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General Relativity for the Experimentalist*
ROBERT L. FORWARD7{

Summary—Einstein’s general theory of relativity is broken down
and simplified under limitations usually satisfied in experimentally
realizable situations. Following the work of Mgller,! an analogy be-
tween electromagnetism and gravitation is presented which allows
calculation of various gravitational forces by considering the equiva-
lent electromagnetic problem. A number of examples are included.
Tensor formulation is not used except in the Appendix, where justi-
fication for the analogies is given.

INTRODUCTION

E SHALL assume that all gravitational effects
&;&/ are correctly described by Einstein's general
theory of relativity.? Suppose we want to find
the behavior of a system under the influence of gravi-
tational and other forces in the proper general relati-
vistic manner. We must first determine all the mass and
energy in both the system being investigated and in the
sources of the fields. Using these in a prescribed manner,
we calculate the ten components of the energy-momen-
tum tensor. Next, we put the energy-momentum tensor
into Einstein’s equations and solve these ten nonlinear
differential equations for the ten components of the
metric tensor. Then the metric tensor is substituted into
the curvilinear equation of motion and it is solved to
determine how the system moves.

Because of the difficulty of this process, there exist
only a few solutions of Einstein’s equation which are of
experimental interest in that they describe some physi-
cally observable effect of general relativity. The process
is so specialized and so difficult that it is practically im-
possible to attempt solution of a problem unless months
of study on the specialized terminology, procedures, and
conventions of the general relativity theorist have been
completed. The most disappointing aspect is that in
most cases, after struggling through the calculations, it
will only be found that the effect calculated is too small
to be observed.

Fortunately, it is possible to bypass this complicated
procedure. By applying reasonable limitations to the
systems involved, Einstein’s equations can be linearized.
These linearized equations can be examined and handled
separately. One equation gives us the gravitational sca-
lar potential; three others give a quantity which is simi-
lar to the magnetic vector potential; and the remainder,
which describe the remaining properties of the gravita-
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tional field, can be handled by assuming that they repre-
sent a curvature to the space.

With these analogies, it is possible for anyone who has
had electromagnetic theory to study a situation of ex-
perimental interest and to calculate the effects to be
expected with sufficient accuracy to determine whether
they warrant further study.’

There have been numerous books, papers,*~® articles,”
and even advertisements® that have developed or men-
tioned a gravitational analog to the electric and mag-
netic fields. Some are based on classical ideas, some on
Mach’s principle, and others on Einstein's general
theory of relativity. None based on Einstein's work,
however, have been at the same time complete, rigorous,
and free of tensors.

ANALOGIES TO ELECTRICITY AND MAGNETISM

In Einstein’s general theory of relativity there exist
gravitational analogies to the electric and magnetic
fields. We are already familiar with the analogy between
the electric field of a charge and the gravitational field of
mass. It is well known that the analogy breaks down al-
most immediately, because there are two kinds of
charge and only one kind of mass and because two
particles with the same type of charge repel, whereas
two particles with the same type of mass attract. Never-
theless, if we are cognizant of these distinctions, we can
still apply the analogy and obtain useful results.

In the Appendix it is shown that Einstein’s equations
not only can be made to show this well-known analogy
between the electric field and the gravitational field, but
they can also give a gravitational analog to the mag-
netic field. It has no name, but since it will be men-
tioned, we shall coin one and call it the “protational
field,” as it usually arises from the rotation of a mass.
This “protational field” has the dimensions of angular
velocity (radians/sec) and is closely related to coriolis-
type forces which arise from the principle of general
relativity.

When the analogy is carried out and all the constants
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1961

are evaluated, we obtain an isomorphism between the
gravitational and the electromagnetic quantities (see
Table I).

Now, if we have a certain mass distribution and flow,
all that is necessary is to find a similar charge and cur-
rent distribution in electromagnetic texts, such as that
of Smythe.® We then use the formulas derived for the
electric and magnetic fields and make the substitutions
in the electromagnetic formulas to obtain the gravita-
tional formulas. Since we are using the linearized theory,
superposition is valid, and fields for more complex
bodies can be built up from the superposition of the
fields of the parts.

Once we have calculated the fields generated by the
mass density and currents, we can calculate the forces
on a particle of mass m by a force equation which is
analogous to the electromagnetic force equation,

oK

mG + m(v X P). (1)

If the test body is spinning and has an angular momen-
tum of L, then the torque on it due to a “protational
field” P will be by analogy

N=31LXP. @)

It should be emphasized that the previous discussion is
approximate and is presented merely to provide a simple
tool with which to make estimates. In deriving this
analogy between some of the gravitational forces and
the static and induction fields of electromagnetism, the
following assumptions, among others, have been made:

1) The mass densities are normal (no dwarf stars).

2) All motions are much slower than the speed of
light. (Often special relativistic effects will hide
general relativistic effects.)

3) The kinetic or potential energy of all the bodies
being considered is much smaller than their mass
energy.

4) The fields are always weak enough so that super-
position is valid.

5) The distances between objects is not so large that
we have to take retardation into account. (This
condition can be ignored when we have a station-
ary problem where the fields have already been
prescribed and are not changing with time.)

To show how this analogy can be used, let us calculate
a few simple examples.

Force between Two Masses

Suppose we have two particles with total masses M,
and M,. Then if we want to calculate the gravitational
field due to mass M, we write down the electric field for

? W. R. Smythe, “Static and Dynamic Electricity,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1950.
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TABLE 1
EM Gravitation- Value or
Symbol | al Symbol Definition
N oK
IForce Vector —E — G = —Tx-—‘w—
Solenoidal
: -B — P =vXK
Force Vector
. 1 m
Scalar Potential —¢p - X == —-~——f —dVl
4oy Iy or
Vector Potential —A — K ~— f ﬂ—vdV
drJy r
. . d\/
Source Density p — M =
dv
Source Quantity Q — M = | pll
Current Density j - p =puv
. : aM
Current Quantity I — T v f p'ndS
1 1
Moment M — — L =— Jw
2 2
Capacitivity 1 kg-sec?
— =——=1.19%X10* —=—-—
of Space ¢ v 4rG X m3
Permeabilit 167G
Y wo=l == 3731072 =
of Space c? kg
a particle with charge Q:
O
E=—"4 3)
drer?

