cell injury and, 218
in electron transport chain, 89
expenditure vs. time, 103
in glycogen regulation, 97
in nephron physiology, 537
production of, $\mathbf{8 6}$
in TCA cycle, 88
in urea cycle, 93
Adenosine triphosphate (ATP)
synthase inhibitors, 89
Adenoviruses
characteristics of, 148
conjunctivitis caused by, 484
as DNA viruses, 147
as naked viruses, 147
pneumonia caused by, 624
watery diarrhea caused by, 162
Adherens junctions, 438
Adhesion, 362
Adipose lipolysis, 300
Adipose stores, in fasting/starvation

$$
\text { states, } 103
$$

Adipose tissue, estrogen production by, 577
Adjustment disorder, 517
Adoption studies, 32
ADP receptor inhibitors, 407
Adrenal adenomas
Cushing syndrome caused by, 317
hyperaldosteronism caused by, 318
Adrenal carcinomas
Cushing syndrome caused by, 317
P-glycoprotein in, 232
Adrenal cortex, 306
embryologic derivatives of, 563
progesterone production in, 577
Adrenal hemorrhage, 630
Waterhouse-Friderichsen syndrome and, 318
Adrenal hyperplasia
Cushing syndrome caused by, 317
hyperaldosteronism and, 318
Adrenal insufficiency, 318
anovulation caused by, 591
fludrocortisone for, 336
glucocorticoids for, 336
vitamin $B_{5}$ deficiency as cause, 78
Adrenal medulla, 306
in nervous system, 241
neuroblastomas of, 319
pheochromocytomas in, 320
tumors in, 645
Adrenal steroids, $\mathbf{3 1 2}$
Adrenocortical adenomas, 642
Adrenocortical atrophy, 336
Adrenocortical insufficiency
as drug reaction, 252
presentation of, 633
Adrenocorticotropic hormone (ACTH)
adrenal cortex regulation of, 306
adrenal insufficiency and, 318
in Cushing syndrome, 229, 317
secretion of, 307
signaling pathways of, 316
Adrenoleukodystrophy, 493
Adrenoreceptors, in noradrenergic drugs, 243

Adult T cell leukemia, 231
Adult T-cell lymphoma, 400
Advance directives, 41
Aedes mosquitoes, yellow fever transmitted, by, 152
Aerobic metabolism, 103
Aerobic organisms, 111
Afferent arteriole, 532
ANP/BNP effect on, 540
constriction of, 535
dopamine, effect on, 541
in filtration, 535
Afferent nerves, 279
Aflatoxin
as carcinogens, 231
hepatocellular carcinoma and, 368

## Aflatoxins, 137

African sleeping sickness, 140
Afterload, in cardiac output, 267
Agammaglobulinemia
chromosome associated with, 75
Agarose gel electrophoresis, 64
Agars for bacterial culture, 111
Agenesis, 563
Age-related macular degeneration, 485
Aggregatibacter actinomycetemcomitans, 293
Agnosia, in dementia, 513
Agonist potency and efficacy, 240
Agoraphobia, 517
Agranulocytosis
clozapine as cause, 525
as drug reaction, 252
epilepsy drugs causing, 500
sulfa drug allergies as cause, 254
thionamides as cause, 335
Agraphia, cause of, 464
AIDS (acquired immunodeficiency syndrome)
bacillary angiomatosis and, 441
diagnosis of, 158
marijuana as appetite stimulant in, 523
opportunistic infections in, 644
primary central nervous system lymphoma (PCL) and, 400
progressive multifocal leukoencephalopathy and, 493
as STI, 167
toxoplasmosis and, 140
AIDS retinitis, 149
Air emboli, 617
Akathisia, 458
Akinesia, in Parkinson disease, 461, 633
ALA dehydratase, in lead poisoning, 395
Alanine
ammonia transport by, 93
in pyruvate dehydrogenase complex deficiency, 88
Alanine aminotransferase (ALT), 88, 366
Alar plate, 450

Albendazole
for Echinococcus granulosus, 144
Albinism, 439
catecholamine synthesis/tyrosine catabolism and, 95
Chédiak-Higashi syndrome and, 209
locus heterogeneity and, 69 Albright hereditary osteodystrophy, 325
Albumin
as acute-phase reactant, 198
calcium and, 313
as liver marker, 366
plasma volume and, 533
Albuminuria, 533
Albuterol, 246
for asthma, 628
Alcohol dehydrogenase, in ethanol metabolism, 83
Alcoholic cirrhosis, 367, 644
alcoholism as cause, 523
cholelithiasis and, 372
zinc deficiency and, 82
Alcoholic hallucinosis, 524
Alcoholic hepatitis, 367
Alcoholic liver disease, $\mathbf{3 6 7}$
Alcoholism, 523
acute pancreatitis caused by, 373
anemia caused by, 390
in anemia taxonomy, 388
brain lesions and, 464
cardiomyopathy caused by, 291
cataracts and, 483
chronic pancreatitis caused by, 373
cirrhosis caused by, 365
common organisms affecting, 162
cytochrome P-450 and, 254
delirium tremens and, 524
esophageal cancer and, 355
ethanol metabolism and, 83
folate deficiency caused by, 390
gastritis in, 356
hepatitis caused by, 346
hypertension and, 284
ketone bodies in, 102
Klebsiella in, 128
Korsakoff syndrome and, 512
liver pathology serum markers in, 366
lung abscesses and, 624
magnesium levels in, 314
Mallory-Weiss syndrome in, 354
osteonecrosis caused by, 427
osteoporosis and, 426
pancreatitis caused by, 252
porphyria caused by, 395
sideroblastic anemia caused by, 389
subdural hematomas and, 469
treatments for, 638
vitamin $B_{1}$ deficiency in, 77
vitamin $B_{9}$ deficiency in, 79
wet beriberi as cause, 631
Alcohol-related disorders readmissions caused by, 45
Alcohols, as infection control technique, 187

Alcohol use
essential tremor, effect on, 461
gout and, 431
head and neck cancer and, 616
intoxication and withdrawal, 522
in utero, 284
loss of orientation caused by, 512
pancreatitis and, 644
sexual dysfunction caused by, 520
sleep, effect on, 457
suicide and, 516
teratogenic effects of, 564
Alcohol withdrawal
benzodiazepines for, 512
drug therapy for, 524
tactile hallucinations in, 513
Aldesleukin, 213
Aldolase B, 91
Aldose reductase, 92
Aldosterone, 540
adrenal cortex secretion of, 306
Gitelman syndrome as cause, 538
kidney effects, 541
in nephron physiology, 537
in primary adrenal insufficiency, 318
in renal tubular acidosis, 544
in SIADH, 328
signaling pathways for, 316
in syndrome of apparent mineralocorticoid excess, 538
Aldosterone antagonists, 298
Aldosterone synthase, 312
Alemtuzumab, 214
Alendronate, 447
Aliskiren, 559
Alkalemia, 543
diuretic effect on, 558
Alkaline phosphatase (ALP), 366, 427
in bone disorders, 428
in hyperparathyroidism, 326
in Paget disease of bone, 427
in thyroid storm, 323
as tumor marker, 232
Alkalosis, 543
bulimia nervosa as cause, 520
hypokalemia caused by, 542
Alkaptonuria, 96
catecholamine synthesis/tyrosine catabolism and, 95
ALK gene, 230
lung cancer and, 626
Alkylating agents, 410
as carcinogens, 231
in cell cycle, 408
targets of, 408
as teratogens, 564
Allantois, 567
Allelic heterogeneity, 69
Allergic bronchopulmonary aspergillosis, 137
Allergic contact dermatitis, 440
Allergic reaction to blood transfusion, 206
Allergic rhinitis, 440
Allergies, as hypersensitivity reaction, 204

Allografts, 210
Allopurinol
for gout, 431, 448, 639
for kidney stones, 549
for Lesch-Nyhan syndrome, 50
rash caused by, 253
All-trans retinoic acid
for acute promyelocytic
leukemia, 77, 638
Alopecia
doxorubicin as cause, 410
etoposide/teniposide as cause, 411
minoxidil for, 603
syphilis as cause, 131
tinea capitis and, 136
vitamin A toxicity as cause, 77
vitamin $B_{5}$ deficiency as cause, 78
vitamin $B_{7}$ deficiency as cause, 79
$\alpha-1,4-$ glucosidase
in glycogen metabolism, 98
$\alpha_{1}$-antagonists
for benign prostatic
hyperplasia, 638
for BPH, 599
naming convention for, 255
$\alpha_{1}$-antitrypsin
elastin and, 64
$\alpha_{1}$-antitrypsin deficiency, 369
emphysema and, 618
hepatocellular carcinoma and, 368
liver cancer and, 645
$\alpha_{2}$-agonists, 247
$\alpha_{2}$-antagonists, 528
$\alpha$-adrenergic agonists, 627
$\alpha$-agonists, 498
$\alpha$-amanitin
RNA polymerase inhibition by, 54
$\alpha$-amylase, 352
$\alpha$-antagonists
for pheochromocytomas, 320, 640
$\alpha$-blockers, 248
for cocaine overdose, 522
$\alpha$ cells, 307
glucagonomas in, 332
glucagon production by, 309
$\alpha$-dystroglycan
muscular dystrophy and, 73
$\alpha$-fetoprotein
in anencephaly, 636
anencephaly and, 451
in ataxia-telangiectasia, 209
in Down syndrome, 74, 635
in Edwards syndrome, 74
in hepatocellular carcinoma, 368
neural tube defects and, 451
in spina bifida, 636
as tumor marker, 232
in yolk sac tumors, 598
$\alpha$-galactosidase A
in Fabry disease, 100
$\alpha$-glucosidase inhibitors, 335
$\alpha$-hemolytic bacteria, 119
$\alpha$-ketoglutarate
hyperammonemia and, 93
$\alpha$-ketoglutarate dehydrogenase, 88 in metabolic pathways, 85
vitamin $B_{1}$ and, 77
$\alpha$-methyldopa, 247
anemia and, 393
$\alpha$-methyldopa, for gestational hypertension, 590
$\alpha$-thalassemia, 388
chromosome associated with, 75
$\alpha$ toxin, 117, 122
Alport syndrome, 547
cataracts and, 483
collagen deficiency in, 61
presentation of, 632
X-linked dominant inheritance of, 70
Alprazolam, 501
ALT (alanine transaminase)
in toxic shock syndrome, 119
Alteplase, 383, 407
Alternative hypothesis, 37
Altitude, respiratory response to, 615
Altitude sickness, 615
acetazolamide for, 557
Altruism, as ego defense, 509
Aluminum hydroxide, 375
Alveolar gas equation, 614, 647
Alveolar period, 606
Alveolar $\mathrm{PO}_{2}, 614$
Alveolar sacs, 608
Alveolar ventilation, 610
Alveoli, 606
pneumocytes and, 607
Alzheimer disease, 491
amyloidosis in, 225
dementia caused by, 513
Down syndrome and, 74
drug therapy for, 244, 505
ex vacuo ventriculomegaly caused by, 471
findings associated with, 643
lab findings in, 637
neurotransmitter changes in, 511
neurotransmitters for, 455
senile plaques in, 636
Amanita phalloides
necrosis caused by, 252
RNA polymerase inhibition by, 54
Amantadine, 184, 504
Ambiguous genitalia
$46, \mathrm{XY}$ DSD as cause, 586
ovotesticular disorder of sex development as cause, 585
placental aromatase deficiency as cause, 586
Amebiasis, 139
Amenorrhea
anorexia nervosa as cause, 520
antiandrogens as cause, 603
cirrhosis as cause, 365
Cushing syndrome as cause, 317
cystic fibrosis as cause, 72
ectopic pregnancy and, 589
key associations, 645
menopause as cause, 582
Müllerian agenesis as cause, 571
PCOS as cause, 591
pituitary prolactinomas as cause, 309
Sheehan syndrome as cause, 632
Turner syndrome as cause, 585

## Amides

as local anesthetics, 503
Amikacin, 170, 174
Amiloride, 558
for diabetes insipidus, 328
for Gitelman syndrome, 538
in nephron physiology, 537
Amine precursor uptake decarboxylase (APUD), 319
Amines
MAO inhibitors and, 528
Amine whiff test for bacterial vaginosis, 132
Amino acids, 92
blood-brain barrier and, 455
derivatives of, 94
in urea cycle, 93
Aminoaciduria, 536
Aminoacyl-tRNA, 57
Aminoacyl-tRNA synthase, 56
Aminocaproic acid
for thrombolytic toxicity, 407
Aminoglycosides, 170, 174
acute tubular necrosis caused by, 554
magnesium levels and, 314
in pregnancy, avoiding, 187
as protein synthesis inhibitors, 174
for Pseudomonas aeruginosa, 127, 640
as teratogens, 564
toxicity caused by, 254
Aminopenicillins
characteristics of, 171
for enterococci, 639
Amiodarone, 303
cytochrome P-450 and, 254
hypothyroidism caused by, 252, 322 photosensitivity caused by, 253 pulmonary fibrosis caused by, 254 restrictive lung disease and, 619
Amitriptyline, 527
for migraine headaches, 494, 640
for tension headaches, 494
Amlodipine, 298
Ammonia intoxication, 93
Ammonia transport, 93
Ammonium chloride for amphetamine toxicity, 251 for drug overdoses, 238
Amnesia, 512
brain lesions causing, 464
Amnionitis, 123
Amniotic fluid abnormalities, 589
Amniotic fluid embolism, 617 acute respiratory distress syndrome as cause, 621
Amoxapine, 527
Amoxicillin, 170
characteristics of, 171 for Haemophilus influenzae, 126 for Helicobacter pylori, 130 as prophylaxis, 181
Amphetamines, 246
intoxication and withdrawal, 522
for narcolepsy, 521
as noradrenergic drug, 243
norepinephrine and, 243
pulmonary arterial hypertension caused by, 622
as weak bases, 238
Amphotericin B, 181, 182
for Candida albicans, 137, 639
for leishmaniasis, 142
for mucormycosis, 137
for Naegleria fowleri, 140
for systemic mycoses, 135
Ampicillin, 170
characteristics of, 171
Clostridium difficile and, 122
for endometritis, 594
for Listeria monocytogenes, 123
for meningitis, 163
pseudomembranous colitis caused by, 252
Ampulla of Vater, 347
Amygdala, 458
lesions in, 464
Amylase, in pancreatitis, 373
Amylin analogs, 335
Amyloid angiopathy
intraparenchymal hemorrhage caused by, 469
Amyloidosis, 225, 548
carpal tunnel syndrome and, 418
chronic inflammation as cause, 219
lab findings in, 637
multiple myeloma and, 401 restrictive/infiltrative cardiomyopathy caused by, 291
serum amyloid A in, 198
Amyotrophic lateral sclerosis (ALS), 644
riluzole for, 505
spinal cord lesions in, 474
Anabolic steroids
hepatic adenomas and, 368
Anaerobic metabolism, 103
Anaerobic organisms, 111
aspiration and, 162
clindamycin for, 175
metronidazole for, 178
pneumonia caused by, 162
Anal cancer
HIV and, 160
oncogenic microbes and, 231
Anal fissures, 345
pectinate line and, 345
Anal pruritus
Enterobius as cause, 145
pinworms as cause, 143
Anal wink reflex, 476
Anaphase, 58
Anaphylaxis, 204
blood transfusion as cause, 206
complement and, 199
epinephrine for, 246
shock caused by, 292
Anaplasia, 226
Anaplasma spp., 130
anaplasmosis caused by, 133
animal transmission of, 132

Anaplasmosis, 133
animal transmission of, 132
Anaplastic thyroid carcinomas, 324
Anastrozole, 601
reproductive hormones and, 600
Anatomy
cardiovascular, 265
of coronary artery, 265
endocrinal, 306-307
gastrointestinal, 339-348
hematologic/oncologic, 378-381
musculoskeletal, 416-424
neurological, 453-475
renal, 532
reproductive, 573-576
respiratory, 608-609
USMLE Step 1 preparation for, 258
Ancylostoma spp.
diseases associated with, 145
infection routes, 142
Ancylostoma duodenale, 143
Androblastomas, 598
Androgen-binding protein
Sertoli cell secretion of, 576
Androgen insensitivity
syndrome, 586
Androgen-receptor complex
pharmacologic control of, 600
Androgen receptor defect, 586
Androgens, 582
adrenal cortex secretion of, 306
adrenal steroids and, 312
in PCOS, 591
Androstenedione, 312, 582
pharmacologic control of, 600
Anemia, $\mathbf{3 8 8}$
amphotericin B as cause, 182
Ancylostoma and, 145
anorexia nervosa as cause, 520
azathioprine as cause, 212
babesiosis as cause, 141
blood oxygen in, 613
blood transfusion therapy for, 399
chloramphenicol as cause, 175
cirrhosis as cause, 365
cold agglutinin disease as cause, 632
colorectal cancer as cause, 364
cytarabine as cause, 409
Diphyllobothrium latum as cause, 144
as drug reaction, 252
epilepsy drugs causing, 500
ESR in, 224
extrinsic hemolytic, 393
fibroid tumors as cause, 594
hookworms as cause, 143
intrinsic hemolytic, 392
kwashiorkor as cause, 82
lab values, 394
macrocytic, $\mathbf{3 9 0}$
macro-ovalocytes in, 386
malaria as cause, 141
microcytic, hypochromic, 388
multiple myeloma as cause, 401
nonhemolytic, normocytic, 391
nonhomologous end joining and, 53
normocytic, normochromic, 391
Plummer-Vinson syndrome as cause, 354, 631
in pregnancy, 580
pure red cell aplasia as cause, 229
recombinant cytokines for, 213
renal failure as cause, 553
ringed sideroblasts in, 387
scurvy as cause, 80
sirolimus as cause, 212
spherocytes in, 387
sulfa drug allergies as cause, 254
thionamides as cause, 335
trimethoprim as cause, 177
tropical sprue as cause, 358
vitamin $B_{9}$ deficiency as cause, 79
vitamin $\mathrm{B}_{12}$ deficiency as cause, 80
vitamin E deficiency as cause, 81
Weil disease as cause, 130
Wilson disease as cause, 371
Anemia of chronic disease, 391
hepcidin in, 198
rheumatoid arthritis as cause, 430
Anemic infarcts, 219
Anencephaly, 451
lab findings in, 636
polyhydramnios and, 589

## Anergy, 202

Anesthetics
general principles, $\mathbf{5 0 2}$
inhaled, 502
intravenous, 502
local, 503
Aneuploidy, 585
Aneurysms, 468
atherosclerosis as cause, 286
Ehlers-Danlos syndrome and, 63
Marfan syndrome as cause, 71
MI as cause, 288
superior vena cava syndrome and, 625
Angelman syndrome, 69
chromosome associated with, 75
Angina, 287
aortic stenosis as cause, 273
atherosclerosis as cause, 286
calcium channel blockers for, 298
cilostazol/dipyridamole for, 407
cocaine as cause, 522
drug therapy for, 299
glycoprotein IIb/IIIa inhibitors for, 407
hydralazine as cause, 298
nitrates for, 299
presentation of, 630
ranolazine for, 299
treatments for, 641
Angina pectoris
$\beta$-blockers for, 249
Angiodysplasia, 362
Angioedema
ACE inhibitors as cause, 559
Cl esterase inhibitor deficiency as cause, 199
scombroid poisoning as cause, 250

Angiofibromas, 495
Angiogenesis
bevacizumab and, 412
in cancer, 227
wound healing and, 223
Angiokeratomas, 100
Angiomatosis
von Hippel-Lindau disease as cause, 495, 633
Angiomyolipomas, 495
Angiosarcomas, 368, 441
carcinogens causing, 231
nomenclature for, 228
Angiotensin II, 312, 540
ACE inhibitor effects on, 559
kidney effects, 541
in nephron physiology, 537
signaling pathways for, 316
Angiotensin II receptor blockers, 559
for heart failure, 292
for hypertension, 298
naming convention for, 255
preload/afterload, effect on, 267
Angiotensinogen, 540
Angry patients, 42
Anhedonia, 515
Anhidrosis
Horner syndrome as cause, 487, 633
Pancoast tumor as cause, 625
Anidulafungin, 181, 183
Aniline dyes
transitional cell carcinoma and, 551
Aniridia
in WAGR complex, 551
Anisocytosis, 378
Anitschkow cells
in rheumatic fever, 294
Ankylosing spondylitis, 433
etanercept for, 448
HLA-B27 and, 193, 643
infliximab/adalimumab for, 448
lab findings in, 635
therapeutic antibodies for, 214
Ankyrin
hereditary spherocytosis and, 71
Annular pancreas, 339
Anopheles mosquito, 141
Anopia, 489
Anorectal varices, 344
cirrhosis as cause, 365
Anorexia nervosa, 520
anovulation caused by, 591
treatments for, 638
Anorexia (symptom)
amphetamines as cause, 522
hypothalamus and, 456
Anosmia
zinc deficiency as cause, 82
ANOVA tests, 39
Anovulation
causes of, 591
endometrial hyperplasia and, 594
ANP. See Atrial natriuretic peptide (ANP)

## Antacids, 375

metabolic alkalosis caused by, 543
Anterior cerebral artery, 466
in cavernous sinus, 481
cingulate herniation and, 498
in circle of Willis, 466
stroke, effect on, 467
Anterior chamber of eye, 482
Anterior communicating artery in circle of Willis, 466
saccular aneurysm effect on, 468
Anterior cruciate ligament (ACL) injury
anterior drawer sign in, 416
presentation of, 630
in "unhappy triad," 417
Anterior drawer sign, 416, 630
Anterior horn, 471
Anterior hypothalamus, 456
Anterior inferior cerebellar artery, 467 in circle of Willis, 466
Anterior perforated substance, 477
Anterior pituitary gland, 307
Anterior spinal artery
in circle of Willis, 466
complete occlusion of, 474
stroke, effect on, 467
Anterior spinothalamic tract, 472
Anterior superior pancreaticoduodenal artery, 343
Anterior white commissure, 472
Anterograde amnesia, 512
brain lesions causing, 464
Anthracosis, 620
as restrictive lung disease, 619
Anthracyclines, 251
Anthrax, 121
bacteria causing, 114
Anthrax toxin
Bacillus anthracis and, 121
Antiandrogens, 603
Antianginal therapy, 299
Antiapoptotic molecule
as oncogene product, 230
Antiarrhythmic drugs, 302-304
long QT interval caused by, 277
torsades de pointes caused by, 251
Anti- $\beta_{2}$ glycoprotein antibodies
in antiphospholipid syndrome, 434
Antibiotics
for acne, 440
Candida albicans and, 137
Clostridium difficile as cause, 630
Jarisch-Herxheimer reaction, 131
long QT interval caused by, 277
torsades de pointes caused by, 251
Antibodies
autoantibodies, 207
ELISA test for, 67
to hepatitis viruses, 157
structure and function, 196
therapeutic, $\mathbf{2 1 4}$
Anticardiolipin
in antiphospholipid syndrome, 434
Anti-centromere antibodies, 634
scleroderma and, 437

Anticholinergic drugs
toxicity treatment for, 251
Anticholinesterase drugs, 244
Anticipation, in genetics, 68
Anticoagulant drugs, 383
for acute coronary syndromes, 290
for antiphospholipid syndrome, 434
for atrial fibrillation, 278
osteoporosis and, 426
warfarin as, 406
Anticoagulation, in coagulation cascade, 384
Anticodon loop, 56
Anticonvulsant drugs
for fibromyalgia, 435
osteoporosis and, 426
Antidepressant drugs, 526
for bulimia nervosa, 520
for fibromyalgia, 435
long QT interval caused by, 277
torsades de pointes caused by, 251
Anti-desmoglein antibodies, 634
Anti-digoxin Fab fragments, 251
for cardiac glycoside toxicity, 301
Antidiuretic hormone (ADH), 311, 540
in diabetes insipidus, 328
hypothalamus production of, 456
kidney effects, 541
in nephron physiology, 537
pituitary gland and, 307
SIADH and, 328
signaling pathways of, 316
Antidiuretic hormone (ADH) antagonists, 336, 556
Anti-dsDNA antibodies
in lupus, 434
Antiemetic drugs
long QT interval caused by, 277
marijuana as, 523
metoclopramide as, 376
ondansetron as, 376
torsades de pointes caused by, 251
Anti-endomysial antibodies, 635
Antiepileptic drugs
cytochrome P-450 and, 254
rash caused by, 253
as teratogens, 564
Antifungal drugs, 181
for tinea versicolor, 136
Antigen-presenting cells (APCs), 195
B cells as, 380
dendritic cells as, 380
MHC I and II and, 192
in spleen, 191
Antigens
ELISA test for, 67
type and memory, 197
variations in, 202
Anti-gliadin antibodies, 635
Anti-glomerular basement membrane antibodies, 634
Anti-HBc, 157
Anti-HBe, 157
Anti-HBs, 157
Antihelminthic drugs, 183
naming convention for, 255

Antihistamines
for scombroid poisoning, 250
Antihistone antibodies, 634
in lupus, 434
Antihypertensive drugs
for eclampsia, 590
for gestational hypertension, 590
for preeclampsia, 590
sexual dysfunction caused by, 520
Anti-IgE monoclonal antibodies, 628
Anti-IgG antibodies, 634
Anti-inflammatory drugs, 446
Antileukotrienes
for asthma, 628
Antimalarial drugs
G6PD deficiency caused by, 392
Antimetabolites, 409
in cell cycle, 408
Antimicrobial drugs, 170-187
naming conventions for, 255
in pregnancy, which to avoid, 187
as prophylaxis, 181
Antimitochrondrial antibodies, 634
Antimuscarinic drugs
for Parkinson disease, 504
toxicity treatment for, 251
for urgency incontinence, 551
Antimuscarinic reaction, 254
Antimycin A
in electron transport chain, 89
as electron transport inhibitor, 89
Antimycobacterial drugs, 179
Antineutrophil cytoplasmic antibodies, 634
Antinuclear antibodies (ANA), 635 in lupus, 434
Antioxidants
free radical elimination by, 221
Antiparasitic drugs
naming convention for, 255
Antiphospholipid syndrome, 434
autoantibody associated with, 207
Antiplatelet antibodies, 635
abciximab as, 214
Antiplatelet drugs
for acute coronary syndromes, 290
Antiprogestin drugs, 602
Antiprotozoan drugs, 183
Antipseudomonal drugs, 170
Antipseudomonal penicillins, 171
Antipsychotic drugs, 525 antimuscarinic reaction caused by, 254
dopaminergic pathways and, 458
galactorrhea caused by, 309
long QT interval caused by, 277
naming convention for, 255
Parkinson-like syndrome caused

## by, 253

for PCP overdose, 523
prolactin, effect on, 310
for schizophrenia, 640
tardive dyskinesia caused by, 253
torsades de pointes caused by, 251
for Tourette syndrome, 511, 524
Anti-Smith antibodies
in lupus, 434

Antisocial personality disorder, 519
conduct disorder as precursor to, 511
Antithrombin
in coagulation cascade, 384
Anti-topoisomerase antibodies, 635
Antitoxins
as passive immunity, 203
Anti-transglutaminase antibodies, 635
Antitumor antibiotics, 410
Anti-Ul RNP antibodies, 434
Antiviral therapy, 184
Anxiety
barbiturates for, 501
benzodiazepines for, 501
benzodiazepine withdrawal as cause, 522
delirium tremens as cause, 524
hypercalcemia as cause, 542
hyperthyroidism as cause, 321
LSD as cause, 523
MAO inhibitors for, 528
MDMA withdrawal as cause, 523
neurotransmitter changes in, 511
neurotransmitters for, 455
nicotine withdrawal as cause, 522
Anxiety disorder, 516
atypical antipsychotics for, 525
Aorta
abdominal, 342
in circle of Willis, 466
coarctation of, $\mathbf{2 8 3}$
in diaphragm, 609
EKG and, 276
in gastrointestinal anatomy, 339
in horseshoe kidney, 531
in syphilitic heart disease, 294
traumatic rupture of, 286
"tree bark" appearance of, 294
Aortal coarctation
lab findings in, 637
Aortic aneurysm, 286
Ehlers-Danlos syndrome and, 63
hypertension as cause, 284
key associations, 641
Marfan syndrome as cause, 71, 284
syphilitic heart disease as
cause, 294
Aortic arch derivatives, 568
Aortic dissection, 287
hypertension as cause, 284
hypertensive emergency and, 284
key associations, 641
Marfan syndrome as cause, 284, 630
Aortic incompetence
Marfan syndrome as cause, 71
Aortic insufficiency
syphilitic heart disease as cause, 294
Aorticopulmonary septum, 263 embryologic derivatives of, 563
Aortic regurgitation
diastolic murmur in, 272
heart murmurs caused by, 273
Marfan syndrome as cause, 284
presentation of, 630
pulse pressure in, 266

Aortic root dilation
heart murmur caused by, 273
Aortic stenosis
ejection click and, 643
heart murmurs caused by, 273
macroangiopathic anemia caused by, 393
paradoxical splitting in, 271
presentation of, 634
pulse pressure in, 266
S4 heart sound and, 645
systolic murmur in, 272
Williams syndrome as cause, 284
Aortic valve
in cardiac cycle, 270
embryological development of, 262
Aortic valve sclerosis
systolic murmur in, 272
Aortitis
syphilis as cause, 131,167
APC gene, 230
adenomatous colonic polyps and, 363
colorectal cancer and, 364
familial adenomatous polyposis and, 71, 363
"Ape hand" (median nerve injury), 419, 421
Apgar score, 581
Aphasia, 463
dementia and, 513
frontotemporal dementia as cause, 491
Aphthous stomatitis
Crohn disease as cause, 359
Apixaban, 407
as anticoagulant, 383
for long-term anticoagulation, 640
Aplasia, 563
Aplasia cutis
methimazole as cause, 335
Aplasia cutis congenita
fetal methimazole exposure as cause, 564
Aplastic anemia, 391
in anemia taxonomy, 388
chloramphenicol as cause, 175
as drug reaction, 252
Fanconi anemia as cause, 633
neutropenia caused by, 394
thionamides as cause, 335
Aplastic crisis
hereditary spherocytosis as cause, 392
sickle cell anemia as cause, 392
Apolipoproteins, 104
Aponeurosis of external oblique muscle, 348
Apoptosis, 216
corticosteroids as cause, 394
evasion of, in cancer, 227
Appendages, bacterial, 108
Appendicitis, 360
vs. mittelschmerz, 578
Appetite regulation, 311
"Apple core" lesion on X-ray, 364, 635

Apraxia
dementia and, 513
Aquaporin
in renin-angiotensin-aldosterone system, 540
Aqueous humor pathway, 483
Arabinoglycan synthesis, 179
Arachidonic acid pathway, 446
Arachnodactyly
Marfan syndrome as cause, 71, 630
Arachnoid
in cavernous sinus, 481
Arachnoid cells meningiomas in, 496
Arcuate artery, 532
Arcuate fasciculus, 462 aphasia and, 463
Area postrema, 455, 456
Arenaviruses
characteristics of, 151
as negative-stranded, 152
as segmented, 152
Arginine, 92
in cystinuria, 96
derivatives of, 94
kidney stones and, 549
Argininosuccinate
in urea cycle, 93
Argyll Robertson pupils
presentation of, 633
syphilis as cause, 131,167
tabes dorsalis and, 474
Aripiprazole, 525
Armadillos, as disease vectors, 132
Aromatase, 582
Aromatase inhibitors, 601
for breast cancer, 639
Aromatic amines
as carcinogens, 231
Arrhythmia
amphotericin B as cause, 182
amyloidosis and, 225
diabetic ketoacidosis as cause, 331
diphtheria as cause, 123
hyperthyroidism as cause, 321
hypokalemia as cause, 542
key associations, 642
local anesthetics as cause, 503
macrolides as cause, 176
McArdle disease as cause, 99
MI as cause, 288
muscular dystrophy as cause, 73
shock caused by, 292
sleep apnea as cause, 621
stimulants as cause, 522
thyroid hormones as cause, 335
treatments for, 638
Arsenic
angiosarcomas caused by, 368, 441
as carcinogen, 231
glycolysis and, 86
inhalational injuries and, 222
squamous cell carcinomas caused by, 445
toxicity symptoms, 87
toxicity treatment for, 251

Artemether
for $P$. falciparum, 183
Arterial oxygen saturation, 613
Arterial $\mathrm{PCO}_{2}, 610,614$
Arteries, anatomy of, 265
Arteriolosclerosis, 330
Arteriosclerosis, 285
pulmonary hypertension as cause, 622
Arteriovenous malformations (AVMs), 71
Arteritis, headaches caused by, 494
Artesunate
for malaria, 141, 183
Arthralgias
alkaptonuria as cause, 96
Henoch-Schönlein purpura as cause, 297
rubella as cause, 153
serum sickness as cause, 205
vitamin A toxicity as cause, 77
Arthritis, 430
AA amyloidosis and, 225
azathioprine for, 409
carpal tunnel syndrome and, 418
celecoxib for, 447
chlamydiae as cause, 134
Crohn disease as cause, 359
gonorrhea as cause, 167
HLA-B27 and, 193
LMN facial nerve palsy as cause, 634
lupus as cause, 434
Lyme disease as cause, 130
Paget disease of bone as cause, 630
in reactive arthritis, 433
septic, 432
Sjögren syndrome as cause, 631
Takayasu arteritis as cause, 296
ulcerative colitis as cause, 359
Whipple disease as cause, 634
Arthritis of inflammatory bowel disease
HLA-B27 and, 193
Arthropathy
hemochromatosis as cause, 371
Arthus reaction, 205
Arylcyclohexylamines
as intravenous anesthetics, 502
Arylsulfatase A
in metachromatic leukodystrophy, 100

## Asbestos

as carcinogen, 231
lung cancer and, 626
Asbestosis, 620
as restrictive lung disease, 619
Ascaris spp., 142
Ascaris lumbricoides, 143, 643
Ascending aorta
embryological development of, 262
Ascending cholangitis
biliary cirrhosis and, 371
Ascending colon, 339
Aschoff bodies, 636
in rheumatic fever, 294

Ascites
Budd-Chiari syndrome as cause, 368, 630
cirrhosis as cause, 365
hepatocellular carcinoma as cause, 368
in Meigs syndrome, 592
Asenapine, 525
Aseptic meningitis
mumps as cause, 155
Asherman syndrome, 602
Ashkenazi Jews, disease incidence in, 100
Ash-leaf spots, in tuberous sclerosis, 495
Aspartame, and phenylketonuria, 95
Aspartate
in nucleotide synthesis, 49
in urea cycle, 93
Aspartate aminotransferase (AST), 366
in toxic shock syndrome, 119
Aspartic acid, 92
Aspart insulin, 334. See also Insulin Aspergillosis

Aspergillus fumigatus as cause, 137
bronchiectasis and, 618
echinocandins for, 183
Aspergillus spp.
as catalase-positive organism, 112
chronic granulomatous disease and, 209, 643
Aspergillus fumigatus, 137
HIV and, 160
Aspiration, in ARDS, 621
Aspiration pneumonia, 128
Aspirin, 447
for acute coronary syndromes, 290
arachidonic acid pathway and, 446
cyclooxygenase, effect on, 385
hemolysis in G6PD deficiency caused by, 252
for ischemic stroke, 470
for Kawasaki disease, 296, 640
for polycythemia vera, 404
Reye syndrome and, 366
as uncoupling agent, 89
as weak acid, 238
zero-order elimination of, 238
Asplenia
Howell-Jolly bodies in, 387
target cells in, 387
Asterixis
cirrhosis as cause, 365
hepatic encephalopathy as cause, 367
hyperammonemia as cause, 93
Asthma, 618
albuterol for, 246
$\beta$-blockers and, 249
breast milk as risk reduction for, 581
cholinomimetic agents and, 244
cromolyn sodium for, 379
drug therapy for, $\mathbf{6 2 8}$
eczema and, 440
eosinophilia caused by, 379
epinephrine for, 246
gastroesophageal reflux disease and, 354
glucocorticoids for, 336
lab findings in, 636
muscarinic antagonists for, 245
omalizumab for, 214
pulsus paradoxus in, 294
salmeterol for, 246
as type I hypersensitivity reaction, 204
Astigmatism, 483
Astrocyte foot processes, 455
Astrocytes, 453
in glioblastoma multiforme, 496
origin of, 450
Astrocytomas, 642
GFAP stain for, 60
Ataxia
amantadine as cause, 504
Angelman syndrome as cause, 69
cerebellar hemisphere lesions and, 464
cerebellar vermis lesions and, 464
epilepsy drugs causing, 500
hydrocephalus as cause, 471
Rett syndrome as cause, 511
streptomycin as cause, 180
stroke as cause, 467
tabes dorsalis as cause, 474
vitamin $B_{12}$ deficiency as cause, 474
Wernicke-Korsakoff syndrome as cause, 77, 464, 523
Ataxia-telangiectasia, 53, 209
Atazanavir, 184, 186
Atelectasis, 622
Atenolol, 249, 303
Ateriolosclerosis, 285
Atherosclerosis, 286, 645
abdominal aortic aneurysms and, 286
aortic aneurysms and, 641
diabetes mellitus as cause, 330
familial hypercholesterolemia as cause, 105
homocystinuria as cause, 96
stable angina caused by, 287
transplant rejection as cause, 211
Athetosis, 461
ATM gene
ataxia-telangiectasia and, 209
Atomoxetine, 511, 638
Atonic seizures, 494
Atopic dermatitis, 440
Atopic reactions, 204
Atorvastatin, 300
Atovaquone
for babesiosis, 141
for malaria, 141, 640
for P. falciparum, 183
for Pneumocystis jirovecii, 138
ATPase, 371
Atracurium, 503
Atria
embryological development of, 262
septation of, 262
Atrial amyloidosis, 225

Atrial fibrillation
arrhythmia and, 642
$\beta$-blockers for, 303
calcium channel blockers for, 304
cardiac glycosides for, 301
ECG tracing of, 278
embolic stroke and, 470
hypertension as cause, 284
jugular venous pulse in, 270
potassium channel blockers for, 303
sleep apnea as cause, 621
Atrial flutter
$\beta$-blockers for, 303
ECG tracing of, 278
potassium channel blockers for, 303
Atrial natriuretic peptide (ANP), 279, 540
amyloidosis and, 225
kidney effects, 541
in SIADH, 328
signaling pathways for, 316
Atrial septa
embryological development of, 262
Atrial septal defect (ASD), 283
congenital rubella as cause, 284
cyanosis caused by, 642
diastolic murmur in, 272
Down syndrome as cause, 284
fetal alcohol syndrome as cause, 284
Atrioventricular block
$\beta$-blockers as cause, 249, 303
calcium channel blockers as cause, 298, 304
ECG tracings for, 278
Lyme disease as cause, 130
Atrioventricular canals, 263
Atrioventricular node, 276
EKG and, 276
Atrioventricular septal defect (AVSD), 74
Atrioventricular valves
embryological development of, 262
Atrophic gastritis
gastrin in, 350
key associations, 642
Atrophy, 226, 473
Atropine, 245
antimuscarinic reaction caused by, 254
for $\beta$-blocker overdose, 303
for cholinesterase inhibitor poisoning, 244
as toxicity treatment, 251
Attention deficit disorder (ADD)
amphetamines for, 246
Attention-deficit hyperactivity disorder (ADHD), 511
CNS stimulants for, 524
drug therapy for, 524
smoking as cause, 564
sympatholytic drugs for, 247
Tourette syndrome and, 511
treatments for, 638
Attributable risk (AR), 34, 646

Atypical antidepressants, 528
Atypical antipsychotic drugs, 525
for bipolar disorder, 515, 524, 638
for postpartum psychosis, 516
for schizophrenia, 514, 640
Atypical depression, 528
Atypical lymphocytes, 635
Atypical pneumonias, 624
chlamydiae as cause, 134
macrolides for, 176
Auditory cortex, 462
Auditory hallucinations, 513
schizophrenia as cause, 514
Auditory physiology, 481
Auer rods, 635
in acute myelogenous
leukemia, 402
Auramine-rhodamine stain, 110
Auscultation of heart, 272
Auspitz sign, 440
Autism spectrum disorder, 511
double Y males and, 585
fragile X syndrome as cause, 73
Autoantibodies, 207
Autoclave, 187
Autoclaves, for spore-forming bacteria, 114
Autografts, 210
Autoimmune anemia, 388
Autoimmune diseases acute pericarditis caused by, 294
collagen and, 61
preeclampsia and, 590
therapeutic antibodies for, 214
Autoimmune gastritis, 356
Autoimmune hemolytic anemia, 393
cephalosporins as cause, 172
as type II hypersensitivity reactions, 204
Autoimmune hepatitis type 1
autoantibody associated with, 207
Autoimmune lymphoproliferative syndrome, 216
Autoimmune membranous glomerulopathy, 207
Autoimmune regulator (AIRE), 194
Autonomic drugs, 241-250, 243
naming conventions for, 255
Autonomic insufficiency, 246
Autonomy, as ethical principle, 39
Autoregulation of blood flow, 280
Autosomal dominant hyper-IgE syndrome, 208
presentation of, 633
Autosomal dominant inheritance, 70
diseases of, 71
Autosomal dominant polycystic kidney disease (ADPKD), 555
autosomal dominance of, 71
chromosome associated with, 75
saccular aneurysms and, 468
Autosomal recessive inheritance, 70
diseases of, 72
Autosomal recessive polycystic kidney disease (ARPKD), 555
Potter sequence caused by, 530

Autosomal trisomies, 74
karyotyping for, 67
Autosplenectomy
key associations, 641
sickle cell anemia as cause, 392
Avascular necrosis, 427
glucocorticoids as cause, 212
of scaphoid bone, 418
sickle cell anemia as cause, 392
Avoidant personality disorder, 519
Axillary lymph nodes, 190
in breast cancer, 596
Axillary nerve, 419
Axonal injury, 220
Axonemal dynein, 60
Azathioprine, 409
allopurinol and, 448
in cell cycle, 408
for Crohn disease, 359, 639
as immunosuppressant, 212
pancreatitis caused by, 252
targets of, 213
Azithromycin, 170, 176
for babesiosis, 141
for chlamydiae, 134
as HIV prophylaxis, 181
for Legionella pneumophila, 640
for Mycobacterium aviumintracellulare, 124, 179
as Mycobacterium aviumintracellulare prophylaxis, 179
Azoles, 181, 182
for Candida albicans, 137
Azotemia
acute interstitial nephritis as cause, 554
nephritic syndrome and, 546
Aztreonam, 170, 173

## B

B7 protein, cells present on, 202
B19 virus, 148
Babesia spp., 130, 141
anemia caused by, 393
Babesiosis, 141
Babinski reflex, 43, 473, 476
Babinski sign
presentation of, 634
UMN damage as cause, 632
Bachmann bundle, 276
Bacillary angiomatosis, 441
animal transmission of, 132
HIV and, 160
Bacilli, 109
Gram stain identification of, 118
Bacillus spp.
in Gram-positive algorithm, 118
morphology of, 109
Bacillus anthracis, 121
capsule composition, 108
exotoxin produced by, 116
as spore-forming bacteria, 114
Bacillus cereus, 122
food poisoning caused by, 161, 643
as spore-forming bacteria, 114

## Bacitracin

functioning of, 170
as Gram-positive antibiotic test, 118
organisms sensitive to, 118
Streptococcus pyogenes sensitivity to, 120
Bacitracin response, 635
Back pain, from G6PD deficiency, 392
Baclofen, 503
for multiple sclerosis, 492
Bacteremia
dapsone for, 178
Staphylococcus gallolyticus and, 121
tuberculosis and, 124

## Bacteria

$\alpha$-hemolytic, 119
$\beta$-hemolytic, 119
encapsulated, 112
genetics of, 114
highly resistant, treating, 181
hints for, 169
in vivo biofilm-producing, 113
morphology of, 109
normal flora, 161
pigment-producing, 113
special culture requirements, 111
spore-forming, 114
stains for, 110
structures of, 108
taxonomy of, 109
virulence factors, 113
zoonotic, 132
Bacterial capsules, 108
Bacterial endocarditis, 293
key associations, 643
presentation of, 634
Streptococcus sanguinis as cause, 120
Bacterial meningitis, 642
Bacterial toxins, effect on immunocytes, 202
Bacterial vaginosis
characteristics of, 164
Gardnerella vaginalis as cause, 132
Bacteroides spp.
alcoholism and, 162
as anaerobic organism, 111
clindamycin for, 175
lung abscesses caused by, 624
metronidazole for, 178
morphology of, 109
Bacteroides fragilis, 161
"Bag of worms" appearance of scrotum, 597
Baker cyst, 417
tibial nerve injury caused by, 422
BAK protein, 216
Balancing, as quality measurement, 46
"Bamboo spine" on X-ray, 433, 635
Band cells, 378
Barbiturates, 501
intoxication and withdrawal, 522
as intravenous anesthetics, 502
naming convention for, 255
sleep, effect on, 457
Baroreceptors, 279
Barr bodies, 48
Barrel hoop basement membrane, 191
Barrett esophagus, 355
metaplasia and, 226
Bartonella spp.
animal transmission of, 132
endocarditis caused by, 293
morphology of, 109
Bartonella henselae
bacillary angiomatosis caused by, 441
granulomatous diseases caused by, 223
HIV and, 160
Bartonella quintana, 145
Bartter syndrome, 538
markers in, 542
Basal cell carcinomas
5-fluorouracil for, 409
of skin, 445
sunburn and, 444
Basal cells, 608
Basal ganglia, 460
intraparenchymal hemorrhage in, 469
lesions in, 464
movement disorders and, 461
Basal lamina, 61
Basal metabolic rate, 315
Basal plate, 450
Base excision repair, 53
Basement membrane
Alport syndrome and, 547
autoantibody to, 207
in blood-brain barrier, 455
collagen in, 61
in filtration, 535
glomerular filtration barrier and, 533
in glomerulus, 532
Basic amino acids, 92
Basilar artery
in circle of Willis, 466
stroke, effect on, 467
Basilar membrane, 481
Basiliximab
as immunosuppressant, 212
targets of, 213
Basophilia, 379
Basophilic stippling, 386, 635
lead poisoning as cause, 389
in sideroblastic anemia, 389
Basophils, 378, 379
IgE antibody and, 197
BAX protein, 216
B-cell lymphomas, 646
HIV and, 160
oncogenes and, 230
B cells, $\mathbf{3 8 0}$
activation of, 195
adaptive immunity and, 192
anergy, 202
cell surface proteins, 202
class switching, 195
disorders of, 208, 209
function of, 380
glucocorticoids effect on, 212
in lymph node, 190
major functions of, 193
non-Hodgkin lymphoma and, 399
sirolimus effect on, 212
in spleen, 191
BCG vaccine, 124, 203
IL-12 receptor deficiency and, 208
BCL-2 gene, 230
Bcl-2 protein, 216
BCR-ABL gene, 230
Becker muscular dystrophy, 73
presentation of, 633
as X-linked recessive disorder, 72
Beck triad of cardiac tamponade, 294, 632
Beckwith-Wiedemann, 551
Beclomethasone, 336. See also Glucocorticoids
Bedwetting. See Nocturnal enuresis
Bell palsy, 480
Lyme disease as cause, 130
sarcoidosis and, 435
Bell-shaped distribution, 37
Bence Jones protein, 401
Bendazoles, 143
Bends, the, 427
Beneficence, as ethical principle, 39
Benign prostatic hyperplasia

$$
(\mathrm{BPH}), \mathbf{5 9 9}, 644
$$

$\alpha$-blockers for, 248
hydronephrosis and, 550
postrenal azotemia caused by, 553
tamsulosin for, 603
treatments for, 638
Benign tumors, 228
Benzathine penicillin G, 181
Benzene
aplastic anemia caused by, 252, 391
myelodysplastic syndromes caused by, 401
Benzidine, as carcinogen, 231
Benznidazole, 142
Benzoate, 93
Benzocaine, 503
methemoglobin and, 612
Benzodiazepines, 501
for alcohol withdrawal, 524, 638
for cocaine overdose, 522
for delirium tremens, 524
for epilepsy, 500
for generalized anxiety disorder, 517
intoxication and withdrawal, 522
as intravenous anesthetics, 502
naming convention for, 255
for panic disorder, 517
for PCP overdose, 523
for phobias, 517
sleep, effect on, 457
toxicity treatment for, 251
Benzoyl peroxide, for acne, 440
Benztropine, 245, 504

## Beriberi

cardiomyopathy caused by, 291
vitamin $B_{1}$ deficiency as cause, 77
Berkson bias, 36
Bernard-Soulier syndrome, 385, 642
Berylliosis, 620
as granulomatous disease, 223
$\beta_{1}$-blockade, 267
$\beta_{2}$-agonists
for asthma, 628
insulin and, 308
naming convention for, 255
$\beta_{2}$-microglobulin
MHC I and II and, 192
$\beta$-amyloid protein, in Alzheimer disease, 225
$\beta$-blockers, 249
for acute coronary syndromes, 290
for angina, 299
as antiarrhythmic drugs, $\mathbf{3 0 3}$
for aortic dissections, 287
for cocaine overdose, 246, 522
diabetes and, 249
for dilated cardiomyopathy, 291
for essential tremor, 461
for glaucoma, 498
for heart failure, 292
hydralazine and, 298
hyperkalemia caused by, 542
for hypertension, 298
hypertrophic cardiomyopathy and, 291
juxtaglomerular apparatus, effect on, 540
for migraine headaches, 494
naming convention for, 255
for pheochromocytomas, 320
for phobias, 517
for thyroid storm, 323
toxicity treatment for, 251
$\beta$ cells, 307
in diabetes mellitus type 1,331
in diabetes mellitus type 2, 331
insulinomas of, 332
insulin secretion by, 308
$\beta$-dystroglycan, 73
$\beta$-galactosidase, 126
$\beta$-glucan, 183
$\beta$-glucoronidase, 378
$\beta$-hCG
in Down syndrome, 74
in Edwards syndrome, 74
in Patau syndrome, 74
as tumor marker, 232
$\beta$-hemolysis, 117
$\beta$-hemolytic bacteria, 119
$\beta$-hydroxybutyrate, 102
$\beta$-interferon
for multiple sclerosis, 492, 640
$\beta$-lactam antibiotics, 170
$\beta$-lactamase inhibitors, 171
$\beta$-lactams, 443
Betamethasone, 446
$\beta$-thalassemia, 389
allelic heterogeneity and, 69
chromosome associated with, 75
intron/exon splicing variants and, 55
lab findings in, 636
Betaxolol, 249
for glaucoma, 498
Bethanechol, 244
Bevacizumab, 214, 412
Bezafibrate, 300
Bias, in studies, 36
Bicarbonate
carbon dioxide transport and, 615
for drug overdoses, 238
as GI secretory product, 351
in pancreatic insufficiency, 358
for salicylate toxicity, 251
for TCA toxicity, 251
Biceps brachii muscle, in Erb palsy, 420
Biceps reflex, 476
Biceps tendon, 417
Bicornuate uterus, 572
Bicuspid aortic valve
aortic dissection and, 287
coarctation of aorta and, 283
heart murmur caused by, 273
thoracic aortic aneurysms and, 286
Turner syndrome as cause, 284, 585
Bifurcations, 609
Biguanide drugs, 334
Bilaminar disc, 562
Bilateral acoustic schwannomas, 71, 630
Bilateral adenopathy, 435
Bilateral hilar lymphadenopathy, 619
Bilateral renal agenesis
oligohydramnios and, 589
Potter sequence caused by, 530
pulmonary hypoplasia and, 606
Bile, 352
in hereditary
hyperbilirubinemias, 370
secretin effect on, 350
Bile acid resins, 300
Bile acids
lipid transport and, 104
reabsorption of, 300
Bile canaliculus, 346
Bile duct, 347
Bile ductule, 346
Bile salts, 352
in cholelithiasis, 372
Biliary cirrhosis, 365 , 369, 371
cystic fibrosis as cause, 72
lab findings in, 634
ursodiol for, 376
Biliary colic, 372
Biliary structures, $\mathbf{3 4 7}$
Biliary tract disease, $\mathbf{3 7 1}$
Clonorchis sinensis and, 145
Biliary tract infections, 121
Bilious vomiting, in Hirschsprung disease, 361
Bilirubin, 353
in bile, 352
in cholelithiasis, 372
in hereditary hyperbilirubinemias, 370
as liver marker, 366
in toxic shock syndrome, 119
Bimatoprost, 498
Bimodal distribution, 37
Binge eating disorder, 520
Bioavailability, 237
Biochemistry, 48-105
cellular, 58-64
genetics, 68-77
laboratory techniques, 64-68
metabolism, 83-105
molecular, 48-57
nutrition, 76-83
Biofilm-producing bacteria, 113
Biostatistics/epidemiology, 32-39
Bipolar disorder, 514, 515
antipsychotic drugs for, 525
atypical antipsychotics for, 525
drug therapy for, 524
genetic risk of, 510
lithium for, 526
postpartum psychosis and, 516
treatments for, 638
Birbeck granules, 638
in Langerhans cell
histiocytosis, 403
Birds, as disease vectors, 132, 134
"Bird's beak" sign on barium swallow, 354
Bismuth, 375
Bisphosphonates, 447
esophagitis caused by, 252
naming convention for, 255
for osteoporosis, 426, 640
Bitemporal hemianopia, 489
hypopituitarism as cause, 329
Nelson syndrome as cause, 326
Bitot spots, 77
Bivalirudin, 405
BK virus, 148
Black eschar, caused by cutaneous anthrax, 121
Blackflies, as disease vectors, 143
Black liver, 642
Black lung disease, 620
Bladder, 574
bethanechol effect on, 244
parasympathetic receptors and, 242
spasms, treating, 245
transitional cell carcinoma in, 551
Bladder cancer
cisplatin/carboplatin for, 411
hematuria caused by, 544
hypercalcemia and, 229
oncogenic microbes and, 231
Schistosoma as cause, 144
Schistosoma haematobium and, 145
Blast crisis in CML, 642
Blastocysts, 562
Blastomyces spp.
amphotericin B for, 182
itraconazole for, 182
Blastomycosis, 135
Bleeding
direct factor Xa inhibitors as cause, 407
direct thrombin inhibitors as cause, 405
essential thrombocythemia as cause, 404
glycoprotein IIb/IIIa inhibitors as cause, 407
heparin as cause, 405
thrombolytics as cause, 407
warfarin as cause, 406
Bleomycin, 410
in cell cycle, 408
pulmonary fibrosis caused by, 254
targets of, 408
Bleomycin toxicity, 413, 619
Blepharoplasts, 497
Blepharospasm
dystonia and, 461
Blindness
Chlamydia trachomatis as cause, 134
conversion disorder as cause, 518
giant cell arteritis as cause, 296
temporal arteritis as cause, 645
Blistering skin disorders, 443
Blood
chocolate-colored, 612
coagulation and kinin pathways, 383
embryologic derivatives of, 563
oxygen content of, 613
in placenta, 566
viscosity, in pulmonary vascular resistance, 614
Blood-brain barrier, 455
Blood flow, effect of exercise on, 615
Blood groups, 382
Blood pH, diuretic effect on, 558
Blood pressure
$\alpha$-blocker effect on, 248
angiotensin II effect on, 540, 541
antidiuretic hormone regulation of, 311
cortisol effect on, 313
fenoldopam and, 298
in renal disorders, 542
renin-angiotensin-aldosterone system and, 540
sympathomimetic effect on, 247
Blood-testis barrier, 455
Blood transfusions, 399
hemochromatosis and, 643
key associations, 643
reactions to, 206-214
Blood vessels, collagen in, 61
Bloody diarrhea
amebiasis as cause, 139
Campylobacter jejuni as cause, 128
ulcerative colitis as cause, 359
Bloody spinal tap, 635
Bloody stool, 345
Blotting procedures, 65
Blown pupils, in CN III palsy, 489
"Blue babies," 282
Blueberry muffin rash
cytomegalovirus as cause, 165
rubella as cause, 153, 165
Toxoplasma gondii as cause, 165
"Blue kids," 283
Blue sclerae
osteogenesis imperfecta as cause, 63, 630
BNP. See Brain natriuretic peptide (BNP)
Body dysmorphic disorder, 517
Boerhaave syndrome, 354
Bombesin, 319
Bone cancer, 428
key associations, 645
primary bone tumors, 429
Bone crises
Gaucher disease as cause, 100, 631
Bone disorders
lab values, 428
osteogenesis imperfecta, 63
Paget disease of bone, 630
Bone fractures
as child abuse sign, 510
fat emboli as cause, 617
Bone lesions
adult T-cell lymphoma as cause, 400
Langerhans cell histiocytosis as cause, 403
multiple myeloma and, 401
Bone marrow suppression, 182
Bone marrow transplant
for osteopetrosis, 426
for SCID (severe combined immunodeficiency), 209
Bones
cell biology of, $\mathbf{4 2 5}$
collagen in, 61
cortisol effect on, 313
formation of, $\mathbf{4 2 5}$
as metastasis site, 233
PTH effect on, 314
renal osteodystrophy and, 553
$\mathrm{T}_{3}$ hormone and, 315
Bone tumors, 429
"Boot-shaped" heart, 635
Borderline personality disorder, 519
dissociative identity disorder and, 512
Bordetella spp., 109
Bordetella pertussis, 127
culture requirements for, 111
exotoxin produced by, 116
in Gram-negative algorithm, 125
macrolides for, 176
vaccines for, 127
Bordet-Gengou agar, 111
Borrelia spp.
Giemsa stain for, 110
as spirochete, 130
Borrelia burgdorferi
animal transmission of, 132
Lyme disease caused by, 130
tetracyclines for, 175
Borrelia recurrentis
animal transmission of, 132
as antigenic variation, 202
lice transmission of, 145
Bosentan, 627
for pulmonary arterial
hypertension, 640

Botulinum toxin, 116, 122, 243
lysogenic phage and, 114
passive antibodies for, 203
Botulism
bacteria causing, 114
exotoxins as cause, 115
Bovine spongiform encephalopathy (BSE), 161
Bowel smooth muscle activation, 244
Bowel stenosis, 360
Bowen disease, 597
Bowenoid papulosis, 597
Bowman capsule, 535
Brachial artery, 423
Brachial plexus lesions, 420
Brachiocephalic artery, 466
Bradycardia
amiodarone as cause, 303
atropine for, 245
$\beta$-blockers as cause, 249, 303
cholinesterase inhibitor poisoning as cause, 244
dopamine for, 246
on EKG, 276
hypermagnesemia as cause, 542
hypothyroidism as cause, 321
RCA infarct as cause, 265
sympatholytic drugs as cause, 247
Bradykinin
ACE inhibitors and, 559
breakdown of, 540
Cl esterase inhibitor deficiency and, 199
BRAF gene, 230
melanomas and, 445
papillary thyroid carcinoma and, 324
serrated colonic polyps and, 363
vemurafenib and, 413
Brain
amyloid deposition in, 636
autoregulation of, 280
dopamine receptors and, 242
embryologic derivatives of, 563
embryology of, 450
glucose usage by, 308
ischemia in, 218
as metastasis site, 233
ring-enhancing lesions, 637
$\mathrm{T}_{3}$ hormone and, 315
Brain abscesses
HIV and, 160
infections causing, 163
Brain cysts, 145
Brain infarcts, 217
Brain injury
gastritis caused by, 356
hypopituitarism caused by, 329
Brain lesions, 464
Brain natriuretic peptide (BNP), 279, 540
in SIADH, 328
signaling pathways for, 316
Brain stem
dorsal view, 477
ventral view, 477

Brain tumors, 496, 497
in adults, 496
in children, 497
key associations, 642
metastases as source, 233
nitrosureas for, 410
Branched-chain ketoacid dehydrogenase, 77
Branchial apparatus, 568
Branchial arch derivatives, 569
Branchial cleft derivatives, $\mathbf{5 6 8}$
Branchial pouch derivatives, 570
Branching enzyme, in glycogen metabolism, 98
Branching filamentous bacteria, 109
Gram stain identification of, 118
Branching gram-positive rods with sulfur granules, 635
BRCAl/BRCA2 genes, 230
breast cancer and, 596
Breast cancer, 596-597
aromatase inhibitors for, 601
bone metastases in, 644
brain metastases in, 644
breastfeeding and, 581
hormonal contraception contraindication, 602
hypercalcemia and, 229
incidence/mortality of, 228
key associations, 642
oncogenes and, 230
paclitaxel for, 411
paraneoplastic cerebellar degeneration and, 229
in postmenopausal women, 639
tamoxifen for, 413
trastuzumab for, 214, 413
treatments for, 639
tumor suppressor genes and, 230
Breast disorders
benign, 595
malignant, 596
Breastfeeding, 581
mastitis and, 595
ovarian neoplasms and, 592
Breast milk. See also Lactation
dopamine and, 310
IgA antibodies in, 197
prolactin and, 310
Breast pathology, 595
Breast trauma, necrosis caused by, 217
Brenner tumors, 592
Bretylium, 243
Bridging vein rupture, 643
Brief psychotic disorder, 514
Brimonidine, 498
Brittle hair, in Menkes disease, 63
Broad-base budding, in blastomycosis, 135
Broad ligament, 574
Broca aphasia, 463
Broca area, 462
aphasia and, 463
stroke effects, 467
Bromocriptine, 504. See also Dopamine agonists
prolactin, effect on, 310
for prolactinomas, 640

