
Tall Tales: A Game Engine with Natural
Language Processing

Final Year Project Report

DT228
BSc in Computer Science

Andrew Tully
Dr. Yupeng Liu

School of Computing
Dublin Institute of Technology

26th March 2015

Abstract

Video games have struggled to represent interactive narrative in a meaningful way.
Pen and paper games managed to do this for years. Examples of these include tabletop
roleplaying games and Choose Your Own Adventure Games. The advantage that these
games have over their digital counterparts is their ability to facilitate player agency
and choice. To provide similar facilities, Tall Tales was developed as a game engine
with interactive fiction in mind.

Tall Tales utilises natural language processing to accommodate for interactive fiction.
The game can get the context of a user's written input and understand what they are
attempting to do. When coupled with an expert system, the user's input can be
evaluated. This evaluation can update the game world, like in a tabletop roleplaying
game.

By integrating this as part of a game engine, an emphasis is placed on interactive
narrative. During testing with a demo game, users were excited to see how they could
interact with the world and how it would respond. The main limitation was the
simplicity of the demo environment and how it does not showcase the system's
functionality on a broad scale.

2

Declaration

I hereby declare that the work described in this dissertation is, except where otherwise
stated, entirely my own work and has not been submitted as an exercise for a degree
at this or any other university.

Signed:

Andrew Tully

26th March 2015

3

Acknowledgements

Firstly, I would like to thank my parents for providing me with this opportunity in the
first place. I would also like to thank my friends for tolerating my absence at parties.

4

Table of Contents

1. Introduction
a. Project Overview & Background
b. Project Objectives
c. Project Risks
d. Risk Mitigation

2. Research
a. Researching Interactive Narrative: Problems & Potential Solutions

b. Research of Potential Technologies

3. Design
a. Design Methodology
b. Component Design
c. Project Features & Use Cases

4. Architecture & Development
a. Overview of System Architecture
b. Development & Problem Resolution of the Game Engine
c. Development & Problem Resolution of the Demo Game
d. Key Development Components

e. List of Classes & Related Usage

f. Identification of APIs

5. System Validation
a. Testing
b. Demonstration

6. Project Plan
a. Analysis of Original Plan & Proposal
b. Analysis & Evaluation of Final Project Plan

7. Conclusion

8. Bibliography
a. Research Sources

9. Appendix
a. Abbreviations
b. Figures
c. Tables

5

1. Introduction

Project Overview & Background

Tall Tales is a game engine which using natural language processing to improve
player agency and immersion within games. The idea for the project is inspired by
tabletop role playing games (RPG). A tabletop RPG is a game in which there is no
“winner” or end-goal. Instead, the game aims to provide a cooperative and dynamic
storytelling experience. This is achieved by separating the game's players into two
groups; the “party” and the “game master” (GM).

The GM is an individual who acts as an impartial judge of the rules, and a storyteller.
They control the game world through established rules. They also control the flow of
action-reaction within the game.

The party are the protagonists within the game. They dictate what actions they wish to
take within the game to the GM. The GM determines if the action is plausible. By
using an appropriate rule they determine whether the action fails or succeeds, and
what the associated consequences are.

During a tabletop RPG, the rules and story can be adjusted as needed by the players.
This is because here is no autonomous system in place determining the rules and
pacing. This is another difference between RPG and traditional video games. This
allows the game to adjust the story to unexpected outcomes. It allows for many more
actions to be taken within the game through manipulation of the rules, or storytelling.

Project Objectives

The most important goal for this project is to ensure that it provides an ergonomic
workflow for developers and is easy to use. The project must provide an interface for
developers to incorporate natural language processing (NLP). This will be
accomplished by abstracting the NLP functionality.

Project Risks

The largest risk associated with this project is whether it will be comparable to other
game engines. Most industry standard game engines provide a robust suite of tools.
Examples of which are; an editor, lighting utilities, physics utilities, an interface for
scripting and the ability to render both 2D and 3D objects. These kinds of features are
almost expected of a modern game engine. It is difficult to implement these along
with meeting the project goals given the current time frame of the project.

6

Implementing NLP is a risk unto itself. By it's nature, NLP is not completely accurate.
Incorrect language processing within the game could result in odd or outright
incorrect output. This would break player agency and immersion.

Developing to an interface and not an implementation will be difficult to adhere to.
This is because I will be developing a demo game alongside the engine. This could
result in unintentionally making changes in the engine just to fit a specific use case of
the demo game.

Risk Mitigation

To mitigate these risks several precautionary measures were taken. To manage the
scope of a game engine, a set of core modules are established. These include the NLP
system, the Knowledge Representation, and the Game Initialisation & Management.
This guarantees that the project has a well-defined set of goals, and a reasonable
workload for the given time frame. In the event of being ahead of schedule, additional
components can be added to the project.

To reduce the risk of performing NLP, the scope of it's functionality is limited. This is
to ensure that some form of functioning NLP system can is delivered on time, but can
be extended if possible.

Unfortunately, there is no apparent way to ensure that I develop to an interface rather
than an implementation. This is an accepted risk, which I hope to catch through
rigorous testing.

2. Research

Researching Interactive Narrative: Problems & Potential Solutions

To determine a solution, it was imperative to research the architecture of game
engines, and how narrative is represented in games.

To begin this research, I looked into what are considered to be the core elements of
interactive storytelling, as according to Rational Games, a Swedish developer.
Rational Games defined five different key elements; 1) Focus on Storytelling; 2)
Spending Time Playing; 3) Maintaining Narrative Sense through Actions; 4) Minimise
repetition; 5) No Major Progress Blocks (1). The first element identified is that the
focus must be on storytelling, rather than the specific gameplay mechanics such as
“puzzles, stacking gems or shooting moving targets” (1). One could argue that a game
without a focus on gameplay is redundant, but I feel that the game needs to strike a
balance between the two. While gameplay cannot be complete abandoned in favour of

7

story, a good story can carry weak gameplay. This does not directly impact Tall Tales
in a significant manner. Tall Tales does not provide an interface for story creation.
While it would be possible to create an interface for crafting stories, like Twine (2)
(which will be discussed later in the “Research of Potential Technologies” section),
it is not necessary to the current scope of the project.

The second element is that “the core of the game should not be about reading or
watching cut-scenes, it should be about playing” (1). While this is an important
tenant, it is not exactly relevant to the development of a game engine. How the game
is conducted and played is a decision of the game developers.

"Maintaining Narrative Sense through Actions" is the most important element that
Tall Tales can help to reinforce. Rational Games define that the focus should be
devoted more to the story than the gameplay. They also reinforce that it is important
for the gameplay to be of value to the story. They establish that players must feel like
an active participant in the story. This is achieved having gameplay actions which are
closely tied with the progression of the story. This affords the player a great degree of
agency. (1) Tall Tales manages to do this through supporting text-based NLP. Tall
Tales allows the user to type their desired action with no limitation. This is offers
more control than if they are told to choose one of three options. The use of text-based
input means that a wide variety of potential actions can be supported to progress the
story. The only issue is how well the individual developers will use these utilities to
craft “important story moments”. (1)

Minimising Repetition is a difficult element to implement. By their nature, most
games will have a set of core mechanics which are repetitious. Within the Tall Tales
engine, the primary driving force of the NLP is being able to input text. The action of
inputting text is incredibly repetitious. The only way this can be broken up is by the
developer implementing additional mechanics into their game. However, Rational
Games make an excellent point; “This does not mean that the core mechanics must
constantly change, it just means that there must be variation on how they are used”.
They even draw attention to games such as Limbo and Braid, where the core
mechanics are simple, but must be used in increasingly different scenarios throughout
the game. (1) This reinforces the versatility in text-based input as a driving force in
gameplay. While the act of typing desired actions is repetitious, it offers a lot of scope
for depth and diversity. During testing it was found that players of the demo game
were not bothered by having to type in their desired action. Instead, they were excited
to repeat the same process to see how the game would react to their input.

The final core element is avoiding major blocks to progression. Traditionally, games
attempting to tell a story fell into the trap of “obscure puzzles, mastery-demanding
sections and maze-like environments” (1) These would impede player progress and
destroy the pacing of the story. To a degree, this is something which the developer
must try to combat, but it is also a potential pitfall of Tall Tales. Previously, text-

8

driven games have required the user to input specific words in order to progress past a
particular section. This causes the user to repeat input until the desired keyword is
found. By using NLP, I hope to combat this through the use of synonyms. This would
put more of the onus on the developer to avoid major progression blocks.

Other papers which covered narrative representation in games were examined. This
was necessary to gain a comprehensive view on the topic. One such paper is from
Marie-Laure Ryan, a writer with several published articles on narratology. In one of
her papers Ryan outlines three features which she feels are essential to game
narrative; a natural interface, integration of user action and dynamic story creation. (3)

Ryan's paper bears some similarity to the article written by Rational Games; namely
the integration of user action into the experience and narrative. By providing a natural
interface for the user to communicate their desired actions they will experience a
greater sense of immersion. Normally when video games offer the users narrative
choices the choices take the form of a list of options. One of the most natural
interfaces that could be incorporated is voice recognition. However, voice recognition
is complicated and tends to suffer from it's own inaccuracies. This problem is
exacerbated when incorporated with NLP due to NLP's own inaccuracies at times. As
a result of this, Tall Tales only supports text input. I feel that this is the most natural
interface, second to voice communication.