Next we transform all quantities to the equivalent gravi-
tational quantities and get
—M,
G=——7 @
dayr?
Then the force on a particle of mass M, in the gravita-
tional field of 3, is
—_ M[Mg .
F=MG=—-1% ©)
47yr?
and if we transform 7 into more familiar gravitational
units, we get
—GM.\M,

72

which is merely Newton’s law.
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Pinch Effect between Two Pipes

This example is included primarily to show why the
gravitational equivalent of the magnetic field has never
been observed.

Suppose that molten metal is flowing through two
parallel pipes with spacing d=0.1 meter. To find their
interaction due to the mass currents 77 and T3, we look
at the equivalent magnetic case of two wires with a
current I. There will exist a pinch effect caused by a
force-per-unit length of

F [.111]2

L 2nd @

We then transform all the quantities to get the equiva-
lent gravitational relation:

F nT1T2

L 2wd

8)

Let us be overly generous and assume that molten
iridium is used so that each meter of pipe will contain
about 200 kg and we can obtain a flow velocity of a
kilometer per second. Then the mass current in each
pipe will be

T,=Ts= Mv =2 X 10°kg/sec.

The force between the two pipes due to the “prota-
tional” pinch effect will be about 2X 107! newtons per
meter of pipe.

If, for comparison, we also look at the gravitational
attraction for the same two pipes and use Newton’s law,
we get a force of about 3X10~* newtons per meter of
pipe, so that the forces due to the pinch effect are hidden
by the gravitational effect, which itself is not usually
observable. This is quite discouraging, but it is the usual
result of gravitational calculations. Furthermore, this
estimate of the effect has saved us the labor of calculat-
ing it by using tensor quantities.

Satellites of Spinning Bodies

We shall now estimate the effect of the earth’s rota-
tion on an artificial satellite. Any effects will probably
be hidden by the perturbations induced by inhomo-
geneous mass distributions, atmospheric friction, and
even the light pressure from the sun; however, we shall
calculate them anyway.

First we need to know the “protational field” of the
earth. From Smythe? we find an expression for the ex-
ternal magnetic field produced by a ring current [ ata
latitude # = on a spherical shell of radius R. By trans-
forming the magnetic quantities into the equivalent
gravitational quantities, we obtain an expression for the
“protational field” of a rotating massive ring with a mass

current 7°:
R n+2
(n+1) ( )

P,'(cos a) P, (cos 8). (9)

—nT ©
Py = 7 smozZ

n=1
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Since it is assumed that superposition is valid, we can
construct the “protational field” of a solid spinning body
by integrating over the volume:

—nw sin 6

8xrd

Py = f [4(a, R)R? sin? «] R? sin adad¢dR
14

+ higher multipoles. (10)

Since R sin « is the distance from the axis of rotation to
the mass element, we see that the integral is merely the
moment of inertia I of the body. Thus, in general, the
“protational field” of any rotating body is approxi-
mately

—nlwsin @
Py~ —— e (11)
8rr?
Similarly, it can be shown that
nlw cos 8
P~ — (12)
4qr3

Now that we know the “protational field” of a spinning
body, such as the earth, we can calculate the effect of
this field on a satellite.

A satellite in a polar orbit around a spinning body
would experience a perturbing force due to the radial
component of the “protational field.” (See Fig. 1.) Neg-
lecting space curvature, we find that this force would
cause a precession of the orbit of an amount

N F¢f
Q= —= = P,. (13)
L mrug
Averaging the effect over the whole orbit gives
-2 qglw
= : 14
r  4mrd (14

Now, if we substitute numbers for the case of a satellite
in a polar orbit around the earth,

I = 8.11 X 10% kg-m?

r = 7.4 X 10® meters

7 = 3.73 X 1072 m/kg
w = 7.29 X 1075 rad/sec,

we find a precession of the orbit of 5.5X 107! rad/sec.
This is equivalent to a period of rotation of the orbital

Fig.1—Effect of earth’s “protational field” on a satellite ina polar orbit.



1961

plane of 27 billion vears, which is indeed too slow to be
seen.

A satellite in an equatorial orbit would experience a
radial force due to the tangential component of the
“protational field.” This force would be completely hid-
den by the radial Newtonian gravitational force and
would be observable only if the earth were completely
symmetric and we knew its mass to the nth decimal
place. If the satellite is spinning, however, then the spin
axis of the satellite itself will experience a torque,

N=1LXP (15)

due to spin-spin interaction. If we ignore space curva-
ture effects, this torque will cause a precession of the
spin axis by an amount,

N P

Q=—=—sing.
2

16
3 (16)

For a satellite in an equatorial orbit of radius r around a
spinning body with angular momentum Jw, we get

Py —nlw Glw

c2y3

2 16773

(17

The problem of the precession of a spinning satellite has
been rigorously calculated in the proper relativistic
manner by L. I. Schiff.1® His equation for the precession
rate was

3GM GI
Worbit — ~_ Wspin-
2c%r crd

(18)

The first term, the largest, is due to the effects of space
curvature, which we neglected. This term is independ-
ent of the spin of either the satellite or the planet. The
second term is the one we calculated. If we substitute
numbers for the case of a spinning satellite in equatorial
orbit around the earth,
7.4 X 10° meters
wspin = 7.29 X 1075 rad/sec
worbit = 1073 rad/sec

I = 8.11 X 10*” km-m?