Bronchi, 608
Bronchial asthma, 636
Bronchial carcinoid tumors, 626
Bronchiectasis, 618
Aspergillus fumigatus as cause, 137
cystic fibrosis as cause, 72
Kartagener syndrome as cause, 60, 633
Bronchioalveolar cell carcinomas, 626
Bronchioles
histamine receptors and, 242
in respiratory tree, 608
Bronchiolitis obliterans, 211
Bronchitis
cystic fibrosis as cause, 72
Haemophilus influenzae as cause, 126
Bronchoconstriction, effect of asthma drugs on, 628
Bronchodilation
asthma drugs effect on, 628
sympathetic receptors and, 242
Bronchogenic apical lung tumor, 635
Bronchogenic carcinomas
asbestosis and, 620
carcinogens causing, 231
Bronchogenic cysts, 606
Bronchopneumonia, 624
Bronchopulmonary dysplasia, 221
neonatal respiratory distress syndrome as cause, 607
Bronchospasm, in carcinoid syndrome, 631
"Brown" bone tumor, 635
Brown-Séquard syndrome, 475
Horner syndrome and, 487
Brucella spp.
animal transmission of, 132
in Gram-negative algorithm, 125
as intracellular organism, 112
morphology of, 109
Brucellosis, 132
Brugada syndrome, 277
sudden cardiac death caused by, 287
Bruising
as child abuse sign, 510
scurvy as cause, 80
Brunner glands, 341
duodenal ulcers and, 357
Brushfield spots, 74
Bruton agammaglobulinemia, 208
as X-linked recessive disorder, 72
Bruton disease, 632
Bruxism, 457
BTK gene, 208
Budd-Chiari syndrome, 368
hepatocellular carcinoma and, 368
lab findings in, 637
portal hypertension caused by, 365
presentation of, 630
Budesonide, 628
Buerger disease, 296, 645
treatments for, 639
Buffalo hump, in Cushing syndrome, 317

## Bulbus cordis, 262

Bulimia nervosa, 520
anovulation caused by, 591
drug therapy for, 524
laxative abuse by, 375
Mallory-Weiss syndrome and, 354
Selective serotonin reuptake inhibitors (SSRIs) for, 527
treatments for, 639
Bullae, 438
necrotizing fasciitis as cause, 442
Stevens-Johnson syndrome as cause, 443
Bullous impetigo, 442
Bullous pemphigoid, 443
autoantibody associated with, 207
as bulla, 438
as type II hypersensitivity reactions, 204
Bull's-eye rash, in Lyme disease, 632
Bumetanide, 557
BUN (blood urea nitrogen)
in acute renal failure, 553
in nephritic syndrome, 545
in ornithine transcarbamylase deficiency, 94
Bundle of His, 276
Bunyaviruses
characteristics of, 151
as negative-stranded, 152
as segmented, 152
Bupivacaine, 503
Buprenorphine
for heroin addiction, 523
morphine and, 240
for opioid withdrawal, 522
Bupropion, 528
for major depressive disorder, 515
mechanism of, 526
for nicotine withdrawal, 522
seizures caused by, 253
Burkholderia cepacia
as catalase-positive organism, 112
chronic granulomatous disease and, 209
cystic fibrosis and, 162
in immunodeficient patients, 210
morphology of, 109
Burkitt lymphoma, 400, 645
chromosomal translocations and, 403
EBV and, 149
lab findings in, 637
oncogenes and, 230
oncogenic microbes and, 231
Burns
as child abuse sign, 510
DIC and, 643
inhalational injuries and, 222
shock caused by, 292
sumburn, 444
testosterone/methyltestosterone for, 603
Bursitis, prepatellar, 417
Burton line
in lead poisoning, 389
presentation of, 630

Buspirone, 526
for generalized anxiety disorder, 517, 639
Busulfan, 410
pulmonary fibrosis caused by, 254
Busulfan toxicity, 413
as restrictive lung disease, 619
Butorphanol, 499
Butterfly facial rash, 630
Butterfly gliomas, 496

## C

Cl esterase inhibitor deficiency, 199
C3 deficiency, 199
C5a receptor, 378
C5-C9 deficiencies, 199
CA 15-3/CA27-29, as tumor markers, 232
CA 19-9, as tumor marker, 232
CA 125, as tumor marker, 232
Cabergoline, 640
Cachexia, 232
TNF- $\alpha$ and, 200
Café-au-lait spots
aplastic anemia and, 391
causes of, 630
Fanconi anemia as cause, 633
McCune-Albright syndrome as cause, 69
neurofibromatosis type 1 as cause, 71, 495
Caffeine intoxication and withdrawal, 522
Cahill cycle, 93
Caisson disease, 617
Calcific aortic stenosis, 220
Calcification, 220
Calcineurin
cyclosporine and, 212
tacrolimus and, 212
Calcinosis, 437
Calcitonin, 315
medullary thyroid carcinoma production of, 324
for osteoporosis, 426, 640
signaling pathways of, 316
as tumor marker, 232
Calcium
in bone disorders, 428
calcitonin and, 315
in cardiac muscle, 274
in osteomalacia/rickets, 427
for osteoporosis, 640
in Paget disease of bone, 427
PTH and, 314
Vitamin D and, 313
Calcium carbonate, 375
Calcium channel blockers, 298 for angina, 287 as antiarrhythmic drugs, 304 contractility in, 267
cutaneous flushing caused by, 251 gingival hyperplasia caused by, 253 for hypertension, 298
for hypertrophic
cardiomyopathy, 291
for migraine headaches, 494
for Raynaud phenomenon, 437

Calcium channels
autoantibody to, 207
ethosuximide effect on, 500
glucose and, 308
Lambert-Eaton myasthenic syndrome and, 229
myocardial action potential and, 274
opioid effect on, 499
pacemaker action potential and, 275
in smooth muscle contraction, 425
Calcium homeostasis, 313
Calcium oxalate nephrolithiasis, 80
Calcium pyrophosphate deposition disease, 431
Calcium-sensing receptor (CaSR), 336
Calf pseudohypertrophy, 630
Caliciviruses
characteristics of, 151
genomes of, 147
as naked viruses, 147
California encephalitis, 151
Call-Exner bodies, 593, 635
Calluses, as hyperkeratosis, 439
cAMP (cyclic adenosine monophosphate)
cilostazol/dipyridamole effect on, 407
as endocrine hormone messenger, 316
exotoxin effects on, 116
fructose bisphosphatase-2 and, 87
in glycogen regulation, 97
heat-labile/heat-stable toxin effects on, 116
in hyperparathyroidism, 326
PTH effect on, 314
in Vibrio cholerae, 129
CAMP factor, 121
Campylobacter spp.
animal transmission of, 132
bloody diarrhea caused by, 162
morphology of, 109
reactive arthritis and, 433
Campylobacter jejuni, 128
in Gram-negative algorithm, 125
Guillain-Barré syndrome and, 493
Canagliflozin, 335
Canalicular lung development, 606
Cancer
as common cause of death, 45
DIC and, 643
ESR in, 224
incidence of, 228
intron/exon splicing variants and, 55
metastases, common, 233
microRNAs and, 55
mortality of, 228
neoplastic progression, 227
pneumoconioses and, 620
splice site mutations as cause, 52
Cancer drugs
cell cycle, $\mathbf{4 0 8}$
targets, 408

Cancer epidemiology, 228
Candesartan, 559
Candida spp.
amphotericin B for, 182
azoles for, 182
as catalase-positive organism, 112
chronic granulomatous disease and, 209
echinocandins for, 183
in immunodeficient patients, 210
osteomyelitis and, 644
osteomyelitis caused by, 163
tricuspid valve endocarditis and, 293
vulvovaginitis caused by, 164
Candida albicans, 137
HIV and, 160
T cell dysfunction as cause, 208
treatments for, 639
Candidate identification number (CIN) for USMLE exam, 6
Candidiasis
Candida albicans as cause, 137
chronic mucocutaneous, 208
cortisol and, 313
nystatin for, 182
Cannibalism, kuru resulting from, 161
Capillary fluid exchange, 281, 647
Capillary lumen, in blood-brain barrier, 455
Capillary supply in lymph node, 190
Capitate bone, 418
Caplan syndrome, 620
Capsid, viral, 146
Capsules, bacteria, 108
Captain's wheel, and paracoccidioidomycosis, 135
Captopril, 559
Caput medusae, 344
Carbachol, 244
for glaucoma, 498
Carbamazepine
agranulocytosis caused by, 252
aplastic anemia caused by, 252
for bipolar disorder, 515, 638
cytochrome P-450 and, 254
for epilepsy, 500
SIADH caused by, 253
as teratogen, 564
for tonic-clonic seizures, 641
for trigeminal neuralgia, 641
Carbamoyl phosphate, 93
Carbamoyl phosphate synthetase I, 84
Carbamoyl phosphate synthetase II, 84
Carbapenems, 170, 173
for Pseudomonas aeruginosa, 127, 640
Carbidopa, 505
Carbohydrate absorption, 352
Carbon dioxide
exercise and, 615
transport of, 615
Carbonic anhydrase, 615
Carbonic anhydrase inhibitors, 544

Carbon monoxide (CO)
carboxyhemoglobin and, 612
as electron transport inhibitor, 89
inhalational injuries and, 222
toxicity treatment for, 251
Carbon monoxide poisoning, 613
Carbon tetrachloride
as carcinogen, 231
free radical injury and, 221
Carboplatin, 411
toxicities of, 413
Carboxyhemoglobin, 612
Carboxylases, 84
Carboxypeptidase, 352
Carcinoembryonic antigen (CEA), as tumor marker, 232
Carcinogens, 231
griseofulvin as, 183
Carcinoid syndrome, 332
bronchial carcinoid tumors and, 626
presentation of, 631
somatostatin for, 336
treatments for, 639
Carcinoid tumors
octreotide for, 375
of stomach, 356
Carcinoma in situ, 227
Carcinomas
of bone, 428
colorectal, 364
hyperparathyroidism and, 645
invasive, 227
metastases of, 233
nomenclature of, 228
in primary hyperparathyroidism, 325
of thyroid, 324
Cardiac arrest, caused by hypermagnesemia, 542
Cardiac cycle, 270
Cardiac death, from cocaine use, 522
Cardiac depression, 298
Cardiac function curves, 269
Cardiac glycosides, $\mathbf{3 0 1}$
Cardiac looping, 262
Cardiac muscle, in nervous system, 241
Cardiac output, 266
equation for, 647
exercise and, 615
in pregnancy, 580
variables in, 267
V/Q mismatch and, 614
Cardiac tamponade, 294
jugular venous pulse in, 270
in MI, 288
pulse pressure in, 266
shock caused by, 292
Cardiac troponin I, 289
Cardiac tumors, 295
key associations, 642
Cardinal ligament, 574
Cardinal veins, 262
Cardiobacterium spp., 293
Cardiogenic shock, 292
MI as cause, 288
pulse pressure in, 266

Cardiolipin, 207
Cardiomegaly, in Pompe disease, 99
Cardiomegaly with apical trophy, 635
Cardiomyopathy, 291
Chagas disease as cause, 142
heart failure caused by, 292
Kussmaul sign in, 295
S4 heart sound and, 645
sudden cardiac death caused by, 287
wet beriberi as cause, 631
Cardiotoxicity
doxorubicin as cause, 410
drugs causing, 413
methylxanthines as cause, 628
trastuzumab as cause, 413
Cardiovascular drugs
naming conventions for, 255
reactions to, 251
Cardiovascular system, 262-302
anatomy, 265
embryology, 262-264
pathology, 282-296
pharmacology, 298-304
physiology, 266-280
sclerosis of, 437
Carditis
Lyme disease as cause, 130
rheumatic fever as cause, 120, 294
Carmustine, 410
in cell cycle, 408
pulmonary fibrosis caused by, 254
Carnitine, 101
Carnitine acyltransferase I, 84
Carotid artery, 568
atherosclerosis in, 286, 645
bifurcation of, 609
in cavernous sinus, 481
giant cell arteritis and, 296
Carotid sinus, 279
Carpal bones, 418
Carpal tunnel syndrome, 418
lunate disclocation as cause, 418
median nerve injury as cause, 419
rheumatoid arthritis as cause, 430
Carteolol, 498
Cartilage
collagen in, 61
fluoroquinolones, damage caused by, 253
Carvedilol, 249, 303
Casal necklace, 78
Caseating necrosis, 217
granulomatous diseases and, 223
Case-control studies, 32, 34
Caspases, in apoptosis, 216
Caspofungin, 181, 183
for Candida albicans, 137, 639
Casts in urine, $\mathbf{5 4 4}$
Catabolism, peroxisome and, 59
Catalase, 221
Catalase-positive organisms, 112
Cataracts, 483
diabetes mellitus as cause, 330
galactosemia as cause, 91
glucocorticoids as cause, 212, 336
muscular dystrophy as cause, 73
prednisone as cause, 412
rubella as cause, 165
sorbitol as cause, 92
Catecholamines
adrenal medulla secretion of, 306
amphetamines and, 246
contractility, effect on, 267
ephedrine and, 246
pacemaker action potential and, 275
pheochromocytoma effect on, 320
synthesis of, 95
Cats, as disease vectors, 140, 163, 136, 169
Cat scratch disease, 132
as granulomatous disease, 223
Caudal fold closure defects, 338
Caudal medulla, effects of stroke on, 467
Caudal regression system, 564
Caudate, effect of Huntington disease on, 71, 462, 630
Cause-and-effect diagram, 46
Cavernous hemangiomas, 368
Cavernous sinus, 470, 481
CCR5 protein
HIV and, 158
maraviroc and, 186
as receptor, 150
CD3 protein
cells present on, 202
regulatory T cells and, 194
CD4 protein
cells present on, 202
helper T cells and, 194
as receptor, 150
regulatory T cells and, 194
CD4+ T cells, 193
in HIV, 159
CD 5 protein, 402
CD8 protein
cells present on, 202
cytotoxic T cells and, 194
CD8+ T cells, 193
CD14 protein, 202
CD16 protein, 202
CD18 protein, 209
CD19 protein, 202
CD20 protein
cells present on, 202
in chronic lymphocytic leukemia, 402
CD21 protein
cells present on, 202
as receptor, 150
CD25 protein
cells present on, 202
regulatory T cells and, 194
CD28 protein, 202
CD34 protein
cells present on, 202
in leukocyte extravasation, 221
CD40L protein, 202
CD40 protein, 202
CDKN2A gene, 230
CEA tumor marker, 364
Cefaclor, 172

Cefazolin, 170
characteristics of, 172
as prophylaxis, 181
Cefepime, 170
characteristics of, 172
for Pseudomonas aeruginosa, 127
Cefotaxime, 172
Cefoxitin, 170
characteristics of, 172
Ceftaroline, 170
characteristics of, 172
for MRSA, 181
for Staphylococcus aureus, 641
Ceftazidime
characteristics of, 172
for Pseudomonas aeruginosa, 127
Ceftriaxone, 170
characteristics of, 172
for gonococci, 126
for Haemophilus influenzae, 126
for meningitis, 163
for meningococci, 126
for Neisseria gonorrhoeae, 640
for Neisseria meningitidis, 640
as prophylaxis, 181
for typhoid fever, 129
Cefuroxime, 172
Celecoxib, 254, 447
arachidonic acid pathway and, 446
Celiac artery, in chronic mesenteric ischemia, 362
Celiac disease, 358
autoantibody associated with, 207
biliary cirrhosis and, 371
dermatitis herpetiformis and, 443
HLA genes and, 193
lab findings in, 635
Celiac lymph nodes, 190
Celiac trunk, 342, 343
Cell cycle phases, 58
Cell envelope, bacterial, 108
Cell injury, 218
Cell lysis, 542
Cell membrane
in apoptosis, 216
blebbing, in cell injury, 218
Cell surface proteins, 202
Cell trafficking, 59
Cellular biochemistry, 58-64
Cellular crescents in Bowman capsule, 635
Cellular inflammation, 219
Cellulitis, 442
Streptococcus pyogenes as cause, 120
Cell walls
bacterial, 108
bacteria lacking, 109
as bacterial structure, 108
Central canal of spinal cord, 472
Central clearing, caused by tinea corporis, 136
Central diabetes insipidus, 328
Central nervous system (CNS), 241
anesthetic principles for, 502
injury to, as cause of shock, 292
nitrosoureas, effect on, 410
origins of, $\mathbf{4 5 0}$

Central nervous system (CNS) depression
barbiturates as cause, 501
Central pontine myelinolysis. See Osmotic demyelination syndrome
Central post-stroke pain
syndrome, 468
Central retinal artery occlusion, 486
presentation of, 630
Central sleep apnea, 621
Central sulcus, 462
Central tendon, 609
Central vein, 218
Central vertigo, 495
Centriacinar emphysema, 618
Centrilobular necrosis, 231
Centromeres, 207
Cephalexin, 172
Cephalosporins, 170, 172
disulfiram-like reaction caused by, 254
for enterococci, 639
organisms not covered by, 172
pseudomembranous colitis caused by, 252
for Pseudomonas aeruginosa, 127
for Streptococcus pneumoniae, 641
Ceramide, 100
Ceramide trihexoside, 100
Cerebellar hemisphere lesions, 464
Cerebellar tonsillar herniation, 642
Cerebellar vermis lesions, 464
Cerebellum, 459
development of, 450
Cerebral aqueduct of Sylvius, 471
Cerebral arteries, 466
in cavernous sinus, 481
Cerebral cortex
functions of, 462
motor and sensory areas in, 465
Cerebral edema
diabetic ketoacidosis as cause, 331
hyperammonemia as cause, 93
therapeutic hyperventilation for, 465
Cerebral hemispheres, 450
Cerebral infarct, 513
Cerebral peduncle, 477
Cerebral perfusion, $\mathbf{4 6 5}$
Cerebral perfusion pressure, 465
Cerebrospinal fluid (CSF), 471
Guillain-Barré syndrome as cause, 493
in poliomyelitis, 475
yellowish tint, 638
Cerebrovascular disease, in diabetes mellitus, 330
Certolizumab, 214
Ceruloplasmin
free radical elimination by, 221
in Wilson disease, 637
Cervical cancer, 591, 643
carcinogens causing, 231
epidemiology of, 590
HIV and, 160
hydronephrosis caused by, 550
oncogenic microbes and, 231
papillomaviruses as cause, 148
Cervical dysplasia, 591
Cervical lymphadenopathy, 630
Cervical lymph nodes, 190
Cervical rib, 420
Cervicitis
chlamydia as cause, 167
gonorrhea as cause, 167
Cervix
anatomy of, 574
lymphatic drainage of, 573
pathology of, 591
Cestodes, 144
Cetirizine, 627
Cetuximab, 214, 412
CFTR gene
chronic pancreatitis and, 373
cystic fibrosis and, 72
cGMP (cyclic guanosine monophosphate)
atrial natriuretic peptide and, 279
as endocrine hormone messenger, 316
hydralazine and, 298
in male sexual response, 575
PDE-5 inhibitors, effect on, 603
in smooth muscle contraction, 425
Chagas disease, 142
achalasia caused by, 354
cardiomyopathy caused by, 291
lab findings in, 635
Chancroids, 167
Chandelier sign, 167
Chaperone protein, 57
Charcoal yeast extract culture, 111
for Legionella pneumophila, 127
Charcot-Bouchard microaneurysms, 468
Charcot joints
in syphilis, 131
tabes dorsalis and, 474
Charcot-Leyden crystals, 618
Charcot-Marie-Tooth disease, 493
Charcot triad, 492
Charging, tRNA, 56
Chédiak-Higashi syndrome, 209
lab findings in, 636
Cheilosis, 78
Chelation
for hemochromatosis, 371
for iron poisoning, 396
Chemical tracheobronchitis, 222
Chemokines, 200
Chemoreceptors, 279
Chemotherapy
acute myelogenous leukemia and, 402
for Ewing sarcomas, 429
myelodysplastic syndromes caused by, 401
neutropenia caused by, 394
for osteosarcomas, 429
for pancreatic cancer, 373
readmissions caused by, 45
Chemotoxicities, 413

Cherry hemangiomas, 441
Cherry-red spot on macula, 486
Niemann-Pick disease as cause, 100, 632
Tay-Sachs disease as cause, 100, 630
Chest pain
angina as cause, 630
Dressler syndrome as cause, 630
panic disorder as cause, 517
pneumothorax as cause, 623
pulmonary embolism as cause, 617
unstable angina as cause, 630
Chest wall, 611
Chest X-rays
aortic dissections on, 287
asthma on, 618
balloon heart on, 291
lung abscesses on, 624
notched ribs on, 283
Wegener granulomatosis on, 296
Chiari I malformation, 452
Chiari II malformation, 451, 642
Chickenpox
live attenuated vaccine for, 146
rash caused by, 166
VZV as cause, 149
Child abuse, 510
confidentiality exceptions and, 41
osteogenesis imperfecta and, 63
Childbirth
Budd-Chiari syndrome and, 368
butorphanol for pain relief in, 499
contraction frequency reduction in, 602
C-section, neonatal flora after, 161
endometritis after, 594
Graves disease and, 323
low birth weight, 581
misoprostol for inducing, 375
oxytocin for induction of, 336
postpartum mood disturbances, 516
preterm, as common cause of death, 45
progesterone levels after, 577
pudendal block during, 422
Sheehan syndrome after, 329
stress incontinence and, 551
Childhood disorders, 511
Child neglect, 510
Children
developmental milestones in, 43
Chimeric monoclonal $A_{b}, 255$
Chipmunk facies, 389
Chi-square tests, 39
Chlamydia spp., 134
as atypical organism, 162
Giemsa stain for, 110
as intracellular organism, 112
macrolides for, 176
morphology of, 109
pneumonia caused by, 624
reactive arthritis and, 433
sulfonamides for, 177
tetracyclines for, 175
Chlamydia, 167

Chlamydia trachomatis, 134
pelvic inflammatory disease caused by, 167, 644
pneumonia caused by, 162
serotypes, 134
STDs caused by, 645
as STI, 167
treatments for, 639
UTIs caused by, 552
Chlamydophila pneumoniae, 134
pneumonia caused by, 162
Chlamydophila psittaci, 134
animal transmission of, 132
Chloasma, 439
Chloramphenicol, 170, 175
aplastic anemia caused by, 252, 391
gray baby syndrome caused by, 252
in pregnancy, avoiding, 187
as protein synthesis inhibitors, 174
for Rickettsia rickettsii, 640
Chlordiazepoxide, 501
for alcohol withdrawal, 524
Chlorhexidine, 187
Chloride channels, in cystic fibrosis, 72
Chloroquine, 183
for malaria, 141, 640
Chlorpheniramine, 627
Chlorpromazine, 525
Chlorpropamide, 334
Chlorthalidone, 558
Chocolate agar, 111
Haemophilus influenzae culture on, 126
Chocolate-colored blood, 612
Chocolate cysts, 592, 594, 635
Cholangiocarcinomas
Clonorchis sinensis and, 144, 145
hyperbilirubinemia caused by, 369
oncogenic microbes and, 231
sclerosing cholangitis and, 371
Cholangitis, 372
Cholecalciferol, 313. See also Vitamin D
Cholecystectomy, 372
for porcelain gallbladder, 372
Cholecystitis, 372
Cholecystokinin (CCK), 350
location of, 351
Cholelithiasis, 347, 372
acute pancreatitis caused by, 373
biliary cirrhosis and, 371
Crohn disease as cause, 359
hyperbilirubinemia caused by, 369
octreotide and, 375
pancreatitis and, 644
presentation of, 631
somatostatinomas as cause, 332
ursodiol for, 376
Cholera toxin, 116
lysogenic phage and, 114
Cholestasis serum markers, 366
Cholesteatomas, 482

Cholesterol
absorption of, 300
in bile, 352
in cholelithiasis, 372
synthesis of, 84, 103
vitamin $B_{3}$ effect on, 78
Cholesterol desmolase, 312
Cholesterol ester transfer protein
(CETP), 104
Cholestyramine, 300
Choline, 243
Cholinergic agonists, 255
Cholinergic drugs, 243
Cholinergic effects, 301
Cholinesterase inhibitors
diarrhea caused by, 252
poisoning from, 244
Cholinomimetic agents, 244, 498
Chondrocalcinosis, 431
Chondrocytes
in achondroplasia, 426
bone formation and, 425
in osteoarthritis, 430
Chondrosarcomas, 429
Chordae rupture, heart murmur caused by, 273
Chorea, 461
Huntington disease as cause, 630
Choreiform movements
Huntington disease as cause, 71
Choriocarcinomas, 587
hCG in, 580
lab findings in, 636
methotrexate for, 409
of testicles, 598
theca-lutein cysts and, 592
Chorionic plate, 566
Chorionic villi
in hydatidiform moles, 587
in placenta, 566
Chorioretinitis
congenital toxoplasmosis as cause, 630
Toxoplasma gondii as cause, 165 in toxoplasmosis, 140
Choristomas, 228
Choroid, 482
Choroiditis, 484
Chromaffin cells, 306
embryologic derivatives of, 563
pheochromocytomas and, 320
Chromatin, in multiple myeloma, 401
Chromatin structure, 48
Chromatolysis, 220
Chromogranin A, 626
Chromosomal disorders, 75
karyotyping for, 67
Chromosomal translocations, 75,

## 403

Chronic adrenal insufficiency, 379
Chronic atrophic gastritis, 642
Chronic bronchitis, 618
presentation of, 632
Chronic closure, 484
Chronic gastritis, 356
Chronic gout, 639

Chronic granulomatous disease, 209, 223
IFN- $\gamma$ for, 187
key associations, 643
recombinant cytokines for, 213
respiratory burst in, 201
Chronic inflammation, 219
Chronic ischemic heart disease, 287
Chronic kidney disease
in anemia taxonomy, 388
erythropoietin in, 541
focal segmental glomerulosclerosis and, 548
hypertension as cause, 284
Chronic lymphocytic leukemia (CLL), 402
key associations, 644
lab findings in, 638
prednisone for, 412
rituximab for, 214, 412
Chronic mesenteric ischemia, 362
Chronic mucocutaneous candidiasis, 208
Chronic myelogenous leukemia (CML), 402
basophilia caused by, 379
busulfan for, 410
chromosomal translocations and, 403
death caused by, 642
hydroxyurea for, 411
imatinib for, 412
key associations, 644
oncogenes and, 230
Philadelphia chromosome and, 644
treatments for, 639
Chronic myeloproliferative disorders, 404
Chronic obstructive pulmonary disease (COPD)
albuterol for, 246
$\beta$-blockers and, 249
cholinomimetic agents and, 244
muscarinic antagonists for, 245
pulmonary hypertension and, 645
salmeterol for, 246
Chronic pancreatitis, 373
key associations, 644
pancreatic cancer and, 373
pancreatic insufficiency caused by, 358
Chronic placental insufficiency, 530
Chronic pyelonephritis, 552
lab findings in, 638
Chronic renal disease, 590
Chronic renal failure, 325, 553
Chronic respiratory disease, as common cause of death, 45
Chronic thromboembolic pulmonary hypertension, 622
Chronic transplant rejection, 211
Churg-Strauss syndrome, 297
autoantibody associated with, 207
as granulomatous disease, 223
lab findings in, 634
Chvostek sign, 542, 631
in hypoparathyroidism, 325

Chylomicrons, 105
lipid transport and, 104
Chylothorax, 623
Chymotrypsin, 352
Cidofovir, 185
for CMV, 639
Cigarette smoke, as carcinogen, 231
Ciguatoxin, 250
Cilastatin
imipenem and, 173
seizures caused by, 253
Ciliary body, 482
Ciliary ganglia, in pupillary contraction, 487
Cilia structure, 60
Ciliated cells, 608
Cilostazol, 407
Cimetidine, 374
cytochrome P-450 and, 254
gynecomastia caused by, 595
Cinacalcet, $\mathbf{3 3 6}$
Cinchonism
Class IA antiarrhythmic as cause, 302
as drug reaction, 253
Cingulate gyrus, 458
Cingulate herniation, 498
Ciprofloxacin, 170, 178
for Crohn disease, 359
cytochrome P-450 and, 254
for Mycobacterium aviumintracellulare, 179
as prophylaxis, 181
for Pseudomonas aeruginosa, 127
Circadian rhythm
hypothalamus control of, 456
sleep physiology and, 457
Circle of Willis, 466
saccular aneurysms and, 468
Circulatory system
fetal, 264
in kidneys, 532
Circumcision, and penile cancer, 597
Cirrhosis, 365
$\alpha_{1}$-antitrypsin deficiency as cause, 369
alcoholic, 367
autoantibody associated with, 207
cholelithiasis and, 372
cystic fibrosis as cause, 72
esophageal varices and, 354
fresh frozen plasma for, 399
fructose intolerance as cause, 91
as granulomatous disease, 223
gynecomastia caused by, 595
hemochromatosis as cause, 371
hepatocellular carcinomas and, 368
liver cancer and, 645
loop diuretics for, 557
non-alcoholic fatty liver disease and, 367
pleural effusion caused by, 623
portal hypertension caused by, 365
Wilson disease as cause, 371
Cirrhotic liver, 643
Cisplatin, 411
acute tubular necrosis caused by, 554
in cell cycle, 408
Fanconi syndrome caused by, 538
targets of, 408
toxicities of, 413
toxicity caused by, 254
Citalopram, 527
Citrate synthase, in metabolic pathways, 85
Citrobacter spp.
in Gram-negative algorithm, 125
lactose fermentation by, 126
Citrulline, in urea cycle, 93
c-KIT gene, 230
CKK hormone, 319
CK-MB
in myocardial infarction, 287, 289
Cladribine, 409
in cell cycle, 408
for hairy cell leukemia, 402
Clara cells, 607
in respiratory tree, 608
Clarithromycin, 170, 176
for Helicobacter pylori, 130
as HIV prophylaxis, 181
for Mycobacterium aviumintracellulare, 179
in pregnancy, avoiding, 187
Clasp knife spasticity, 473
Classical conditioning, $\mathbf{5 0 8}$
Clathrin, 59
Claudication
atherosclerosis as cause, 286
Buerger disease as cause, 296
cilostazol/dipyridamole for, 407
giant cell arteritis as cause, 296
Clavulanate, 126
Clavulanic acid, 171
Claw hand, 421
Klumpke palsy as cause, 420
Clearance of drugs, 237, 646
Clear cell adenocarcinomas, 591
DES and, 601
of vagina, 642
Cleft lip, 570
Cleft palate, 570
22 qll deletion syndromes as cause, 76
Patau syndrome as cause, 74,632
Pierre Robin sequence as cause, 569
as teratogenic effect, 564
vitamin A overdose as cause, 564
Clevidipine, 298
for hypertensive emergency, 298
Clindamycin, 170, 175
for bacterial vaginosis, 132
Clostridium difficile and, 122
for endometritis, 594
for lung abscesses, 624
vs. metronidazole, 175
as protein synthesis inhibitors, 174
pseudomembranous colitis caused by, 252
Clinical reflexes, 476
Clinical trials, $\mathbf{3 2}$
Clinical vignette strategies for USMLE Step 1 exam, 20

Clitoris, 572
"Clock-face" chromatin, 401
Clofazimine
for Hansen disease, 125
for Mycobacterium leprae, 179
Clomiphene, 601
hot flashes caused by, 252
for infertility, 640
reproductive hormones and, 600
Clomiphene citrate, 591
Clomipramine, 527
for obsessive-compulsive disorder, 517
Clonidine, 247
for Tourette syndrome, 511
Cloning methods, as laboratory techniques, 67
Clonorchis sinensis, 144
diseases associated with, 145
as oncogenic microbe, 231
Clonus, 527
Clopidogrel, 407
for acute coronary syndromes, 290
for ischemic stroke, 470
thrombogenesis and, 385
Closed-angle glaucoma, 484
pilocarpine for, 244
Clostridium spp., 122
as anaerobic organism, 111
in Gram-positive algorithm, 118
morphology of, 109
Clostridium botulinum, 122
exotoxin produced by, 116
food poisoning caused by, 161
as spore-forming bacteria, 114
therapeutic uses of, 122
treatments for, 639
Clostridium difficile, 122
antibiotic use and, 122
metronidazole for, 178
as nosocomial infection, 168
presentation of, 630
proton pump inhibitors and, 374
as spore-forming bacteria, 114
treatments for, 639
vancomycin and, 173
watery diarrhea caused by, 162
Clostridium perfringens, 122
clindamycin for, 175
exotoxin produced by, 117
food poisoning caused by, 161
as spore-forming bacteria, 114
watery diarrhea caused by, 162
Clostridium tetani, 122
exotoxin produced by, 116
as spore-forming bacteria, 114
treatments for, 639
Clotrimazole, 181, 182
Clotting factors, 81
Clozapine, 525
agranulocytosis caused by, 252
Clubbing
bronchiectasis as cause, 618
Eisenmenger syndrome as cause, 283
Clubbing of nails, in cystic fibrosis, 72 Club cells, 607

Clue cells, 638
in bacterial vaginosis, 132,164
Cluster A personality disorders, 519
Cluster B personality disorders, 519
Cluster C personality disorders, 519
Cluster headaches, 494
triptans for, 505
c-MYC gene, 230
CNS lymphomas
HIV and, 160
oncogenic microbes and, 231
CNS stimulants, 524
Coagulation, 81
Coagulation cascade, $\mathbf{3 8 4}$
Coagulation disorders, 396
Coagulation pathways, 383
Coagulative necrosis, 217
MI as cause, 288
Coagulopathy postpartum hemorrhage as cause, 589
preeclampsia as cause, 590
Coal workers' pneumoconiosis, 620
CoA production, 78, 83
Coarctation of aorta, 283, 284, 585
Cobblestone mucosa, in Crohn disease, 359
Cocaine, 246
angina caused by, 287
$\beta$-blockers and, 249
cardiomyopathy caused by, 291
coronary vasospasm caused by, 251
intoxication and withdrawal, 522
liver processing of, 346
as local anesthetic, 503
as noradrenergic drug, 243
placental abruption and, 588
pulmonary arterial hypertension caused by, 622
as teratogen, 564
Coccidioides spp.
amphotericin B for, 182
itraconazole for, 182
silver stain for, 110
Coccidioidomycosis, 135
erythema nodosum and, 444
Coccobacilli, 125
Coccus bacteria, 109
antibiotic tests for, 118
Gram stain identification of, 118
Cochlea, 481
Codeine, 499
Codman triangle, 429, 637
Codominance, 68
Codons, start and stop, 53
"Coffee bean" nuclei of Brenner tumors, 592
Cognitive behavioral therapy (CBT) for acute stress disorder, 517 for ADHD, 511, 638
for adjustment disorder, 517
for anxiety disorders, 516
for atypical depression, 515
for binge eating disorder, 520
for body dysmorphic disorder, 517
for conduct disorder, 511
for generalized anxiety disorder, 517
for major depressive disorder, 515
for obsessive-compulsive disorder, 517
for oppositional defiant disorder, 511
for panic disorder, 517
for phobias, 517
for postpartum depression, 516
for PTSD, 517
for separation anxiety disorder, 511
Cohort studies, 32
relative risk and, 34
Coin lesion on CXR, 626
Colchicine
for acute gout attack, 638
agranulocytosis caused by, 252
for calcium pyrophosphate deposition disease, 431
diarrhea caused by, 252
for gout, 431, 448
microtubules and, 60
myopathy caused by, 253
Cold agglutinin disease, 632
Cold agglutinins, 134
Cold autoimmune hemolytic anemia, 393
Cold intolerance
hypothyroidism as cause, 631
Sheehan syndrome as cause, 632
Colectomy, for ulcerative colitis, 359
Colesevelam, 300
Colestipol, 300
Colistin B, 127
Colitis, 160
Collagen, 61
osteoblasts and, 425
in scar formation, 222
synthesis and structure, 62
in wound healing, 223
Collagenase, in neutrophils, 378
Collapsing pressure, 607
Collecting tubules
defects in, 538
diuretics and, 556
in nephron physiology, 537
potassium-sparing diuretics and, 558
Colles fracture, 426
Colliculi, 477
Colon
histology of, 341
ischemia in, 218
Colon cancer
5-fluorouracil for, 409
familial adenomatous polyposis and, 71
irinotecan/topotecan for, 411
lab findings in, 638
liver metastases in, 644
metastases of, 233
oncogenes and, 230
Staphylococcus gallolyticus and, 121
tumor suppressor genes and, 230
Colonic ischemia, 362
Colonic polyps, 363
Colorado tick fever, 151

Color blindness, 180
Colorectal cancer, 364
bevacizumab for, 214, 412
cetuximab for, 214, 412
familial adenomatous polyposis and, 363
incidence/mortality of, 228
juvenile polyposis syndrome as cause, 363
lab findings in, 635
Lynch syndrome, 53
molecular pathogenesis of, $\mathbf{3 6 4}$
tumor suppressor genes and, 230
Colovesical fistulas, 360
Coltivirus, 151
Coma
brain lesions causing, 464
hepatic encephalopathy caused by, 367
hyperosmolar hyperglycemia nonketotic syndrome as cause, 332
hyponatremia as cause, 542
medium-chain acyl-CoA dehydrogenase deficiency as cause, 101
rabies as cause, 155
Reye syndrome as cause, 366
thyroid storm as cause, 323
Trypanosoma brucei as cause, 140
Combined pathway for coagulation, 383
Comedocarcinomas, 596
Commaless, nonoverlapping genetic code, 50
Comma-shaped rods, 125
Common bile duct, 340,347
Common cold, 152
Common peroneal nerve, 422
Common variable immunodeficiency (CVID), 208
Communicating hydrocephalus, 471
Competence, in bacterial genetics, 114
Competitive agonists, 240
Competitive inhibitors, 236
Complement, 199
binding of, 196
disorders of, 199
innate immunity and, 192
Complement activation, 199
by antibodies, 196
Arthus reaction as cause, 205
Complementation, viral, 146
Complex renal cysts, 555
Compliance (lungs), 611
Complications of pregnancy, 588589
Comprehensive Basic Science Examination (CBSE), 10
Comprehensive Basic Science SelfAssessment (CBSSA), 11
Computer-Based Test (CBT)
exam schedule for, 7-8
simulation test for, 5
structure of, 3
walkthrough of, 3

COMT inhibitors, 504
Conditioning, psychological, 508
Conduct disorder, 511 as antisocial personality disorder precursor, 519
Conducting zone of respiratory tree, 608
Conduction aphasia, 463
Conductive hearing loss, 481
Condylomata acuminata, 440
IFN- $\alpha$ for, 187
as STI, 167
Condylomata lata
presentation of, 634
syphilis as cause, 131,167
Confidence intervals, 38
Confidentiality, 41
Confluence of the sinuses, 470
Confounding bias, in studies, 36
Congenital adrenal hyperplasia, 642
Congenital adrenal hyperplasias, 312
Congenital conjugated hyperbilirubinemia, 642
Congenital heart disease, 282-283
disorders associated with, $\mathbf{2 8 4}$
Down syndrome as cause, 74
Edwards syndrome as cause, 74
key associations, 642
maternal phenylketonuria as cause, 95
Patau syndrome as cause, 74 pulmonary arterial hypertension caused by, 622
rubella as cause, 165
Turner syndrome as cause, 634
Congenital hydroceles, 598
Congenital hypothyroidism, 322 cretinism and, 642
Congenital long QT syndrome, 277
Congenital lung malformations, 606
Congenital nevus, 438
Congenital rubella
cardiac defects associated with, 284
heart murmur caused by, 273
Congenital solitary functioning kidney, 531
Congenital syphilis, 131
Congenital toxoplasmosis, 140 presentation of, 630
Congo red stain, 225
Conivaptan, 336
for SIADH, 328, 640
Conjoined tendon, 348
Conjugate vaccines, 112
Conjugation
in bacterial genetics, 114
Conjunctival infections
Kawasaki disease as cause, 296
Conjunctivitis, 484
adenoviridae as cause, 148
antimicrobial prophylaxis for, 181
chlamydia as cause, 167
chlamydiae as cause, 134
gonococci as cause, 126
Haemophilus influenzae as cause, 126

LMN facial nerve palsy as cause, 634
measles as cause, 631
in reactive arthritis, 433
Connective tissue diseases
aortic dissection and, 287
pulmonary arterial hypertension caused by, 622
thoracic aortic aneurysms and, 286
Connective tissue drug reactions, 253
Conn syndrome, 318
lab findings in, 636
Consent, 40
Consolidation (lung finding), 622
Constipation
aluminum hydroxide as cause, 375
anal fissures caused by, 345
antipsychotic drugs as cause, 525
calcium channel blockers as cause, 298
Hirschsprung disease as cause, 361
hypothyroidism as cause, 321
irritable bowel syndrome as cause, 360
loperamide as cause, 376
ondansetron as cause, 376
opioids as cause, 499
osmotic laxatives for, 375
ranolazine as cause, 299
vincristine as cause, 411
Constrictive pericarditis
jugular venous pulse in, 270
key associations, 642
Contact activation pathway for coagulation, 383
Contact dermatitis, 205
Contemplation stage of overcoming addiction, 521
Continuous heart murmurs, 273
Contraception
combined, 602
copper intrauterine device for, 602
emergency, 602
parental consent for minors and, 40
progestins for, 602
Contractility, in cardiac output, 267
Contraction alkalosis, 72
Conversion disorder, 518
Convulsions, vitamin $\mathrm{B}_{6}$ deficiency as cause, 78
Coombs hemolysis, 247
Coombs-positive hemolytic anemia, 393
as drug reaction, 252
Coombs test, 204, 393
COPI/COPII, in cell trafficking, 59
Copper deficiency, 389
Copper intrauterine device, $\mathbf{6 0 2}$
Copper toxicity, 251
Copy number variations (CNV), 66
Cord factor, in mycobacteria, 124
Cori cycle, 93
Cori disease, 99
presentation of, 632

Cornea, 482
collagen in, 61
Kayser-Fleischer rings in, 631
Corneal arcus
familial hypercholesterolemia as cause, 71, 105
hyperlipidemia as cause, 285
Corneal reflex, 479
Corneal vascularization, 78
Corniculate cartilage, 569
Coronary aneurysms, 630
Coronary artery
anatomy of, $\mathbf{2 6 5}$
atherosclerosis in, 286, 645
occlusion of, 265
Coronary artery disease
atrial fibrillation and, 278
diabetes mellitus as cause, 330
HMG-CoA reductase inhibitors for, 300
hormonal contraception contraindication, 602
hypertension as cause, 284
menopause as cause, 582
sudden cardiac death caused

## by, 287

Coronary sinus, development of, 262
Coronary steal syndrome, 287
Coronary vasospasm, 251
Coronaviruses
characteristics of, 151
genomes of, 147
Cor pulmonale, 613, 645
bronchitis as cause, 618
heart failure and, 292
pneumoconioses and, 620
Corpus albicans, 579
Corpus cavernosum
female homolog of, 572
lymphatic drainage of, 573
Corpus luteum, 579
hCG and, 580
progesterone production in, 577
Corpus spongiosum, 572
Correct results, in statistical hypothesis testing, 38
Corticobulbar tract, 467
Corticospinal tract, 467
Corticosteroids
for asthma, 628
cataracts and, 483
for Crohn disease, 359, 639
Cushing syndrome caused by, 317, 642
for facial nerve palsy, 480
for giant cell arteritis, 296
hyperglycemia caused by, 252
for hypopituitarism, 329
as immunosuppressants, 212
lymphopenia caused by, 394
for microscopic polyangiitis, 296
for minimal change disease, 548
neutrophilia caused by, 394
osteonecrosis caused by, 427
osteoporosis caused by, 253
pancreatitis caused by, 252
for polyarteritis nodosa, 296
for polymyalgia rheumatica, 435
for syndrome of apparent mineralocorticoid excess, 538
for Takayasu arteritis, 296
targets of, 213
for thyroid storm, 323
for Wegener granulomatosis, 296, 639
Corticotroph hyperplasia, 496
Corticotropin-releasing hormone (CRH), 309
adrenal cortex regulation of, 306
cortisol regulation, 313
Cushing syndrome and, 317
signaling pathways of, 316
Cortisol, 313
adrenal cortex secretion of, 306
congenital adrenal hyperplasias and, 312
in Cushing syndrome, 317
in primary adrenal insufficiency, 318
signaling pathways for, 316
Cortisone, 446
Corynebacterium spp.
in Gram-positive algorithm, 118
morphology of, 109
Corynebacterium diphtheriae, 123
culture requirements for, 111
exotoxin produced by, 116
in unvaccinated children, 169
Coryza, in measles, 631
Cough
ACE inhibitors as cause, 254, 559
asthma as cause, 618
bronchitis as cause, 618
gastroesophageal reflux disease as cause, 354
lung cancer as cause, 626
opioids for, 499
Wegener granulomatosis as cause, 296
Councilman bodies, 636
yellow fever as cause, 152
Countertransference, 508
Courvoisier sign, 632
pancreatic cancer as cause, 373
Cowdry type A bodies, 636
Cowper gland, 575
Cowpox, 148
Coxiella spp., 112
Coxiella burnetii
animal transmission of, 132
endocarditis caused by, 293
Q fever caused by, 133
as spore-forming bacteria, 114
Coxsackievirus, 151
acute pericarditis caused by, 294
as picornavirus, 152
Coxsackievirus type A, 166
rash in, 133
Coxsackievirus type B
cardiomyopathy caused by, 291
myocarditis and, 644
C-peptide
insulin and, 308
in insulinomas, 332

## Cranial nerves, 479

lst (olfactory), $\mathbf{4 7 9}$
location in brain stem, 477
2nd (optic), 479
embryologic derivatives of, 563
in eye anatomy, 482
location in brain stem, 477
Marcus Gunn pupils and, 487
3rd (oculomotor), 479
in cavernous sinus, 481
location in brain stem, 477
ocular motility and, 488 palsy of, 469, 489 in pupillary contraction, 487
4th (trochlear), 479
in cavernous sinus, 481
location in brain stem, 477
ocular motility and, 488 palsy of, 489
5th (trigeminal), 479
as branchial arch derivative, 569
lesion in, 480
location in brain stem, 477 migraine headaches and, 494 neuralgia of, 494 in tongue, 452
6th (abducens), 479
location in brain stem, 477
ocular motility and, 488
palsy of, 489
7th (facial), 479
as branchial arch derivative, 569
lesions in, $\mathbf{4 8 0}$
location in brain stem, 477
in tongue, 452
8th (vestibulocochlear), 479
acoustic neuromas and, 453
location in brain stem, 477 schwannomas and, 496
9th (glossopharyngeal), 279, 479
as branchial arch derivative, 569
location in brain stem, 477 in tongue, 452
10th (vagus), 279, 479
as branchial arch derivative, 569
lesion in, 480
location in brain stem, 477
in tongue, 452
11th (accessory), 479
lesion in, 480
location in brain stem, 477
12th (hypoglossal), 479 lesion in, 480
location in brain stem, 477 in tongue, 452
impingement of, 426
lesions of, 480
nuclei of, 478
pathways for, 478
reflexes, afferent/efferent for, 479
Craniopharyngiomas, 497, 563, 642
hypopituitarism caused by, 329
Craniotabes, 427
C-reactive protein (CRP)
as acute-phase reactants, 198
innate immunity and, 192
in osteomyelitis, 163
Creatine, 94
Creatine kinase, 186
Creatine phosphate, 103

## Creatinine

ACE inhibitor effect on, 559
in acute renal failure, 553
glomerular filtration rate and, 534
in nephritic syndrome, 545
in proximal convoluted tubules, 539
Creatinine clearance, 534
Cre-lox system, 68
Cremasteric muscle and fascia, 348
Cremaster reflex, 476
Crepitus, in necrotizing
fasciitis, 442
Crescentic glomerulonephritis, 635
CREST syndrome, 437
autoantibody associated with, 207
biliary cirrhosis and, 371
Raynaud phenomenon and, 437
Cretinism, 322
key associations, 642
Creutzfeldt-Jakob disease, 161, 491
dementia caused by, 513
"Crew cut" on skull X-ray, 389, 392, 636
CRH. See Corticotropin-releasing hormone (CRH)
Cribriform plate, 478
Cricoid cartilage, 569
Cricothyroid muscle, 569
Cri-du-chat syndrome, 75
chromosome associated with, 75
Crigler-Najijar syndrome, 369, 370
presentation of, 633
Crimean-Congo hemorrhagic fever, 151
Crohn disease, 359, 641
azathioprine for, 212
$\mathrm{B}_{12}$ deficiency caused by, 390
cholelithiasis and, 372
as granulomatous disease, 223
lab findings in, 637
natalizumab for, 214
spondyloarthritis and, 433
sulfasalazine for, 375
treatments for, 639
vitamin $\mathrm{B}_{12}$ deficiency caused by, 80
Crossover studies, 36
Cross-sectional studies, 32
Croup, 154
lab findings in, 638
paramyxoviruses as cause, 153
pulsus paradoxus in, 294
CRP, and ESR, 224
Crust, skin, 438
Cryoprecipitate, 399
Crypt hyperplasia, 358
Cryptococcal meningitis, 182
Cryptococcosis, 137
Cryptococcus spp.
amphotericin B for, 182
meningitis caused by, 163
as urease-positive organism, 112
Cryptococcus neoformans, 137
HIV and, 160
stains for, 110
treatments for, 639

Cryptorchidism, 597
hypospadias and, 573
Sertoli cells and, 576
testicular tumors and, 598
Cryptosporidium spp., 139
HIV and, 160
hyper-IgM syndrome and, 209
watery diarrhea caused by, 162
Ziehl-Neelsen stain for, 110
Crypts of Lieberkühn, 341
C-section deliveries
neonatal flora and, 161
neonatal respiratory distress syndrome and, 607
Cuneiform cartilage, 569
Curling ulcers
gastritis caused by, 356
Currant jelly sputum, 128, 169
Klebsiella pneumonia as cause, 633
"Currant jelly" stools, 362, 633
Curschmann spirals, 618, 635
Cushing disease, 317
Cushing-like symptoms
prednisone as cause, 412
protease inhibitors as cause, 186
Cushing reaction, 279
Cushing syndrome, 317 acanthosis nigricans and, 444
anovulation caused by, 591
glucocorticoids as cause, 212, 336
key associations, 642
as paraneoplastic syndrome, 229
small cell lung cancer as cause, 626
Cushing ulcers, 641
gastritis caused by, 356
Cutaneous anthrax, 121
edema toxin and, 116
Cutaneous flushing
carcinoid syndrome as cause, 332
as drug reaction, 251
Cutaneous larva migrans, 143
Cutaneous leishmaniasis, 142
Cutaneous mycoses, 136
Cutaneous neurofibromas, 71
Cutaneous paraneoplastic syndromes, 229
Cutis aplasia
Patau syndrome as cause, 74, 632
CXCR4
as receptor, 150
CXCR4/CCR5 protein
cells present on, 202
Cyanide
in electron transport chain, 89 as electron transport inhibitor, 89 methemoglobin affinity for, 612
methemoglobinemia as treatment, 612
Cyanide poisoning
nitroprusside as cause, 298
treatment for, 251
Cyanopsia, 603
Cyanosis
"blue babies," 282
"blue kids," 283
bronchitis as cause, 618
Eisenmenger syndrome as cause, 283
esophageal atresia as cause, 338
key associations, 642
methemoglobinemia as cause, 612
patent ductus arteriosus as cause, 283
pulmonary hypertension as cause, 622
tetralogy of Fallot as cause, 282
Cyanotic shunt, 644
Cyclin-CDK complexes, 58
Cyclin-dependent kinases (CDKs), 58
Cyclins, 58
Cyclobenzaprine, 503
Cyclooxygenase
acetaminophen and, 446
aspirin effect on, 385, 447
celecoxib and, 447
NSAID effect on, 447
Cyclophilin targets, 213
Cyclophosphamide, 410
hemorrhagic cystitis caused by, 253
for microscopic polyangiitis, 296
for polyarteritis nodosa, 296
SIADH caused by, 253, 328
toxicities of, 413
transitional cell carcinoma

$$
\text { and, } 551
$$

for Wegener granulomatosis, 296, 639
Cycloplegia
atropine as cause, 245
muscarinic antagonists for, 245
Cyclosporine
gingival hyperplasia caused by, 253
gout caused by, 253
as immunosuppressant, 212
targets of, 213
Cyclothymic disorder, 514, 515
Cyproheptadine, 527
Cyproterone, 600
Cystathionine, 78
Cystathionine synthase deficiency, 96
Cysteine, 96
Cystic duct, 347
Cysticercosis, 144
Cystic fibrosis, 72
Aspergillus fumigatus and, 137
bronchiectasis and, 618
chromosome associated with, 75
common organisms with, 162
fat-soluble vitamin deficiencies and, 76
lab findings in, 635
meconium ileus in, 362
N -acetylcysteine for, 627
pancreatic insufficiency caused

$$
\text { by, } 358
$$

pancreatitis and, 644
Pseudomonas aeruginosa and, 113, 127
Cystic hygromas, 441
Turner syndrome as cause, 585, 634
Cystine, 549
Cystinosis, 538
Cystinuria, 96
Cystitis, 551, 552

Cytarabine, 409
in cell cycle, 408
Cytochrome C, 216
Cytochrome P-450
azoles and, 182
barbiturates and, 501
cimetidine and, 374
epilepsy drug effects on, 500
griseofulvin and, 183
interactions with, 254
macrolides and, 176
phenobarbital effect on, 500
porphyria caused by, 395
rifamycins and, 179
ritonavir and, 186
Cytokeratin
as cytoskeletal element, 60
in epithelial cells, 438
as stain, 60
Cytokine receptor, 230
Cytokines, 200
in Graves disease, 323
recombinant, 213
Cytokinesis, 58
Cytomegalovirus (CMV), 149
calcification and, 220
cholecystitis and, 372
cidofovir for, 185
esophagitis and, 354
foscarnet for, 185
ganciclovir for, 185
HIV and, 160
hyper-IgM syndrome and, 209
in immunodeficient patients, 210
lab findings in, 636
pneumonia caused by, 624
receptors for, 150
retinitis and, 486
as ToRCHeS infection, 165
treatments for, 639
Cytoplasmic membrane
in bacterial cell walls, 108
as bacterial structure, 108
Cytoplasmic processing bodies (P-bodies), 54
Cytoplasm, metabolism in, 83
Cytosine methylation, 48
Cytoskeletal elements, 60
Cytosol, 424
Cytotoxic T cells, 194
cell surface proteins, 202
Cytotrophoblasts, 566
choriocarcinomas and, 587

## D

$\mathrm{D}_{2}$ antagonists, 525
Dabigatran, 640
Daclizumab
as immunosuppressant, 212
targets of, 213
Dacrocytes, 386
Dactinomycin, 410
RNA polymerase inhibition by, 54 targets of, 408
Dactylitis
seronegative spondyloarthritis as cause, 433
sickle cell anemia as cause, 392

DAF (GPI-anchored enzyme) deficiency, 199
Dalfopristin, 170
for VRE, 181
Dalteparin, 405
Danazol, 602
for endometriosis, 594
pseudotumor cerebri and, 471
reproductive hormones and, 600
Dandy-Walker syndrome, 451
Dantrolene, 503
for malignant hyperthermia, 502, 640
for neuroleptic malignant syndrome, 525
Dapagliflozin, 335
Dapsone, 177
for dermatitis herpetiformis, 443
for Hansen disease, 125
hemolysis in G6PD deficiency caused by, 252
for Mycobacterium leprae, 179
for Pneumocystis jirovecii, 138
Daptomycin, 178
for MRSA, 181
for Staphylococcus aureus, 641
Dark-field microscopy, 130
Darunavir, 184
for HIV, 186
Datura, 245
Daunorubicin, 410
dilated cardiomyopathy caused by, 251
DCC gene, 230
D-dimer lab, 616
Deafness
Alport syndrome as cause, 547
congenital long QT syndrome as cause, 277
congenital syphilis as cause, 131
rubella as cause, 165
syphilis as cause, 165
Deamination, and base excision repair, 53
Death
aortic dissection as cause, 287
causes of, common, 45
children, explaining to, 42
eclampsia as cause, 590
hyperosmolar hyperglycemia nonketotic syndrome as cause, 332
pulmonary embolism as cause, 617
pulmonary hypertension as cause, 622
rabies as cause, 155
sleep apnea as cause, 621
sudden cardiac death as cause, 287
thyroid storm as cause, 323
Debranching enzyme
in Cori disease, 99
in glycogen metabolism, 98
Decay-accelerating factor (DAF), 199
Deceleration injury, 286
Decidua basalis, 566
Decision-making capacity, 40

Decompression sickness, 617
Deep brachial artery, 423
Deep inguinal ring, 348
Deep venous thrombosis (DVT), 616
direct factor Xa inhibitors for, 407
embolic stroke and, 470
glucagonomas as cause, 332
heparin for, 405
lab findings in, 636
tamoxifen/raloxifene and, 413
Deer flies, as disease vectors, 143
Defensins, 192
Deferasirox
for hemochromatosis, 371
for iron poisoning, 251, 396
Deferiprone
for hemochromatosis, 371
for iron poisoning, 251
Deferoxamine
for hemochromatosis, 371
for iron poisoning, 251, 396
Deformation, 563
Degenerate/redundant genetic code, $\mathbf{5 0}$
Degmacytes, 386
in G6PD deficiency, 90, 392
Dehydration
filtration effects of, 535
loop diuretics as cause, 557
mannitol as cause, 557
osmotic laxatives as cause, 375
SGLT-2 inhibitors as cause, 335
shock caused by, 292
Dehydrogenases, 84
Deiodinase, 315
Delavirdine, 184
for HIV, 186
Delirium, 512
antipsychotic drugs for, 525
barbiturate withdrawal as cause, 522
dementia and, 513
diabetic ketoacidosis as cause, 331
PCP as cause, 523
thyroid storm as cause, 323
Delirium tremens (DTs), 524
alcohol withdrawal as cause, 522, 523
$\Delta$ cells, 307
somatostatinomas of, 332
somatostatin produced by, 350
$\Delta$-dimers, 636
Delta virus, 151
"Delta wave" on EKG, 635
Delta wave sleep, 457
Deltoid muscle
axillary nerve injury and, 419
in Erb palsy, 420
Delusional disorder, 514
Delusions, 513
mesolimbic pathway and, 458
schizophrenia as cause, 514
Demeclocycline, 336. See
also Tetracyclines
diabetes insipidus caused by, 253, 328
for SIADH, 328, 640

