
Lecture - 8

Wednesday, 10 August 2016 (14:25- 15:15)

Matrix Multiplication Verification

1 One sided errors in randomized algorithms

In this section we will study the notion of one-sided error in randomized algorithms. Please note
that the meaning of one-sided error in approximation algorithms is very different from what we
will be discussing in the case of randomized algorithms.

1.1 One sided error in polynomial evaluation

In the previous lecture, we studied a randomized algorithm (let us represent it by A) which checks
if p(x) equals q(x)r(x) very efficiently, where p, q and r are polynomials. Whenever the algorithm
A outputs “unequal”, then we are sure that the input polynomials are not the same, since there
exists some α such that p(α) 6= q(α)r(α). Whereas, if the algorithm A outputs “equal”, we cannot
say with 100% confidence that the polynomial p(x) equals q(x)r(x). This is what is meant by
a one-sided error in a randomized algorithm. A randomized algorithm with one-sided error can
be of two types: true-biased and false-biased. A true-biased algorithm is the one which is correct
whenever it outputs “yes”, whereas it may be wrong when it outputs “no”, on the other hand a
false-biased algorithm is the one which is correct whenever it outputs “no”, whereas it may be
wrong when “yes” is its output.

1.2 Another example to illustrate one-sided error

Consider the following program:

Check if a number is prime

i/p: n, where n is any number greater than 4
o/p: yes/no

If (n%6 == 1 or n%6 == 5):
return “yes”

else
return “no”

If the above algorithm outputs “no”, then the input number n is without doubt composite (it must
be a multiple of 2 or 3), whereas if the output is “yes”, we cannot say for sure if the input number
is prime. Few numbers on which the algorithm gives a false positive include 25, 47 and 65. This is
an example of an algorithm that is false-biased.

2 Pre-requisites for the next randomized algorithm

Before studying the next randomized algorithm (which is matrix multiplication verification) you
will need to brush up some basic linear algebra and modular arithmetic. All the pre-requisites are
summarized in the following four points:

1. Let A,B ⊆ S, where S is a finite set, such that A∩B = φ i.e. A and B are disjoint sets. Show

that if there exist a bijection f : A→ B, then |A| = |B| ≤ 1

2
|S|.

Proof. First we observe that |A| = |B|, since there exist a bijection between the two finite sets
A and B. Further, we have

|S| ≥ |A ∪B|
= |A|+ |B| − |A ∩B| (from the inclusion-exclusion principle)

= |A|+ |B| (since A and B are disjoint sets)

= 2|A|

ut

2. The application of an n× n matrix M on an n× 1 column vector v is a linear combination of
the columns of M , where the scalar constants are the entries of the vector v. In other words,

Mv = v1C1 + v2C2 + · · ·+ vnCn

where Ci and vi represents the ith column of M and the ith entry of the column vector v
respectively.
As an example, let

M =

1 4 5
7 2 4
6 7 0

 and v =

4
8
3

then

Mv = 4

1
7
6

 + 8

4
2
7

 + 3

5
4
0

3. Let R represent the set of all real numbers, then R2 represents the set {(a, b)|a, b ∈ R}. Given

Z2 = {0, 1}, we can define Zn
2 as the set of all n length binary vectors i.e.

Zn
2 = {(v1, v2, . . . , vn)n×1| where vi ∈ Z2 ∀1 ≤ i ≤ n}

Further we can define the addition operation +n over Zn
2 as the component wise xor operation.

For example, (0, 1, 0) +3 (1, 0, 0) = (1, 1, 0).

4. A simple yet very useful result for our next expedition is the following:

Lemma 1. An n×n matrix M is non-zero if and only if there exist a vector v ∈ Zn
2 such that

Mv is a non-zero vector.

Proof. First we will prove (LHS =⇒ RHS). Since M is a non-zero matrix, it has a non-zero
column as well, let say it is the ith column Ci for some 1 ≤ i ≤ n. Consider the non-zero vector
v = (0, 0, . . . , 0, 1, 0, . . . , 0)n×1, where only the ith entry of v is 1 while others are 0. The RHS
follows since, Mv = v and v is a non-zero vector. The proof for (RHS =⇒ LHS) is trivial. ut

3 A randomized algorithm for verifying matrix multiplication

Let say you wish to compute the product of two n×n matrices A and B (where n is a very large).
Since the naive old school algorithm for multiplication (which runs in O(n3)) is too time consuming
to be run on your laptop, you pass on this computation to a high performance computing (HPC)
facility in your institute. Let say the output of the algorithm is a matrix C. The computation
performed by the HPC facility is prone to bugs, hence you are now given the task of verifying if
A ∗B equals C. Can we verify the product of two matrices faster than just multiplying them? And
the answer is: Yes, we can! Further we will go through Freivalds’ algorithm for matrix multiplication
verification proposed in 1977.

Matrix multiplication verification

i/p: A, B and C, where all these three are n× n matrices
o/p: yes/no depending on whether or not AB equals C

for i = 1 to 100:
Pick v ∈R Zn

2

if A(Bv) 6= C(v)
return ”no”

return ”yes”

Please note that ∈R signifies that the element is randomly picked. For example, r ∈R {1, 2, 3}
implies that r can be 1 with probability 1/3, 2 with probability 1/3 and 3 with probability 1/3.

Few observations about the above algorithm:

– The algorithm runs in O(n2).

– The algorithm has one-sided error and is false-biased.

The one-sided error of this randomized algorithm will be quatified in the next lecture.

