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General Relativity for the Experimentalist*
ROBERT L. FORWARDt

Summary-Einstein's general theory of relativity is broken down
and simplified under limitations usually satisfied in experimentally
realizable situations. Following the work of Moller,' an analogy be-
tween electromagnetism and gravitation is presented which allows
calculation of various gravitational forces by considering the equiva-
lent electromagnetic problem. A number of examples are included.
Tensor formulation is not used except in the Appendix, where justi-
fication for the analogies is given.

INTRODUCTION

E SHALL assume that all gravitational effects
are correctly described by Einstein's general
theory of relativity.2 Suppose we want to find

the behavior of a system under the influence of gravi-
tational and other forces in the proper general relati-
vistic manner. We must first determine all the mass and
energy in both the system being investigated and in the
sources of the fields. Using these in a prescribed manner,
we calculate the ten components of the energy-momen-
tum tensor. Next, we put the eniergy-momentum tensor
into Einstein's equations and solve these ten nlonlinear
differential equations for the ten components of the
metric tensor. Then the metric tensor is substituted into
the curvilinear equation of motion and it is solved to
determine how the system moves.

Because of the difficulty of this process, there exist
only a few solutions of Einstein's equation which are of
experimental interest in that they describe some physi-
cally observable effect of genieral relativity. The process
is so specialized and so difficult that it is practically im-
possible to attempt solution of a problem unless months
of study on the specialized terminology, procedures, and
conventions of the general relativity theorist have been
completed. The most disappointing aspect is that in
most cases, after strugglinig through the calculation-s, it
will only be found that the effect calculated is too snmall
to be observed.

Fortunately, it is possible to bypass this complicated
procedure. By applying reasonable limitations to the
systems involved, Einstein's equations can be linearized.
These linearized equations can be examined and handled
separately. One equation gives us the gravitational sca-
lar potential; three others give a quantity which is simi-
lar to the magnetic vector potential; and the remainder,
which describe the remaining properties of the gravita-
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tional field, can be handled by assuming that they repre-
sent a curvature to the space.
With these analogies, it is possible for aniyone who has

had electromagnietic theory to study a situation of ex-
perimiiental interest and to calculate the effects to be
expected with sufficienit accuracy to determinie whether
they warrant further study.3
There have been niumi-erous books, papers,4-6 articles,7

and even advertisemenits8 that have developed or meni-
tioned a gravitational analog to the electric and imag-
netic fields. Some are based on classical ideas, somne on
M\lach's principle, anid others oni Einstein's general
theory of relativity. Nonie based oni Einsteini's work,
however, have been at the same time comiplete, rigorous,
and free of tenisors.

ANALOGIES TO ELECTRICITY AND MAGNETISM

In Einistein's general theory of relativity there exist
gravitational analogies to the electric and nmagnetic
fields. We are already familiar with the analogy betweein
the electric field of a charge and the gravitationial field of
mass. It is well knowni that the analogy breaks down al-
most immediately, because there are two kinds of
charge and only one kind of mass and because two
particles with the same type of charge repel, whereas
two particles with the same type of mass attract. Never-
theless, if we are cogniizant of these distinctions, we can
still apply the analogy alnd obtain- useful results.

In the Appendix it is shown that Einsteiin's equations
not only can be made to show this well-kniown analogy
between the electric field anid the gravitational field, but
they can also give a gravitational analog to the mag-
netic field. It has no name, but since it will be men-
tioned, we shall coin one and call it the "protatioiial
field," as it usually arises from the rotationi of a mass.
This "protational field," has the (liniensions of angular
velocity (radians/sec) anid is closely related to coriolis-
type forces which arise from the priniciple of general
relativity.
When the analogy is carried out and all the conistants

3 If anyonie using this approximate method comes upoIn a pre-
viously uncalculated effect that shows promise of being large enough
to be observed, the author will be glad to repeat the calculations using
the proper tensor formulation to ensure that the result was not pro-
duced by the approximationis involved in simplifying the theory.

4D. W. Sciama, "On the origin of inertia," Aon. Not. Roy. Astr.
Soc., vol. 113, pp. 34-42; January, 1953.

5 W. D. White, "Electromagnetic analogs for the gravitational
fields in the vicinity of a satellite," PROC. IRE, vol. 46, pp. 920-922;
May, 1958.

6 W. Davidson, 'General relativity and Mach's principle," Mon.
Not. Roy. Astr. Soc., vol. 117, pp. 212-224; February, 1957.

7 G. P. Field, "Two source field theory," essay submitted to
Gravitational Research Foundation, New Boston, N. H. Some of
the terminology and symbols used were adopted from this essay.

8 W. D. White, A.I.L. Advertising Monographs, PROC. IRE, vol.
46, p. 4A; November and December, 1958 and January, 1959.
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are evaluated, we obtaini ani isomorphism betweeni the
gravitationial anid the electromnagnetic quanitities (see
Table 1).
Now, if we have a certain mass distribution anid flow,

all that is niecessary is to find a similar charge and cur-
rent distributioll in electromagnetic texts, such as that
of Smvthe.9 We theni use the formnulas derived for the
electric anid miiagnetic fields and mnake the substitutionis
in the electromagnetic formiulas to obtain the gravita-
tionlal formiiulas. Since we are usinig the linearized theory,
superpositioni is valid, anid fields for more complex
bo(lies cani be built up fromii the superposition of the
fields of the parts.
Once we have calculated the fields genierated by the

mass densitv anid currents, we can calculate the forces
on a particle of Imlass m by a force equiationi which is
analogous to the electronmagnetic force equiationi,

F= -mVx -m + mv X (V X K)

= mG + m(v X P). (1)

If the test body is spininiig anid has ani angular momen-
tum of L, theni the torque on it due to a "protationial
field" P will be by anialogy

N-2LXP. (2)

It should be emphasized that the previous discussioni is
approximate and is presenited miierely to provide a simple
tool with which to make estimiiates. In deriving this
analogy between some of the gravitationial forces anid
the static and induction fields of electromagnetism, the
followinig assumptionls, amiionig others, have been made:

1) The mass densities are niormnal (nio dwarf stars).
2) All mnotionis are much slower thani the speed of

light. (Often special relativistic effects will hide
general relativistic effects.)

3) The kinietic or potenitial eniergy of all the bodies
beinig conisidered is much smaller than their miass
eniergy.