Dementia, 491, 513
Creutzfeldt-Jakob disease as cause, 161
HIV and, 160
Huntington disease as cause, 71, 462, 630
key associations, 643
metachromatic leukodystrophy as cause, 100, 493
pellagra as cause, 78,631
splice site mutations as cause, 52
Demyelinating disease, 643
Demyelination
diseases of, 493
in vitamin $\mathrm{B}_{12}$ deficiency, 474
Dendritic cells, $\mathbf{3 8 0}$
innate immunity and, 192
Langerhans cell histiocytosis and, 403
in T- and B-cell activation, 194
Dengue, 151
Denial, as ego defense, 508
Denosumab, 214
for osteoporosis, 426, 640
De novo pyrimidine and purine synthesis, 49
rate-determining enzyme for, 84
Dense deposit disease, 547
Dental caries, 120
Dental plaque
bacteria producing, 113
normal flora on, 161
Dentate nucleus, 459
Dentin
collagen in, 61
in osteogenesis imperfecta, 63
Dentinogenesis imperfecta, 63
Denys-Drash syndrome, 551
Dependent personality disorder, 519
Depersonalization/derealization disorder, 512
panic disorder as cause, 517
Depression
anorexia nervosa and, 520
atypical antipsychotics for, 525
atypical features in, $\mathbf{5 1 5}$
benzodiazepine withdrawal as cause, 522
dementia caused by, 513
dissociative identity disorder and, 512
drug therapy for, 524
electroconvulsive therapy for, 516
glucagonomas as cause, 332
Huntington disease as cause, 71, 462
hyperparathyroidism as cause, 326
marijuana withdrawal as cause, 523
MDMA withdrawal as cause, 523
metoclopramide as cause, 376
mirtazapine for, 248
neurotransmitter changes in, 511
neurotransmitters for, 455
postpartum, 516
Selective serotonin reuptake inhibitors (SSRIs) for, 527
serotonin-norepinephrine reuptake inhibitors (SNRIs) for, 527
sexual dysfunction caused by, 520
stimulant withdrawal as cause, 522
suicide and, 516
treatments for, 639
Deprivation effects on infants, 510
De Quervain thyroiditis, 322
Dermacentor tick, as disease vector, 132
Dermatitis
B-complex deficiency as cause, 76
glucagonomas as cause, 332
pellagra as cause, 78,631
as type IV hypersensitivity reaction, 205
vitamin $\mathrm{B}_{5}$ deficiency as cause, 78
vitamin $\mathrm{B}_{7}$ deficiency as cause, 79
Dermatitis herpetiformis, 443
celiac disease and, 358
Dermatology, 437-445
macroscopic terms, 438
microscopic terms, 439
Dermatomes, landmark, 476
Dermatomyositis, 436
autoantibody associated with, 207
Dermatophytes, 136
Dermatophytoses, 182
Dermis, 437
Dermoid cysts, 592
Descending colon, 339
Desert bumps/desert rheumatism, 135
Desflurane, 502
Desipramine, 527
Desloratadine, 627
Desmin
as cytoskeletal element, 60
as stain, 60
Desmoplakin, 438
Desmopressin
for diabetes insipidus, 639
for hemophilia, 396
Desmopressin acetate, 311, 336
for diabetes insipidus, 328
Desmosome, 438
autoantibody to, 207
Desquamated epithelium casts in sputum, 635
Desvenlafaxine, 527
Detached retina, 485
Detemir insulin, 334. See also Insulin
Developmental delays, caused by renal failure, 553
Developmental milestones, 43
Dexamethasone, 336. See also Glucocorticoids
arachidonic acid pathway and, 446
Dexlansoprazole, 374
Dexrazoxane, 410
dilated cardiomyopathy prevention with, 251
Dextroamphetamine, 524
Dextrocardia, 262
Dextromethorphan, 499, 627
Diabetes insipidus, $\mathbf{3 2 8}$
antidiuretic hormone in, 311
demeclocycline as cause, 336
desmopressin acetate for, 336
as drug reaction, 253
lithium as cause, 526
potassium-sparing diuretics for, 558
thiazides for, 558
treatments for, 639
Diabetes mellitus, 330-331. See also Hyperglycemia
acanthosis nigricans and, 444
atherosclerosis and, 286
atypical antipsychotics as cause, 525
$\beta$-blockers and, 249
binge eating disorder as cause, 520
breast milk as risk reduction for, 581
Candida albicans and, 137
carpal tunnel syndrome and, 418
cataracts and, 483
chronic renal failure and, 553
CN III damage caused by, 489
diabetic ketoacidosis caused by, 331
diabetic retinopathy caused by, 485
drug therapy for, 334-335
endometrial cancer and, 594
facial nerve palsy caused by, 480
Friedreich ataxia as cause, 475
fungal infections and, 169
glaucoma and, 484
glucagonomas as cause, 332
glucocorticoids as cause, 336
glucosuria in, 536
hemochromatosis as cause, 371
hypertension and, 284, 298
Klebsiella and, 128
mucormycosis and, 137
neonatal respiratory distress syndrome and, 607
pancreatic cancer and, 373
polyhydramnios and, 589
preeclampsia and, 590
in pregnancy, cardiac defects associated with, 284
Pseudomonas aeruginosa and, 127 pyelonephritis and, 552
readmissions caused by, 45 renal papillary necrosis and, 554
sexual dysfunction caused by, 520
tacrolimus and, 212
teratogenic effects of, 564
type 1 vs. type 2,331
urinary tract infections in, 164
UTIs and, 552
Diabetes mellitus type 1, 331
anencephaly and, 451
autoantibody associated with, 207
HLA-DR3 and, 193, 643
HLA-DR4 and, 193, 643
treatments for, 334, 639
Diabetes mellitus type 2, 331
hyperosmolar hyperglycemia nonketotic syndrome and, 332
treatments for, 334, 639
Diabetic glomerulonephropathy, 548
Diabetic ketoacidosis
black eschar and, 630
ketone bodies in, 102
metabolic acidosis as cause, 543
presentation of, 631
treatments for, 639
Diabetic ketoacidosis (DKA), 331
diabetes mellitus type 1 as cause, 330
Diabetic nephropathy
ACE inhibitors for, 559
angiotensin II receptor blockers for, 559
Diabetic neuropathy, 527
Diabetic retinopathy, 485
Diagnosis errors, 46
Diagnosis of parathyroid disease, $\mathbf{3 2 5}$
Diagnostic test evaluation, 33
Dialectical behavior therapy for borderline personality disorder, 519
Dialysis-related amyloidosis, 225
Diamond-Blackfan anemia, 390
Diapedesis, 221
Diaper rash
Candida albicans as cause, 137
nystatin for, 182
Diaphoresis
acromegaly as cause, 327
MI as cause, 288
serotonin syndrome as cause, 527
Diaphragmatic hernias, 349
Diaphragm structures, 609
Diaphysis, 429
Diarrhea
amebiasis as cause, 139
Bacillus cereus as cause, 122
B-complex deficiency as cause, 76
bismuth/sucralfate for, 375
bronchial carcinoid tumor as cause, 626
Campylobacter jejuni as cause, 128
carcinoid syndrome as cause, 631
cholera toxin as cause, 116
cholinesterase inhibitor poisoning as cause, 244
clindamycin as cause, 175
Clostridium difficile as cause, 122, 630
Cryptosporidium as cause, 139
as drug reaction, 252
ezetimibe as cause, 300
giardiasis as cause, 139
graft-versus-host disease as cause, 211
HIV and, 160
hyperthyroidism as cause, 321
inflammatory bowel diseases as cause, 359
irritable bowel syndrome as cause, 360
lactase deficiency as cause, 92
lactose intolerance as cause, 358
leflunomide as cause, 447
loperamide for, 376
magnesium deficiency caused by, 314
magnesium hydroxide as cause, 375
malabsorption syndromes as cause, 358
metabolic acidosis caused by, 543
metoclopramide as cause, 376
misoprostol as cause, 375
opioids for, 499
opioid withdrawal as cause, 522
organisms causing, 162
osmotic laxatives as cause, 375
pellagra as cause, 78,631
rotavirus as cause, 152
Salmonella as cause, 129
SCID as cause, 209
serotonin syndrome as cause, 527
Shigella as cause, 129
threadworms as cause, 143
thyroid storm as cause, 323
Vibrio cholerae as cause, 129
VIPomas as cause, 350
vitamin C toxicity as cause, 80
Whipple disease as cause, 634
Yersinia enterocolitica as cause, 129
Diastole, 270
heart failure and, 292
heart murmurs of, 272, 273
heart sounds of, 272
Diastolic pressure, 266
Diazepam, 501
for alcohol withdrawal, 524
flumazenil and, 240
for tetanus, 122
Diclofenac, 447
arachidonic acid pathway and, 446
Dicloxacillin, 170
characteristics of, 171
for Staphylococcus aureus, 641
Dicrotic notch, in cardiac cycle, 270
Dicyclomine, 245
Didanosine, 184
for HIV, 186
pancreatitis caused by, 252
Diencephalon, 450
Diethylcarbamazine, 183
for nematode infections, 143
Diethylstilbestrol (DES), 601
clear cell adenocarcinoma of vagina and, 591, 642
as teratogen, 564
Differential media, 110
Differential tables for USMLE Step 1 exam, 13
Differentiation, tumor, 226
Diffuse cortical necrosis, 552
Diffuse glomerular disorders, 544
Diffuse hemorrhage, 156
Diffuse large B-cell lymphoma
(DLBCL), 400, 402
Diffuse proliferative glomerulonephritis (DPGN), 546, 638
Diffuse scleroderma, 437
Diffuse stomach cancer, 356
Diffuse systemic scleroderma, 635
Diffusion-limited gas exchange, 613
Digestion
bile function in, 352
carbohydrate absorption, 352
malabsorption syndromes, 358
pancreatic secretions for, 352
ulcerative colitis and, 359
vitamin/mineral absorption, 352

Digestive tract
anatomy of, $\mathbf{3 4 1}$
histology of, $\mathbf{3 4 1}$
Digitalis
contractility, effect on, 267
hyperkalemia caused by, 542
toxicity treatment for, 251
Digitoxin, 61
Digoxin, 301
antidote for, 214
for dilated cardiomyopathy, 291
sodium-potassium pump inhibition, 61
therapeutic index value of, 240
Digoxin immune Fab, 214
Digoxin poisoning
magnesium for, 304
Dihydroergotamine, 494
Dihydrofolate reductase, 49
Dihydrofolic acid, 177
Dihydroorotate dehydrogenase leflunomide effect on, 49, 447
Dihydropyridine calcium channel blockers, 255
Dihydropyridine receptor, 424
Dihydrorhodamine test, 209
Dihydrotestosterone (DHT), 582
in genital development, 572
pharmacologic control of, 600
Dihydroxyacetone-P in fructose metabolism, 91
Dilated cardiomyopathy, 291
doxorubicin as cause, 410 as drug reaction, 251
heart failure caused by, 292
hemochromatosis as cause, 371
muscular dystrophy as cause, 73
wet beriberi as cause, 77, 631
Diltiazem, 298, 304
Dimenhydrinate, 627
Dimercaprol
for arsenic toxicity, 251
for gold poisoning, 251
for lead poisoning, 251, 389
for mercury poisoning, 251
Dinitrophenol, 89
Dipalmitoylphosphatidylcholine, 607
Diphenhydramine, 627
Diphenoxylate, 499
Diphtheria
Corynebacterium diphtheriae as cause, 123
exotoxins as cause, 115
vaccine for, 123
Diphtheria toxin, 116 lysogenic phage and, 114
Diphyllobothrium latum, 144
$\mathrm{B}_{12}$ deficiency caused by, 390
diseases associated with, 145
vitamin $B_{12}$ deficiency caused by, 80
Diplococci, 125
Diplopia, 631
myasthenia gravis as cause, 436
osmotic demyelination syndrome as cause, 492
pseudotumor cerebri as cause, 471
vertigo caused by, 495

Dipyridamole, 407
for coronary steal syndrome, 287
Direct factor Xa inhibitors, 407
Direct hernias, 348
Direct inguinal hernias, 349
Direct thrombin inhibitors, 405
Disc herniation, 423
Disease prevention, 44
Disopyramide, 302
Disorganized speech, in schizophrenia, 514
Disorganized thought, 513
Displacement, as ego defense, 508
Disruption, in organogenesis, 563
Disseminated candidiasis, 137
Disseminated intravascular coagulation (DIC)
acute myelogenous leukemia as cause, 402
amniotic fluid emboli as cause, 617
Ebola as cause, 156
endotoxins as cause, 117
fresh frozen plasma for, 399
key associations, 643
lab findings in, 636
microangiopathic anemia caused by, 393
placental abruption as cause, 588
schistocytes in, 387
Waterhouse-Friderichsen syndrome as cause, 318,630
Dissociation, as ego defense, 508
Dissociative amnesia, 512
Dissociative disorders, 512
Dissociative fugue, 512
Dissociative identity disorder, 512
Distal convoluted tubules, 532
defects in, 538
diuretics and, 556
in filtration, 535
in nephron physiology, 537
renal tubular acidosis of, 544
Distal humerus, 423
Distal interphalangeal (DIP) joints, 421
Distal vagina, lymphatic drainage of, 573
Distortions of hand, 421
Distribution, statistical, 37
Distributive shock, 292
Disulfiram
for alcoholism, 523, 638
ethanol metabolism and, 83
Disulfiram-like reaction, 254
Diuresis, for shock, 292
Diuretics
acute interstitial nephritis caused by, 554
for dilated cardiomyopathy, 291
electrolyte changes, 558
for glaucoma, 498
in gout, 448
magnesium levels and, 314
pancreatitis caused by, 252
for SIADH, 328
site of action, 556
Diverticula, 645

Diverticula of GI tract, $\mathbf{3 6 0}$
Diverticulitis, 360
vs. appendicitis, 360
Diverticulosis, 360
Diverticulum, 360
Diverticulum in pharynx, 643
Dizziness, 495
calcium channel blockers as

$$
\text { cause, } 298
$$

DMPK gene, 73
DNA
cloning methods, 67
free radical effect on, 221
introns vs. exons, 55
methylation of, 48
mutations in, 52
protein synthesis direction, $\mathbf{5 3}$
repair of, $\mathbf{5 3}$
replication of, $\mathbf{5 1}$
DNA laddering in apoptosis, 216
DNA ligase, $\mathbf{5 1}$
DNA polymerase inhibitors, 255
DNA polymerases, 51
DNA topoisomerases, $\mathbf{5 1}$
DNA viruses, 148
characteristics of, 147
genomes of, 147
replication of, 147
Dobutamine, 246
Dofetilide, 303
Dogs, as disease vectors, 144, 163, 136, 169
Dominant inheritance, 70
Dominant negative mutations, 68
Dominant parietal cortex lesions, 464
Donepezil, 244
for Alzheimer disease, 505
DOPA, in tyrosine catabolism, 95
Dopamine, 246, 309, 455
atypical antipsychotic effects on, 525
bupropion effect on, 528
in depression, 511
as derivative, 94
in Huntington disease, 71, 462, 511
kidney functions, 541
lactation and, 310
MAO inhibitor effect on, 528
in noradrenergic drugs, 243
in Parkinson disease, 504, 511
pheochromocytoma secretion of, 320
prolactin and, 310
in schizophrenia, 511
in tyrosine catabolism, 95
vitamin $\mathrm{B}_{6}$ and, 78
Dopamine agonists
for Parkinson disease, 504
prolactin, effect on, 310
for prolactinomas, 326, 640
Dopamine antagonists, 310
Dopamine receptors, 242,460
Dopaminergic pathways, 458
Doripenem, 170, 173
Dornase alfa (DNAse), 72
Dorsal column of spinal cord, 472, 473

Dorsal interossei muscle, 421
Dorsal motor nucleus, 479
Dorsal optic radiation, 489
Dorsal pancreatic bud, 339
Dosage calculations, 237
Double-blinded studies, 32
"Double bubble" sign on X-ray, 338
Double stranded viruses, 147
Double Y males, 585
Down syndrome, 74
acute lymphoblastic leukemia and, 402
acute myelogenous leukemia and, 402
Alzheimer disease and, 491
cardiac defects associated with, 284
cataracts and, 483
chromosome associated with, 75
duodenal atresia and, 338
hCG in, 580
Hirschsprung disease and, 361
horseshoe kidney and, 531
intellectual disability caused by, 643
lab findings in, 635
presentation of, 633
Doxazosin, 248
Doxepin, 527
Doxorubicin, 410
cardiomyopathy caused by, 291
dilated cardiomyopathy caused by, 251
targets of, 408
toxicities of, 413
Doxycycline, 170, 175
for chlamydiae, 134
for Chlamydia trachomatis, 639
for lymphogranuloma venereum, 134
for Mycoplasma pneumoniae, 134
for Rickettsia rickettsii, 640
DPC4/SMAD4 gene, 230
DPP-4 inhibitors, 335
Dressler syndrome
MI as cause, 288
presentation of, 630
DRESS syndrome, 500
Drooling, treatment for, 245
Drug clearance, 646
Drug-induced lupus, 207
Drugs
autonomic, 243
cholinomimetic agents, 244
dosage calculations, 237
efficacy vs. potency, 239
elimination of, 238
errors in, 46
interactions, 237
metabolism of, 238
patient difficulty with, 42
reactions to, 251-254
therapeutic index, 240
toxic dose, 240
toxicities, 251
Drug trials, 32
Dry beriberi, 77
Dry cough, caused by ACE inhibitors, 254

Dry mouth
Lambert-Eaton myasthenic syndrome as cause, 436
tricyclic antidepressants as cause, 527
Dry skin, caused by Vitamin A toxicity, 77
Dubin-Johnson syndrome, 369, 370, 642
Duchenne muscular dystrophy, 73
frameshift mutation as cause, 52 presentation of, 630
as X-linked recessive disorder, 72
Ductal adenocarcinomas, 347
Ductal carcinoma in situ (DCIS), 596
Ductal carcinomas, 595
Ductal lumen, 596
Ductus arteriosus, 568
in fetal circulation, 264
postnatal derivative of, 264
Ductus deferens
embryology of, 571
ureter and, 532
Ductus venosus
in fetal circulation, 264
postnatal derivative of, 264
Duloxetine, 527
Duodenal atresia, 338
Down syndrome as cause, 74
Duodenal ulcers, 357
Duodenum, 339
biliary structures and, 347
histology of, 341
location of, 351
Duplex collecting system, 531
Dural venous sinuses, 470
Duret hemorrhage, 498
Dwarfism, 327
achondroplasia as cause, 426
D-xylose test, 358
Dynein, 60
Dysarthria, 463
cerebellar vermis lesions and, 464
Friedreich ataxia as cause, 475 osmotic demyelination syndrome as cause, 492
Dyschezia
endometriosis as cause, 594
Dysentery
amebiasis as cause, 139
Escherichia coli as cause, 128
Shigella spp. and, 116
Dysgerminomas, 593
Dysgeusia, 82
Dyslipidemia, 105
$\beta$-blockers as cause, 249
metoprolol as cause, 303
renal failure as cause, 553
vitamin $B_{3}$ for, 78
Dysmenorrhea, 579
adenomyosis as cause, 594
copper IUD as cause, 602
endometriomas as cause, 592
endometriosis as cause, 594
Dysmetria
stroke as cause, 467
vertigo caused by, 495

Dysmyelinating diseases, 493
Dyspareunia, 520
endometriomas as cause, 592
endometriosis as cause, 594
Dyspepsia, 603
Dysphagia
achalasia as cause, 354
esophageal cancer as cause, 355
gastroesophageal reflux disease as cause, 354
heart enlargement as cause, 265
osmotic demyelination syndrome as cause, 492
Plummer-Vinson syndrome as cause, 354, 388, 631
sclerodermal esophageal dysmotility as cause, 354
stroke as cause, 467
Zenker diverticulum as cause, 361
Dysplasia, 226, 227
Dyspnea
aortic stenosis as cause, 273
asthma as cause, 618
bronchitis as cause, 618
emphysema as cause, 633
heart failure as cause, 292
hypersensitivity pneumonitis as cause, 619
hypothyroidism as cause, 321
pneumothorax as cause, 623
pulmonary embolism and, 617
Wegener granulomatosis as cause, 296
Dysthymia, 514, 515
Dystonia, 461
benztropine for, 245
Lesch-Nyhan syndrome as cause, 50
nigrostriatal pathway and, 458
Dystrophic calcification, 220
Dystrophin gene, 73
Dysuria
BPH as cause, 599
prostatitis as cause, 599
UTIs as cause, 164, 552

## E

Eardrum, 481
Early-onset Alzheimer disease, 74
Ear physiology, 481
Earthquakes, coccidioidomycosis incidence after, 135
Eastern equine encephalitis, 151
Eating disorders, 520
Eaton agar, 111
for Mycoplasma pneumoniae, 134
Ebola, 156
as filovirus, 151
Ebstein anomaly, 263, 282
fetal lithium exposure as cause, 564
lithium as cause, 284, 526
Eburnation, 637
E-cadherin, 438
in neoplastic progression, 227
Echinocandins, 181, 183
cutaneous flushing caused by, 251
Echinococcus granulosus, 144
diseases associated with, 145

Echinocytes, 386
Echothiophate, 498
Echovirus, 151
as picornavirus, 152
Eclampsia, 590
benzodiazepines for, 501
hypertensive emergency and, 284
Ecthyma gangrenosum, 127
Pseudomonas aeruginosa and, 127
Ectocervix, 574
Ectoderm
branchial clefts derived from, 568
derivatives of, 563
Ectoparasites, 145
Ectopic pregnancy, 589
vs. appendicitis, 360
Chlamydia trachomatis as cause, 134
hCG in, 580
Kartagener syndrome as cause, 60
methotrexate for, 409
salpingitis and, 167
Eculizumab, 214
for paroxysmal nocturnal hemoglobinuria, 392
Eczema, 440
hyper-IgE syndrome as cause, 208, 633
phenylketonuria as cause, 95
skin scales in, 438
as type I hypersensitivity reaction, 204
Wiskott-Aldrich syndrome as cause, 209
Eczematous dermatitis, 439
Edema
acute poststreptococcal glomerulonephritis as cause, 546
Arthus reaction as cause, 205
calcium channel blockers as cause, 298
capillary fluid exchange and, 281
cirrhosis as cause, 365
danazol as cause, 602
diabetic ketoacidosis as cause, 331
endotoxins as cause, 117
fludrocortisone as cause, 336
glitazone/thiazolidinediones as cause, 334
glomerular filtration barrier and, 533
heart failure as cause, 292
immunosuppressants as cause, 212
as inhalational injury, 222
Kawasaki disease as cause, 296
kwashiorkor as cause, 82
loop diuretics for, 557
myxedema as cause, 631
nephrotic syndrome as cause, 548, 633
pseudoephedrine/phenylephrine for, 627
pulmonary hypertension as cause, 613
Trichinella spiralis and, 145
trichinosis as cause, 143
wet beriberi as cause, 77,631

Edema toxin, 116
Edinger-Westphal nuclei, 487
EDRF. See Endothelium-derived relaxing factor (EDRF)
Edrophonium, 244, 503
Edwards syndrome, 74
cataracts and, 483
chromosome associated with, 75
hCG in, 580
horseshoe kidney and, 531
presentation of, 632
Efavirenz, 184
for HIV, 186
Effective refractory period
Class IA antiarrhythmic effect on, 302
Class IC antiarrhythmic effect on, 302
myocardial action potential and, 274
Effective renal plasma flow, 534, 647
Effects analysis for medical errors, 46
Efferent arteriole, 532
angiotensin II, effect on, 541
ANP/BNP effect on, 540
constriction of, 535
dopamine, effect on, 541
in filtration, 535
Efferent nerves, 279
Efficacy of drugs, vs. potency, 239
EGF. See Epidermal growth factor (EGF)
EGFR gene, 626
Ego defenses, 508
Ehlers-Danlos syndrome, 63
collagen and, 62
collagen deficiency in, 61
heart murmur caused by, 273
presentation of, 631
saccular aneurysms and, 468
Ehrlichia chaffeensis, 132
Ehrlichiosis, 133
animal transmission of, 132
Eikenella spp., 293
Eisenmenger syndrome, 283
cyanotic shunt and, 644
Ejaculation
innervation of, 575
sperm pathway in, 575
Ejaculatory ducts, 575
embryology of, 571
Ejection click, 643
Ejection fraction, 267, 647
Ejection murmur, 634
Elastase, 352
in emphysema, 618
Elastic recoil, 611
Elastin, 64
Elbow injuries, 417
Elder abuse, 41
Electrocardiograms (ECGs), 276
acute pericarditis on, 294
cardiac tamponade on, 294
MI diagnosis with, 289
tracings of, 278
Electroconvulsive therapy, 516
for major depressive disorder, 515
for postpartum psychosis, 516

Electrolyte disturbances, $\mathbf{5 4 2}$
Electron transport chain, 89
Electron transport inhibitors, 89
Elek test, 123
Elementary bodies in chlamydiae, 134
Elephantiasis, 143
11ß-hydroxylase, 312
11 $\beta$-hydroxysteroid
dehydrogenase, 538
11-deoxycorticosterone, 312
11-deoxycortisol, 312
metyrapone and, 318
Elfin facies, in Williams syndrome, 75
Elimination of drugs, 238
urine pH and, 238
ELISA (enzyme-linked immunosorbent assay), 67
HIV diagnosis with, 158
Elliptocytes, 386
Elliptocytosis, 386
Elongation of protein synthesis, 57
Eltrombopag, 213
Emancipated minors, 40
EMB agar, 111
Escherichia coli on, 164
lactose-fermenting enteric bacteria on, 126
Emboli, caused by atherosclerosis, 286
Embolic stroke, 470
Emboliform nucleus, 459
Embryogenesis
genes involved in, $\mathbf{5 6 2}$
intrinsic pathway and, 216
Embryology
cardiovascular, 262-264
derivatives of, $\mathbf{5 6 3}$
endocrinal, 306
erythropoiesis, 381
gastrointestinal, 338-339
genital, 571
neurological, 450-452
pancreatic, 339
renal, 530-531
reproductive, 562-573
respiratory, 606-607
splenic, 339
USMLE Step 1 preparation for, 258
Embryonal carcinomas, 598
Emotionally distraught patients, 42
Empagliflozin, 335
Emphysema, 618
$\alpha_{1}$-antitrypsin deficiency as cause, 369
compliance in, 611
diffusion in, 613
diffusion-limited gas exchange in, 613
elastin and, 64
presentation of, 633
Empty sella syndrome, 329
Emtricitabine, 184
for HIV, 186
Enalapril, 559
Encapsulated bacteria, 112
vaccines for, 112

Encephalitis
Cryptococcus neoformans as cause, 137
guanosine analogs for, 184
HIV and, 160
HSV-2 as cause, 165
measles as cause, 154
small cell lung cancer as cause, 626
VZV as cause, 149
Encephalopathy
hypertensive emergency and, 284
lead poisoning as cause, 389
Lyme disease as cause, 130
neuroleptic malignant syndrome as cause, 525
End-diastolic volume, 266
Endemic typhus, 132
Endocannabinoids, 311
Endocardial cushion, 262
Endocardial fibroelastosis, 291
Endocarditis
antimicrobial prophylaxis for, 181
bacteria causing, 113
bacterial, 293
Candida albicans as cause, 137
dapsone for, 178
heart murmur caused by, 273
heroin addiction and, 523
Staphylococcus aureus as cause, 119
Endocervix, 574
Endochondral ossification, 425
Endocrinal drug reactions, 252
Endocrinal paraneoplastic syndromes, 229
Endocrine hormone signaling pathways, 316
Endocrine pancreas cell types, $\mathbf{3 0 7}$
Endocrine system, 306-336
anatomy, 306-307
embryology, 306
pathology, 317-333
pharmacology, 334-336
physiology, 308-316
Endoderm
branchial pouches derived from, 568
derivatives of, 563
Endodermal tubules, 606
Endometrial artery, 566
Endometrial cancer, 594, 643
epidemiology of, 590
estrogens and, 601
lab findings in, 637
Lynch syndrome and, 363
PCOS and, 591
progestins for, 602
tamoxifen and, 413
tumor suppressor genes and, 230
Endometrial hyperplasia, 594
follicular cysts as cause, 592
progesterone and, 577
Endometrial vein, 566
Endometriomas, 592
Endometriosis, 594
danazol for, 602
endometriomas and, 592
lab findings in, 635
ovarian neoplasms and, 592

Endometritis, 594
pelvic inflammatory disease as cause, 167
Endometrium, 574
conditions of, 594
Endoneurium, 454
Endoplasmic reticulum, 58, 59
Endosomes, 59
Endothelial cells
in filtration, 535
in glomerulus, 532
in wound healing, 223
Endothelium-derived relaxing factor (EDRF), 316
Endothelium, in leukocyte extravasation, 221
Endotoxins, 115, 117
End-stage renal disease findings, 638
End-systolic volume, 266
Enflurane, 502
seizures caused by, 253
Enfuvirtide, 184, 186
Enhancers, in gene expression, 54
Enoxacin, 178
Enoxaparin, 405
for deep venous thrombosis, 616
Entacapone, 504
Entamoeba spp., 178
Entamoeba histolytica, 139
bloody diarrhea caused by, 162
Enteritis
vitamin $\mathrm{B}_{5}$ deficiency as cause, 78
vitamin $B_{7}$ deficiency as cause, 79
vitamin $B_{12}$ deficiency caused by, 80
Enterobacter spp.
lactose fermentation by, 126
morphology of, 109
as nosocomial infection, 168
Enterobacter aerogenes, 172
Enterobius spp.
diseases associated with, 145
infection routes, 142
Enterobius vermicularis, 143, 643
Enterochromaffin-like cells, 319
Enterococci, 121
penicillinase-sensitive penicillins for, 171
treatments for, 639
vancomycin for, 173
vancomycin-resistant (VRE), 121
Enterococcus spp.
in Gram-positive algorithm, 118
UTIs caused by, 164
Enterococcus faecalis, 121
Enterococcus faecium, 121
Enterohemorrhagic Escherichia coli (EHEC), 128
bloody diarrhea caused by, 162
exotoxin produced by, 116
Enteroinvasive Escherichia coli (EIEC), 128, 162
Enterokinase/enteropeptidase, 352
Enterotoxigenic Escherichia coli (ETEC), 128
exotoxin produced by, 116
watery diarrhea caused by, 162

Enteroviruses, meningitis caused

$$
\text { by, } 163
$$

Enveloped viruses, 146
Envelopes, viral, 147
env gene, 158
Enzyme kinetics, 236
Enzymes
rate-determining, 84
terminology for, 84
Eosinopenias, 394
Eosinophilia, 379
Aspergillus fumigatus as cause, 137
macrolides as cause, 176
Eosinophilic esophagitis, 354
Eosinophilic inclusions, 636
Eosinophils, 378, 379
corticosteroid effect on, 394
cortisol effect on, 313
in esophagus, 354
as immune response to
helminths, 142
Ependymomas, 497
neurofibromatosis type 2 as cause, 71
Ephedrine, 246
as noradrenergic drug, 243
Epicanthal folds, in cri-du-chat syndrome, 75
Epidemics, 153
Epidemic typhus, 132
Epidemiology/hiostatistics, 32-39
Epidermal growth factor (EGF)
signaling pathways for, 316
in wound healing, 223
Epidermis, 437
embryologic derivatives of, 563
Epidermophyton, 136
Epididymis, 575
embryology of, 571
Epididymitis, 167
Epidural hematomas, 469
key associations, 643
presentation of, 632
Epigastric veins, 344
Epiglottitis
Haemophilus influenzae as cause, 126
lab findings in, 638
in unvaccinated children, 169
Epilepsy, 494
drug therapy for, $\mathbf{5 0 0}$
gustatory hallucinations in, 513
lung abscesses and, 624
splice site mutations as cause, 52
Sturge-Weber syndrome as cause, 495
Epinephrine, 246. See also Catecholamines
adrenal medulla secretion of, 306
$\alpha$-blockade of, 248
for anaphylactic reaction, 206
diabetes mellitus caused by, 330
for glaucoma, 498
glycogen regulation and, 97
in nervous system, 241
pheochromocytoma secretion of, 320
in tyrosine catabolism, 95
vitamin $B_{6}$ and, 78
Epineurium, 454
Epiphysis, tumors in, 429
Epiploic foramen of Winslow, 340
Episcleritis
Crohn disease as cause, 359
ulcerative colitis as cause, 359
Epispadias, 573
Epistaxis, 616
hereditary hemorrhagic telangiectasia as cause, 71
Osler-Weber-Rendu syndrome as cause, 634
Epithelial cell junctions, 438
Epithelial cells, tumor nomenclature, 228
Epithelial hyperplasia, 595
Epithelial tumors, 60
Epithelium, 341
Eplerenone, 558
Epoetin alfa, 213
Epoprostenol
for pulmonary arterial hypertension, 640
for pulmonary hypertension, 627
Epstein-Barr virus (EBV), 149
aplastic anemia caused by, 391
Burkitt lymphoma and, 400
hairy leukoplakia and, 442
head and neck cancer and, 616
HIV and, 160
Hodgkin lymphoma and, 399
in immunodeficient patients, 210
lab findings in, 635, 636
as oncogenic microbe, 231
receptors for, 150
Eptifibatide, 407
thrombogenesis and, 385
Erb palsy, 420
presentation of, 632
Erectile dysfunction, 520
$\beta$-blockers as cause, 249, 303
cimetidine as cause, 374
Lambert-Eaton myasthenic syndrome as cause, 436
PDE-5 inhibitors for, 603
Peyronie disease and, 597
sildenafil for, 627
treatments for, 639
Erection, innervation of, 575
Ergosterol synthesis, 181
Ergosterol synthesis inhibitors, 255
Ergot alkaloids, 251
Erlotinib, 412
Errors, medical, 46
Ertapenem, 170, 173
Erysipelas, 442
Streptococcus pyogenes as cause, 120
Erythema
hernias as cause, 349
Kawasaki disease as cause, 296
Erythema marginatum, 120, 294
Erythema migrans, 130, 632
Erythema multiforme, 443

Erythema nodosum, 444
Crohn disease as cause, 359
sarcoidosis and, 435
ulcerative colitis as cause, 359
Erythroblastosis fetalis, 382
as type II hypersensitivity reactions, 204
Erythrocytes, 378
blood types of, 382
Coombs test, 393
DAF deficiency and, 199
erythropoietin and, 541
glucose usage by, 308
in hereditary spherocytosis, 392
macrophages and, 379
in multiple myeloma, 401
in myeloproliferative disorders, 404
pathologic forms of, 386-387
spheroid, in spherocytosis, 71
stacked, 638
in urine, 544, 637
Erythrocyte sedimentation rate (ESR), 224
in osteomyelitis, 163
in subacute granulomatous thyroiditis, 322
Erythrocytosis, 378
oxygen-hemoglobin dissociation curve and, 612
Erythroderma, 631
Erythrogenic toxin (Group A strep), 114
Erythromelalgia
essential thrombocythemia as cause, 404
polycythemia vera as cause, 404
Erythromycin, 170, 176
diarrhea caused by, 252
as prophylaxis, 181
as protein synthesis inhibitor, 174
reactions to, 252
Erythroplasia of Queyrat, 597
Erythropoiesis, 621
Erythropoietin
for anemia of chronic disease, 391
in aplastic anemia, 391
hemangioblastoma production of, 496
high altitude and, 615
kidney functions, 541
polycythemia and, 229, 630
in polycythemia vera, 404
signaling pathways for, 316
Escherichia coli, 128
as catalase-positive organism, 112
cephalosporins for, 172
chronic granulomatous disease and, 209, 643
culture requirements for, 111
on EMB agar, 126
as encapsulated bacteria, 112
galactosemia as cause, 91
in Gram-negative algorithm, 125
in immunodeficient patients, 210
lactose fermentation by, 126
meningitis caused by, 163
morphology of, 109
in neonates, 165
as nosocomial infection, 168
penicillinase-sensitive penicillins for, 171
pneumonia caused by, 162
prostatitis caused by, 599
splenic dysfunction and, 191
type III secretion system of, 113
urinary tract infections caused by, 552, 646
UTIs caused by, 164
Escherichia coli O157:H7, 161
E-selectin, in leukocyte extravasation, 221
Esmolol, 249, 303
Esomeprazole, 374
Esophageal atresia, 338
Esophageal cancer, 355
achalasia and, 354
key associations, 643
Esophageal dysmotility in CREST syndrome, 437
Esophageal squamous cell carcinomas, 354
Esophageal strictures, 354
Esophageal varices, 344, 354
Esophageal veins, 344
Esophageal webs, 354, 388
Esophagitis, 354
bisphosphonates as cause, 447
as drug reaction, 252
HIV and, 160
Esophagus
anastomosis at, 344
blood supply and innervation of, 342
in diaphragm, 609
histology of, 341
pathologies of, $\mathbf{3 5 4}$
Essential amino acids, 92
Essential fructosuria, 91
Essential hypertension, 298
Essential thrombocythemia, 404
Essential tremor, 461
Esters, as local anesthetics, 503
Estradiol, 600
Estriol
in Down syndrome, 74
in Edwards syndrome, 74
pharmacologic control of, 600
Estrogen, 577, 601
in androgen insensitivity syndrome, 586
in bone formation, 425
breast cancer and, 596
endometrial cancer caused by, 594
in fibroadenomas, 595
in genital development, 572
Granulosa cell tumors and, 593
in Klinefelter syndrome, 585
lactation and, 581
in menopause, 582
in menstrual cycle, 579
osteoporosis and, 426
in ovulation, 578
in pregnancy, 580
in premature ovarian failure, 591
prolactin, effect on, 310
signaling pathways for, 316
thecoma production of, 592
in Turner syndrome, 585
Estrone, 600
Eszopiclone, 501
Etanercept, 448
lupus-like syndrome caused by, 253
Ethacrynic acid, 557
Ethambutol, 180
for Mycobacterium tuberculosis, 179, 640
Ethanol
as carcinogen, 231
metabolism of, 83
zero-order elimination of, 238
Ethics, 39-42
confidentiality, 41
consent, 40
core principles of, 39
directives, 41
situations in, 42
Ethinyl estradiol, 601
for contraception, 602
Ethosuximide, 500
for absence seizures, 638
Ethylenediaminetetraacetic
(EDTA), 389
Ethylene glycol
metabolic acidosis caused by, 543
toxicity treatment for, 251, 639
Etonogestrel, 602
Etoposide, 411
in cell cycle, 408
targets of, 408
as topoisomerase inhibitors, 51
Euchromatin, 48
Eukaryotes
DNA replication in, 51
functional gene organization in, 54
ribosomes in, 57
RNA polymerases in, 54
RNA processing, 54
Eustachian tubes, 570
Ewing sarcomas, 429, 637
dactinomycin for, 410
lab findings in, 637
Exanthem subitum, 149
Excitatory pathway, 460
Executioner caspases, 216
Exemestane, 601
Exenatide, 335
Exercise
pulse pressure in, 266
respiratory response to, 615
Exocrine glands, 242
Exons, vs. introns, 55
Exophytic mass in colorectal cancer, 364
Exotoxin A, 116, 117
Pseudomonas aeruginosa and, 127
Exotoxins, 115
organisms with, 116-117
Expectorants, 627
Expiratory reserve volume (ERV), 610
External hemorrhoids, 345

External iliac arteries, 342
External inguinal ring, 349
External spermatic fascia, 348
Extinction, in conditioning, 508
Extracellular fluid (ECF), 533
Extragonadal germ cell tumors, 598
Extraperitoneal tissue, 348
Extravascular hemolysis, 391
Extrinsic hemolytic anemia, $\mathbf{3 9 3}$
Extrinsic pathway, 216
for coagulation, 383
warfarin and, 406
Exudate, vs. transudate, 224
Exudative pleural effusion, 623
Ex vacuo ventriculomegaly, 471 Eyes
anatomy of, 482
aqueous humor pathway, 483
bilateral movement of, 490
motility of, 488
Ezetimibe, 300
diarrhea caused by, 252

## F

Fab region of antibodies, 196
Fabry disease, 100
as X-linked recessive disorder, 72
Facial dysmorphism as teratogenic effect, 564
Facial nerve (7th cranial nerve), 479
as branchial arch derivative, 569
lesions in, $\mathbf{4 8 0}$
location in brain stem, 477
pathway for, 478
in tongue, 452
Facial nerve palsy, 480
Borrelia burgdorferi as cause, 169
Lyme disease as cause, 130
Factitious disorder, 518 vs. malingering, 518
Factor IX concentrate, 396
Factor VIII concentrate, 396
Factor V Leiden mutation, 384
Factor Xa
direct inhibitors of, 407
heparin effect on, 405
Factor Xa inhibitors, 383
Factor XI concentrate, 396
Facultative intracellular organisms, 112
FADH (flavin adenine dinucleotide), 88
Failing the USMLE Step 1 exam, 2122
Failure mode analysis for medical errors, 46
Failure to thrive as child neglect sign, 510
deprivation as cause, 510
galactosemia as cause, 91
orotic aciduria as cause, 390
SCID as cause, 209
Falciform ligament, 340
Fallopian tubes
anatomy of, 574
epithelial histology of, 574
fertilization in, 580

False-negative rate, 33
False-positive rate, 33
Falx cerebri, 498
Famciclovir, 184
Familial adenomatous polyposis, 363
APC gene and, 364
autosomal dominance of, 71
chromosome associated with, 75
lab findings in, 638
Familial dyslipidemias, 105
Familial hypercholesterolemia, 105
autosomal dominance of, 71
presentation of, 630
Familial hypocalciuric
hypercalcemia, 325
Family therapy for separation anxiety disorder, 511
Famotidine, 374
Fanconi anemia, 391
nonhomologous end joining and, 53
presentation of, 633
Fanconi syndrome, 538
as drug reaction, 253
presentation of, 633
renal tubular acidosis as cause, 544
Wilson disease as cause, 371
Fascia, collagen in, 61
Fasciculations, as motor neuron sign, 473
Fasciculations, LMN damage as cause, 632
Fastigial nucleus, 459
Fasting plasma glucose test, 330
Fasting state, 87, 103
Fast twitch muscle fibers, 424
Fat emboli, 617
Fatigue
adrenal insufficiency as cause, 318
adrenocortical insufficiency as cause, 633
heart failure as cause, 292
hypothyroidism as cause, 321
Fat necrosis, 217, 595
calcification and, 220
Fat redistribution, as drug reaction, 253
Fat-soluble vitamins, 76
Fatty acids
in gluconeogenesis, 89
metabolism of, 101
oxidation of, 83,84
Fatty acid synthase, 78
Fatty acid synthesis
location of in cell, 83
rate-determining enzyme for, 84
Fatty casts, 544
in nephrotic syndrome, 548
Fatty liver disease
hepatocellular carcinoma and, 368
lab findings in, 638
Fatty liver, in Reye syndrome, 366
Fava beans, as cause of G6PD deficiency, 392
FBN1 gene, 71
Fc region of antibodies, 196

Febrile nonhemolytic transfusion reaction, 206
Febrile pharyngitis, 148
Febuxostat
for gout, 431, 448, 639
for Lesch-Nyhan syndrome, 50
Fecal elastase, 358
Fecalith obstruction, in appendicitis, 360
Fecal microbiota transplant, 122
Fecal retention, 512
Feces, and bilirubin, 353
Federation of State Medical Boards (FSMB), 2
Fed state, 87, 103
Felty syndrome, 430
Female genital embryology, 571
Female reproductive anatomy, 574
Female reproductive epithelial histology, 574
Femoral artery, 347
Femoral hernias, 349
Femoral nerve, 347, 422
Femoral region, 347
Femoral ring, 347
Femoral sheath, 347
Femoral triangle, 347
Femoral vein, 347
Fenofibrate, 300
Fenoldopam, 246, 298
for hypertensive emergency, 298
Fentanyl, 499
Ferritin
as acute-phase reactant, 198
in anemia, 394
in anemia of chronic disease, 391
in iron deficiency anemia, 388
lab values in anemia, 394
in sideroblastic anemia, 389
Ferrochelatase, 395
Ferruginous bodies, 636
Fertility
GnRH and, 309
Fertilization, 578, 580
Fetal. See also Pregnancy
Fetal alcohol syndrome, 284, 564, 565
holoprosencephaly and, 451
Fetal circulation, 264
Fetal death, from parvovirus, 148
Fetal development, early, 562
Fetal distress
placental abruption as cause, 588
vasa previa as cause, 589
Fetal erythropoiesis, 381
Fetal hemoglobin, 611
Fetal hemorrhage, 564
Fetal hypothyroidism, 322
Fetal lung maturity, 607
Fetal-postnatal derivatives, 264
Fetal respiration, 606
Fetal tissue, collagen in, 61
Fetor hepaticus, 365
Fever
bacterial endocarditis as cause, 293
Kawasaki disease as cause, 296
thyroid storm as cause, 323
tuberculosis as cause, 124

Fexofenadine, 627
FGF. See Fibroblast growth factor (FGF)
FGF gene, 562
Fibrates, 300
hepatitis caused by, 252
for hypertriglyceridemia, 640
myopathy caused by, 253
Fibrinogen
as acute-phase reactant, 198
in cryoprecipitate, 399
ESR and, 224
in platelet plug formation, 385
receptor for, 378
in thrombocytes, 378
in thrombogenesis, 385
Fibrinoid necrosis, 217
Fibrinolysis, in coagulation cascade, 384
Fibrinolytic system, 383
Fibrinous pericarditis, 288
Fibroadenomas, 595, 642
location of, 595
Fibroblast growth factor (FGF)
signaling pathways for, 316
in wound healing, 223
Fibroblast growth factor receptor
(FGFR3), 426
Fibroblasts
cortisol and, 313
in wound healing, 223
Fibrocystic changes of breast, 595, 637
Fibroid tumors, 594
leuprolide for, 601
Fibromas, 592
nomenclature for, 228
Fibromuscular dysplasia, 284
Fibromyalgia, 435
Fibronectin
in cryoprecipitate, 399
in thrombocytes, 378
Fibrosarcomas, 228
Fibrosis
diffusion-limited gas exchange in, 613
silicosis as cause, 620
Fibrous plaque in atherosclerosis, 286
Fick principle, 266
Fidaxomicin, 122
Fiduciary duty to patients, 39
Fifth disease
B19 virus as cause, 148
presentation of, 630
rash caused by, 166
50S inhibitors, 174
Filgrastim, 213
Filoviruses
characteristics of, 151
Ebola as, 156
as negative-stranded, 152
Filtration, 535
Filtration fraction, 647
glomerular dynamics, effect on, 535
Fimbria, 108
anatomy of, 574

Financial considerations in treatment, 42
Finasteride, 603
reproductive hormones and, 600
Fingernails, glomus tumors under, 441
First-order elimination, 238
Fishbone diagram, 46
Fishy smell, in Gardnerella vaginalis, 132
Fitz-Hugh-Curtis syndrome, 167 gonococci as cause, 126
5-aminosalicylic drugs, 359, 375
$5 \alpha$-reductase
testosterone and, 582
$5 \alpha$-reductase deficiency, 571, 586
$5 \alpha$-reductase inhibitors
for benign prostatic hyperplasia, 638
for BPH, 599
5-fluorouracil, 409
in cell cycle, 408
photosensitivity caused by, 253
pyrimidine synthesis and, 49
targets of, 408
toxicities of, 413
5-HT
in anxiety, 511
in depression, 511
MAO inhibitor effect on, 528
mechanism of, 526
opioid effect on, 499
serotonin syndrome and, 527
tramadol effect on, 499
trazodone effect on, 528
tricyclic antidepressant effect on, 527
5-HT ${ }_{1 \mathrm{~B} / \mathrm{ID}}$ agonists
naming convention for, 255
5-HT agonists, 505
5-hydroxyindoleacetic acid (5HIAA), 319
in carcinoid syndrome, 332
Fixation, as ego defense, 508
Fixed splitting, 271
Flaccid paralysis, 473
botulinum toxin as cause, 116
LMN lesion as cause, 475
Flagellin, 192
Flagellum
as bacterial structure, 108
in cell walls, 108
Flash cards for USMLE Step 1 exam, 13
Flat affect, 458
Flat facies in Down syndrome, 74
Flavin nucleotides, 86
Flaviviruses
characteristics of, 151
genomes of, 147
Fleas, as disease vectors, 132, 133
Flecainide, 302
Flexor digiti minimi muscle, 421
Flexor pollicis brevis muscle, 421
Flies, as disease vectors, 143
Floppy baby syndrome
botulinum toxin as cause, 116

Clostridium botulinum as cause, 122
spinal cord lesions causing, 474
Flow cytometry, 66
Flow volume loops, 619
Fluconazole, 181, 182
for Candida albicans, 137, 639
for Cryptococcus neoformans, 639
for systemic mycoses, 135
Flucytosine, 182
Fludrocortisone, 336. See also Glucocorticoids
Fluid compartments, 533
Flumazenil
for benzodiazepine overdose, 251, 501, 522
diazepam and, 240
nonbenzodiazepine hypnotics and, 501
Fluorescence in situ hybridization, 67
Fluorescent antibody stain, 110
Fluoroquinolones, 170, 178
for Mycoplasma pneumoniae, 134
in pregnancy, avoiding, 187
for Pseudomonas aeruginosa, 127
tendonitis/cartilage damage caused by, 253
as topoisomerase inhibitors, 51
for typhoid fever, 129
Fluoxetine, 527
Fluphenazine, 525
for Tourette syndrome, 511, 524
Flutamide, 603
for prostate cancer, 640
reproductive hormones and, 600
Fluticasone, 628
FMR1 gene, 73
Foam cells
in atherosclerosis, 286
Niemann-Pick disease as cause, 100
Focal glomerular disorders, 544
Focal hepatic necrosis, 252
Focal necrotizing vasculitis, 296
Focal neurological signs
hyperosmolar hyperglycemia nonketotic syndrome as cause, 332
meningiomas as cause, 496
vertigo and, 495
Focal segmental glomerulosclerosis, 548
nephrotic syndrome and, 644
Focal seizures, 494
Folate antagonists, 564
Folate synthesis
sulfonamides and, 177
trimethoprim and, 177
Folic acid
anencephaly and, 451
for neural tube defect prevention, 640
neural tube defects and, 451
in pregnancy, 79
synthesis and reduction of, 170
Follicles, lymph, 190
Follicle-stimulating hormone (FSH)
clomiphene effect on, 601
in cryptorchidism, 597
in Kallmann syndrome, 586
in Klinefelter syndrome, 585
in menopause, 582
ovulation/spermatogenesis and, 310
in PCOS, 591
pharmacologic control of, 600
in premature ovarian failure, 591
progesterone and, 577
secretion of, 307
signaling pathways of, 316
in spermatogenesis, 576
in Turner syndrome, 585
Follicular conjunctivitis, 134
Follicular cysts, 592
Follicular lumen, 315
Follicular lymphomas, 216, 400, 645
chromosomal translocations and, 403
Follicular phase of menstrual cycle, 579
Follicular thyroid carcinomas, 324
Fomepizole
ethanol metabolism and, 83
for ethylene glycol/methanol intoxication, 639
as toxicity treatment, 251
Fondaparinux, 383
Food allergies, and eczema, 440
Food poisoning
Bacillus cereus as cause, 122
bacteria causing, 114
key associations, 643
organisms causing, 161
Staphylococcus aureus as cause, 119
toxic shock syndrome toxin as cause, 117
Food toxins, 250
Foot drop, from lead poisoning, 389
Foramen cecum, 306
Foramen magnum, 478
Foramen of Magendie, 471
Foramen of Monro, 471
Foramen ovale, 262, 478
in fetal circulation, 264
postnatal derivative of, 264
Foramen primum, 262
Foramen rotundum, 478
Foramen secundum, 262
Foramen spinosum, 478
Foramina of Luschka, 471
Forebrain, 450
anomalies of, 451
Foregut
blood supply/innervation of, 342
development of, 338
Formoterol, 628
Fornix, 458, 574
46,XX/46,XY DSD, 586
Fosamprenavir, 184 for HIV, 186
Foscarnet, 185
for CMV, 639
Fosphenytoin, 500
Fossa ovalis, 264
Fovea, 482
cherry-red spot at, 486

FOXP3 protein, 194
Fragile X syndrome, 73
chromosome associated with, 75
intellectual disability caused by, 643
as trinucleotide repeat expansion disease, 73
X-linked dominant inheritance of, 70
Frameshift mutations, 52
muscular dystrophy and, 73
Francisella spp.
as intracellular organism, 112
morphology of, 109
Francisella tularensis
animal transmission of, 132
in Gram-negative algorithm, 125
Frataxin, 475
Free fatty acids
in diabetic ketoacidosis, 331
in fast/starvation states, 103
lipid transport and, 104
Free nerve endings, 454
Free radical injury, 219, 221
Fresh frozen plasma, 399
for warfarin toxicity, 251, 641
"Fried egg" cells in ovarian tumors, 593
Friedreich ataxia, 475
chromosome associated with, 75
hypertrophic cardiomyopathy and, 291
as trinucleotide repeat expansion disease, 73
Frontal eye fields, 462
lesions in, 464
Frontal lobe
lesions in, 464
stroke effects, 467
Frontotemporal dementia, 491
ex vacuo ventriculomegaly caused by, 471
Fructokinase
essential fructosuria and, 91
in fructose metabolism, 91
in metabolic pathways, 85
Fructose-1,6-bisphosphatase, 84
in gluconeogenesis, 89
in metabolic pathways, 85
Fructose-2,6-bisphosphate, 87
Fructose intolerance, 91
Fructose metabolism
diagram of, 85
disorders of, 91
Fructosuria, 91
FSH. See Follicle-stimulating hormone (FSH); See Follicle-stimulating hormone (FSH)
FTA-ABS test for syphilis, 131
Fumarate, in urea cycle, 93
Functional residual capacity

$$
(\mathrm{FRC}), 610
$$

chest wall and, 611
in flow volume loops, 619
Fundus, 574

Fungal infections
IL-12 receptor deficiency as cause, 208
thymic aplasia as cause, 208
Fungi
culture requirements for, 111
immunocompromised patients and, 162
necrosis and, 217
opportunistic infections, 137
silver stain for, 110
topical infections, treatment of, 182
Funny current, 275
Furosemide, 254, 557
gout caused by, 253
interstitial nephritis caused by, 253
pancreatitis caused by, 252
Fusion inhibitors, 186
Fusobacterium spp.
alcoholism and, 162
as anaerobic organism, 111
lung abscesses caused by, 624

## G

G6PD
HMP shunt and, 84
in respiratory burst, 201
G6PD deficiency, 90,392
in anemia taxonomy, 388
degmacytes in, 386
Heinz bodies in, 387
as X-linked recessive disorder, 72
GABA, 455
in anxiety, 511
barbiturate effect on, 501
basal ganglia and, 460
benzodiazepine effect on, 501
as derivative, 94
epilepsy drug effect on, 500
in Huntington disease, 462, 511
in Huntington disease, 71
vitamin $\mathrm{B}_{6}$ and, 78
GABA channels, 183
Gabapentin, 500
GABA $_{B}$ receptor agonists, 492
gag gene, 158
Gag reflex, 479
Gait problems
muscular dystrophy as cause, 73
Parkinson disease as cause, 461, 633
Galactocerebrosidase, 100
in Krabbe disease, 493
Galactocerebroside, 100
Galactokinase, 85
Galactokinase deficiency, 91
cataracts and, 483
Galactorrhea
antipsychotic drugs as cause, 309, 525
pituitary prolactinomas as cause, 309
tuberoinfundibular pathway and, 458
Galactose-1-phosphate, 85
Galactose-1-phosphate uridyltransferase, 91

Galactose metabolism
diagram of, 85
disorders of, 91
Galactosemia, 91
cataracts and, 483
Galantamine, 244
for Alzheimer disease, 505
Galant reflex, 476
Gallbladder, 347
blood supply and innervation of, 342
cholecystokinin effect on, 350
Gallbladder cancer
porcelain gallbladder and, 372
sclerosing cholangitis and, 371
Gallstone ileus, 372
Gallstones. See Cholelithiasis
$\gamma$-glutamyltransferase (GGT)
in alcohol use, 522
$\gamma$-glutamyl transpeptidase (GGT), 366
$\gamma$-interferon, 379
Ganciclovir, 185
agranulocytosis caused by, 252
for CMV, 639
Ganglioneuromatosis, 634
Gangrene
Buerger disease as cause, 296
diabetes mellitus as cause, 330
Gangrenous necrosis, 217
Gap junctions, 438
Gardener's pupil, 245
Gardnerella spp., 109
Gardnerella vaginalis, 132
lab findings in, 638
metronidazole for, 178
Gardner syndrome, 363 presentation of, 632
Gargoylism, 100
Garlic breath, in arsenic toxicity, 87
Gas gangrene
alpha toxin as cause, 117
bacteria causing, 114
Clostridium perfringens as cause, 122, 162
Gastrectomy, 390
Gastric acid, 351
histamine receptors and, 242
somatostatin and, 350
Gastric adenocarcinomas acanthosis nigricans and, 444 Helicobacter pylori as cause, 130
Gastric arteries, 343
ligaments containing, 340
Gastric bypass surgery
ghrelin and, 350
vitamin $B_{12}$ deficiency caused by, 80
Gastric cancer, 356
brain metastases in, 644
carcinogens causing, 231
chronic atrophic gastritis and, 642
chronic gastritis and, 356
key associations, 642, 645
lab findings in, 637
liver metastases in, 644
metastases of, 233
oncogenes and, 230
oncogenic microbes and, 231
sign of Leser-Trélat and, 229
trastuzumab for, 413
Gastric obstruction, 357
Gastric sclerosis, 437
Gastric ulcers, 357
key associations, 641
NSAID toxicity as cause, 447
Gastric vessels, 340
Gastrin, 350
location of, 351
signaling pathways for, 316
somatostatinomas and, 332
Gastrinomas, 336
Gastritis, 356
gastrin in, 350
$\mathrm{H}_{2}$ blockers for, 374
Helicobacter pylori as cause, 130
key associations, 642
proton pump inhibitors for, 374
stomach cancer and, 356
Gastrocolic ligament, 340
Gastroduodenal artery, 343
Gastroenteritis
Listeria monocytogenes as cause, 123
rotavirus as cause, 152
Gastroepiploic arteries, 343
ligament containing, 340
Gastroesophageal reflux disease (GERD), 354
esophageal cancer and, 355
Gastrohepatic ligament, 340
Gastrointestinal bleeding
hereditary hemorrhagic telangiectasia as cause, 71
iron poisoning as cause, 396
Osler-Weber-Rendu syndrome as cause, 634
Gastrointestinal drug reactions, 252
Gastrointestinal ligaments, 340
Gastrointestinal stromal tumors (GISTs), 230
Gastrointestinal system, 338-377
anatomy, 339-348
blood supply to, $\mathbf{3 4 2}$
embryology, 338, 338-339
innervation of, $\mathbf{3 4 2}$
pathology, 353-374
pharmacology, 374-376
physiology, 350-354
regulatory substances, $\mathbf{3 5 0}$
secretory products, $\mathbf{3 5 1}$
Gastroschisis, 338
Gastrosplenic ligament, 340
Gaucher disease, 100, 644
osteonecrosis caused by, 427
presentation of, 631
Gaussian distribution, 37
G-CSF. See Granulocyte-colony stimulating factor (G-CSF)
Gemfibrozil, 300
Gemifloxacin, 178
Gender dysphoria, 520
Gender identity, 43
Gene expression modifications, 68
Gene expression regulation, $\mathbf{5 4}$

Gene inheritance modes, 70
General anesthetic, 255
Generalized anxiety disorder (GAD), 516, 517
buspirone for, 526
drug therapy for, 524
Selective serotonin reuptake inhibitors (SSRIs) for, 527
serotonin-norepinephrine reuptake inhibitors (SNRIs) for, 527
treatments for, 639
Generalized seizures, 494
Genetics, 68-77
$22 q 11$ deletion syndromes, 76 autosomal dominant diseases, 71 autosomal recessive diseases, 72 autosomal trisomies, 74
bacterial, 114
chromosomes, and disorders, 75
code features, $\mathbf{5 0}$
genetic terms, 68-69
modes of inheritance, 70
muscular dystrophies, 73
trinucleotide repeat expansion diseases, 73
X-linked recessive disorders, 72
Genetic shift/drift in influenza viruses, 153
Genital herpes, 167
Genitalia
ambiguous, 571, 585, 586
embryology of, 571
estrogen and, 577
male/female homologs, 572
Genital lesions, 632, 634
Genital tubercles, 572
Genital ulcers, 167
Genital warts, 167
Genitourinary cancer, 644
Genitourinary drug reactions, 253
Genotyping microarrays, 66
Gentamicin, 170, 174
for endometritis, 594
Geriatric patients
Alzheimer disease in, 491
amyloidosis in, 225
angiosarcomas in, 441
atropine in, 245
changes in, 44
cherry hemangiomas in, 441
colonic ischemia and, 362
drug metabolism in, 238
lipofuscin in, 225
Medicare for, 44
nosocomial infections in, 168
osteoporosis in, 426
volvulus in, 362
Zenker diverticulum in, 361
Germinal center, in spleen, 191
Germinal centers of lymph nodes, 190
Gerstmann syndrome, 464
Gestational diabetes mellitus, 334
cardiac defects associated with, 284
Gestational hypertension, 590
GFAP (glial fibrillary acid proteins)
as astrocyte marker, 453
as cytoskeletal element, 60
in pilocytic astrocytomas, 497
as stain, 60
GH. See Growth hormone (GH)
Ghon complex, 636
in tuberculosis, 124
Ghon focus, 124
Ghrelin, 311, 350
hunger and, 456
GHRH. See Growth-hormonereleasing hormone (GHRH)
Giant cell arteritis, 296
Giant cell pneumonia, 154
Giant cells
in chronic inflammation, 219
Giant cell tumors, 429
Giant cell tumors of bone, 638
Giardia spp.
metronidazole for, 178
watery diarrhea caused by, 162
Giardia lamblia, 139
Giardiasis, 139
Giemsa stain, 110
for Borrelia, 130
chlamydiae on, 134
Gigantism, 311, 327
Gilbert syndrome, 369, 370, 643
Gingiva, blue line on, 630
Gingival hyperplasia
calcium channel blockers as cause, 298
cyclosporine as cause, 212
as drug reaction, 253
epilepsy drugs causing, 500
Gingivostomatitis, 149
Gitelman syndrome, 538
markers in, 542
Glans penis, 575
cancer of, 597
lymphatic drainage of, 573
Glanzmann thrombasthenia, 385
presentation of, 632
Glargine insulin, 334. See also Insulin
Glaucoma, 484
acetazolamide for, 557
atropine as cause, 245
$\beta$-blockers for, 249
carbachol for, 244
diabetes mellitus as cause, 330
diagnosing, 244
drug therapy for, 498
epinephrine for, 246
pilocarpine for, 244
Sturge-Weber syndrome as cause, 495
Glimepiride, 334
Glioblastoma multiforme, 496, 642
lab findings in, 637
nitrosoureas for, 410
Glioblastomas, 60
Glipizide, 334
Glitazones, 334
Global aphasia, 463
Globoid cells
Krabbe disease as cause, 100, 493
Globose nucleus, 459
Globus pallidus externus, 460