Ryan believes we need to provide physical actions which impact the world, and verbal
actions which impact the inhabitants of the world in order to provide narrative
richness and player immersion. (3) By having the player's actions directly impact the
development of the game's narrative they afford a sense of agency. This allows the
player to become more invested in the game. To attempt to facilitate this, Tall Tales
uses an expert system in conjunction with the NLP system. This allows the developer
to define a set of facts and rules about the game world. These can be changed and
evaluated based on the actions the user takes. This will help create a dynamic
environment for the player that can be influenced by their actions.

Dynamically creating a story is the most difficult feature to include, and is linked to
integrating user actions into the story. There are two types of interactive narrative;
emergent and top-down. Emergent story is a result of computing the effects of the
user's actions and amending the model of the game world before responding to the
player. Top-down relies on pre-scripted content that the player can progress through.
(3) Top-down story is easy to create as the developer has complete control over it. The
biggest downside to this is that it generally limits the interactivity and agency of the
player. This reduces the replay value of the game. By having an emergent story the
player can have a completely new experience each time they place. It will be almost
impossible to guarantee that the same thing happens twice. Emergent story becomes
relatively easy to implement in an environment with thousands of simultaneous
players that have a large degree of freedom over what actions they can take. In an

9

environment where there is only a small number of players emergent stories become
reliant on robust AI systems. By adding expert system support I hope to help tackle
this issue and make the development of emergent story easier.

To better understand these principals in action, I examined two games which rely on
text input to progress the game and its story; Façade and Zork. Zork is an old text
adventure game from the late 70s, while Façade is a more modern take on text
adventure games.

Zork is a basic game which just presents the user with an input box for text and an
area to display output text. It then presents the user with a scene, along with a set of
cues for interacting with the environment. Zork fails to meet the key elements of
interactive narrative presented by Rational Games. Zork relies on keyword spotting.
During any specific scene in the game, there are a set of keywords that the game is
looking for. These relate to a specific object and produce a specific result when
invoked. This leads to frustration for players as they spend more time figuring out the
correct keyword rather than the game interpreting what they want to do.

This hinders player progression through the game and detracts from the storytelling.
The user becomes stuck on finding the exact word that the game is looking for at a
particular moment. The user has to repeat input on the same object in order to
progress. This also puts a strain on the progressing the story. Narrative sense is not
preserved as legitimate actions are prevented. In terms of Ryan's principals, the game
does provide a natural interface through text input. Although, it fails to have the user's
actions impact the narrative in a significant way or present a dynamic story. The user
does not remain a passive participant, but instead actively progresses the narrative.
The only issue is that this impact the story is not particularly significant. The user
only progresses the story because their options are limited. The game becomes more
about puzzle solving. This is directly linked to the lack of dynamic story. In any given
scenario there are only a few set actions the player can perform which will have the
same result. They also fail to change the course of events in the game.

Façade is a more modern text driven game which was developed as an experiment for
narrative driven by artificial intelligence. (4) During language processing the game
attempts to figure out the context of the user's input and then progresses the game's
narrative based off of that. (4)

Façade is more difficult to evaluate in terms of the previous established principals.
The game maintains a focus on storytelling and manages to avoid repetition. There are
no major progress blocks, but this is due to the narrative progressing without the
player. The player can opt not to perform any actions and the story will progress, or
they can influence the events occurring. This allows the players action, or inaction, to
directly control the narrative, while avoiding major progression blocks. Unfortunately,
Façade struggles to maintain narrative sense. This is as a direct result of the NLP.
During my research I found that most of the time the game would fail to recognise my

10

input and the narrative would just continue regardless. For the most part, the game's
scenario puts you in a situation where there is no narrative sense in taking action.

After researching both Zork and Façade I have established that the following are
important features for Tall Tales: comprehensive NLP that reduces the number of
attempted inputs to perform a particular action; an interface for using expert systems
to create dynamic narratives; facilitate text input in order to perform in-game actions.

Natural Language Processing is the computational analysis of human languages, such
as English and is in the most crucial part of the project. This is a difficult field, as
natural languages do not have easily identifiable explicit rules. (5) For my project I
researched the primary areas of NLP that I will be using; part-of-speech tagging,
WordNet & FrameNet.

Part-of-speech (POS) tagging is the processing of identifying a word's world class or
lexical category (noun, verb, adverb, adjective etc.). (5) WordNet is a lexical database
of English words which are linked from synonym-to-synonym (known as synsets)
using semantic relations. (6) FrameNet is another lexical database which attempts to
create semantics relationships with words by contextualising through a structured
background experience, or definition. (7) For example, FrameNet categorises words
into frames, such as the “Theft” frame. This frame is then triggered by semantically
related verbs such as “steal”, “snatch”, “thieve”. Each frame then a set of elements
that help to encapsulate the frame. These are; Agent, Undergoer and Instrument. (8)
The benefit of FrameNet is that it allows for more than one subject to be taken into
account, if the frame allows it. For example, two people could be Agents in the Theft
frame, or two objects could undergo theft. Additionally, it provides a way to interface
natural language with programming as it can parametrise verbs.

In order to perform the POS tagging, it is necessary to use multiple N-gram taggers.
To tag the user input I use three N-Gram taggers; a unigram tagger, a bigram tagger
and a trigram tagger. The difference between the taggers is the context they use for
tagging a word. The unigram tagger examines the current word on its own, the bigram
tagger examines the word in the context of the previous word, and the trigram
examines the word in the context of the previous two words. (5) In order to make the
analysis comprehensive, the taggers are chained together. If the trigram tagger fails to
tag a word it gets passed off to the bigram tagger. If that fails the word is passed off to
the unigram tagger, and then to the default tagger if that fails. Wordnet will be
essential for error handling so that if a particular word fails, it's synonym can be
checked.

A game engine is a set of classes and components, used in a game, that do not contain
any logic or data specific to a particular game. This helps reuse and quickens the
development time of any particular game. (9) While researching the most suitable
architecture for a game engine, I found that the general consensus was that an Entity

11

Component System (ECS) is considered to be a more effective architecture for game
engines, as opposed to traditional Object-Oriented (OO) approaches.

The benefit of an OO approach is that it promotes code reuse and organisation. The
biggest issues that this has within a game is that the hierarchy is not flexible. It is
difficult to add features to a few specific classes without code reuse, or adding it to a
shared parent class, which results in the code be unnecessarily propagated to other
classes. (9) Another huge problem with an OO approach is that it's hierarchy system
does not promote expandability. Each child has a heavy reliance on it's parents. This
makes adding or changing features difficult without having to reconstruct a lot of the
code. (10) This issue impacts game development more than traditional software
systems as features are constantly added and retracted during development.

An ECS architecture offers many benefits over an OO approach. ECS makes it easier
to conceptualise each individual entity as a composition of features. Constructing an
entity becomes much easier as it is simply just adding or removing features without
any major code reconstruction, and classes become smaller and easier to maintain. (9)
(10) In ECS, a database-like approach is taken. Logic is decoupled from data.
Components become collections of related properties, which are then managed by a
relevant system. This results in major benefits such as a high degree of cohesion and a
low degree of coupling within the engine. (9)

ECS does have its disadvantages. Some people argue that the isolation and modularity
of each feature can serve as a downside due to the fact that it complicates cross-
system communication. (10) This can be accomplished by using an external manager
which can be seen Cupcake and Artemis Framework (which will be discussed later).
However, this leads to increased overheard.

Pure ECS isn't always a common occurrence. A pure ECS system assumes that all of
an entities properties will be contained within its components. (9) This is not
necessarily a bad thing, but it can be incredibly limiting. A solution would be to
include an abstract component and system which can be sub-classed to create tailor-
made systems and components. This is a step towards a hybrid ECS model in which it
is assumed that there are certain properties and methods that all entities will share at
some point.

There are multiple ECS architectures. One proposed implementation I found
throughout my research was forgoing the creation of an actual entity class. Instead,
whenever a logical entity is created, the relevant components are instantiated and is
given an ID which represents what entity it belongs to. (9) Two other approaches are
using the Cupcake and Artemis frameworks.