M = 598 X 10* kg,

r

2

I

we get

Q= (9.0 — 0.11) X 1073 rad/sec. (19)

Thus we see that the spin interaction term is a small per-
centage of the space curvature term.

ANALOGY TO ELECTROMAGNETIC RADIATION

Since we have derived an analogy between electro-
magnetism and gravitation, we might naively suppose
that this analogy also would hold for electromagnetic
radiation. We might consider writing the Maxwell rela-

10 L. I. Schiff, “Possible new experimental test of general rela-
tivity, theory,” Phys. Rev. Lett., vol. 4, pp. 215-217; March 1, 1960,
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tions, transforming them to the equivalent gravitational
relations, and then solving them to get the wave equa-
tion. If we do this using the analogy for the electric and
magnetic fields, we shall find that the equations describe
a wave with a propagation constant of half the speed of
light, since in electromagnetic theory 1/+/ue=c and in
“graviprotational” theory 1/+/y7=c¢/2. We are reason-
ably sure, however, that the velocity of propagation of
gravitational energy will be the same as the speed of
light, since the value obtained by Einstein for the rota-
tion of the perthelion of Mercury depends upon this
value. Thus we have another indication that our anal-
ogy is not perfect, but will give order-of-magnitude esti-
mates only.

Despite the failure of this analogy, it is possible by
taking more terms into account to show that Einstein’s
equation contains the proper wave equation. In the
Appendix we obtain

(20)

where ¢.3 is a quantity representing the gravitational
potential of an accelerated mass. The interpretation of
this equation is that an accelerated mass will emit gravi-
tational waves which travel with the velocity of light.

No one has ever observed pure gravitational radia-
tion, and from the examples at the end of this section,
we shall see why. The observance of interaction in the
induction or near-field zone of an accelerated mass is
quite another matter. With a sensitive torsion balance,
Cavendish!' observed the attraction of one mass by
another and measured the value of the gravitational
constant (Fig. 2). 1f we swing the large masses back and

FRONT VIEW

TOP VIEW

Fig. 2—Cavendish’s experiment.

1 H. Cavendish, Phil. Trans. Roy. Soc., vol. 17, p. 469; 1798.
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forth with the same period as the natural period of the
torsion pendulum, it is easy to see that oscillations will
build up in the pendulum and resonant absorption will
occur in the near zone of the large masses.

It is well known that the induction fields are con-
servative and that if there were no resonant absorption,
there would be no losses due to the near field. In electro-
magnetic theory, if we examine the fields at a large dis-
tance from the field generator, then the near field be-
comes negligible and all that remains is the radiation
field, which is not conservative. A radiation field carries
away energy, and the oscillations in the generator damp
out as a result of the radiation losses. 1t is this gravita-
tional equivalent of the radiation field that has never
been observed, either directly or by radiation damping
of a mechanically accelerating system.

In Landau and Lifshitz,' the wave equation for the
gravitational potential is solved and transformed from a
four-dimensional relationship into a temporal-spatial re-
lationship. The general solution is

2G

¢ab=T
cr v

uxapd V. a,b=1,23. (21)
By calculating the energy in a plane wave at large dis-
tances from the source and averaging over all direc-
tions, the total energy emitted per unit time in all direc-

tions by the accelerated mass is given by

G & .
__ZZ(QGb)2’

dt 45¢8 a=1 b=1

dE

(22)
where
Qab = fp(Sxaxb - 6,.1,7’2)(11’
v

is the mass quadrupole moment of the mass source.
Note that energy will not be radiated unless the
source has an accelerated mass quadrupole moment.
Thus, gravitational waves must be quadrupole radiation
or higher multipole radiation. There is no dipole gravita-
tional radiation; this is easily seen by physical argu-
ments. Suppose that we grasp a charged particle and
shake it, 7.e., accelerate it. Since it is the only moving
charge in the area, it emits electromagnetic dipole radia-
tion. Now suppose that we hold a particle with mass and
shake it. As we rapidly accelerate the small particle in
one direction, our large body, in order to conserve mo-
mentum, will slowly accelerate in the opposite direction.
Because the “charge-to-mass” ratio in gravitation is
unity, the two accelerated bodies will always radiate the
same amount of dipole radiation, but they will be out of
phase and therefore the dipole radiation will cancel.

Quantum Relations for Gravitational Radiation

Gravitational radiation never has been observed and
general relativity has not been quantized; therefore, the

121, Landau and E. Lifshitz, “The Classical Theory of Fields,”
Addison-Wesley Publishing Company, Inc., Reading, Mass.; 1951.
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following statements are only educated theoretical
guesses.

1) Gravitational radiation is quantized. The elemen-
tary quanta have been named gravitons.

2) The spin of a graviton is 2. This is basically be-
cause gravitational radiation can only be of the
quadrupole type. Photons, being dipole radiation,
have a spin of 1.

3) The velocity of a graviton is the same as the ve-
locity of a photon and is related to the frequency
and wavelength in the same way:

¢ = fA =3 X 10® m/sec.

4) The energy and momentum of a graviton depends
upon Planck’s constant in the same way as does a
photon:

E=#hf
b= h/x

Gravitational Radiation from a Spinning Dumbbell

The simplest quadrupole mass source for the calcula-
tion of gravitational-radiation energy emission is two
equal masses rotating about their center of mass.