Glomerular diseases, 545
nomenclature of, 544
Glomerular filtration barrier, $\mathbf{5 3 3}$
Glomerular filtration rate, 534, 647
ACE inhibitor effect on, 559
ANP effect on, 541
glomerular dynamics, effect on, 535
juxtaglomerular apparatus and, 540
in prerenal azotemia, 553
Glomerulonephritis
Alport syndrome as cause, 547
azathioprine for, 212
bacterial endocarditis as cause, 293
intrinsic renal failure caused by, 553
key associations, 643
lab findings in, 635, 637, 638
pharyngitis and, 120
RBC casts in, 544
Streptococcus pyogenes as cause, 120
Wegener granulomatosis as cause, 296
Glomerulus
anatomy of, 532
changes in dynamics, 535
nodular hyaline deposits in, 637
Glomus tumors, 441
Glossitis
B-complex deficiency as cause, 76
megaloblastic anemia as cause, 390
Plummer-Vinson syndrome as cause, 354, 631
vitamin $\mathrm{B}_{3}$ deficiency as cause, 78
vitamin $B_{9}$ deficiency as cause, 79
Glossopharyngeal nerve (9th cranial nerve), $\mathbf{4 7 9}$
as branchial arch derivative, 569
location in brain stem, 477
pathway for, 478
receptor transmission by, 279
in tongue, 452
Glossoptosis, 569
GLP-1 analogs, 335
Glucagon, 309
for $\beta$-blocker toxicity, 251, 303
catabolic effects of, 309
DPP-4 inhibitor effect on, 335
fructose bisphosphatase-2 and, 87
GLP-1 analog effect on, 335
glucagonomas and, 332
glycogen regulation and, 97
insulin and, 308, 309
production of, 307
signaling pathways of, 316
somatostatin and, 350
somatostatinomas and, 332
Glucagon-like peptide 1, 308
Glucagonomas, 332
MEN 1 syndrome as cause, 333
somatostatin for, 336
Glucocerebrosidase
in Gaucher disease, 100
Glucocerebroside, 100
Glucocorticoids, 336
for acute gout attack, 638
in adrenal insufficiency, 318
adrenal steroids and, 312
arachidonic acid pathway and, 446
for calcium pyrophosphate deposition disease, 431
diabetes mellitus caused by, 330
fat redistribution caused by, 253
for gout, 431, 448
myopathy caused by, 253
for rheumatoid arthritis, 430
Glucokinase
vs. hexokinase, $\mathbf{8 6}$
in metabolic pathways, 85
Gluconeogenesis, 89
cortisol and, 313
diagram of, 85
ethanol metabolism and, 83
glucagon and, 309
in insulin deficiency, 330
location of in cell, 83
metformin effect on, 334
pyruvate metabolism and, 88
rate-determining enzyme for, 84
thyroid hormones and, 315
Glucose
ATP production and, 86
blood-brain barrier and, 455
clearance of, 536
for diabetic ketoacidosis, 331
GH secretion and, 311
in glycogen metabolism, 98
insulin and, 308
metabolism of, 52
Neisseria fermentation of, 126
for porphyria, 395
transporters, 308
Glucose-6-phosphatase
in gluconeogenesis, 89
in HMP shunt, 90
in Von Gierke disease, 99
Glucose-dependent insulinotropic peptide (GIP), 350
Glucosuria
glucose clearance and, 536
in pregnancy, 536
SGLT-2 inhibitors as cause, 335
Glulisine insulin, 334. See also Insulin
Glutamate
in Alzheimer disease, 511
ammonia transport by, 93
derivatives of, 94
opioid effect on, 499
Glutamic acid, 92
Glutamic acid decarboxylase (GAD65), 207

Glutamine, 49
Glutathione
acetaminophen and, 446
as derivative, 94
in G6PD deficiency, 392
Glutathione peroxidase, 201 free radical elimination by, 221
Glutathione reductase, 201
NADPH and, 86
Gluteus maximus muscle, 422

Gluteus medius muscle, 422
Gluteus minimus muscle, 422
GLUT transporters, 308
Glyburide, 334
Glyceraldehyde, 91
Glycerol, 91
Glycine
derivatives of, 94
in nucleotide synthesis, 49
Glycocalyx, 108
Glycogen, 98
in cell injury, 218
insulin and, 308
periodic acid-Schiff stain for, 110
regulation of, 97
Glycogenesis
diagram of, 85
rate-determining enzyme for, 84
Glycogenolysis
diagram of, 85
glucagon and, 309
in insulin deficiency, 330
rate-determining enzyme for, 84
thyroid hormones and, 315
Glycogen phosphorylase, 84
in glycogen metabolism, 98
Glycogen phosphorylase kinase, 97
Glycogen storage diseases, 99, 538
Glycogen synthase, 84
in glycogen metabolism, 98
in glycogen regulation, 97
Glycolysis
arsenic and, 86
diagram of, 85
hexokinase/glucokinase in, 86
location of in cell, 83
metformin effect on, 334
pyruvate metabolism and, 88
rate-determining enzyme for, 84
regulation of, $\mathbf{8 7}$
type 2 muscle fibers and, 424
Glycopeptides, 170
Glycoprotein IIb/IIIa inhibitors, 407
Glycoproteins, in HIV, 158
Glycopyrrolate, 245
Glycosylation, 57
Glycyrrhetinic acid, 538
GNAQ gene, 495
GnRH. See Gonadotropin-releasing hormone (GnRH)
Goblet cells, 341
in respiratory tree, 608
Goiter, 321
congenital hypothyroidism caused by, 322
lack of maternal iodine as cause, 564
in Riedel thyroiditis, 322
Gold toxicity, 251
Golfer's elbow, 417
Golgi apparatus, 59
in plasma cells, 381
Gonadal drainage, 573
Gonadal mosaicism, 69
Gonadotroph hyperplasia, 496
Gonadotropin, 592

Gonadotropin-releasing hormone
(GnRH), 309
estrogen and, 577
for infertility, 640
in Kallmann syndrome, 586
in menopause, 582
in menstrual cycle, 579
in ovulation, 578
prolactin and, 310
for prostate cancer, 640
signaling pathways for, 316
in spermatogenesis, 576
Gonadotropin-releasing hormone (GnRH) agonists
for adenomyosis, 594
for endometriosis, 594
reproductive hormones and, 600
Gonadotropin-releasing hormone (GnRH) antagonists, 600
Gonococcal arthritis, 432
Gonococci, vs. meningococci, 126
Gonorrhea
antimicrobial prophylaxis for, 181 ceftriaxone for, 172
gonococci as cause, 126
as STI, 167
Goodpasture syndrome, 546 autoantibody associated with, 207 collagen deficiency in, 61
HLA-DR2 and, 193
lab findings in, 634, 636, 637
as restrictive lung disease, 619
as type II hypersensitivity reactions, 204
Good syndrome, 229
Gottron papules, 436
Gout, 431
as drug reaction, 253
drug therapy for, 448
kidney stones and, 549
lab findings in, 636, 637
Lesch-Nyhan syndrome as cause, 50, 631
loop diuretics as cause, 557
presentation of, 634
treatments for, 638, 639
Von Gierke disease as cause, 99
Gower maneuver, 73
Gowers sign, 630
Gp41, 186
G-protein-linked 2nd messengers, 242
Grafts, 210
Graft-versus-host disease, 211
as type IV hypersensitivity reaction, 205
Gram-negative organisms cell wall structure in, 108
cephalosporins for, 172
examples of, 109
lab algorithm for, 125
Gram-positive cocci antibiotic tests, 118
Gram-positive organisms cell wall structure in, 108 cephalosporins for, 172 examples of, 109
lab algorithm for, 118
vancomycin for, 173

Gram stain, 110
Granular casts, 544
in acute tubular necrosis, 554
Granulocyte-colony stimulating factor (GCSF), 316
Granulocytes, 378
morulae in, 133
Granulocytopenia, 177
Granulomas, 219
macrophages and, 379
Granulomatosis infantiseptica
as granulomatous disease, 223
Listeria monocytogenes as cause, 123
Granulomatous disease, 223
hypervitaminosis D caused by, 428
vitamin D toxicity in, 81
Granulosa cells, 577
Granulosa cell tumors, 593
endometrial hyperplasia and, 594
Granzyme B
cytotoxic T cells and, 194
extrinsic pathway and, 216
Granzymes, 193
Grapefruit juice, and cytochrome P-450, 254
Graves disease, 323
autoantibody associated with, 207
goiter caused by, 321
HLA-DR3 and, 193, 643
presentation of, 631
as type II hypersensitivity reactions, 204
Gray baby syndrome
chloramphenicol as cause, 175, 187
as drug reaction, 252
Great cerebral vein of Galen, 470
Greater sac, 340
Grief, 516
Griseofulvin, 183
cytochrome P-450 and, 254
disulfiram-like reaction caused by, 254
microtubules and, 60
in pregnancy, avoiding, 187
Ground-glass appearance on lung X-ray, 160, 607
Growth hormone (GH), 311, 336
acromegaly caused by, 327
diabetes mellitus caused by, 330
ghrelin and, 311
for hypopituitarism, 329
insulin resistance caused by, 308, 311
in Laron syndrome, 327
secretion of, 307
signaling pathways for, 316
thyroid hormones and, 315
Growth hormone (GH) deficiency, 336
Growth-hormone-releasing hormone
(GHRH), 309
GH and, 311
signaling pathways of, 316
Growth media properties, 110
Growth signal in cancer, 227
GTPase, 230

GTP (guanosine triphosphate)
in smooth muscle contraction, 425
in TCA cycle, 88
Guaifenesin, 627
Guanethidine, 243
Guanfacine, 247
Guanine synthesis, 187
Gubernaculum, 571, 573
Guessing during USMLE Step 1 exam, 20
Guillain-Barré syndrome, 493
Campylobacter jejuni as cause, 128
endoneurium in, 454
presentation of, 633
as restrictive lung disease, 619
Schwann cells in, 453
as type II hypersensitivity reactions, 204
Gummas
syphilis as cause, 131, 167
Gustatory hallucinations, 513
Guyon canal syndrome, 418
Gynecologic tumor epidemiology, 590
Gynecomastia, 595
antiandrogens for, 603
antipsychotics as cause, 525
azoles as cause, 182
choriocarcinomas as cause, 598
cimetidine as cause, 374
cirrhosis as cause, 365
Klinefelter syndrome as cause, 585
potassium-sparing diuretics as cause, 558
SHBG and, 316
tuberoinfundibular pathway and, 458
Gyrase, 170
Gyri, in Alzheimer disease, 491

## H

$\mathrm{H}_{1}$ blockers, 254, 627
$\mathrm{H}_{2}$-antagonists, 255
$\mathrm{H}_{2}$ blockers, 374
Haemophilus spp.
endocarditis caused by, 293
morphology of, 109
Haemophilus ducreyi
presentation of, 632 as STI, 167
Haemophilus influenzae, 126
biofilm produced by, 113
cephalosporins for, 172
chloramphenicol for, 175
culture requirements for, 111
in Gram-negative algorithm, 125
influenza and, 153
penicillinase-sensitive penicillins for, 171
pneumonia caused by, 162
as postviral infection, 162
rhinosinusitis caused by, 616 vaccine for, 163
Haemophilus influenzae type B as encapsulated bacteria, 112
IgA protease and, 113
in immunodeficient patients, 210
meningitis caused by, 163
rifamycins for, 179
splenic dysfunction and, 191
transformation in, 114
treatments for, 639
in unvaccinated children, 169
vaccine for, 112
Hairy cell leukemia, 402
cladribine for, 409
IFN- $\alpha$ for, 187
Hairy leukoplakia, 442
HIV and, 160
Half-life equation, 237, 646
Halitosis, in Zenker diverticulum, 361
Hallucinations, 513
cocaine as cause, 522
delirium and, 512
Lewy body dementia as cause, 491
memantine as cause, 505
mesolimbic pathway and, 458
pellagra as cause, 78
postpartum psychosis as cause, 516
schizophrenia as cause, 514
tricyclic antidepressants as cause, 527
Hallucinogen intoxication and withdrawal, 523
Haloperidol, 525
for delirium, 512
for Huntington disease, 505
torsades de pointes caused by, 251
Halothane, 502
necrosis caused by, 252
Hamartin protein, 230
Hamartomas, 228
tuberous sclerosis as cause, 71,495
Hamartomatous colonic polyps, 363
Hamate bone, 418
Hammer toes, 475
Hand
distortions of, 421
muscles of, 421
Hand-foot-mouth disease, 166
Hand grip, effect on auscultation, 272
Hand tremors, 321
Hand-wringing, in Rett syndrome, 511
Hansen disease, 125
animal transmission of, 132
dapsone for, 177
erythema nodosum and, 444
as granulomatous disease, 223
Hantavirus, 151
"Happy puppet" symptoms, in Angelman syndrome, 69
Haptens
acute interstitial nephritis caused by, 554
amiodarone as, 303
Haptoglobin, 391
Hardy-Weinberg equilibrium, 646
Hardy-Weinberg population genetics, 69
Hartnup disease, 78
vitamin $B_{3}$ deficiency as cause, 78
Hashimoto thyroiditis, 322
autoantibody associated with, 207
biliary cirrhosis and, 371
goiter caused by, 321
HLA-DR3 and, 193, 643
HLA-DR5 and, 193
thyroid lymphoma and, 324
Hassall corpuscles, 191
Hay fever
HLA-DR2 and, 193
as type I hypersensitivity reaction, 204
$\mathrm{HbA}_{\text {lc }}$ test, 330
HBcAg (hepatitis B core antigen), 157
HbC disease, 392
in anemia taxonomy, 388
target cells in, 387
HBeAg (hepatitis B extracellular antigen), 157
HbH disease, 388
HBsAg (hepatitis B surface antigen), 157
hCG. See Human chorionic gonadotropin (hCG)
HCTZ. See Hydrochlorothiazide (HCTZ)
HDL (high-density lipoprotein), 105
Headaches, 494
alpha-blockers as cause, 248
caffeine withdrawal as cause, 522
Chiari I malformation as cause, 452
cilostazol/dipyridamole as cause, 407
cimetidine as cause, 374
ethosuximide as cause, 500
fluoroquinolones as cause, 178
giant cell arteritis as cause, 296
griseofulvin as cause, 183
hydralazine as cause, 298
hypersensitivity pneumonitis as cause, 619
Jarisch-Herxheimer reaction as cause, 631
Nelson syndrome as cause, 326
nitrates as cause, 299
nonbenzodiazepine hypnotics as cause, 501
ondansetron as cause, 376
PDE-5 inhibitors as cause, 603
pituitary adenomas as cause, 326
pituitary apoplexy as cause, 329
polyarteritis nodosa as cause, 296
pseudotumor cerebri as cause, 471
ranolazine as cause, 299
sofosbuvir as cause, 187
subarachnoid hemorrhage as cause, 468
superior vena cava syndrome and, 625
terbinafine as cause, 182
triptans for, 505
Head and neck cancer, 616
cetuximab for, 214, 412
Head trauma, 512
Healing, wound, 223
Healthy worker effect, 36
Hearing loss, 481
cholesteatoma as cause, 482
cytomegalovirus as cause, 165
Meniere disease as cause, 631
osteogenesis imperfecta as cause, 63
Paget disease of bone as cause, 427 presbycusis as cause, 44
Heart
autoregulation of, 280
electrocardiograms, 276
embryology, 262
in fetal development, 562
ischemia in, 218
morphogenesis of, 262-263
in nervous system, 241
normal pressures in, 280
sclerosis of, 437
Heart auscultation, 272
Heart block, 265
Heartburn, 354
Heart disease
as common cause of death, 45
congenital, 282-283
Fabry disease as cause, 100
Heart failure, 292
ACE inhibitors for, 559
acromegaly as cause, 327
acute tubular necrosis caused by, 554
amiodarone as cause, 303
angiotensin II receptor blockers for, 559
aortic regurgitation as precursor, 273
atrial septal defect as cause, 283
$\beta$-blockers as cause, 249, 303
$\beta$-blockers for, 249
B-type natriuretic peptide in, 279
calcium channel blockers as cause, 304
cardiac glycosides for, 301
chronic ischemic heart disease as cause, 287
contractility in, 267
diabetic ketoacidosis as cause, 331
disopyramide as cause, 302
dobutamine for, 246
dopamine for, 246
Ebstein anomaly and, 282
ejection fraction in, 267
ESR in, 224
fludrocortisone and, 336
glitazone/thiazolidinediones as cause, 334
hydralazine for, 298
hypertension as cause, 284
hypertension with, treatment for, 298
hypertensive emergency and, 284
jugular venous pulse in, 270
key associations, 645
lab findings in, 637
loop diuretics for, 557
MI as cause, 288
pleural effusion caused by, 623
potassium-sparing diuretics for, 558
pulse pressure in, 266
readmissions caused by, 45
renal failure as cause, 553
S3 heart sound and, 645
shock caused by, 292
sleep apnea as cause, 621
systolic vs. diastolic, 267
thiazides for, 558
ventricular septal defect as cause, 283
Heart murmurs, 273
aortic regurgitation as cause, 630
auscultation of, 272
bacterial endocarditis as cause, 293
bedside maneuvers and, 272
key associations, 643
PDA as cause, 631
Heart nodules, 636
Heart rate, 247
Heart sounds, 270
auscultation of, 272
in cardiac cycle, 270
in cardiac tamponade, 294, 632
key associations, 645
splitting in, 271
Heart transplant, for dilated cardiomyopathy, 291
Heart valve development, 263
Heat-labile toxin, 116
Heat shock proteins, 57
Heat-stable toxin, 116
Heinz bodies, 90, 387, 392
Helicase, 51
Helicobacter spp., 109
Helicobacter pylori, 130
as catalase-positive organism, 112
chronic granulomatous disease and, 209
diseases associated with, 642
gastritis caused by, 356
in Gram-negative algorithm, 125
metronidazole for, 178
as oncogenic microbe, 231
penicillinase-sensitive penicillins for, 171
silver stain for, 110
stomach cancer and, 356
as urease-positive organism, 112
Heliotrope rash, 436
HELLP syndrome, 590
schistocytes in, 387
Helminthic infections
eosinophils and, 379
key associations, 643
Helminths, 142
Helper T cells, 194
cell surface proteins, 202
cytokines secreted by, 200
in granulomatous diseases, 223
Hemagglutinin, in influenza viruses, 153
Hemangioblastomas, 496
polycythemia and, 229
von Hippel-Lindau disease as cause, 495, 633
Hemangiomas, 228
Hemarthroses, 396
Hemarthrosis, 80
Hematemesis
esophageal varices as cause, 354
Mallory-Weiss syndrome as cause, 354, 523, 634

Hematochezia
angiodysplasia as cause, 362
colonic ischemia as cause, 362
colorectal cancer as cause, 364
diverticulosis as cause, 360
Meckel diverticulum as cause, 567
Hematocrit
high altitude and, 615
in polycythemia vera, 404
Hematologic drug reactions, 252
Hematology/oncology, 378-415
anatomy, 378-381
pathology, 386-406
pharmacology, 405-413
physiology, 381-385
Hematomas, 643
Hematopoiesis, 401
Hematopoietic stem cells, 202
Hematuria
bladder cancer as cause, 551
Henoch-Schönlein purpura as cause, 633
hereditary hemorrhagic telangiectasia as cause, 71
IgA nephropathy as cause, 546
kidney stones as cause, 549
nephritic syndrome as cause, 546
Osler-Weber-Rendu syndrome as cause, 634
protease inhibitors as cause, 186
renal cell carcinoma as cause, 550
renal cyst disorders as cause, 555
renal oncocytomas as cause, 550
RPGN as cause, 546
Schistosoma haematobium and, 145
Wegener granulomatosis as cause, 296
Wilms tumor as cause, 551
Heme
bilirubin and, 353
chloroquine and, 183
for porphyria, 395
sideroblastic anemia and, 389
synthesis of, 83, 395
vitamin $\mathrm{B}_{6}$ and, 78
Hemianopia, 489
in pituitary adenomas, 496
Hemiballismus, 461
brain lesions and, 464
Hemicholinium, 243
Hemidesmosome, 438
autoantibody to, 207
Hemihypertrophy, 551
Hemiparesis, in multiple sclerosis, 492
Hemispatial neglect syndrome, 464
Hemochromatosis, 371
calcium pyrophosphate deposition disease and, 431
cardiomyopathy caused by, 291
chromosome associated with, 75
free radical injury and, 221
hepatocellular carcinoma and, 368
HLA-A3 and, 193

## INDEX

Hemochromatosis (continued)
key associations, 643
liver cancer and, 645
restrictive/infiltrative cardiomyopathy caused by, 291
Hemoglobin, 611
carbon dioxide transport and, 615
development of, 381
high altitude and, 615
kinetics of, 236
modifications of, $\mathbf{6 1 2}$
Hemoglobin electrophoresis, 383
Hemoglobinuria
acute tubular necrosis caused by, 554
G6PD deficiency as cause, 392 intravascular hemolysis as cause, 391
Hemolysis
alpha toxin as cause, 117
Clostridium perfringens as cause, 122
in HELLP syndrome, 590
sulfonamides as cause, 177
Hemolysis in G6PD deficiency as drug reaction, 252
Hemolytic anemia, 388, 391
babesiosis as cause, 141
cold agglutinin disease as cause, 632
folate deficiency caused by, 390
penicillin as cause, 170
pyruvate kinase deficiency as cause, 392
ribavirin as cause, 187
spherocytes in, 387
sulfa drug allergies as cause, 254
vitamin E deficiency as cause, 81
Wilson disease as cause, 371
Hemolytic reactions, and blood types, 382
Hemolytic-uremic syndrome (HUS)
Escherichia coli as cause, 128
schistocytes in, 387
Shigella spp. and, 116
Hemophilia, 396
deficiencies causing, 383
as X-linked recessive disorder, 72
Hemoptysis
bronchiectasis as cause, 618
choriocarcinomas and, 587
HIV and, 160
lung cancer as cause, 626
tuberculosis as cause, 124
Wegener granulomatosis as cause, 296
Hemorrhage
acute pancreatitis as cause, 373
acute tubular necrosis caused by, 554
baroreceptors and, 279
bevacizumab as cause, 412
delirium caused by, 512
intracranial, 469
shock caused by, 292
subarachnoid, 468
ulcers as cause, 357
Weil disease as cause, 130
Hemorrhagic cystitis
adenoviridae as cause, 148
cyclophosphamide as cause, 410
as drug reaction, 253
treatments for, 639
Hemorrhagic fever
as bunyavirus, 151
as filovirus, 151
Hemorrhagic infarcts, 219
Hemorrhagic stroke, 468
Hemorrhoids, 345
Hemosiderinuria, 391
Hemostasis, 378
Henderson-Hasselbalch equation, 543, 647
Henoch-Schönlein purpura, 297
in IgA nephropathy, 546
presentation of, 633
Hepadnaviruses
characteristics of, 148
as DNA viruses, 147
genome of, 147
Heparin, 405
for acute coronary syndromes, 290
for anticoagulation, 383, 640
for anticoagulation during pregnancy, 639
in basophils, 379
in coagulation cascade, 384
for deep venous thrombosis, 616
mast cells and, 379
osteoporosis caused by, 253
reversal, treatments for, 639
thrombocytopenia caused by, 252
toxicity treatment for, 251
vs. warfarin, 406
warfarin and, 406
Heparin-induced thrombocytopenia (HIT), 405
Hepatic adenomas, 368
Hepatic arteries, 343, 346
Hepatic ascites, 558
Hepatic cirrhosis, 623
Hepatic ducts, 347
Hepatic encephalopathy, $\mathbf{3 6 7}$
cirrhosis as cause, 365
lactulose for, 375
Hepatic necrosis, 446
Hepatic steatosis, 367
Hepatic TG lipase, 104
Hepatitis
alcoholic, 367
alcoholism as cause, 523
aplastic anemia and, 391
cirrhosis caused by, 365
as drug reaction, 252
heroin addiction and, 523
hyperbilirubinemia caused by, 369
Wilson disease as cause, 371
Hepatitis A (HAV), 151
characteristics of, 156
killed vaccine for, 146
as picornavirus, 152
serologic markers for, 157
vaccine for, 203

Hepatitis B (HBV)
characteristics of, 156
hepatocellular carcinomas and, 368
IFN- $\alpha$ for, 187
medical importance of, 148
membranous nephropathy and, 548
MPGN and, 547
as nosocomial infection, 168
as oncogenic microbe, 231
passive antibodies for, 203
polyarteritis nodosa and, 296
recombinant cytokines for, 213
serologic markers for, 157
as STI, 167
treatments for, 639
Hepatitis C (HCV), 151
as antigenic variation, 202
blood transfusions and, 643
characteristics of, 156
drug therapy for, 187
hepatocellular carcinoma and, 368
lichen planus and, 444
membranous nephropathy and, 548
MPGN and, 547
as oncogenic microbe, 231
recombinant cytokines for, 213
treatments for, 639
Hepatitis D (HDV), 156
Hepatitis E (HEV), 151, 156
Hepatitis viruses, 156
aplastic anemia caused by, 391
diagnostic tests for, 157
serologic markers for, 157
Hepatocellular carcinomas, 368,

## 645

Aspergillus fumigatus as cause, 137
Budd-Chiari syndrome and, 368
carcinogens causing, 231
cirrhosis and, 365
hemochromatosis as cause, 371
key associations, 643, 645
non-alcoholic fatty liver disease and, 367
oncogenic microbes and, 231
polycythemia and, 229
Hepatocytes, 98
Hepatoduodenal ligament, 340
Hepatomas, 368
Hepatomegaly, 292
amyloidosis and, 225
Budd-Chiari syndrome as cause, 368, 630
Cori disease as cause, 632
galactosemia as cause, 91
hepatocellular carcinoma as cause, 368
pulmonary hypertension as cause, 613
Reye syndrome as cause, 366
Von Gierke disease as cause, 99
Hepatosplenomegaly
$\beta$-thalassemia and, 389
biliary tract disease as cause, 371
Gaucher disease as cause, 100, 631
graft-versus-host disease as cause, 211
Hurler syndrome as cause, 100
hyperchylomicronemia as cause, 105
leishmaniasis as cause, 142
mononucleosis as cause, 149
mycosis fungoides as cause, 631
Niemann-Pick disease as cause, 100
ToRCHeS infections as cause, 165
Hepatotoxicity
amiodarone as cause, 303
bosentan as cause, 627
carbamazepine as cause, 500
danazol as cause, 602
glitazone/thiazolidinediones as cause, 334
HMG-CoA reductase inhibitors as cause, 300
inhaled anesthetics as cause, 502
isoniazid as cause, 180
leflunomide as cause, 447
methotrexate as cause, 409
pyrazinamide as cause, 180
rifamycins as cause, 179
terbinafine as cause, 182
thionamides as cause, 335
valproic acid as cause, 500
zileuton as cause, 628
Hepcidin
as acute-phase reactant, 198
in anemia of chronic disease, 391
Hepeviruses
characteristics of, 151
genomes of, 147
as naked viruses, 147
"Herald patch" in pityriasis rosea, 444
Hereditary angioedema, 602
Hereditary bleeding disorders, 643
Hereditary hemorrhagic telangiectasia, 71
presentation of, 634
Hereditary hyperbilirubinemias, 370
Hereditary nephritis, 632
Hereditary spherocytosis, 392
in anemia taxonomy, 388
autosomal dominance of, 71
spherocytes in, 387
Heritable amyloidosis, 225
Hermaphrodites, 586
Hernias, 349
site of, 348
Herniation syndromes, 498
Heroin
addiction to, $\mathbf{5 2 3}$
focal segmental glomerulosclerosis and, 548
intoxication and withdrawal, 522
opioids for withdrawal from, 499
Herpes encephalitis, 64
Herpes genitalis, 149
Herpes labialis, 149
Herpes simplex virus l (HSV-1), 149, 442
as STI, 167
viral encephalitis and, 646
Herpes simplex virus 2 (HSV-2), 149,
442
as STI, 167
as ToRCHeS infection, 165

Herpes simplex virus (HSV)
cidofovir for, 185
erythema multiforme and, 443
facial nerve palsy caused by, 480
foscarnet for, 185
guanosine analogs for, 184
identification of, 150 meningitis caused by, 163 retinitis and, 486
Herpesviruses, 149-150, 442
characteristics of, 148
as DNA viruses, 147
Herpes zoster
facial nerve palsy caused by, 480
famciclovir for, 184
retinitis and, 486
Hesselbach triangle, 349
Heterochromatin, 48
Heterodimer, 60
Heterodisomy, 69
Heterogeneous nuclear RNA (hnRNA), 54
Heterophile antibodies, 636
Heteroplasmy, 69
Heterozygosity, loss of, 68
Hexokinase
vs. glucokinase, 86
in metabolic pathways, 85
Hexosaminidase A, 100
HFE gene
hemochromatosis and, 371, 643
HGPRT, 409
HGPRT (hypoxanthine guanine phosphoribosyltransferase), 50
Hiatal hernias, 349
Hiccups, 461
High altitude, respiratory response to, 615
High-frequency recombination (Hfr) cells, 114
Highly active antiretroviral therapy (HAART), 186
Hilar adenopathy, 630
Hilar lymphadenopathy, 636
Hilar lymph nodes, 190
silicosis and, 620
Hilar nodes, 124
Hindbrain, 450
Hindgut
blood supply/innervation of, 342
development of, 338
Hip dislocation, nerve injury caused by, 422
Hippocampus, 458
lesions in, 464
pyramidal cells, 218
Hippurate test, for Streptococcus agalactiae, 121
Hirschsprung disease, $\mathbf{3 6 1}$
Down syndrome as cause, 74
Hirsutism
cyclosporine as cause, 212
danazol as cause, 602
epilepsy drugs causing, 500
menopause as cause, 582
PCOS as cause, 591
SHBG and, 316

Hirudin, 405
Histaminase, 379
Histamine receptors, 242
Histamines
in basophils, 379
cortisol effect on, 313
derivatives of, 94
ingested seafood and, 250
location of, 351
mast cells and, 379
signaling pathways for, 316
vitamin $\mathrm{B}_{6}$ and, 78
Histidine, 92
derivatives of, 94
Histone acetylation, 48
Histone methylation, 48
Histones, 207
Histoplasma spp.
amphotericin B for, 182
itraconazole for, 182
Histoplasma capsulatum
HIV and, 160
necrosis and, 217
Histoplasmosis, 135
erythema nodosum and, 444
as granulomatous disease, 223
Histrionic personality disorder, 519
HIV (human immunodeficiency virus), 151, 158
as antigenic variation, 202
aplastic anemia caused by, 391
cervical cancer and, 591
dementia caused by, 491
diagnosis of, 158
diseases associated with, 160
drug therapy for, 184, 186
ex vacuo ventriculomegaly caused by, 471
flow cytometry diagnosis, 66
focal segmental glomerulosclerosis and, 548
hairy leukoplakia and, 442
heroin addiction and, 523
Kaposi sarcoma and, 149, 441
lymphopenia caused by, 394
meningitis caused by, 163
microglia in, 453
non-Hodgkin lymphoma and, 399
PCR diagnosis of, 64
Pneumocystis jirovecii and, 138
primary central nervous system lymphoma (PCL) and, 400
prophylaxis for, 181
pulmonary arterial hypertension caused by, 622
receptors for, 150
rifamycins in, 179
as STI, 167
T cells and, 380
time course of untreated, 159
as ToRCHeS infection, 165
Western blot diagnosis of, 65
HIZ shrinkage in muscle contraction, 424
HLA genes
celiac disease and, 358
diabetes mellitus type 1 and, 331
diseases associated with, 193, 322
key associations, 643
MHC I and II and, 192
seronegative spondyloarthritis and, 433
uveitis and, 484
HMG-CoA reductase, 84
in cholesterol synthesis, 103
in metabolic pathways, 85
HMG-CoA reductase inhibitors, 300
naming convention for, 255
HMG-CoA synthase, 84
HMP shunt, 90
diagram of, 85
rate-determining enzyme for, 84
Hoarseness
gastroesophageal reflux disease as cause, 354
heart enlargement as cause, 265
lung cancer and, 626
Pancoast tumor as cause, 625
stroke as cause, 467
"Hobnail" liver in alcoholic cirrhosis, 367
Hodgkin lymphoma, 644
bleomycin for, 410
key associations, 645
vs. non-Hodgkin lymphoma, 399
oncogenic microbes and, 231
paraneoplastic cerebellar degeneration and, 229
vinca alkaloids for, 411
Holoprosencephaly, 451
fetal alcohol syndrome as cause, 565
Patau syndrome as cause, 74,632
Sonic hedgehog gene and, 562
Holosystolic murmurs, 643
Homan sign, 616
Homatropine, 245
Homeobox genes, 562
Homer-Wright rosettes, 635
in medulloblastomas, 497
Homicidal patients, 41
Homicide, as common cause of death, 45
Homocysteine
in $\mathrm{B}_{12}$ deficiency, 390
in folate deficiency, 390
in vitamin $\mathrm{B}_{9}$ deficiency, 79
in vitamin $\mathrm{B}_{12}$ deficiency, 80
Homocysteine methyltransferase
deficiency in, 96
diagram of, 80
vitamin $\mathrm{B}_{12}$ and, 80
Homocystinuria, 96
Homovanillic acid (HVA)
in neuroblastomas, 319
in tyrosine catabolism, 95
Homunculus, 465
"Honeycomb lung," 636
Hookworms, 143
Horizontal fissure, 609
Hormone replacement therapy, 601
endometrial hyperplasia and, 594
estrogens for, 601
for hypopituitarism, 329
thrombotic complications caused by, 252

Hormone-sensitive lipase, 104
Hormones, reproductive, $\mathbf{6 0 0}$
Horn cysts, 440
Horner syndrome, 487
cluster headaches and, 494
lung cancer and, 626
Pancoast tumor as cause, 625
presentation of, 633
stroke as cause, 467
Horner-Wright rosettes, 319
Horse flies, as disease vectors, 143
Horseshoe kidney, 531
Turner syndrome as cause, 634
Hospital readmissions, causes of, 45
Hot flashes
as drug reaction, 252
menopause as cause, 582
"Hourglass stomach," 349
"Housemaid's knee," 417
Howell-Jolly bodies, 387, 635
postsplenectomy, 191
sickle cell anemia as cause, 392
Hu antigens, 229
Human chorionic gonadotropin

## (hCG), 580

choriocarcinomas and, 587, 598
in ectopic pregnancy, 589
embryonal carcinomas and, 598
in hydatidiform moles, 636
hydatidiform moles and, 587
in pregnancy, 580
secretion, timing of, 562
signaling pathways of, 316
Human factors design, 45
Human growth hormone. See Growth hormone (GH)
Human herpesvirus 6 (HHV-6), 149, 166
Human herpesvirus 7 (HHV-7), 149
Human herpesvirus 8 (HHV-8), 149
HIV and, 160
Kaposi sarcoma and, 441
as oncogenic microbe, 231
Humanized monoclonal $A_{b}, 255$
Humanized monoclonal antibodies, 203
Human papillomavirus 6 (HPV6), 167

Human papillomavirus 11 (HPV-

$$
\text { 11), } 167
$$

Human papillomavirus 16 (HPV16), 616

Human papillomavirus (HPV)
cervical cancer and, 591
HIV and, 160
as oncogenic microbe, 231
penile cancer and, 597
verrucae caused by, 440
warts caused by, 148
Humerus injury
axillary nerve and, 419
median nerve injury caused by, 419
radial nerve and, 419
Humor, as ego defense, 509
Hunger, and hypothalamus, 456
Hunter syndrome, 100
as X-linked recessive disorder, 72

Huntington disease, 462, 513
antipsychotic drugs for, 525
autosomal dominance of, 71
basal ganglia lesions in, 464
drug therapy for, $\mathbf{5 0 5}$
neurotransmitter changes in, 511
neurotransmitters for, 455
presentation of, 630
as trinucleotide repeat expansion disease, 73
Hurler syndrome, 100
Hürthle cells, 322
Hutchinson teeth, 131
Hyaline arteriolosclerosis, 285
Hyaline casts, 544
Hyaline membrane disease, 619
Hydatid cysts, 144, 145
Hydatidiform moles, 587
hCG in, 580
lab findings in, 636
theca-lutein cysts and, 592
Hydralazine, 298
for gestational hypertension, 298, 590
for heart failure, 292
lupus-like syndrome caused by, 253
Hydrocephalus, 471
congenital toxoplasmosis as cause, 630
dementia caused by, 491, 513
headaches caused by, 494
medulloblastoma as cause, 497
Toxoplasma gondii as cause, 165
in toxoplasmosis, 140
Hydrochlorothiazide (HCTZ), 558
for diabetes insipidus, 328, 639
hyperglycemia caused by, 252
pancreatitis caused by, 252
Hydrocortisone, 336. See also Glucocorticoids
arachidonic acid pathway and, 446
Hydrogen peroxide, as infection control technique, 187
Hydronephrosis, 550
BPH as cause, 599
horseshoe kidney and, 531
kidney stones as cause, 549
Hydrophobia, 155
Hydrops fetalis
$\alpha$-thalassemia as cause, 388
parvovirus as cause, 148
parvovirus B19 as cause, 165, 166
syphilis as cause, 165
Hydrosalpinx, 167
Hydrothorax, 592
Hydroxocobalamin, 251
Hydroxychloroquine
for lupus, 434
myopathy caused by, 253
for rheumatoid arthritis, 430
Hydroxylases, 84
Hydroxylation, 57
Hydroxyurea, 411
in cell cycle, 408
purine synthesis, effect on, 49
for sickle cell anemia, 392 for sickle cell disease, 641 targets of, 408

Hyoid artery, 568
Hyoscyamine, 245
Hyperactivity, 321
Hyperacute transplant rejection, 211
Hyperaldosteronism, $\mathbf{3 1 8}$
hypertension caused by, 284
key associations, 645
metabolic alkalosis caused by, 543
potassium-sparing diuretics for, 558
treatments for, 639
Hyperammonemia, 93
Hyperbilirubinemia
cirrhosis as cause, 365
hereditary, $\mathbf{3 7 0}$
jaundice and, 369
Hypercalcemia, 542
acute pancreatitis caused by, 373
adult T-cell lymphoma as cause, 400
bisphosphonates for, 447
calcium carbonate as cause, 375
diabetes insipidus caused by, 328
granulomatous diseases and, 223
hyperparathyroidism as cause, 326
loop diuretics for, 557
lung cancer as cause, 626
as paraneoplastic syndrome, 229
PTH-independent, 325
sarcoidosis and, 435
succinylcholine as cause, 503
teriparatide as cause, 447
thiazides as cause, 558
vitamin D toxicity as cause, 81
Williams syndrome as cause, 75
Hypercalciuria
hyperparathyroidism as cause, 326
thiazides for, 558
vitamin D toxicity as cause, 81
Hypercapnia
bronchitis as cause, 618
chronic bronchitis as cause, 632
contractility in, 267
Hypercholesterolemia, 105, 321
nephrotic syndrome as cause, 633
presentation of, 630
treatments for, 640
Hyperchylomicronemia, 105
Hypercoagulability
key associations, 643
in pregnancy, 580
Trousseau syndrome as cause, 636
Hyperdocility, in Klüver-Bucy syndrome, 632
Hyperemesis gravidarum, 587
Hyperemia
in MI, 288
pseudoephedrine/phenylephrine for, 627
Hyperestrogenism, 592
Hyperglycemia. See also Diabetes mellitus
Cushing syndrome as cause, 317
in diabetic ketoacidosis, 331
diabetic retinopathy caused by, 485
as drug reaction, 252
glucagon and, 309
glucagonomas as cause, 332
glucocorticoids as cause, 212
hyperkalemia caused by, 542
niacin as cause, 300
prednisone as cause, 412
protease inhibitors as cause, 186
somatostatinomas as cause, 332
thiazides as cause, 558
vitamin $B_{3}$ toxicity as cause, 78
Hypergranulosis, 439
Hyper-IgE syndrome, 633
Hyper-IgM syndrome, 209
Hyperinsulinemia, 591
Hyperkalemia, 542
aliskiren as cause, 559
angiotensin II receptor blockers as cause, 559
cardiac glycosides as cause, 301
causes of, 542
in diabetic ketoacidosis, 331
potassium-sparing diuretics as cause, 558
primary adrenal insufficiency as cause, 318
renal failure as cause, 553
SGLT-2 inhibitors as cause, 335
succinylcholine as cause, 503
Hyperkalemic renal tubular acidosis, 544
Hyperkeratosis, 439
verrucae as cause, 440
Hyperlipidemia, 285
atherosclerosis and, 286
atypical antipsychotics as cause, 525
cyclosporine as cause, 212
glomerular filtration barrier and, 533
nephrotic syndrome as cause, 548
sirolimus as cause, 212
thiazides as cause, 558
Hypermagnesemia, 542
Hypernatremia, 542
Hyperopia, 483
Hyperorality
Klüver-Bucy syndrome as cause, 464, 632
Hyperosmolar coma, in type 2 diabetes, 330
Hyperosmolar hyperglycemia nonketotic syndrome, 332
Hyperosmolarity, 542
Hyperparathyroidism, 326
calcium pyrophosphate deposition disease and, 431
cinacalcet for, 336
key associations, 645
lab findings in, 635
lab values in, 428
osteoporosis and, 426
renal osteodystrophy and, 553
Hyperphagia
depression with, 515
hypothalamus and, 456
Klüver-Bucy syndrome as cause, 464, 632
Prader-Willi syndrome as cause, 69

Hyperphosphatemia, 542
hyperparathyroidism as cause, 326
hypoparathyroidism as cause, 325
renal osteodystrophy and, 553
Hyperphosphorylated tau, in frontotemporal dementia, 491
Hyperpigmentation
adrenocortical insufficiency as cause, 633
bleomycin as cause, 410
busulfan as cause, 410
fludrocortisone as cause, 336
hemochromatosis as cause, 371
melasma as, 439
Peutz-Jeghers syndrome as cause, 363, 631
primary adrenal insufficiency as cause, 318
Hyperplasia, 226, 227
in primary hyperparathyroidism, 325
Hyperplastic arteriolosclerosis, 285
Hyperplastic colonic polyps, 363
Hyperprolactinemia
anovulation caused by, 591
antipsychotics as cause, 525
calcium channel blockers as cause, 298
dopamine antagonists and, 309
GnRH and, 309
risperidone as cause, 525
Hyperpyrexia
neuroleptic malignant syndrome as cause, 525
tricyclic antidepressants as cause, 527

## Hyperreflexia

serotonin syndrome as cause, 527
UMN damage as cause, 632
Hyperresonance, with pneumothorax, 623
Hypersegmented neutrophils, 636
Hypersensitivity pneumonitis, 223, 619
as restrictive lung disease, 619
Hypersensitivity reactions, 204-205
antipseudomonal penicillins as cause, 171
to blood transfusions, 206
C3 deficiency and, 199
cephalosporins as cause, 172
to helminths, 142
IgE antibodies and, 197
insulin as cause, 334
mast cells and, 379
to organ transplants, 211
penicillin as cause, 170
penicillinase-resistant penicillins as cause, 171
penicillinase-sensitive penicillins as cause, 171
rheumatic fever as, 294
sulfonamides as cause, 177
Hypersexuality
Klüver-Bucy syndrome as cause, 464, 632

Hypersomnia, 515
Hypertension, 284
ACE inhibitors for, 559
acute poststreptococcal glomerulonephritis as cause, 546
alcohol withdrawal as cause, 523
aliskiren for, 559
alpha-blockers for, 248
angiotensin II receptor blockers for, 559
aortic dissection and, 287, 641
atherosclerosis and, 286
atrial fibrillation and, 278
autosomal recessive polycystic kidney disease and, 555
$\beta$-blockers for, 249
calcium channel blockers for, 298
Charcot-Bouchard microaneurysms and, 468
Cushing syndrome as cause, 317
cyclosporine as cause, 212
in diabetes mellitus, 298
endometrial cancer and, 594
glucocorticoids as cause, 212
Guillain-Barré syndrome as cause, 493
in heart failure, 298
hydralazine for, 298
hyperaldosteronism as cause, 318
immunosuppressants as cause, 212
intraparenchymal hemorrhage caused by, 469
key associations, 643
leflunomide as cause, 447
local anesthetics as cause, 503
loop diuretics for, 557
MDMA as cause, 523
microangiopathic anemia caused by, 393
minoxidil for, 603
nephritic syndrome and, 546
PCP as cause, 523
pheochromocytomas as cause, 320
placental abruption and, 588
polyarteritis nodosa as cause, 296
prednisone as cause, 412
preeclampsia and, 590
in pregnancy, 247, 298, 590
primary hyperaldosteronism as cause, 636
pseudoephedrine/phenylephrine as cause, 627
renal cyst disorders as cause, 555
renal failure as cause, 553
saccular aneurysms and, 468
sleep apnea as cause, 621
syndrome of apparent mineralocorticoid excess as cause, 538
thiazides for, 558
thoracic aortic aneurysms and, 286
treatment for, 298
tyramine and, 243
Hypertensive crisis
MAO inhibitors as cause, 528
phenoxybenzamine for, 248

Hypertensive emergency, 284, 298
clevidipine for, 298
Hypertensive nephropathy, 284
Hypertensive urgency, 284
clevidipine for, 298
Hyperthermia
atropine as cause, 245
MDMA as cause, 523
serotonin syndrome as cause, 527
Hyperthyroidism, 323
amiodarone as cause, 303
choriocarcinomas as cause, 598
hydatidiform moles and, 587
vs. hypothyroidism, 321
osteoporosis and, 426
pulse pressure in, 266
thionamides for, 335
Hypertonia
serotonin syndrome as cause, 527
UMN damage as cause, 632
Hypertriglyceridemia, 105
acute pancreatitis caused by, 373 treatments for, 640
Hypertrophic cardiomyopathy, 291
Pompe disease as cause, 99 systolic murmur in, 272
Hypertrophic osteoarthropathy, 626
Hypertrophic pyloric stenosis, 339
Hypertrophic scars, 222
Hypertrophy, 226
Hypertropic cardiomyopathy, 475
Hyperuricemia
as drug reaction, 253
gout and, 431
kidney stones and, 549
Lesch-Nyhan syndrome as cause, 50
niacin as cause, 300
pyrazinamide as cause, 180
thiazides as cause, 558
vitamin $B_{3}$ toxicity as cause, 78
Hyperventilation
emphysema as cause, 633
Kussmaul respirations as, 631
metabolic acidosis as cause, 543
in pregnancy, 580
Hypervitaminosis D, 428
Hypnagogic hallucinations, 513
in narcolepsy, 521
Hypnopompic hallucinations, 513
in narcolepsy, 521
Hypoalbuminemia
alcoholic cirrhosis as cause, 367
nephrotic syndrome as cause, 545, 548, 633
Hypocalcemia, 313, 542
22qll deletion syndromes as cause, 76
acute pancreatitis as cause, 373
cinacalcet as cause, 336
DiGeorge syndrome as cause, 570
hypermagnesemia as cause, 542
hyperparathyroidism as cause, 326
hypoparathyroidism as cause, 325
pseudohypoparathyroidism as cause, 325
renal osteodystrophy and, 553
thymic aplasia as cause, 208
thyroidectomy as cause, 324
Hypocalcemic tetany, 81
Hypocholesterolemia hyperthyroidism as cause, 321
Hypocretin, 521
Hypodermis, 437
Hypofibrinogenemia, 224
Hypogammaglobulinemia, 229
Hypoglossal canal, 478
Hypoglossal nerve (12th cranial nerve), $\mathbf{4 7 9}$
lesion in, 480
location in brain stem, 477
pathway for, 478
in tongue, 452
Hypoglycemia
amylin analogs as cause, 335
carnitine deficiency as cause, 101
Cori disease as cause, 632
fructose intolerance as cause, 91
GH secretion in, 311
glucagon production in response to, 309
gluconeogenesis and, 89
insulin as cause, 334
insulinomas as cause, 332
loss of orientation caused by, 512
low birth weight and, 581
meglitinides as cause, 335
Reye syndrome as cause, 366
somatostatinomas as cause, 332
sulfonylureas as cause, 334
Von Gierke disease as cause, 99
Hypoglycemic drugs, 334-335, 639
Hypogonadism
estrogens for, 601
gynecomastia caused by, 595
hemochromatosis as cause, 371
pituitary prolactinomas as cause, 309
Prader-Willi syndrome as cause, 69
testosterone/methyltestosterone for, 603
zinc deficiency as cause, 82
Hypogonadotropic hypogonadism, 586
Hypokalemia, 542
antacids as cause, 375
Bartter syndrome as cause, 538
causes of, 542
cystic fibrosis as cause, 72
diabetes insipidus caused by, 328
on EKG, 276
Gitelman syndrome as cause, 538
loop diuretics as cause, 557
primary hyperaldosteronism as cause, 636
syndrome of apparent mineralocorticoid excess as cause, 538
VIPomas as cause, 350
Hypomagnesemia, 542
Hypomania, 515
Hypomanic episodes, 515
Hyponatremia, 542
cirrhosis as cause, 365

Cushing syndrome and, 229
MDMA as cause, 523
osmotic demyelination syndrome and, 492
as paraneoplastic syndrome, 229
thiazides as cause, 558
Hypoparathyroidism, 325
key associations, 643
Hypophosphatemia, 542
aluminum hydroxide as cause, 375
hyperparathyroidism as cause, 326
Hypophosphatemic rickets, 70
Hypopituitarism, 329
key associations, 643
pituitary adenomas as cause, 326
Hypoplasia, 563
Hypoproteinemia, 533
Hyporeflexia
LMN damage as cause, 632
LMN lesion as cause, 475
magnesium hydroxide as cause, 375
Hypospadias, 573
Hyposplenia, 387
Hypotension
acute tubular necrosis caused by, 554
adrenal insufficiency as cause, 318
adrenocortical insufficiency as cause, 633
aliskiren as cause, 559
amphotericin B as cause, 182
angiotensin II receptor blockers as cause, 559
antipsychotic drugs as cause, 525
in Beck triad of cardiac tamponade, 632
cardiac tamponade as cause, 294
cilostazol/dipyridamole as cause, 407
ephedrine for, 246
Guillain-Barré syndrome as cause, 493
hypermagnesemia as cause, 542
key associations, 642
local anesthetics as cause, 503
magnesium hydroxide as cause, 375
metronidazole as cause, 178
midodrine for, 246
norepinephrine for, 246
phenylephrine for, 246
primary adrenal insufficiency as cause, 318
scombroid poisoning as cause, 250
sympatholytic drugs as cause, 247
Waterhouse-Friderichsen syndrome as cause, 630
Hypothalamic drugs, 336
Hypothalamic-pituitary hormones, 309
Hypothalamus, 456
antidiuretic hormone secretion by, 311
sleep physiology and, 457
thyroid hormones and, 315
Hypothenar muscles, 421
Klumpke palsy and, 420

Hypothyroidism, 322
amiodarone as cause, 303
anemia caused by, 390
in anemia taxonomy, 388
carpal tunnel syndrome and, 418
cold intolerance caused by, 631
cretinism and, 642
dementia caused by, 491, 513
as drug reaction, 252
vs. hyperthyroidism, 321
lithium as cause, 526
thyroid hormones for, 335
Hypotonia
carnitine deficiency as cause, 101
LMN damage as cause, 632
Menkes disease as cause, 63
Prader-Willi syndrome as cause, 69
Hypoventilation, 543
Hypovolemia, 330
Hypovolemic shock, 292
Hypoxanthine, 448
Hypoxanthine guanine phosphoribosyltransferase (HGPRT), 50
Hypoxemia, 614
alveolar gas equation and, 614
asthma as cause, 618
chronic bronchitis as cause, 632
fat emboli as cause, 617
pulmonary embolism and, 617
respiratory alkalosis caused by, 543
Hypoxia, 614
apoptosis caused by, 216
contractility in, 267
erythropoietin and, 541
hemoglobin modifications and, 612
regions susceptible to, 218
vasoconstriction/vasodilation and, 280
Hypoxia inducible factor la, 230
Hypoxic stroke, 470
Hysterectomy, for adenomyosis, 594
Hysteresis, 611
Hysteria, respiratory alkalosis caused by
respiratory alkalosis caused by, 543

## I

Ibandronate, 447
Ibuprofen, 447
arachidonic acid pathway and, 446
hemolysis in G6PD deficiency caused by, 252
Ibutilide, 303
ICAM-1 protein
in leukocyte extravasation, 221
as receptor, 150
I-cell disease, 59
I cells, 350
Icosahedral viruses, 147
Idealization, as ego defense, 508
Identification, as ego defense, 508
Idiopathic intracranial hypertension, 471

Idiopathic thrombocytopenic purpura
lab findings in, 635
rituximab for, 412
as type II hypersensitivity reactions, 204
Idiopathic thrombocytopenic purpura (ITP)
rituximab for, 214
IDL (intermediate-density lipoprotein), 105
IFN- $\alpha$ (Interferon- $\alpha$ ), 201
clinical uses, 213
natural killer cells, effect on, 193
IFN- $\alpha$ (interferon- $\alpha$ ), 184
clinical use for, 187
for hepatitis, 639
IFN- $\beta$ (Interferon- $\beta$ ), 201
clinical use for, 187
clinical uses, 213
natural killer cells, effect on, 193
IFN- $\boldsymbol{\gamma}$ (Interferon- $\gamma$ ), 200, 208
cachexia and, 232
clinical use for, 187
clinical uses, 213
granulomatous diseases and, 223
Graves disease and, 323
helper T cells and, 194
Ifosfamide, 410
Fanconi syndrome caused by, 538
hemorrhagic cystitis caused by, 253
IgA antibodies, 197
ataxia-telangiectasia and, 209
in breast milk, 581
in celiac disease, 358
deficiency in, 208, 630
in hyper-IgM syndrome, 209
multiple myeloma production of, 401
as passive immunity, 203
Peyer patches and, 352
in Wiskott-Aldrich syndrome, 209
IgA nephropathy, 546, 643
Henoch-Schönlein purpura and, 297
IgA protease, 113
IgD antibodies, 197
IgE antibodies, 197
in ataxia-telangiectasia, 209
in eczema, 440
in hyper-IgM syndrome, 209
mast cells and, 379
type I hypersensitivity reactions and, 204
in Wiskott-Aldrich syndrome, 209
IGF-1. See Insulin-like growth factor 1 (IGF-1)
IgG antibodies, 197
anemia and, 393
in ataxia-telangiectasia, 209
in bullous pemphigoid, 443
complement activation and, 199
to hepatitis A (HAV), 157
in hyper-IgM syndrome, 209
multiple myeloma production of, 401
in multiple sclerosis, 492
as passive immunity, 203
in pemphigus vulgaris, 443
in pregnancy, 382
in type III hypersensitivity reactions, 205
in Wiskott-Aldrich syndrome, 209
IgM antibodies, 197
anemia and, 393
in biliary cirrhosis, 371
complement activation and, 199
to hepatitis A (HAV), 157
in hyper-IgM syndrome, 209
in pregnancy, 382
in sclerosing cholangitis, 371
splenic dysfunction and, 191
in Wiskott-Aldrich syndrome, 209
IL-1 (Interleukin 1), 200
cachexia and, 232
endotoxins and, 117
IL-2 (Interleukin 2), 200
cyclosporine and, 212
natural killer cells, effect on, 193
sirolimus and, 212
tacrolimus and, 212
IL-2R (Interleukin 2 receptor), 212
IL-3 (Interleukin 3), 200
IL-4 (Interleukin 4), 200
helper T cells and, 194
IL-5 (Interleukin 5), 200
helper T cells and, 194
IL-6 (Interleukin 6), 200
acute-phase reactants and, 198
cachexia and, 232
endotoxins and, 117
IL-8 (Interleukin 8), 200
neutrophils and, 378
IL-10 (Interleukin 10), 200
helper T cells and, 194
IL-12 (Interleukin 12), 200
natural killer cells, effect on, 193
IL-12 (Interleukin 12) receptor deficiency, 208
IL-13 (Interleukin 13), 194
Ileum, 341
Ileus, 362
Illness anxiety disorder, 518
Iloperidone, 525
Iloprost, 627
Imatinib, 412
for chronic myelogenous leukemia, 639
IMG registration timeframe, 7
Imipenem, 170, 173
seizures caused by, 253
Imipramine, 527
Immature teratomas, 593
Immune responses, 198-211 passive vs. active, 203
Immunocompromised patients acyclovir/famciclovir/valacyclovir for, 184
Candida albicans in, 137
common organisms affecting, 162
Cryptococcus neoformans in, 137
Cryptosporidium in, 139
ecthyma gangrenosum in, 127
esophagitis in, 354
fungal infections and, 169
infections in, $\mathbf{2 1 0}$
Listeria monocytogenes and, 123
Pneumocystis jirovecii in, 138
squamous cell carcinomas and, 445
Immunodeficiency syndromes, 208209
flow cytometry diagnosis, 66
Immunoglobulins
adaptive immunity and, 192
in breast milk, 581
for Guillain-Barré syndrome, 493
for Kawasaki disease, 296
isotypes of, 197
Immunology, 190-214
immune responses, 198-211
immunosuppressants, 212-214
lymphocytes, 192-197
lymphoid structures, 190-191
Immunomodulator signaling pathways, 316
Immunophenotypes, assessing, 66
Immunosuppressants, 212
for aplastic anemia, 391
for lupus, 434
for polymyositis/ dematomyositis, 436
targets of, $\mathbf{2 1 3}$
Immunosuppression
vitamin A deficiency as cause, 77
vitamin C deficiency as cause, 80
Impaired glucose tolerance. See Insulin resistance
Impetigo, 442
skin crust in, 438
Streptococcus pyogenes as cause, 120
sunburn and, 444
Imprinting, in genetics, 69
Inactivated vaccines, 203
Incidence vs. prevalence, 33
Incomplete penetrance, 68
Incorrect results, in statistical hypothesis testing, 38
Incus bone, 481
as branchial arch derivative, 569
India ink stain, 110
Indicator media, 110
Indinavir, 184
for HIV, 186
Indirect inguinal hernias, 349
Indomethacin, 447
arachidonic acid pathway and, 446
for diabetes insipidus, 328, 639
for gout, 431, 448
for patent ductus arteriosus (PDA), 640
for PDA closure, 264
Infarcts
atherosclerosis as cause, 286
calcification and, 220
red vs. pale, 219
regions susceptible to, 218
vascular dementia caused by, 491
Infection control techniques, 187
Inferior colliculi, 477
Inferior gluteal nerve, 422

## Inferior lobe, 609

Inferior mesenteric artery, 342
in horseshoe kidney, 531
Inferior mesenteric lymph nodes, 190
Inferior mesenteric vein, 344
Inferior oblique muscle, 488
Inferior phrenic arteries, 342
Inferior rectal artery, 345
Inferior rectal vein, 344
Inferior rectus muscle, 488
Inferior sagittal sinus, 470
Inferior vena cava, 339
in diaphragm, 609
gonadal drainage and, 573
Infertility
clomiphene for, 601
cystic fibrosis as cause, 72
ectopic pregnancy and, 589
endometriosis as cause, 594
impaired sperm mobility as cause, 583
Kallmann syndrome as cause, 586
Kartagener syndrome as cause, 60, 633
Klinefelter syndrome as cause, 585
leuprolide for, 601
mumps as cause, 155
ovarian neoplasms and, 592
PCOS as cause, 591
salpingitis and, 167
septate uterus as cause, 572
treatments for, 640
varicoceles as cause, 597
Infiltrative cardiomyopathy, 291
Infiltrative lymphohistiocytosis, 209
Inflammation, 219
acute-phase reactants, 198
ESR in, 224
IL-l as cause, 200
pathology of, 216-225
Inflammatory bowel disease (IBD), 359
AA amyloidosis and, 225 azathioprine for, 409 erythema nodosum and, 444 infliximab/adalimumab for, 448 methotrexate for, 409 sclerosing cholangitis and, 371 spondyloarthritis and, 433
therapeutic antibodies for, 214
Inflammatory breast cancer, 596
Inflammatory diseases, Staphylococcus aureus as cause, 119
Infliximab, 214, 448
for Crohn disease, 359, 639
for ulcerative colitis, 359, 641
Influenza, 153
as antigenic variation, 202
killed vaccine for, 146
live attenuated vaccine for, 146
as orthomyxovirus, 151
pneumonia caused by, 624
Reye syndrome and, 366
treatment/prevention of, 184
treatments for, 640
vaccine for, 203