The Cupcake ECS architecture is designed to be a completely modular user-defined
game engine. The system relies on highly independent modules which can be
combined into a customisable user engine. Upon start up, the user can choose from a
list of plugins to include which will manage the engine's functionality. This results in

12

a game engine customised for the end user. (10) Cupcake offers some interesting
solutions to potential efficiency problems. In Cupcake, systems are separated into two
lists; processing and idle. Processing systems are updated at each game loops, while
idle systems aren't updated unless moved into processing. (10) In order to solve the
shared components problem, Cupcake maintains a set of components outside the rest
of the game engine which are passed to a system upon creation. This helps to maintain
system independence, and avoids the need to sync the systems with the shared
components. The cross system communication problem is solved by using an external
messaging system. If the appropriate trigger is set off, then the message is sent to the
messaging system specifying the appropriate course of action. (10) This solution
comes with some major downsides, such as reducing the level of decoupling in the
architecture while also increasing the amount of overhead required. By having
messaging integrated as part of the engine, it could possibly improve the feasibility of
the messaging system. Additionally, due to components being stored within the actual
systems it becomes much more difficult to remove entities from the systems. (10)

Artemis is an ECS framework developed in Java that treats entities as numeric Ids
rather than classes containing data. (10) There is a major downside with numeric Ids,
and that is that there is a limit on the amount of Ids for components that can be
created. Artemis uses an Entity Manager to track a list of Ids and associated
components. This Entity Manager is essential in attempting the solve the shared
component problem. By attaching all components to the Entity Manager all systems
have access to all components, and no syncing is required. (10) Unfortunately,
Artemis does not have a realistic solution for cross-system communication as the only
object shared between systems are components, and creating/deleting components is
costly.

For this project I feel that booth Cupcake and Artemis do not quite satisfy the
requirements. Instead, I will opt for a hybrid ECS model. This assumes that all
components and systems will share certain core functionality.

Research of Potential Technologies

In order to select what technologies to do, I evaluated them based on the following
criteria; ease of handling strings, support for knowledge representation, support for
game development and support for natural language processing.

Adrift

Adrift is a GUI driven application for easily producing interactive fiction games. (11)
Adrift allows users to rapidly develop interactive fiction games, however they are
extremely limited. Adrift allows you to define connected nodes on a graph which

13

contain text. These nodes are traversed by typing in the appropriate command (“Look,
Take etc.”).

This does not meet many of the project requirements. The requirement it does manage
to meet is that it allows a user to rapidly develop an interactive fiction game.
Unfortunately there are many downsides. The text recognition is only keyword
spotting. Keyword spotting is not robust enough to fully immerse the player in the
game world. This is due to the disconnect between what the user enters, and what is
actually recognised. Secondly, the nodes are extremely static and cannot be updated as
the game progresses. In order to “update” a node, there must be a similar node with
slightly different text that is reached by a different path. Adrift also does not allow for
customisation by the user developing the interactive fiction. It is not possible to define
new game elements within the engine, such as physics, 2D/3D models etc.. This
results in Adrift only being able to handle simple text input and output.

Fungus

Fungus is a Unity extension for creating story-based games. (12) Fungus allows
Unity developers to easily add a focus on story. By doing this, it expands upon one of
the problems presented by Adrift. It allows the developer to incorporate more
complex gameplay elements that progress the story.

Like Adrift, Fungus meets the requirement of allowing developers to create story-
based games, with the added bonus of being able to include other gameplay features.
However, fails to include natural language processing; a key aspect of the project
problem. Unlike Adrift, it does not allow the user to input text. Instead, the user is
presented with a set of choices which they can choose from that will progress the
story.

This breaks immersion even more than Adrift's mono-verbal user input. The player is
not even able to accurately verbalise their exact intentions. Instead, the user needs to
find an option which best fits how they want to approach the situation. This leads to
confusion as players and the developer may interpret the option in different ways.

Twine

Twine is an open-source tool for developing interactive stories. (13) Twine is an open-
source tool for developing interactive stories. (13) Twine is almost identical to Adrift,
except for the fact that it presents the same problem that Fungus does. It lacks written
user input, only selection from a set of options. This is the worst of both worlds as it
doesn't even incorporate keyword spotting, or allow a large degree of customisation.
The main benefit of Twine is that it is entirely open-source. This could mean several
major improvements and interesting/useful packages being developed for it.

14

Python

Python was selected due to how easily it can handle strings and indexed lists, which
will be the main data types used in the project. Additionally, it is the only language
that NLTK is compatible with.

I have a small amount of Python experience prior to this year. My only experience
comes from developing a RESTful API using Flask. This will prove useful as it gave
me experience in developing an API. Additionally, we used a Bootstrap GUI with
Flask. The experience with adding a GUI in Python will be useful if there is time to
add a GUI to the project. Flask will also be useful if any networking is required.

In order to further familiarise myself with Python I read through the API
documentation that concerned any functionality which may be relevant to my project.

Natural Language Toolkit (NLTK)

The Natural Language Toolkit is an interface for various lexical resources and
libraries such as WordNet and FrameNet (14)

There was not a lot of criteria to consider when selecting this particular technology. It
is the largest comprehensive resource for natural language processing. It is also
developed using Python which makes it a perfect fit into my project.

I have no prior experience with NLTK. To familiarise myself with this I read 'Natural
Language Processing with Python' by Stephen Bird. It written particularly for NLTK.
I also got hands-on experience by developing a simple proof of concept prototype for
the project.

Pyke

Pyke is a Prolog-inspired knowledge engine for Python. (15)

Initially, I was planning on using the rudimentary knowledge representation provided
by NLTK. However, this might not fully capture the use cases required, and as a result
could require a lot more work to be effective. This would be extremely time
consuming and detract from the main goal of the project. Instead I settled on using
Pyke as it already provides a suite for forward and backward chaining goals, and a
complete framework for creating a logical model.

To familiarise myself with the library I read through the API documentation and got
hands-on experience by developing a simple proof of concept prototype for the
project.

15

PyGame

PyGame is a game framework for Python that will be used to draw renderable entities
to the screen. (16)

This was library was a necessity for the project as it is the most versatile and widely-
used Python game framework. Implementing the features provided by PyGame would
be quite difficult and time consuming. PyGame was selected over Pyglet as it has
been around longer, resulting in better documentation and a larger community.

Pyglet

PyGlet is an open-source game framework for Python. (17)

Pyglet provides much of the same functionality as PyGame as is often considered to
be more “Pythonic”. Unfortunately, Pyglet hasn't had any new builds released in two
years, and has a very small, inactive community. This renders it unsuitable to use for
the project.

Love2D

Love2D is a Lua-based game development framework. (18)

The reasons for not selecting this over the previous technologies was because I am
more familiar with Python than Lua. There is also a lot more support for natural
language processing and logical model representation in Python.

Unity

Unity is a game engine which supports rapid 2D and 3D development. (19)

Unity is easily one of the most robust and widely supported game engines with a
massive community. It solves the problem of developing a comprehensive game
engine,but is poor at handling knowledge representation and natural language
processing. Additionally, C#/JavaScript/Boo (all Unity scripting languages) and Unity
do not contain libraries for natural language processing, unlike Python.

3. Design

Design Methodology

16

Figure 3.1: Design Methodology

The approach I have chosen for the project is an iterative design methodology.
Iterative design is a widely used design philosophy which involves a cycle of design,
creation, testing and redesign. A system within the program is chosen, designed in
detailed, created and then tested before redesigning it, if necessary. This allows for the
developer to catch design flaws early on in development, rather than when every
system is fully implemented. (20) The main reason for adopting this methodology is
that it allows for the project to be adapted in response to user feedback and unplanned
setbacks (such as API conflicts, hardware issues etc.). The ability to adapt to user
feedback is key in software development, especially within game and game engine
development. By isolating particular features of the project when developing them,
they can be carefully tested in a vacuum before integration occurs.

Component Design

The central concept with each of these components is that they are to be subclassed
when used. For example, in order to create a new game you need a new instance of
the game engine. That engine will contain instances of the NLP and Knowledge
systems which will handle their relevant game entities.

NLP System

The premise behind the NLP system is relatively straightforward. The input is
tokenised and then POS tagged. Then the find the first verb in the sentence is found
and recorded. Once the verb is found, the first noun which occurs after the recorded
verb is recorded. These can then be used with the knowledge system.

If there is no verb found, the first token of the input is checked. If the first token is a
personal preposition (“I”, “You”, “They” etc.) then it's assumed that the second token
is a verb. Otherwise, it's assumed that the first token is a verb.

17

Figure 3.2: NLP algorithm

Knowledge System

The Knowledge System utilises Pyke rule bases in order to evaluate whether a user's
action succeeds or not. The developer defines these rule bases for their specific use
case. When used, the Knowledge System checks if the named rule base exists, and
then if the named rule exists within that rule base. If there is a match, it attempts to
evaluate the rule and will return whether or not it was successful. This can be used in
conjunction with the Knowledge System where the Target Noun is used to check for a
rule base while the Operative Verb is used as the rule.

18

Figure 3.3: Rule evaluation algorithm

Scene

The Scene abstract class defines a set of methods that are useful for developing and
managing game scenes. This class is designed to be subclassed. Once subclassed, the
Scene can then be populated with entities and systems.

The Scene updates all its Systems and contains an interface for adding entities and
systems to the scene. It also allows the developer to define conditions for transitioning
from one scene to another

Entity

The Entity abstract class defines a set of methods that are useful for developing and
managing game entities. This class is designed to be subclassed. Once subclassed, the
Entity can be populated. Additionally, it is possible to check if an entity has a
particular type of component (E.G: text component, knowledge component etc.).