4) The fields are always weak eniough so that super-
position is valid.

5) The distances betweeni objects is not so large that
we have to take retardationi inlto account. (This
conidition can be igniored wheni we have a stationl-
ary problem where the fields have already been
prescribed and are n1ot chan-ginig with time.)

To show how this anialogy cani be used, let us calculate
a few simple examples.

Force between Two Aiasses

Force Vector

Solenoi(lal
Force Vector

Scalar Potential

Vector Potential

Souice Density

Source Quantity

Cturrent Density

Current Quantity

Moment

Capacitivity
of Space

Permeability
of Space

TABIE I

1EM Gravitation-
Symbol al Symbol

- E -+ G

-A-- K

P i~ y L

).11

2 L

ML -H L

Value or
D)efinition.

d
= - VX---

=VXK

I rA,
4zr- J - r

4,r j' 5Wd

d 1/ I

dV

47r r

dil

= ,uLv

2= pndS

2

1 kg-sec2
=-1.19.x11

47rG m3

16irG m
=---- = 3.73X 10-2 -

C2 kg

a particle with charge Qi:

Qi
E= ~~ r.

47rE-r2
(3)

Next we tranisform all quantities to the equivalenit gravi-
tational quantities anid get

(4)

Then the force oIn a particle of imlass M1l2 inl the gravita-
tional field of Ali is

-MIM.
F= M2G= r

4iriyr
(5)

Suppose we have two particles with total miiasses M
and M2. Then if we want to calculate the gravitationial
field due to mass M1, we write downi the electric field for

and if we tranisform y inito miiore famiiliar gravitational
uInits, we get

-GM1M2
F-= 2

r,

re
(6)

9 W. R. Smythe, "Static and Dynamic Electricity," McGraw-
Hill Book Co., Inc., New York, N. Y.; 1950.

-M1
G = -r.

47-yr2
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Pinch Effect between Two Pipes
This example is included primarily to show why the

gravitational equivalent of the magnetic field has never
been observed.
Suppose that molten metal is flowing through two

parallel pipes with spacing d=0.1 meter. To find their
interaction due to the mass currents T, and T2, we look
at the equivalent magnetic case of two wires with a
current I. There will exist a pinch effect caused by a
force-per-unit length of

F /II2__
. (7)

L 2rd

We then transform all the quantities to get the equiva-
lent gravitational relation:

F _ T1T2
L 2ird (8)

Let us be overly generous and assume that molten
iridium is used so that each meter of pipe will contain
about 200 kg and we can obtain a flow velocity of a
kilometer per second. Then the mass current in each
pipe will be

T1 = T2 =Mv = 2 X 105 kg/sec.

The force between the two pipes due to the "prota-
tional" pinch effect will be about 2 X 10-1" newtons per
meter of pipe.

If, for comparison, we also look at the gravitational
attraction for the same two pipes and use Newton's law,
we get a force of about 3 X 10-4 newtons per meter of
pipe, so that the forces due to the pinch effect are hidden
by the gravitational effect, which itself is not usually
observable. This is quite discouraging, but it is the usual
result of gravitational calculations. Furthermore, this
estimate of the effect has saved us the labor of calculat-
ing it by using tensor quantities.

Satellites of Spinning Bodies

We shall now estimate the effect of the earth's rota-
tion on an artificial satellite. Any effects will probably
be hidden by the perturbations induced by inhomo-
geneous mass distributions, atmospheric friction, and
even the light pressure from the sun; however, we shall
calculate them anyway.

First we need to know the "protational field" of the
earth. From Smythe9 we find an expression for the ex-
ternal magnetic field produced by a ring current I at a
latitude 0a=a on a spherical shell of radius R. By trans-
forming the magnetic quantities into the equivalent
gravitational quantities, we obtain an expression for the
"protational field" of a rotating massive ring with a mass
current T:

-7'Tsin a 1 /Rn+2
Po

2R 1 (n+ 1)(r

Since it is assumed that superposition is valid, we can
construct the "protational field" of a solid spinning body
by integrating over the volume:

Po = -'ic esin C [4a,R)R" sin2 aI]R sin adad4dR
87rr v

+ higher multipoles. (10)

Since R sin a is the distance from the axis of rotation to
the mass element, we see that the integral is merely the
moment of inertia I of the body. Thus, in general, the
"protational field" of any rotating body is approxi-
mately

- 'I sin 0
Po -

87rr I

Similarly, it can be shown that

'IcO cos 0

47rr3

(11)

(12)

Now that we know the "protational field" of a spinning
body, such as the earth, we can calculate the effect of
this field on a satellite.
A satellite in a polar orbit around a spinning body

would experience a perturbing force due to the radial
component of the "protational field." (See Fig. 1.) Neg-
lecting space curvature, we find that this force would
cause a precession of the orbit of an amount

N ForQ = _ = = Pr.
L mrve

Averaging the effect over the whole orbit gives

-2 7Ice
7r 47rr'

(13)

(14)

Now, if we substitute numbers for the case of a satellite
in a polar orbit around the earth,

I = 8.11 X 1037 kg-M2
r = 7.4 X 10 meters

v = 3.73 X 10-26m /kg
X = 7.29 X 10-5 rad/sec,

we find a precession of the orbit of 5.5 X 10-14 rad/sec.
This is equivalent to a period of rotation of the orbital

" v I Jr P
N\

I
I I

I _

I/\

1W.-, I

*P, l(cos a)Pn1(cos 0). (9) Fig. 1-Effect of earth's "protational field" on a satellite ina polar orbit.
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plaiie of 27 billion years, which is indeed too slow to be
seeni.
A satellite in an equatorial orbit would experience a

radiial force due to the tanigenitial coml-ponienlt of the
"protatioinal field."' This force would be completely hid-
den by the radial Newtoniiani gravitationcal force aind
would be observable onily if the earth were comiipletelv
svnymmietric anid we knew its nmass to the nth decimlal
place. If the satellite is spininilng, however, then the spini
axis of the satellite itself will experience a torque,

N= 'LXP (15)

due to spin-spinl interactioni. If we igniore space curva-
ture effects, this torquie will caLuse a precession of the
spinl axis by anl amounit,

N P
- =- sin. (16)
L 2

For a satellite in anl equatorial orbit of radius r around a
spinning body with anigular momenitumi Iw, we get

Po -qIw GIw
== = --. (17)

