
1

Horizon-Based Indirect Lighting (HBIL)

The ideal companion for your far-field indirect lighting solution.

March 2018 – Benoît “Patapom” Mayaux

b.mayaux@gmail.com

mailto:b.mayaux@gmail.com

2

In the following document, vectors will be written in boldface characters (e.g. 𝒙, 𝛚𝐢), world-space vectors will be

noted as a hat vector (e.g. 𝛚̂𝐨, 𝒙̂) and scalar values will use regular characters (e.g. 𝑎, 𝜋, 𝜃).

The spherical coordinates used throughout the paper have an elevation angle 𝜃 aligned with the vertical Z axis, and an

azimuthal angle 𝜑 lying in the tangent plane measured from axis X:

FIGURE 1. THE FRAME FOR SPHERICAL COORDINATES USED IN THIS PAPER.

1. Introduction

In this paper we are presenting a new real-time, screen-space technique that can be easily integrated into existing

rendering pipelines and that drastically improves the quality of the lighting by adding an important near-field

illumination term. It exploits a reprojection of the radiance from one frame to another to provide a theoretically

infinite amount of light bounces and at the same time keeps a tight frame budget since it basically relies on the same

foundation as the Horizon-Based Ambient Occlusion (HBAO) technique introduced by Bavoil et al. [1] except it uses

the information gathered while computing the horizon to its maximum potential.

HBAO already improves upon the traditional Ambient Occlusion integral by skipping the computation of rays that

wouldn’t contribute to the visibility term because they are below the geometric horizon and would therefore intersect

the nearby geometry:

3

FIGURE 2. THE HBAO ALGORITHM IS EXPLOITING THE FULL VISIBILITY OF THE HORIZON CONE OF ANGLE

𝛼: WE KNOW ALL THE GREEN RAYS INSIDE THE CONE ESCAPE THE SURFACE OF THE HEIGHTFIELD AND ARE

THE ONLY ONES ACTUALLY CONTRIBUTING TO THE VISIBILITY TERM. THE RED RAYS, BELOW THE

GEOMETRIC HORIZON HIT THE HEIGHT FIELD AND BRING NO ACTUAL CONTRIBUTION TO VISIBILITY.

The ambient occlusion term is normally written:

𝐴𝑂(𝒙) =
1

2𝜋
∫ V(𝒙, 𝛚𝐢) ⅆωi

Ω+
 (𝟏)

With:

• 𝒙 the location of the pixel for which we are calculating the AO

• 𝛚𝐢 the incoming ray direction

• Ω+ the upper hemisphere of directions whose solid angle is 2𝜋

• ⅆωi the portion of solid angle covered by the 𝛚𝐢 vector

• V(𝒙, 𝛚𝐢) the visibility term returning 1 if the ray escapes to infinity, 0 if the ray intersects the heightfield

4

Thanks to HBAO, it gets simplified into:

𝐴𝑂(𝒙) =
1

2𝜋
∫ ∫ sin(𝜃) ⅆ𝜃

𝜃ℎ(𝜑)

0

2𝜋

0

ⅆ𝜑

Where 𝜃ℎ(𝜑) is the horizon angle for each azimuthal direction 𝜑.

This technique allows us to avoid tracing rays for the entire hemisphere, instead we simply need to determine the

horizon angle 𝜃ℎ(𝜑) for a particular azimuthal angle 𝜑 by sampling the height field in screen space:

FIGURE 3. THE HEIGHTFIELD IS SAMPLED ALONG THE X DIRECTION AND THE HORIZON IS UPDATED

ALONG THE WAY BY REDUCING THE HORIZON ANGLE 𝜃ℎ EACH TIME.

The portion of AO computed by the inner integral is then:

∫ sin(𝜃) ⅆ𝜃
𝜃ℎ(𝜑)

0

= 1 − cos(𝜃ℎ(𝜑))

And so, the final expression for the AO becomes:

𝐴𝑂(𝒙) = 1 −
1

2𝜋
∫ cos(𝜃ℎ(𝜑)) ⅆ𝜑

2𝜋

0

5

At runtime, the integral is discretized into a series of 𝑆 azimuthal “slices” for which we must find the horizon angle:

𝐴𝑂(𝒙) ≈ 1 −
1

𝑆
∑ cos(𝜃ℎ(𝜑))

𝑆

1.1. Camera Spaces

When computing HBAO, we are actually dealing with two different camera spaces:

• The global camera space given by our standard view transform where 𝑿̂, 𝒀̂, 𝒁̂ are the world-space camera

“right”, “up” and “at” vectors respectively.

• The local camera space that is reconstructed from the view vector and the camera’s up vector.

FIGURE 4. THE LOCAL AND GLOBAL CAMERA SPACES. IN ORDER TO AVOID CAMERA-SPACE NORMAL

VECTORS WITH NEGATIVE Z COMPONENTS, A LOCAL CAMERA SPACE CENTERED ON THE SAMPLING

LOCATION 𝒙̂ IS RECONSTRUCTED FROM THE LOCAL VIEW VECTOR 𝝎̂𝒐 .

In order to avoid getting a camera-space normal with a negative z component, we must construct a “local” camera

space specifically for our sampling location 𝒙̂:

6

𝝎̂𝒙 =
𝒀̂ × 𝝎̂𝒐

‖𝒀̂ × 𝝎̂𝒐‖

𝝎̂𝒚 = 𝝎̂𝒐 × 𝝎̂𝒙

Where:

• 𝝎̂𝒐 =
𝒙̂𝒄−𝒙̂

‖𝒙̂𝒄−𝒙̂‖
 is the normalized local view vector pointing from our world-space location 𝒙̂ toward the world-

space camera position 𝒙̂𝒄

• 𝝎̂𝒙, 𝝎̂𝒚 are the reconstructed local “right” and “up” vectors respectively

1.2. Slice Space

The local camera space being setup, this will serve as our working reference frame where we can start subdividing the

hemisphere of the HBAO algorithm into multiple slices, as shown in the figure below:

FIGURE 5. THE HEMISPHERE OF DIRECTIONS FROM EQUATION (1) IS SUBDIVIDED INTO MULTIPLE SLICES.

EACH SLICE’S TANGENT DIRECTION IS GIVEN BY THE WORLD VECTOR 𝑫̂(𝜑).

7

We will subdivide the hemisphere Ω+ into multiple azimuthal slices whose tangent directions are given by:

𝑫̂(𝜑) = cos(𝜑) 𝝎̂𝒙 + sin(𝜑) 𝝎̂𝒚

Where 𝜑 is the azimuthal angle for the slice.