Game Engine

The game engine is designed to be subclassed. This allows flexibility for the
developer to fit it to specific use cases. To begin development, the game engine must
be subclassed into a new Game object. Then, the Scene template class must be
subclassed in order to create a new scene. This may be further subclassed in order to
provide more specific temples (E.G: creating a Town scene which defines generic
features of a town, which can then be subclassed again into individual towns). Once a
scene is created in can then be set as the initial active scene in the game.

An empty scene isn't very useful, however. Once a scene has been created, the
developer can subclass the engine's systems and add them to the scene. Developers
can also create entities in a similar manor to scenes. The Entity super-type is
subclassed. Within this subclassed Entity instances of various game engine
components are added. These entities can then be added to the scene where a system
will manage the relevant components (E.G: If an entity has a Text Component the
Text System will manage any text-related attributes for that entity). This allows for a
high degree of modularity and customisation for developers.

Source Code Layout

 Figure 3.4: Engine source code

19

 Figure 3.5: Demo game source code

Project Features and Use Cases

Project Features

• Interface for NLP

• Interface for rule-based expert systems using Pyke

• Interface for using PyGame, a 2D SDL wrapper

• Established development workflow

• Flexible and customisable templates for defining new game engine systems.

Project Use Cases

• Games which utilise NLP

• Games which utilise expert systems

• Python-based game development

• 2D game development

• Text-driven game development through the use of NLP

• Development of dynamic game worlds through the use of expert systems

20

4. Architecture and Development

Overview of System Architecture

The architecture is relatively standard as far as game engines go; an engine object
contains a collection of scenes. These scenes contain various systems and entities.
Entities are aggregates of components, with system that manage their relevant
components on a per-entity basis. During development, a developer can add whatever
systems and components they feel are necessary, without needing to include any in
particular.

Figure 4.1 shows not only the architecture, but the workflow for the game engine. All
follows this basic structure. Systems manages related components. A game is
controlled by a game engine. This game engine has a collection of scenes. Each scene
has a collection of systems and entities. Each entity has a collection of components.

Figure 4.1: System Architecture

Development & Problem Resolution of the Game Engine

Entity

The Entity class is a template which allows developers to create entities. The Entity
class defines that all entities have a componentDict and contain methods for adding,
removing and checking components. The key of the componentDict represents the
type of component (E.g.: text, knowledge etc.). The value for that key is a list of all
components of that type which belong to the entity.

21

The add_components() method accepts a key, and a list of components. It then
attempts to add the components to the componentDict at the given index, which is
given by the key. The remove_components() method accepts the same parameters.
Instead it attempts to remove the components for a given key, if the key exists within
the componentDict.

The does_contain() method accepts a key and checks if the key is contained within the
componentDict. This helps to determine whether or not the entity contains a
component of a particular type and is used by the System class.

System

The System class is a template which is used to define specific types of game systems.
This defines that all Systems have an entityList and a check_entity() method. The
check_entity() method accepts an entity and and entity type (E.G: knowledge, text
etc.) and checks whether the entity contains a component of the given type. If it does,
this entity is added to the System's entityList, with a key to denote it's priority. By
default, priority is assigned in the order that the entities are added to the system. This
allows the system to manage the it's relevant entities.

Knowledge System

In order to function, the Knowledge System contains three methods;
access_components(), update() and evaluate(). When a new Knowledge System is
initialised, it accepts a directory for all the fact and rule bases that will be used by the
knowledge engine.

Figure 4.2: __init__() method of the Knowledge System

The access_components() method will iterate through each entity in the system's
entityList. It attempt to evaluate them based on their currently attributed rule and rule
base.

22

Figure 4.3: access_components() method of the Knowledge System

The update() method for the Knowledge System doesn't perform any action. This is
because evaluating a rule within a knowledge base is relatively costly, and is not
necessary at each update cycle in the engine.

The evaluate() method accepts a knowledge base, a rule and a subject. The subject is
often the same as the knowledge base. This method is used to determine whether or
not a particular entity can be interacted with, and whether the interaction is valid. This
is done by using the knowledge engine which is instantiated when the instance of the
Knowledge System is created.

To begin evaluation, the engine is reset. This deactivates the currently active rule
base. Prior to this change, if a player interacted with an object (I.E: loaded the object's
rule base) the first evaluation attempt would succeed, but all other subsequent
evaluation attempts would fail. The knowledge engine could not activate a rule base
that was already active. Additionally, various checks to prevent to engine from
activating the same rule base twice did nothing to prevent to error. It also led to issues
where the engine would try to activate increasingly nested rule bases that didn't exist.
For example, “Kick the chest” would run the “kick” rule from the “chest” rule base.
This would succeed. A subsequent rule, such as “Open the chest” should run the
“open” rule in the “chest” rule base, but would instead try to run a blank rule within
the “chest.open” rule base.

After resetting the knowledge engine, the evaluate() method sculpts its input into a
format that the Pyke API can understand. This is used for accessing rule bases. To
activate the rule of a rule base in Pyke it must be in the format: “rule_base.rule”. The
evaluate() method takes the rule base and rule it was given when called and joins
them using a “.” to delineate the two individual attributes. This newly formed string is
used as the input. Once this is done, it attempts to activate the rule base and evaluate
the rule.

23

Figure 4.4: evaluate() method from the KnowledgeSystem class

Rule Base Formatting

The rule bases must be formatted in a particular way in order for them to give the
desired output. This is due to problems with the Pyke API. Upon initial inspection,
and from developing a proof of concept, Pyke seemed like the perfect solution, but
caused more problems than it solved.

All rules within the rule base must be backward chaining rules. This is because any
forward chaining rules that are present are evaluated and fired upon activation of the
rule base. This leads to another problem; forward chaining rules are able to assert new
facts, but backward chaining rules are unable to assert new facts. The result of this is
that these facts now need to be represented as attributes within the scene in order to
facilitate facts about entities in the scene changing.

Normally, Python calls are required within a rule in order to return the string
describing the result of the rule evaluation, but because the majority of the facts are
represented as attributes in the scene, the majority of the rule becomes one big Python
call. This makes the use of an expert system almost completely redundant.

24

Rule bases must also be named after the object that they are representing. For
example, the rule base for a door must be called door.krb otherwise the Knowledge
System won't find it. This could have been fixed by using a dictionary to hold the rule
bases, and using a string as the key. If no match is found, then the key could be
checked against it's synonyms using the Text System. Due to time constraints I did not
have enough time to figure out an efficient method of doing this while maintaining the
ECS architecture. Having the Text System directly interact with the Knowledge
System would violate the architecture by creating cross-system dependencies.

Figure 4.5: Sample rule base chest.krb

Text System

The Text System is the most essential system in the engine. It has four important
methods; the initialise method, access_components(), get_pos(), get_syns() and
interpret() method. The initialise method generates the taggers (described earlier in 2.
Research) and trains them. The taggers are trained using the Brown corpus' “news”
category. The initialise method splits the corpus into training and testing data; ninety
percent is used for training, while the other ten percent is used for testing. The three
taggers are trained, their back-off taggers are set and the default is set.

25

Figure 4.6: __init__() method of the Text System

The access_components() is similar to Knowledge System's. The main difference is
that it interprets the string for each component rather than evaluating a rule base.
Once again, the update() method does not doing anything by default as it is inefficient
to perform NLP on each frame; it is only necessary when new input is received.

Figure 4.7: access_components() method of the Text System

The get_pos() method performs part-of-speech tagging on the input. This method
accepts a string to operate on. If the input is not null, it will tokenise it and then tag
each of those tokens.

26

Figure 4.8: get_pos() method of the Text System

The interpret() method performs the NLP for the Text System by using regular
expressions. Three regular expressions are used to catch each of the tags that the
system is looking for. reg_verb attempts to extract the 'VB' tag which represents a
verb, the reg_noun attempts to extract the 'NN' tag which represents a noun and the
reg_prep attempts to extract the 'PPSS' tag which represents a personal preposition.

The interpret() method begins iterating through the tokens. It's goal is to search for the
first verb token, and then found a following verb. Each of the tokens is a tuple, with
the second part holding the token's tag. During iteration, only the second part of the
tuple is checked by reg_verb. If it is a match, the operative_verb (I.E: the verb used to
represent the rule we will search for in the Knowledge System) is set to that token.

Initially, if there was no verb found then the game would crash. In order to fix this an
assumption is made about the input. The assumption is that if the first word in the
sentence is a personal preposition, then the following word must be a verb. Otherwise,
it's assumed that the first word in the sentence is a verb. To do this the first token is
checked to see if it is a personal preposition, using reg_prep. If it is then the first
token is set to the operative_verb. If not, then the second token is set to the operative
verb.

To find the noun the tokens are iterated through once again. If the second part of the
tuple is not null and the part of the tuple (I.E: the word itself) is not the same as the
operative_verb, then reg_noun is used to check if the token is a noun. If it is, it's set to
the target_noun (I.E: the noun which is considered the subject of the action). If both a

27

verb and noun were found then a list containing both is returned. Otherwise, if a verb
was found and a noun was not found then a list containing the verb and a blank
element are returned. This is done as returning a list which contained a null element
resulted in the game crashing when performing operations on the list. However, if
there were no tokens to work on, a list with two blank elements are returned.