2 167rr3 c2r3

The probleml- of the precessioni of a spinniing satellite has
been rigorously calculated in the proper relativistic
manner by L. I. Schiff.10 His equationi for the precession
rate was

3GM GI
- 2 2 Worbit - spin (18)

2C2r c2r3

The first term, the largest, is due to the effects of space
curvature, which we nieglected. This term is independ-
ent of the spinl of either the satellite or the planet. The
second term is the one we calculated. If we substitute
niumiibers for the case of a spinnIling satellite in equatorial
orbit around the earth,

r z 7.4 X 106 meters

-spin 7.29 X 10-5 rad/sec
Worlit 10-3 rad/sec

I - 8.11 X 1037 km-iM2
M- 5.98 X 1024 kg,

we get

Q = (9.0 - 0.11) X 10-13 rad/sec.

tiols, tranisforming them to the equivalent gravitationial
relatiols, and theni solvinig themii to get the wave equa-
tion. If we do this usinig the analogy for the electric and
nmagnetic fields, we shall finid that the equationis describe
a wave with a propagationi conistant of half the speed of
light, sinice in electromagnietic theorv 1/ -\IE=c an(l in
"graviprotational" theory 1/ N/'y =c/2. \We are reasoni-
ably sure, however, that the velocity of propagation of
gravitational eniergy will be the same as the speed of
light, sinice the value obtained by Eiinsteini for the rota-
tion of the perihelioni of Mlercury depenids upoIn this
value. lhus we have another inldication that our anial-
ogY is niot perfect, but will give order-of-magnlitude esti-
mates only.

Despite the failure of this analogy, it is possible by
takinlg mi.ore termis inlto account to show that Einstein's
equation contaiins the proper wxave equation. In the
Appen(dix we obtain

1 &2c/B
'Aa0"s 0/ = (20)

where ¢>a is a quantity representing the gravitational
potential of an accelerated nmass. The interpretationi of
this equationi is that an accelerated mass will emit gravi-
tational waves which travel with the velocity of light.
No one has ever observed pure gravitational radia-

tion, and from the examples at the end of this section,
we shall see why. The observanice of initeractioni in the
inductioni or near-field zone of an accelerated mlass is
quite another matter. With a sensitive torsion balanice,
Cavendish"' observed the attraction of onle muass by
aniother and(I mleasured the value of the gravitationial
conistanit (Fig. 2). If we swing the large masses back aniid

F Gmfa

FRONT VIEW

(19)
Thus we see that the spinl interactioni term is a smnall per-
centage of the space curvature term.

ANTALOGY TO ELECTROMAGNETIC RADIATION

Sinice we have derived an anlalogy between electro-
miiagnetismii and gravitation, we might naively suppose
that this analogy also would hold for electromagnetic
radiationi. We inight conisider writing the Maxwell rela-

M

TOP VIEW

Fig. 2 Cavenidish's experimilenlt.
10 L. 1. Schiff, "lPossible iewv experimenital test of genieral rela-

tivity, theory," Phins. Rev. Lett., vol. 4, pp. 215-217; M\Iarch 1, 1960. 11 H. Cax-enidish, Phil. Trans. Roy. Soc., vol. 17, p. 469; 1798.
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forth with the same period as the natural period of the
torsion pendulum, it is easy to see that oscillations will
build up in the pendulumn and resonant absorption will
occur in the near zone of the large masses.

It is well known that the induction fields are con-
servative and that if there were no resonant absorption,
there would be no losses due to the near field. In electro-
magnetic theory, if we examiinie the fields at a large dis-
tance from the field generator, theni the near field be-
comiies negligible and all that remains is the radiatioin
field, which is not conservative. A radiation field carries
away energy, and the oscillations in the generator damp
out as a result of the radiation losses. It is this gravita-
tional equivalent of the radiation field that has never
been observed, either directly or by radiation dampitng
of a mechanically acceleratiing syrstem.

In Lanidau and Lifshitz,12 the wave equation for the
gravitatioinal potenitial is solved and transformed from a
four-dimiienisioinal relationship into a temporal-spatial re-
lationship. The general solutioni is

2G a
Oab = 4

IAXaXbdV. a) b = 1, 2, 3.
c4r J

(21)

By calculating the energy in a plane wave at large dis-
tances from the source and averaging over all direc-
tions, the total energy emitted per unit time in all direc-
tions by the accelerated mass is given by

dE G 3 3
- ~ EE(Qab) '

dt 45cl a-l b=l1
(22)

where

Qab = I(3XaXb - 6-br2)dV

is the mass quadrupole moment of the mass source.
Note that energy will not be radiated unless the

source has an accelerated mass quadrupole moment.
Thus, gravitational waves must be quadrupole radiation
or higher multipole radiation. There is no dipole gravita-
tional radiation; this is easily seeni by physical argu-
ments. Suppose that we grasp a charged particle and
shake it, i.e., accelerate it. Since it is the only moving
charge in the area, it emits electromagnetic dipole radia-
tion. Now suppose that we hold a particle with mass and
shake it. As we rapidly accelerate the small particle in
one direction, our large body, in order to conserve mo-
menitum, will slowly accelerate in the opposite direction.
Because the "charge-to-mass" ratio in gravitation is
unity, the two accelerated bodies will always radiate the
same amount of dipole radiation, but they will be out of
phase and therefore the dipole radiation will cancel.

Quantum Relations for Gravitational Radiation
Gravitational radiation never has been observed and

genieral relativity has not been quantized; therefore, the

12 L. Landau and E. Lifshitz, "The Classical Theory of Fields,"
Addison-Wesley Publishing Company, Inc., Reading, Mass.; 1951.

.-

rn0

x

following statements are only educated theoretical
guesses.

1) Gravitational radiation is quantized. The elemen-
tary quanta have been named gravitons.

2) The spin of a graviton is 2. This is basically be-
cause gravitational radiation can only be of the
quadrupole type. Photons, being dipole radiation,
have a spin of 1.

3) The velocity of a graviton is the same as the ve-
locity of a photon and is related to the frequency
and wavelength in the same way:

C =fX = 3 X 108 m/sec.

4) The eniergy and momentum of a graviton depends
upon Planck's constant in the same way as does a
photon:

E= hf

p= h/X.