In local camera space, the slice’s direction and outgoing view vector are simply given by:

𝑫(𝜑) = {
cos(𝜑)

sin(𝜑)
0

𝝎𝒐 = {
0
0
1

We will further need an additional space called the “slice space” which is the 2D plane of a specific slice that is defined

by the canonical directions:

𝑫′ = {
1
0

𝝎𝒐
′ = {

0
1

In slice space, the central location of our sampling point is simply:

𝒙′ = {
0
0

And the projection of the world-space normal vector 𝒏̂ into the slice, shown in figure 6, is given by:

𝒏′ = {
 𝒏̂ ∙ 𝑫̂(𝜑)

𝒏̂ ∙ 𝝎̂𝒐
= {

𝑛𝑥

𝑛𝑦
 (𝟐)

8

FIGURE 6. A SAMPLING SLICE ROTATING BY AN ANGLE 𝜑 ABOUT THE 𝝎̂𝟎 AXIS. 𝑫̂(𝜑) IS THE TANGENT

DIRECTION OF THE SLICE. WE POINT OUT THE IMPORTANT FACT THAT THE WORLD-SPACE NORMAL 𝒏̂ IS

NOT NECESSARILY LYING IN THE PLANE OF THE SLICE AND NEEDS TO BE PROJECTED ONTO THE SLICE,

YIELDING THE 𝒏′ VECTOR. WE NOTICE THAT PROJECTING 𝑫̂(𝜑) ONTO THE NORMAL PLANE GIVES US

INITIAL VALUES FOR THE HORIZON ANGLES 𝜃𝑓𝑟𝑜𝑛𝑡 AND 𝜃𝑏𝑎𝑐𝑘 (THIS IS DISCUSSED IN SECTION 2.1).

9

1.3. Computing Horizon Angles

Special care must be observed when taking screen-space horizon angles –computed by sampling the depth buffer,

whose Z values are expressed along the global camera 𝒁̂ axis– into local camera-space horizon angles 𝜃 expressed

from the local view axis 𝝎̂𝒐:

FIGURE 7. CORRECTION SETUP TO TRANSFORM CAMERA-SPACE HORIZON ANGLES INTO ACTUAL SLICE-

SPACE HORIZON ANGLES.

10

Let’s imagine we are sampling a new location 𝒙̂𝟏 away from our central location 𝒙̂ while walking along a slice.

In screen space (i.e. in the camera plane defined by the 𝑿̂ and 𝒀̂ tangent axes), we moved 𝑟 units away from our

central location where we sample our new depth value (relative to our central location’s depth) 𝑧 and we obtain the

angle 𝛽.

Unfortunately, we are rather interested by the horizon angle 𝜃 that the red axis (𝒙̂, 𝒙̂𝟏) forms with our view direction

𝝎̂𝒐, than the horizon angle 𝛽 it forms with the camera axis 𝒁̂.

We know that the global camera 𝒁̂ axis is making an angle 𝛼 with our local view direction 𝝎̂𝒐.

We easily notice that 𝜃 = 𝛽 − 𝛼 and thus we can write:

cos(𝜃) = cos(𝛽 − 𝛼)

Trigonometric identities give us:

cos(𝜃) = cos(𝛼) cos(𝛽) + sin(𝛼) sin(𝛽)

We know:

cos(𝛽) =
𝑧

√𝑟2 + 𝑧2

sin(𝛽) =
𝑟

√𝑟2 + 𝑧2

And finally, our horizon angle is simply given by the expression:

cos(𝜃) =
cos(𝛼) 𝑧 + sin(𝛼) 𝑟

√𝑟2 + 𝑧2

We notice that cos(𝜃) = cos(𝛽) when the camera axis and view directions are aligned (i.e. at the center of the

screen), while cos(𝜃) → sin(𝛽) when we reach the borders of the screen and the deviation from the camera axis is

maximal.

2. Improvements over HBAO

In this paper, we will discuss several improvements to make the most out of the information gathered while

performing the HBAO algorithm, these improvements will give us what I called the Horizon-Based Indirect Lighting

(HBIL) algorithm:

11

• Section 2.1. will discuss how to use the camera-space normal to make the result more robust and reveal more

details.

• Section 2.2 will discuss how to obtain the bent-cone from our samples that will yield a better estimate of the

far-field irradiance.

• Finally, section 2.3 will explain how to eventually re-use the indirect diffuse lighting from the previously

rendered frame to compute a very important near-field indirect lighting term.

2.1. Using the Normal

We can first improve a little upon the quality of the HBAO algorithm by using the normal to initialize the horizon

angles.

The normal vector is often readily available from the G-Buffer produced by deferred renderers. For each slice, we can

initialize the front and back horizon angles by projecting the slice’s direction vector 𝑫̂(𝜑) onto the normal plane by

following the camera view vector 𝝎̂𝒐, as shown in figure 6:

𝑡 = −
𝑫̂(𝜑) ∙ 𝒏̂

𝝎̂𝒐 ∙ 𝒏̂

cos(𝜃𝑓𝑟𝑜𝑛𝑡) =
𝑡

√1 + 𝑡2

cos(𝜃𝑏𝑎𝑐𝑘) = −
𝑡

√1 + 𝑡2

We thus obtain 𝜃𝑓𝑟𝑜𝑛𝑡 and 𝜃𝑏𝑎𝑐𝑘, the initial front and back horizon angles represented in figure 6.

12

FIGURE 8. LEFT: HORIZON ANGLES ARE INITIALIZED BY DEPTH ALONE. RIGHT: HORIZON ANGLES ARE

INITIALIZED WITH THE G-BUFFER’S NORMAL. WE CAN SEE THE RESULTING IMAGES ARE MUCH MORE

DETAILED AND CONVINCING.

13

2.2. Bent Cones

We follow the methodology of the GTAO computation described by Jimenez et al. [3] to compute the Ambient

Occlusion but we are also interested in computing what I call a “bent cone”, which is a combination of a bent normal

used as the central axis of a cone whose aperture depends on the ambient occlusion:

FIGURE 9. THE “BENT-CONE”, A BENT NORMAL WITH AN ANGLE.

2.2.1. Bent Normal

Vidiger et al. [9] showed the importance of the bent normal in the production of realistic images in their SSRTGI

technique, we will show here how to obtain the bent normal without the need for ray-tracing, once again by

extending the HBAO algorithm.

14

In order to get the bent normal 𝒏̃, we need to compute the average direction of a vector unoccluded by the

environment:

𝒏̃ = ∫ 𝑉(𝒙, 𝝎𝒊) 𝝎𝒊 ⅆ𝜔𝑖
𝛺+

 (𝟑)

FIGURE 10. INTEGRATION OF THE VECTOR 𝝎𝒊 BETWEEN ANGLES 𝜃0 AND 𝜃1, RESTRICTED TO A SINGLE

SLICE. NOTICE THAT THE NORMAL VECTOR 𝒏 IS NOT NECESSARILY LYING IN THE SLICE’S PLANE.