28

29

Figure 4.9: interpret() method of the Text System

The get_syns() method is used to get the synonyms of a verb. It is intended to be used
if the Knowledge System fails to find a match using the operative_verb. If the
operative_verb fails it's synonyms will be checked instead. In order to do this the
get_syns() methods accepts an “action” parameter. WordNet is used to get all the
synonyms of the “action” parameter that are verbs. These are saved into a list. The
duplicates are removed from this list, resulting in an output list of all verb synonyms
being returned.

One issue to be noted is that the personal preposition “I” is not recognised correctly.
This is a joint problem between the InputBox API used to receive the text input and
NLTK. NLTK fails to tag “I” unless it is capitalised. The problem is that the InputBox
API doesn't allow for upper case characters. This problem is a result of an API
limitation and a suitable fix could not be found in the given time frame.

 Figure 4.10: get_syns() method from the TextSystem class

Component

30

The Component class is incredibly simple and only contains one method; get_type().
The Component class is another template class which is designed to be sub-classed by
developers in order to create specific implementations of it. The get_type() method is
used to fetch a default type if the “type” attribute is not already specified within the
component. This is accomplished by retrieving the component's name. When using
components it is important to remember that their relevant system should alter their
attributes when performing operations.

Knowledge Component

The Knowledge Component contains attributes required for interacting with the
Knowledge System. In contains a dict to store rule bases and fact bases, should that be
needed. In addition, it contains a “kb” field to denote the current knowledge base that
is active for that component, a current_rule field, and an eval_result field which is
used to store whether an evaluation was successful or not.

The recommended way for utilising this in conjunction with the Knowledge System is
to set the values of kb and current_rule within the scene, and then use those attributes
when calling methods from the Knowledge System.

Text Component

The Text Component contains attributes required for interacting with the Text System.
It stores the input and output strings, the current action being taken (I.E: the verb
found to be the operative_verb in the Text System), the action target (I.E: the noun
found to be the target_noun in the Text System), and the POS tags of the current input.

Once again, it is recommended to use these attributes in conjunction with the Text
System. Any input and output for an entity should be set using the input_string and
output_string fields. The same is applicable for action and action_target.

Scene

The Scene class is used as a template for future scenes, to be designed by a developer.
The developer can use the Scene template class to create more specific templates. The
Scene is designed to hold references to all entities and systems which are present in
the scene, in addition to checking conditions for transitioning to a new scene, and
drawing relevant backgrounds and objects to the screen. Each scene also contains a
gameView attribute. This is a reference to the current running instance of the game
engine. This is used to render images and text to the screen.

The Scene class contains the following methods; add_systems(), add_initial_entities,
add_entities(), update(), check_transition() and draw(). The draw() method is used to

31

draw backgrounds and entities to the screen. This is empty as it must be defined by
the developer. The check_transition() method is also an empty method which must be
defined by the developer, but it is used to check if particular conditions are met which
cause the game to switch from the current scene to the specified new scene.

The add_systems() method is extremely straightforward; it accepts a list of systems
and adds them to the scene's sceneSystems list. Adding entities was not as simple.
Adding entities to the scene when the scene is initialised was straightforward,
however, attempting to add entities while the scene was active resulted in the game
crashing or entities not being added. In order to fix this, adding entities is done
through two different methods. The add_initial_entities() method is designed to be
used when initialising the scene in order to populate it with entities. The add_entities()
method is used to add further entities to the scene while it is active and running.

The update() method is designed to be called by all subclasses of the Scene. This
superclass update() method will call the update() method for all systems belonging to
the class. It will also call the class' check_transition() method and check if the game is
being quit.

Figure 4.11: update() method from the Scene class

Game Engine

The Game class is the most important part of the project, and is used as a container to
run the game. The Game class initialises, runs and stops the game. It does this by
initialising the PyGame module and updating the active scene until it is instructed to
stop. This class is designed to be subclasses and contains the following methods;
__init__(), run(), update(), set_active_scene().

32

The __init__() class is used to create a new instance of the Game class and accepts a
name for the game and dimensions for the screen. When called, this method initialises
the PyGame module, sets the game to be initialised and running, and draws the default
background. Afterwards, it sets the game view of the Scene template class to this
current instance of the game engine.

Figure 4.12: __init__() method of the Game class

After creating a new instance of the game engine, an initial active scene must be set.
This is done using the set_active_scene() method. This accepts a scene as a parameter.
Once called, it sets the received scene to the active scene then calls it's initialise() and
update() methods.

In order to start the game engine after initialisation, the run() method must be called.
This continues to called the update() method until a QUIT message is received from
the PyGame module.

The update() method is called until the game is quit. As long as there is an active
scene, the update() method will called the update() of the active scene and update the
screen.

33

Development & Problem Resolution of the Demo Game

Test Engine

The Test Engine is a simple class. It contains a new instance of the Game class, sets
the active scene and runs the game. In order to set the active scene, the class must first
import it. This allows the Test Engine to be aware that the scene it's trying to activate
exists.

Figure 4.13: Screenshot of the Test Engine class

Demo Scene

The Demo Scene is a working example of how to use the utilities provided by Tall
Tales. The Demo Scene provides the user with a simple scenario. The user is in a
room that contains a locked door and a chest. They must figure out how to escape. To
create this scenario, it uses Tall Tales' Text System and Knowledge System.

In the initialise() method the scene is created. An instance of the Text System and
Knowledge System are created and added to the scene. Four entities are then created;
a door, a chest, a key, and a player. These are also added to the scene. A debug check
is performed to ensure that the scenes and entities belong to the scene (Figure 4.7)

34

Figure 4.14: Debug data showing the presence of entities in the demo scene

Lastly, a set of scene-specific flags are defined. These present to compensate for the
poor functionality of the Pyke API, as mentioned earlier. Then, an introductory
message is displayed. This message informs the user of the basic instructions to play
the game.

Figure 4.15: initialise() method from the demo scene

After the initialise() method is the update() method. This is where the game engine's
systems are used to create gameplay. At the beginning of the update() method the
Scene superclass' update() is called. This performs general “housekeeping” such as
updating all the scene's systems (if applicable), and checking if the game has been
quit.

Next, the update method checks the PyGame event queue. The only event checked is
whether the return key has been pressed. This is used to invoke the InputBox. The
value received by the InputBox is then set as the player's input_string in it's Text
Component. The player's input_string is the POS tagged, which is stored in the
player's Text Component. The player's POS tagged input is then interpreted by the
Text System. This operation returns a list which is stored in the scene's input_eval
attribute. The input_eval attribute is used to determine the player's action, and the
target of that action. The first element (input_eval[0]) is the action. The second
element (input_eval[1]) is the action_target. This is defined by the Text System.

35

After NLP has been performed in the update() method, the Knowledge System
evaluates the input using the rules for that scene. Attributes contained within the
player's Knowledge Component are set. The current_rule is set to the player's action,
and the param is set to the player's action_target. These are then passed to the
Knowledge System's evaluate() method. The result of this is stored in the eval_result
field of the player's Knowledge Component. See Figure 4.9 to further illustrate this.

Figure 4.16: Demo scene update() method performing NLP and knowledge evaluation

If the rule is successfully evaluated, that rule will set its own unique output to be
drawn to the screen. Otherwise, the update() method catches it and attempts to re-
evaluate the rule using synsets. If that fails then a default output message is used.

If the evaluation of the player's action fails, the Text System's get_syns() method is
used. In this scenario, get_syns() is provided with the player's action. From here, it
constructs a list of synonyms for the player's action, known as a synset. Each element
of the synset is then evaluated using the Knowledge System. If these fail as well, then
the update() method uses one of it's default output messages.

There are two different outputs for a failed evaluation. One is if the rule fails and the
player has an action_target. This will produce the message “You attempt to X the Y.
Nothing happens”. The second is if the rule fails the player does not have an
action_target. This produces the message “What do you want to X?”. No matter
which output message is used, they all change the player's output_string in its Text
Component. In order to draw this output to the screen, the text field of the game view
must be set to the desired output. Figure 4.10 highlights this process.

36

Figure 4.17: Handling failed rule evaluations in the demo scene

The last operation to occur in the update() method is to call the check_transition()
method. This checks the game engine needs to change scene, and what scene to
change to.

The last two methods in the Demo Scene are the draw() method and the
check_transition() method. The draw() method is only called on initialisation of the
scene. It renders a background image and displays any introductory text. The
check_transition method in the Demo Scene is incredibly simple. It checks if the
change_scene flag is set to True. If it is, the scene is changed to the End Scene, which
displays a different background. The change_scene flag is only set to True of the
“Enter” rule for the door entity is successfully evaluated.