Gravitational Radiation from a Spinning Dumbbell
The simplest quadrupole mlass source for the calcula-

tion of gravitational-radiation energy emission is two
equal masses rotating about their center of mass.
We first calculate the mass quadrupole moment with

respect to a fixed co-ordinate system. Let us assume that

A Lz

a 140
y

(23)

a -

,-V
_Of.

Fig. 3 Spinning dumbbell.

the spin axis is in the z-direction (Fig. 3), then

Qin p(3X2 - r2)dV

= 2m(2a2 cos2 Ct - a2 sin2 Ct)

Q21 Q12 =3 JIxydV = 6ma2 cos wi sin cot

Q22 = f L(3y2 - r2)dV

= 2m(2a2 sin2 ot - a2 cos2 Cot)
Q33 = -2m(a2 sin2 wt + a2 COS2 wi)

=-2ma2,

and all other quadrupole moments are zero.
Secondly, we calculate the third derivative, and we

are left with only the x, y components,

-----P
Pi-
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-I = - Q2 - 24(2ma2)W3 sin wt cos wt

Q1.2 = Q21 =- 12(2ma2)s3(cost -sin 'l), (24)

sinice the first (lerivative of the z comiiponienit is zero.
T'he power raldiate(l is theni

dE

di

G .. .. .. .. 8GI2Wfi
,[Ql2 + Q122 + -22" + ()-] = G25)45c,5 5(5 25

wlhere I=2 ma2 is the momenit of iniertia of the source.
Now we milust substitute numunbers inlto (25). For a

i-mieter dumiibbell weighinlg 1 imietric ton and spininilg at
about 10,000 rpm, conlditionis which nio knownii. material
cani withstanid, the power radiated is only

di

dt
= 4.5 X 10- 3 watts. (26)

With niumiibers such as these, it is not surprising that
this field has beeli of little initerest to experimentalists.
From the exponienits of J2 anid w in (25), it seemiis de-

sirable, at first glanice, to work with a higher rotationial
speed, eveni if it meanis that less mass could be used.
However, we would finid, whein the strenigth of the mla-
teriail is conisidered, that it is more advantageous to
lower the rotational speed and to use a greater imiass.
The ultimate in this procedure is represenited bN- a ro-
tatinig (lotLible star system. rhe rotationial speed coulId
be o01 the order of 1 imonith w= 10-4 rad/sec, anid the
momlenit of inlertia would theni be roughly I=-ma2
=1030 kgX101'2 m2; thlus, the power radiated fromii a
binarv star is aboLut 107watts. This appears to be a large
amiiounit of power, but it woould take 10' billioni years for
the svstem to damp out as a result of radiation losses.

SPACiE (t RVATrURE

The previous anialogies have showni us how to calcu-
late the forces exerted o01 a body as a restult of the griavi-
tationlal scalar anid vector potenitial. However, if we are
interested in3 the path of the particle udler the inifluienice
of tl3e forces, we encounlter nonlinearities. It should be
note(l that we have nlot vet calculated the usual genieral
relativistic effects, suchi as the precessiol3 of the perl-
helioni of MAlercury or the bendig, of light rays. This is
because these effects are niot a result of th3e gravitational-
field con3ponienits which have anialogies in electromiiag-
i3etic theory,. Also, wheni the precessioni of a spinning
satellite was calculated usinig the electromagnietic anial-
ogv, wTe obtained a result wxhich wIs smiialler thani the
space curvature effect which we neglected.

It wxrill probably be true in.iilost cases where the pri-
miary imlass is large al3dl the motionis of the bodies have
s133all velocities and accelerations that the onily observ-
able perturbationis will be a result of the spatial tenisor
compolielits of the gravitationial field, which have 13O
analogy' in electromiiagnietic theory. The closest anIalogy
wvhich maxi be imiacle is that these componienits of the
gravitationial field can be represented by assumiinlg that
the mllass of the object somehow causes the space to be
slightly curved. Then the conicept of 133otio13 in a flat
space undier the inifluenice of tensor forces cani be re-

placed by the concept of forceless Ilmotionl in a ctrx-ve(l
space.

In classical theory, onice we have calculated the forces,
we can solve the equation of Imlotion:

dp

di
= mi = F(x) (27)

for x=x(t). This equation is valid ini flat space; how-
eve-, if wx,e want to incelude these oth-er gravitational
forces by aissuminli;g a curved spatce, theni the ordiniary
rules of differenitiationi will not hold(l and we mlust uise
covarienlt (lifferenltiationi. TIhe usual equation of milotioil
is really jsist the flat space approximation of the curv\i-
linear eqIuationl of mlotion:

Dcp,t dp(Ip 1 3
b

Di (id t 2 b i-=i \

a- 1, 2,3,) (2S)

where gbc iS the three-dimiienisionial miietric tenisor, aln the
forces due to the gravitational vector and scalar poteni-
tial are conitainied in F, vb iS the velocitv ini the b (lirect ion
anid p is the miiomiienitumiii in the c directionl.

This procedutire should niot be too uInlusual since wee
kniowr that ordiniary ruLles of dlifferentiation hol(d only forO
flat cartesiani coordiniate s-ystems. InI curved coordliniiate
sy,stems, such as cylindrical or spher-ical syrstems, we
halve to use miiore genieral rules of (lifferenitiationi. For
in)stance, the genieral equationi for tlle divergence of a
vector is

- [Avg229g33A_, ± \Vgj,gj;n_A2
V-A .,_+

(g11g22g:9:3)1L o_ 1 x2

+ a\/gI1g22 3-'1 2)+ vg'- -- (29v)

if the metric tenisor is

fgll () 0

gb =l g22 0

l0 0 g33J

Anid sinice the spatial miietric tenisor for cartesiat coord3i-
nates 1 = .:2 - y,x =.z is

I 0 °1
g,b 0 1 0

'0 0 1'

we get the familiar relation

aAlI
V *A= +

a>x
OA2 aA1,
+v

a az
(30)

For a spherical coordiniiate systemii, x1= r, .V26, .
however, the spatial inietric tel3sor is nlot constait, but
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depelnds uponi the positioni in the space,

fI 0 0

gob 0 r2 0O

t0 0 r2 sin20

anid we fin-id that calculatinig the divergenice in this
curved space is nio longer a simlple procedure:

1 (3(r2A1) 1 a (sin0A2) 1 aA3
V-A = - + ±+ (31)

r2 adr r sin0 (0 r sin 0 (4

We also eiicounter similar problems in simiple New-
toniiani mechanics whein spherical or cylindrical coordi-
niate systems are used. For inistance, if we want to calcu-
late the motioln of a satellite, the equationis of imlotioni in
cartesian coordinates (let xl3=z=O) are

GMm
x

x
2 + y'2) 3 /2

GMm
my=(+- Yy('A'2 + y2)312

(32)

and in spherical coordinates (let x2 =0= ir/2) they are

m (3g33 2 GMm
mr- -2 =m r-mr)2 = - _

2 Or r9

(although it should be taken ilnto accomit for quantita-
tively correct results).