We can get an approximation of the integral for equation 3 by computing a series of integrals restricted to 2D slices

rotating about our view axis 𝝎𝒐 as shown in the figure 10 above:

𝝎𝒊(𝜃) = sin(𝜃) . 𝑫(𝜑) + cos(𝜃) . 𝝎𝒐

15

𝒏̃ ≈
𝜋

𝑆
∑ ∫ 𝝎𝒊(𝜃) |sin(𝜃)| 𝑑𝜃

𝜃1

𝜃0

𝑆

 (𝟒)

Where:

• S is the amount of slices

• 𝜃0 is the “back” horizon angle for the slice. 𝜃0 ∈ [−𝜋, 0]

• 𝜃1 is the “front” horizon angle for the slice. 𝜃1 ∈ [0, 𝜋]

Focusing on the inner integral, we rewrite its expression in slice-space as:

𝝎𝒊
′(𝜃) = {

sin(𝜃)

cos(𝜃)

𝒏̃′ = ∫ 𝝎𝒊
′(𝜃) |sin(𝜃)| 𝑑𝜃

𝜃1

𝜃0

Where:

• 𝝎𝒊
′(𝜃) is the slice-space version of 𝝎𝒊(𝜃)

• 𝒏̃′ is the resulting normal vector for the slice

And we get:

𝒏̃′ = {
𝑛̃𝑥

𝑛̃𝑦

𝑛̃𝑥 =
1

2
(𝜃1 − 𝜃0 + sin(𝜃0) cos(𝜃0) − sin(𝜃1) cos(𝜃1)) (𝟓)

𝑛̃𝑦 =
1

2
(2 − cos2(𝜃0) − cos2(𝜃1)) (𝟔)

From which can finally rebuild a unit camera-space normal:

𝒏̃ =
∑ 𝑫(𝜑𝑖). 𝑛̃𝑥(𝑖) + 𝝎𝒐 . 𝑛̃𝑦(𝑖)𝑆

𝑖

‖∑ 𝑫(𝜑𝑖). 𝑛̃𝑥(𝑖) + 𝝎𝒐 . 𝑛̃𝑦(𝑖)𝑆
𝑖 ‖

Where:

• 𝑛̃𝑥(𝑖) and 𝑛̃𝑦(𝑖) are the 𝑛̃𝑥 and 𝑛̃𝑦 values computed by equations 5 and 6 for slice 𝑖

• 𝑫(𝜑𝑖) is the slice direction for slice 𝑖

16

FIGURE 11. TOP: WORLD-SPACE NORMAL. BOTTOM: WORLD-SPACE BENT NORMAL. THE DIRECTION

OF THE NORMAL IS INFLUENCED TO BEND TOWARD THE DIRECTION OF LEAST-OCCLUSION. THIS IS THE

DIRECTION THAT IS THE MOST SUITED TO SAMPLE THE FAR-FIELD IRRADIANCE.

17

FIGURE 12. TOP: FAR-FIELD IRRADIANCE SAMPLING FROM TERRAIN NORMAL. BOTTOM: SAMPLING IN

THE DIRECTION OF THE COMPUTED BENT NORMAL. THE RESULTS ARE MUCH SMOOTHER.

(Library scene COURTESY OF LÉON DENISE)

2.2.2. Cone Aperture and Ambient Occlusion

Now, for the angle part of the bent cone, we need the solid angle covered by the cone to be significant when we use it

to sample the far-field environment:

https://www.shadertoy.com/view/MllBR7

18

𝐸𝑓𝑎𝑟(𝒙, 𝒏) = ∫ 𝑉(𝒙, 𝝎𝒊)𝐿𝑖(𝒙, 𝝎𝒊)(𝒏. 𝝎𝒊) ⅆ𝜔𝑖
𝛺+

 (𝟕)

Where:

• 𝐸𝑓𝑎𝑟(𝒙, 𝒏) is the irradiance at 𝒙 for surface normal 𝒏 from the far-field environment

• 𝐿𝑖(𝒙, 𝝎𝒊) is the incoming radiance at 𝒙 from direction 𝝎𝒊

• 𝛺+ is the set of all directions covering the upper hemisphere

• 𝑑𝜔𝑖 is the solid angle covered by the surface perceived along direction 𝝎𝒊

• 𝑉(𝒙, 𝝎𝒊) is the visibility term from equation 1

I wrote in [4] that equation 7 is often simplified into:

𝐸̃𝑓𝑎𝑟(𝒙, 𝒏) = [∫ 𝐿𝑖(𝒙, 𝛚𝐢)(𝒏. 𝛚𝐢) ⅆωi
Ω+

] . [
1

2𝜋
∫ V(𝒙, 𝛚𝐢) ⅆωi

Ω+
] = 𝐸0(𝒙, 𝒏). 𝐴𝑂(𝒙) (𝟖)

Where 𝐸0(𝒙, 𝒏) is the unoccluded irradiance from a diffuse cube map, or some SH representation.

Jimenez et al. in their “Ground-Truth AO” (GTAO) [3] use instead an AO term they call “radiometrically correct”,

meaning they account for the dot product with the normal in the visibility integral as well, and so the AO integral

becomes:

𝐴𝑂(𝒙) =
1

𝜋
∫ V(𝒙, 𝛚𝐢)(𝒏. 𝛚𝐢) ⅆωi

Ω+
 (𝟗)

And indeed, this is actually the term we need because we will be using the complement of that term in section 2.3

when we will compute the near-field irradiance term.

Also notice the normalization factor is now
1

𝜋
 instead of

1

2𝜋
.

19

FIGURE 13. INFLUENCE OF THE DOT PRODUCT WITH THE NORMAL ON THE COMPUTATION OF THE

AMBIENT OCCLUSION TERM. TOP: WITHOUT INFLUENCE OF THE NORMAL (EQUATION 7). BOTTOM:

WITH INFLUENCE OF THE NORMAL (EQUATION 8). THE BOTTOM VERSION IS PREFERRED AS IT IS

PHYSICALLY CORRECT. WE ALSO NOTICE IT HELPS REVEALING MORE SUBTLE DETAILS.

20

Identically to equation 4 used to compute the bent normal, we can write:

𝝎𝒊(𝜃) = sin(𝜃) . 𝑫(𝜑) + cos(𝜃) . 𝝎𝒐

𝐴𝑂(𝒙) ≈
1

𝑆
∑ ∫ (𝒏. 𝝎𝒊(𝜃)) |sin(𝜃)| 𝑑𝜃

𝜃1

𝜃0

𝑆

Where 𝑖 is the slice index and 𝑆 the amount of slices.