Figure 4.18: draw() and check_transition() methods from the demo scene-specific

37

Figure 4.19: Rule to trigger a scene transition

Entities

There are four entities in the demo game; the door, the chest, the player, and the key.
Each of these entities are identical in content. All four contain a Text Component, and
a Knowledge Component. During development, only the player's Text Component
and Knowledge Components are actually used. This is due to the fact that the player is
the entity in the game which is entering text and attempting evaluate rules in the
scene.

Key Development Components

The following components of the project where key to development:

• Text System

• Knowledge System

• Game Engine

Text System

The Text System is the most important part of the project. This handles all the NLP,
which is the core aspect of the project. Without this component there would be no
project. This system can have its functionality expanded and make the NLP more
comprehensive and robust.

Knowledge System

While the Knowledge System is flawed due to the use of an ill-suited API, it is still
important. Irrespective of the problems, the main algorithm used to identify whether a
user's action is valid can be applied to a better designed system, and can even be
adapted and expanded to fit more complicated iterations of the system.

38

Game Engine

The Game Engine is crucial to the project as it holds everything together and ensures
that all the individual pieces run together. Having a functional Game Engine
component provides a solid base for the project to by changed and expanded on in
almost any way necessary.

List of Classes & Related Usage

The following are the classes that were used as part of the engine:

• System.py

• Scene.py

• InputBox.py

• Game.py

• Component.py

• KnowledgeSystem.py

• TextSystem.py

• KnowledgeComponent.py

• TextComponent.py

• Entity.py

Here is the resulting API for using these classes to develop a game. The following
should be used with the Figure 4.1 as a reference.

System

• To be sub-classed to create game systems

• __init__(self, system_type)

◦ Accepts a system type from it's child classes

◦ Initialises an empty entityList

• check_entity(self, entity, ent_type)

◦ Checks if an entity contains ent_type

◦ If it does, add it to the entityList

• update(self)

◦ Empty method

39

◦ Defined by developer on a per-system basis

Scene

• To use, subclass it to create game scenes

• initialise(cls)

◦ To be defined by the developers

• add_systems(cls, systems=[])

◦ Accepts a list of systems

◦ Adds them to the scene

• add_initial_entities(cls, entities=[])

◦ Accepts a list of entities

◦ Adds them to the scene

◦ To be used during initialisation of the scene

• add_entities(cls, *args)

◦ Accepts multiple entities

◦ Extends the list of entities in the scene

◦ Used during run-time

• update(cls)

◦ Updates all systems in the scene

◦ Checks if the game has been exited

◦ Checks for transition

◦ Should be called at the start of each scene's update()

• check_transition(cls)

◦ Checks the conditions for the scene to be changed

◦ Defined by the developer in subclasses

• draw(self)

◦ Renders initial objects to the screen

◦ Defined by the developer in subclasses

40

InputBox

• get_key()

◦ Polls event queue for a key press

◦ Records key press

◦ Called by the ask() method

• display_box(screen, message)

◦ Accepts a view of the current game screen and a message to display

◦ Displays the input box

◦ Called by the ask() method

• ask(screen, question)

◦ Accepts a view of the current game screen and a question to ask

◦ To be called when written input is desired

Game

• __init__(self, game_name, screen_width, screen_height)

◦ Accepts a name for the game, and screen dimensions

◦ Initialises a new instance of the game engine

◦ Creates a blank game canvas

• run(self)

◦ Called to begin running the game engine

◦ Updates the game engine until the game has been exited

• set_active_scene(self, scene)

◦ Accepts a scene and sets it to be the active scene

◦ This calls the scene's initialise and draw methods

• update(self)

◦ Updates the active scene as long as the game is running, and an active

scene is present

◦ Updates the game display

Component

41

• To be sub-classed to create game components

• __init__(self)

◦ To be defined by the developer

• get_type(self)

◦ Returns the component type

◦ If no type is defined, the class name is used

Knowledge System

• To use, create a new instance and add it to a scene

• __init__(self, loc)

◦ Accepts a directory for the knowledge base files

◦ Creates new instance of the knowledge engine

◦ Sets the System type to “knowledge”

◦ Calls the System parent class' __init__ method

• access_components(self)

◦ Accesses the knowledge component of each entity it manages

◦ Attempts to evaluate these entities' rules

• add_kb(self, entity, kb_name, kb)

◦ Adds a reference to a knowledge base to an entity's Knowledge

Component

◦ Accepts an entity, a key for the knowledge base, and the knowledge base

itself

• evaluate(self, kb, rule, subject)

◦ Evaluates a given rule in a particular rule base

◦ Accepts a knowledge base to check, a rule, and the target of that rule

◦ If it evaluates the rule it returns true

◦ Otherwise, it returns false

Text System

• To use, create a new instance and add it to a scene

• __init__(self)

42

◦ Downloads the appropriate NLTK data

◦ Generates POS taggers

◦ Calls the System parent class' __init__()

• access_components(self)

◦ Accesses the text component of each entity it manages

◦ Attempts to interpret these entities' text input

• get_pos(self, input_text)

◦ Accepts a string

◦ Attempts to POS tag the string by tokenising it, then tagging it with the

taggers created in __init__()

◦ This returns a list of tagged tokens

• interpret(self, input_tokens)

◦ Accepts a list of tokens

◦ Attempts to interpret the action being taken, and the target of the action

◦ Performs this based on the tags of the input tokens

◦ This returns a list of two strings

▪ One string is the verb which represents an action (operative_verb)

▪ The other is the target of that action (target_noun)

• get_syns(cls, action)

◦ Accepts a string

◦ Generates a list on synonyms for the given word

◦ Returns this list of synonyms

Knowledge Component

• To use, create a new instance and add it to an entity

• type

◦ Set to “knowledge”

◦ Identifier for the component

• kb_dict

◦ Dictionary of knowledge bases for the component

43

• kb

◦ Currently active knowledge base

• current_rule

◦ Rule which is currently being evaluated

• eval_result

◦ Result from the Knowledge System's evaluation

Text Component

• To use, create a new instance and add it to an entity

• type

◦ Set to “text”

◦ Identifier for the component

• input_string

◦ Holds the string received from the event queue in a scene

• output_string

◦ Holds the string to be written to the screen

• action

◦ Used to hold a verb

◦ Holds the operative_verb from the Text System's interpret

• action_target

◦ Used to hold the target of the action attribute

◦ Holds the target_noun from the Text System's interpret

• pos_tags

◦ Holds a list of tagged tokens from the get_pos() method in the Text System

Entity

• To use, subclass it and add it to a scene. Then, add components to it

• Defines a componentDict to hold its components

◦ Stored based on component type

44

◦ Key represents component type

• __init__(self)

◦ Defined by the developer for particular entities

• add_components(self, key, components=[])

◦ Accepts a key, and a list of components

◦ Attempts to add the components at a given key in the componentDict

• remove_components(self, key)

◦ Accepts a key

◦ Removes all components at a specified key

• does_contain(self, type)

◦ Accepts a component type

◦ Checks the componentDict for components of the given type

The following are classes that were used as part of the test game. Use these as a
reference point when developing games using Tall Tales.

• testEngine.py

• demoScene.py

• Player.py

• Key.py

• Door.py

• Chest.py

Identification of APIs

The following external APIs are used in the project:

• PyGame

• Pyke

• NLTK

• InputBox

45

PyGame

PyGame is used in the Scene and Game classes. PyGame contains a suite of game
development utilities that are used for handling input, event management and 2D
rendering. In both the Scene and Game classes PyGame is used to receive keyboard
events and to render backgrounds, sprites and text to the screen. PyGame API calls are
present in the draw() method of Scene subclasses and in the __init__() of the Game
class. It is also used in their update() methods to check for keyboard events, such as
the game being quit, or a particular key being pressed.

Pyke

Pyke is used by the Knowledge System to facilitate an expert system. Pyke manages
logic for evaluating forward and backward chaining rules using a knowledge engine.
As a result, the Knowledge System only needs to know what rules and rule bases are
being checked. It is not concerned with how the check occurs. When an instance of
this system is created a new instance of a knowledge engine is created. When a rule
needs to be evaluated the Knowledge System formats the input in a manor which is
accepted by Pyke, then calls the relevant Pyke method to evaluate the rule.

NLTK

NLTK is one of the most important and is used extensively in the Text System. In the
__init__() method of the Text System nothing but the NLTK API is used. The Brown
Corpus is accessed from NLTK and used for training data. The NLTK API is then
used to create the taggers. These taggers are trained by the NLTK API. The Text
System is unaware of how the these are trained, it just calls the taggers when
necessary.

In the get_pos() method NLTK is used to tokenise the input and to call the taggers that
are created when the system is initialised. Calling tri_tagger.tag(tokens) uses NLTK to
perform the tag() method on the input tokens.

The get_syns() method is the only other part of the Text System which uses the NLTK
API. The synset() method is called to retrieve a list on synonyms for the input. The
return synset is a list of lemmas. These lemmas are a string which contain the word,
the type of word it is, and the context of the word. By calling lemma.name() it is
possible to extract just the word from the entire lemma. The lemma's name is what is
then later returned from get_syns

InputBox

46

This is an API found on the PyGame website which facilitates a text input field. This
is called within individual game scenes in order to receive text input when desired. In
the case of the test game, the enter key invokes the InputBox.