Tlhe miietric tenisor for a regioni ol space with a scalar
potential x is giveni by the Schwlarzschildl imietr-ic tenisor,
wlhich is a slight molification of the spheric dl coordinate
ietric tenisor

I( =)gft{)-~~~~~
2

(

0 0

r2 0
(35)

(3 (:) r2 Sin12 0

In all cases of experimental
therefore,

inlterest 1>>2X/C2, andl

( 2 ;)+? ( i27X)

G- C2
(36)

The imietric tenisor cani be xwritten for the co011i1ion0 co-
ordiniate systemils as folloxvs: for spherical coorciinate
systellms, xlr, x2 0, xZ = X

I 2x
1- , ()

2-
gb = 0

() ()
(33)

(36)
0

0
2,isin2 0 1

(34) for cartesian coordinate systems, xI,X, x2i'y, x3 z=-,

It can be seen that we have a term in (33) initroducedl by
the metric tensor of the coordinate svstenm; this is the
familiar centrifugal "force." Thus, we can say either
that the centrifugal "force" is a real force anid that the
coordinate space is flat and then use the ordinary equa-
tion of motion,

1

gab =

2X
C

0

(.) O( 1

- 0(2

0) ()m=F= Feen triftgalA Fgravitational,

or we can say that there is onl onle force, that due to the
gravitationial attractioni. Sinice wve are workinig in a

curved coordiniate space, however, we muitist tise the
curvilinear equation of lmlotioni:

mx - nr 2=' F = Fgravitationali

Mletric Tensor Outside a Alassive Body

We have shown that a curved coordIiniate system cani

be interpreted as a force. Now we shiall atteilmpt to
explaini how the remiiaininig comiiponienits of the gravita-
tionial force cani be interpretecl as a curved space.

practically every imaginiable case, the sl)atial comii-

ponienits of the mi-etric tenisor will be (letermiine(l bh- the

I1 d a(gb,
(rgb)

b=1 P dt 2 b=1

scalar potenitial and special relativity. For the sake of
simplicity, ve shall conitiniue to ignore special relativity

alllc- for cylindrical coordin

gob --

ate sx-stems, x1=p, x2 =

o 0

p2 0 . (38)

2x
O 1-.

2-

Relativistic Equation oflMotion

Fromn the Appenidix, we cani now write the proper equa-

tioII of ImiotionI which uses this space curvature analogy:

ax (K0, 3 da b (K,,
_-_ + _ jb
(3x0 (3t b=L -(3X xb

(39)

where gab iS onie of the miietric tenisors takemi from the
previous sectiotn, a= 1, 2, 3, anid

d

dt
(r2q) - 0.

(37)

1 -
c2\
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P= ~2x K2 ,, va
1/

4( c2 ) C2 ] C2}

-2X v2 -1/2

X c2 c-,

comes from the special and general relativistic correc-

tions to the imlass. Note that if x=O=K-Ka, then we get
just the usual special relativistic correction to the mass:

m = mop = (40)
/ v2

I 2c2

Now that we have the equation of motion, all that is
necessary is to calculate the gravitational scalar anid
vector potenitial by anialogy to electromagnetism, calcu-
late r anid gab alld put them in the equation, anid then
solve the equation by the miiethocl of successive approxi-
milatiolns.

Measurements in a Curved Space

WVe slhouldl be familiar with the problems of operatinig
in a curvedl space, since we live on a two-dimensional
curvecl space the earth. A straight linle on the earth is
the greait circle route, because it is the shortest distanice
behN,eeii two poinlts il that two-diiiienisioiial space. If
we imiake a trianigle with these "straight linies," we find
that the SUM of the anigles can ranige from 7r to 57r, de-
peniiing ulpOnI the size of the triangle.
A mlore fundamiiental experimiienit is the parallel tralns-

lation of a vector. Suppose we are oni a flat surface and
we place a test vector at onie corner of a trianlgle. IThell
very carefully keeping the angle betweeni the vector anid
the appropriate side of the trianigle conlstanit, w-e traverse
the perimeter of the trianigle and returni to the starting
point (see Fig. 4). The test vector obviously returnls to
the startinig poinit with the initial orienitationl. Now- try
this samle simple experimenlt with a vector mlovinlg about
on a spherical triangle, as shown in Fig. 5. It will be ob-
vious eveni to a flatlanider inihabiting the surface of the
sphere that the vector has rotated through anl anigle a as
a result of its parallel tranislationi around a closed path
in the two-dimnensionial curved space. The size of the
anlgle a will depenld uponI the amount of curvature of the
space and the size of the triangle.

Effect of Space Curvature on a Satellite
It was pointed out in the section on satellites of

spinning bodies that a proper solution of Einstein's
equationis for the precession of the spin axis of a satellite
resulted in two terms. The smaller was a result of the
gravitational equivalenit of the magnetic field. The
larger term was produced by the other components of
the gravitational field. The precession of the spin axis of
a satellite in a curved space cannot be calculated easily,
but by usinig an analogy to two-dimensionial curved
space, we canl see the qualitative reason for this preces-
sion.

Fig. 4 Parallel tranislation in flat space.

t *@.@@@@* s

Fig. 5 Parallel translationi on a sphere.