We rewrite once again the inner integral in slice-space between our 2 horizon angles 𝜃0 and 𝜃1:

𝝎𝒊
′(𝜃) = {

sin(𝜃)

cos(𝜃)

𝐴𝑂𝑖 = ∫ (𝒏′ ∙ 𝝎𝒊
′(𝜃))|sin(𝜃)| 𝑑𝜃

𝜃1

𝜃0

 (𝟏𝟎)

With 𝐴𝑂𝑖 the AO value for slice 𝑖 and 𝒏′ the normal vector 𝒏̂ projected into slice-space (cf. equation 2 and figure 6).

We finally get:

𝐴𝑂𝑖 =
𝑛𝑥

2
[θ1 − θ0 + sin(θ0) cos(θ0) − sin(θ1) cos(θ1)] +

𝑛𝑦

2
[2 − cos2(θ0) − cos2(θ1)] (𝟏𝟏)

And finally, AO is given by:

𝐴𝑂(𝒙) ≈
1

𝑆
∑ 𝐴𝑂𝑖

𝑆

𝑖

To finalize our bent-cone, we are interested in another formulation for the AO, which would be the solid angle

covered by the cone with aperture angle 𝛼 :

Ω = 2𝜋(1 − cos(𝛼))

The true integral of the visibility term in equation 8 actually yields exactly this solid angle:

Ω = ∫ V(𝒙, 𝛚𝐢) ⅆωi
Ω+

= 2𝜋 𝐴𝑂(𝒙)

From this we can deduce that:

𝐴𝑂(𝒙) = 1 − cos(𝛼)

And finally, the aperture angle of our bent-cone is given by:

21

𝛼 = cos−1(1 − 𝐴𝑂(𝒙)) (𝟏𝟐)

We can also conclude that the cosine of the aperture angle of our bent-cone is the geometric equivalent of the

classical AO formulation, but we will prefer it to the AO term since the cosine of an angle lends itself better to a

comparison to the 𝑁 ∙ 𝐿 dot product generally found in lighting equations.

The effect of accounting for the cone aperture angle is most important, as can be seen in the images below:

FIGURE 14. INFLUENCE OF THE AMBIENT OCCLUSION / CONE ANGLE TERM. LEFT: NO AMBIENT

OCCLUSION IS USED. RIGHT: WITH AMBIENT OCCLUSION TERM. NOTE THAT THE BENT-NORMAL IS

ENABLED IN ALL IMAGES. (Torus Rooms scene COURTESY OF LÉON DENISE)

https://www.shadertoy.com/view/XlfBR7

22

2.2.3. Using the bent-cone for far-field indirect illumination (Cube Map)

In [4] we noted that the simplification induced by equation 8 suffers from a loss in energy that should be compensated

by applying a factor given by ℱ0(𝛼) so that:

𝐸̃𝑓𝑎𝑟(𝒙, 𝒏) = 𝐸0(𝒙, 𝒏). ℱ0(𝐴𝑂(𝒙))

With:

ℱ0(𝛼) = 𝛼 . (1 +
(1 − 𝛼)0.75

2
) = 𝛼 . (1 +

1 − 𝛼

2 √1 − 𝛼
4)

Here, 𝐸0(𝒙, 𝒏) is sampled from a pre-convolved diffuse cube map, or obtained from any other way where the angular

aperture is predefined to be 90° and cannot be changed.

2.2.4. Using the bent-cone for far-field indirect illumination (Spherical

Harmonics)

If the distant environment is available as spherical harmonics (SH) instead, then we should use the modified irradiance

estimate from [5] that allows to reduce the aperture angle used in Ramamoorthi’s calculations [7] using the simple

free parameter 𝜃𝑚𝑎𝑥 as replacement for the upper bound to his integral (16) instead of the default
𝜋

2
 value:

𝐴𝑛 = 2𝜋 ∫ 𝑌𝑛,0(𝜃𝑖
′) cos(𝜃𝑖

′) sin(𝜃𝑖
′) 𝑑𝜃𝑖

′

𝜃𝑚𝑎𝑥

0

I will only give the procedure for an order-2 SH representation (i.e. 9 coefficients), details can be found on my wiki

page for a possible extension to higher orders:

𝑡 = cos(𝜃𝑚𝑎𝑥) = 1 − 𝐴𝑂(𝒙)

𝑐0 =
1

2
√ 𝜋 (1 − 𝑡2)

𝑐1 =
1

3
√ 3 𝜋 (1 − 𝑡3)

𝑐2 =
1

4
√ 5 𝜋 [

3(1 − 𝑡4) − 2(1 − 𝑡2)

4
]

Then the resulting irradiance estimate for a cone of aperture 𝜃𝑚𝑎𝑥 is given by:

23

𝒏 = {
𝑥
𝑦
𝑧

𝐸̃𝑓𝑎𝑟(𝒏) = 𝑐0. 𝐿0
0

+𝑐1. (𝑦. 𝐿1
−1 + 𝑧. 𝐿1

0 + 𝑥. 𝐿1
1)

+𝑐2. 𝐿2
0 . (3𝑧2 − 1)

+𝑐2√3. 𝐿2
2 (𝑥2 − 𝑦2)

+𝑐22√3. (𝑥. 𝑦. 𝐿2
−2 + 𝑦. 𝑧. 𝐿2

−1 + 𝑧. 𝑥. 𝐿2
1)

The 𝐿𝑙
𝑚 represent the encoded SH terms for the distant environment’s radiance.

Note: It is also totally possible to estimate the irradiance by simply using the classical hemisphere SH estimate from [7]

and multiply the result by ℱ0(𝐴𝑂(𝒙)) as seen in section 2.2.3. but I find the results more accurate using the reduced-

cone formulation.

2.3. Indirect Lighting

The classical lighting equation to compute the outgoing radiance from a pixel at 𝒙 in viewing direction 𝝎𝒐 is essentially

given by:

𝐿𝑜(𝒙, 𝝎𝒐) = ∫ 𝐿𝑖(𝒙, 𝝎𝒊)𝜌(𝒙, 𝝎𝒊, 𝝎𝒐)(𝒏. 𝝎𝒊) ⅆ𝜔𝑖
𝛺+

(𝟏𝟑)

Where:

• 𝐿𝑖(𝒙, 𝝎𝒊) is the incoming radiance at 𝒙 from direction 𝝎𝒊

• 𝜌(𝒙, 𝝎𝒊, 𝝎𝒐) is the surface’s BRDF

• 𝒏 is the surface normal

• 𝛺+ is the set of all directions covering the upper hemisphere

• 𝑑𝜔𝑖 is the solid angle covered by the surface perceived along direction 𝝎𝒊

Focusing only on diffuse Lambertian reflection, we can rewrite equation 13 as:

𝐿𝑜(𝒙, 𝝎𝒐) =
𝜌(𝒙)

𝜋
∫ 𝐿𝑖(𝒙, 𝝎𝒊)(𝒏. 𝝎𝒊) ⅆ𝜔𝑖

𝛺+

=
𝜌(𝒙)

𝜋
𝐸(𝒙, 𝒏) (𝟏𝟒)

Where:

• 𝐸(𝒙, 𝒏) is the irradiance collected at surface location 𝒙 and normal 𝒏.