5. System Validation

System Testing

In order to test the project, two methodologies were used; black-box unit testing and
integration testing. Unit testing is performed after each individual module of the
project has been developed. This module is undergoes a cycle of testing and
development until it is deemed to be complete. Afterwards, integration testing is
performed using this module.

Black-box unit testing was chosen as it ensures that the individual components of the
project work in a scenario where the user does not have in-depth knowledge of how
the system functions. Black-box unit testing also helped to prevent me from
developing to an implementation (the demo environment), rather than an interface
(the game engine). This method of testing was applicable to all parts of the project.
Each individual module of the project underwent black-box unit testing.

For each class in the project, black-box testing was performed. Each of the methods
were given fixed test values. This was done to provide a degree of consistency. Due to
the nature of the ECS architecture, some of this testing was just part of development.
When developing the Text System and the Text Component, for example, that allowed
me to test the System and Component classes by attempting to utilise their facilities.

To test the Text System, each method was passed the string “Take the hat”. This was
used to check if the string could be POS tagged, and interpreted. After this succeeded,
the interpret() method was given the string “Take eat the up hat house”. This was done
to check if the algorithm worked when passed multiple tokens with the same tag. The
result was the interpret() method recording “Take” as the operative verb and “house”
as the target noun. The algorithm functions correctly, but has the possibility to
correctly evaluate a nonsensical sentence. It was difficult to find a solution to this
without limiting the ability of the Text System. One attempt involved automatically
failing the interpret() if two verbs were in the same sentence. This caused more issues
as terms such as “running shoes”, and “jumping jacks” would cause the interpret() to
fail. The only viable solution was to allow this evaluation to occur. There was not
enough time to fix this bug and continue development on other parts of the project.

When testing the Knowledge System a simple rule base was used. The rule base,
chest.krb, contained the rule “open”. To test this, the evaluate() method was given the
string “open the chest”. When this succeeded a new rule “kick” was added. The

47

evaluate method was then given the string “open the chest”, followed by “kick the
chest”. This led to the issue outlined in 4.a Development & Problem Resolution of
the Game Engine section, where the Knowledge System attempted to access
increasingly nested rule bases.

In order to test the project as a whole, integration testing was necessary. To perform
this a demo environment was set up. This demo environment doubled as a platform
for demonstrating the project's functionality and for testing the components as a
whole. Integration testing is needed when developing a game engine because while
each individual part of the engine may work perfectly in isolation, it is paramount that
they function correctly when combined together. After unit testing, each module is
added to the demo environment and tested once again in conjunction with all other
modules in the demo environment. If the tests fail the module is iterated upon and
then goes through more unit testing and integration testing. This process continues
until the module works in the demo environment with other modules.

User testing was carried out after several cycles of integration and unit testing. User
testing was imperative as a game engine must be usable by developers by providing a
sensible workflow and speeding up the development process by a reasonable amount.
User testing highlighted several issues involving the presentation of the Text System's
output and interactions between the Text System and the Knowledge System.

After multiple iterations of development and testing it was concluded that the system
performed the intended functions, but not necessarily as well as desired. The Text
System managed to correctly tag the input and interacted perfectly with the
Knowledge System.

User testing on the demo environment highlighted issues with the Text System is the
default error messages used within the demo environment. Under particular
circumstances the error messages produce an output that is not authentic and does not
make a lot of sense. In the original iteration of the error message read “You
unsuccessfully X the Y”. This led to inaccurate error message, such as when the user
input the adjective “unsuccessfully” before their input, causing it to read “You
unsuccessfully unsuccessfully X the Y”, which implies that the action was actually
successful. After a process of trial and error, the most acceptable default error
message reads “Nothing happens when you X the Y”. This caught most incorrect
inputs in an authentic and understandable manor. One input which does not work with
this is if the user attempts to perform an action on an object that does not exist.
Instead of the denying that the non-existent object was in the scene, the message
would only say that a particular action could not be performed on the object. This
implied that the non-existent object was in the scene.

During integration testing it was found that the Knowledge System would fail to work
when presented with a blank field, as it would try to load a null rule base or evaluate a
null rule. To fix this, the Text System had to be modified so that if one of the return

48

parameters was empty, it would return an empty string instead of a null value. This
resulted in the Knowledge System checking rules and rule bases with the name “ “
rather than checking a null value. This prevented the system from crashing.

However, this led to another problem with the error messages; parts of the sentences
would being blank. To fix this, multiple scenarios were set up to cater to different
evaluations and inputs; one for a successful evaluation, one for unsuccessful
evaluation where a field is blank, and one for unsuccessful evaluation where a field is
provided.

System Evaluation

After extensive testing it was found that the NLP functionality was performing to a
reasonable degree and was able to successfully interact with the Knowledge System.
There were several issues, however. Due to the poor usability of the Pyke API the
expert system didn't perform particularly well and felt as though it limited the
performance of the system. A more flexible alternative to using Pyke would have been
to track facts about an entity by using it's Knowledge Component. Instead of Pyke
rule bases which caused more problems than they solved, Python scripts could have
been used to provide similar functionality.

Currently the NLP functionality performs as well, but is a somewhat naïve
implementation. For most use cases the Text System will wok correctly off the
assumption that the sentence is “... Verb … Noun …”, but this doesn't allow for more
complicated sentence structures. As established in the System Testing section of this
chapter, inputs with multiple verbs and nouns can have undesirable outputs. Attempts
to correct this either opened up new problems or limited the capabilities of the Text
System.

Even the error outputs could not catch all incorrectly evaluated inputs, as highlighted
in the System Testing section. The only plausible way to check for this without
implementing major changes to the Scene class. The most obvious way to do this is to
check the scene's entityList, but there is a problem with that. The entityList stores
references of the entity and it's memory address, meaning the only realistic way to
access this is through regular expressions in the scene (which is undesirable), or by
changing the scene class. The scene class would need to be changed so that the
entityList was a dictionary, with the name of the entity as the key. Unfortunately, this
creates new problems. If this route was to be taken then entities of the same type
would have to be stored as a list inside the dictionary. This would make selecting
specific ones difficult. This issue was a major development oversight on my behalf. If
this was caught earlier in testing it may have been possible to fix it. Instead, it was
caught towards the end of the testing cycle during development.

As a game engine, Tall Tales is quite simplistic. Currently, it only supports NLP, scene
management and an ECS interface for developing new Systems and Components. It

49

lacks systems that would be considered standard or mandatory, such as; physics
systems, camera systems, and 2D & 3D rendering utilities. Instead, Tall Tales relies
on the developer utilising PyGame and their own talents to implement these features.
As it stands, Tall Tales is a functional game engine that provides developers the ability
to easily add systems which are missing, but doesn't provide basic facilities that are
considered necessary to speed up game development. This downside is somewhat
alleviated by the ECS interface provided. This makes integrating new systems into the
game engine faster than it normally would be.

There are some performance issues with Tall Tales during NLP. This is caused
whenever an initial rule evaluation fails and the synsets have to be checked. The time
for re-evaluation varies greatly depending on the size of the synset that is being re-
evaluated. I could not find any obvious way to improve the perform for this as NLP is
computationally expensive.

In recent months, the games industry has shifted from using “in-house” game engines
(game engines developed for specific games) to licensing existing engines, such as
Unreal and Unity. This shift is beneficial for developers of game engines. By having
large studios license externally developed engines, the demand for new public domain
game engines has increased. This does carry it's own downsides, however. With
demand increasing, there is also an increase in the quality expected. Most developers
expect a game engine to be as feature-complete as Unity or Unreal. For Tall Tales, this
means that development of a fully-fledged usable game engine has become
increasingly unrealistic. This is because more is expected of it. At the same time,
however, game engines that provide something which is missing from a competitors
engine will pique the interest of potential developers. This is Tall Tales' strong point,
as no other engine provides NLP utilities. Although, in its current state it would not
have any industry appeal, and would be hard-pressed to garner appeal without the
support of a large development team.

Demonstration

Currently the demo environment is able to demonstrate that the Tall Tales game
engine can accept written input, perform NLP on that input, and then evaluate rules in
a knowledge base using the results of the NLP. The source code for the demo
environment also demonstrates the usability of the engine and provides a guideline for
how to develop using Tall Tales.

Link to demonstration: https://www.youtube.com/watch?
v=BsKD6g6Sw58&feature=youtu.be

The following are a selection of screenshots to demonstrate functionality in the event
that the video is inaccessible. These do not provide the full cover that the video
provides.