Informed consent, 40
Infraspinatus muscle, 417
in Erb palsy, 420
Infundibulopelvic ligament, 574 anatomy of, 574
Infundibulum, 477
Ingested seafood toxins, 250
Inguinal canal, 348
Inguinal hernia, 349, 573
Inguinal ligament, 347, 348
Inguinal triangle, 349
Inhalational general anesthetic, 255
Inhalational injury, 222
Inhaled anesthetics, 502
Inheritance modes, $\mathbf{7 0}$
Inhibin
in cryptorchidism, 597
in Klinefelter syndrome, 585
Sertoli cell secretion of, 576
in spermatogenesis, 576
Inhibin A
in Down syndrome, 74
in Edwards syndrome, 74
Inhibitors of complement activation, 199
Inhibitory pathway, 460
Initiation of protein synthesis, 57
Innate immunity, 192
Inositol trisphosphate $\left(\mathrm{IP}_{3}\right), 316$
Inotropes, 292
Inotropy, 269
Insomnia
AChE inhibitors as cause, 505
barbiturates for, 501
benzodiazepines for, 501
hyperthyroidism as cause, 321
marijuana withdrawal as cause, 523
nonbenzodiazepine hypnotics for, 501
stimulants as cause, 522
Inspiration, effect on auscultation, 272
Inspiratory capacity (IC), 610
Inspiratory reserve volume (IRV), 610
Insulin, 308
anabolic effects of, 308
deficiency in, 330
for diabetes mellitus type 2, 639
for diabetes treatment, 334
for diabetic ketoacidosis, 331, 639
fructose bisphosphatase-2 and, 87
GIP effect on, 350
glucagon and, 309
glycogen regulation and, 97
for hyperosmolar hyperglycemia nonketotic syndrome, 332
hypokalemia caused by, 542
in pregnancy, 308
production of, 307
secretion of, 308
signaling pathways for, 316
somatostatin and, 350
somatostatinomas and, 332
sulfonylurea effect on, 334
Insulin-like growth factor 1 (IGF-1)
in acromegaly, 327
in Laron syndrome, 327
signaling pathways for, 316

Insulinomas, 308, 332
MEN 1 syndrome as cause, 333
Insulin resistance
acanthosis nigricans and, 444
acromegaly as cause, 327
cortisol as cause, 313
Cushing syndrome as cause, 317
in diabetes mellitus type 2, 331
GH as cause, 308, 311
glitazone/thiazolidinedione effect on, 334
metformin effect on, 334
in PCOS, 591
Insurance
disregarding in treatment, 42
Medicare/Medicaid as, 44
Integrase inhibitors, 186
Integrins
in epithelial cells, 438
as receptor, 150
Intellectual disabilities
in WAGR complex, 551
Intellectual disability
autism and, 511
fetal alcohol syndrome as cause, 565
hydrocephalus as cause, 471
key associations, 643
Lesch-Nyhan syndrome as cause, 631
in Rett syndrome, 511
Intellectualization, as ego defense, 509
Intention tremor, 461
cerebellar hemisphere lesions and, 464
multiple sclerosis as cause, 492
Intention tremors
multiple sclerosis as cause, 632
Interactions, drug, 237
Intercostobrachial nerve, 419
Interferon- $\alpha$
myopathy caused by, 253
Interferon- $\gamma$ release assay (IGRA), 124
Interferons, 187, 201
focal segmental glomerulosclerosis and, 548
Interlobar artery, 532
Interlobular artery, 532
Intermediate filaments
as cytoskeletal element, 60
immunohistochemical stains for, 60
Internal auditory meatus, 478
Internal capsule
intraparenchymal hemorrhage in, 469
stroke effects, 467
Internal carotid artery
in cavernous sinus, 481
in circle of Willis, 466
Internal hemorrhoids, 345
Internal iliac arteries, 342
Internal iliac artery, 264
Internal iliac lymph nodes, 190
Internal inguinal ring, 349

Internal jugular vein, 470
Internal oblique muscle, 348
Internal spermatic fascia, 348
International Foundations of
Medicine (IFOM), 11
Internuclear ophthalmoplegia, 490, 631
multiple sclerosis as cause, 632
Interossei muscles, in Klumpke palsy, 420
Intersex, 586
Interstitial fluid, 281
Interstitial lung disease, 430
Interstitial nephritis
as drug reaction, 253
NSAID toxicity as cause, 447
penicillinase-resistant penicillins as cause, 171
Interstitial pneumonia, 624
Interstitial pulmonary fibrosis, 636
Interstitium, in leukocyte extravasation, 221
Interventricular foramen, 263
Intestinal obstruction
hernias as cause, 349
superior mesenteric artery syndrome as cause, 342
Intestinal stomach cancer, 356
Intestinal villi, 341
Intracellular fluid (ICF), 533
Intracellular organisms, 112
Intracellular receptors
as endocrine hormone
messengers, 316
Intracranial hemorrhage, 469
eclampsia as cause, 590
Intracranial pressure, 465

$$
\text { in hydrocephalus, } 471
$$

papilledema caused by, 486
superior vena cava syndrome and, 625
Intraductal papillomas, 595
Intraocular pressure in glaucoma, 484
Intraparenchymal hemorrhage, 469
Intrauterine device (IUD)
copper, 602
endometritis and, 594
Intrauterine growth restriction (IUGR)
low birth weight caused by, 581
smoking as cause, 564
Intravascular hemolysis, 391
Intravenous anesthetics, 502
Intraventricular hemorrhage
low birth weight and, 581
neonatal respiratory distress syndrome as cause, 607
Intrinsic factor, 351
location of, 351
Intrinsic hemolytic anemia, 392
Intrinsic pathway, 216
for coagulation, 383
coagulation defects of, 396
heparin and, 406
Intrinsic renal failure, 553
Introns, vs. exons, 55

Intrusive thoughts, 517
Intussusception, 362
Meckel diverticulum as cause, 361
presentation of, 633
Inulin
extracellular volume and, 533
glomerular filtration rate and, 534
in proximal convoluted tubules, 539
Invariant chain, 192
Invasive carcinomas, 227
ductal, 596, 642
lobular, 596
In vivo biofilm-producing bacteria, 113
Iodine
cretinism and, 642
deficiency in, 321, 322
as infection control technique, 187
teratogenic effects of, 564
thionamide effect on, 335
Iodophors, as infection control techniques, 187
Iodoquinol, 139
Ipratropium, 245, 628
Ipsilateral nucleus cuneatus, 473
Irinotecan, 411
in cell cycle, 408
targets of, 408
Iris, 482
Iritis, 484
Iron
absorption of, 352
in anemia, 394
in anemia of chronic disease, 391
in hemochromatosis, 371
lab values in anemia, 394
metabolic acidosis caused by, 543
in sideroblastic anemia, 389
toxicity treatment for, 251
Iron deficiency anemia, 388, 644
in anemia taxonomy, 388
colorectal cancer as cause, 364
fibroid tumors as cause, 594
lab findings in, 636
Plummer-Vinson syndrome as cause, 354, 631
Iron poisoning, 396
Irritable bowel syndrome (IBS), $\mathbf{3 6 0}$ antispasmodic drugs for, 245
Ischemia, 218, 614
atherosclerosis as cause, 286
Fanconi syndrome caused by, 538
necrosis and, 217
vascular dementia caused by, 491
Ischemic brain disease, $\mathbf{4 7 0}$
Ischemic heart disease, 287
Ischemic priapism, 597
Ischemic stroke, 470
Ishikawa diagram, 46
Islets of Langerhans, 307
Isocarboxazid, 528
Isocitrate dehydrogenase, 84
in metabolic pathways, 85
Isodisomy, 69
Isoflurane, 502
Isolation of affect, as ego defense, 509

Isoleucine, 92
maple syrup urine disease and, 95
Isoniazid, 180
cytochrome P-450 and, 254
hemolysis in G6PD deficiency caused by, 252
hepatitis caused by, 252
lupus-like syndrome caused by, 253
for Mycobacterium tuberculosis, 179, 640
as Mycobacterium tuberculosis prophylaxis, 179
seizures caused by, 253
sideroblastic anemia caused by, 389
Isoproterenol, 246
vs. norepinephrine, 247
Isosorbide dinitrate, 299
Isosorbide mononitrate, 299
Isotretinoin
for cystic acne, 77
as teratogen, 564
Isovolumetric contraction, 270
Isovolumetric relaxation, 270
Itraconazole, 181, 182
for Sporothrix schenckii, 138, 641
for systemic mycoses, 135
IV drug use
common organisms, 162
osteomyelitis and, 163
Ivermectin, 183
IV phlebitis, caused by amphotericin B, 182
Ixodes ticks, 130
as disease vectors, 132, 141
J
JAK2 gene, 230
in myeloproliferative disorders, 404
Janeway lesions, 633
bacterial endocarditis as cause, 293
Jarisch-Herxheimer reaction, 131, 631
Jaundice, 369
ABO hemolytic disease of the newborn as cause, 382
alcoholic cirrhosis as cause, 367
biliary tract disease as cause, 371
cholangitis as cause, 372
cirrhosis as cause, 365
Courvoisier sign and, 632
Crigler-Najjar syndrome as cause, 633
as drug reaction, 252
fructose intolerance as cause, 91
galactosemia as cause, 91
graft-versus-host disease as cause, 211
hepatitis B as cause, 167
hepatocellular carcinoma as cause, 368
hereditary hyperbilirubinemias as cause, 370
key associations, 643
leptospirosis as cause, 130
pancreatic cancer as cause, 373, 633

ToRCHeS infections as cause, 165
yellow fever as cause, 152
Jaw jerk reflex, 479
JC virus (John Cunningham virus)
HIV and, 160
polyomaviruses as cause, 148
progressive multifocal leukoencephalopathy and, 493
JC virus (John Cunningham Virus)
in immunocompromised patients, 210
Jejunum, 341
Jervell and Lange-Nielsen syndrome, 277
Jimson weed, 245
Jod-Basedow phenomenon, 323. See also Wolff-Chaikoff effect
JONES criteria for acute rheumatic fever, 120
J point, in ECG, 276
Jugular foramen, 470, 478
Jugular venous distention (JVD), 292, 613
superior vena cava syndrome as cause, 625
Jugular venous pulse, 270
Justice, as ethical principle, 39
Juvenile idiopathic arthritis, 484
Juvenile polyposis, 363
Juxtaglomerular apparatus, 540
Juxtaglomerular cells, 532
in filtration, 535
in juxtaglomerular apparatus, 540
renin secreted by, 540
tumors in, 318

## K

Kallikrein
Cl esterase inhibitor deficiency and, 199
neutrophils and, 378
Kallmann syndrome, 586, 644
Kaposi sarcoma, 441
AIDS and, 167
vs. bacillary angiomatosis, 441
HHV-8 as cause, 149
HIV and, 160
IFN- $\alpha$ for, 187
oncogenic microbes and, 231
presentation of, 631
recombinant cytokines for, 213
Kartagener syndrome, 60, 262
bronchiectasis and, 618
infertility caused by, 583
presentation of, 633
Karyolysis, 218
Karyorrhexis, 218
Karyotyping, 67
Kawasaki disease, 296
presentation of, 630, 634
treatments for, 640
Kayser-Fleischer rings, 631
Wilson disease as cause, 371
K cells, 350
Kegel exercises, 551
Keloid scars, 222

Keratinocytes
in sunburn, 444
in wound healing, 223
Keratin pearls, 636
in lung cancer, 626
Keratoacanthomas, 445
Keratoconjunctivitis, 149
Keratoconjunctivitis sicca, 432
Keratomalacia, 77
Kernicterus, 177, 187
Kernohan notch, 498
Ketamine, 502
Ketoconazole, 181, 182, 603
cytochrome P-450 and, 254
gynecomastia caused by, 595
for PCOS, 591
reproductive hormones and, 600
Ketogenesis
in diabetic ketoacidosis, 331
diagram of, 85
in insulin deficiency, 330
location of in cell, 83
rate-determining enzyme for, 84
Ketone bodies, 102
Ketonemia, 330
Ketones, 309
Ketonuria, 330
Ketorolac, 447
arachidonic acid pathway and, 446
Kidney disease
anemia of chronic disease and, 391
hypertension as cause, 284
Kidney endocrine functions, 541
Kidneys
autoregulation of, 280
embryologic derivatives of, 563
embryology of, 530
in gastrointestinal anatomy, 339
hormones acting on, 541
ischemia in, 218
sclerosis of, 437
solitary functioning, 531
Kidney stones, 549
Crohn disease as cause, 359
hematuria caused by, 544
horseshoe kidney and, 531
hydronephrosis caused by, 550
hypercalcemia as cause, 542
hyperparathyroidism as cause, 326
hyperphosphatemia as cause, 542
key associations, 644
postrenal azotemia caused by, 553
UTIs and, 164
Kiesselbach plexus, 616
Killed vaccines, 146
Killian triangle, 361
Kimmelstiel-Wilson nodules, 637
diabetes mellitus as cause, 330
in diabetic
glomerulonephropathy, 548
Kinases, 84
Kinesin, 60
Kingella spp., 293
Kinin cascade, 383
Kinin pathways, 383
Kissing bug, as disease vector, 142

## Klebsiella spp., 128

alcoholism and, 162
currant jelly sputum caused by, 169
in Gram-negative algorithm, 125
kidney stones caused by, 549
lactose fermentation by, 126
morphology of, 109
as nosocomial infection, 168
pneumonia caused by, 624
as urease-positive organism, 112
urinary tract infections caused by, 552
Klebsiella pneumoniae
cephalosporins for, 172
as encapsulated bacteria, 112
in immunodeficient patients, 210
presentation of, 633
splenic dysfunction and, 191
UTIs caused by, 164
Klinefelter syndrome, 585
chromosome associated with, 75
gynecomastia caused by, 595
testicular tumors and, 598
Klumpke palsy, 420
Klüver-Bucy syndrome, 464, 632
Knee pain, from "unhappy triad," 417

## Knees

common conditions of, 417
examination of, $\mathbf{4 1 6}$
Knock out genes/Knock in genes, 68
Koilocytes, 635
condylomata acuminata as

$$
\text { cause, } 167
$$

Koilocytosis, 440
Koplik spots, 154, 166, 634
Korsakoff psychosis, 523
Korsakoff syndrome, 512
Krabbe disease, 100, 493
KRAS gene, 230
adenomatous colonic polyps and, 363
colorectal cancer and, 364
lung cancer and, 626
Krukenberg tumors, 356, 593, 642
$\mathrm{K}_{\mathrm{m}}, 236$
Kulchitsky cells, 319, 626
Kupffer cells, 346
Kuru, 161
Kussmaul respirations
diabetic ketoacidosis as cause, 331
presentation of, 631
Kussmaul sign, 295
Kwashiorkor, 82
Kyphoscoliosis, 475
Kyphosis, 96

## L

Labetalol, 249
for gestational hypertension, 298, 590
for hypertensive emergency, 298
Labia, 574
male homolog of, 572
Labile cells, 58
Laboratory techniques, 64-68
Lachman test, 416
Lac operons, 52

Lacrimation reflex, 479
Lactase deficiency, 92
Lactation, 581. See also Breast milk
dopamine and, 310
oxytocin for, 336
progesterone and, 577
prolactin and, 310
Sheehan syndrome and, 329, 632
Lactational mastitis, 595
Lactic acid dehydrogenase, 88
Lactic acidosis
ethanol metabolism and, 83
exercise and, 615
in MELAS syndrome, 70
metabolic acidosis caused by, 543
metformin as cause, 334
pyruvate dehydrogenase complex deficiency as cause, 88
Lactiferous sinus, diseases of, 595
Lactobacillus spp.
morphology of, 109
as normal flora, 161
Lactoferrin
in neutrophils, 378
in respiratory burst, 201
Lactose-fermenting enteric organisms, 126
culture requirements for, 111
Lactose intolerance, 358
Lactose metabolism, 52
Lactotroph hyperplasia, 496
Lactulose, 375
for hepatic encephalopathy, 367
for hyperammonemia, 93
Lambert-Eaton myasthenic syndrome, 436
autoantibody associated with, 207
as paraneoplastic syndrome, 229
small cell lung cancer as cause, 626
Lamina propria, 341
Peyer patches in, 352
in Whipple disease, 358
Lamins, 60
Lamivudine, 184
for HIV, 186
Lamotrigine
for epilepsy, 500
rash caused by, 253
Landmark dermatomes, 476
Langerhans cell histiocytosis, 403
Langerhans cells, 380
Birbeck granules in, 638
Language development, 43
Lanosterol synthesis, 181
Lansoprazole, 374
Lanugo, in anorexia nervosa, 520
Laplace law, 267, 607
Large cell carcinomas of lungs, 626
Laron syndrome, 327
Larva migrans, 143
Larynx, 608
Larynx muscles, 569
Lassa fever encephalitis, 151
Latanoprost, 498
Latent errors, 46
Lateral collateral ligament (LCL) injury, 416

Lateral corticospinal tract, 472, 473 stroke effects, 467
Lateral epicondylitis, 417
Lateral femoral circumflex artery, 427
Lateral fold closure defects, 338
Lateral geniculate nucleus (LGN), 458
Lateral lesions of cerebellum, 459
Lateral medullary syndrome, 467
Lateral pterygoid muscle, 569
Lateral rectus muscle, 488
Lateral thoracic artery, 423
Lateral ventricles, in herniation syndromes, 498
Laxatives, 375
LDH, exudate vs. transudate, 224
LDL (low-density lipoprotein), 105
Leaden paralysis, 515
"Lead pipe" appearance of colon, 636
Lead poisoning, 389, 395
acute tubular necrosis caused by, 554
in anemia taxonomy, 388
basophilic stippling in, 386
Fanconi syndrome caused by, 538
lab findings in, 635, 636
presentation of, 630
sideroblastic anemia caused by, 389
treatment for, 251
Lead-time bias, in studies, 36
Lecithins, in pulmonary surfactant, 607
Lectin pathway of complement activation, 199
Ledipasvir, 187
Leflunomide, 447
pyrimidine synthesis and, 49
for rheumatoid arthritis, 430
Left anterior descending artery, 265
myocardial infarction and, 288
Left anterior division, 276
Left bundle branch, 276
Left bundle branch block, 271
Left circumflex coronary artery, 265
Left common iliac artery, 342
Left gastroepiploic artery, 343
Left hemianopia with macular sparing, 489
Left heart disease, 622
Left horn of sinus venosus, 262
Left lower quadrantic hemiopia, 489
Left main coronary artery, 265
Left marginal artery, 265
Left posterior division, 276
Left recurrent laryngeal nerve, 568
Left shift, 394
Left-to-right shunts, 283
Legg-Calvé-Perthes disease, 427
Legionella spp.
as atypical organism, 162
culture requirements for, 111
as intracellular organism, 112
macrolides for, 176
morphology of, 109
as nosocomial infection, 168
pneumonia caused by, 624
silver stain for, 110
Legionella pneumophila, 127, 640

Legionnaires' disease, 127
Leiomyomas, 594, 645
nomenclature for, 228
polycythemia and, 229
Leiomyosarcomas, 228
Leishmania donovani, 142
Leishmaniasis, 142
sodium stibogluconate for, 183
Lens, 482
collagen in, 61
subluxation of, 96
Lenticulostriate artery, 467
Lentiform, 460
Leonine facies, in Hansen disease, 125
Lepromatous Hansen disease, 125
Leptin, 311
hypothalamus and, 456
Leptospira spp.
animal transmission of, 132
as spirochete, 130
Leptospira interrogans, 130
Leptospirosis, 130
animal transmission of, 132
Lesch-Nyhan syndrome, $\mathbf{5 0}$
gout and, 431
lab findings in, 636
presentation of, 631
as X-linked recessive disorder, 72
Leser-Trélat sign, 229, 440
stomach cancer as cause, 356
Lesser sac, 340
Lethal median dose, 240
Letrozole, 601
Leucine, 92
maple syrup urine disease and, 95
Leucovorin, 409
Leukemias, 402
allopurinol for, 448
aplastic anemia and, 391
carcinogens causing, 231
cyclophosphamide for, 410
cytarabine for, 409
doxorubicin for, 410
etoposide/teniposide for, 411
vs. lymphomas, 399
mucormycosis and, 137
nomenclature for, 228
vinca alkaloids for, 411
Leukocyte adhesion deficiency, 209, 221
Leukocyte alkaline phosphatase (LAP), 378
Leukocyte esterase, 164, 552
Leukocyte extravasation, 221
Leukocytes, 378
extravasation of, 221
in leukemias, 402
in myeloproliferative disorders, 404
in urine, $164,544,552$
Leukocytosis
Clostridium difficile as cause, 168, 630
in diabetic ketoacidosis, 331
Leukodystrophies, 493
oligodendroglia in, 454

## Leukopenia, 394

azathioprine as cause, 212
cytarabine as cause, 409
ganciclovir as cause, 185
sirolimus as cause, 212
trimethoprim as cause, 177
Leukoplakia, 442
Leukotriene receptor antagonists, 446
Leukotrienes
arachidonic acid pathway and, 446
basophils and, 379
cortisol effect on, 313
synthesis of, 446
Leuprolide, 601, 640
Levator veli palatini muscle, 569
Levetiracetam
for epilepsy, 500
for tonic-clonic seizures, 641
Levodopa, 504, 505
Levofloxacin, 170, 178
for Pseudomonas aeruginosa, 127
Levomilnacipran, 527
Levonorgestrel, 602
Levothyroxine, 335. See also Thyroid hormones
Lewy bodies, 636
in Parkinson disease, 461
Lewy body dementia, 491, 513
Leydig cells, 571, 576
Leydig cell tumors, 598
LFA-l antigens, 221
LH. See Luteinizing hormone (LH) Libido
in geriatric patients, 44
testosterone and, 582
Libman-Sacks endocarditis, 434
Lice, 145
as disease vectors, 132,133
treatment for, 183
Lichen planus, 444
hypergranulosis and, 439
presentation of, 633
Liddle syndrome, 538
markers in, 542
Lidocaine, 302, 503
for arrhythmia, 638
Li-Fraumeni syndrome
autosomal dominance of, 71
osteosarcomas and, 429
tumor suppressor genes and, 230
Ligaments, gastrointestinal, 340
Ligamentum arteriosum, 264
Ligamentum teres hepatis, 264, 340
Ligamentum venosum, 264
Ligand receptors, 216
Limbic system, 458
Limit dextrin, 98
Limited scleroderma, 437
Linagliptin, 335
Lindane, 183
Linea alba, 348
Linear ulcers, in esophagitis, 354
Linear viruses, 147
Lines of Zahn, 617, 638
Lineweaver-Burk plot, 236
Linezolid, 170, 174, 176
for MRSA, 181
for Staphylococcus aureus, 641
for VRE, 181
Linkage disequilibrium, 68
Lipase
as pancreatic secretions, 352
in pancreatitis, 373
Lipid-lowering agents, $\mathbf{3 0 0}$
Lipids
metabolism of, 85
transport of, 104
in viruses, 146
Lipodystrophy
insulin as cause, 334
protease inhibitors as cause, 186
tesamorelin for, 309
Lipofuscin, 225
Lipoic acid, 87
Lipoid nephrosis, 548
Lipolysis
cortisol and, 313
glucagon and, 309
insulin and, 308
in insulin deficiency, 330
niacin and, 300
sympathetic receptors and, 242
thyroid hormones and, 315
Lipomas, 228
Lipoprotein lipase, 104
Lipoproteins, 105
Liposarcomas, 228
Lipoteichoic acid, 108
Liquefactive necrosis, 217
calcification and, 220
Liraglutide, 335
Lisch nodules
causes of, 630
neurofibromatosis type 1 as cause, 71, 495
Lisinopril, 559
Lispro insulin, 334. See also Insulin
Listeria spp.
as catalase-positive organism, 112
chronic granulomatous disease and, 209
in Gram-positive algorithm, 118
as intracellular organism, 112
meningitis caused by, 163
morphology of, 109
Listeria monocytogenes, 123
$\beta$-hemolytic nature of, 119
granulomatous diseases caused by, 223
in neonates, 165
penicillinase-sensitive penicillins for, 171
Lithium, 526
for bipolar disorder, 515, 524, 638
cardiac defects associated with in utero exposure, 284
diabetes insipidus caused by, 253, 328
Ebstein anomaly caused by, 282
hypothyroidism caused by, 252, 322
as teratogen, 564
therapeutic index value of, 240
Live attenuated vaccines, 146, 203
Livedo reticularis, 504

Liver
blood supply and innervation of, 342
in gastrointestinal anatomy, 340
ischemia in, 218
lipid transport and, 104
as metastasis site, 233
tissue architecture, 346
Liver disease
acanthocytes in, 386
alcoholic, 367
anemia caused by, 390
in anemia taxonomy, 388
cystic fibrosis as cause, 72
echinocytes in, 386
key associations, 644
loading and maintenance dose in, 237
target cells in, 387
Liver failure
Budd-Chiari syndrome and, 368
myoclonus in, 461
Wilson disease as cause, 371
Liver fluke
hyperbilirubinemia caused by, 369
as oncogenic microbe, 231
Liver pathology serum markers, 366
Liver tumors, 368
Living wills, 41
LMN facial nerve palsy, 634
Loading dose, 237, 646
Loa loa, 143
infection routes, 142
Lobar pneumonia, 622, 624
Lobular carcinomas, 595
Local anesthetics, 503
naming convention for, 255
Locked-in syndrome
basilar artery lesions as cause, 467
osmotic demyelination syndrome as cause, 492
Lockjaw
Clostridium tetani as cause, 122
tetanospasmin as cause, 116
Locus heterogeneity, 69
Löffler medium, 111
Löffler syndrome, 291
Lomustine, 410
in cell cycle, 408
Lone Star tick, as disease vector, 132
Long QT syndrome
ranolazine as cause, 299
sudden cardiac death caused by, 287
Loop diuretics, 557
for heart failure, 292
lab findings in, 636
metabolic alkalosis caused by, 543
site of action, 556
toxicity caused by, 254
Loop of Henle, 556
Loperamide, 376, 499
Lopinavir, 184
for HIV, 186
Loratadine, 627
Lorazepam, 501
for alcohol withdrawal, 524

Losartan, 559
Lovastatin, 300
Low birth weight, 581
Löwenstein-Jensen agar, 111
Lower esophageal sphincter
achalasia and, 354
in Barrett esophagus, 355
Lower extremity nerves, 422
Lower left quadrant (LLQ) pain, 360
Lower motor neuron (LMN) lesions, 480, 632
in Brown-Séquard syndrome, 475
poliomyelitis and, 475
LPS, and endotoxins, 117
LSD (lysergic acid diethylamide), 523
$\mathrm{LTB}_{4}$ (Leukotriene B4), 378, 446
Lumbar puncture
location of, 472
for pseudotumor cerebri, 471
Lumbosacral radiculopathy, 423
Lumbrical muscles, 421
Klumpke palsy and, 420
Lumefantrine, 183
"Lumpy bumpy" glomeruli, 637
Lunate bone, 418
Lung abscesses, 624
Lung and chest wall, 611
Lung cancer, 626
asbestosis and, 620
bone metastases in, 644
brain metastases in, 644
carcinogens causing, 231
cisplatin/carboplatin for, 411
Cushing syndrome and, 229
eriotinib for, 412
hypercalcemia and, 229
incidence/mortality of, 228
metastases of, 233
neuromuscular paraneoplastic syndromes and, 229
oncogenes and, 230
topotecan for, 411
Lung diseases
obstructive, 618
restrictive, 619
Lungs
autoregulation of, 280
congenital malformations of, 606
development of, $\mathbf{6 0 6}$
physical findings, 622
relations between, $\mathbf{6 0 9}$
sclerosis of, 437
Lung volumes, 610
Lupus, 434
acute interstitial nephritis caused by, 554
anemia of chronic disease and, 391
antiphospholipid syndrome and, 434
autoantibody associated with, 207
autoimmune hemolytic anemia and, 393
azathioprine for, 409
bacterial endocarditis caused by, 293
death caused by, 642
DPGN caused by, 546

## HLA-DR2 and, 193

HLA-DR3 and, 193, 643
isoniazid as cause, 180
key associations, 642
lab findings in, 634, 635
lymphopenia caused by, 394
membranous nephropathy and, 548
microangiopathic anemia caused by, 393
neutropenia caused by, 394
presentation of, 630
Raynaud phenomenon and, 437
Lupus-like syndrome
alpha-methyldopa for, 247
as drug reaction, 253
hydralazine as cause, 298
procainamide as cause, 302
Lupus nephritis, 434
Lupus nephropathy, 642
Lupus pernio, 435
Lurasidone, 525
Luteal phase of menstrual cycle, 579
Luteinizing hormone (LH)
in androgen insensitivity syndrome, 586
clomiphene effect on, 601
in cryptorchidism, 597
in Kallmann syndrome, 586
in Klinefelter syndrome, 585
in menopause, 582
in ovulation, 310, 578
in PCOS, 591
pharmacologic control of, 600 in premature ovarian failure, 591
progesterone and, 577
secretion of, 307
signaling pathways of, 316
in spermatogenesis, 310, 576
in Turner syndrome, 585
Lyme disease, 130
animal transmission of, 132
AV block caused by, 278
ceftriaxone for, 172
facial nerve palsy caused by, 480 presentation of, 632
Lymphadenopathy
follicular lymphoma as cause, 400
Ghon complex and, 636
mononucleosis as cause, 149
mycosis fungoides as cause, 631
rubella as cause, 153, 165
serum sickness as cause, 205
syphilis as cause, 131,167
tinea capitis and, 136
Lymphatic ducts, 190
Lymphatic gonadal drainage, 573
Lymphatic pleural effusion, 623
Lymph drainage, 190
Lymphedema, 585, 634
Lymph nodes, 190
absent, in X-linked
agammaglobulinemia, 208
T cell differentiation in, 194
Lymphocyte casts in urine, 638
Lymphocytes, 192-197, 378, 380
in breast milk, 581
corticosteroid effect on, 394
in lymph node, 190
in spleen, 191
in thymus, 191
Lymphocytic choriomeningitis virus
(LCMV), 151
Lymphocytosis, 191
Lymphogranuloma venereum, 134 as STI, 167
Lymphohistiocytosis, 209
Lymphoid hyperplasia, 360
Lymphoid structures, 190-191
Lymphomas
allopurinol for, 448
carcinogens causing, 231
celiac disease and, 358
cyclophosphamide for, 410
cytarabine for, 409
doxorubicin for, 410
EBV and, 149
etoposide/teniposide for, 411
hypercalcemia and, 229
vs. leukemias, 399
methotrexate for, 409
minimal change disease and, 548
nomenclature for, 228
non-Hodgkin, 400
oncogenic microbes and, 231
presentation of, 631
of stomach, 356
of thyroid, 324
Lymphopenias, 394
ataxia-telangiectasia as cause, 209
corticosteroid effect on, 394
Lynch syndrome, 363
endometrial cancer and, 594
mismatch repair and, 53
ovarian neoplasms and, 592
Lysine, 92
in cystinuria, 96
kidney stones and, 549
for pyruvate dehydrogenase complex deficiency, 88
Lysosomal $\alpha$-l,4-glucosidase, 99
Lysosomal storage diseases, 59, 100, 644
Lysosome rupture, 218
Lysozyme
innate immunity and, 192
in neutrophils, 378
LYST gene, 209
Lysyl oxidase, 63
Lytic bone lesions
adult T-cell lymphoma as cause, 400
Langerhans cell histiocytosis as cause, 403
multiple myeloma and, 401, 637

## M

MacConkey agar, 110, 111
lactose-fermenting enteric bacteria on, 126
Macroangiopathic anemia, 388, 393
Macrocytic anemia, 388, 390
Macroglossia, 551
Macrolides, 170, 176
cytochrome P-450 and, 254
hypertrophic pyloric stenosis and, 339
for Legionella pneumophila, 127, 640
for Mycoplasma pneumoniae, 134 naming convention for, 255
as protein synthesis inhibitors, 174
torsades de pointes caused by, 251
Macroorchidism, 73
Macro-ovalocytes, 386
Macrophages, 379
in alveoli, 608
apoptosis and, 216
bilirubin and, 353
binding of, 196
in breast milk, 581
cell surface proteins, 202
in chronic inflammation, 219
cytokines secreted by, 200
endotoxins/lipopolysaccharide, effect on, 202
innate immunity and, 192
in lymph node, 190
in MI, 288
necrosis and, 217
in silicosis, 620
in spleen, 191
in wound healing, 223
Macrosomia, caused by maternal diabetes, 564
Macula, cherry-red spot on, 100, 486, 630, 632
Macula densa, 532
in filtration, 535
in juxtaglomerular apparatus, 540
Macular degeneration, 485
Macules, 438
Maculopapular rash
graft-versus-host disease as cause, 211
syphilis as cause, 131
Magnesium
amphotericin B and, 182
as antiarrhythmic drug, 304
for cardiac glycoside toxicity, 301
decrease, causes of, 314
proton pump inhibitor effect on, 374
PTH and, 314
in renal disorders, 542
torsades de pointes and, 277
Magnesium citrate, 375
Magnesium hydroxide, 375
Magnesium sulfate
for eclampsia, 590
for preeclampsia, 590
for torsades de pointes, 277
Maintenance dose, 237, 646
Maintenance stage of overcoming addiction, 521
Major basic protein (MBP), 379
Major depressive disorder, 514, 515
tricyclic antidepressants for, 527
Major ducts (breast), 595
Malabsorption syndromes, 358, 359
fat-soluble vitamin deficiencies caused by, 76
osteoporosis and, 426
Malaria
anemia caused by, 393
artesunate for, 183
Plasmodium as cause, 141
quinidine/quinine for, 183
treatments for, 640
Malassezia spp., 136
Malathion, 183
Male genital embryology, 571
Male reproductive anatomy, 575
Male sexual response, 575
Maleylacetoacetic acid, 95
Malformation, in organogenesis, 563
Malignancy, 644
Malignant hypertension
microangiopathic anemia caused by, 393
RBC casts in, 544
Malignant hyperthermia, 502
dantrolene for, 503
succinylcholine as cause, 503
treatments for, 640
Malignant melanomas
IFN- $\alpha$ for, 187
recombinant cytokines for, 213
Malignant mesotheliomas, 232
Malignant tumors, 228
Malingering, 518
Malleus bone, 481, 569
Mallory bodies, 636
in alcoholic hepatitis, 367
Mallory-Weiss syndrome, 354, 523, 634
Malnutrition, 82
superior mesenteric artery syndrome and, 342
wet beriberi as cause, 631
Malrotation, 361
Maltese cross appearance of babesiosis, 141
"Maltese cross" sign, 544
MALT lymphomas
Helicobacter pylori as cause, 130, 356
oncogenic microbes and, 231
Sjögren syndrome as cause, 432
Mammary gland cysts, 637
Mammary glands, 563
Mammillary bodies, 458, 477
in Korsakoff syndrome, 512
lesions in, 464
in Wernicke-Korsakoff syndrome, 523
Mammillary body atrophy, 641
Mandibular process, 569
Mango flies, as disease vectors, 143
Manic episodes, 514
Mannitol, 557
extracellular volume and, 533
site of action, 556
Mantle cell lymphomas, 400
chromosomal translocations and, 403
Mantle zone
in lymph node, 190
in spleen, 191
MAO inhibitors, 528
for atypical depression, 515
mechanism of, 526
in Parkinson disease, 504

MAO inhibitors (continued)
for phobias, 517
selegiline/rasagiline as, 505
serotonin syndrome caused by, 527
tyramine and, 243
Maple syrup urine disease, 95
Marantic endocarditis, 642
Marasmus, 82
Maraviroc, 184, 186
Marburg hemorrhagic fever, 151
Marcus Gunn pupils, 487
multiple sclerosis as cause, 492
Marfanoid habitus
homocystinuria as cause, 96
MEN 2B syndrome and, 333
Marfan syndrome
aortic aneurysms and, 641
aortic dissection and, 287
autosomal dominance of, 71
cardiac defects associated with, 284
cataracts and, 483
chromosome associated with, 75
elastin and, 64
heart murmur caused by, 273
presentation of, 630
thoracic aortic aneurysms and, 286
Marijuana
intoxication and withdrawal, 523
schizophrenia and, 514
Masseter muscle, 569
Massive hepatic necrosis, 252
Mast cells, 379
IgE antibody and, 197
Mastectomy, as cause of winged scapula, 420
Mastication muscles, 480
Mastitis, 595
Mastoid air cells, 570
Mastoiditis
brain abscesses caused by, 163
Wegener granulomatosis as cause, 296
Maternal-fetal blood barrier of placenta, 455
Maternal PKU, 95
Mature cystic teratomas, 592
Maturity-onset diabetes of the young (MODY), 86
Maxillary artery, 568
Maxillary process, 569
Mayer-Rokitansky-Küster-Hauser syndrome, 571
McArdle disease, 99, 631
McBurney point, 360
McBurney sign, 633
McCune-Albright syndrome, 69, 630
McMurray test, 416
MDMA (ecstasy) intoxication and withdrawal, 523
Mean arterial pressure, 266, 465, 647
Mean, in statistical distribution, 37
Measles, 154, 166
as paramyxovirus, 151
paramyxoviruses as cause, 153
presentation of, 631
in unvaccinated children, 169
vaccine for, 203
vitamin A for, 77

Measurement bias in studies, 36
Mebendazole, 183
microtubules and, 60
"Mechanic's hands" in dermatomyositis, 436
Meckel diverticulum, 361, 567
Meconium ileus, 362
cystic fibrosis as cause, 72
Medial antebrachial cutaneous nerve, 419
Medial brachial cutaneous nerve, 419
Medial calcific sclerosis, 285
Medial collateral ligament (MCL) injury
abnormal passive abduction in, 416
in "unhappy triad," 417
Medial epicondylitis, 417
Medial femoral circumflex artery, 427
Medial geniculate nucleus (MGN), 458
Medial hypertrophy, in pulmonary hypertension, 622
Medial lemniscus, 467
Medial lesions of cerebellum, 459
Medial longitudinal fasciculus, 490
Medial medullary syndrome, 467
Medial meniscal tear, 417
Medial pterygoid muscle, 569
Medial rectus muscle, 488
Medial umbilical ligament, 264, 348
Median, 37
Median claw, 421
Median nerve, 419
in carpal tunnel syndrome, 418
injury to, 421
Median umbilical ligament, 348, 532
Mediastinal lymph nodes, 190
Mediastinitis, 121
Medical abortion
as ethical situation, 42
methotrexate for, 409
treatments for, 640
Medical errors, 46
Medical power of attorney, 41
Medicare/Medicaid, 44
Medium-chain acyl-CoA dehydrogenase deficiency, 101
Medroxyprogesterone, 602
Medulla
brain, 450
lymph node, 190
thymus, 194
Medullary carcinomas, 596
Medullary cords, lymph node, 190
Medullary cystic disease, 555
Medullary pyramids, 477, 532
Medullary thyroid carcinomas, 324
MEN 2A as cause, 333
MEN 2B syndrome as cause, 333
oncogenes and, 230
Medulloblastomas, 497, 642, 644
Mefloquine, 141, 640
Megacolon
Chagas disease as cause, 142
in Hirschsprung disease, 361
Megakaryocytes, in essential thrombocytemia, 404

Megaloblastic anemia, 388, 390
cytarabine as cause, 409
Diphyllobothrium latum as cause, 144
as drug reaction, 252
epilepsy drugs causing, 500
lab findings in, 636
macro-ovalocytes in, 386
orotic aciduria as cause, 390
trimethoprim as cause, 177
tropical sprue as cause, 358
vitamin $\mathrm{B}_{12}$ deficiency as

$$
\text { cause, } 80
$$

vitamin $B_{9}$ deficiency as cause, 79
Megestrol, 602
Meglitinides, 335
Meigs syndrome, 592
Meissner corpuscles, 454
Melanocytes
embryologic derivatives of, 563
tumor nomenclature in, 228
in vitiligo, 439
Melanocyte-stimulating hormone (MSH)
secretion of, 307
signaling pathways of, 316
Melanocytic nevus, 440
Melanomas
brain metastases in, 644
hydroxyurea for, 411
nomenclature for, 228
oncogenes and, 230
of skin, 445
sunburn and, 444
tumor suppressor genes and, 230
Melarsoprol, 183
for Trypanosoma brucei, 140
Melasma, 439
MELAS syndrome, 70
Melatonin
circadian rhythm and, 457
as derivative, 94
for Trypanosoma brucei, 140
Melena
Meckel diverticulum as cause, 361, 567
polyarteritis nodosa as cause, 296
Meloxicam, 447
Memantine, 505
Membrane attack complex (MAC), 196
complement and, 199
in type II hypersensitivity reactions, 204
Membranoproliferative glomerulonephritis (MPGN), 547
DPGN caused by, 546
lab findings in, 638
Membranous glomerular disorders, 544
Membranous interventricular septum, 263
Membranous nephropathy, 548, 638
Membranous ossification, 425
Membranous ventricular septum, 263

Memory loss, in Wernicke-Korsakoff syndrome, 77, 464, 523
MEN1 gene, 230
multiple endocrine neoplasias and, 71
Ménétrier disease, 356
Ménière disease
presentation of, 631
vertigo caused by, 495
Menin, 230
Meningiomas, 496, 642
lab findings in, 637
neurofibromatosis type 2 as cause, 71
Psammoma bodies in, 232
Meningitis
ceftriaxone for, 172
cerebrospinal fluid (CSF) findings in, 163
chloramphenicol for, 175
coccidioidomycosis as cause, 135
common causes of, 163
Cryptococcus neoformans as cause, 137
fluconazole for, 182
flucytosine for, 182
Haemophilus influenzae as cause, 126
headaches caused by, 494
HIV and, 160
Listeria monocytogenes as cause, 123
meningococci as cause, 126
mumps as cause, 155
in neonates, 165
rifamycins as prophylaxis for, 179
Streptococcus pneumoniae as cause, 120
Streptococcus agalactiae as cause, 121
tuberculosis and, 124
in unvaccinated children, 169
Meningocele, 451
Meningococcal prophylaxis, 181
Meningococcal vaccine, 112
Meningococcemia
endotoxins as cause, 115
meningococci as cause, 126
Meningococci, 126
Meningoencephalitis, 140
Meningomyelocele, 451
Meniscal tear, 416, 417
Menkes disease, 63
collagen and, 62
Menometrorrhagia, 579
Menopause, 582
fibroid tumors in, 594
hormone replacement therapy for, 601
Menorrhagia, 579
adenomyosis as cause, 594
anemia caused by, 388
Menstrual cycle, 579
estrogens for, 601
Meperidine, 499
Mepivacaine, 503

Mercury poisoning, 251
Merkel discs, 454
Merlin protein, 230
Meropenem, 170, 173
MERS (Middle East respiratory syndrome), 151
Mesalamine, 359, 641
Mesangial cells, 532
in filtration, 535
in juxtaglomerular apparatus, 540
Mesencephalon, 450
Mesenchymal tumors
nomenclature of, 228
vimentin stain for, 60
Mesenteric arteries, 531
Mesenteric ischemia, 362, 633
Mesenteric veins, 344
Mesna, 639
Mesocortical pathway, 458
Mesoderm, 450
branchial arches derived from, 568
derivatives of, 563
Mesolimbic pathway, 458
Mesonephric duct, 571
Mesonephros, 530
Mesosalpinx, 574
Mesotheliomas, 624
asbestosis and, 620
carcinogens causing, 231
lab findings in, 637
Psammoma bodies in, 232
Mesovarium, 574
Mestranol, 601
Metabolic acidosis, 543
Fanconi syndrome as cause, 538
neonatal respiratory distress syndrome and, 607
primary adrenal insufficiency as cause, 318
renal failure as cause, 553
symptoms of, 543
Metabolic alkalosis, 543
acetazolamide for, 557
Bartter syndrome as cause, 538
causes of, 543
Gitelman syndrome as cause, 538
hyperaldosteronism as cause, 318
hypertrophic pyloric stenosis as cause, 339
loop diuretics as cause, 557
primary hyperaldosteronism as cause, 636
syndrome of apparent mineralocorticoid excess as cause, 538
thiazides as cause, 558
Metabolic fuel use, 103
Metabolic syndrome
atypical antipsychotics as cause, 525
non-alcoholic fatty liver disease and, 367
Metabolism, 83-105
amino acid derivatives, 94
amino acids, 92
apolipoproteins, 104
catecholamine synthesis/tyrosine catabolism, 95
disorders of, 91, 92, 94, 95-96, 99, 100-101, 105
of drugs, 238
of ethanol, 83
fatty acid, 101
fuel use, 103
gluconeogenesis, 89
glycogen and, 98
lipoprotein functions, 105
pathway summary, 85
pyruvate, 88
rate-determining enzymes, 84
sites of, 83
TCA cycle, 88
urea cycle, 93
Metabolites, 526
Metacarpophalangeal (MCP) joints, 421
Metachromatic leukodystrophy, 100, 493
Metalloproteinases, 223
Metal storage diseases, 221
Metanephric mesenchyme, 530
Metanephrines
pheochromocytoma effect on, 320
in tyrosine catabolism, 95
Metanephros, 530
Metaphase, 58
Metaphysis, tumors in, 429
Metaplasia, 226
Metastases, 233, 626
key associations, 644
of liver cancer, 368
in neoplastic progression, 227
Metastatic calcification, 220
Metastatic melanomas
recombinant cytokines for, 213
vemurafenib for, 413
Metencephalon, 450
Metformin, 334
diarrhea caused by, 252
Methacholine, 244, 628
Methadone, 499
for heroin addiction, 523
intoxication and withdrawal, 522
for opioid withdrawal, 522
Methamphetamine, 524
Methanol toxicity, 251, 639
Methemoglobin, 612
toxicity treatment for, 251
Methemoglobinemia, 612
local anesthetics as cause, 503
Methicillin, 253
Methimazole, 335. See also Thionamides
agranulocytosis caused by, 252
aplastic anemia caused by, 252
as inhibitor, 315
as teratogen, 564
Methionine, 92, 177
start codons, 53
in tRNA charging, 56
Methotrexate, 409
in cell cycle, 408
folate deficiency caused by, 390
for hydatidiform moles, 587
megaloblastic anemia caused by, 252
for polymyositis/ dermatomyositis, 436
pulmonary fibrosis caused by, 254
pyrimidine synthesis and, 49
for rheumatoid arthritis, 430
targets of, 408
as teratogen, 564
toxicities of, 413, 619
vitamin $B_{9}$ deficiency caused

$$
\text { by, } 79
$$

as weak acid, 238
Methoxyflurane, 502
Methylation, 57
Methyldopa
Coombs-positive hemolytic anemia caused by, 252
for hypertension in pregnancy, 298
Methylene blue, 251, 612
Methylmalonic acid
in vitamin $\mathrm{B}_{9}$ deficiency, 79
in vitamin $\mathrm{B}_{12}$ deficiency, 80
Methylmalonyl-CoA mutase
diagram of, 80
vitamin $\mathrm{B}_{12}$ and, 80
Methylmercury teratogenicity, 564
Methylphenidate
for ADHD, 511, 524, 638
as CNS stimulant, 524
Methylprednisolone, 336, 446. See also Glucocorticoids
Methyltestosterone, $\mathbf{6 0 3}$
Methylxanthines, 628
Metoclopramide, 376
Parkinson-like syndrome caused by, 253
tardive dyskinesia caused by, 253
Metolazone, 558
Metoprolol, 249, 303
Metronidazole, 170, 178
for bacterial vaginosis, 132
vs. clindamycin, 175
for Clostridium difficile, 122, 639
for Crohn disease, 359
disulfiram-like reaction caused by, 254
for Entamoeba histolytica, 139
for Giardia lamblia, 139
for Helicobacter pylori, 130
for Trichomonas vaginalis, 641
for vaginal infections, 164
for vaginitis, 142
Metrorrhagia, 579
Metyrapone, 318
Metyrosine, 243
Mevalonate synthesis, 300
Mexiletine, 302
for arrhythmia, 638
Meyer loop, 489
MHC I and II, 192
dendritic cells and, 380
locations of, 202
Micafungin, 181, 183
Michaelis-Menten kinetics, 236
Miconazole, 181, 182

Microalbuminuria, 330
Microangiopathic anemia, 393
in anemia taxonomy, 388
Microangiopathic hemolytic anemia
hypertensive emergency and, 284
intravascular hemolysis caused
by, 391
Microarrays, 66
Microbiology
antimicrobials, 170-187
bacteriology, 108-118
bacteriology, clinical, 118-134
mycology, 135-138
parasitology, 139-145
systems, 161-169
virology, 146-161
Microcephaly
cri-du-chat syndrome as cause, 75
Edwards syndrome as cause, 632
fetal alcohol syndrome as

$$
\text { cause, } 565
$$

maternal phenylketonuria as cause, 95
maternal X-rays as cause, 564
Patau syndrome as cause, 74,632
Microcytic anemia, 388
Ancylostoma and, 145
key associations, 644
Microcytosis, 224
Microfilaments, in cytoskeleton, 60
Microglia, 450, 453
Micrognathia
Edwards syndrome as cause, 74
Pierre Robin sequence as

$$
\text { cause, } 569
$$

Microhematuria, 392
Micromelia, 564
Microphthalmia, 74
MicroRNAs, 55
Microscopic polyangiitis, 296
lab findings in, 634
RPGN and, 546
Microsporum, 136
Microtubule inhibitors, 411
in cell cycle, 408
Microtubules, 60
Midazolam, 501, 502
Midbrain, 450
development of, 450
lesions in, 464
stroke effect on, 467
Middle cerebellar peduncle, 477
Middle cerebral artery, 466
in circle of Willis, 466
saccular aneurysm effect on, 468
stroke, effect on, 467
Middle meningeal artery
epidural hematoma and, 469
rupture of, 643
Middle rectal vein, 344
Midgut
blood supply/innervation of, 342
development of, 338
Midodrine, 246
Midshaft of humerus, 423
Mifepristone, 602, 640
Miglitol, 335

Migraine headaches, 494
butorphanol for, 499
hormonal contraception contraindication, 602
treatments for, 640
tricyclic antidepressants as prophylaxis, 527
triptans for, 505
Migrating motor complexes (MMC), 350

Migratory polyarthritis, 294
Milestones, developmental, 43
Miliary tuberculosis, 124
Milnacipran, 527
Mineralocorticoids
in adrenal insufficiency, 318
adrenal steroids and, 312
Mineral oil, 76
Minimal alveolar concentration, 502
Minimal change disease, 548
lab findings in, 637
nephrotic syndrome and, 644
Minocycline, 170, 175
Minors, consent for, 40
Minoxidil, 603
Minute ventilation, 610
Miosis, 487
cholinesterase inhibitor poisoning as cause, 244
Horner syndrome as cause, 487, 633
opioids as cause, 499
Pancoast tumor as cause, 625
sympatholytic drugs as cause, 247
Mirtazapine, 248, 528
for anorexia nervosa, 638
for major depressive disorder, 515
mechanism of, 526
Mismatch repair, 53
Misoprostol, 375
diarrhea caused by, 252
Missense mutations, 52
Mistakes, informing patients of, 42
Mites, treatment for, 183
Mitiglinide, 335
Mitochondria
autoantibody to, 207
high altitude and, 615
metabolism in, 83
swelling, in cell injury, 218
in type 1 muscle fibers, 424
Mitochondrial encephalopathy, 70
Mitochondrial inheritance, 70, 644
Mitochondrial myopathies, 70
Mitosis, 58
griseofulvin and, 183
Mitral regurgitation heart murmurs caused by, 273
holosystolic murmur and, 643
in MI, 288
S3 heart sound and, 645
systolic murmur in, 272
tuberous sclerosis as cause, 495
Mitral stenosis
diastolic murmur in, 272
heart murmurs caused by, 273
left heart disease and, 622
opening snap in, 644

Mitral valve
in cardiac cycle, 270
regurgitation in, 294
Mitral valve prolapse, 273, 643
fragile X syndrome as cause, 73
renal cyst disorders and, 555
Mitral valve stenosis, 644
Mittelschmerz, 578
Mivacurium, 503
Mixed connective tissue disease, 434
anti-Ul RNP antibodies and, 55
autoantibody associated with, 207
Raynaud phenomenon and, 437
Mixed motor neuron disease, 644
Mixed transcortical aphasia, 463
MMR vaccine, 146, 155
Mobitz AV blocks, 278
Modafinil, 521
Mode, 37
Molecular biochemistry, 48-57
Molecular motor proteins, 60
Molluscum contagiosum, 148, 442
Mönckeberg arteriolosclerosis, 220
Mönckeberg sclerosis, 285
"Monday disease," 299
Monoamine oxidase (MAO), 243
Monobactams, 170, 173
for Pseudomonas aeruginosa, 127
Monoclonal antibodies, 637
Monoclonal gammopathy of undetermined significance (MGUS), 401, 637
Monocytes, 378, 379
innate immunity and, 192
morulae in, 133
Mononucleosis
anemia and, 393
EBV as cause, 149
Monospot test, 149
Montelukast, 628
arachidonic acid pathway and, 446
Mood disorders, 514
readmissions caused by, 45
Moon facies, in Cushing syndrome, 317
Moraxella spp., 125
Moraxella catarrhalis
morphology of, 109
rhinosinusitis caused by, 616
Moro reflex, 43, 476
Morphine, 499
for acute coronary syndromes, 290
buprenorphine and, 240
intoxication and withdrawal, 522
Morphogenesis of heart, 262-263
Morulae, in monocytes, 133
Mosaicism, 69
Mosquitoes, as disease vectors, 141
Motilin, 350
Motion sickness, 245
Motor cortex, 467
Motor neuron signs, 473
Movement disorders, 461
Moxifloxacin, 178
M phase, 58
MPO-ANCA, 207

M protein
in multiple myeloma, 401
rheumatic fever and, 120
as virulence factor, 113
mRNA, 54
pre-mRNA splicing, $\mathbf{5 5}$
stop codons, $\mathbf{5 3}$
synthesis of, 170, 179
MRSA (methicillin-resistant
Staphylococcus aureus), 119
antimicrobials for, 181
cephalosporins for, 172
oxazolidinones for, 176
treatments for, 641
vancomycin for, 173
MSH. See Melanocyte-stimulating hormone (MSH)
mTOR, 212
Mucicarmine stain, 110
Mucinous cystadenocarcinomas, 593
Mucinous cystadenomas, 592
Mucociliary escalator, 608
Mucoepidermoid carcinomas, 353
Mucoid polysaccharide capsule, 127
Mucopolysaccharides, 110
Mucopolysaccharidoses, 100
Mucor spp., 137
amphotericin B for, 182
presentation of, 630
Mucormycosis, 137
diabetic ketoacidosis as cause, 331
Mucosa, 341
Mucosal bleeding
Glanzmann thrombasthenia as cause, 632
scurvy as cause, 634
Mucositis
bleomycin as cause, 410
methotrexate as cause, 409
Mucus, 242
Mulberry molars, 131
Müllerian agenesis, 571
Müllerian duct, 571
anomalies of, 572
Müllerian inhibitory factor
(MIF), 571
Sertoli cell production of, 576
Multicystic dysplastic kidney, 531
Multifactorial pulmonary hypertension, 622
Multiorgan drug reactions, 254
Multiple endocrine neoplasia (MEN), 71
Multiple endocrine neoplasias (MEN syndromes), 333
MEN 1, 332, 333
MEN 2A, 333
MEN 2B, 333
Multiple myeloma, 401
bone tumors caused by, 645
ESR in, 224
Fanconi syndrome caused by, 538
lab findings in, 637
osteoporosis and, 426
as plasma cell cancer, 381
Multiple sclerosis, 492
findings associated with, 643
heart murmur caused by, 273
HLA-DR2 and, 193
IFN- $\beta$ for, 187
internuclear ophthalmoplegia and, 490
natalizumab for, 214
oligodendroglia in, 454
presentation of, 632
recombinant cytokines for, 213
treatments for, 640
as type IV hypersensitivity reaction, 205
Mumps, 155
acute pancreatitis caused by, 373
as paramyxovirus, 151
paramyxoviruses as cause, 153
vaccine for, 203
Munchausen syndrome, 518
Munchausen syndrome by proxy, 518
Muscarinic acetylcholine (ACh) receptors, 241
Muscarinic antagonists, 245, 628
Muscle fibers, 424
Muscle relaxants, 503
Muscles
conduction to contraction, 424
metabolism in, 98
ragged red fibers in, 70
Muscle spasms
baclofen for, 503
cyclobenzaprine for, 503
Muscle tumors, stain for, 60
Muscular dystrophies, 73
frameshift mutation as cause, 52, 73
presentation of, 630
as X-linked recessive disorder, 72
Muscularis externa, 341
Muscularis mucosa, 341
Muscular ventricular septum, 263
Marfan syndrome as cause, 284
Musculocutaneous nerve, 419
Musculoskeletal drug reactions, 253
Musculoskeletal system
anatomy, 416-424
pathology, 426-434
pharmacology, 446-448
Mutases, 84
Mutations in DNA, 52
Mutism, 518
Myalgias
fluoroquinolones as cause, 178
Lyme disease as cause, 130
Trichinella spiralis and, 145
trichinosis as cause, 143
Myasthenia gravis, 436
autoantibody associated with, 207
diagnosis of, 244
neostigmine for, 244
as paraneoplastic syndrome, 229
pyridostigmine for, 244
as restrictive lung disease, 619
thymus in, 191
as type II hypersensitivity reactions, 204
MYCL1 gene, 230
MYCN gene, 230

Mycobacterial cells, 179
Mycobacterium spp., 124
granulomatous diseases caused by, 223
as intracellular organism, 112
morphology of, 109
Ziehl-Neelsen stain for, 110
Mycobacterium aviumintracellulare, 124
antimicrobial prophylaxis for, 181 antimycobacterials for, 179 HIV and, 160
Mycobacterium leprae, 125
animal transmission of, 132
antimycobacterials for, 179
Mycobacterium marinum, 124
Mycobacterium pneumoniae, 111
Mycobacterium scrofulaceum, 124
Mycobacterium tuberculosis, 124
as aerobic organism, 111
antimycobacterials for, 179
culture requirements for, 111 ethambutol for, 180 isoniazid for, 180 osteomyelitis caused by, 163
pyrazinamide for, 180
rifamycins for, 179
streptomycin for, 180
treatments for, 640
Mycolic acid
isoniazid and, 180
synthesis of, 179
Mycology, 135-138
Mycophenolate mofetil, 49, 212, 213
Mycoplasma spp.
as atypical organism, 162
macrolides for, 176
morphology of, 109
pneumonia caused by, 162, 624
Mycoplasma pneumoniae, 134 anemia and, 393 erythema multiforme and, 443 tetracyclines for, 175
Mycoses
cutaneous, 136
granulomatous diseases caused
by, 223
systemic, 135
Mycosis fungoides, 400
presentation of, 631
Mydriasis, 487
$\alpha$-agonists as cause, 498
muscarinic antagonists for, 245
saccular aneurysm as cause, 468
Myelencephalon, 450

## Myelin, 453

Myelodysplastic syndromes, 401 sideroblastic anemia as cause, 389
Myelofibrosis, 404
dacrocytes in, 386
Myeloperoxidase, 201
in neutrophils, 378
Myeloproliferative disorders, 404
Myelosuppression
alkylating agents as cause, 410 antimetabolites as cause, 409 drugs causing, 413
hydroxyurea as cause, 411
irinotecan/topotecan as cause, 411
Myenteric nerve plexus, 341
Mylohyoid muscle, 569
Myocardial action potential, 274
Myocardial depression, 502
Myocardial infarction (MI), 287
$\beta$-blockers for, 249
Class IB antiarrhythmics after, 302
complications of, 290
diabetes mellitus as cause, 330
diagnosis of, 289
on EKG, 276
evolution of, 288
heart failure caused by, 292
heparin for, 405
homocystinuria as cause, 96
hypertensive emergency and, 284
shock caused by, 292
thrombolytics for, 407
Myocardial oxygen demand, 267
Myocarditis
diphtheria as cause, 123
key associations, 644
Myoclonic seizures, 494
Myoclonus, 461
Creutzfeldt-Jakob disease as
cause, 491
Myofibroblasts, 223
Myoglobin
oxygen-hemoglobin dissociation curve, 612
in type 1 muscle fibers, 424
Myoglobinuria
acute tubular necrosis caused by, 554
McArdle disease as cause, 99
neuroleptic malignant syndrome as cause, 525
Myometrium, 574
Myopathy
daptomycin as cause, 178
as drug reaction, 253
HMG-CoA reductase inhibitors as cause, 300
interferons as cause, 187
Pompe disease as cause, 632
Myophosphorylase, 99
Myopia, 483
retinal detachment and, 485
Myosin
in muscle contraction, 424
in smooth muscle contraction, 425
Myosin-light-chain kinase
(MLCK), 425
Myositis ossificans, 436
Myotonic dystrophy, 73
cataracts and, 483
as trinucleotide repeat expansion disease, 73
Myotonic type 1 muscular dystrophy, 73
Myxedema
hypothyroidism as cause, 321
thyroid hormones for, 335
Myxomas, 295, 642
Myxomatous degeneration, 273