24

•
𝜌(𝒙)

𝜋
 represents the diffuse BRDF for a surface with albedo 𝜌(𝒙) ∈ [𝟎, 𝟏].

The division by 𝜋 is here to guarantee energy conservation since ∫ (𝒏. 𝝎𝒊) ⅆ𝜔𝑖𝛺+ = 𝜋.

FIGURE 15. REPRESENTATION OF THE 3 POSSIBLE SOURCES OF IRRADIANCE: DIRECT LIGHTING, FAR-

FIELD LIGHTING FROM THE UNOCCLUDED ENVIRONMENT AND NEAR-FIELD LIGHTING WHICH

REPRESENTS THE IRRADIANCE THAT BOUNCED OFF THE NEIGHBOR ENVIRONMENT. WE NOTICE THAT THE

NEAR-FIELD ONLY ACCOUNTS FOR THE OCCLUDED ENVIRONMENT ABOVE THE NORMAL PLANE AND IS

THE EXACT COMPLEMENT OF THE FAR-FIELD.

25

We saw in equation 8 how to sample the far-field environment but as shown in figure 15, the complete formulation

for the irradiance is really given by:

𝐸(𝒙, 𝒏) = 𝐸𝑑𝑖𝑟𝑒𝑐𝑡(𝒙, 𝒏) + 𝐸𝑓𝑎𝑟(𝒙, 𝒏) + 𝐸𝑛𝑒𝑎𝑟(𝒙, 𝒏)

Where:

• 𝐸𝑑𝑖𝑟𝑒𝑐𝑡(𝒙, 𝒏) is the direct diffuse lighting irradiance computed using all the light sources of the scene and has

already been extensively covered throughout the CG literature

• 𝐸𝑓𝑎𝑟(𝒙, 𝒏) is the far-field distant environment term that can be computed using the bent-cone, as shown in

sections 2.2.3. and 2.2.4.

• 𝐸𝑛𝑒𝑎𝑟(𝒙, 𝒏) represents the missing near-field environment term, the part of the energy that bounced off the

close environment and perceived indirectly by our sampling point.

This part is often ignored, simplified or statically pre-computed as it is quite tricky and expensive to evaluate.

𝐸𝑛𝑒𝑎𝑟(𝒙, 𝒏) can be written as:

 𝐸𝑛𝑒𝑎𝑟(𝒙, 𝒏) = ∫ (1 − 𝑉(𝒙, 𝝎𝒊))𝐿𝑖(𝒙, 𝝎𝒊)(𝒏. 𝝎𝒊) ⅆ𝜔𝑖𝛺+
(𝟏𝟓)

We immediately notice this term is using the opposite of the visibility function and is thus the exact complement of

the far-field environment term from equation 7 since we only gather radiance that bounced off of the occluded

environment

Contrary to [4] where the near-field bounces were approximated via manually-fitted and ad-hoc terms, in this paper

we will see how to actually compute these bounces.

2.3.1. Recursive Irradiance Bounces

We begin by noticing that, since we are only considering the diffuse Lambertian case, the incoming radiance term

𝐿𝑖(𝒙, 𝝎𝒊) from equation 15 has to be a diffuse reflection of the light off the neighbor environment:

𝐿𝑖(𝒙, 𝝎𝒊) =
𝜌(𝒙′)

𝜋
𝐸(𝒙′, 𝒏′)

Where 𝒙′ and 𝒏′ are the location and normal of the neighbor environment perceived in direction 𝝎𝒊.

26

FIGURE 16. WE ARE ONLY INTERESTED IN THE DIFFUSE REFLECTION OF LIGHT AT 𝒙′ WHEN SAMPLING

THE ENVIRONMENT FROM 𝒙 IN DIRECTION 𝝎𝒊. WE CALL THIS NORMAL-AGNOSTIC, DIFFUSELY

REFLECTED RADIANCE, 𝐿𝑑(𝒙′).

Assuming the neighbor is taking care of its own lighting (i.e. we are making an independence hypothesis) then we

write:

𝐿𝑖(𝒙, 𝝎𝒊) = 𝐿𝑑(𝒙′)

Which is the diffusely-reflected radiance sampled at location 𝒙′.

Note: Because we are going to sample a buffer where we stored the diffuse radiance 𝐿𝑑(𝒙′), the
𝜌(𝒙′)

𝜋
 and 𝐸(𝒙′, 𝒏′)

are already combined together and we cannot make the same assumption as in [3] that the neighbor reflectance is

the same as our current reflectance 𝜌(𝒙′) = 𝜌(𝒙), nor is it desired to make such an assumption any more since we are

not computing an approximate term here.

We can then rewrite equation 15 as:

𝐸𝑛𝑒𝑎𝑟(𝒙, 𝒏) = ∫ 𝐿𝑑(𝒙′)(𝒏. 𝝎𝒊) ⅆ𝜔𝑖
𝛺+

 , 𝑉(𝒙, 𝝎𝒊) = 0 (𝟏𝟔)

27

And interestingly, we notice that estimating the near-field irradiance simply involves sampling the diffusely-reflected

radiance from neighbor surfaces.

So, when rendering frame N, assuming the diffuse radiance values computed for the last frame N-1 are available then

we could solve the entire lighting diffuse equation 14 by computing:

𝐿𝑜
𝑁(𝒙, 𝝎𝒐) =

𝜌(𝒙)

𝜋
[𝐸𝑑𝑖𝑟𝑒𝑐𝑡

𝑁(𝒙, 𝒏) + 𝐸𝑓𝑎𝑟
𝑁(𝒙, 𝒏) + ∫ 𝐿𝑑

𝑁−1(𝒙′) (𝒏. 𝝎𝒊) ⅆ𝜔𝑖
𝛺+

] (𝟏𝟕)

With:

• 𝐿𝑜
𝑁(𝒙, 𝝎𝒐) the radiance computed at frame N that will be stored in the diffuse radiance buffer which will, in

turn, be re-used as input at frame N+1

• 𝐸𝑑𝑖𝑟𝑒𝑐𝑡
𝑁(𝒙, 𝒏) the direct lighting irradiance computed at frame N

• 𝐸𝑓𝑎𝑟
𝑁(𝒙, 𝒏) the far-field radiance computed at frame N

• 𝐿𝑑
𝑁−1(𝒙′) the diffusely-reflected radiance computed at frame N-1 and stored at neighbor location 𝒙′

Computing radiance in this fashion would theoretically give us an “infinite amount of light bounces” since we keep the

light bouncing from one frame to the next.