We first calculate the mass quadrupole moment with
respect to a fixed co-ordinate system. Let us assume that

Fig. 3—Spinning dumbbell.
the spin axis is in the z-direction (Fig. 3), then

0u = [ uiast = v
14
= 2m(2a? cos? wt — a® sin? wi)

Q2 = Q1= 3f#xde = 6ma® cos wt sin wt
1 4

0 = f u(3y? — v

2m(2a® sin? wt — a? cos? wl)

— 2m(a? sin? wt + a? cos? wl)

Qss

= — 2ma?, (23)

and all other quadrupole moments are zero.
Secondly, we calculate the third derivative, and we
are left with only the x, y components,
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— Qs = 24(2ma?)w? sin wt cos wt

@11 =
012 = O = — 12(2ma?)w¥(cos? wt — sin® wl), (24)

since the first derivative of the z component is zero.
The power radiated is then

dE G

450

8GI*wt
[Qu2 + 0122+ 022> + QZIZ] = ——, (25)
5¢8

where I=2 ma?® is the moment of inertia of the source.
Now we must substitute numbers into (25). For a
1-meter dumbbell weighing 1 metric ton and spinning at
about 10,000 rpm, conditions which no known material
can withstand, the power radiated is only
dl

— — = 4.5 X 1073 watts.

di (26)

With numbers such as these, it is not surprising that
this field has been of little interest to experimentalists.

From the exponents of I? and w® in (25), it seems de-
sirable, at first glance, to work with a higher rotational
speed, even if it means that less mass could be used.
However, we would find, when the strength of the ma-
terial is considered, that it is more advantageous to
lower the rotational speed and to use a greater mass.
The ultimate in this procedure is represented by a ro-
tating double star system. The rotational speed could
be on the order of 1 month w=10"* rad/sec, and the
moment of inertia would then be roughly [7=ma?
=103 kg X 10 m?; thus, the power radiated from a
binary star is about 107 watts. Thisappearsto be a large
amount of power, but it would take 10" billion years for
the system to damp out as a result of radiation losses.

SrACE CURVATURE

The previous analogies have shown us how to calcu-
late the forces exerted on a body as a result of the gravi-
tational scalar and vector potential. However, if we are
interested in the path of the particle under the influence
of the forces, we encounter nonlinearities. It should be
noted that we have not vet calculated the usual general
relativistic effects, such as the precession of the peri-
helion of Mercury or the bending of light rays. This is
because these effects are not a result of the gravitational-
field components which have analogies in electromag-
netic theory. Also, when the precession of a spinning
satellite was calculated using the electromagnetic anal-
ogy, we obtained a result which was smaller than the
space curvature effect which we neglected.

It will probably be true in most cases where the pri-
mary mass is large and the motions of the bodies have
small velocities and accelerations that the only observ-
able perturbations will be a result of the spatial tensor
components of the gravitational field, which have no
analogy in electromagnetic theory. The closest analogy
which may be made is that these components of the
gravitational field can be represented by assuming that
the mass of the object somehow causes the space to be
slightly curved. Then the concept of motion in a flat
space under the influence of tensor forces can be re-
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placed by the concept of forceless motion in a curved
space.

In classical theory, once we have calculated the forces,
we can solve the equation of motion:

jel
—=mx=F 27
2 X (x) (27)

for x=x(t). This equation is valid in flat space; how-
ever, if we want to include these other gravitational
forces by assuming a curved space, then the ordinary
rules of differentiation will not hold and we must use
covarient differentiation. The usual equation of motion
is reallv just the flat space approximation of the curvi-
linear equation of motion:

Dcpa dpu 1
D[ B ()71 2 b=1

(28)

where g, is the three-dimensional metric tensor, and the
forces due to the gravitational vector and scalar poten-
tial are contained in F, o is the velocity in the b direction
and p“is the momentum in the ¢ direction.

This procedure should not be too unusual since we
know that ordinary rules of differentiation hold only for
flat cartesian coordinate systems. In curved coordinate
systems, such as cylindrical or spherical systems, we
have to use more general rules of differentiation. For
instance, the general equation for the divergence of a
vector 1s

1 O/ gosgys A
V.A [ \/gz-ng 1+

- (g11820833)"2 ! dx?

i‘f%i‘??i_‘_’ﬁ] (29)
0.\"3

if the metric tensor is

And since the spatial metric tensor for cartesian coordi-
nates x'=ux, x?=y, ¥¥=z1is

{1 0 0
|
gnb = ‘IO 1 0{,
0 0 1)
we get the familiar relation
61’11 0.‘12 6‘4;;

V-A =

(30)
ax av Jz

For a spherical coordinate system, x¥'=r, x*=0, x?=¢,
however, the spatial metric tensor is not constant, but
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depends upon the position in the space,

1 0 0
gub = I.0 r? 0 ‘

0 0 #sin?6)

9y

and we find that calculating the divergence in this
curved space is no longer a simple procedure:

1 6(72.41) 1 6(Sin 04 2) 1 A,
—~ +— + —
ar rsinf a6 rsinf d¢

V-A= .31

)

r

We also encounter similar problems in simple New-
tonian mechanics when spherical or cylindrical coordi-
nate systems are used. For instance, if we want to calcu-
late the motion of a satellite, the equations of motion in
cartesian coordinates (let x*=z=0) are

) GMm
mi = — ————
(a2 4 y2)312
) GMm
my = — —, (32)

(.1'2 + y2)3/‘.’
and in spherical coordinates (let x?=0=1m/2) they are

m dgs .
mi — — — @ = mi — mr¢? = — ——
2 or r?

(33)

i (r*¢) = 0. (34)
dt

It can be seen that we have a term in (33) introduced by
the metric tensor of the coordinate system; this is the
familiar centrifugal “force.” Thus, we can say either
that the centrifugal “force” is a real force and that the
coordinate space is flat and then use the ordinary equa-
tion of motion,

mit = F = Fcentrifugal + Fgruvit:\tionaly

or we can say that there is only one force, that due to the
gravitational attraction. Since we are working in a
curved coordinate space, however, we must use the
curvilinear equation of motion:

= £2 — =
mr — mre- = F = Fgmvit.«\tionab

Metric Tensor Outside a Massive Body

We have shown that a curved coordinate system can
be interpreted as a force. Now we shall attempt to
explain how the remaining components of the gravita-
tional force can be interpreted as a curved space. In
practically everv imaginable case, the spatial com-
ponents of the metric tensor will be determined by the

21 d 183

/ 0g4.
> S (Pgait) = — 23 e - OX

1 L dl 2 bt o1 9x°

scalar potential and special relativity. For the sake of
simplicity, we shall continue to ignore special relativity
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(although it should be taken into account for quantita-
tively correct results).