We said that these remaining components of the
gravitationial field of a mass in three-dimiensionial space
could be examinied by assuming a slightly curved space
with a metric

1-
g,. b -

1 0 0
2GM

c2r

0 r2 0 |

0 0 r sin026

(41)

where we have takeni the scalar potential for a spherical
mass x= -GAI/r. Notice that if we are far away from
the perturbinig milass, then our space is flat agailn.
Now suppose that we look at a flatlanldler liviiig oni the

edge of a two-dimnlenisional massive circle in a two-
dimensional flat uiiiverse (Fig. 6). If we assumie that
Einstein's law of gravitation. holds in this two-(dimen-
sional space, then there will be a tenisor gravitational
field with which to contenid. It w ill be easier for the flat-
landlers to igniore these tensor fields and assumie that the
massive circle warps the local area of hlis flat space and
modifies his two-dimenisionial imietric tenisor sliglhtly:

!1 ol2GM
gab= 1-

c r

0 r2

If a two-dimensional rocket is sent ulp and a two-dimen-
sional satellite is put into orbit, theni the flatlanders will
notice that an axis of the satellite will rotate because of
the local curvature of the space (lFi,. 7). If the orbit is
sufficienitly distant, the extra contribution to the imietric

1961 899



PROCEEDINGS OF THE IRE

Fig. 6-Flat two-dimensional space.

tensor for this coordinate system becomne

1
0 0

2GM \

gab = \ 2r

0 r2 0.

0 0 r2,

When (44) is substituted inlto (43), two equatioins result:

Fig. 7-Two-dimensional locally curved space.

1 d 1 dgil GM
--(Fglln) =-- 2 + ro2 -

IFdi 2 ar r2

d
- (Pr2r2) = 0.

tensor will be small and the satellite will travel through
flat space with essentially no rotation.

If this picture is extended to three dimensionis anid the
proper calculations are performied, we obtain the pre-

cession due to space curvature:

3GM
1Q. =

c2r
Worbit

Calculation of the Orbit of Mercury
We start from the curvilinear equation of motioni,

where the only force is that due to the gradienit of the
scalar gravitational potenitial:

Eq. (46) expresses the conservation of angular mo-

mentum:

ir
rr2 = constant=

mogil

where the measured angular momenitum 1 is not a strict
constant because the denotation of a "radius vector"
used in the definition has an unambiguous meaning only
in a flat space. If we substitute for in the first equationi,
drop terms of higher order in v/c, and simplify, we get

12 GM
gili;- 2r3g2

+
MO r gill r2

= 0. (47)

~1 dd gb,
V

r dt dt 2 1,1x

ax

a..a
(42)

where a= 1, 2, 3, anid

/=(2X~ v2)
\1/2rx=1+2-9

Keeping only the nonvanishing terms, the three equa-

tions are:

d Fag11 ag22 ag3 OX
-(Fgnl) =-Ilg r2 02 + 2
r dt 2 Lr dr ar Or

-(9g220) =- 2]

r dt aO

1 d
- (rg:n(3 = O. (43)

'I'he scalar potenitial, due to the sun, and(l its gradient are

GM
x = - -s

r

ax GM

ar r2

Now if we definie our coordinate axes so that the planie
of the planetary orbit is in the equatorial planie, then

7r
= 0, sin0= 1, cos0= 0.

Under these conditions, the components of the metric

Our problem now is to solve this equation, which is
usually done b\ successive approximations. We shall
find the task much easier if we use the mathematical
shortcut of letting r= 1/v and calculating o- as a function
of 0 rather than t:

dr 1

du O_2

dq5 I

dt mor2gii

1j2

mogii

d /dr\ d4 d d4 dr do\
J; = - _

dt dt dt d4 dt do dod
12o.2 d2a

mo2gu12 d02
(48)

Substituting and rearranging, we get

2GM \)d2 2GM 2

-- a- + I - a--Cl
c' d,09 c' J

GMmo2

12
= 0. (49)

The zeroth approximatioii neglects all but the two
largest terms and leaves us with

GMmo2 1
0o, = = ,

12 rO

which is the equation for a circular orbit of radius ro.
The first, or Newtonian approximation, neglects the

(44)

(45)

(46)
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chaniges due to the metric tensor:

d'a
+ a- - ao = 0.

do2

This equation has the solution

al=- o(I + e cos 4),

where e is the ecce itricity of the elliptic orbit.
We theni put a=-1u+a2 in (49), anid after cancelling

out equal terms and neglecting small terms, we obtain

+ Oa2 -
d02)

4GM11 6GM
go 02e cos

G- C2

--- 02-e2 Cos24- 0. (50)

Because of the cos term, we have an equation for a

dIriven oscillator which leads to a continually increasing
chanige of oa with 4. Retaining only this term, we find the
solution

1 /3GJV
a = l+a=-( + e cos 4+ e4 sin 4)

1i{i+ecos[49(1 _ 3GM)]} (51)

It can be seen from (51) that after one revolution, the
Newtonian orbit will shift by an amount

3GM 6irGM
A4 = 27r - = y (52)

c2ro c2a(1 - e2)

where a is the length of the major axis.
This result of Einstein's theory cleared up a bother-

some problem in celestial mechanics. The orbit of
Mercury is well known and the major axis shifts
5599.74±0.41 sec of arc per century. The perturbations
introduced by the other planets in the solar system
cause most of this shift, but careful calculations over

many years gave the result that the maximum shift due
to the planletary perturbations should be 5557.18+0.85
sec of arc per century, leaving a discrepancy of 42.56
+0.94 sec of arc per century.
Eq. (52) gives us 42.9 sec of arc per century. This close

agreement is a very strong argument in favor of Ein-
stein's equations. Other theories of gravitation, when
applied to Mercury's orbit, give an incorrect value or

even the wrong sign.

CONCLUSION

At present, efforts are being made in a number of
projects to measure gravitational effects. In the most
active of these projects, investigators are attempting to
measure the red shift in the frequency of light as it
leaves the earth's gravitational field. Cranshaw"3 and

13 T. E. Cranshaw, et al., "Measurement of the gravitational red
shift using the Mossbauer effect," Phys. Rev. Lett., vol. 4, pp. 163-164;
February 15, 1960.

others at Harwell, England, and Pounid anid Rebka'4
at Cambridge have already nmade nmeasurements using
the M6ssbauer effect. The results agree with the predic-
tions of general relativity. The Hughes Aircraft Com-
pany, National Bureau of Stanidards, and MIT are
working on accurate clocks of various types to put in
satellites to measure both special anid general relativistic
effects. Other experiments to test general relativity
usinlg space vehicles have beeni covered by Benedikt.15
Kerns'6 at Berkeley and H. E. Fiala at the Hughes Air-
craft Company have both made proposals to measure
the speed of gravitatioiial interaction. Weber, Zipoy,
Forward anid Sinsky7"l at the tUniversity of MN'Taryland
are working oni the problemii of the genierationi anid de-
tection of gravitatioinal radiatioin.