The details on how to reproject radiance from frame N-1 are given later in section 3.1.

2.3.2. Solving the indirect lighting integral

All we are left to solve is equation 16. Coming back to the context of our integration slice, where we are slowly

computing the horizon angles for our front and back directions:

28

FIGURE 17. SAMPLING THE GATHERED IRRADIANCE WHEN THE HORIZON IS RISING FROM 𝜃0TO 𝜃1: WE

SIMPLY NEED TO SAMPLE THE NEIGHBOR RADIANCE 𝐿𝑑(𝒙′) (SHOWN IN GREEN) AND COMPUTE ITS

PERCEIVED INFLUENCE ON OUR CENTRAL LOCATION 𝒙.

In this figure, we can easily see that the only irradiance we perceive from 𝒙 is the one from when the horizon jumps

up a little: only the area represented in green contributes to the perceived irradiance when we rise from θ0 to θ1. This

integrates very well into our existing ray-marching scheme and we see that we can get much more bang for our buck

by gathering the indirect radiance as well!

So, for a small jump of the horizon angle from θ0 to θ1, we rewrite once again almost exactly the integral from

equation 10 except we no longer samples a “unit far-field radiance” but the radiance reflected by our neighbor

instead:

𝝎𝒊
′ = {

sin(𝜃)

cos(𝜃)

∆𝐸 = ∫ 𝐿𝑑(𝒙′) (𝒏′. 𝝎𝒊
′) sin(𝜃) 𝑑θ

θ1

θ0

With 𝒏′ the normal vector 𝒏̂ projected into slice-space (cf. equation 2 and figure 6).

29

Assuming 𝐿𝑑(𝒙′) is constant for the entire interval [θ0, θ1] then ∆𝐸 becomes:

∆𝐸 ≈ 𝐿𝑑(𝒙′) ∫ (𝒏′. 𝝎𝒊
′) sin(𝜃) 𝑑θ

θ1

θ0

 (𝟏𝟖)

Solving the integral yields:

∫ (𝒏′. 𝝎𝒊
′) sin(𝜃) 𝑑θ

θ1

θ0

=
𝑛𝑥

2
[θ1 − θ0 + sin(θ0) cos(θ0) − sin(θ1) cos(θ1)] +

𝑛𝑦

2
[cos2(θ0) − cos2(θ1)]

This new formulation is easy to integrate into the existing framework of HBAO computation and only requires to

sample an additional radiance buffer, on top of our sampling of the depth buffer used for classical HBAO.

FIGURE 18. LEFT: DIRECT LIGHTING ONLY. MIDDLE: IRRADIANCE GATHERED BY THE HBIL ALGORITHM.

RIGHT: THE COMBINED RESULT. THE SCENE IS LIT BY A SINGLE LIGHT PLACED ON THE CEILING.

2.3.3. Accounting for the Fresnel Term

When considering the full micro-facet BRDF model, we often find ourselves with an expression similar to:

𝜌(𝝎𝒊, 𝝎𝒐) =
𝜌𝑑

𝜋
[1 − 𝐹(𝝎𝒊, 𝝎𝒉)] + 𝐹(𝝎𝒊, 𝝎𝒉). 𝜌𝑠(𝝎𝒊, 𝝎𝒐)

Where 𝐹(𝝎𝒊, 𝝎𝒉) is the Fresnel term that balances the distribution of the reflection between the specular part of the

BRDF, namely 𝜌𝑠(𝝎𝒊, 𝝎𝒐), and its diffuse part
𝜌𝑑

𝜋
 which is the only part we have considered so far.

𝝎𝒉 =
𝝎𝒊+𝝎𝒐

‖𝝎𝒊+𝝎𝒐‖
 is the well-known half-direction vector between 𝝎𝒊 and 𝝎𝒐.

Assuming we are using the simplified Schlick’s approximation to the actual Fresnel term:

30

𝐹(𝝎𝒊, 𝝎𝒉) = 𝐹0 + (1 − 𝐹0)(1 − 𝝎𝒊 · 𝝎𝒉)5

𝐹0 being the classical “reflectance at normal incidence” and is related to the medium’s index of refraction by:

𝐹0 = (
𝑛1 − 𝑛2

𝑛1 + 𝑛2
)

2

The diffuse integral 18 then becomes:

∆𝐸 = 𝐿𝑑(𝒙′) ∫ (1 − 𝐹(𝝎𝒊
′, 𝝎𝒉

′))(𝒏′. 𝝎𝒊
′) sin(𝜃) 𝑑θ

θ1

θ0

Where:

𝝎𝒉
′ =

𝝎′
𝒊 + 𝝎′

𝒐

‖𝝎′
𝒊 + 𝝎′

𝒐‖

𝝎′𝒊 = {
sin(𝜃)

cos(𝜃)
 𝝎′

𝒐 = {
0
1

So ∆𝐸 becomes:

∆𝐸 = 𝐿𝑑(𝒙′) ∫ (1 − 𝐹0 − (1 − 𝐹0)(1 − 𝝎𝒊
′. 𝝎𝒉

′)5)(𝒏′. 𝝎𝒊
′) sin(𝜃) 𝑑θ

θ1

θ0

= 𝐿𝑑(𝒙′)(1 − 𝐹0) [∫ (𝒏′. 𝝎𝒊
′) sin(𝜃) 𝑑θ

θ1

θ0

− ∫ (1 − 𝝎𝒊
′. 𝝎𝒉

′)5(𝒏′. 𝝎𝒊
′) sin(𝜃)𝑑θ

θ1

θ0

]

The first integral is equation 18 that we already solved, focusing on the new green expression we obtain:

∫ (1 − 𝝎𝒊
′. 𝝎𝒉

′)5(𝒏′. 𝝎𝒊
′) sin(𝜃) 𝑑θ

θ1

θ0

= ∫ (1 − √
1 + cos(𝜃)

2
)

5

(𝑛𝑥 sin(𝜃) + 𝑛𝑦 cos(𝜃)) sin(𝜃) 𝑑θ

θ1

θ0

Noticing that this complex integral will influence at most 0.03% of the final irradiance value, we decide the benefits

aren’t worth the cost of estimating such an expensive expression and we drop the term entirely.

Overall, the main takeaway here is that equation 18 really needs to be rewritten as:

∆𝐸 = 𝐿𝑑(𝒙′) (1 − 𝐹0) ∫ (𝒏′. 𝝎𝒊
′) sin(𝜃) 𝑑θ

θ1

θ0

 (𝟏𝟗)

The 𝐹0 value is usually available from the G-Buffer as it is required for specular lighting computations. This result

makes a lot of sense if you take the case of a metal for which the 𝐹0 value is close to 1, it is known that metals have no

diffuse component and, as such, weighing the final diffuse irradiance by 1-𝐹0 will indeed reduce the indirect diffuse

lighting coming from metals to 0.