The metric tensor for a region ol space with a scalar
potential x is given by the Schwarzschild metric tensor,
which is a slight modification of the spherical coordinate
metric tensor

0 r? 0 |
0 0 7r¥sin?f)

In all cases of experimental interest 1>>2x/c? and

therefore,
2%\ " 2
(1+3§> z(lin—’f>
c” [

The metric tensor can be written for the common co-
ordinate systems as follows: for spherical coordinate
syvstems, x'=r, x’=0, ¥*=¢,

(36)

[ 2
-0 0
i c”
ab = ) (36)
fuv o 7 0
0 0 #’sin’g

for cartesian coordinate systems, a!'=x, x*=y, a¥=3z,
11— 0 0
1-—= 0 ;

gab = 0 37)

0 0

and for cylindrical coordinate systems, x'=p, x*=¢,
xi=g,

2 1
=6 o |
[ 2 |

w=1] 0 2 0 (38)
2x |
o o0 1-=%
c !

Relativistic Equation of Motion

From the Appendix, we can now write the proper equa-
tion of motion which uses this space curvature analogy:

oK. 0K,
> ]

<] 3 MoK,
+ 7
dx° af »—1 L Ox° dxb

(39)

where gu is one of the metric tensors taken from the
previous section, a=1, 2, 3, and
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=
II

2X 1/2 Ka.va 2 '02 —1/2
te2) -5 -4
62 02 62

comes from the special and general relativistic correc-
tions to the mass. Note that if x=0=K,, then we get
just the usual special relativistic correction to the mass:

2

1 — —

62
Now that we have the equation of motion, all that is
necessary is to calculate the gravitational scalar and
vector potential by analogy to electromagnetism, calcu-
late T and g, and put them in the equation, and then

solve the equation by the method of successive approxi-
mations.

m = myl = (40)

Measurements in a Curved Space

We should be familiar with the problems of operating
in a curved space, since we live on a two-dimensional
curved space—the earth. A straight line on the earth is
the great circle route, because it is the shortest distance
between two points in that two-dimensional space. If
we make a triangle with these “straight lines,” we find
that the sum of the angles can range from = to 5w, de-
pending upon the size of the triangle.

A more fundamental experiment is the parallel trans-
lation of a vector. Suppose we are on a flat surface and
we place a test vector at one corner of a triangle. Then
very carefully keeping the angle between the vector and
the appropriate side of the triangle constant, we traverse
the perimeter of the triangle and return to the starting
point (see Fig. 4). The test vector obviously returns to
the starting point with the initial orientation. Now try
this same simple experiment with a vector moving about
on a spherical triangle, as shown in Fig. 5. It will be ob-
vious even to a flatlander inhabiting the surface of the
sphere that the vector has rotated through an angle « as
a result of its parallel translation around a closed path
in the two-dimensional curved space. The size of the
angle @ will depend upon the amount of curvature of the
space and the size of the triangle.

Effect of Space Curvature on a Satellite

It was pointed out in the section on satellites of
spinning bodies that a proper solution of Einstein’s
equations for the precession of the spin axis of a satellite
resulted in two terms. The smaller was a result of the
gravitational equivalent of the magnetic field. The
larger term was produced by the other components of
the gravitational field. The precession of the spin axis of
a satellite in a curved space cannot be calculated easily,
but by using an analogy to two-dimensional curved
space, we can see the qualitative reason for this preces-
sion.

Forward: General Relativity for the Experimentalist

899

1

o ..
/

Fig. 4—Parallel translation in flat space.

Fig. 5—Parallel translation on a sphere.

We said that these remaining components of the
gravitational field of a mass in three-dimensional space
could be examined by assuming a slightly curved space
with a metric

( 1
e 0
) 2GM
gy = cr s (41)
0 r? 0 !
0 0 r%sin’@

where we have taken the scalar potential for a spherical
mass x = —GM /r. Notice that if we are far away from
the perturbing mass, then our space is flat again.

Now suppose that we look at a flatlander living on the
edge of a two-dimensional massive circle in a two-
dimensional flat universe (Fig. 6). If we assume that
Einstein’s law of gravitation holds in this two-dimen-
sional space, then there will be a tensor gravitational
field with which to contend. It will be easier for the flat-
landers to ignore these tensor fields and assume that the
massive circle warps the local area of his flat space and
modifies his two-dimensional metric tensor slightly:

]

8ab = l - _0
cr

0 r?)

If a two-dimensional rocket is sent up and a two-dimen-
sional satellite is put into orbit, then the flatlanders will
notice that an axis of the satellite will rotate because of
the local curvature of the space (Fia. 7). If the orbit is
sufficiently distant, the extra contribution to the metric
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Fig. 6—Flat two-dimensional space.

Fig. 7—Two-dimensional locally curved space.

tensor will be small and the satellite will travel through
flat space with essentially no rotation.

If this picture is extended to three dimensions and the
proper calculations are performed, we obtain the pre-
cession due to space curvature:

iGM

Q= 2 Worbit
cr

Calculation of the Orbit of Mercury

We start from the curvilinear equation of motion,
where the only force is that due to the gradient of the
scalar gravitational potential:

s 1 d a1 3 3 g 3
Z__.__(I‘gab._x_)=._.22_gb_.vbvc__a_ta

(42)
b=1 T di df 2 b=1 ¢=1 ox¢

where a=1, 2, 3, and
2x .l,‘.’ —1/2
P (o)
c? c?
Keeping only the nonvanishing terms, the three equa-

tions are:

1 4 119 aga2 | agss . dx
— (Tgud) = 7[—@72 + 82 g“d,z] _ %

_IT ar ar ? ar

1 d R 1 0gs3 ]

_ F 020 = —| — ¢?