It is hoped that soumeonie with a practical turn of mind
will think of an experimnenit to detect the gravitational
equivalent of the magnietic field. TIhis paper was de-
signed to permit a prelimilnary evaluationi of such ideas.

It is interesting to note that a good electromagnetic
autotransformer has almost 100 per cenit efficienicy in
transferring the ac mllotioni of the charges in the primuary
wire to the charges in the second wire. But the high
efficiency is a result of the high velocity of interaction
between the charges, the low losses in the wires, anid
the high permeability of iron. A calculation of the
efficiency of a "graviprotation" autotrainsformer would
have to take all these practical conisiderationis inito ac-
count.

APPENDIX

REDUCTION OF EINSTEIN'S EQuAzTIONS TO SHOW
THE ANALOGY TO ELECTROMAGNETISM

The justification for the approximate anialogies pre-
sented in the main body of the paper is presented here.
It is assumned that the reader is familiar with tensor
formulation, the summation convention, and the ele-
mentary procedures necessary for the handling of
Einsteiln's equation. The procedure for linearizinig Ein-
stein's equation is included in all texts onl general
relativity.91-21 The calculation of the energy-momentum
tensor for slowly moving masses nmay be found in
M\o0ller.2" The identification of the scalar and vector
potentials and the three-dimensionial iimetric tensor and

14 R. V. Pound and G. A. Rebka, Jr., "Apparent weight of pho-
tons," Phys. Rev. Lett., vol. 4, pp. 337-341; April 1, 1960.

15 E. T. Benedikt, "Advances in the Astroniautical Sciences,"'
Plenum Press, New York, N. Y., vol. 5, pp. 98-115; 1960.

16 Q. A. Kerns, "Proposed laboratory measurement of the propa-
gation velocity of gravitational interactioni," Lawreiice Rad. Lab.,
Univ. of California, Livermore, Tech. Rept. No. tUCRL-8438; De-
cember, 1958.

17 J. Weber, "Detection anid generation of gravitational waves,"
Phys. Rev., vol. 117, pp. 306-313; January 1, 1960.

18 R. L. Forward, et al., "Upper limit for interstellar millicycle
gravitational radiation," Nature, vol. 189, p. 473; Februiary 11, 1961.

19 Landau and Lifshitz, op. cit., p. 324 ff.
20 A. S. Eddington, "The Mathematical Theory of Relativity,"

Cambridge University Press, New York, N. Y., p. 128 ff.; 1924.21 M0ller, op. cit., p. 313 ff.
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their use in the equation of motion is also presented by
M0ller.22
We start with Einstein's equations:

1 8irG
Rao - - gojR = 4 Tag.

2 c

Our first assumption will be that all velocities are small,
so that special relativity can be neglected, and that all
gravitational effects are weak. Then the metric tensor
can be approximated by

gag " bag + ha8,

where &ga is the flat space metric and hag are the per-
turbations introduced by the masses. Using this form
of the metric, the Ricci tensor and the curvature scalar
can be calculated from the Christhoffel symbols:

Ra38 - 1haB'qY"= 12K ha0

R = ga#R8a ; - 2 D 5aftho = - 2 C hi, (53)
where in obtaining (53) we chose our coordinate sys-
tem so that

[had- n6aoh],g =0.

If we substitute the Ricci tensor and the curvature
scalar into Einstein's equations, we obtain

87rG
Ra- gagR = -21 ha: + 4iagO h= Ta. (54)

We now define the gravitational potential as

4'ag = had- 213agh;
substituting and rearranging, we get

16irG
D4)ag

4
Ta.

If we write out the d'Alembertian operator, we have

1 02 16irG
Aoao - -2 cad = - 4 Ta8.A4a- 2 0912 C4

167rG
A+00- -w9

C-
(56)

This is essentially Poisson's equation, which has the
solution

4G A
(00 = + fI dV.

If we define a gravitational capacitivity of the vacuum
as

-y = (4rG)-',
we get

c2000 f1 rA
_ = __ g -~dV.
4 47rxy Jv r

(57)

By comparing (57) with the scalar potential of an elec-
tric charge density

4i=J- -~-dV,
47rxv- r

we see that we can construct the well-known gravita-
tional analog to the scalar potential:

c2400 c2(goo ± 1)
x= =

4 2

Space Curvature
This first approximation (56) also determines the

spatial metric. The existence of the component 4O. re-
sults in an interval of the form

ds2 = (1 2X) (dx2 + dy2 + dZ2)

-( + -X)C2dt2.
c2

Thus the three-dimensional spatial
the form

(55)

This is the basic equation upon which the analogies are
based.

Scalar Potential
In the first approximation, we assume that all quan-

tities are not varying with time and that the masses
have low velocities or rotations. Then the time deriva-
tive of the gravitational potential is zero and all the
components of the energy-momentum tensor are zero
except

Too =. rc2.

Eqs. (55) reduce to

-a Ibid., p. 246 ff. and p. 288 ff.

gab =

1-
C2

0 0

0 2X
c2

0

0 0 1 2X

(58)

metric will be of

In higher approximations that will be considered later,
the additional terms in the spatial metric will be smaller
than 2X/c2 by the order of (V/C)2, and since we assume
velocities much smaller than the speed of light, they
will be of little experimental interest.

Vector Potential
In the next higher approximation, we still assume

that the potential is not varying with time, but that
the masses involved have appreciable velocity or rota-
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tion. Theni the enlergy-momentumii tenisor wTill have the
componenits

TIO=AC2 (zero order in-)

and

Tao = -Ac2 (-~') (first order in -).

\Ve theni have four equations remaininLg: one gives us
the scalar potelntial obtained previousls%, ancd the other
three are

16rG
± ALVtpa.