N
N -acetylcysteine, 627
for acetaminophen toxicity, 251
for cystic fibrosis, 72
N -acetylglucosaminyl-1phosphotransferase, 59
N -acetylglutamate synthase deficiency, 94
NADH (nicotinamide adenine dinucleotide)
in electron transport chain, 89
in fructose metabolism, 91
in TCA cycle, 88
Nadolol, 249
NADPH (nicotinamide adenine dinucleotide phosphate)
in ethanol metabolism, 83
HMP shunt and, 90
respiratory burst and, 201
as universal electron acceptors, 86
Naegleria fowleri, 140
Nafcillin, 170
characteristics of, 171
for Staphylococcus aureus, 641
Nails, splinter hemorrhages under, 293
Naive T cell activation, 195
Naked viral genome infectivity, 147
Nalidixic acid, 170
Naloxone
for dextromethorphan overdose, 627
for heroin addiction, 523
for opioid toxicity, 251, 499, 522
Naltrexone
for alcoholism, 523, 638
for heroin addiction, 523
for opioid toxicity, 499, 522
Naproxen, 447
arachidonic acid pathway and, 446
for gout, 448
Narcissistic personality disorder, 519
Narcolepsy, 521
amphetamines for, 246
CNS stimulants for, 524
hypnagogic hallucinations and, 513
Nasal cavity, in cleft palate, 570
Nasal congestion, 627
Nasal decongestion
ephedrine for, 246
Nasal polyps, in cystic fibrosis, 72
Nasal septum perforation, 296
Nasopharyngeal carcinomas
EBV and, 149
oncogenic microbes and, 231
Natalizumab, 214
for multiple sclerosis, 492, 640
progressive multifocal leukoencephalopathy and, 493
Nateglinide, 335
National Board of Medical Examiners (NBME), 2, 10
Natriuresis, 540
Natural killer (NK) cells, 193
cell surface proteins, 202
function of, 380
innate immunity and, 192
Nausea
inhaled anesthetics as cause, 502
iron poisoning as cause, 396
loperamide as cause, 376
MI as cause, 288
octreotide as cause, 375
ranolazine as cause, 299
vitamin C toxicity as cause, 80
NE. See Norepinephrine (NE)
Nebivolol, 249
Necator spp.
diseases associated with, 145
infection routes, 142
Necator americanus, 143
Neck and head cancer, 616
cetuximab for, 412
Necrosis, 217
acute pancreatitis as cause, 373
Arthus reaction as cause, 205
calcification and, 220
retinitis and, 486
Stevens-Johnson syndrome as cause, 443
warfarin as cause, 406
Necrotizing enterocolitis, 362
low birth weight and, 581
neonatal respiratory distress syndrome and, 607
Necrotizing fasciitis, 120, 442
Necrotizing glomerulonephritis, 296, 637
Necrotizing vasculitis, 637
Negative predictive value (NPV), 33, 646
Negative reinforcement, 508
Negative skew distribution, 37
Negative-stranded viruses, 152
Neglect, child, 510
Negri bodies of rabies, 155, 636
Neisseria spp., 126
C5-C9 deficiencies and, 199
cephalosporins for, 172
fluoroquinolones for, 178
IgA protease and, 113
as intracellular organism, 112
morphology of, 109
transformation in, 114
Neisseria gonorrhoeae, 126
as antigenic variation, 202
culture requirements for, 111
in Gram-negative algorithm, 125
osteomyelitis caused by, 163
pelvic inflammatory disease caused by, 167, 644
septic arthritis caused by, 432
as STI, 167
treatments for, 640
UTIs caused by, 552
Neisseria meningitidis
bacterial meningitis caused by, 642
chloramphenicol for, 175
culture requirements for, 111
as encapsulated bacteria, 112
in Gram-negative algorithm, 125
in immunodeficient patients, 210

## INDEX

Neisseria meningitidis (continued)
meningitis caused by, 163
penicillin G/V for, 170
splenic dysfunction and, 191
treatments for, 640
Waterhouse-Friderichsen syndrome caused by, 318
Nelson syndrome, 326
Nematodes, 143
infection routes, 142
Neomycin, 170, 174
for bowel surgery, 174
for hepatic encephalopathy, 367
Neonatal respiratory distress syndrome, 607
as restrictive lung disease, 619
Neonates
ABO hemolytic disease of, $\mathbf{3 8 2}$
Apgar score, 581
Candida albicans in, 137
Chlamydia trachomatis in, 134
conjunctivitis in, 126, 134
C-section delivery, flora and, 161
deprivation effects, $\mathbf{5 1 0}$
esophageal atresia in, 338
galactosemia in, 91
gastroenteritis in, 152
gray baby syndrome in, 175
hemolytic anemia in, 392
herpes in, 149
HIV in, 158
hyperthermia in, 245
hypertrophic pyloric stenosis in, 339
indirect inguinal hernia in, 349
jaundice in, 369
Listeria monocytogenes in, 123
low birth weight, 581
meningitis in, 123, 165
$N$-acetylglutamate synthase deficiency in, 94
pneumonia in, 134
primitive reflexes in, 476
Rh hemolytic disease of, $\mathbf{3 8 2}$
sickle cell anemia in, 392
Streptococcus agalactiae in, 121
Vitamin D for, when breastfed, 81
Vitamin K for, 81
Neoplasia, 226
pathology of, 226-233
progression of, 227
Neostigmine, 244, 503
Nephritic-nephrotic syndrome, 545
Nephritic syndrome, 545, 546-547, 548
Nephritis, 557
Nephrogenic diabetes insipidus, 328
Nephrolithiasis, 551
Nephron physiology, 537
Nephropathy
diabetes mellitus as cause, 330
hypertension as cause, 284
in lupus, 642
protease inhibitors as cause, 186
transplant rejection as cause, 211
Nephrotic syndrome, 545, 548
amyloidosis and, 225
charge barrier in, 533
ESR in, 224
fatty casts in, 544
key associations, 644
lab findings in, 637, 638
loop diuretics for, 557
pleural effusion caused by, 623
presentation of, 633
Nephrotoxicity
aminoglycosides as cause, 174
amphotericin B as cause, 182
cidofovir for, 185
cisplatin/carboplatin as cause, 411
cladribine as cause, 409
cyclosporine as cause, 212
as drug reaction, 254
drugs causing, 413
inhaled anesthetics as cause, 502
streptomycin as cause, 180
sulfonamides as cause, 177
tacrolimus as cause, 212
vancomycin as cause, 173
Nerve blockade in local anesthetics, 503
Nerve fibers, 454
Nerves
lower extremity, $\mathbf{4 2 2}$
upper extremity, 419
Nerve trunk, 454
Net filtration pressure, 535
Neural crest, 450
derivatives of, 563
Schwann cells derived from, 453
Neural crest cells, 450
neuroblastomas in, 319
Neural development, 450
Neural fold, 450
Neural plate, 450
Neural tube, 450
in fetal development, 562
Neural tube defects, 451
maternal diabetes as cause, 564
prevention of, 79, 640
as teratogenic effect, 564
valproic acid as cause, 500
Neuraminidase, 153
Neuraminidase inhibitors, 255
Neuroblastomas, 319, 645
neurofilament stain for, 60
oncogenes and, 230
opsoclonus-myoclonus ataxia syndrome and, 229
Neurocutaneous disorders, 495
Neurocysticercosis, 144
Neuroectoderm, 450
astrocytes derived from, 453
derivatives of, 563
pituitary gland and, 307
in teratomas, 593
Neuroendocrine tumors, 319
Neurofibrillary tangles in Alzheimer disease, 491
Neurofibromatosis type 1, 495
autosomal dominance of, 71
chromosome associated with, 75
presentation of, 630
tumor suppressor genes and, 230

Neurofibromatosis type 2
autosomal dominance of, 71
cataracts and, 483
chromosome associated with, 75
presentation of, 630
tumor suppressor genes and, 230
Neurofilaments, 60
Neurogenic ileus, 244
Neurohumoral transmission, 241
Neurohypophysis, 307
hypothalamus and, 456
Neuroleptic drugs, 520
Neuroleptic malignant syndrome, 503, 525
Neurologic drug reactions, 253
Neurology, 450-504
anatomy/physiology, 453-475
embryology, 450-452
ophthalmology, 482-489
pathology, 491-498
pharmacology, 498-505
Neuromuscular blocking drugs, 503
Neuromuscular junction diseases, 436
Neuromuscular paraneoplastic syndromes, 229
Neuronal tumors, 60
Neuron migration failure, 644
Neurons, 453
Huntington disease effect on, 462
Neuropathy
amyloidosis and, 225
diabetes mellitus as cause, 330
Neurosyphilis
dementia caused by, 513
syphilis as cause, 131
Neurotoxicity
cladribine as cause, 409
cyclosporine as cause, 212
fetal methylmercury exposure as cause, 564
methylxanthines as cause, 628
vincristine as cause, 411
Neurotransmitters, 455
disease changes to, $\mathbf{5 1 1}$
tyramine and, 243
Neurovascular pairing, 423
Neutralization, antibody, 196
Neutropenia
ganciclovir as cause, 185
interferons as cause, 187
rheumatoid arthritis as cause, 430
Neutropenias, 394
ticlopidine as cause, 407
Neutrophil chemotaxis
complement and, 199
endotoxins and, 117
Neutrophils, 378
corticosteroid effect on, 394
IL-8 and, 200
inflammation and, 219
innate immunity and, 192
in leukocyte adhesion deficiency, 209
in megaloblastic anemia, 390 in MI, 288
necrosis and, 217
in pseudo-Pelger-Huet anomaly, 401
in wound healing, 223
Nevi, 228
Nevirapine, 184
cytochrome P-450 and, 254
for HIV, 186
Nevus flammeus
presentation of, 634
Sturge-Weber syndrome as cause, 495
NFl gene
neurofibromatosis type 1 and, 71, 495
pheochromocytomas and, 320
NF1/NF2 genes, 230
NF-кB, 212
N -formylmethionine (fMet), 53
Niacin
cutaneous flushing caused by, 251
gout caused by, 253
hyperglycemia caused by, 252
myopathy caused by, 253
Nicardipine, 298
Nicotinamides, 86
Nicotine intoxication and withdrawal, 522
Nicotinic acetylcholine receptors, 150, 241
Niemann-Pick disease, 100, 630, 632
Nifedipine, 298, 590
Nifurtimox, 183
for Chagas disease, 142
Night sweats, 631
Night terrors, 457, 501
Nigrostriatal pathway, 458
Nikolsky sign, 442
in pemphigus vulgaris, 443
Nimodipine, 298
for subarachnoid hemorrhage, 469
Nipple
discharge, with intraductal papilloma, 595
eczematous patches on, 596
rash on, 633
Nissl bodies, 58
Nissl substance
in chromatolysis, 220
neurons and, 453
Nitazoxanide, 139
Nitrates, 287, 299
Nitric oxide, 350
as derivative, 94
free radical injury and, 221
Nitric oxide synthase, 425
Nitrites
methemoglobin and, 612
in urinary tract infections, 164
Nitroblue tetrazolium dye reduction test, 209
Nitrofurantoin
hemolysis in G6PD deficiency caused by, 252
pulmonary fibrosis caused by, 254
Nitroglycerin, 299
for acute coronary syndromes, 290
for angina, 287
for stable angina, 641

Nitroprusside, 298
Nitrosamines
as carcinogens, 231
stomach cancer and, 356
Nitrosoureas, 410
Nitrous oxide, 502
Nizatidine, 374
N-myc oncogene, 319
Nocardia spp.
vs. Actinomyces spp., 123
as aerobic organism, 111
as catalase-positive organism, 112
chronic granulomatous disease and, 209
in Gram-positive algorithm, 118 in immunodeficient patients, 210 morphology of, 109 necrosis and, 217 sulfonamides for, 177 as urease-positive organism, 112
Ziehl-Neelsen stain for, 110
Nocturia, 599
Nocturnal enuresis, 311, 457
Nodes of Ranvier, 453
Nodular phlebitis, 296
Nodular sclerosing Hodgkin lymphoma, 645
Noise-induced hearing loss, 481
Nonadherent patients, 42
Non-alcoholic fatty liver disease, 367
Nonbacterial thrombotic endocarditis, 229
Nonbenzodiazepine hypnotics, 501
Noncaseating granulomas as restrictive lung disease, 619
in sarcoidosis, 435
Noncommunicating hydrocephalus, 471
Dandy-Walker syndrome and, 451
Noncompetitive agonists, 240
Noncompetitive inhibitors, 236
Nondepolarizing paralytic drugs, 255
Nondisjunction in meiosis, 74
Nondominant parietal cortex lesions, 464
Nonhemolytic anemia, 391
Non-Hodgkin lymphoma, $\mathbf{4 0 0}$
Hashimoto thyroiditis and, 322
HIV and, 160
vs. Hodgkin lymphoma, 399
key associations, 646
oncogenes and, 230
prednisone for, 412
rituximab for, 214,412
vinca alkaloids for, 411
Nonhomologous end joining, 53
Nonmaleficence, as ethical principle, 39
Nonmegaloblastic macrocytic anemia, 390
Nonnormal distributions, 37
Nonreceptor tyrosine kinase, 316
Non-response bias in studies, 36
Nonsense mutations, 52
Nonsteroidal anti-inflammatory drugs (NSAIDs), 447
for acute gout attack, 638
acute interstitial nephritis caused by, 554
aplastic anemia caused by, 252
for calcium pyrophosphate deposition disease, 431
for endometriosis, 594
gastric ulcers caused by, 357
gastritis caused by, 356
for gout, 431, 448
interstitial nephritis caused by, 253
loop diuretics and, 557
for lupus, 434
membranous nephropathy and, 548
for migraine headaches, 494, 640
for osteoarthritis, 430
prostaglandin synthesis and, 541
renal papillary necrosis and, 554
for rheumatoid arthritis, 430
for tension headaches, 494
Non-ST-segment elevation MI
(NSTEMI), 287, 289
presentation of, 630
treatment for, 290
Noradrenergic drugs, 243
Norepinephrine (NE), 246, 455. See also Catecholamines
adrenal medulla secretion of, 306
amphetamines and, 243
in anxiety, 511
bupropion effect on, 528
circadian rhythm and, 457
in depression, 511
as derivative, 94
vs. isoproterenol, 247
in male sexual response, 575
MAO inhibitor effect on, 528
in nervous system, 241
in noradrenergic drugs, 243
opioid effect on, 499
phenoxybenzamine and, 240
pheochromocytoma secretion of, 320
REM sleep, effect on, 457
tramadol effect on, 499
tricyclic antidepressant effect on, 527
in tyrosine catabolism, 95
vitamin $\mathrm{B}_{6}$ and, 78
Norethindrone, 602
Norfloxacin, 178
Normal distribution, 37
Normal pressure hydrocephalus, 471
Normal splitting, 271
Normetanephrine, 95
Normocytic anemia, 388, 391
Norovirus, 151
watery diarrhea caused by, 162
Northern blot, 65
Nortriptyline, 527
Nosocomial infections, 46, 162, 168
Ebola as, 156
Klebsiella as cause, 128
pneumonia as, 644
Pseudomonas aeruginosa and, 127
UTIs as, 164
Notochord, 450
postnatal derivative of, 264

Novobiocin
as Gram-positive antibiotic test, 118
Staphylococcus epidermidis sensitivity to, 119
Novobiocin response, 637
NPH insulin, 334. See also Insulin
NSE hormone, 319
Nuclear envelope, 59
Nucleic acids
as pathogen-associated molecular pattern (PAMP), 192
synthesis of, 181
in viruses, 146
Nucleosides, 49
Nucleotide excision repair, 53
Nucleotides, 49
Nucleotide synthesis, 83
Nucleotide triphosphate, 64
Nucleus ambiguus, 479
Nucleus pulposus
collagen in, 61
fetal precursor to, 264
Nucleus solitarius, 479
Null hypothesis, 37
Nulliparity, and endometrial cancer, 594
Number needed to harm (NNH), 34, 646
Number needed to treat (NNT), 34, 646
Nutmeg liver, 292, 368, 637
Nutrition, in biochemistry, 76-83
Nyctalopia, 77
Nystagmus
cerebellum and, 459
Friedreich ataxia as cause, 475
internuclear ophthalmoplegia as cause, 490
multiple sclerosis as cause, 492, 632
PCP as cause, 523
stroke effect on, 467
vertigo caused by, 495
Wernicke-Korsakoff syndrome as cause, 464
Nystatin, 181, 182
for Candida albicans, 137, 639

## 0

Obesity
acanthosis nigricans and, 444
amphetamines for, 246
anovulation caused by, 591
breast cancer and, 596
breast milk as risk reduction for, 581
cholelithiasis and, 372
Cushing syndrome as cause, 317
diabetes mellitus type 2 and, 331
empty sella syndrome and, 329
endometrial cancer and, 594
esophageal cancer and, 355
focal segmental glomerulosclerosis and, 548
glucocorticoids as cause, 212
hypertension and, 284
leptin gene mutation as cause, 311
olanzapine as cause, 525
osteoarthritis and, 430

PCOS and, 591
Prader-Willi syndrome as cause, 69
prednisone as cause, 412
renal cell carcinoma and, 550
sleep apnea and, 621
stress incontinence and, 551
Obesity hypoventilation syndrome, 621
Obligate intracellular organisms, 112
Oblique fissure, 609
Oblique muscles, 488
Observational studies, $\mathbf{3 2}$
errors in, 36
types of, 32
Observer-expectancy bias in studies, 36
Obsessive-compulsive disorder (OCD), $\mathbf{5 1 7}$
antipsychotic drugs for, 525
atypical antipsychotics for, 525
drug therapy for, 524
Selective serotonin reuptake inhibitors (SSRIs) for, 527
Tourette syndrome and, 511
tricyclic antidepressants for, 527
venlafaxine for, 527
Obsessive-compulsive personality disorder, 519
Obstructive jaundice, 373
Obstructive lung diseases, 618
flow volume loops in, 619
Obstructive shock, 292
Obstructive sleep apnea, 621
pulse pressure in, 266
pulsus paradoxus in, 294
Obturator artery, in osteonecrosis, 427
Obturator nerve, 422
Occipital cortex, 467
Occipital lobe, 462
Occipital sinus, 470
Occult bleeding, 363
Octreotide, 336, 350, 375
for acromegaly, 327
for carcinoid syndrome, 332, 639
for GH excess, 311
for glucagonomas, 332
Ocular albinism, 72
Ocular hyperemia, 498
Ocular motility, 488
Oculomotor nerve (3rd cranial nerve), 479
in cavernous sinus, 481
location in brain stem, 477
ocular motility and, 488
palsy of, 469, 489
pathway for, 478
in pupillary contraction, 487
Odds ratio, 32, 34, 646
Odontoblasts, 563
Ofloxacin, 178
Okazaki fragments, 51
Olanzapine, 525
Olfactory bulb, 477
Olfactory hallucinations, 513
Olfactory nerve (lst cranial nerve), 479
location in brain stem, 477
pathway for, 478

Olfactory tract, 477
Oligoclonal bands, 492
Oligodendrocytes, 453
in progressive multifocal leukoencephalopathy, 493
Oligodendroglia, 450, 454
Oligodendrogliomas, 496
Oligohydramnios, 589
in Potter sequence, 530
Oligomenorrhea, 579 antipsychotics as cause, 525 PCOS as cause, 591
Oligomycin
as ATP synthase inhibitor, 89
in electron transport chain, 89
Oligospermia, 375
Oliguria, 546
Omalizumab, 214, 628
Omental foramen, 340
Omeprazole, 374
Omphalocele, 338
Omphalomesenteric cysts, 361
Onchocerca volvulus, 143 infection routes, 142
Oncogenes, 230
Oncogenic microbes, 231
Ondansetron, 376
torsades de pointes caused by, 251
1,25-(OH) ${ }_{2} \mathrm{D}_{3}, 541$
Onychomycosis terbinafine for, 182
tinea unguium as cause, 136
Oogenesis, 578
Oophorectomy, 574
Open-angle glaucoma, 484
carbachol for, 244
epinephrine for, 246
pilocarpine for, 244
Opening snap, 644
Operant conditioning, 508
Ophthalmology, 482-489
Ophthalmoplegia
Wernicke-Korsakoff syndrome as cause, 77, 464, 523
Opioids, 499
intoxication and withdrawal, 522
as intravenous anesthetics, 502
pentazocine and, 499
sleep apnea caused by, 621
toxicity treatment for, 251
Opponens digiti minimi muscle, 421
Opponens pollicis muscle, 421
Opportunistic fungal infections, 137138
Oppositional defiant disorder, 511
Oprelvekin, 213
Opsoclonus-myoclonus syndrome, 229, 319
Opsonins, 199
Opsonization, antibody, 196
Optic atrophy, in Krabbe disease, 493
Optic canal, 478
Optic chiasm, 477
in circle of Willis, 466
in pupillary contraction, 487
Optic disc, 482
papilledema in, 486

Optic gliomas
neurofibromatosis type 1 as cause, 71, 630
neurofibromatosis type I as cause, 495
presentation of, 630
Optic nerve (2nd cranial nerve), 479
embryologic derivatives of, 563
in eye anatomy, 482
location in brain stem, 477
Marcus Gunn pupil and, 487
pathway for, 478
Optic neuritis, 492
Optic neuropathy, 180
Optic tract, 477
Optochin
as Gram-positive antibiotic test, 118
organisms resistant to, 118, 637
organisms sensitive to, 118,637
viridans streptococci and, 120
Oral advance directives, 41
Oral contraceptives (OCPs)
cytochrome P-450 and, 254
for endometriosis, 594
hepatic adenomas and, 368
melasma and, 439
ovarian neoplasms and, 592
for PCOS, 591
prolactin, effect on, 310
reproductive hormones and, 600
SHBG, effect on, 316
thrombotic complications caused by, 252
Oral glucose tolerance test, 330
Oral hairy leukoplakia, 160
Oral rehydration therapy, for Vibrio cholerae, 129
Oral thrush, 160
Orange body fluids, caused by rifamycins, 179
Orchitis, 155
Orexigenic effect, 311
Orexin, 521
Organ failure, in acute pancreatitis, 373
Organogenesis
errors in, $\mathbf{5 6 3}$
teratogens and, 564
timing of, 562
Organomegaly, 551
Organophosphates
poisoning by, 244
toxicity treatment for, 251
Organ transplants
azathioprine for, 409
cytomegalovirus and, 169
hairy leukoplakia and, 442
immunosuppressants and, 212
of kidneys, 532
rejection, 211
WBC casts in, 544
Organum vasculosum of the lamina terminalis (OVLT), 456
Orientation, 512
Origin of replication, 51
Orlistat, 376
diarrhea caused by, 252

Ornithine
in cystinuria, 96
kidney stones and, 549
in urea cycle, 93
Ornithine transcarbamylase, 85
Ornithine transcarbamylase
deficiency, 94
as X-linked recessive disorder, 72
Orotic acid, 94
Orotic aciduria, 390
in anemia taxonomy, 388
"Orphan Annie" eyes nuclei, 324, 636
Orthomyxoviruses
characteristics of, 151
influenza viruses as, 153
as negative-stranded, 152
as segmented, 152
Orthopnea, 292
Orthostatic hypotension
adrenal insufficiency as cause, 318
alpha-blockers as cause, 248
phenoxybenzamine as cause, 248
Oseltamivir, 184
for influenza, 640
Osler nodes, 632
bacterial endocarditis as cause, 293
Osmotic demyelination syndrome, 492
SIADH and, 328
Osmotic diarrhea, 358
Osmotic diuresis, 330
Osmotic laxatives, 375
Ossicles, 481
cholesteatoma and, 482
Osteitis fibrosa cystica, 326, 425, 428, 635
Osteoarthritis, 430
anatomy of, 430
celecoxib for, 447
presentation of, 634
Osteoblasts, 425
bone formation and, 425
cortisol effect on, 313
in Paget disease of bone, 427
teriparatide effect on, 447
Osteochondromas, 429
Osteoclasts, 425
bisphosphonate effect on, 447
bone formation and, 425
in Paget disease of bone, 427
Osteodystrophy, 375
Osteogenesis imperfecta, 63
bisphosphonates for, 447
collagen and, 62
presentation of, 630
Osteogenic sarcomas, 427
Osteomalacia, 427
hypophosphatemia as cause, 542
lab values in, 428
treatments for, 640
vitamin D deficiency as cause, 81, 313
Osteomas
Gardner syndrome as cause, 632
nomenclature for, 228

Osteomyelitis, 163
key associations, 644
Pseudomonas aeruginosa and, 127
sickle cell anemia as cause, 392
Staphylococcus aureus as cause, 119
Osteonecrosis, 427
bisphosphonates as cause, 447
Osteopenia, 427
Osteopetrosis, 426, 428
Osteophytes, 430
Osteoporosis, 426
bisphosphonates for, 447
Cushing syndrome as cause, 317
denosumab for, 214
as drug reaction, 253
estrogen and, 425
Gaucher disease as cause, 100, 631
glucocorticoids as cause, 212
heparin as cause, 405
homocystinuria as cause, 96
hormone replacement therapy for, 601
lab values in, 428
menopause as cause, 582
pituitary prolactinomas as cause, 309
prednisone as cause, 412
raloxifene for, 413, 601
teriparatide for, 447
thiazides for, 558
treatments for, 640
vertebral compression fractures caused by, 646
Osteosarcomas, 429
nomenclature for, 228
tumor suppressor genes and, 230
Otitis externa, 127
Otitis media
bacteria causing, 113
brain abscesses caused by, 163
Haemophilus influenzae as cause, 126
Langerhans cell histiocytosis as cause, 403
Streptococcus pneumoniae as cause, 120
Wegener granulomatosis as cause, 296
Ototoxicity
aminoglycosides as cause, 174, 187
cisplatin/carboplatin as cause, 411
as drug reaction, 254
ethacrynic acid as cause, 557
loop diuretics as cause, 557
as teratogenic effect, 564
vancomycin as cause, 173
Ouabain, 61
Outcome, as quality measurement, 46
Outer membrane, 108
Outflow tract formation, 263
Ovarian artery, 574
Ovarian cancer
breastfeeding and, 581
cisplatin/carboplatin for, 411
epidemiology of, 590
hypercalcemia and, 229
irinotecan/topotecan for, 411
key associations, 642, 644
lab findings in, 637
Lynch syndrome and, 363
oncogenes and, 230
paclitaxel for, 411
Psammoma bodies in, 232
tumor suppressor genes and, 230
Ovarian cysts, 592
Ovarian dysgenesis, 585
Ovarian ligament, 574
Ovarian teratomas, 229
Ovarian tumors, 592-593
Ovaries
anatomy of, 574
descent of, $\mathbf{5 7 3}$
embryologic derivatives of, 563
epithelial histology of, 574
estrogen production by, 577
lymphatic drainage of, 573
premature failure of, 591
Overflow incontinence, 551
Oviducts, 571
Ovotesticular disorder of sex development, 585
Ovulation, 578
anovulation causes, 591
mittelschmerz, 578
progesterone and, 577
prolactin effect on, 310
Owl eye inclusions, 636
Oxacillin, 170
characteristics of, 171
for Staphylococcus aureus, 641
Oxazepam, 501
Oxazolidinones, 176
Oxidative phosphorylation, 89
location of in cell, 83
poisons, 89
Oxybutynin, 245
Oxygen
in blood, 613
for carbon monoxide poisoning, 251
for carboxyhemoglobin, 612
for cluster headaches, 494
deprivation of, 614
exercise and, 615
hemoglobin and, 611
Oxygen-hemoglobin dissociation curve, $\mathbf{6 1 2}$
Oxygen toxicity, 221
Oxytocin, 336
hypothalamus production of, 456
lactation and, 581
pituitary gland and, 307
signaling pathways for, 316

## P

P-450, 180
Pacemaker action potential, 275
Pacinian corpuscles, 454
Paclitaxel, 411
in cell cycle, 408
microtubules and, 60
targets of, 408
Paget disease of bone, 427
bisphosphonates for, 447
lab values in, 428
osteosarcomas and, 429
presentation of, 630
woven bone in, 425
Paget disease of breast, 596
location of, 595
presentation of, 633
Pain receptors, 454
Palatine shelves, 570
Pale infarcts, vs. red, 219
Paliperidone, 525
Palivizumab, 214
as pneumonia prophylaxis, 153
for RSV, 187
Pallor, in aplastic anemia, 391
Palmar crease, in Down syndrome, 633
Palmar erythema, 365
Palmar interossei, muscle, 421
Palmar reflex, 476
Panacinar emphysema, 618
p-ANCA
autoantibody to, 207
sclerosing cholangitis and, 371
Pancoast tumor, $6 \mathbf{2 5}$
Horner syndrome and, 487
lab findings in, 635
lung cancer and, 626
superior vena cava syndrome as cause, 625
thoracic outlet syndrome caused by, 420
Pancreas
biliary structures and, 347
blood supply and innervation of, 342
embryology, 339
Pancreas divisum, 339
Pancreatic buds, 339
Pancreatic cancer, $\mathbf{3 7 3}$
5-fluorouracil for, 409
adenocarcinomas, 373
biliary cirrhosis and, 371
carcinogens causing, 231
hyperbilirubinemia caused by, 369
liver metastases in, 644
MEN 1 and, 633
metastases of, 233
nonbacterial thrombotic endocarditis and, 229
oncogenes and, 230
presentation of, 633
Trousseau's syndrome and, 229
tumor suppressor genes and, 230
Pancreatic cells, 307. See also $\alpha$ cells; $\beta$ cells; $\Delta$ cells
Pancreatic ducts, 339, 347
Pancreatic insufficiency, 358
chronic pancreatitis as cause, 373
Pancreatic lipase, 104
Pancreatic secretions, 352
Pancreatitis, $\mathbf{3 7 3}$
acute respiratory distress syndrome as cause, 621
alcoholism as cause, 523
DIC and, 643
as drug reaction, 252

GLP-ls as cause, 335
hyperchylomicronemia as cause, 105
hyperparathyroidism as cause, 326
hypertriglyceridemia as cause, 105
key associations, 644
mumps as cause, 155
necrosis and, 217
pancreas divisum as cause, 339
pancreatic insufficiency caused by, 358
valproic acid as cause, 500
Pancuronium, 503
Pancytopenia, 391
Chédiak-Higashi syndrome as cause, 209
cytarabine as cause, 409
Gaucher disease as cause, 100, 631
leishmaniasis as cause, 142
osteopetrosis and, 426
paroxysmal nocturnal hemoglobinuria as cause, 392
Pandemics, 153
Panic disorder, 516, 517
drug therapy for, 524
Selective serotonin reuptake inhibitors (SSRIs) for, 527
venlafaxine for, 527
Pansystolic murmur, 272
Pantoprazole, 374
Papillary carcinomas, 228
Papillary thyroid carcinomas, 324, 645
carcinogens causing, 231
lab findings in, 636, 637
Psammoma bodies in, 232
Papilledema, 486
hypertensive emergency and, 284
pseudotumor cerebri as cause, 471
Papillomas, 228
Papillomaviruses
characteristics of, 148
as DNA viruses, 147
genome of, 147
as naked viruses, 147
PAPP-A
in Down syndrome, 74
in Edwards syndrome, 74
in Patau syndrome, 74
Pap smear, 591
Papules, 438
Para-aminohippuric acid (PAH), 534
Para-aortic lymph nodes, 190
Paracoccidioidomycosis, 135
Paracortex, lymph node, 190
Paracrine, 541
Paradoxical splitting, 271
Paraesophageal hernias, 349
Parainfluenza
croup and, 154
paramyxovirus as cause, 151, 153
Parakeratosis, 439
Paralysis
conversion disorder as cause, 518
Guillain-Barré syndrome as cause, 493
rabies as cause, 155

Paralytic ileus, 411
Paramedian pontine reticular formation lesions, 464
Paramesonephric duct, 571
Paramyxoviruses, 153
characteristics of, 151
croup caused by, 154
measles caused by, 154
mumps as, 155
as negative-stranded, 152
Paraneoplastic cerebellar degeneration, 229
Paraneoplastic encephalomyelitis, 229
Paraneoplastic syndromes, 229
lung cancer and, 626
renal cell carcinoma and, 550
renal tumors and, 645
Paranoia
amphetamines as cause, 522
LSD as cause, 523
Paranoid personality disorder, 519
Parasites
eosinophilia caused by, 379
hints for, 145
Parasitology, 139-145
Parasympathetic nervous system, 241
male erection and, 575
Parasympathetic receptors, 242
Parathyroid adenomas
hyperparathyroidism caused by, 326
MEN 1 syndrome as cause, 333
MEN 2A as cause, 333
Parathyroid hormone (PTH), 314
in bone disorders, 428
in bone formation, 425
calcitonin and, 315
in hyperparathyroidism, 326
kidney effects, 541
in nephron physiology, 537
in osteomalacia/rickets, 427
in Paget disease of bone, 427
pseudohypoparathyroidism and, 325
signaling pathways of, 316
in thymic aplasia, 208
vitamin D and, 313, 314
Parathyroid tumors, 633
Paraumbilical vein, 344
Paresthesias
panic disorder as cause, 517
vitamin $\mathrm{B}_{12}$ deficiency as cause, 80
Parietal cells, 207
Parietal lobe, 462
Parietal peritoneum, 348
Parinaud syndrome, 477
pinealomas as cause, 497
Parkinson disease, 461
basal ganglia lesions in, 464
benztropine for, 245
dopaminergic pathways and, 458
drug therapy for, $\mathbf{5 0 4}$
lab findings in, 635
neurotransmitter changes in, 511
neurotransmitters for, 455
presentation of, 633
proteasome and, 59
resting tremor in, 461

Parkinsonism
frontotemporal dementia as cause, 491
Lewy body dementia as cause, 491 nigrostriatal pathway and, 458
Wilson disease as cause, 371
Parkinson-like syndrome, 253
Parotid gland
embryologic derivatives of, 563
enlargement of, 432
tumors in, 353
Parotitis
bulimia nervosa as cause, 520
mumps as cause, 155
Paroxetine, 527
Paroxysmal nocturnal dyspnea, 292
Paroxysmal nocturnal hemoglobinuria, 392
in anemia taxonomy, 388
DAF deficiency and, 199
eculizumab for, 214
flow cytometry diagnosis, 66
intravascular hemolysis caused by, 391
presentation of, 633
Pars planitis, 484
Partial agonists, 240
Partial pressure, 613
Partial seizures, 494
Parvovirus
characteristics of, 148
as DNA viruses, 147
genome of, 147
as naked viruses, 147
Parvovirus B19
aplastic anemia caused by, 391
hereditary spherocytosis and, 392
hydrops fetalis caused by, 165
presentation of, 630
rash caused by, 166
Passive aggression, 509
Passive immunity, 203
Pasteurella spp.
in Gram-negative algorithm, 125
morphology of, 109
Pasteurella multocida
animal transmission of, 132, 169
osteomyelitis caused by, 163
presentation of, 631
Patau syndrome, 74
cataracts and, 483
chromosome associated with, 75
hCG in, 580
holoprosencephaly and, 451
horseshoe kidney and, 531
presentation of, 632
Patches, 438
Patellar reflex, 476
disc herniation and, 423
Patent ductus arteriosus (PDA), 283
congenital rubella as cause, 284
cyanosis caused by, 642
fetal alcohol syndrome as cause, 284
heart murmur caused by, 273, 631
indomethacin for, 447
misoprostol for, 375
neonatal respiratory distress syndrome and, 607
treatments for, 640
Patent foramen ovale, 262
vs. atrial septal defect, 283
Patent urachus, 567
Pathogen-associated molecular patterns (PAMPs), 192
Pathogenic Escherichia coli (EPEC), 128
Pathologic grief, 516
Pathology, 215-233
cardiovascular, 282-296
endocrinal, 317-333
gastrointestinal, 353-374
hematologic/oncologic, 386-406
inflammation, 216-225
musculoskeletal, 426-434
neoplasia, 226-233
neurological, 491-498
psychiatric, 510-524
renal, 544-555
reproductive, 585-599
respiratory, 616-626
USMLE Step 1 preparation for, 259
Pavlovian conditioning (classical conditioning), 508
$\mathrm{PCO}_{2}, 610$
PCP (phencyclidine) intoxication and withdrawal, 523
PDE-5 inhibitors, 603
for benign prostatic hyperplasia, 638
for BPH, 599
naming convention for, 255
PDGF. See Platelet-derived growth factor (PDGF)
PDSA cycle, 45
Pearson correlation coefficient $(r), 39$
Peau d'orange appearance of breast cancer, 596
Pectinate line, $\mathbf{3 4 5}$
Pectus excavatum, 71
Pediatric patients
aspirin use for, avoiding, 366
brain tumors in, 497
cystic fibrosis in, 72
dactinomycin for, 410
disorders of, 511
intussusception in, 362
juvenile polyposis syndrome in, 363
Munchausen syndrome by proxy in, 518
nephrotic syndrome in, 548
neuroblastomas in, 319
precocious puberty in, 69, 312
rashes in, 166
rhabdomyomas in, 295
sleep terror disorder in, 520
staphylococcal scalded skin syndrome in, 442
strawberry hemangiomas in, 441
tetracycline side effects in, 175
unvaccinated, organisms affecting, 169
Wilms tumors in, 551

Pegloticase, 448, 639
Pegvisomant, 327
Pellagra
presentation of, 631
vitamin $B_{3}$ deficiency as cause, 78
Pelvic fracture, nerve injury caused by, 422
Pelvic inflammatory disease (PID), 167
Actinomyces as cause, 123
chlamydia as cause, 134, 167
Chlamydia trachomatis as cause, 134
copper IUD as cause, 602
ectopic pregnancy and, 589
gonococci as cause, 126
gonorrhea as cause, 167
key associations, 644
Pelvic pain
endometriomas as cause, 592
endometriosis as cause, 594
Pelvic surgery, 422
Pemphigus vulgaris, 443
acantholysis and, 439
autoantibody associated with, 207
lab findings in, 634
as type II hypersensitivity reactions, 204
Penicillamine
for copper toxicity, 251
for gold poisoning, 251
for lead poisoning, 251
membranous nephropathy and, 548
myopathy caused by, 253
for Wilson disease, 371
Penicillin, 170
for Actinomyces spp., 123
antipseudomonal, 171
Coombs-positive hemolytic anemia caused by, 252
for Neisseria meningitidis, 640
penicillinase-resistant, 171
penicillinase-sensitive, 171
as prophylaxis, 181
for Pseudomonas aeruginosa, 640
rash caused by, 253
for rheumatic fever, 294
for Streptococcus bovis, 641
for Streptococcus pneumoniae, 641
for Streptococcus pyogenes, 641
for Treponema pallidum, 641
Penicillinase-resistant penicillins, 171
Penicillinase-sensitive penicillins, 171
Penicillin G, 170
for meningococci, 126
as prophylaxis, 181
Penicillin V, 170, 181
Penile cancer, 231
Penis
congenital abnormalities of, $\mathbf{5 7 3}$
female homolog of, 572
lymphatic drainage of, 573
pathology of, $\mathbf{5 9 7}$
Peyronie disease and, 631
Pentamidine, 138
Pentazocine, 499
Pentobarbital, 501

Pentostatin, 402
PEP carboxykinase, 85
Pepsin, 351
Pepsinogen
location of, 351
somatostatin and, 350
Peptic ulcer disease, $\mathbf{3 5 7}$
cholinomimetic agents and, 244
glucocorticoids as cause, 336
glycopyrrolate for, 245
$\mathrm{H}_{2}$ blockers for, 374
Helicobacter pylori and, 356
Helicobacter pylori as cause, 130
key associations, 642
misoprostol for, 375
prednisone as cause, 412
proton pump inhibitors for, 374
Peptidoglycan synthesis, 170
Peptidoglycan synthesis inhibitors, 255
Peptostreptococcus spp.
alcoholism and, 162
lung abscesses caused by, 624
Perforation, caused by ulcers, 357
Perforin
cytotoxic T cells and, 194
extrinsic pathway and, 216
natural killer cells and, 193
Performance anxiety, in sexual dysfunction, 520
Perfusion, and ventilation, 614
Perfusion-limited gas exchange, 613
Periarteriolar lymphatic sheath
(PALS), 191
Pericardial cavity, 265
Pericardial effusion, 626
Pericardial tamponade, 636
Pericarditis
acute, 294
jugular venous pulse in, 270
Kussmaul sign in, 295
pulsus paradoxus in, 294
rheumatoid arthritis as cause, 430
Pericardium, 265
Perinephric abscesses, 552
Perineurium, 454
Periodic acid-Schiff stain, 110
glycogen storage diseases and, 99
Periorbital edema
nephrotic syndrome as cause, 633
Trichinella spiralis and, 145
Peripartum cardiomyopathy, 291
Peripheral edema, 292
calcium channel blockers as cause, 298
cirrhosis as cause, 365
nephrotic syndrome as cause, 633
Peripheral nerves, 454
Peripheral nervous system (PNS), 241
embryologic derivatives of, 563
origins of, 450
Peripheral neuropathy
alcoholism as cause, 523
Chédiak-Higashi syndrome and, 209
epilepsy drugs causing, 500
Fabry disease as cause, 100

Krabbe disease as cause, 100, 493
oxazolidinones as cause, 176
sorbitol as cause, 92
tricyclic antidepressants for, 527
vincristine as cause, 413
vitamin $\mathrm{B}_{6}$ deficiency as cause, 78
Peripheral resistance, 247
Peripheral tissue, 615
Peripheral vascular disease, 286
Peripheral vertigo, 495
Periplasm, 108
Perirenal space, 339
Peristalsis
motilin receptor agonists and, 350
parasympathetic receptors and, 242
Peritoneum, 339
hernias and, 349
Peritonitis
appendicitis as cause, 360
diverticulitis as cause, 360
Peritubular capillaries, 535
Permanent cells, 58
Permethrin, 145, 183
Permissive drug interactions, 237
Pernicious anemia
autoantibody associated with, 207
$\mathrm{B}_{12}$ deficiency caused by, 390
HLA-DR5 and, 193
as type II hypersensitivity reactions, 204
vitamin $B_{12}$ deficiency caused by, 80
Peroxisome, 59
Persistent cervical sinus, 568
Persistent depressive disorder, 515
Persistent fetal circulation, 581
Persistent thyroglossal duct, 306
Persistent truncus arteriosus, 263, 282
Personality, 518
Personality disorders, 518, 519-520
Personality traits, 518
Pertussis toxin, 116, 127
Pes cavus
Charcot-Marie-Tooth disease as cause, 493
Friedreich ataxia as cause, 475
Petechiae
aplastic anemia as cause, 391
cirrhosis as cause, 365
fat emboli as cause, 617
scurvy as cause, 634
Peutz-Jeghers syndrome, 228, 363
colonic polyps and, 363
presentation of, 631
Peyer patches, 341, 352
bacterial GI infections and, 129
IgA antibody production in, 197
intussusception and, 362
Peyronie disease, 597, 631
$\mathrm{PGI}_{2}, 446$
P-glycoprotein, 232
Phagocytes, 209
Phagocytosis, 113
Pharmacokinetics, 237
Pharmacology, 236-255
autonomic drugs, 241-250
cardiovascular, 298-304
endocrinal, 334-336
gastrointestinal, 374-376
hematologic/oncologic, 405-413
musculoskeletal, 446-448
neurology, 498-505
pharmacodynamics, 238-240
pharmacokinetics, 236-237
psychiatric, 524-528
renal, 556-559
reproductive, 600-603
respiratory, 627-628
toxicities and side effects, 251-254
USMLE Step 1 preparation for, 259
Pharyngitis
adenoviridae as cause, 148
diphtheria as cause, 123
mononucleosis as cause, 149
Streptococcus pyogenes as cause, 120
in unvaccinated children, 169
Pharynx
blood supply and innervation of, 342
in respiratory tree, 608
Phenacetin, 551
Phenelzine, 528
Phenobarbital, 501
cytochrome P-450 and, 254
for epilepsy, 500
as teratogen, 564
as weak acid, 238
Phenotypic mixing, 146
Phenoxybenzamine, 248. See also $\alpha$-antagonists
norepinephrine and, 240
for pheochromocytomas, 320, 640
Phentolamine, 248
Phenylalanine, 92
derivatives of, 94
in tyrosine catabolism, 95
Phenylbutyrate, 93
Phenylephrine, 246, 627
$\alpha$-blockade of, 248
Phenylketones, 95
Phenylketonuria, 95
Phenytoin
cytochrome P-450 and, 254
for epilepsy, 500
erythema multiforme caused by, 443
folate deficiency caused by, 390
gingival hyperplasia caused by, 253
lupus-like syndrome caused by, 253
megaloblastic anemia caused by, 252
as teratogen, 564
for tonic-clonic seizures, 641
vitamin $\mathrm{B}_{9}$ deficiency caused by, 79
zero-order elimination of, 238
Pheochromocytomas, 320, 645
causes of, 630
MEN 2A as cause, 333
MEN 2B and, 634
MEN 2B syndrome as cause, 333
neurofibromatosis type 1 as cause, 71, 495
phenoxybenzamine for, 248
polycythemia and, 229
presentation of, 630
treatments for, 640
von Hippel-Lindau disease as cause, 495, 633
Philadelphia chromosome, 644, 645
in myeloproliferative disorders, 404
translocations of, 403
Phlebotomy, 371
Phobias, 516, 517
Phocomelia, 564
Phosphatases, 84
Phosphate, in bone disorders, 428
Phosphoenolpyruvate carboxykinase, 89
Phosphofructokinase-1 (PFK-1) glycolysis and, 84
in metabolic pathways, 85
Phospholipase $\mathrm{A}_{2}$ autoantibody to, 207
glucocorticoid effect on, 336
Phospholipids, 352
Phosphorus, in Paget disease of bone, 427
Phosphorylases, 84
Phosphorylation, 57
Photophobia
leptospirosis as cause, 130
migraine headaches as cause, 494
rabies as cause, 155
Photosensitivity
demeclocycline as cause, 336
as drug reaction, 253
lupus as cause, 434
porphyria as cause, 395
simeprevir as cause, 187
sulfonamides as cause, 177
tetracyclines as cause, 175
Phototherapy for jaundice, 369
Phrenic nerve, 609
Phyllodes tumors, 595
Physician-assisted suicide, 42
Physiologic dead space, 610, 647
Physiologic neonatal jaundice, 369
Physiology
cardiovascular, 266-280
endocrinal, 308-316
gastrointestinal, 350-354
hematologic/oncologic, 381-385
neurological, 453-475
renal, 533-544
reproductive, 577-584
respiratory, 610-615
USMLE Step 1 preparation for, 258
Physostigmine, 244
for glaucoma, 498
Physostigmine salicylate, 251
Pick bodies, 637
Picornaviruses, 152
characteristics of, 151
genomes of, 147
as naked viruses, 147
Pierre Robin sequence, 569
Pigmented skin disorders, 439
Pigment-producing bacteria, 113

Pigment stones, 372
Pilocarpine, 244
for glaucoma, 498
Pilocytic astrocytomas, 497
Pilus, 108
Pimozide, 511, 524
Pindolol, 249, 299
Pineal gland, 477
Pinealomas, 497
Pinworms, 143
Pioglitazone, 334
Piperacillin, 170
characteristics of, 171
for Pseudomonas aeruginosa, 127
Piroxicam, 447
Pisiform bone, 418
Pitting edema, in heart failure, 292
Pituitary adenomas, 326, 496
acromegaly caused by, 327
Cushing syndrome and, 642
GH and, 311
goiter caused by, 321
hypopituitarism caused by, 329, 643
Pituitary apoplexy, 329
Pituitary drugs, 336
Pituitary gland, $\mathbf{3 0 7}$
Pituitary hormones, 255
Pituitary prolactinomas, 309
Pituitary tumors
diabetes insipidus caused by, 328
key associations, 644
MEN 1 and, 333, 633
Pityriasis rosea, 444
Pityrosporum spp., 136
PKD genes
polycystic kidney disease and, 71 renal cyst disorders and, 555
Placebo, 36
Placenta, 566
estrogen production by, 577
maternal-fetal blood barrier of, 455
progesterone production in, 577
Placenta accreta/increta/percreta, 588
Placental abruption, 588
cocaine use during pregnancy as cause, 564
diffuse cortical necrosis and, 552
preeclampsia as cause, 590
Placental aromatase deficiency, 586
Placental insufficiency
oligohydramnios and, 589
Potter sequence caused by, 530
Placenta previa, 588
Plague, 132
Plantar reflex, 476
Plaques, skin, 438
Plasma cells, $\mathbf{3 8 1}$
Plasma membrane composition, 61
Plasma membrane damage, 218
Plasma osmolality, 330
Plasmapheresis, 493
Plasma protein concentration, 535
Plasminogen, 384
Plasmodium spp.
chloroquine for, 183
Giemsa stain for, 110

Plasmodium falciparum, 141, 183
Plasmodium malariae, 141
Plasmodium ovale, 141
Plasmodium vivax, 141
Platelet-activating factor, 378
Platelet-derived growth factor (PDGF)
in wound healing, 223
signaling pathways for, 316
Platelet plug formation, 385
Platysma muscle, 569
Play therapy, for separation anxiety disorder, 511
Pleiotropy, 68
Pleomorphic adenomas, 353
Pleomorphic bacteria, 109
Pleural effusion, 622, 623
lung cancer and, 626
Pleuritis, 430
Plicae circulares, 341
Plummer-Vinson syndrome, 354, 388, 631
Pneumatosis intestinalis, 362
Pneumococcal vaccine, 112
Pneumoconioses, 619, 620
Pneumocystis spp., 209
Pneumocystis jirovecii, 138
AIDS and, 644
dapsone for, 177
HIV and, 160
immunocompromised patients and, 162
silver stain for, 110
TMP-SMX for, 177
treatments for, 640
Pneumocystis pneumonia
antimicrobial prophylaxis for, 181
HIV and, 160
Pneumocytes, 607, 608
Pneumonia, 624
acute respiratory distress syndrome as cause, 621
adenoviridae as cause, 148
chlamydiae as cause, 134
coccidioidomycosis as cause, 135
common causes of, 162
compliance in, 611
Haemophilus influenzae as cause, 126
as inhalational injury, 222
key associations, 644
Mycoplasma pneumoniae as cause, 134
Pneumocystis jirovecii as cause, 138
proton pump inhibitors and, 374
Pseudomonas aeruginosa and, 127
Q fever as cause, 133
readmissions caused by, 45
Staphylococcus aureus as cause, 119
Streptococcus pneumoniae as cause, 120
Streptococcus agalactiae as cause, 121
VZV as cause, 149

Pneumonitis
as granulomatous disease, 223
HIV and, 160
Pneumothorax, 622, 623
Pneumovax, 112
Podagra
in gout, 431
presentation of, 634
Podocyte fusion, 637
Podocytes, 532
in filtration, 535
glomerular filtration barrier and, 533
in nephrotic syndrome, 548
Poikilocytosis, 378
pol gene, 158
Poliomyelitis, 475
as restrictive lung disease, 619
vaccine for, 203
Poliovirus, 151
in immunodeficient patients, 210
as picornavirus, 152
poliomyelitis caused by, 475
in unvaccinated children, 169
Polyadenylation signal, 54
Polyarteritis nodosa, 296
necrosis and, 217
Polyarthralgias
gonococcal arthritis as cause, 432
rubella as cause, 165
Polyarthritis
rheumatic fever and, 120
rubella as cause, 165
Polycystic ovarian syndrome

$$
\text { (PCOS), } \mathbf{5 9 1}
$$

anovulation caused by, 591
antiandrogens for, 603
endometrial hyperplasia and, 594
ovarian neoplasms and, 592
Polycythemia, 404
blood oxygen in, 613
bronchitis as cause, 618
chronic bronchitis as cause, 632
Eisenmenger syndrome as cause, 283
ESR in, 224
hepatocellular carcinoma as cause, 368
low birth weight and, 581
renal cell carcinoma as cause, 550
Polycythemia vera, 404
Budd-Chiari syndrome and, 368
Polydactyly, 74, 632
Polydipsia, 330
Polyenes, 181
Polyethylene glycol, 375
Polyhydramnios, 589
anencephaly and, 451
esophageal atresia as cause, 338
Polymenorrhea, 579
Polymerase chain reaction (PCR), 64
Polymyalgia rheumatica, 435, 645
ESR in, 224
giant cell arteritis and, 296
Polymyositis, 436
autoantibody associated with, 207
Polymyxin B, 127

Polymyxins, 181
Polyneuritis, 77
Polyneuropathy, 395
Polyomaviruses
characteristics of, 148
as DNA viruses, 147
genome of, 147
as naked viruses, 147
Polyostotic fibrous dysplasia, 69, 630
Polyposis syndromes, 363
Polyps, endometrial, 594
Polyuria
diabetes mellitus as cause, 330
Fanconi syndrome as cause, 633
hyperosmolar hyperglycemia nonketotic syndrome as cause, 332
lithium as cause, 526
Pompe disease, 99, 632
Pons, 477
development of, 450
stroke effect on, 467
Pontiac fever, 127
Pontine reticular formation, 467
"Pope's blessing" (median nerve injury), 419, 421
Popliteal artery, 423
atherosclerosis in, 286, 645
Popliteal fossa, 423
Popliteal lymph nodes, 190
Porcelain gallbladder, 372
Porphobilinogen deaminase, 395
Porphyria, 395, 501
Porphyria cutanea tarda, 395
Porphyrin derivatives, 94
Portal hypertension, $\mathbf{3 6 5}$
autosomal recessive polycystic kidney disease and, 555
pulmonary arterial hypertension caused by, 622
Schistosoma spp. as cause, 145 serum markers for, 366
varices and, 344
Portal triad, 340, 346
Portal vein, 340, 346
in fetal circulation, 264
Portal vein thrombosis, 365
Portosystemic anastomoses, 344
Port-wine stain of face, 495, 634
Positive predictive value (PPV), 33, 646
Positive reinforcement, 508
Positive skew distribution, 37
Postcapillary venule, in lymph node, 190
Posterior cerebral artery, 466, 467
Posterior chamber of eye, 482
Posterior circumflex artery, 423
Posterior communicating artery in circle of Willis, 466
saccular aneurysm effect on, 468
Posterior cruciate ligament (PCL) injury, 416
Posterior descending artery, 265
Posterior drawer sign, 416
Posterior fossa
malformations of, 451
pilocytic astrocytomas in, 497

Posterior horn, 471
Posterior hypothalamus, 456
Posterior inferior cerebellar artery in circle of Willis, 466
stroke, effect on, 467
Posterior pituitary gland, 307
Posterior superior pancreaticoduodenal arteries, 343
Posterior tibial artery, 423
Posterior to medial malleolus, 423
Posterior uveitis, 484
Postoperative ileus, 244
Postpartum blues, 516
Postpartum depression, 516
Postpartum hemorrhage, 589
Postpartum mood disturbances, 516
Postpartum psychosis, 516
Postrenal azotemia, 553
Posttranslational modifications, 57
Post-traumatic stress disorder
(PTSD), 516, 517
dissociative identity disorder and, 512
drug therapy for, 524
prazosin for, 248
Selective serotonin reuptake inhibitors (SSRIs) for, 527
venlafaxine for, 527
Postural hypotension
midodrine for, 246
trazodone as cause, 528
Postviral infections, 162
Potassium
amphotericin B and, 182
in cardiac muscle, 274
for diabetic ketoacidosis, 331, 639
in diabetic ketoacidosis, 331
PTH and, 314
shifts in, $\mathbf{5 4 2}$
torsades de pointes and, 277
vitamin D and, 313
Potassium channel blockers, 303
Potassium channels
meglitinides and, 335
myocardial action potential and, 274
opioid effect on, 499
sulfonylurea effect on, 334
Potassium chloride, 252
Potassium iodide
for Sporothrix schenckii, 138
for thyroid storm, 323
Potassium-sparing diuretics, 556, 558
Potency of drugs, vs. efficacy, 239
Pott disease, 163
Potter sequence, 530
autosomal recessive polycystic kidney disease and, 555
oligohydramnios as cause, 589
Potter syndrome, 606
Poxviruses
characteristics of, 148
as DNA viruses, 147
molluscum contagiosum caused by, 442
PPAR- $\gamma, 335$
PPAR- $\gamma$ activators, 255

PPD test for tuberculosis, 124
Practice tests for USMLE Step 1 exam, 18-19
Prader-Willi syndrome, 69
chromosome associated with, 75
ghrelin in, 311, 350
Pralidoxime, 244
Pramlintide, 252, 335
Prasugrel, 385, 407
Pravastatin, 300
Praziquantel, 183
for tapeworms, 144
for trematodes, 144
Prazosin, 248
Precision vs. accuracy, $\mathbf{3 5}$
Precocious puberty adrenal steroids and, 312
leuprolide for, 601
McCune-Albright syndrome as cause, 69, 630
pinealomas as cause, 497
Precontemplation stage of overcoming addiction, 521
Prednisolone, 412
arachidonic acid pathway and, 446 for thyroid storm, 323
Prednisone, 336, 412. See also Glucocorticoids
arachidonic acid pathway and, 446
Preeclampsia, 590
hydatidiform moles and, 587
placental abruption and, 588
Prefrontal cortex, 462
Pregnancy, 580
advanced maternal age, and Down syndrome risk, 74
aminoaciduria in, 536
amniotic fluid abnormalities, 589
anemia caused by, 388
antimicrobials to avoid in, 187
carpal tunnel syndrome and, 418
choriocarcinomas and, 587
complications of, 588-589
diabetes in. See Gestational diabetes mellitus
ESR in, 224
estrogen in, 577
as ethical situation, 42
fetal circulation, 264
fetal hemoglobin, 611
fetal respiration in, 606
fibroid tumors in, 594
folate deficiency caused by, 390
folic acid supplementation in, 79
glucosuria in, 536
heparin in, 405
hypertension in, $\mathbf{5 9 0}$
hypertension treatment in, 247, 298
hypothyroidism in, 322
insulin in, 308
Listeria monocytogenes in, 123
lithium in, cardiac defects associated with, 284
lithium in, Ebstein anomaly caused by, 282
melasma in, 439
ovarian neoplasms and, 592
parental consent for minors and, 40 Primary glomerular disease, 544
phenylketonuria in, $95 \quad$ Primary hemostasis, 385
prolactin, effect on, 310
propylthiouracil in, 335
pyelonephritis and, 552
pyogenic granulomas and, 441
Rh factor in, 382
SHBG, effect on, 316
stillbirth, 165
Streptococcus agalactiae in, 121
syphilis in, 131
termination of, 602
ToRCHeS infections in, 165
Turner syndrome and, 585
twinning in, 565
urinary tract infections in, 164
vitamin $B_{9}$ deficiency in, 79
Pregnancy-induced hypertension, 590
Pregnenolone, 312
Preload, in cardiac output, 267
Premature ejaculation, 527
Premature labor and delivery
as common cause of death, 45
cryptorchidism and, 597
heart murmur caused by, 273
low birth weight caused by, 581
necrotizing enterocolitis and, 362
neonatal respiratory distress syndrome and, 607
smoking as cause, 564
Premature ovarian failure, 591
Premenstrual dysphoric disorder (PMDD), 527
Premotor cortex, 462
Preneoplastic and neoplastic cellular changes, 226
Prepatellar bursitis, 417
Preprocollagen, 62
Preproinsulin, 308
Prepuce, 575
Prerenal azotemia, 553
Presbycusis, 44
Presbyopia, 483
Presenilin proteins, 491
Pressors, for shock, 292
Pressure-volume loops, 270
Pretectal nuclei, 487
Pretest probability, 33
Prevalence vs. incidence, 33
Prevnar, 112
Prevotella spp., 162
Priapism, 597
sickle cell anemia as cause, 392
trazodone as cause, 528
Primaquine
hemolysis in G6PD deficiency caused by, 252
for malaria, 141, 640
Primary adrenal insufficiency, 318
Primary amyloidosis, 637
Primary biliary cirrhosis, 371
autoantibody associated with, 207
as granulomatous disease, 223
lab findings in, 634
ursodiol for, 376
Primary central nervous system lymphoma (PCL), 400