T dt( g20) 2 [ae ¢

L 4 (Tgud) = 0 (43)
7

The scalar potential, due to the sun, and its gradient are

GM x GM
X=——>  —=-—"

r ar r?
Now if we define our coordinate axes so that the plane

of the planetary orbit is in the equatorial plane, then

f=—, 6=0, sinf=1, cosf=0.

Under these conditions, the components of the metric
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tensor for this coordinate system become

1 }
WGM '
(-5
8ab = c’r
44
E 0 rt 0 ()
0 0 2

When (44) is substituted into (43), two equations result:

1 d (F ) 1 dgn P el GM (45)
— — #) = — — i + rp? — ——
r di su 2 or ? r?
’ (I'r*¢) =0 (46)
— (I'r2$) = 0.
dt
Eq. (46) expresses the conservation of angular mo-
mentum:
) Ir
T'r?¢ = constant = s
mog11

where the measured angular momentum / is not a strict
constant because the denotation of a “radius vector”
used in the definition has an unambiguous meaning only
in a flat space. If we substitute for ¢ in the first equation,
drop terms of higher order in v/¢, and simplify, we get

2 GM

m02r3g112 r?

gniz - 0. (-1'7)

Our problem now is to solve this equation, which is
usually done by successive approximations. We shall
find the task much easier if we use the mathematical
shortcut of letting » =1/¢ and calculating ¢ as a function
of ¢ rather than ¢:

dr 1 do l lo?
do a? dt  mor’gn B Mog11
o d (dr) do d (d¢ dr da)
= —(—)= - (27
dt \ dt dt do \dt do do
PPe*  d%
=——— (48)
mo’g1® do?
Substituting and rearranging, we get
2GM \ d% 2GM \?
<1 - —-a) +<1——~-a>0
c? d¢2 2
GMmy?
— =0. (49

l?
The zeroth approximation neglects all but the two

largest terms and leaves us with

G]MWL()“Z 1

a0

12 Yo

which is the equation for a circular orbit of radius 7.
The first, or Newtonian approximation, neglects the
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changes due to the metric tensor:

d%c
"d;—i‘v—(ro:o.

This equation has the solution
o1 = ao(1 + e cos ¢),

where ¢ is the eccentricity of the elliptic orbit.
We then put ¢ =01402 in (49), and after cancelling
out equal terms and neglecting small terms, we obtain

d’o» 4GM o6GM
—— go — 0-02 —_ 0’026 cos ¢
dop? c? c?
2GM
- - ao’e? cos? ¢ = 0. (50)

4

Because of the cos ¢ term, we have an equation for a
driven oscillator which leads to a continually increasing
change of ¢ with ¢. Retaining only this term, we find the
solution

3GM

2

1
0'=0'1+0'2=—(1+6COS¢+ e¢sin¢)
7o

(- 2] @

It can be seen from (51) that after one revolution, the
Newtonian orbit will shift by an amount

A ) IGM 6rGM
o =i _cza(l—e2)’

6270

4

A

(52)

where a is the length of the major axis.

This result of Einstein’s theory cleared up a bother-
some problem in celestial mechanics. The orbit of
Mercury is well known and the major axis shifts
5599.74 +0.41 sec of arc per century. The perturbations
introduced by the other planets in the solar system
cause most of this shift, but careful calculations over
many years gave the result that the maximum shift due
to the planetary perturbations should be 5557.18 +0.85
sec of arc per century, leaving a discrepancy of 42.56
+0.94 sec of arc per century.

Eq. (52) gives us 42.9 sec of arc per century. This close
agreement is a very strong argument in favor of Ein-
stein’s equations. Other theories of gravitation, when
applied to Mercury’s orbit, give an incorrect value or
even the wrong sign.

CONCLUSION

At present, efforts are being made in a number of
projects to measure gravitational effects. In the most
active of these projects, investigators are attempting to
measure the red shift in the frequency of light as it
leaves the earth’s gravitational field. Cranshaw®® and

18 T, E. Cranshaw, et al., “Measurement of the gravitational red
shift using the Méssbauer effect,” Phys. Rev. Lett.,vol. 4, pp. 163-164;
February 15, 1960.
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others at Harwell, England, and Pound and Rebka!
at Cambridge have already made measurements using
the Mossbauer effect. The results agree with the predic-
tions of general relativity. The Hughes Aircraft Com-
pany, National Bureau of Standards, and MIT are
working on accurate clocks of various types to put in
satellites to measure both special and general relativistic
effects. Other experiments to test general relativity
using space vehicles have been covered by Benedikt.!
Kerns'® at Berkeley and H. E. Fiala at the Hughes Air-
craft Company have both made proposals to measure
the speed of gravitational interaction. Weber, Zipoy,
Forward and Sinsky!7:!® at the University of Maryland
are working on the problem of the generation and de-
tection of gravitational radiation.

Itis hoped that someone with a practical turn of mind
will think of an experiment to detect the gravitational
equivalent of the magnetic field. This paper was de-
signed to permit a preliminary evaluation of such ideas.

It is interesting to note that a good electromagnetic
autotransformer has almost 100 per cent efficiency in
transferring the ac motion of the charges in the primary
wire to the charges in the second wire. But the high
efficiency is a result of the high velocity of interaction
between the charges, the low losses in the wires, and
the high permeability of iron. A calculation of the
efficiency of a “graviprotation” autotransformer would
have to take all these practical considerations into ac-
count.