C3

These equations have the solution

4G r Vad
C3

If we definie a gravitational permeability of space by

16xrG

then we can substitute and rearrange to get

c+O-,=-- I -dV.
47r Jvr

Thus we can identify a mass density flow p=v and a
gravitational equivalenit of the vector potential whose
components are the three components of

Ka = 'cka9 = Cgf1O?

and thereby, arrive at the isomorphism of the equationis

forces. This four-dimensionial equationi of nmotion can
be broken down and arraniged so that it is a three-
dimensional curviliniear spatial equation of motionl.
The gravitationial effects resultiing from the temiporal
comlponients of the miietric tenisor are represenite( ais
forces due to a gravitational scalar and a gravitationl,l
vector potential. The spatial comiiponients of the nmetric
tenisor are used as the three-dimenisionial metric tenisor.
The genieral equation of motion for a particle with

only gravitational forces acting is given bv M401ler28 as

d_Pa_ 1 Og_C,, _- =2
Id,r 2 (3xa (61)

where

dx#
Pt = moUx = mog0,uo = mog,,ld

dt

anld
dt F12x \2 Kavla 2 v2) -1/)

r =-d- 1 + 1 - - -
dr Lc/ cJ cJ

The a =0 equationi. gives us the coniservation of mass-
energy anid the other three equatioiis are

d /b\ dx
r morgb dl + r± (morgad,,di\ d! / 9 d

dxb (3 dxo\
di (3Xb di /

1 agoo /dxo\Q (gw dxo dxb
-- mor22I - m,)r-

2 ox, di/ O "a di dt
I agb, dxb dx.c

-- Mor2
2 Oxa dt dt

-0.

K = -- -dV
47r r

A--f- dV.
47r TZr

Gravitational Radiation

Let us return to the basic equation (55):
1 (32 16irG

Aoao Oa' = - T0O.
c2 (312 C

As it stands, (60) is a wave equation- for the gravita-
tional potential I'k.The velocity of propagation is the
same as the velocity of liglht. It is this equationi, wlhich
results from the lInearization of Einsteini's equation,
that gives credence to the statemnent that gravitational
radiation exists. The solution of the wave equation and
the calculationi of the radiatedl power are straightfor-
ward and are carried oLt in Lanidau and Lifshitz.J9

Equation of Miotion
In the fotur-dimlensionial equationi of nmotion (61), the

gravitatioi'al effects are entirely in the metric tensor.
The only forces explicitly stated are nonigravitatiolnal

(59) Dividing through by mor2, letting dxo/dt=c, anid nieg-
lecting higher-order termiis, we get

1 d / dxb 1 (gb, dxc dxb c9 OgO
_ rgabg- = - + -
r dt\ dt 2 aXa dl di 2 Oax

(3g. I(3gbo _g,(0\ dxb
(60) - +±c

1t \axa ax'/ di

We then use our definiition of the gravitationial scalatr
and vector potential

Ka - Cg0(
dx"

Va =
dt
X 2

x=--- (g.0 +li)
2

go9 = - 1 -

23 Moller, op. cit., p. 290.
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to get
1d I dxb\ 1 Ob OX aKa

- -Prgub = -z-bv - X_-
r d! di! 2 aXa daX di

'Kb a9Ka1
+ v)bb - (62)

The left-hand side of (62) is the acceleration of the
particle in a curvilinear coordinate system. The first

term on the right gives the fictionial forces (uLe to the
choice of the coordiniate svstemi, the Imlost famiihar
examnples being the coriolis force anid the cenltrifugal
force. The seconid term is onie componienit of Vx, the
gravitational static attractioni; the third termii is one
component of WK 0t, the gravitationial inid uctioIn effect;
and the fourth termi is one comiiponienit of vX(VXK),
the gravitationial equivalent of the Lorenitz force.

A Matched Amplifier Using Two Cascaded
Esaki Diodes*
DONALD R. HAMANNt

Summary-The purpose of this paper is to introduce a new type
of circuit for matched amplification using negative resistance de-
vices. This circuit consists of a quarter-wave transmission line sec-
tion whose input and output are paralleled by negative conductances.
The characteristics of such an amplifier are discussed, and an ex-
pression for its noise figure is derived. The development of a 30-Mc
amplifier using two Esaki diodes is described. Experimental results
are presented, including curves of the characteristics as a function of
frequency. A gain of 8.9 db was measured with a noise figure of
4.3 db.

INTRODU (CTION

A MPLIFICATION by a single negative resist-
ance element has several disadvantages. First,
such an amplifier necessarily presenits a mis-

match to the source. Second, amplification and reflec-
tion of noise power radiated by the load tends to con-
tribute to its noise figure. The noise figure of such an
amplifier is given by (1).

12 GLTL
F=1l+ + -s-

4kTSGs GsTs (1)

In this expression, il 2 is the equivalent nioise current
squared per cycle produced by the negative resistance
device, Gs and GL are the source and load conductanices,
and TS and TL are the source and load temperatures.
It may be seen that in order to achieve a low noise
figure, the factor GLTL must approach zero, regardless
of the device used. If GL becomes small, however, it is
necessary to adjust the source and device conductances
extremely close to the point of oscillation in order to
achieve any power gain.'

* Received by the IRE January 5, 1961. Revised manuscript re-
ceived February 20, 1961.

t Mass. Inst. Tech., Cambridge, Mass.
1 K. K. N. Chang, "Low noise tunnel-diode amplifier," PROC.

IRE, vol. 47, pp. 1268-1269; July, 1959.

These effects may be eliminated by the use of non-
reciprocal circuit elements, or a hybrid with two nega-
tive resistance elements.2'3 At lower frequencies, non-
reciprocal passive elements are difficult to produce, and
hybrids do not present the wide frequency ranige resis-
tive load necessary to stabilize Esaki diodes. This paper
describes another method of obtaininig amplification
usinig two negative resistance elements. The amplifier
described is matched to both the source and load, and
achieves a low noise figure with equal source and load
conductances. Experimental work was done at 30 Mc,
permitting the use of lumped circuits. Although Esaki
diodes were used, the circuit techniques should be
equally applicable to parametric and other niegative
resistance devices.

THEORY OF OPERATION

The basic circuit which was used consists of two
conductances G and a - wave transmission line section
of impedance Z, as shown in Fig. 1. A 1-ohm source and
load are assumed to simplify computation, so that the
factors G and Z are normalized variables in all equa-
tions. The circuit may be easily analyzed using the
fourpole matrix notation

Iin} (A B {Eout

IV D out~
(2)

2 M. E. Hines, "High-frequency negative-resistance circuit princi-
ples for Esaki diode applications," Bell Sys. Tech. J., vol. 39, pp.
485-488; May, 1960.

3 L. U. Kibler, "Directional bridge parametric amplifier," PROC.
IRE, vol. 47, pp. 583-584; April, 1959.
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