Primary hyperaldosteronism, 318
hypertension caused by, 284
lab findings in, 636
markers in, 542
Primary hyperparathyroidism, 325, 326
Primary hypertension, 298
Primary hypogonadism, 586
Primary hypoparathyroidism, 325
Primary sclerosing cholangitis, 371 autoantibody associated with, 207 ulcerative colitis as cause, 359
Primary spontaneous
pneumothorax, 623
Primase, 51
Primidone, 461
Primitive atrium, 262
Primitive pulmonary vein, 262
Primitive reflexes, 476
Primitive ventricle, 262
Pringle maneuver, 340
PR interval, 278
Prinzmetal angina, 287
calcium channel blockers for, 298
propranolol and, 303

## Prions, 161

in Creutzfeldt-Jakob disease, 491
Privacy, and confidentiality, 41
Probenecid, 254
cidofovir and, 185
for gout, 448, 639
Procainamide, 302
lupus-like syndrome caused by, 253
Procaine, 503
Procarbazine, 254
Procedure bias in studies, 36
Process, as quality measurement, 46
Processus vaginalis, 573
Procoagulation, 384
Progesterone, 577
Granulosa cell tumors and, 593
lactation and, 581
in menstrual cycle, 579
in ovulation, 578
in pregnancy, 580
signaling pathways for, 316
Progestin, 602
for contraception, 602
for endometriosis, 594
Progressive multifocal leukoencephalopathy (PML), 493
HIV and, 160
oligodendroglia in, 454
polyomaviruses as cause, 148
rituximab as cause, 412
Proguanil
for malaria, 640
for P. falciparum, 183
Projection, as ego defense, 509
Prokaryotes
DNA replication in, 51
RNA polymerases in, 54
Prolactin, 309, 310
circadian rhythm and, 457
lactation and, 581
in pregnancy, 580
secretion of, 307
signaling pathways for, 316
tuberoinfundibular pathway and, 458
Prolactinomas, 644
dopamine agonists for, 310
pituitary adenomas as, 326, 496
treatments for, 640
Proliferative glomerular disorders, 544
Proliferative phase of menstrual cycle, 579
Prometaphase, 58
Promoters, in gene expression, 54
Promyelocytic leukemia, 77
Pronephros, 530
Proopiomelanocortin, 307
Propafenone, 302
Propanolol, 323
Proper hepatic artery, 340
Prophase, 58
Propionibacterium spp. morphology of, 109
Propionibacterium acnes, 440
Propionyl-CoA carboxylase in metabolic pathways, 85
vitamin $B_{7}$ and, 79
Propofol, 502
Propranolol, 249, 303
for essential tremor, 461
for migraines, 640
Proprioception
dorsal column and, 473
in Friedreich ataxia, 475
Propylthiouracil, 335. See also Thionamides
agranulocytosis caused by, 252
aplastic anemia caused by, 252
as inhibitor, 315
for thyroid storm, 323
Prosencephalon, 450
Prostacyclin, 446
Prostaglandin analogs, 255
Prostaglandins
arachidonic acid pathway and, 446
aspirin effect on, 447
cortisol effect on, 313
for glaucoma, 498
kidney functions, 541
PDA and, 264
Prostate cancer, 644
adenocarcinomas, 599
bone metastases in, 644
estrogens for, 601
incidence/mortality of, 228
leuprolide for, 601
metastases of, 233
treatments for, 640
tumor suppressor genes and, 230
Prostate gland, 575
female homolog of, 572
lymphatic drainage of, 573
Prostatic acid phosphatase (PAP), 599
Prostatitis, 599
gonorrhea as cause, 167

Prosthetic devices
osteomyelitis and, 163
Staphylococcus epidermidis infection of, 119
Prosthetic heart valves, 393
Protamine sulfate, 251, 405, 639
Protease inhibitors, 184
acute pancreatitis caused by, 373
fat redistribution caused by, 253
for HIV, 186
hyperglycemia caused by, 252
naming convention for, 255
Proteases, 352
Proteasome, 59
Protein A, 113
Proteinases, 378
Protein kinase A
fructose bisphosphatase-2 and, 87
in glycogen regulation, 97
Protein metabolism, 85
Protein phosphatase, 97
Proteins
free radical effect on, 221
in HIV, 158
Protein synthesis, 57, 170, 184
insulin and, 308
location of in cell, 83
Protein synthesis inhibitors, 174, 255
Proteinuria
ACE inhibitors for, 559
angiotensin II receptor blockers for, 559
diabetes mellitus as cause, 330
nephritic syndrome and, 546
nephrotic syndrome as cause, 545, 548, 633
preeclampsia as cause, 590
serum sickness as cause, 205
Proteolysis
cortisol and, 313
in insulin deficiency, 330
Proteus spp.
in Gram-negative algorithm, 125
morphology of, 109
as nosocomial infection, 168
as urease-positive organism, 112
Proteus mirabilis
cephalosporins for, 172
kidney stones caused by, 549
penicillinase-sensitive penicillins for, 171
urinary tract infections caused by, 552
UTIs caused by, 164
Prothrombin
as liver marker, 366
warfarin effect on, 406
Protofilament, 60
Proton pump inhibitors, 374
acute interstitial nephritis caused by, 554
gastrin and, 350
for Helicobacter pylori, 130
metronidazole and, 178
naming convention for, 255
Protozoa
CNS infections, 140
GI infections, 139
hematologic infections, 141
miscellaneous, 142
watery diarrhea caused by, 162
Ziehl-Neelsen stain for, 110
Proximal convoluted tubules
defects in, 538
diuretics and, 556
dopamine secretion by, 541
glucose clearance and, 536
ischemia susceptibility, 218
physiology of, 537
relative concentrations along, 539
renal cell carcinoma and, 550
renal tubular acidosis of, 544
Proximal interphalangeal (PIP) joints, 421
Proximal vagina, 573
PRPP (glutamine-phosphoribosylpyrophosphate) amidotransferase, 84
Pruritus
biliary tract disease as cause, 371
chloroquine as cause, 183
histamine receptors and, 242
Prussian blue stain, 620
Psammoma bodies, 232
calcification and, 220
causes of, 637
in meningiomas, 496
in mesotheliomas, 624
in papillary thyroid carcinoma, 324
in serous cystadenocarcinomas, 593
PSA (prostate-specific antigen), 232
Pseudoappendicitis, 129
Pseudocyesis, 518
Pseudocyst, 373
Pseudoephedrine, 627
Pseudoglandular lung development, 606
Pseudogout, 431, 637
Pseudohermaphrodites, 586
Pseudohyperaldosteronism
Cushing syndrome and, 317
Pseudohypoparathyroidism, 325
Pseudomembranous colitis
bacteria causing, 114
clindamycin as cause, 175
Clostridium difficile as cause, 122
as drug reaction, 252
penicillinase-sensitive penicillins as cause, 171
vancomycin for, 173
watery diarrhea caused by, 162
Pseudomembranous pharyngitis
diphtheria as cause, 123
Pseudomonas spp.
antipseudomonal penicillins for, 171
as catalase-positive organism, 112 ceftazidime for, 172
chronic granulomatous disease and, 209
cystic fibrosis and, 72, 162, 635
fluoroquinolones for, 178
in Gram-negative algorithm, 125
morphology of, 109
as nosocomial infection, 162
osteomyelitis and, 644
osteomyelitis caused by, 163
pneumonia caused by, 644
tricuspid valve endocarditis and, 293
type III secretion system of, 113
Pseudomonas aeruginosa, 127
as aerobic organism, 111
biofilm produced by, 113
as encapsulated bacteria, 112
exotoxin produced by, 116
in immunodeficient patients, 210
multidrug-resistant, 181
as nosocomial infection, 168
pigment produced by, 113, 127
pyocyanin of, 201
splenic dysfunction and, 191
treatments for, 640
UTIs caused by, 164
Pseudo-Pelger-Huet anomaly, 401
Pseudopseudohypoparathyroidism, 325
Pseudotumor cerebri, 471
acetazolamide for, 557
vitamin A toxicity as cause, 77
Pseudovirion, phenotypic mixing in, 146
Psittacosis, 132
Psoriasis, 440
arthritis and, 433
cyclosporine for, 212
etanercept for, 448
hyperkeratosis/parakeratosis in, 439
infliximab/adalimumab for, 448
methotrexate for, 409
as skin plaque, 438
skin scales in, 438
therapeutic antibodies for, 214
Psoriatic arthritis, 433
HLA-B27 and, 193, 643
leflunomide for, 447
psoriasis and, 440
Psychiatric genetics, 510
Psychiatry, 508-530
pathology, 510-524
pharmacology, 524-528
psychology, 508-509
Psychoactive drug intoxication and withdrawal, 522-523
Psychology, 508-509
Psychosine, 493
Psychosis, 513
antipsychotic drugs for, 525
diabetic ketoacidosis as cause, 331
glucocorticoids as cause, 212, 336
LSD as cause, 523
lupus as cause, 434
PCP as cause, 523
prednisone as cause, 412
Psychotherapy
for anorexia/bulimia nervosa, 520
for anorexia nervosa, 638
for conduct disorder, 511
for oppositional defiant disorder, 511
Psychotic disorders
postpartum psychosis and, 516
readmissions caused by, 45

PTEN gene, 230
Pterygoid muscles, 569
PTH. See Parathyroid hormone (PTH)
PTH-independent hypercalcemia, 325
PTH-related peptide (PTHrP), 314
PTHrP (parathyroid hormone-related protein), 229
Ptosis
Horner syndrome as cause, 487, 633
myasthenia gravis as cause, 436
Pancoast tumor as cause, 625
saccular aneurysm as cause, 468
Puberty
GH secretion in, 311
GnRH and, 309
Kallmann syndrome and, 586
precocious, 69, 312
Tanner stages, 584
Public health, 44-46
Pudendal nerve, 422
Pulmonary anthrax, 121
Pulmonary arterial hypertension (РАН), 622
bronchitis as cause, 618
high altitude and, 615
treatments for, 640
Pulmonary artery, 568
in fetal circulation, 264
Pulmonary artery stenosis, 284
Pulmonary capillary wedge pressure
(PCWP), 280, 614
Pulmonary circulation, 613
Pulmonary edema, 292
acute respiratory distress syndrome as cause, 621
compliance in, 611
consolidation in, 622
loop diuretics for, 557
mannitol as cause, 557
nitrates for, 299
opioids for, 499
renal failure as cause, 553
Pulmonary embolism, 617
bacterial endocarditis as cause, 293
deep venous thrombosis and, 616
direct factor Xa inhibitors for, 407
heparin for, 405
lab findings in, 636
respiratory alkalosis caused by, 543
shock caused by, 292
tamoxifen/raloxifene and, 413
thrombolytics for, 407
Pulmonary fibrosis
amiodarone as cause, 303
bleomycin as cause, 410
busulfan as cause, 410
compliance in, 611
diffusion in, 613
as drug reaction, 254
drugs causing, 413
lab findings in, 636
methotrexate as cause, 409
as restrictive lung disease, 619
Pulmonary hemorrhage, 121

Pulmonary hypertension, 613, 622
drug therapy for, $\mathbf{6 2 7}$
key associations, 645
PDE-5 inhibitors for, 603
Schistosoma as cause, 144
sleep apnea as cause, 621
Pulmonary hypoplasia, 606
in Potter sequence, 530
Pulmonary Langerhans cell histiocytosis, 619
Pulmonary surfactant
compliance and, 611
composition of, 607
pneumocytes and, 607
Pulmonary trunk, 262
Pulmonary vascular resistance (PVR), 614, 647
chest wall and, 611
Pulmonic regurgitation, 272
Pulmonic stenosis
carcinoid syndrome as cause, 332
systolic ejection murmur in, 272
wide splitting in, 271
Pulmonic valves, 262
"Pulseless disease," 296
Pulse pressure, 266
Pulsus paradoxus, 294
asthma as cause, 618
croup as cause, 154
Punched-out ulcers, 354
Punishment, 508
Pupil, 482
Pupillary control, 487
Pupillary light reflex, 479, 487
in CN III palsy, 489
Pure red cell aplasia, 229
Purines, 49, 177
de novo synthesis of, 49
salvage deficiencies, 50
Purkinje cells
of cerebellum, 218
cerebellum and, 459
in paraneoplastic cerebellar degeneration, 229
Purkinje fibers, 276
Purpura
aplastic anemia as cause, 391
cirrhosis as cause, 365
Pustular psoriasis, 438
Pustules, 438
Putamen, 462
Pyelonephritis, 552
kidney stones as cause, 549
lab findings in, 638
urinary tract infections as cause, 164
WBC casts in, 544
Pygmalion effect, 36
Pyknosis, in cell injury, 218
Pyloric sphincter, 351
Pyloromyotomy, 339
Pyoderma gangrenosum
Crohn disease as cause, 359
ulcerative colitis as cause, 359
Pyogenic granulomas, 441
Pyogenic osteomyelitis, 637
Pyramidal cells, 218

Pyramidal decussation, 477
Pyramidalis muscle, 348
Pyrantel pamoate, 183
Pyrazinamide, 180
gout caused by, 253
hepatitis caused by, 252
for Mycobacterium
tuberculosis, 179, 640
Pyridostigmine, 244
Pyridoxal phosphate, 78
Pyrimethamine, 183
pyrimidine synthesis and, 49
for Toxoplasma gondii, 641
Pyrimidine dimers, 53
Pyrimidines, 49
Pyrimidine synthesis, 447
Pyruvate carboxylase, 88, 89
in metabolic pathways, 85
vitamin $B_{7}$ and, 79
Pyruvate dehydrogenase, 87
deficiency in, $\mathbf{8 8}$
diagram of, 88
in metabolic pathways, 85
vitamin $B_{1}$ and, 77
Pyruvate kinase, 85
Pyruvate kinase deficiency, 392
in anemia taxonomy, 388
echinocytes in, 386
Pyruvate metabolism, 88
Pyuria, 554

## Q

Q fever, 133
animal transmission of, 132
bacteria causing, 114
QRS complex, in EKG, 276
QT interval
atypical antipsychotic effect on, 525
Class IA antiarrhythmic effect on, 302
congenital long QT syndrome, 277 on EKG, 276
ondansetron effect on, 376
in torsades de pointes, 277
Quality measurements, 46
Quantifying risk, 34
Quetiapine, 525
Quiescent cells, 58
Quinidine, 302
cinchonism caused by, 253
cytochrome P-450 and, 254
diarrhea caused by, 252
for malaria, 141, 183
Quinine
cinchonism caused by, 253
for malaria, 183
Quinolone, 127, 170
Quinupristin, 170, 181

## R

Rabies, 155
killed vaccine for, 146
passive antibodies for, 203
receptors for, 150
as rhabdovirus, 151
vaccine for, 203
Radial nerve, 419

Radiation exposure
acute myelogenous leukemia and, 402
aplastic anemia caused by, 391
apoptosis caused by, 216
as carcinogen, 231
free radical injury caused by, 221
hypopituitarism caused by, 329
myelodysplastic syndromes caused by, 401
Radiation therapy
acute pericarditis caused by, 294
angiosarcomas and, 441
lymphopenia caused by, 394
for Nelson syndrome, 326
neutropenia caused by, 394
osteosarcomas and, 429
for pancreatic cancer, 373
papillary thyroid carcinoma risk and, 324
readmissions caused by, 45
restrictive/infiltrative

> cardiomyopathy caused by, 291

Radon
as carcinogen, 231
lung cancer and, 626
Ragged red muscle fibers, 70
Rales, in heart failure, 292
Raloxifene, 413, 601
Raltegravir, 184, 186
Ramipril, 559
Ramsay Hunt syndrome, 480
Ranibizumab, 214
for macular degeneration, 485
Ranitidine, 374
RANK-L, 314
Ranolazine, 299
Rapid-eye movement (REM), 457
Rapidly progressive
glomerulonephritis
(RPGN), 546
Rapid squatting, effect on auscultation, 272
Rasagiline, 505
Rasburicase, 448, 549
RAS gene, 324
Rashes
bull's-eye, in Lyme disease, 632
carbapenems as cause, 173
of childhood, 166
cytomegalovirus as cause, 165
fluoroquinolones as cause, 178
Kawasaki disease as cause, 296
lupus as cause, 434
macrolides as cause, 176
measles as cause, 154,631
nematodes as cause, 143
on palms/soles, 633
penicillinase-sensitive penicillins as cause, 171
in Rickettsial diseases, 133
rubella as cause, 153,165
simeprevir as cause, 187
syphilis as cause, 131,167
in unvaccinated children, 169
Rathke pouch, 307

Rationalization, as ego defense, 509
Raynaud phenomenon, 437
Buerger disease as cause, 296
calcium channel blockers for, 298
in CREST syndrome, 437
lupus as cause, 630
presentation of, 632
Rb, 58
$R b$ gene, 230
Reabsorption rate, 535
Reaction formation, as ego
defense, 509
Reactive arthritis, 433
Campylobacter jejuni as cause, 128
chlamydia as cause, 167
chlamydiae as cause, 134
HLA-B27 and, 193, 643
presentation of, 634
Reactive attachment disorder, 510
Reactive cellular changes, 226
Readmissions, causes of, 45
Reassortment, viral, 146
Recall bias in studies, 36
Receptor binding, $\mathbf{2 4 0}$
Receptors, viral, 150
Receptor tyrosine kinase
as endocrine hormone
messenger, 316
as oncogene product, 230
Recessive inheritance, 70
Recombinant cytokines, 213
Recombination, viral, 146
Recruiting study participants, 36
Rectal veins, 344
Rectum
anastomosis at, 344
ischemia susceptibility, 218
Rectus abdominis muscle, 348
Rectus muscles, 488
Recurrent branch of median nerve, 419
Recurrent laryngeal nerves, 568
Red cell casts, 296
Red-green color blindness, 180
Red infarcts, vs. pale, 219
Red man syndrome, 173
Redox reactions
free radical injury and, 221
vitamin $\mathrm{B}_{2}$ and, 78
Red pulp, in spleen, 191
Red rashes of childhood, 166
Reduviid bug, as disease vector, 142
Reed-Sternberg cells, 399, 636
Refeeding syndrome, 520
Reflex bradycardia, 540
Reflexes

## clinical, 476

cranial nerve, 479
as motor neuron sign, 473
primitive, 476
Reflex tachycardia, 248
Refractive errors (vision), 483
Refractory hypertension, 603
Regadenoson, 287
Regan-Lowe medium, 111
Regional specification of developing brain, $\mathbf{4 5 0}$

Registering for USMLE Step 1 exam, 5-6, 7
Regression, as ego defense, 509
Regular insulin, 334. See also Insulin
Regulation of gene expression, 54
Regulatory T cells, 194
cell surface proteins, 202
Regurgitation, in GERD, 354
Reheated rice syndrome, 122
Reichert cartilage, 569
Reid index in chronic bronchitis, 618
Reinke crystals, 598, 637
Relapse stage of addiction, 521
Relapsing fever
animal transmission of, 132
lice transmission of, 145
Relative risk reduction (RRR), 34, 646
Relative risk (RR), 32, 34, 646
Reliability, 35
Renal artery, 342, 532
in horseshoe kidney, 531
Renal blood flow, 532, 647
dopamine, effect on, 541
prostaglandins, effect on, 541
Renal cell carcinomas, 550, 645
bevacizumab for, 214, 412
carcinogens causing, 231
chromosome associated with, 75
horseshoe kidney and, 531
hypercalcemia and, 229
IFN- $\alpha$ for, 187
key associations, 645
metastases of, 233
recombinant cytokines for, 213
tumor suppressor genes and, 230
von Hippel-Lindau disease as cause, 495, 633
Renal clearance, 533, 647
Renal cortex, 532
in hydronephrosis, 550
Renal cyst disorders, 555
Renal disease
ESR in, 224
lupus and, 434
maintenance and loading dose in, 237
waxy casts in, 544
Wilson disease as cause, 371
Renal disorder markers, 542
Renal drug reactions, 253
Renal failure, 553
consequences of, 553
diabetes mellitus as cause, 330
doxycycline in, 175
Fabry disease as cause, 100
lab findings in, 637
myoclonus in, 461
NSAIDs as cause, 541
preeclampsia as cause, 590
prolactin elimination in, 310
renal cyst disorders as cause, 555
vitamin D deficiency caused by, 313
waxy casts in, 544
Renal hypoxia, 612
Renal ischemia, 447
Renal medulla, 532
in hydronephrosis, 550

Renal oncocytomas, 550
Renal osteodystrophy, 326, 553
Renal papillary necrosis, 554
pyelonephritis and, 552
sickle cell anemia as cause, 392
Renal pelvis, 532
Renal plasma flow, 534
glomerular dynamics, effect on, 535
Renal toxicity, medications causing, 185
Renal tubular acidosis, 544
Fanconi syndrome as cause, 633
metabolic acidosis caused by, 543
Renal tubules
anatomy of, 532
defects in, $\mathbf{5 3 8}$
in nephron physiology, 537
PTH and, 314
Renal vascular smooth muscle, 242
Renal vein, 532
Renin, 540
ACE inhibitor effect on, 559
aliskiren effect on, 559
in hyperaldosteronism, 318
in renal disorders, 542
sympathetic receptors and, 242
Renin-angiotensin, 306
Renin-angiotensin-aldosterone system, $\mathbf{5 4 0}$
Renin secreting tumors, 542
Renshaw cells, 116, 122
Reoviruses
characteristics of, 151
genome of, 147
as naked viruses, 147
as segmented, 152
Repaglinide, 335
Reperfusion injury, 219, 288
Reperfusion therapy, 290
Replication fork, $\mathbf{5 1}$
Replication, viral, 147
Repression, as ego defense, 509
Repressor proteins, 52
Reproductive anatomy female, 574
male, 575
Reproductive hormones, $\mathbf{6 0 0}$
Reproductive system, 562-603 anatomy, 573-576
drug reactions in, 252
embryology, 562-573
pathology, 585-599
pharmacology, 600-603
physiology, 577-584
Reptiles, as disease vectors, 132
Rescheduling USMLE Step 1 exam, 6
Reserpine
for Huntington disease, 505
as noradrenergic drug, 243
Parkinson-like syndrome caused by, 253
Residual volume (RV), 610, 619
Resistance equation, 647
Resistance, pressure, flow, 268
Respiratory acidosis, 543

Respiratory alkalosis, 543
causes of, 543
high altitude and, 615
pulmonary embolism and, 617
Respiratory burst, 201
free radical injury and, 221
Respiratory depression
barbiturates as cause, 501, 522
benzodiazepines as cause, 500,522
epilepsy drugs causing, 500
inhaled anesthetics as cause, 502
opioids as cause, 499
tricyclic antidepressants as cause, 527
Respiratory distress syndrome, 581
Respiratory drug reactions, 254
Respiratory rate (RR), 610
Respiratory syncytial virus (RSV)
as paramyxovirus, 151
paramyxoviruses as cause, 153
pneumonia caused by, 162, 624
prophylaxis for, 214
ribavirin for, 187
Respiratory system, 606-629
anatomy, 608-609
embryology, 606-607
pathology, 616-626
pharmacology, 627-628
physiology, 610-615
Respiratory tract infections, 199
Respiratory tree, $\mathbf{6 0 8}$
Respiratory zone of respiratory tree, 608
Resting tremor, 461, 633
Restrictive cardiomyopathy, 291
amyloidosis and, 225
S4 heart sound and, 645
Restrictive lung diseases, 619
flow volume loops in, 619
sarcoidosis and, 435
Reteplase, 383, 407
Rete testis, 575
RET gene, 230
Hirschsprung disease and, 361
medullary thyroid carcinoma and, 324
multiple endocrine neoplasias and, 71
papillary thyroid carcinoma and, 324
pheochromocytomas and, 320
Reticular activating system lesions, 464
Reticular fibrous framework of spleen, 191
Reticulate bodies in chlamydiae, 134
Reticulin, collagen in, 61
Reticulocytes, 378
in aplastic anemia, 391
in intravascular hemolysis, 391
Retina, 482
embryologic derivatives of, 563
Retinal artery, 482
Retinal detachment, 485
Retinal hemorrhage
as child abuse sign, 510
hypertensive emergency and, 284
retinal vein occlusion as cause, 485
Roth spots as, 633
Retinal vein, 482
Retinal vein occlusion, 485
Retinitis, 484, 486
cidofovir for, 185
foscarnet for, 185
HIV and, 160
Retinitis pigmentosa, 486
Retinoblastomas
osteosarcomas and, 429
tumor suppressor genes and, 230
Retinoids, 440
Retinopathy
Alport syndrome as cause, 547
chloroquine as cause, 183
diabetes mellitus as cause, 330
hypertension as cause, 284
of prematurity, 221, 607
sorbitol as cause, 92
Retrognathia, in Potter sequence, 530
Retrograde amnesia, 512
Retroperitoneal fibrosis, 550
Retroperitoneal structures, 339
Retrospective studies, 36
Retroviruses
characteristics of, 151
genomes of, 147
Rett syndrome, 511
X-linked dominant inheritance of, 70
Reverse transcriptase, 158
Reverse transcriptase inhibitors, 184
Reye syndrome, 366
Rhabdomyolysis
daptomycin as cause, 178
hyperkalemia caused by, 542
Rhabdomyomas, 295, 642
nomenclature for, 228
tuberous sclerosis as cause, 495
Rhabdomyosarcomas
dactinomycin for, 410
desmin stain for, 60
nomenclature for, 228
Rhabdoviruses
characteristics of, 151
as negative-stranded, 152
Rhagades, in congenital syphilis, 131
Rh blood classification, 382
Rheumatic fever, 294
criteria for, 120
heart murmur caused by, 273
Streptococcus pyogenes as cause, 120
streptolysin O and, 117
as type II hypersensitivity reactions, 204
Rheumatic heart disease, 644
Rheumatoid arthritis, 430
AA amyloidosis and, 225
anatomy of, 430
anemia of chronic disease and, 391
autoantibody associated with, 207
azathioprine for, 212, 409
biliary cirrhosis and, 371
carpal tunnel syndrome and, 418
celecoxib for, 447
cyclosporine for, 212
etanercept for, 448
HLA-DR4 and, 193, 643
infliximab/adalimumab for, 448
lab findings in, 634
leflunomide for, 447
methotrexate for, 409
rituximab for, 214, 412
therapeutic antibodies for, 214
uveitis and, 484
Rheumatoid factor, 207
Rh hemolytic disease of the newborn, $\mathbf{3 8 2}$
Rhinitis
phenylephrine for, 246
as type I hypersensitivity reaction, 204
Rhinosinusitis, 616
Rhinovirus, 151, 152
as picornavirus, 152
receptors for, 150
Rhizopus spp., 137, 630
RhoGAM, 382
Rhombencephalon, 450
Rhomboid crystals, 637
Ribavirin
for hepatitis, 639
for hepatitis C, 187
in pregnancy, avoiding, 187
purine synthesis, effect on, 49
Rib notching, 637
Ribose, 90
Ribosomes, 58
Rice-water diarrhea, 162
arsenic toxicity as cause, 87
cholera toxin as cause, 116
Vibrio cholerae as cause, 129
Richter transformation, 402

## Rickets, 427

Fanconi syndrome as cause, 633
hypophosphatemia as cause, 542
lab values in, 428
treatments for, 640
vitamin D deficiency as cause, 81, 313
X-linked dominant inheritance of, 70
Rickettsia spp.
Giemsa stain for, 110
as intracellular organism, 112
tetracyclines for, 175
Rickettsial diseases, 133
morphology of, 109
Rickettsia prowazekii, 133
animal transmission of, 132
lice transmission of, 145
Rickettsia rickettsii, 133
animal transmission of, 132
chloramphenicol for, 175
treatments for, 640
Rickettsia typhi, 132, 133
Riedel thyroiditis, 322
Rifabutin, 179
Rifampin, 170, 179
acute interstitial nephritis caused by, 554
cytochrome P-450 and, 254
for Haemophilus influenzae type B, 639
for Hansen disease, 125
hepatitis caused by, 252
for Mycobacterium leprae, 179
for Mycobacterium tuberculosis, 179, 640
for Neisseria meningitidis, 640 as prophylaxis, 181
protease inhibitors and, 186
RNA polymerase inhibition by, 54
Rifamycins, 179
Rifaximin, 93, 367
Rift Valley fever, 151
Right anopia, 489
Right anterior cardinal vein, 262
Right bundle branch, 276
Right bundle branch block, 271
Right common cardinal vein, 262
Right coronary artery, 265
myocardial infarction and, 288
Right external iliac artery, 342
Right gastroepiploic artery, 343
Right horn of sinus venosus, 262
Right inferior phrenic artery, 342
Right internal iliac artery, 342
Right lower quadrant (RLQ) pain, 361
Right lymphatic duct, 190
Right marginal artery, 265
Right recurrent laryngeal nerve, 568
Right renal artery, 342
Right subclavian artery, 568
Right-to-left shunts, 282
Right upper quadrant (RUQ) pain, 372
Right ventricular hypertrophy (RVH)
high altitude and, 615
pulmonary hypertension as cause, 622
Rigidity, in Parkinson disease, 633
Riluzole, 505
for amyotrophic lateral sclerosis, 474
Rimantadine, 184
Ringed sideroblasts, 387
Ringworm
griseofulvin for, 183
tinea corporis as cause, 136
Risedronate, 447
Risk, quantifying, 34
Risperidone, 514, 525
Ristocetin, 385
Risus sardonicus
Clostridium tetani as cause, 122
tetanospasmin as cause, 116
Ritodrine, 602
Ritonavir, 184
cytochrome P-450 and, 254
for HIV, 186
Rituximab, 214, 412, 493
Rivaroxaban, 407
as anticoagulant, 383
for deep venous thrombosis, 616
for long-term anticoagulation, 640
Rivastigmine, 244
for Alzheimer disease, 505
River blindness, 143

RNA
interference, 68
microRNAs, 55
processing (eukaryotes), 54
protein synthesis direction, $\mathbf{5 3}$
RNA polymerases, 54
RNA viruses, 151
genome of, 147
replication of, 147
Robertsonian translocation, 75
Rocker-bottom feet
Edwards syndrome as cause, 74, 632
Patau syndrome as cause, 74
Rocky Mountain spotted fever, 133
animal transmission of, 132
chloramphenicol for, 175
presentation of, 633
Rocuronium, 503
Rod bacteria, 109
Romaña sign, 142
Romano-Ward syndrome, 277
Romberg sign, 131, 474
Romiplostim, 213
Root cause analysis, for medical errors, 46
Rooting reflex, 476
Rosacea, 440
Rose gardener's disease, 138
Rosenthal fibers, 497
Roseola
HHV-6/HHV-7 as cause, 149
rash caused by, 166
Rosiglitazone, 334
Rostral fold closure defects, 338
Rosuvastatin, 300
Rotator cuff muscles, 417
Rotavirus, 152
diarrhea caused by, 151, 162
live attenuated vaccine for, 146
Rotenone, 89
Roth spots, 293, 633
Rotor syndrome, 369
Rough endoplasmic reticulum, 58
Rouleaux formation, 401, 638
Round ligament of uterus, 574
Rovsing sign, 360, 633
Rubella, 151, 153
cardiac defects associated with, 284
cataracts and, 483
heart murmur caused by, 273
rash caused by, 166
as ToRCHeS infection, 165
in unvaccinated children, 169
Ruffini corpuscles, 454
Russell sign, 520
Ryanodine receptor, 424

## S

Saber shins
congenital syphilis as cause, 131
syphilis as cause, 165
Sabin polio vaccine, 146
Sabouraud agar, 111, 137
Saccular aneurysms, 468
Ehlers-Danlos syndrome and, 63
renal cyst disorders and, 555

Saccular lung development, 606
Sacrococcygeal teratomas, 598
Saddle nose
congenital syphilis as cause, 131
Laron syndrome as cause, 327
syphilis as cause, 165
Safety culture, 45
Salicylates
metabolic acidosis caused by, 543
respiratory alkalosis caused by, 543
toxicity treatment for, 251
Saline, for $\beta$-blocker overdose, 303
Saliva, effect of pilocarpine on, 244
Salivary gland tumors, 353
Salk polio vaccine, 146
Salmeterol, 246, 628
Salmonella spp.
animal transmission of, 132
bloody diarrhea caused by, 162
as encapsulated bacteria, 112
food poisoning caused by, 161
in Gram-negative algorithm, 125
in immunodeficient patients, 210
as intracellular organism, 112
morphology of, 109
osteomyelitis and, 163, 644
penicillinase-sensitive penicillins
for, 171
reactive arthritis and, 433
vs. Shigella spp., 129
splenic dysfunction and, 191
TMP-SMX for, 177
type III secretion system of, 113
Salmonella typhi, 129
Salpingitis
ectopic pregnancy and, 589
pelvic inflammatory disease as cause, 167
Sampling bias in studies, 36
Sandflies, as disease vectors, 142
Sandfly fever, 151
Saquinavir, 184, 186
Sarcoidosis, 435
acute interstitial nephritis caused by, 554
cardiomyopathy caused by, 291
erythema nodosum and, 444
facial nerve palsy caused by, 480
as granulomatous disease, 223
hypervitaminosis D caused by, 428
macrophages and, 379
presentation of, 630
restrictive/infiltrative cardiomyopathy caused by, 291
as restrictive lung disease, 619
uveitis and, 484
Sarcoma botryoides, 591
Sarcomas
metastases of, 233
methotrexate for, 409
nomenclature of, 228
vimentin stain for, 60
Sarcoplasmic reticulum, 424
Sargramostim, 213
SARS (sudden acute respiratory syndrome), 151

Sartorius muscle, 347
Saturday night palsy, 419
Saxagliptin, 335
Scabies, 145, 183
Scalded skin syndrome
Staphylococcus aureus as cause, 119
toxic shock syndrome toxin as cause, 117
Scales, skin, 438
Scaling, in tinea capitis, 136
Scaphoid bone, 418
Scar formation, 219, 222
Scarlet fever
presentation of, 120, 634
rash caused by, 166
Streptococcus pyogenes as cause, 120
S cells, 350
Schiller-Duval bodies, 593, 636
Schilling test, 390
Schistocytes, 387
in HELLP syndrome, 590
in intravascular hemolysis, 391
in microangiopathic anemia, 393
Schistosoma spp., 144, 145
Schistosoma haematobium, 144
diseases associated with, 145
as oncogenic microbe, 231
squamous cell carcinoma of bladder and, 551
Schistosoma mansoni, 144
Schistosomiasis
calcification and, 220
as granulomatous disease, 223
portal hypertension caused by, 365
pulmonary arterial hypertension caused by, 622
Schizoaffective disorder, 514
Schizoid personality disorder, 519
Schizophrenia, 514
antipsychotic drugs for, 525
atypical antipsychotics for, 525
drug therapy for, 524
genetic risk of, 510
neurotransmitter changes in, 511
neurotransmitters for, 455
readmissions caused by, 45 treatments for, 640
Schizophreniform disorder, 514
Schizotypal personality disorder, 519
Schüffner stippling, 141
Schwann cells, 453
in Guillain-Barré syndrome, 493
origin of, 450
Schwannomas, 453, 496, 642
Sciatic nerve, 422
SCID (severe combined immunodeficiency disease), 209
adenosine deaminase deficiency as cause, 50
hypoplastic thymus in, 191
lymphopenia caused by, 394
Sclerae, 482
blue, in osteogenesis imperfecta, 63
Scleritis, in rheumatoid arthritis, 430

Sclerodactyly, 437
Scleroderma, 437
autoantibody associated with, 207
lab findings in, 634, 635
Sclerodermal esophageal dysmotility, 354
Sclerosing adenosis, 595
Sclerosing cholangitis, 369, 371
ulcerative colitis as cause, 359
Scombroid poisoning, 250
Scopolamine, 245
Scoring of USMLE Step 1 exam, 7, 9-10
Scorpion sting, pancreatitis caused by, 373
Scotoma, 489
Scrotum, 575
female homolog of, 572
lymphatic drainage of, 573
masses in, 598
varicoceles in, 597
Scurvy
collagen synthesis and, 62
presentation of, 634
vitamin C deficiency as cause, 80
Seafood toxins, 250
Seborrheic keratosis, 440
Sebum, 440
Secobarbital, 501
Secondary adrenal insufficiency, 318
Secondary biliary cirrhosis, 371
Secondary glomerular disease, 544
Secondary hyperaldosteronism, 318
Secondary hyperparathyroidism, 325, 326
Secondary hypertension, 643
Secondary spontaneous pneumothorax, 623
Secondary syphilis, 634
Second-wind phenomenon, 99
Secretin, 350
location of, 351
somatostatinomas and, 332
Secretion rate, $\mathbf{5 3 5}$
Secretory phase of menstrual cycle, 579
Secretory vesicles, 59
Segmental artery, 532
Segmented viruses, 152
Seizures, 494
aluminum hydroxide as cause, 375
amphetamines as cause, 522
Angelman syndrome as cause, 69
barbiturates for, 501
benzodiazepine withdrawal as cause, 522
$\beta$-blockers as cause, 249
bupropion as cause, 528
cytomegalovirus as cause, 165
delirium tremens as cause, 524
as drug reaction, 253
hyperosmolar hyperglycemia nonketotic syndrome as cause, 332
hypocalcemia as cause, 542
hyponatremia as cause, 542
lupus as cause, 434
medium-chain acyl-CoA dehydrogenase deficiency as cause, 101
meningiomas as cause, 496
meropenem as cause, 173
PCP as cause, 523
phenylketonuria as cause, 95
serotonin syndrome as cause, 527
Taenia solium and, 145
tramadol and, 499
tuberous sclerosis as cause, 495
Selection bias in studies, 36
Selective estrogen receptor modulators (SERMs), 413,

## 426, 601

Selective IgA deficiency, 208
Selective media, 110
Selective serotonin reuptake inhibitors (SSRIs), 527
for adjustment disorder, 517
for anxiety disorders, 516
for atypical depression, 515
for binge eating disorder, 520
conditions used for, 524
for depression, 639
diarrhea caused by, 252
for generalized anxiety
disorder, 517, 639
for major depressive disorder, 515
mechanism of, 526
naming convention for, 255
for obsessive-compulsive disorder, 517
for panic disorder, 517
for phobias, 517
for postpartum depression, 516
for PTSD, 517
sexual dysfunction caused by, 520
SIADH caused by, 253
Selegiline, 504, 505, 528
Selenium sulfide, 136
Self-fulfilling prophecies, 36
Seminal vesicles, 571, 575
Seminiferous tubules, 575, 576
spermatogenesis in, 583
Seminomas, 598, 645
Semustine, 410
Senile plaques, 636
Sensitivity equation, 646
Sensitivity, in diagnostic tests, 33
Sensorineural hearing loss, 481
Sensory cortex, 467
Sensory receptors, 454
thalamus and, 458
Separation anxiety disorder, 511
Separation anxiety in infants, 43
Sepsis
acute respiratory distress syndrome as cause, 621
acute tubular necrosis caused by, 554
findings associated with, 643
in immunodeficient patients, 210
lymphopenia caused by, 394
neutropenia caused by, 394
Pseudomonas aeruginosa and, 127
shock caused by, 292
Streptococcus agalactiae as cause, 121
Septate uterus, 572
Septation of heart chambers, 262
Septic arthritis, 432
gonococci as cause, 126
Staphylococcus aureus as cause, 119
Septicemia
Listeria monocytogenes as cause, 123
readmissions caused by, 45
Waterhouse-Friderichsen syndrome and, 318
Septic shock
diffuse cortical necrosis and, 552
macrophages and, 379
norepinephrine for, 246
Septum primum, 262
Septum secundum, 262
Sequence, in organogenesis, 563
Serine, 230
Seronegative spondyloarthritis, 433
Serosa, 341
Serositis, 434
Serotonin, 455
in carcinoid syndrome, 332
derivatives of, 94
vitamin $\mathrm{B}_{6}$ and, 78
Serotonin-norepinephrine reuptake inhibitors (SNRIs), 527
conditions used for, 524
for fibromyalgia, 435
for generalized anxiety disorder, 517, 639
for major depressive disorder, 515
mechanism of, 526
serotonin syndrome caused by, 527
Serotonin syndrome, 527
dextromethorphan as cause, 627
MAO inhibitors as cause, 528
MDMA as cause, 523
oxazolidinones as cause, 176
tramadol as cause, 499
Serous cystadenocarcinomas, 592, 593, 644
Serous cystadenomas, 592, 644
Serous papillary cystadenocarcinomas of ovary, 232
Serrated colonic polyps, 363
Serratia spp.
as catalase-positive organism, 112
chronic granulomatous disease and, 209
in Gram-negative algorithm, 125
in immunodeficient patients, 210
lactose fermentation by, 126
morphology of, 109
Serratia marcescens
cephalosporins for, 172
pigment produced by, 113
UTIs caused by, 164
Serratus anterior muscle, 420
Sertoli cells, 571, 576
Sertoli cell tumors, 598
Sertraline, 527
Serum amyloid A, 198

Serum lactate, 330
Serum markers of liver pathology, 366
Serum osmolarity
antidiuretic hormone regulation of, 311
in hyperosmolar hyperglycemia nonketotic syndrome, 332
Serum sickness, 205
Serum tumor markers, 232
17 $\alpha$-hydroxylase, 312
Sevoflurane, 502
Sex chromosome disorders, 585
Sex hormone-binding globulin (SHBG), 316
Sex hormones
adrenal cortex secretion of, 306
disorders of, 586
Sex pilus, in bacterial genetics, 114
Sex steroids, for hypopituitarism, 329
Sexual abuse, 512
Sexual development stages, 584
Sexual dysfunction, 520
$\beta$-blockers as cause, 249, 303
cimetidine as cause, 374
Lambert-Eaton myasthenic syndrome as cause, 436
PDE-5 inhibitors for, 603
Peyronie disease and, 597
sildenafil for, 627
treatments for, 639
tuberoinfundibular pathway and, 458
Sexually transmitted infections (STIs), 167
key associations, 645
parental consent for minors and, 40
sexual dysfunction caused by, 520
Sexual response, innervation of, 575
Sézary syndrome, 400, 631
SGLT-2 inhibitors, 335
Shagreen patches, 495
"Shawl and face" rash, 436
SHBG. See Sex hormone-binding globulin (SHBG)
Sheehan syndrome, 329, 588, 632
Sheep, as disease vectors, 144
Shield chest, in Turner syndrome, 585
Shiga-like toxin, 116, 128
Shiga toxin, 114, 116
Shigella spp.
bloody diarrhea caused by, 162
exotoxin produced by, 116
morphology of, 109
penicillinase-sensitive penicillins
for, 171
reactive arthritis and, 433
vs. Salmonella spp., 129
TMP-SMX for, 177
type III secretion system of, 113
Shigella boydii, 129
Shigella dysenteriae, 129
Shigella flexneri, 129
Shigella sonnei, 129
Shingles, 149
Shock, 292
acute respiratory distress syndrome as cause, 621
acute tubular necrosis caused

$$
\text { by, } 554
$$

dopamine for, 246
Ebola as cause, 156
norepinephrine for, 246
placental abruption as cause, 588
pulmonary anthrax as cause, 121
Waterhouse-Friderichsen syndrome and, 318
Short gastric arteries, 343
Shortness of breath, in panic disorder, 517
Shuffling gait, in Parkinson disease, 461
SIADH, 328
ADH antagonists for, 336
carbamazepine as cause, 500
demeclocycline for, 336
as drug reaction, 253
key associations, 645
markers in, 542
small cell lung cancer as cause, 626
treatments for, 640
Sialyl-Lewisx, 221
Sibling studies, 32
Sickle cell anemia, 392
in anemia taxonomy, 388
ESR in, 224
hydroxyurea for, 411
sickle cells in, 387
Sickle cell disease
autosplenectomy and, 641
chromosome associated with, 75
focal segmental glomerulosclerosis and, 548
lab findings in, 636
missense mutation as cause, 52
osteomyelitis and, 163
osteonecrosis caused by, 427
priapism caused by, 597
renal papillary necrosis and, 554
treatments for, 641
Sickle cells, 387
Sideroblastic anemia, 387, 389
in anemia taxonomy, 388
lab findings in, 635
lead poisoning as cause, 389
vitamin $\mathrm{B}_{6}$ deficiency as cause, 78
Sigmoid colon, 360, 645
Sigmoid sinus, 470
Signaling pathways
of endocrine hormones, 316
of steroid hormones, $\mathbf{3 1 6}$
Signal recognition particle (SRP), 59
Signet cell adenocarcinomas, 593
Signet ring cells, 356
Sign of Leser-Trélat, 229
Sildenafil, 603
for erectile dysfunction, 639
priapism caused by, 597
for pulmonary arterial hypertension, 640
for pulmonary hypertension, 627
Silencers, in gene expression, $\mathbf{5 4}$
Silent mutations, 52
Silicosis, 619, 620
Silver stain, 110, 127

Simeprevir
for hepatitis, 639
for hepatitis C, 187
Simple pneumothorax, 622
Simple renal cysts, 555
Simvastatin, 300
Single nucleotide polymorphisms
(SNPs), 66
Single-stranded binding proteins, 51
Sinusitis
brain abscesses caused by, 163
C3 deficiency and, 199
Kartagener syndrome as cause, 60, 633
Wegener granulomatosis as cause, 296
Sinusoids of spleen, 191
Sinus venosus, 262
Sirolimus
as immunosuppressant, 212
targets of, 213
Sister Mary Joseph nodules, 356
Sitagliptin, 335
Situs inversus, 60, 633
6-mercaptopurine, 409
allopurinol and, 448
azathioprine and, 212
in cell cycle, 408
purine synthesis and, 49
targets of, 408
toxicities of, 413
for ulcerative colitis, 359, 641
6-thioguanine, 408
Sjögren syndrome, 244, 432
acute interstitial nephritis caused by, 554
autoantibody associated with, 207
biliary cirrhosis and, 371
pilocarpine for, 244
presentation of, 631
rheumatoid arthritis as cause, 430
Skeletal muscles
ACh receptors in, 241
autoregulation of, 280
glycogen metabolism in, 98
in nervous system, 241
Skin
autoregulation of, 280
collagen in, 61
dermatology, 437-445
morphology of, 438
vascular tumors of, 441
wrinkles of aging, 64
Skin cancer, 445
albinism and, 439
Lynch syndrome and, 363
sunburn and, 444
Skin disorders, 440, 443, 444
Skin drug reactions, 253
Skin flora, 161
Skin infections, 127, 442
Skin layers, 437
Skin lesions
Crohn disease as cause, 359
kwashiorkor as cause, 82
ulcerative colitis as cause, 359
Skin ulcers, 142

Skip lesions, 359, 641
Slapped cheek rash, 166, 630
Sleep apnea, 621
pulse pressure in, 266
pulsus paradoxus in, 294
Sleep physiology, 457
Sleep problems
apnea, 621
benzodiazepines and, 457, 522
$\beta$-blockers as cause, 249
delirium and, 512
generalized anxiety disorder as cause, 517
in geriatric patients, 44
ghrelin in, 311
leptin in, 311
major depressive disorder as cause, 515
menopause as cause, 582
paroxysmal nocturnal dyspnea, 292
stimulant withdrawal as cause, 522
varenicline as cause, 528
Sleep terror disorder, 520
Sleepwalking, 457, 501
Sliding hiatal hernias, 349
Slipped capital femoral epiphysis, 427
Slow twitch muscle fibers, 424
Small bowel disease, 352
Small cell lung cancer, 626, 645
carcinogens causing, 231
Cushing syndrome and, 229
hyponatremia and, 229
Lambert-Eaton myasthenic syndrome and, 436
neuromuscular paraneoplastic syndromes and, 229
topotecan for, 411
Small intestine, 350
Small lymphocytic lymphoma (SLL), 402
Small nuclear ribonucleoproteins
(snRNPs), 55
Smallpox, 146, 148
Smoke inhalation, 222
Smoking
abdominal aortic aneurysms and, 286
angina caused by, 287
atherosclerosis and, 286
Buerger disease and, 296, 639
bupropion for cessation, 528
carcinogenic nature of, 231
cataracts and, 483
cervical cancer and, 591
colorectal cancer and, 364
emphysema and, 618
esophageal cancer and, 355
head and neck cancer and, 616
hormonal contraception contraindication, 602
Legionnaires' disease and, 127
lung cancer and, 626
pancreatic cancer and, 373
placental abruption and, 588
renal cell carcinoma and, 550
renal tumors and, 645
saccular aneurysms and, 468

Smoking (continued)
squamous cell carcinoma of bladder and, 551
stomach cancer and, 356
teratogenic effects of, 564
transitional cell carcinoma and, 551
varenicline for cessation, 528
Smooth endoplasmic reticulum, 58
Smooth muscle
autoantibody to, 207
contraction of, $\mathbf{4 2 5}$
in nervous system, 241
in respiratory tree, 608
tumor nomenclature in, 228
Snuffles, in congenital syphilis, 131
Soap bubble on X-ray, 638
Social anxiety disorder, 517
drug therapy for, 524
Selective serotonin reuptake inhibitors (SSRIs) for, 527
venlafaxine for, 527
Sodium channel blockers, 302
Sodium channels
cystic fibrosis and, 72
epilepsy drug effects on, 500
glucose and, 308
local anesthetic effects on, 503
pacemaker action potential and, 275
permethrin and, 183
Sodium oxybate, 521
Sodium-potassium channels, 241
Sodium-potassium pump, 61
cell injury and, 218
Sodium stibogluconate, 183
for leishmaniasis, 142
Sofosbuvir, 187, 639
Solifenacin, 245
Solitary functioning kidney, $\mathbf{5 3 1}$
Solitary nucleus of medulla, 279
Somatic hypermutation, 193
Somatic mosaicism, 69
Somatic symptom disorder, 518
Somatosensory cortex, 462
Somatostatin, 309, 336, 350
glucagon and, 309
location of, 351
production of, 307
Somatostatinomas, 332
Somatotroph hyperplasia, 496
Somatotropic adenomas, 644
Somatotropin. See Growth hormone (GH)
Sonic hedgehog gene, 562
Sonic hedgehog signaling pathway, 451
Sorbitol, 92
Sorbitol dehydrogenase, 92
Sotalol, 303
Southern blot, 65
Southwestern blot, 65
Space of Disse, 346
Spaghetti and meatballs appearance of tinea versicolor, 136
Spasticity, 501

Spastic paralysis, 473
Clostridium tetani as cause, 122
tetanospasmin as cause, 116
Specificity equation, 33,646
Spectrin, 71
Spermatic cord, 348
Spermatoceles, 598
Spermatocytes, 576
Spermatogenesis, 576, 583
cryptorchidism and, 597
prolactin effect on, 310
Sertoli cells and, 576
Spermatogonia, 576
Sperm, ejaculation pathway, 575
Sphenomandibular ligament, 569
Sphenoparietal sinus, 470
Spherical bacteria, 109
Spherocytes, 387
in extravascular hemolysis, 391
Sphincter of Oddi, 347, 350
Sphingolipidoses, 100
Sphingomyelin, 100
Sphingomyelinase, 100
Spider angiomas
ataxia-telangiectasia as cause, 209
cirrhosis as cause, 365
"Spike and dome" cells, 548
Spikes on basement membrane, 638
Spina bifida
Dandy-Walker syndrome and, 451
lab findings in, 636
Spina bifida occulta, 451
Spinal cord, 472
embryologic derivatives of, 563
hemisection of, 475
lesions of, 474
lower extent, 472
Spinal nerves, 472
Spinal tap, bloody/yellow, 635, 638
Spinal tract anatomy and functions, 473
Spindle cells, 496
Spinothalamic tract, 473
Spiral bacteria, 109
Spirochetes, $\mathbf{1 3 0}$
Spironolactone, 558, 603
gynecomastia caused by, 595
for heart failure, 292
for hyperaldosteronism, 639
metabolic acidosis caused by, 543
for PCOS, 591
reproductive hormones and, 600
Splay, in glucose clearance, 536
Spleen
blood supply and innervation of, 342
diagram of, 191
embryology, 339
in gastrointestinal anatomy, 340
ischemia susceptibility, 218
sinusoids of, 191
thrombocytes in, 378
Splenectomy, 71, 392
Splenic artery, 343
Splenomegaly
amyloidosis and, 225
anemia as cause, 141
cirrhosis as cause, 365
hairy cell leukemia as cause, 402
hereditary spherocytosis as cause, 392
rheumatoid arthritis as cause, 430
Splenorenal ligament, 340
Spliceosome, 55
Splice site mutations, 52
Splicing of pre-mRNA, 55
Splinter hemorrhages, 293, 634
Splitting, as ego defense, 509
in borderline personality disorder, 519
Splitting, in heart sounds, 271
Spondyloarthropathy, 225
Spongiform cortex, in CreutzfeldtJakob disease, 491
Spongiosis, 439
Spontaneous abortion
antiphospholipid syndrome as cause, 434
fibroid tumors as cause, 594
Listeria monocytogenes as cause, 123
syphilis as cause, 165
Vitamin A overdose as cause, 564
warfarin as cause, 564
Spore-forming bacteria, 114
Spores, 108
Sporothrix schenckii, 138, 641
Sporotrichosis, 138
Sprue
fat-soluble vitamin deficiencies and, 76
vitamin $\mathrm{B}_{12}$ deficiency caused by, 80
Squalene epoxidase, 181, 182
Squamous cell carcinomas
of bladder, 144, 551
carcinogens causing, 231
of cervix, 591
cytokeratin stain for, 60
of esophagus, 354, 355, 643
of head and neck, 616
HIV and, 160
hypercalcemia and, 229
lab findings in, 636
of lungs, 626
pectinate line and, 345
of penis, 597
of skin, 445
sunburn and, 444
of vagina, 591
Squamous epithelium, 608
SRY gene, 571
Stable angina, 287, 641
Stable cells, 58
Stab wounds, winged scapula caused by, 420
Staghorn calculi, 549
Stains, bacterial, 110
Standard deviation, 37
Standard error of the mean, 37
Stapedial artery, 568
Stapedius muscle, 569
Stapes bone, 481, 569
Staphylococcal scalded skin syndrome, 442

Staphylococcus spp.
antibiotic tests for, 118
as catalase-positive organism, 112
Chédiak-Higashi syndrome and, 209
chronic granulomatous disease and, 209
in Gram-positive algorithm, 118
morphology of, 109
Staphylococcus aureus, 119
antimicrobial prophylaxis for, 181
bacterial endocarditis caused by, 293
$\beta$-hemolytic nature of, 119
brain abscesses caused by, 163
cephalosporins for, 172
chronic granulomatous disease and, 643
cystic fibrosis and, 72,162
dapsone for, 178
exotoxin produced by, 117
food poisoning caused by, 161, 643
immunocompromised patients and, 162
influenza and, 153
IV drug use and, 162
lactational mastitis caused by, 595
lung abscesses caused by, 624
as nosocomial infection, 162,168
osteomyelitis and, 163, 644
penicillinase-resistant penicillins for, 171
pigment produced by, 113
pneumonia caused by, 624, 644
as postviral infection, 162
septic arthritis caused by, 432
skin infections caused by, 442
T cells, effect on, 202
treatments for, 641
Staphylococcus epidermidis, 119
bacterial endocarditis caused by, 293
Gram-positive testing, 118
in vivo biofilm produced by, 113
as normal flora, 161
as nosocomial infection, 168
novobiocin response, 637
osteomyelitis caused by, 163
vancomycin for, 173
Staphylococcus gallolyticus, 121
Staphylococcus pneumoniae, 616
Staphylococcus saprophyticus, 120
Gram-positive testing, 118
kidney stones caused by, 549
novobiocin response, 637
as urease-positive organism, 112
urinary tract infections caused by, 552, 646
UTIs caused by, 164
Starling curve, 268
Starling forces, 281
"Starry sky" appearance of B cells, 400
Start and stop codons, 53
Starvation, metabolism in, 103
Statins
for acute coronary syndromes, 290
cholesterol synthesis and, 103
hepatitis caused by, 252
for hypercholesterolemia, 640
myopathy caused by, 253
Statistical distribution, 37
Statistical hypotheses, 37, 38, 39
Statistical tests, 39
Status epilepticus, 494
benzodiazepines for, 501
drug therapy for, 500
Stavudine, 184, 186
Steady state, in dosage calculations, 237
Steatohepatitis, 365
Steatorrhea
cystic fibrosis as cause, 72
malabsorption syndromes as cause, 358
octreotide as cause, 375
orlistat as cause, 376
somatostatinomas as cause, 332
Steeple sign on X-ray, 154, 638
Stellate cells, 346
Stellate infiltration of ductal carcinoma, 596
Stem cells, in aplastic anemia, 391
Stercobilin, 353
Steroid hormone signaling pathways, 316
Steroids
acute pancreatitis caused by, 373
adrenal insufficiency caused by, 318
for berylliosis, 620
CRH levels in, 309
for lupus, 434
for multiple sclerosis, 492
osteoporosis and, 426
for polymyositis/ dermatomyositis, 436
for sarcoidosis, 435
for temporal arteritis, 641
Steroid synthesis, 83
Stevens-Johnson syndrome, 443
as drug reaction, 253
epilepsy drugs causing, 500
ethosuximide as cause, 500
sulfa drug allergies as cause, 254
Stimulants, for ADHD, 511
St. John's wort, 254
St. Louis encephalitis, 151
Stomach
cholecystokinin effect on, 350
in gastrointestinal anatomy, 340
histology of, 341
sclerosis of, 437
secretin effect on, 350
"Stone" bone appearance, 426
Straight sinus, 470
Stranger anxiety in infants, 43
Strawberry cervix, 142, 164, 167
Strawberry hemangiomas, 441, 645
Strawberry tongue
causes of, 634
Kawasaki disease as cause, 296
in scarlet fever, 120
Streak ovaries, 634
Streptococcus spp.
antibiotic tests for, 118

Chédiak-Higashi syndrome and, 209
in Gram-positive algorithm, 118
morphology of, 109
septic arthritis caused by, 432
Streptococcus agalactiae (Group B strep), 121
antimicrobial prophylaxis for, 181
bacitracin response, 635
bacterial meningitis caused by, 642
$\beta$-hemolytic nature of, 119
as encapsulated bacteria, 112
Gram-positive testing, 118
in immunodeficient patients, 210
meningitis caused by, 163
in neonates, 165
pneumonia caused by, 162
splenic dysfunction and, 191
Streptococcus bovis, 121
bacterial endocarditis caused by, 293
colon cancer and, 638
colorectal cancer and, 364
treatments for, 641
Streptococcus mitis, 120
Streptococcus mutans
biofilm produced by, 113
dental caries caused by, 120
as normal flora, 161
optochin response, 637
Streptococcus pneumoniae, 120
$\alpha$-hemolytic nature of, 119
bacterial meningitis caused by, 642
chloramphenicol for, 175
cystic fibrosis and, 162
as encapsulated bacteria, 112
Gram-positive testing, 118
IgA protease and, 113
in immunodeficient patients, 210
influenza and, 153
IV drug use and, 162
meningitis caused by, 163
optochin response, 637
penicillin G/V for, 170
pneumonia caused by, 162, 624
as postviral infection, 162
splenic dysfunction and, 191
transformation in, 114
treatments for, 641
Streptococcus pyogenes (Group A strep), 120
acute poststreptococcal glomerulonephritis and, 546
bacitracin response, 635
$\beta$-hemolytic nature of, 119
clindamycin for, 175
exotoxin produced by, 117
Gram-positive testing, 118
M protein and, 113
penicillin G/V for, 170
rash caused by, 166
skin infections caused by, 442
T cells, effect on, 202
treatments for, 641
Streptococcus sanguinis, 113, 637
Streptogramins, 170, 181
Streptokinase, 383, 407

Streptolysin O, 117
Streptomycin, 170, 174, 180
Streptozocin, 410
Stress, as asthma trigger, 618
Stress incontinence, 551
Striated muscle, 228
Striatum, 460, 467
"String sign" on barium swallow, 359