31

FIGURE 19. THE EFFECT OF THE HBIL TECHNIQUE. LEFT: DIRECT ONLY. RIGHT: DIRECT + HBIL.

32

FIGURE 20. AN ADDITIONAL BENEFIT OF THE TECHNIQUE: IT IS POSSIBLE TO INJECT EMISSIVE SURFACES

INTO THE SOURCE RADIANCE BUFFER TO OBTAIN SIMPLE AREA LIGHTS.

3. Integration with the lighting pipeline

Integrating HBIL into a deferred pipeline is not a lot of work but strongly relies on having an efficient Temporal Anti-

Aliasing (TAA) technique to smooth out the noise introduced by the fact that only 2 screen-space directions are traced

per-pixel, as we will see in section 3.3 about interleaved rendering.

The rendering pipeline for HBIL is shown below:

33

FIGURE 21. INTEGRATION OF HBIL INTO A REGULAR DEFERRED-LIGHTING PIPELINE.

3.1. Memory Requirements

Here is the list of G-Buffer fields required by the technique:

• Albedo (RGB)

• Normal (RG), usually stored in the camera-space described in section 1.1.

The 3rd component of the normal is then reconstructed via 𝑧 = √1 − 𝑥² − 𝑦²

• F0, or the equivalent “Metal” parameter (either luminance only or full RGB).

Here is the list of additional buffers required by the technique:

• Diffuse lighting (Fullscreen, RGB, HDR, All Mips), used to store the diffuse part of the lighting that is re-

projected and re-injected next frame (orange arrow in figure 21). Successfully tested with either RGB10A2 and

R11G11B10 high-dynamic range formats.

• Push/Pull-Buffer (Fullscreen, RGB, HDR, All Mips), serves as the 2nd ping-pong buffer (diffuse lighting buffer

being the first one) to compute the push/pull chain after reprojection (cf. Section 3.2).

• 4x4 Split Radiance (1/4 Resolution, RGB, HDR, No Mip), temporary quarter-res buffers where the

reprojected/reconstructed radiance from last frame is stored (allocated as Texture2DArray)

• 4x4 Split Normal (1/4 Resolution, R8G8_SNORM, No Mip), temporary quarter-res buffer where the G-Buffer

normal is stored as HBIL input (allocated as Texture2DArray)

• 4x4 Split Depth (1/4 Resolution, R16F, No Mip), temporary quarter-res buffer where the G-Buffer depth is

stored as HBIL input (allocated as Texture2DArray)

Regular Pipeline

Reproject HBIL

Push Pull

Post-

Processing
Lighting

G-Buffer

Generation

Buffers

Splitting

34

• 4x4 Split Irradiance (1/4 Resolution, RGB, HDR, No Mip), temporary quarter-res buffer where we store the

irradiance output by the HBIL (allocated as Texture2DArray)

• 4x4 Split Bent Cone (1/4 Resolution, R8G8B8A8_SNORM, No Mip), temporary quarter-res buffer where we

store the bent-cone output by the HBIL (allocated as Texture2DArray)

3.2. Reconstructing Last Frame Radiance

I’m using a compute shader to scatter last frame’s radiance into current frame’s point of view. Due to the nature of

the scatter process, the resulting image has holes (disocclusion events) and pixels that fight to scatter to the same

position (occlusion events), as seen in figure 22.

The occlusion events are taken care of by simply using a temporary Z-buffer to prioritize last frame’s reprojected Z

values and accept only the reprojected radiance closest to this frame’s camera.

The disocclusion events, on the other hand, appear as holes that need to be filled. We use the push/pull algorithm

described in [8] to compute mips from valid radiance values, then pulling these newly computed smooth values to the

higher mips again and using them whenever a radiance value is unavailable.

35

FIGURE 22. TOP-LEFT: RAW REPROJECTED RADIANCE WITH HOLES. TOP-RIGHT: FINAL RESULT AFTER

PUSH/PULL RECONSTRUCTION. THE RAW REPROJECTION GOES THROUGH THE ENTIRE PROCESS OF

PUSHING VALID VALUES DOWN TO THE MIPS, THEN PULLING THE NEWLY COMPUTED VALUES BACK

AGAIN UP TO THE FINAL RESULT WHERE HOLES ARE FILLED.

Of course, it’s also entirely possible to entirely bypass the forward (i.e. scattered) reprojection + push/pull

reconstruction and simply use a gathering technique with screen-space motion vectors that are often readily available

with Temporal Anti-Aliasing algorithms. The source radiance from last frame would then be “gathered” instead of

“scattered”.

36

3.3. Interleaved Rendering

Ideally, we would like to split the integral over the hemisphere from equation 1 into as many slices as possible for

each pixel, and use as many samples as possible. In reality, taking many texture taps from fullscreen render targets is

largely too expensive and quickly ruins cache coherence, making overall performance very poor.

The core optimization for the HBIL algorithm to be tractable is of course to use interleaved rendering as described by

Bavoil et al. in [2] and [6].

The idea is to separate the many slices used for integration into only a few slices per pixel that are slightly offset in

rotation from one pixel to the next, all the while computing the samples into smaller render targets, thus drastically

improving cache coherence.

In my current implementation of HBIL, I split the buffers into quarter-resolution buffers and interleaved rendering is

computed in small 4x4 squares so, even though only 2 hemisphere slices 90° from each other are used per pixel, when

merged together, the Monte-Carlo integration is actually using 4x4x2 = 32 slices.

FIGURE 23. TOP: MOSAIC OF 4X4 INTERLEAVED RENDERINGS OF THE IRRADIANCE BUFFER.

MIDDLE: RAW RECOMPOSED RESULT. BOTTOM: RECOMPOSED RESULT AFTER TEMPORAL FILTERING.

37

It is certainly possible to obtain a smoother result by recomposing the final buffer with a bilateral spatial filter that

uses neighbor samples as well, at the cost of using more bandwidth and reducing cache efficiency once again. This is

left as future research.

3.4. Depth Filtering

Care must be taken when sampling the radiance buffer in order to reject samples that clearly don’t contribute to the

lighting. The only true valid criterion I could find is somewhat expensive as it requires sampling the normal buffer on

top of existing depth and radiance buffers, but it has strong geometric grounds that make it robust as it doesn’t

involve too many “free parameters” (rather a once for all setup that “looks good™” for all scenes).

You can see in the figure below the need for such a filter:

FIGURE 24. TOP: UNFILTERED RESULT WHERE INCORRECT SAMPLES ARE USED, LEADING TO A PLEASING

ALTHOUGH WRONG LIGHTING UNDER THE ARCHES. BOTTOM: CORRECTLY FILTERED OUT RESULT.