APPENDIX

RebpUcTION OF EINSTEIN'S EQUATIONS TO SHOW
THE ANALOGY TO ELECTROMAGNETISM

The justification for the approximate analogies pre-
sented in the main body of the paper is presented here.
It is assumed that the reader is familiar with tensor
formulation, the summation convention, and the ele-
mentary procedures necessary for the handling of
Einstein’s equation. The procedure for linearizing Ein-
stein’s equation is included in all texts on general
relativity.'*=* The calculation of the energy-momentum
tensor for slowly moving masses may be found in
Mgller.22 The identification of the scalar and vector
potentials and the three-dimensional metric tensor and

1“4 R. V. Pound and G. A. Rebka, Jr., “Apparent weight of pho-
tons,” Phys. Rev. Lett., vol. 4, pp. 337-341; April 1, 1960.

15 E. T. Benedikt, “Advances in the Astronautical Sciences,”
Plenum Press, New York, N. Y., vol. 5, pp. 98-115; 1960.

15 Q. A. Kerns, “Proposed laboratory measurement of the propa-
gation velocity of gravitational interaction,” Lawrence Rad. Lab.,
Univ. of California, Livermore, Tech. Rept. No. UCRL-8438; De-
cember, 1958.

17 J. Weber, “Detection and generation of gravitational waves,”
Phys. Rev., vol. 117, pp. 306-313; January 1, 1960.

18 R. L. Forward, et al., “Upper limit for interstellar millicycle
gravitational radiation,” Nature, vol. 189, p. 473; February 11, 1961.

19 Landau and Lifshitz, op. cit., p. 324 ff.

20 A. S. Eddington, “The Mathematical Theory of Relativity,”
Cambridge University Press, New York, N. Y., p. 128 ff.; 1924,

2 Mgller, op. cit., p. 313 ff.
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their use in the equation of motion is also presented by 167G
Mgller.? A = = ——m (56)
We start with Einstein’s equations:
This is essentially Poisson’s equation, which has the
Ros — 1 gusR = 8rG Tos. solution
2 ct

Our first assumption will be that all velocities are small,
so that special relativity can be neglected, and that all
gravitational effects are weak. Then the metric tensor
can be approximated by :

8ap = 6ul3 + haﬂy

where 8.5 is the flat space metric and k. are the per-
turbations introduced by the masses. Using this form
of the metric, the Ricci tensor and the curvature scalar
can be calculated from the Christhoffel symbols:

~ 1 — 1
Raﬁ = = 'fhaﬂ"y'-, = T 2 I:l haﬂ

R = g¥Ry~ — 3 00%hs = — 30k (53)

where in obtaining (53) we chose our coordinate sys-
tem so that

[haﬂ - %aaﬁh].ﬁ = 0.

If we substitute the Ricci tensor and the curvature
scalar into Einstein’s equations, we obtain

Ry —31gsR=—3101h 15 h=—8ﬁ 54
af 28a8 2 D af + 4008 D af. ( )
64

We now define the gravitational potential as
¢aﬁ = kaﬁ - %Baﬂh;
substituting and rearranging, we get

167G

ct

aB.

O ¢as = —

If we write out the d’Alembertian operator, we have

A 1 92 5 167G
Pes c? o012 @

Tap. (55)

This is the basic equation upon which the analogies are
based.

Scalar Potential

In the first approximation, we assume that all quan-
tities are not varying with time and that the masses
have low velocities or rotations. Then the time deriva-
tive of the gravitational potential is zero and all the
components of the energy-momentum tensor are zero
except

Too = uct.
Egs. (55) reduce to

2 Jbid., p. 246 ff. and p. 288 ff.

4G m
Poo = + _2 —dV.
c v r
If we define a gravitational capacitivity of the vacuum
as

Y= (47"6)—17
we get
oo 1
-2 L (57)
4 41r'y v 7

By comparing (57) with the scalar potential of an elec-
tric charge density

1 P
¢=+—1 —dV,
dred v 7

we see that we can construct the well-known gravita-
tional analog to the scalar potential:

_ 62¢oo CQ(goo + 1)
4 2

X =

Space Curvature

This first approximation (56) also determines the
spatial metric. The existence of the component ¢,, re-
sults in an interval of the form

2
ds? = <1 - —’:) (d2® + dy? + dz?)
c

2
- (1 + = x) e,
62

Thus the three-dimensional spatial metric will be of
the form

(58)

8ab = 0

In higher approximations that will be considered later,
the additional terms in the spatial metric will be smaller
than 2x/c? by the order of (v/¢)?, and since we assume
velocities much smaller than the speed of light, they
will be of little experimental interest.

Vector Potential

In the next higher approximation, we still assume
that the potential is not varying with time, but that
the masses involved have appreciable velocity or rota-
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tion. Then the energy-momentum tensor will have the
components

v
Too = uc? (zero order in ~—)
c

o o
Too = — uc? (—) (ﬁrst order in -—)
c c

We then have four equations remaining: one gives us
the scalar potential obtained previously, and the other
three are

and

167G

c3

Adao = + Mla.

These equations have the solution

4G T
He av

Pao =

S Jy o or
If we define a gravitational permeability of space by

167G
,7 =

’
C2

then we can substitute and rearrange to get

" n Mo
CPao = — —
° 47 v r

av.