## Stroke, 467

ADP receptor inhibitors for, 407
atrial fibrillation as precursor, 278
central post-stroke pain syndrome, 468
cilostazol/dipyridamole for, 407
direct factor Xa inhibitors for, 407
eclampsia as cause, 590
homocystinuria as cause, 96
hypertension as cause, 284
hypertensive emergency and, 284
sickle cell anemia as cause, 392
syphilis as cause, 131
thrombolytics for, 407
vertigo caused by, 495
warfarin for, 406
Stroke volume, 267, 647
Stroma, diseases affecting, 595
Strongyloides spp., 142
Strongyloides stercoralis, 143
ST-segment elevation MI
(STEMI), 287, 289
treatments for, 290
ST segment, in EKG, 276
Studies
errors in, 36
types of, 32
Studying for USMLE Step 1 exam materials for, 18-19
in preclinical years, 12-13
timeline for, 14-17
Sturge-Weber syndrome, 495, 634
Stylohyoid ligament, 569
Stylohyoid muscle, 569
Styloid process, 569
Stylopharyngeus, 569
Subacute cerebellar degeneration, 626
Subacute combined degeneration, 80
Subacute endocarditis
enterococci as cause, 121
Staphylococcus gallolyticus as cause, 121
Subacute granulomatous thyroiditis, 322
Subacute sclerosing panencephalitis (SSPE), 154
Subacute thyroiditis, 223
Subarachnoid hemorrhage, 468, 469
headache caused by, 494
lab findings in, 635, 638
nimodipine for, 298
presentation of, 634
Subarachnoid space, 472
in cavernous sinus, 481
in neural tube defects, 451
Subclavian arteries, 466, 568
Subcutaneous fat, 437
erythema nodosum in, 444

Subcutaneous nodules, 120
Subcutis, 437
Subdural hematomas, 469
as child abuse sign, 510
key associations, 643
Subendocardium, 218
Sublimation, as ego defense, 509
Submucosa, 341
Submucosal gland, 341
Subscapularis muscle, 417
Substance abuse
adult T-cell lymphoma and, 400
Candida albicans and, 137
delirium caused by, 512
dementia caused by, 513
dissociative identity disorder and, 512
loss of orientation caused by, 512
parental consent for minors and, 40
Pseudomonas aeruginosa and, 127
stages of change in overcoming, 521
suicide and, 516
torsades de pointes caused by, 277
tricuspid valve endocarditis caused by, 293
Substance P, 499
Substance use disorder, 521
Substantia nigra, 635
Substantia nigra pars compacta, 460
Subthalamic nucleus, 460
lesions in, 464
Subunit vaccines, 146
Succimer
for arsenic toxicity, 251
for gold poisoning, 251
for lead poisoning, 251, 389
for mercury poisoning, 251
Succinate dehydrogenase, 78, 89
Succinylcholine, 503
Succinyl-CoA
in gluconeogenesis, 89
in TCA cycle, 88
Sucking reflex, 476
Sucralfate, 375
Sudan stain, 358
Sudden cardiac death, 287
Sudden infant death syndrome (SIDS), 581
Suicidal patients, 42
confidentiality exceptions and, 41
elderly, 44
Suicide
bipolar disorder and, 515
borderline personality disorder and, 519
as common cause of death, 45
major depressive disorder and, 515
physician-assisted, 42
risk factors for, $\mathbf{5 1 6}$
schizophrenia and, 514
Sulbactam, 171
Sulci, in Alzheimer disease, 491
Sulfadiazine, 177
functioning of, 170
for Toxoplasma gondii, 140, 641

Sulfa drugs, 254
acute pancreatitis caused by, 373
erythema multiforme caused by, 443
G6PD deficiency caused by, 392
lupus-like syndrome caused by, 253
megaloblastic anemia caused by, 252
rash caused by, 253
Sulfamethoxazole, 170, 177
Sulfapyridine, 375
Sulfasalazine, 254, 375, 430
Sulfatides, 124, 493
Sulfisoxazole, 170, 177
Sulfonamides, 177
acute interstitial nephritis caused by, 554
cytochrome P-450 and, 254
functioning of, 170
hemolysis in G6PD deficiency caused by, 252
hypothyroidism caused by, 252
for Nocardia spp., 123
photosensitivity caused by, 253
in pregnancy, avoiding, 187
trimethoprim and, 177
vitamin $\mathrm{B}_{9}$ deficiency caused

$$
\text { by, } 79
$$

Sulfonylureas, 254, 334
disulfiram-like reaction caused by, 254
insulin and, 308
Sulfur granules, 113, 123
Sumatriptan, 505
for cluster headaches, 494
coronary vasospasm caused by, 251
for migraines, 640
Sunburn, 444
Superficial inguinal lymph nodes, 190
Superficial inguinal ring, 348
Superior cerebellar artery, 466
Superior colliculi, 477
Superior gluteal nerve, 422
Superior lobe, 609
Superior mesenteric artery, 342
Superior mesenteric artery (SMA) syndrome, 342
Superior mesenteric lymph nodes, 190
Superior mesenteric vein, 344
Superior oblique muscle, 488
Superior ophthalmic vein, 470
Superior orbital fissure, 478
Superior rectal artery, 345
Superior rectal vein, 344
Superior rectus muscle, 488
Superior sagittal sinus, 470
Superior sulcus tumors, 625
Superior vena cava
EKG and, 276
embryological development of, 262
in fetal circulation, 264
Superior vena cava syndrome, 625
lung cancer and, 626
Pancoast tumor as cause, 625
Superoxide dismutase, 201
free radical elimination by, 221

Suppression, as ego defense, 509
Suprachiasmatic nucleus, 456
sleep physiology and, 457
Supraclavicular node enlargement, 631
Suprarenal arteries, 342
Suprascapular nerve, 417
Supraspinatus muscle, 417
in Erb palsy, 420
Supratentorial mass, 498
Supraventricular tachycardia adenosine for diagnosing, 304
$\beta$-blockers for, 249, 303
calcium channel blockers for, 304
Suramin, 140, 183
Surface F protein, 153
Surfactant, 611
Surgical neck of humerus, 423
Surrogate decision-maker, 41
Swan-Ganz catheter, 280
Swarming, in Pseudomonas aeruginosa, 164
Sweat, effect of pilocarpine on, 244
Sweat glands
embryologic derivatives of, 563
in nervous system, 241
Swiss cheese model, 46
Sydenham chorea, 120, 294
Sylvian fissure, 462
Sympathetic nervous system, 241
male sexual response and, 575
Sympathetic receptors, 242
Sympatholytic drugs, 247
Sympathomimetic drugs, 246
Symphysis pubis, 575
Syncope, 273
Syncytiotrophoblasts, 566
$\beta$-hCG and, 232
choriocarcinomas and, 587
hCG secretion by, 580
Syndrome of apparent mineralocorticoid excess, 538
Syndrome of inappropriate antidiuretic hormone secretion. See SIADH
Synergistic drug interactions, 237
Syngeneic grafts, 210
Syphilis, 131
antimicrobial prophylaxis for, 181
aortic aneurysms and, 641
dementia caused by, 491
as granulomatous disease, 223
presentation of, 633, 634
as STI, 167
tabes dorsalis caused by, 474
testing for, 131
thoracic aortic aneurysms and, 286
as ToRCHeS infection, 165
Syphilitic heart disease, 294
Syringomyelia, 452
Horner syndrome and, 487
spinal cord lesions in, 474
Systemic mycoses, 135
Systemic primary carnitine deficiency, 101

Systole, 270
heart failure and, 292
heart murmurs of, 272, 273
heart sounds of, 272
Systolic ejection, 270
Systolic murmur, 291
Systolic pressure, 266

## T

Tabes dorsalis
lab findings in, 635
spinal cord lesions in, 474
syphilis as cause, 131, 167
Tachyarrhythmia
isoproterenol for evaluating, 246
thyroid storm as cause, 323
Tachycardia
alcohol withdrawal as cause, 523
amphetamines as cause, 522
delirium tremens as cause, 524
fenoldopam as cause, 298
hydralazine as cause, 298
MDMA as cause, 523
metronidazole as cause, 178
nitrates as cause, 299
PCP as cause, 523
phenoxybenzamine as cause, 248
pulmonary embolism as cause, 617
stimulants as cause, 522
thyroid hormones as cause, 335
tricyclic antidepressants as cause, 527
Wolff-Parkinson-White syndrome as cause, 277
Tachyphylactic drug interactions, 237
Tachypnea
asthma as cause, 618
pulmonary embolism as cause, 617
Tacrine, 505
Tacrolimus
hyperglycemia caused by, 252
as immunosuppressant, 212
targets of, 213
Tactile hallucinations, 513
cocaine as cause, 522
Tadalafil, 603, 639
Taenia solium, 144, 145
Takayasu arteritis, 223, 296
Talcosis, 223
Talking, as developmental milestone, 43
Tamoxifen, 413, 601
for breast cancer, 639
hot flashes caused by, 252
Tamsulosin, 248, 599, 603
Tanner stages of sexual development, 584
Tarasoff decision, 41
Tardive dyskinesia, 525
as drug reaction, 253
metoclopramide for, 376
nigrostriatal pathway and, 458
Target cells, 191, 387
Tarsal tunnel syndrome, 422
TATA box, 54
Tau proteins, 637

Taxonomy, bacterial, 109
Tay-Sachs disease, 100
frameshift mutation as cause, 52
presentation of, 630
Tazobactam, 171
TBG. See Thyroid-binding globulin
(TBG)
TCA cycle, $\mathbf{8 8}$
diagram of, 85
hyperammonemia and, 93
location of in cell, 83
pyruvate metabolism and, 88
rate-determining enzyme for, 84

## T cells, $\mathbf{3 8 0}$

activation of, 195
adaptive immunity and, 192
anergy, 202
cell surface proteins, 202
cytokines secreted by, 200
cytotoxic, 194
differentiation of, 194
disorders of, 208, 209
function of, 380
glucocorticoids effect on, 212
helper, 194
in HIV, 159
leflunomide effect on, 447
in lymph node, 190
major functions of, 193
regulatory, 194
sirolimus effect on, 212
in spleen, 191
in thymus, 191
Tears, effect of pilocarpine on, 244
Telangiectasias
autosomal dominance of, 71
in basal cell carcinomas, 445
in CREST syndrome, 437
Osler-Weber-Rendu syndrome as cause, 634
Telencephalon, 450
Tellurite agar, 111
Telomerase, 51
Telophase, 58
Temazepam, 501
Temperature receptors, 454
Temperature regulation, 456
Temporal arteritis
ESR in, 224
as granulomatous disease, 223
key associations, 645
necrosis and, 217
polymyalgia rheumatica and, 435
treatments for, 641
Temporalis muscle, 569
Temporal lobe, 462, 467
Temporal lobe encephalitis, 149
Temporal retina, 487
Tendinopathy of rotator cuff, 417
Tendinous xanthomas, 285
familial hypercholesterolemia as cause, 71, 105
Tendonitis
as drug reaction, 253
fluoroquinolones as cause, 178
Tendons, collagen in, 61
Tenecteplase, 383, 407

## Teniposide, 411

in cell cycle, 408
as topoisomerase inhibitor, 51
Tennis elbow, 417
Tenofovir, 184
Fanconi syndrome caused by, 538
for HIV, 186
Tenosynovitis, 432
Tension headaches, 494
Tension pneumothorax, 622, 623
Tensor fascia latae muscle, 422
Tensor tympani muscle, 569
Tensor veli palatini muscle, 569
Tentorium cerebelli, 498
Teratogens, 564
ACE inhibitors as, 559
aminoglycosides as, 174
angiotensin II receptor blockers as, 559
carbamazepine as, 500
griseofulvin as, 183, 187
leflunomide as, 447
lithium as, 526
methimazole as, 335
ribavirin as, 187
vitamin A, 77
warfarin as, 406
Teratomas, 598
Terazosin, 248, 599
Terbinafine, 181, 182
Terbutaline, $\mathbf{6 0 2}$
Teres minor, 417
Teriparatide, 426, 447
Terminal bronchioles, 606
Terminal deoxynucleotidyl transferase (TdT), 196
Terminal ducts (breast), diseases affecting, 595
Termination of protein synthesis, 57
Tertiary adrenal insufficiency, 318
Tertiary hyperparathyroidism, 326
Tertiary syphilis
aortic aneurysms and, 641
as granulomatous disease, 223
Tesamorelin, 309
Testes, 575
descent of, $\mathbf{5 7 3}$
embryologic derivatives of, 563
lymphatic drainage of, 573
progesterone production in, 577
Testicular atrophy
alcoholism as cause, 523
cirrhosis as cause, 365
muscular dystrophy as cause, 73
Testicular cancer
bleomycin for, 410
cisplatin/carboplatin for, 411
gynecomastia caused by, 595
key associations, 645
Testicular lymphomas, 598
Testicular/ovarian arteries, 342
Testicular tumors, 598
Testosterone, 582, 603
in androgen insensitivity syndrome, 586
in cryptorchidism, 597
in Klinefelter syndrome, 585

Leydig cell secretion of, 576
pharmacologic control of, 600
Sertoli cells and, 576
SHBG effect on, 316
signaling pathways for, 316
in spermatogenesis, 576
Testosterone-secreting tumors, 586
Testosterone synthesis, 182
Tetanospasmin, 116, 122
Tetanus
bacteria causing, 114
exotoxins as cause, 115
vaccine for, 122
Tetanus toxin, 122, 203
Tetany
hypocalcemia as cause, 542
hypoparathyroidism as cause, 325
thymic aplasia as cause, 208
Tetrabenazine
for Huntington disease, 505
for Tourette syndrome, 511, 524
Tetracaine, 503
Tetracyclines, 170, 175
esophagitis caused by, 252
Fanconi syndrome caused by, 253, 538
photosensitivity caused by, 253
as protein synthesis inhibitors, 174
pseudotumor cerebri and, 471
as teratogens, 187, 564
tooth discoloration caused by, 253
Tetrahydrofolic acid, 79, 177
Tetralogy of Fallot, 263, 282
22qll syndromes as cause, 284
cyanosis caused by, 642
fetal alcohol syndrome as cause, 284
lab findings in, 635
thymic aplasia as cause, 208
Tetrodotoxin, 250
TGF- $\beta$
regulatory T cells and, 194
in wound healing, 223
Thalamus, 450, 458
Thalassemia, 388
in anemia taxonomy, 388
lab findings in, 636
target cells in, 387
Thalidomide, 564
Thayer-Martin agar, 110, 111
Theca interna cells, 577
Theca-lutein cysts, 587, 592
Thecomas, 592
Thenar muscles, 420, 421
Theophylline, 628
cytochrome P-450 and, 254
therapeutic index value of, 240
Therapeutic antibodies, 214
Therapeutic index, 240
Therapeutic privilege, and informed consent, 40
Thermogenin, 89
Thiazides, 254, 558
gout caused by, 253
for heart failure, 292
for hypertension, 298
site of action, 556

Thiazolidinediones, 334
Thick ascending loop of Henle Bartter syndrome and, 538
ethacrynic acid effect on, 557
loop diuretics effect on, 557
in nephron physiology, 537
Thin descending loop of Henle, 537
Thionamides, 335
Thiopental, 501, 502
Thioridazine, 525
Thirst
hypothalamus and, 456
renin-angiotensin-aldosterone system and, 540
30S inhibitors, 174
Thoracentesis, 623
Thoracic aortic aneurysm, 284, 286
Thoracic duct, 190
Thoracic outlet syndrome, 420
Threadworms, 143
Threonine, 92
Threonine kinase, 230
Thrombi
atherosclerosis as cause, 286
calcification and, 220
Thrombin, 405
Thrombocytes, 378
in essential thrombocythemia, 404
as liver marker, 366
in myeloproliferative disorders, 404
in platelet plug formation, 385
in wound healing, 223
Thrombocytopenia, 378
azathioprine as cause, 212
blood transfusion therapy for, 399
cirrhosis as cause, 365
Class IA antiarrhythmics as cause, 302
cytarabine as cause, 409
as drug reaction, 252
ganciclovir as cause, 185
glycoprotein IIb/IIIa inhibitors as cause, 407
heparin as cause, 405
oxazolidinones as cause, 176
recombinant cytokines for, 213
sirolimus as cause, 212
sulfa drug allergies as cause, 254
ToRCHeS infections as cause, 165
Wiskott-Aldrich syndrome as cause, 209
Thrombocytosis, 191
Thrombogenesis, 385
Thrombolytic drugs, 383, 407
Thrombomodulin
in thrombogenesis, 385
Thrombophlebitis
pancreatic cancer as cause, 373
vancomycin as cause, 173
Thrombopoietin receptor agonists, 213
Thrombopoietin signaling pathways, 316
Thrombosis
celecoxib as cause, 447
essential thrombocythemia as cause, 404
homocystinuria as cause, 96

Thrombotic complications, 252
Thrombotic endocarditis, 642
Thrombotic stroke, 470
Thrombotic thrombocytopenic purpura (TTP), 387
Thromboxane, 446
Thrush
Candida albicans as cause, 137
vs. hairy leukoplakia, 442
HIV and, 160
nystatin for, 182
SCID as cause, 209
Thumbprint sign on X-ray, 126
Thumb sign on X-ray, 638
Thymic aplasia, 76, 208, 570
22qll deletion syndromes as cause, 76
chromosome associated with, 75
DiGeorge syndrome as cause, 570
hypoparathyroidism caused by, 325
hypoplastic thymus in, 191
lymphopenia caused by, 394
Thymic cortex
T cell selection in, 194
Thymic hyperplasia, 436
Thymic shadow, 209
Thymidine, 177
Thymidine kinase, 184
Thymidylate, 49
Thymomas
Good syndrome and, 229
myasthenia gravis and, 229, 436
pure red cell aplasia and, 229
Thymus, 191
in fetal development, 306
T cell differentiation in, 194
$T$ cell origination in, 380
Thymus-dependent antigens, 197
Thymus-independent antigens, 197
Thyroglobulin
autoantibody to, 207
function of, 315
Thyroglossal duct cyst, 306
Thyroid adenomas, 321, 324
Thyroid cancer, $\mathbf{3 2 4}$
bone metastases in, 644
carcinogens causing, 231
goiter caused by, 321
key associations, 645
MEN 2B and, 634
metastases of, 233
Psammoma bodies in, 232
Thyroid cartilage, 569
Thyroid cysts, 321
Thyroid development, 306
Thyroidectomy, 324
Thyroid hormones, 315
signaling pathways for, 316
in toxic multinodular goiter, 323
Thyroiditis, 223
Thyroid lymphomas, 324
Thyroid peroxidase
function of, 315
thionamide effect on, 335
thyroid hormones and, 315
Thyroid-regulating hormone (TRH)
signaling pathways for, 316
thyroid hormones and, 315

Thyroid replacement therapy, 426
Thyroid-stimulating hormone (TSH)
Graves disease and, 323
in hyperthyroidism, 321
in hypothyroidism, 321
secretion of, 307
signaling pathways of, 316
Thyroid-stimulating hormone (TSH) receptor, 207
Thyroid-stimulating immunoglobulin (TSI), 315, 323
Thyroid storm, 323
Thyrotropin-releasing hormone (TRH), 309, 310
Thyroxine, 329
Thyroxine-binding globulin (TBG), 315
Tiagabine, 500
TIBC
in anemia, 394
in anemia of chronic disease, 391
lab values in anemia, 394
Tibial nerve, 422
Ticagrelor, 407
Ticarcillin, 170
characteristics of, 171
for Pseudomonas aeruginosa, 127
Ticks, as disease vectors, 132, 141, 133
Ticlopidine, 385, 407
Tics, in Tourette syndrome, 511
Tidal volume (TV), 610
Tigecycline, 181
Tight junctions, 438, 455
Time course of untreated HIV infection, 159
Timolol, 249, 303, 498
Tinea, 136, 183
Tinea capitis, 136
Tinea corporis, 136
Tinea cruris, 136
Tinea pedis, 136
Tinea unguium, 136
Tinea versicolor, 136
Tinel sign, 419
Tinnitus
Meniere disease as cause, 631
streptomycin as cause, 180
Tiotropium, 245
Tirofiban, 385, 407
Tissue factor pathway, 383
Tissue plasminogen activator (tPA) for ischemic stroke, 470
TMP-SMX, 177
as HIV prophylaxis, 181
hyperkalemic renal tubular acidosis caused by, 544
for Pneumocystis jirovecii, 138, 640
as prophylaxis, 181
as UTI prophylaxis, 641
TNF- $\alpha, 200$
endotoxins and, 117
extrinsic pathway and, 216
in granulomatous diseases, 223
Graves disease and, 323
TNF- $\alpha$ inhibitors, 430, 448
TNF (tumor necrosis factor), 232
TNM staging system, 228

Tobramycin, 170, 174
Togaviruses
characteristics of, 151
genomes of, 147
rubella as, 153
Tolbutamide, 334
Tolcapone, 504
Toll-like receptors (TLRs), 192
Tolterodine, 245
Tolvaptan, 328, 336, 640
Tone, as motor neuron sign, 473
Tongue development, 452
Tonic-clonic seizures, 494
drug therapy for, 500
treatments for, 641
Tonic seizures, 494
Tonsils, in X-linked agammaglobulinemia, 208
Tooth problems
bulimia nervosa as cause, 520
congenital syphilis as cause, 131
demeclocycline as cause, 336
dental caries, 120
dentinogenesis imperfecta, 63 discoloration, from tetracyclines, 175, 187, 253
fetal tetracycline exposure as cause, 564
Gardner syndrome as cause, 363
primary teeth retention, in Job syndrome, 208
Sjögren syndrome as cause, 432
Tophi, in gout, 634
Topiramate
for epilepsy, 500
for migraine headaches, 494, 640
for pseudotumor cerebri, 471
Topoisomerase inhibitors, 408
Topoisomerases, 178
Topotecan, 408, 411
ToRCHeS infections, 165
cataracts and, 483
rubella as, 153
Torsades de pointes, 277
Class IA antiarrhythmics as cause, 302
as drug reaction, 251
hypomagnesemia as cause, 542
ibutilide as cause, 303
magnesium for, 304
sotalol as cause, 303
Torsemide, 557
Total anomalous pulmonary venous return (TAPVR), 282
Total lung capacity (TLC), 610 in flow volume loops, 619
Total parenteral nutrition (TPN), 372
Total peripheral resistance, 266, 269
Tourette syndrome, 511
antipsychotic drugs for, 525
atypical antipsychotics for, 525
drug therapy for, 524
obsessive-compulsive disorder and, 517
sympatholytic drugs for, 247
Toxic dose, 240
Toxic epidermal necrolysis, 443
Toxicities, 251

Toxic multinodular goiter, 323
Toxic shock-like syndrome, 120
Toxic shock syndrome, 117
exotoxin A as cause, 117
presentation of, 119
Staphylococcus aureus as cause, 119
Toxic shock syndrome toxin, 117
Toxocara spp., 142
Toxocara canis, 143
Toxoplasma spp., 163
Toxoplasma gondii, 140
HIV and, 160
lab findings in, 637
as ToRCHeS infection, 165
treatments for, 641
Toxoplasmosis, 140
antimicrobial prophylaxis for, 181
calcification and, 220
congenital, presentation of, 630
vs. PCL, 400
pyrimethamine for, 183
trimethoprim prophylaxis for, 177
TP53 gene, 230
Trabecula
in lymph node, 190
in spleen, 191
Trabecular outflow, 483
Trachea
anatomy of, 609
bifurcation of, 609
in fetal development, 306
in respiratory tree, 608
Tracheoesophageal anomalies, 338
Tracheoesophageal fistula, 338
Tramadol, 499
seizures caused by, 253
Transcortical aphasia, 463
Transcription factor, 230
Transduction, 114
Transference, $\mathbf{5 0 8}$
Transferrin
as acute-phase reactant, 198
in anemia, 394
free radical elimination by, 221
lab values in anemia, 394
Transformation, 114
Transformation zone, 574
Transient arthritis, 130
Transient ischemic attacks
(TIAs), 407, 470
Transitional cell carcinomas, 231, 551
Transition metals, free radical injuries and, 221
Transition (mutation), 52
Transjugular intrahepatic
portosystemic shunt
(TIPS), 344
Transketolase
in metabolic pathways, 85
vitamin $B_{1}$ and, 77
Transpeptidases, 170
Transposition, 114
Transposition of great vessels, 263, 282
cyanosis caused by, 642
diabetes in pregnancy as cause, 284
Transsexualism, 520
Transtentorial herniation, 498

Transthyretin gene, 225
Transudate pleural effusion, 623
Transudate, vs. exudate, 224
Transversalis fascia, 339, 348
Transverse sinus, 470
Transversion (mutation), 52
Transversus abdominis muscle, 348
Transvestism, 520
Tr antigens, 229
Tranylcypromine, 528
Trapezium bone, 418
Trapezoid bone, 418
TRAP stain, 402
Trastuzumab, 214, 413
for breast cancer, 639
toxicities of, 413
Trauma
DIC and, 643
pneumothorax caused by, 623
Traumatic aortic rupture, 286
Traumatic pneumothorax, 623
Travelers' diarrhea, 128
Trazodone, 528
mechanism of, 526
priapism caused by, 597
Treacher Collins syndrome, 569
Trematodes, 144
Tremor
immunosuppressants as cause, 212
resting, 461, 633
Trench fever, 145
Trendelenburg sign, 422
Treponema spp., 130
Treponema pallidum
granulomatous diseases caused by, 223
penicillin G/V for, 170
presentation of, 632
as STI, 167
syphilis caused by, 131
treatments for, 641
TRH. See Thyrotropin-releasing hormone (TRH)
Triamcinolone, 336, 446. See also Glucocorticoids
Triamterene, 537, 558
Triazolam, 501
Triceps reflex, 476
Trichinella spp., 142
Trichinella spiralis, 143, 145
Trichinosis, 143
Trichomonas spp.
metronidazole for, 178
vaginitis caused by, 164
Trichomonas vaginalis, 142
as STI, 167
treatments for, 641
Trichomoniasis, 167
Trichophyton spp., 136
Tricuspid atresia, 263, 282
Tricuspid insufficiency, 270
Tricuspid regurgitation
carcinoid syndrome as cause, 332
Ebstein anomaly and, 282
heart murmurs caused by, 273
holosystolic murmur and, 643
pansystolic murmur in, 272

Tricuspid stenosis, 272
Tricuspid valve endocarditis, 293, 643
Tricyclic antidepressants (TCAs), 527
antimuscarinic reaction caused by, 254
for fibromyalgia, 435
for generalized anxiety disorder, 517
mechanism of, 526
naming convention for, 255
as noradrenergic drug, 243
serotonin syndrome caused by, 527
torsades de pointes caused by, 251
toxicity treatment for, 251
as weak bases, 238
Trientine, 371
Trifluoperazine, 525
Trigeminal nerve (5th cranial nerve), 479
as branchial arch derivative, 569 lesion in, 480
location in brain stem, 477
migraine headaches and, 494
pathway for, 478
in tongue, 452
Trigeminal neuralgia, 494
pain produced by, 494
treatments for, 641
Triglycerides, 105
in chylothorax, 623
insulin and, 308
in Von Gierke disease, 99
Trigone, 532
Triiodothyronine, 335. See also Thyroid hormones
Trimethoprim, 170, 177
folate deficiency caused by, 390
pyrimidine synthesis and, 49
as teratogen, 564
Trimming, in protein synthesis, 57
Trinucleotide repeat expansion diseases, $\mathbf{7 3}$
Triose kinase, 91
Triple-blinded studies, 32
Triptans, 505
angina caused by, 287
for migraine headaches, 494
Triquetrum bone, 418

## tRNA, 56

Trochlea, 488
Trochlear nerve (4th cranial nerve), 479
in cavernous sinus, 481
location in brain stem, 477
ocular motility and, 488
palsy of, 489
pathway for, 478
Tropheryma whipplei, 110, 358
Tropical sprue, 358
Tropicamide, 245
Troponin C, 424
Troponins
in MI, 289
in myocardial infarction, 287
Trousseau sign, 325, 542

Trousseau syndrome
lab findings in, 636
pancreatic cancer as cause, 373
as paraneoplastic syndrome, 229
True-negative rate, 33
True-positive rate, 33
Truncal ataxia, 459
Truncus arteriosus, 262
22qll syndromes as cause, 284
cyanosis caused by, 642
thymic aplasia as cause, 208
Trypanosoma brucei, 140, 183
Trypanosoma cruzi, 142
achalasia and, 354
nifurtimox for, 183
Trypanosomes, stain for, 110
Trypsin, 352
Trypsinogen, 352
Tryptase, 379
Tryptophan, 92, 94
TSC1/TSC2 genes, 230
Tsetse flies, as disease vectors, 140
TSH. See Thyroid-stimulating hormone (TSH)
$t$-tests, 39
T-tubule membrane, 424
Tubal ligation, 592
Tuberculoid Hansen disease, 125
Tuberculosis, 124
Addison disease caused by, 318
calcification in, 220
constrictive pericarditis and, 642
corticosteroids and, 313
erythema nodosum and, 444
as granulomatous disease, 223
isoniazid for, 180
macrophages and, 379
necrosis and, 217
presentation of, 124
primary and secondary, 124
silicosis and, 620
V/Q mismatch and, 614
Tuberin protein, 230
Tuberoinfundibular pathway, 458
Tuberous sclerosis, 495
autosomal dominance of, 71
tumor suppressor genes and, 230
Tubocurarine, 503
Tubular necrosis, 553
Tubulointerstitial inflammation
WBC casts in, 544
Tularemia, 132
Tumor lysis syndrome
gout and, 431
hyperkalemia caused by, 542
lab findings in, 636
rasburicase for, 448
Tumor markers, 232
for acute lymphoblastic leukemia, 402
for pancreatic adenocarcinomas, 373
Tumors
benign vs. malignant, 228
grade vs. stage, $\mathbf{2 2 8}$
nomenclature of, 228
TNM staging system for, 228

Tumor suppressor genes, 230
Tumor suppressors, 58
Tunica albuginea, 575, 597
Tunica muscularis externa, 341
Tunica serosa, 341
Tunica submucosa, 341
Tunica vaginalis, 573
Turcot syndrome, 363
Turner syndrome, 585
amenorrhea caused by, 645
cardiac defects associated with, 284
coarctation of aorta and, 283
cystic hygromas and, 441
GH for, 336
horseshoe kidney and, 531
presentation of, 634
T wave, in ECG, 276
21-hydroxylase, 312
21-hydroxylase deficiency, 642
22qll deletion syndromes, 76, 284
Twin concordance studies, 32
Twinning, 565
2-naphthylamine, 231
$\mathrm{TXA}_{2}$
aspirin effect on, 447
in platelet plug formation, 385
in thrombogenesis, 385
Type 1 muscle fibers, 424
Type 2 muscle fibers, 424
Type I errors in statistical hypothesis testing, 38
Type I hypersensitivity reactions, 204 to helminths, 142
IgE antibodies and, 197
mast cells and, 379
Type II errors in statistical hypothesis testing, 38
Type II hypersensitivity reactions, 204
to blood transfusions, 206
to helminths, 142
to organ transplants, 211
rheumatic fever as, 294
Type III hypersensitivity reactions, 205
acute poststreptococcal glomerulonephritis as, 546
C3 deficiency and, 199
to organ transplants, 211
Type III secretion system, 113
Type IV hypersensitivity reactions, 205
allergic contact dermatitis as, 440
graft-versus-host disease as, 211
Typhoid fever, 129
Typhus, 133
animal transmission of, 132
lice transmission of, 145
Tyramine, 243
Tyrosinase, 439
Tyrosine
derivatives of, 94
as noradrenergic drug, 243
Tyrosine catabolism, 95
Tyrosine kinase
as endocrine hormone messenger, 316
in glycogen regulation, 97
insulin and, 308
as oncogene product, 230
Tyrosinemia, 538
Tyrosine phosphorylation, 308
Tzanck test, 150

## U

Ubiquitination, 57
UDP-glucose pyrophosphorylase, 98
UDP-glucuronosyl-transferase, 353
Ulcerative colitis, 359
HLA-B27 and, 643
lab findings in, 636
spondyloarthritis and, 433
sulfasalazine for, 375
treatments for, 641
Ulcers
bismuth/sucralfate for, 375
complications of, $\mathbf{3 5 7}$
glucocorticoids as cause, 336
Helicobacter pylori as cause, 130
Ulipristal, 602
Ulnar claw, 419, 421
Ulnar nerve, 418, 419
Ulnar nerve injury, 418, 421
Umbilical artery, 264, 566, 567
Umbilical cord, 567
Umbilical vein, 566, 567
blood in, 264
postnatal derivative of, 264
Umbilicus, 344
Umbliical cord separation delay, 209
UMP synthase, 390
Unambiguous genetic code, 50
Uncal herniation, 498
Uncinate process, 339
Unconjugated
hyperbilirubinemia, 369
Uncoupling agents, 89
Uncus, 498
Undifferentiated thyroid carcinomas, 324
Undulant fever, 132
"Unhappy triad" in knee injuries, 417
Unilateral renal agenesis, 531
Uniparental disomy, 69
Universal electron acceptors, 86
Universal genetic code, 50
Unnecessary procedures desired by patient, 42
Unstable angina, 287, 290
Unvaccinated children, 169
Upper extremity nerves, 419
Upper motor neuron (UMN) lesions, 480, 632
Upper respiratory infections (URIs)
asthma triggered by, 618
rhinosinusitis caused by, 616
Urachal cysts, 567
Urachus, 264, 567
Uracil, 49
Urea, 94
Urea cycle, 93
diagram of, 85
location of in cell, 83
ornithine transcarbamylase deficiency and, 94
rate-determining enzyme for, 84

## INDEX

Ureaplasma spp.
morphology of, 109
as urease-positive organism, 112
Urease, 164
Urease-positive organisms, 112
Uremia
acute pericarditis caused by, 294
acute respiratory distress syndrome as cause, 621
metabolic acidosis as cause, 543
renal failure as cause, 553
Ureter, 532, 571, 575
anatomy of, 574
constriction of, 535
course of, 532
in horseshoe kidney, 531
transitional cell carcinoma in, 551
Y-shaped bifid, 531
Ureteral orifice, 532
Ureteric bud
bifurcation of, 531
development problems, 531
Ureteropelvic junction obstruction, 531
Urethra, 575
benign prostatic hyperplasia and, 599
injury to, 575
Urethral orifice, 532
Urethritis
chlamydia as cause, 134,167
Chlamydia trachomatis as cause, 134
gonorrhea as cause, 167
LMN facial nerve palsy as cause, 634
in reactive arthritis, 433
Ureteropelvic junction, 530
Urge incontinence, 551
drug therapy for, 245
Uric acid
in gout, 448
in Von Gierke disease, 99
Urinary incontinence, 551
drug therapy for, 245
ephedrine for, 246
hydrocephalus as cause, 471
multiple sclerosis as cause, 492
Urinary retention
atropine as cause, 245
bethanechol for, 244
delirium caused by, 512
neostigmine for, 244
tricyclic antidepressants as cause, 527
Urinary tract infections (UTIs), 164, 552
antimicrobial prophylaxis for, 181
BPH as cause, 599
duplex collecting system and, 531
enterococci as cause, 121
key associations, 646
Klebsiella as cause, 128
organisms causing, 164
prophylaxis for, 641
Pseudomonas aeruginosa and, 127
pyelonephritis caused by, 552

SGLT-2 inhibitors as cause, 335
Staphylococcus saprophyticus as cause, 120
sulfa drug allergies as cause, 254
sulfonamides for, 177
TMP-SMX for, 177
Urinary tract obstructions, 644
Urine
bilirubin and, 353
casts in, $\mathbf{5 4 4}$
concentration of, 537
diuretics, effect on, 558
Urine pH , and drug elimination, 238
Urobilin, 353
Urobilinogen
in extravascular hemolysis, 391
intravascular hemolysis as cause, 391
Urogenital fold, 572
Urogenital sinus, 530
Uroporphyrinogen decarboxylase, 395
Urosepsis, 552
Ursodiol, 376
Utticaria, 440
ethosuximide as cause, 500
scombroid poisoning as cause, 250
serum sickness as cause, 205
as skin wheals, 438
sulfa drug allergies as cause, 254
as type I hypersensitivity reaction, 204
USMLE Step 1 exam
check-in process, 8
clinical vignette strategies, 20
content areas covered in, 3
failing, 21-22
goal-setting for, 12
leaving exam early, 8
overview of, 2
passing rates for, 10
practice exams for, 10, 18-19
registering for, 5-6, 7
rescheduling, 6
score notifications for, 7
scoring of, 9-10
studying for, 12-13, 14-17, 18-19
testing agencies, 22
testing locations, 7
test-taking strategies, 19-20
time budgeting during, 7-8
types of questions on, 8
Uterine artery, 532, 574
Uterine fibroids, 640
Uteroplacental insufficiency, 590
Uterus
anomalies of, $\mathbf{5 7 2}$
collagen in, 61
epithelial histology of, 574
in genital embryology, 571
zygote implantation in, 580
Uterus didelphys, 572
Uveitis, 484
Crohn disease as cause, 359
sarcoidosis as cause, 435, 630
seronegative spondyloarthritis as cause, 433
ulcerative colitis as cause, 359

Uveoscleral outflow, 483
Uvula, in cleft palate, 570
U wave, in ECG, 276

## v

Vaccines, 203
for Bordetella pertussis, 127
for diphtheria, 123
for encapsulated bacteria, 112
for Haemophilus influenzae, 126, 163
inactivated, 203
live attenuated, 146, 203
organisms affecting unvaccinated children, 169
for rabies, 155
for rotavirus, 152
for Salmonella typhi, 129
for tetanus, 122
viral, 146
Vagal nuclei, 479
Vagina
anatomy of, 574
epithelial histology of, 574
in genital embryology, 571
Vaginal atrophy
hormone replacement therapy for, 601
menopause as cause, 582
Vaginal bleeding
cervical cancer as cause, 591
endometrial cancer as cause, 594
endometrial hyperplasia as cause, 594
endometriosis as cause, 594
granulosa cell tumors as cause, 593
hydatidiform moles as cause, 587
thecomas as cause, 592
Vaginal candidiasis
nystatin for, 182
SGLT-2 inhibitors as cause, 335
Vaginal clear cell adenocarcinomas, 564
Vaginal epithelial stippling, 638
Vaginal infections, 164
Vaginal tumors, 591
Vaginismus, 520
Vaginitis, 142
treatment for, 639
Trichomonas as cause, 164
trichomoniasis as cause, 167
Vagus nerve (10th cranial nerve), 479
baroreceptors/chemoreceptors and, 279
as branchial arch derivative, 569
lesion in, 480
location in brain stem, 477
location of in gastrointestinal system, 351
pathway for, 478
in tongue, 452
Valacyclovir, 184
Validity, 35
Valine, 92,95
Valproate
for migraine headaches, 494
as teratogen, 564
for tonic-clonic seizures, 641

Valproic acid
for bipolar disorder, 515, 524, 638
for epilepsy, 500
necrosis caused by, 252
pancreatitis caused by, 252
Valsalva maneuver, effect on
auscultation, 272
Valsartan, 559
Valvular dysfunction, 292
Vancomycin, 173
for Clostridium difficile, 122, 639
cutaneous flushing caused by, 251
for enterococci, 639
functioning of, 170
for meningitis, 163
for MRSA, 181
for Staphylococcus aureus, 641
for Streptococcus preumoniae, 641
toxicity caused by, 254
Vanillylmandelic acid (VMA)
in neuroblastomas, 319
in tyrosine catabolism, 95
Vanishing bile duct syndrome, 211
Vardenafil, 603, 639
Varenicline, 522, 528
Variable expressivity, 68
Variance, 37
Variant angina, 287
Variceal bleeding, 249
Varicella zoster virus (VZV), 146, 149, 442
guanosine analogs for, 184
in immunodeficient patients, 210
live attenuated vaccine for, 146
meningitis caused by, 163
passive antibodies for, 203
rash caused by, 166
Reye syndrome and, 366
as skin vesicles, 438
vaccine for, 203
Varices, in Budd-Chiari syndrome, 368
Varicocelectomy, 597
Varicoceles, 576, 597
Vasa previa, 589
Vasa vasorum
aortic aneurysms and, 641
syphilis and, 131
Vascular dementia, 491
Vascular function curves, 269
Vascular inflammation, 219
Vascular tumors of skin, 441
Vasculitides, 296-297
Vasculitis
intraparenchymal hemorrhage caused by, 469
methotrexate for, 409
Vas deferens, 532, 571, 575
Vasoactive intestinal polypeptide
(VIP), 350
Vasoconstriction, 540
Vasoconstrictors, 503
Vasodilation
cilostazol/dipyridamole for, 407
sympathetic receptors and, 242
Vasodilators
afterload, effect on, 267
for aortic dissections, 287
atrial natriuretic peptide as, 279
for coronary steal syndrome, 287
nitrates as, 299
Vasogenic edema, 455
Vasopressin. See Antidiuretic hormone (ADH)
Vasopressin receptors, 242
V(D)J recombination, 192
VDRL false positives, 131
Vecuronium, 503
Veganism, $\mathrm{B}_{12}$ deficiency caused by, 80, 390
VEGF (vascular endothelial growth factor), 223
Velocardiofacial syndrome, 76
Vemurafenib, 413, 445
Venlafaxine, 527
conditions used for, 524
for panic disorder, 517
for phobias, 517
for PTSD, 517
Venodilators, 267
Venous gonadal drainage, 573
Venous return, 269
Venous sinus thrombosis, 470
Venous thromboembolism, 406
Venous thrombosis, 392
Ventilation, 610
high altitude and, 615
perfusion and, 614
Ventral lateral (VL) nucleus, 458
Ventral pancreatic bud, 339
Ventral posterolateral (VPL) nucleus, 458
Ventral posteromedial (VPM) nucleus, 458
Ventricles
embryology, 262
morphogenesis of, 263
Ventricular arrhythmia, 288
Ventricular fibrillation
ECG tracing for, 278
torsades de pointes as precursor, 277
Ventricular septal defect (VSD), 263, 283, 642
congenital rubella as cause, 284
cri-du-chat syndrome as cause, 75
cyanosis caused by, 642
Down syndrome as cause, 284
fetal alcohol syndrome as cause, 284
heart murmurs caused by, 273
holosystolic murmur and, 643
pansystolic murmur in, 272
Ventricular system, 471
Ventriculomegaly, 514
Ventromedial area of hypothalamus, 456
Verapamil, 298, 299, 304, 494
Vermal cortex lesions, 459
Verrucae, 440
Vertebrae, and diaphragm, 609
Vertebral artery, 466
Vertebral compression fractures, 426, 646

## Vertigo, 495

Meniere disease as cause, 631
streptomycin as cause, 180
Vesamicol, 243
Vesicles, 438
Vesicourachal diverticulum, 567
Vesicoureteral reflux
hydronephrosis caused by, 550
pyelonephritis and, 552
Vesicular trafficking proteins, 59
Vestibular bulbs, 572
Vestibular schwannomas, 453
Vestibulocochlear nerve (8th cranial nerve), 479
acoustic neuromas and, 453
location in brain stem, 477
pathway for, 478
schwannomas and, 496
VHL gene, 230
pheochromocytomas and, 320
von Hippel-Lindau disease and, 71
Vibrio spp., 109
Vibrio cholerae, 129
exotoxin produced by, 116
in Gram-negative algorithm, 125
watery diarrhea caused by, 162
Vibrio parahaemolyticus, 161
Vibrio vulnificus, 161
Vigabatrin, 500
Vimentin
as cytoskeletal element, 60
as stain, 60
Vinblastine, 411
in cell cycle, 408
microtubules and, 60
Vinca alkaloids, 408
Vincristine, 411
in cell cycle, 408
microtubules and, 60
toxicities of, 413
Vinyl chloride
angiosarcomas caused by, 368, 441
as carcinogen, 231
VIPomas, 350
MEN 1 syndrome as cause, 333
octreotide for, 375
Viral encephalitis, 646
Viral envelopes, 147
Virchow nodes, 356, 631
Virchow triad, 616, 643
Viridans streptococci, 118, 120
$\alpha$-hemolytic nature of, 119
bacterial endocarditis caused by, 293
biofilm produced by, 113
brain abscesses caused by, 163
as normal flora, 161
Virilization, 312
Virology, 146-161
Viruses, 146-161
enveloped, 146
genetics of, 146
immunocompromised patients and, 162
negative-stranded, 152
pneumonia caused by, 162
receptors for, 150
replication of, 147
segmented, 152
structure of, 146
vaccines for, 146
watery diarrhea caused by, 162
Visceral larva migrans, 143
Visceral leishmaniasis, 142
Vision loss
hyperammonemia as cause, 93
retinal detachment as cause, 485
Visual cortex, 462, 467
Visual field defects, 489
Visual hallucinations, 513
Vital capacity (VC), 610
Vitamin A (retinol), 77
fat solubility of, 76
free radical elimination by, 221
pseudotumor cerebri and, 471
as teratogen, 564
Vitamin $B_{1}$ deficiency
brain lesions and, 464
dementia caused by, 491
Korsakoff syndrome caused by, 512
Wernicke-Korsakoff syndrome caused by, 523
Vitamin $\mathrm{B}_{1}$ (thiamine), 77
pyruvate dehydrogenase complex and, 87
water solubility of, 76
Vitamin $\mathrm{B}_{2}$ (riboflavin), 78
pyruvate dehydrogenase complex and, 87
water solubility of, 76
Vitamin $B_{3}$ deficiency, 491
Vitamin $B_{3}$ (niacin), 78
derivatives of, 94
as lipid-lowering agent, 300
pyruvate dehydrogenase complex and, 87
vitamin $\mathrm{B}_{6}$ and, 78
water solubility of, 76
Vitamin $B_{5}$ (pantothenic acid), $\mathbf{7 8}$
pyruvate dehydrogenase complex and, 87
water solubility of, 76
Vitamin $\mathrm{B}_{6}$ deficiency, 389
isoniazid as cause, 180
Vitamin $\mathrm{B}_{6}$ (pyridoxine), 76, 78
Vitamin $B_{7}$ (biotin), 76, 79
Vitamin $B_{9}$ deficiency, 390
in anemia taxonomy, 388
neutrophils in, 378
Vitamin $\mathrm{B}_{9}$ (folate), 79
absorption of, 352
deficiency in, 646
water solubility of, 76
Vitamin $\mathrm{B}_{12}$ (cobalamin), 80
absorption of, 352
water solubility of, 76
Vitamin $B_{12}$ deficiency, 390
in anemia taxonomy, 388
dementia caused by, 491, 513
Diphyllobothrium latum as cause, 144, 145
neutrophils in, 378
spinal cord lesions in, 474
Vitamin $\mathrm{B}_{1}$ (thiamine)
for maple syrup urine disease, 95

Vitamin $\mathrm{B}_{6}$
isoniazid and, 180
for sideroblastic anemia, 389
Vitamin C (ascorbic acid), 80
free radical elimination by, 221
for methemoglobinemia, 612
for methemoglobin toxicity, 251
water solubility of, 76
Vitamin D, 81, 313. See also Cholecalciferol
fat solubility of, 76
function of, 314
for osteomalacia/rickets, 640
for osteoporosis prophylaxis, 426
for osteoporosis, 640
PTH and, 314
signaling pathways for, 316
Vitamin D deficiency, 313, 325
hyperparathyroidism caused by, 428
osteomalacia/rickets caused by, 427
Vitamin deficiencies, 646
Vitamin E, 81
fat solubility of, 76
free radical elimination by, 221
Vitamin K, 81
in coagulation cascade, 384
fat solubility of, 76
for warfarin reversal, 641
for warfarin toxicity, 251, 406
Vitamin K deficiency, 384, 396
cephalosporins as cause, 172
Vitamin/mineral absorption, 352
Vitamins, 76-82
fat-soluble, 76
water-soluble, 76
Vitelline duct, 567
Vitelline fistula, 567
Vitiligo, 439
Vitreous bodies, collagen in, 61
Vitreous chamber, 482
VLDL (very low-density
lipoprotein), 105
Volume of distribution, 237, 646
Volvulus, 362
malrotation as cause, 361
Meckel diverticulum as cause, 361
Vomiting
arsenic toxicity as cause, 87
diabetic ketoacidosis as cause, 331
fructose intolerance as cause, 91
hyperammonemia as cause, 93
iron poisoning as cause, 396
Mallory-Weiss syndrome as cause, 354
maple syrup urine disease as cause, 95
medium-chain acyl-CoA dehydrogenase deficiency as cause, 101
metabolic alkalosis caused by, 543
metoclopramide for, 376
MI as cause, 288
in neonates, 339
ondansetron for, 376
Reye syndrome as cause, 366
trichinosis as cause, 143
vitamin C toxicity as cause, 80

Von Gierke disease, 99
gout and, 431
presentation of, 632
Von Hippel-Lindau disease, 495 autosomal dominance of, 71
chromosome associated with, 75
hemangioblastomas and, 496 presentation of, 633
renal cell carcinoma and, 550
renal tumors and, 645
tumor suppressor genes and, 230
Von Willebrand disease, 385, 643
Voriconazole, 181, 182
V/Q mismatch, 614, 617
V/Q ratio, 615
VRE (vancomycin-resistant enterococci), 121
antimicrobials for, 181
daptomycin for, 178
oxazolidinones for, 176
$\mathrm{V}_{\text {max }}, 236$
Vulnerable child syndrome, 510
Vulva, lymphatic drainage of, 573
Vulvovaginitis, 137, 164
vWF
in platelet plug formation, 385
receptor for, 378
in thrombocytes, 378
in thrombogenesis, 385

## W

WAGR complex, 551
"Waiter's tip" (Erb palsy), 420
Waiver to informed consent, 40
Waiving right to confidentiality, 41
Waldenström macroglobulinemia
lab findings in, 637
vs. multiple myeloma, 401
Walking, as developmental milestone, 43
Walking pneumonia, 134
Wallenberg syndrome, 467
Wallerian degeneration of neurons, 453
Wall tension, 267
Warfarin, 406
in coagulation cascade, 384
cytochrome P-450 and, 254
for deep venous thrombosis, 616
griseofulvin and, 183
vs. heparin, 406
for long-term anticoagulation, 640
reversal of, 641
as teratogen, 564
therapeutic index value of, 240
toxicity treatment for, 251, 399
as vitamin K antagonist, 81
Warm autoimmune hemolytic anemia, 393
Warthin-Finkeldey giant cells, 154
Warthin tumors, 353
WAS gene, 209
Waterhouse-Friderichsen syndrome, 318
meningococci as cause, 126
presentation of, 630
Watershed zones, 218, 466
Water-soluble vitamins, 76

Waxy casts, 544, 638
Weakness, as motor neuron sign, 473
Wegener granulomatosis, 296
autoantibody associated with, 207
as granulomatous disease, 223
lab findings in, 634, 637
as restrictive lung disease, 619
RPGN and, 546
treatments for, 639
Weibel-Palade bodies
in platelet plug formation, 385
Weight gain
atypical antipsychotics as cause, 525
Cushing syndrome as cause, 317
danazol as cause, 602
duodenal ulcers as cause, 357
glitazone/thiazolidinediones as cause, 334
hypothyroidism as cause, 321
major depressive disorder as cause, 515
mirtazapine as cause, 528
prednisone as cause, 412
sulfonylureas as cause, 334
valproic acid as cause, 500
Weight loss
adrenal insufficiency as cause, 318
anorexia nervosa as cause, 520
cholelithiasis and, 372
chronic mesenteric ischemia as cause, 362
colorectal cancer as cause, 364
diabetes mellitus as cause, 330
esophageal cancer as cause, 355
gastric ulcers as cause, 357
hyperthyroidism as cause, 321
lymphoma as cause, 631
major depressive disorder as cause, 515
malabsorption syndromes as cause, 358
metformin as cause, 334
orlistat for, 376
pancreatic cancer as cause, 373
for PCOS, 591
polyarteritis nodosa as cause, 296
polymyalgia rheumatica as cause, 435
for pseudotumor cerebri, 471
renal cell carcinoma as cause, 550
for sleep apnea, 621
stomach cancer as cause, 356
for stress incontinence, 551
tuberculosis as cause, 124
Whipple disease as cause, 634
Weil disease, 130
Wenckebach AV block, 278
Wernicke aphasia, 463
Wernicke area, 462
aphasia and, 463
stroke effects, 467
Wernicke encephalopathy, 523
mammillary bodies and, 641
Wernicke-Korsakoff syndrome, 464, 523
vitamin $B_{1}$ deficiency as cause, 77

Western blot, 65
HIV diagnosis with, 158
Western equine encephalitis, 151
West Nile virus, 151
meningitis caused by, 163
Wet beriberi, 77
presentation of, 631
Wharton jelly, 567
Wheals, 438
Wheezing
asthma as cause, 618
bronchial carcinoid tumor as cause, 626
lung cancer as cause, 626
Whipple disease, 358
periodic acid-Schiff stain for, 110
presentation of, 634
Whipple procedure
for pancreatic cancer, 373
White pulp, in spleen, 191
Whooping cough
Bordetella pertussis as cause, 127 pertussis toxin and, 116
Wickham striae, 444
Wide splitting, 271
Williams syndrome, 75
cardiac defects associated with, 284
chromosome associated with, 75
Wilms tumor, 551
chromosome associated with, 75
dactinomycin for, 410
vs. neuroblastomas, 319
tumor suppressor genes and, 230
Wilson disease, 371
chromosome associated with, 75
dementia caused by, 491
Fanconi syndrome caused by, 538
free radical injury and, 221
lab findings in, 637
liver cancer and, 645
presentation of, 631
Winged scapula, 420
Winters formula, 543, 647
Wiskott-Aldrich syndrome, 209
lab findings in, 637
as X-linked recessive disorder, 72
Wnt-7 gene, 562
Wobble, tRNA, 56
Wolff-Chaikoff effect, 315, 322.
See also Jod-Basedow phenomenon
Wolffian duct, 571
Wolff-Parkinson-White syndrome, 277, 635
Wound healing, 223
Woven bone, 425
Wright-Giemsa stain, 378
Wright stain, 130
Wrinkles of aging, 64
Wrist bones, 418
Wrist drop
lead poisoning as cause, 389
radial nerve injury as cause, 419
Writer's cramp, 461
Written advance directives, 41
WT1/WT2 genes, 230
Wuchereria bancrofti, 142, 143

## X

Xanthine, 448
Xanthine oxidase, 448
Xanthine oxidase inhibitors, 431, 639
Xanthochromia, 638
Xanthochromic spinal tap, 469
Xanthogranulomatous pyelonephritis, 552
Xanthomas
hyperchylomicronemia as cause, 105
hyperlipidemia as cause, 285
Xenografts, 210
Xeroderma pigmentosum, 53
Xerosis cutis, 77
Xerostomia, 244
Xerostomia, in Sjögren syndrome, 432
X-linked agammaglobulinemia, 208
X-linked dominant inheritance, 70
X-linked recessive inheritance, 70
X-rays, teratogenic effects of, 564

## $\mathbf{Y}$

Yellow cerebrospinal fluid, 638
Yellow fever, 151, 152
live attenuated vaccine for, 146
liver anatomy and, 346
vaccine for, 203
Yellow spinal tap, 635
Yersinia spp.
in Gram-negative algorithm, 125
morphology of, 109
reactive arthritis and, 433
Yersinia enterocolitica, 129, 162
Yersinia pestis
animal transmission of, 132
as intracellular organism, 112
Yo antigens, 229
Yolk sac tumors, 593, 598

## Z

Zafirlukast, 628
arachidonic acid pathway and, 446
Zaleplon, 501
Zanamivir, 184
for influenza, 640
Zenker diverticulum, 361, 643
Zero-order elimination, 238
Zidovudine, 184, 186
Ziehl-Neelsen stain, 110
Zileuton, 446, 628
Zinc, 82
for Wilson disease, 371
Ziprasidone, 525
Zoledronic acid, 447
Zollinger-Ellison syndrome, 332, 645
duodenal ulcers caused by, 357
gastrin in, 350
MEN 1 syndrome as cause, 333
proton pump inhibitors for, 374
Zolpidem, 501
Zona fasciculata, 306, 313
Zona glomerulosa, 306
Zona reticularis, 306
Zonular fibers, 482
Zoonotic bacteria, 132
Zymogens, 352

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

## About the Editors



Tao Le, MD, MHS
Tao developed a passion for medical education as a medical student. He currently edits more than 15 titles in the First Aid series. In addition, he is the founder and editor of the USMLE-Rx test bank and online video series as well as a cofounder of the Underground Clinical Vignettes series. As a medical student, he was editor-in-chief of the University of California, San Francisco (UCSF) Synapse, a university newspaper with a weekly circulation of 9000. Tao earned his medical degree from UCSF in 1996 and completed his residency training in internal medicine at Yale University and fellowship training at Johns Hopkins University. Tao subsequently went on to cofound Medsn, a medical education technology venture, and served as its chief medical officer. He is currently conducting research in asthma education at the University of Louisville.


## Matthew Sochat, MD

Matthew is a second-year internal medicine resident at Temple University Hospital in Philadelphia. He completed medical school in 2013 at Brown University and is a 2008 graduate of the University of Massachusetts, Amherst, where he studied biochemistry and the classics. Pastimes include skiing, cooking/baking, traveling, the company of friends/ loved ones, the Spanish language, and computer/video gaming. Be warned: Matt also loves to come up with corny jokes at (in)opportune moments.


## Francis Deng

Francis is a fourth-year medical student at Washington University in St. Louis, where he was elected to the Alpha Omega Alpha honor society. He earned his bachelor degree in human developmental and regenerative biology from Harvard College, graduating Phi Beta Kappa and magna cum laude. Francis serves on the Board of Directors of the National Resident Matching Program and is a Match applicant in diagnostic radiology.


## Kimberly Kallianos, MD

Originally from Atlanta, Kimberly graduated from the University of North Carolina at Chapel Hill in 2006 and from Harvard Medical School in 2011. She is a fourthyear radiology resident at the University of California, San Francisco and will complete a fellowship in cardiac and pulmonary imaging at UCSF from 2016 to 2017.


## Vikas Bhushan, MD

Vikas is a writer, editor, entrepreneur, and teleradiologist on sabbatical. In 1990 he conceived and authored the original First Aid for the USMLE Step 1. His entrepreneurial endeavors include a student-focused medical publisher (S2S), an e-learning company (medschool.com/Medsn), and an ER teleradiology practice (24/7 Radiology). Firmly anchored to the Left Coast, Vikas completed a bachelor's degree at the University of California Berkeley; an MD with thesis at UCSF; and a diagnostic radiology residency at UCLA. His eclectic interests include technology, information design, photography, South Asian diasporic culture, and avoiding a day job. Always finding the long shortcut, Vikas is an adventurer, knowledge seeker, and occasional innovator. He enjoys novice status as a kiteboarder and single father, and strives to raise his children as global citizens.


## Yash Chavda, DO

Yash is an emergency medicine resident at St. Barnabas Hospital in the Bronx. He earned his medical degree from NYIT College of Osteopathic Medicine, and completed his undergraduate degrees in biology and psychology at CUNY Baruch College in 2010. Yash has many interests outside of medicine and enjoys spending time with his loved ones. He is a developing photographer, former web/graphic designer (who still dabbles), video gamer, foodie, and avid explorer who wants to travel the world (whenever he actually gets a chance). He hopes to always keep improving at everything he does.


## Mehboob Kalani, MD

Mehboob is a first-year internal medicine resident at Allegheny Health Network Medical Education Consortium in Pittsburgh. He was born in Karachi, Pakistan, grew up in Toronto, Canada, and pursued medicine upon completing high school. He earned his premedical and medical degrees at American University of Integrative Sciences in 2015. After residency, his interests lie in pulmonary critical care medicine, and he is researching COPD exacerbation treatment and readmission rates. In his limited leisure time, Mehboob enjoys playing or watching soccer, long drives, and family gatherings.


## Patrick Sylvester, MD

Patrick is a resident at The Ohio State University, where he is completing a combined residency program in internal medicine and emergency medicine. Originally from Illinois, he completed his undergraduate studies at the University of Illinois at Urbana-Champaign before moving to Columbus, where he completed medical school at OSU. Outside of medicine, Patrick enjoys home improvement projects, cooking, and spending time with his infinitely patient wife and their dog, Chief.


[^0]:    - Test scheduling is done on a "first-come, first-served" basis. It's important to call and schedule an exam date as soon as you receive your scheduling permit.

[^1]:    - Be careful to watch the clock on your break time.

[^2]:    - Nearly three fourths of Step 1 questions begin with a description of a patient.

[^3]:    - Time management is an important skill for exam success.

[^4]:    - Ifyou pass Step 1 (score of 192 or above), you are not allowed to retake the exam.

[^5]:    Both
    Heme synthesis, Urea cycle, Gluconeogenesis. HUGs take two (ie, both).

[^6]:    $\downarrow$ heme $\rightarrow \uparrow$ ALA syn hase activity
    $\uparrow$ heme $\rightarrow \downarrow$ ALA syn hase activity

[^7]:    Hormone replacement Used for relief or prevention of menopausal symptoms (eg, hot flashes, vaginal atrophy), therapy
    osteoporosis ( $\uparrow$ estrogen, $\downarrow$ osteoclast activity).
    Unopposed estrogen replacement therapy $\uparrow$ risk of endometrial cancer, so progesterone is added. Possible increased cardiovascular risk.