38

The samples we want to reject are the ones facing away from our central location, as seen in the figure below:

FIGURE 25. REJECTION FILTER IS BASED ON WHETHER A POINT IS FACING THE CENTRAL LOCATION 𝒙

WHERE THE INTEGRAL IS TAKING PLACE. POINT 𝒙′ WITH NORMAL 𝒏′ IS A VALID CANDIDATE WHILE

POINT 𝒙′′ WITH NORMAL 𝒏′′ IS CLEARLY NOT CONTRIBUTING THE RADIANCE PERCEIVED BY 𝒙.

In figure 24 (top) we notice the pixels in the area circled in red will attempt, during screen-space sampling, to use the

colors from the bright red drape below whereas the drape is clearly facing away from these pixels and doesn’t

contribute at all to their lighting.

So, although the depth samples from the drape should participate to the increase in ambient occlusion, the radiance

samples, on the other hand, are filtered with the criterion:

𝑡 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝(𝑎, 𝑏, −𝒏′ ∙ 𝝎𝒊)

With 𝒏′ the normal at the neighbor’s location and 𝝎𝒊 =
𝒙′−𝒙

‖𝒙′−𝒙‖
 the vector pointing from the central location 𝒙 to the

neighbor’s location 𝒙’. 𝑎 and 𝑏 are tolerance values set so that the fade value 𝑡 goes to 0 when the dot product is too

negative.

Then the radiance value can be updated as:

𝐿𝑛𝑒𝑤 = 𝑙𝑒𝑟𝑝(𝐿𝑜𝑙𝑑 , 𝐿(𝒙′), 𝑡)

39

Where 𝐿𝑜𝑙𝑑 is the radiance value from the previous sample that we keep in an “inout” register that keeps getting

updated, 𝐿(𝒙′) is the radiance that we sampled from the source radiance buffer. We can see the parameter t serves

as a fallback to a “safe” radiance value we used for an earlier sample.

3.5. Performance

Performance measurements were done on a NVIDIA 680 GTX, 2GB of DDR5 Video Memory, Driver version is 388.13.

Current version of the algorithm uses 2 sampling slices per pixel with 16 samples per direction at 1280x720.

Time measurements are averaged over many scenes.

Pass Name Time (ms)
Reprojection (opt.) 0.16

Push/Pull (opt.) 0.32

Buffers Split 0.78

HBIL 1.97

TOTAL (with optional push/pull phase) 3.23

TOTAL (core HBIL only) 2.75

4. Conclusion & Future Work

This paper presented new improvements over the existing horizon-based algorithms and showed how to make the

most out of the information gathered during the horizon sampling phase. This additional information allows us to

produce the very important bent-normal direction as well as gathering the indirect radiance from our samples, which

drastically enhances the overall indirect lighting of the scene.

There are of course limitations due to the screen-space nature of the method, like large sources of lighting

disappearing when off-screen, but I found out the fading effect due to the progressive reduction in surface due to

camera movement usually masks this effect well. In a future work, it would be interesting to keep these off-screen

values in some sort of special “off-screen buffer”, during the re-projection phase for example. This off-screen buffer

could possibly be a paraboloid-projection of the half-space behind the camera, that would accumulate values as the

camera stands still and rotates, but would fade away as soon as it starts a translation movement (invalidating the

cached off-screen environment).

Due to the small amount of sampling directions per pixel, additional work is needed to further reduce the noise that is

produced.

40

An interesting and very promising line for future research would be to further exploit the dependence on the 𝐹0

Fresnel term to “focus” the sampling directions into the “rough” specular direction, the idea would be to merge the

HBIL and specular screen-space reflection into a single algorithm, thus avoiding the cost of tracing the screen twice,

once for the diffuse reflection, another time for the specular reflection.

Overall, although it is not the definitive answer to the difficult problem of global illumination, HBIL provides a

significant enhancement to the indirect lighting part of an image and constitutes a nice extension to far-field indirect

lighting techniques like the wildly-used probe-based solutions.

5. Acknowledgments

Special thanks to Eko Software for financing this research. HBIL will appear in the next Eko Software ARPG game based

on Warhammer Fantasy Battles IP.

My thanks go to Stéphane Le Boeuf for proof reading this paper, Benjamin Lalisse for his clever remarks and general

support, Martin Gérard for his precious help with my math, Léon Denise for his beautiful 3D scenes, Geoffrey Rosin for

his amazing textures, David Toyou, Laurent Tartinville for his help, and Sandra for moral support 😊.

6. References & Bibliography

[1] Bavoil, L. and Sainz M. 2008. “Image-Space Horizon-Based Ambient Occlusion”

[2] Bavoil, L. and Jansen, J. 2013. “Particle Shadows & Cache-Efficient Post-Processing”

[3] Jimenez, J. Wu, X-C. Pesce, A. and Jarabo, A. 2016. “Practical Realtime Strategies for Accurate Indirect Occlusion”

[4] Mayaux, B. 2018, “Improved Ambient Occlusion”

[5] Mayaux, B. 2016, “Spherical Harmonics Irradiance Estimate for a Cone” (personal blog)

[6] Bavoil, L. 2014, “Deinterleaved Texturing for Cache-Efficient Interleaved Sampling”

[7] Ramamoorthi, R. 2001, “On the Relationship between Radiance and Irradiance: Determining the illumination from images of a convex

Lambertian object”

[8] Kraus, M. 2009, "The Pull-Push Algorithm Revisited"

[9] Vidiger, D. 2017 “SSRTGI: Toughest Challenge in Real-Time 3D”

McGuire, M. 2011, “The Alchemy Screen-Space Ambient Obscurance Algorithm”

McGuire, M. 2012, “Scalable Ambient Obscurance”

http://www.ekosystem.com/
https://www.artstation.com/kikette
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.214.6686&rep=rep1&type=pdf
https://developer.nvidia.com/sites/default/files/akamai/gamedev/docs/BAVOIL_ParticleShadowsAndCacheEfficientPost.pdf
http://iryoku.com/downloads/Practical-Realtime-Strategies-for-Accurate-Indirect-Occlusion.pdf
https://drive.google.com/file/d/1SyagcEVplIm2KkRD3WQYSO9O0Iyi1hfy
http://patapom.com/blog/SHPortal/
https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/DeinterleavedTexturing.pdf
https://graphics.stanford.edu/papers/invlamb/josa.pdf
https://graphics.stanford.edu/papers/invlamb/josa.pdf
https://pdfs.semanticscholar.org/9efe/2c33d8db1609276b989f569b66f1a90feaca.pdf
https://80.lv/articles/ssrtgi-toughest-challenge-in-real-time-3d/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.390.2463&rep=rep1&type=pdf
http://research.nvidia.com/sites/default/files/pubs/2012-06_Scalable-Ambient-Obscurance/McGuire12SAO.pdf