Thus we can identify a mass density flow p=puv and a
gravitational equivalent of the vector potential whose
components are the three components of

K, = C¢no = C(8ao
and thereby arrive at the isomorphism of the equations

k=-2{ 2a

47 v 7

A=if Lav. (59
41r v

Gravitational Radiation
Let us return to the basic equation (55):

1 9 167G

APag — — — Qo = —
Dap = 612¢ﬂ

Tas- (60)
As it stands, (60) is a wave equation for the gravita-
tional potential ¢.s. The velocity of propagation is the
same as the velocity of light. It is this equation, which
results from the linearization of Einstein’s equation,
that gives credence to the statement that gravitational
radiation exists. The solution of the wave equation and
the calculation of the radiated power are straightfor-
ward and are carried out in Landau and Lifshitz.!®

Equation of Motion

In the four-dimensional equation of motion (61), the
gravitational effects are entirely in the metric tensor.
The only forces explicitly stated are nongravitational
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forces. This four-dimensional equation of motion can
be broken down and arranged so that it is a three-
dimensional curvilinear spatial equation of motion.
The gravitational effects resulting from the temporal
components of the metric tensor are represented as
forces due to a gravitational scalar and a gravitational
vector potential. The spatial components of the metric
tensor are used as the three-dimensional metric tensor.

The general equation of motion for a particle with
only gravitational forces acting is given by Mgller® as

dP, 1 9
—_—— ,fﬁ UBPy = 0, (61)
dr 2 9x*
where
, do?
Py = moUqs = mogasUP = mogasT —
dt
and

dt 2x 1/2 Ka.va 2 .2}2 —1/2
et -5 -3
dr c? c? c2

The a=0 equation gives us the conservation of mass-
energy and the other three equations are

r d ( r d.\"’) 4T «9( . dx®
—\m ab T —\ 7 ao T
A PANE )

dt
dx® 9 dx°
T e (Pg 197)

1 92, dxo\? Ao dx®  da®
-5 "““(25) e
LI

2 dxc dt dt

Dividing through by mol'?, letting dx°/dt=c¢, and neg-
lecting higher-order terms, we get

1 d (I‘ d*c”) 1 dgp. da dat +
r a\® )" 2 o @ @

(9 a0 a 0 d ao dxb
-l (e Y
Jxe axb/ dt

c® 3goo

2 Oxe

We then use our definition of the gravitational scalar
and vector potential

K. = cgo
dx®
Y8 =
dt
CZ
X = '—'—(goo+ 1)
2x
8oo = — 1 - 6—2

1 Mgller, op. cit., p. 290.
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to get
1 d da™\ 1 gy ax 9K,
- (I‘gab —) = — b — -
T di dt 2 dac dxe dt
dK 0K,
+ 1rb[ v ] (62)
dx dx?

The left-hand side of (62) is the acceleration of the
particle in a curvilinear coordinate system. The first
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term on the right gives the fictional forces due to the
choice of the coordinate system, the most familiar
examples being the coriolis force and the centrifugal
force. The second term is one component of Vy, the
gravitational static attraction; the third term is one
component of dK/dt, the gravitational induction effect;
and the fourth term is one component of vX(VXK),
the gravitational equivalent of the Lorentz force.

A Matched Amplifier Using Two Cascaded
Esaki Diodes”

DONALD R. HAMANN

Summary—The purpose of this paper is to introduce a new type
of circuit for matched amplification using negative resistance de-
vices. This circuit consists of a quarter-wave transmission line sec-
tion whose input and output are paralleled by negative conductances.
The characteristics of such an amplifier are discussed, and an ex-
pression for its noise figure is derived. The development of a 30-Mc
amplifier using two Esaki diodes is described. Experimental results
are presented, including curves of the characteristics as a function of
frequency. A gain of 8.9 db was measured with a noise figure of
4.3 db.

INTRODUCTION
&-MPLIFICATION by a single negative resist-

ance element has several disadvantages. First,

such an amplifier necessarily presents a mis-

match to the source. Second, amplification and reflec-

tion of noise power radiated by the load tends to con-

tribute to its noise figure. The noise figure of such an
amplifier is given by (1).

F=1-+ Kl +

4kTsGs

G.TL
GsTs

€Y

In this expression, |i|? is the equivalent noise current
squared per cycle produced by the negative resistance
device, Gs and G, are the source and load conductances,
and T's and T, are the source and load temperatures.
It may be seen that in order to achieve a low noise
figure, the factor G, T must approach zero, regardless
of the device used. If G, becomes small, however, it is
necessary to adjust the source and device conductances
extremely close to the point of oscillation in order to
achieve any power gain.!

* Received by the IRE January 5, 1961. Revised manuscript re-
ceived February 20, 1961.

t Mass. Inst. Tech., Cambridge, Mass.

' K. K. N. Chang, “Low noise tunnel-diode amplifier,” Proc.
IRE, vol. 47, pp. 1268-1269; July, 1959.

These effects may be eliminated by the use of non-
reciprocal circuit elements, or a hybrid with two nega-
tive resistance elements.?? At lower frequencies, non-
reciprocal passive elements are difficult to produce, and
hybrids do not present the wide frequency range resis-
tive load necessary to stabilize Esaki diodes. This paper
describes another method of obtaining amplification
using two negative resistance elements. The amplifier
described is matched to both the source and load, and
achieves a low noise figure with equal source and load
conductances. Experimental work was done at 30 Mc,
permitting the use of lumped circuits. Although Esaki
diodes were used, the circuit techniques should be
equally applicable to parametric and other negative
resistance devices.

THEORY OF OPERATION

The basic circuit which was used consists of two
conductances G and a 1 wave transmission line section
of impedance Z, as shown in Fig. 1. A 1-ohm source and
load are assumed to simplify computation, so that the
factors G and Z are normalized variables in all equa-
tions. The circuit may be easily analyzed using the
fourpole matrix notation

b -C 0o

2 M. E. Hines, “High-frequency negative-resistance circuit princi-

" ples for Esaki diode applications,” Bell Sys. Tech. J., vol. 39, pp.

485-488; May, 1960.
3 L. U. Kibler, “Directional bridge parametric amplifier,” Proc.
IRE, vol. 47, pp. 583-584; April, 1959.