50

https://www.youtube.com/watch?v=BsKD6g6Sw58&feature=youtu.be
https://www.youtube.com/watch?v=BsKD6g6Sw58&feature=youtu.be

Figure 5.1: Demo screenshot 1

Figure 5.2: Demo screenshot 2

51

Figure 5.3: Demo screenshot 3

Figure 5.4: Demo screenshot 4

52

Figure 5.5: Demo screenshot 5

Figure 5.6: Demo screenshot 6

53

Figure 5.7: Demo screenshot 7

Figure 5.8: Demo screenshot 8

54

Figure 5.9: Demo screenshot 9

6. Project Plan

Analysis of Original Plan & Proposal

Initially Tall Tales was intended to be a game that provided NLP as the main input
source rather than a game engine that supported NLP. The change from a game to a
game engine was made because there was no support for NLP in industry-standard
game engines. This led to the requirement for using Python, as it supported NLP
libraries. However, using Python meant that instead of relying on a game engine to
develop the game, everything would have to be built from the ground up using a game
development library such as PyGame or Pyglet. Because of this, the logical decision
was to propose a game engine with NLP instead of a game as the systems used in a
game engine would be required to make the original game.

Analysis & Evaluation of Final Project Plan

Table 6.1: Finalised project plan

55

Deliverable Deadline Requirements Testing

Game
Initialisation &
Management

18th January • Start, run and
close game

• Support for
ECS
architecture

• Create new
game

• Print start-up
message to
console

• Print close
message to
console

• Create simple
entities on
engine start-up

• Print contents
of entities to
console

File system 18th January • Organise file
structure of
engine source
code

N/A

Scene
Management

28th January • Modify Game
class to
manage active
scenes

• Create &
define Scene
class

• Create two
new scenes

• Automate
changing
between two
scenes

User Input 3rd February • Modify Scene
superclass to
handle events

• Modify scene
test classes to
receive user
input

• Switch
between two
test scenes
based on user
input

NLP 24th February • Create
TextCompone
nt &
TextSystem
classes

• Add NLP
functionality
to TextSystem

• Enter test
string

• Print NLP
results to
console

Knowledge
Representation

6th March • Create
KnowledgeCo
mponent &
KnowledgeSy
stem classes

• Create simple
knowledge
base files

• Attempt to
access a

56

• Add expert
system
functionality
to
KnowledgeSy
stem

specified
knowledge
base and
evaluate
specified rules
in that
knowledge
base

Rendering
System

TBD (after
development of
core deliverables)

• Create an
interface for
rendering 2D
objects to the
screen

• Create
RenderSystem
and
RenderCompo
nent

• RenderSystem
should draw
all entities
with a
RenderCompo
nent in the
current scene

• Utilise Render
System to
draw simple
images to the
currently
active scene

• Switch to a
second scene,
draw its
entities and
switch back to
the original
scene

Physics System TBD TBD TBD

Collision
System

TBD TBD TBD

Camera System TBD TBD TBD

For the most part, the project managed to stick to the project plan. Deadlines were met
ahead of schedule for the first set of deliverables, namely; Game Initialisation, File
Systems, Scene Management, and User Input. These provided no major problems.
Both Knowledge Representation and NLP went over a week past the deadline due to
unexpected errors found during unit testing. NLP was intended to be finished by the
24th of February, but had to be extended until the 4st of March due to several crucial
errors that needed to be fixed. This impacted the Knowledge Representation module.
Knowledge Representation was meant to be finished 6th of March, but development
was extended until the 13th March. This was necessary as there were multiple issues
with integrating the Pyke API into the engine. In order to facilitate this stretch goals
such as the Rendering System and the Physics System had to be cut from the project
as there was no feasible way to implement them and perform testing. The Text System
and Knowledge System also had to be developed in tandem due to the scheduling
delay. This proved to be useful as results from the Text System's unit tests could be

57

used as input for the Knowledge System's unit tests. This helped to perform a portion
of the integration testing slightly ahead of schedule.

The testing schedule was on time. This was a result of performing unit tests
throughout the development lifecycle. This meant that the testing period during March
was focused on integration, and user, testing.

If I were to repeat the project the Knowledge Representation would be researched
more thoroughly in order to avoid complications with the API. Assuming this would
minimise problems, there would be development time left to implement various
stretch goals of the project, such as a Rendering System.

7. Conclusion

In conclusion, Tall Tales succeeds at interfacing NLP with game development, but it
would be hard to consider it a game engine. While Tall Tales provides a standard
game engine architecture for developers, it fails to deliver certain facilities than are
expected of modern game engines such as; a graphical user interface (GUI) editor,
rendering utilities, lighting utilities, and physics utilities. These shortcomings are a
result of how time consuming implementing NLP is.

The main learning outcome from this is that NLP is an incredibly complex field. It is
extremely difficult to have a a broad NLP system cater to all potential use cases. As a
result, the scope of an NLP system must be limited and fine-tuned to match a specific
environment. If I were to extend or redo the project I would research more
sophisticated methods of performing NLP. While the current NLP used in the project
performs as intended and provides an enjoyable gameplay experience, it is not as
diverse as I originally desired, and has a very limited use case.

Additionally, I learned that game engines are massive systems that often require a lot
of time, or a team of multiple developers, in order to fully realise them. These
limitations prevented me from expanding the project beyond the core modules as the
original scope was too large for the given time frame. This limitation did provide me
with excellent experience in time and risk management. Because of the time
constraint I learned to manage time effectively in order to maximise development of a
large system in a small time frame, and I learned to mitigate risks by adjusting the
scope of the project as needed by cutting unnecessary components.

After the issues with using the Pyke API in the project I realised the importance of
extensive prototyping during the research period of the project. On paper Pyke
seemed like a perfect fit for the project, but ended up causing more problems than it
solved. During user testing testers felt that Pyke hindered development and the same
goal could be accomplished by utilising Python scripts and storing an entity's facts in
it's Knowledge Component. If more time was spent rigorously prototyping Pyke then

58

a more viable solution could have been found before Pyke began to cause problems.
When continuing development I will take the user feedback into account and
incorporate it into the Knowledge System.

When testing the demo environment, users were excited to see how the game world
would respond to their input, and to see what kind of capabilities they had within the
game. This proved that this kind of text-driven gameplay has a lasting appeal with
users, especially if it were extended and fully realised.

In future work I will attempt to adapt Tall Tales to existing industry-standard game
engines. This is due to the games industry switching from “in-house” game engines to
commercial, public domain engines. It is not feasible to develop Tall Tales as a fully
functional game engine which can compete with the likes of Unity. Additionally,
doing this allows for a focus on NLP within the engine, rather than developing
efficient rendering utilities which exist in other engines.

8. Bibliography

Research Sources

1. Frictional Games. 5 Core Elements of Interactive Storytelling. In the Games of
Madness. 2013.

2. Klimas C. Twine [Internet]. Available from: http://twinery.org/

3. Ryan M-L. From Narrative Games to Playable Stories: Toward a Poetics of
Interactive Narrative. Univ Neb Press. 2009;1:43–59.

4. Mateas M, Stern A. Integrating Plot, Character and Natural Language Processing
in the Interactive Drama “Façade.” Carnegie Mellon University; 2003.

5. Bird S, Klein E, Loper E. Natural Language Processing with Python.

6. Bird S, Klein E, Loper E. Natural Language Processing with Python.

7. Princeton University. WordNet.

8. Boas HC. From Theory to Practice: Frame Semantics and the Design of
FrameNet. [Austin]: University of Texas; 2005.

9. Godrey LB. The Design and Implementation of a Lightweight Game Engine for
the iPhone Platform. [Fayetteville]: University of Arkansas; 2014.

10. Hall D. ECS Game Engine Design. [San Luis Obispo]: California Polytechnic
State University; 2014.

11. Wild C. Adrift [Internet]. Available from: http://www.adrift.co/cgi/adrift.cgi

59

12. Snozbot. Fungus [Internet]. Available from: http://fungusgames.com/

13. Klimas C. Twine [Internet]. Available from: http://twinery.org/

14. NLTK Project. Natural Language Toolkit [Internet]. Available from:
http://www.nltk.org/

15. Frederiksen B. Pyke [Internet]. Available from: http://pyke.sourceforge.net/

16. Open Source. PyGame [Internet]. Available from:
http://www.pygame.org/news.html

17. Open Source. Pyglet [Internet]. Available from: http://www.pyglet.org/

18. Open Source. Love2D [Internet]. Available from: http://love2d.org/

19. Unity Technologies. Unity [Internet]. Available from: http://unity3d.com/

20. Sotirovski D. Heuristics for Iterative Software Development. Inst Electr Electron
Eng. 2012 Jan 1;18(3):66–73.

9. Appendix

Abbreviations

1. NLP: Natural Language Processing
2. API: Application Programming Interface
3. GUI: Graphical User Interface
4. POS: Part of Speech

Figures

Figures 3

• 3.1: Diagram illustrating iterative design methodology
• 3.2: Diagram illustrating the NLP algorithm used by the Text System
• 3.3: Diagram illustrating the rule evaluation algorithm used by the Knowledge

System
• 3.4: Illustration of the game engine's source code layout
• 3.5: Illustration of the demo game's source code layout

Figures 4

• 4.1: Diagram of the project system's architecture
• Figure 4.2: __init__() method of the Knowledge System
• Figure 4.3: access_components() method of the Knowledge System
• Figure 4.4: evaluate() method from the KnowledgeSystem class

60

• Figure 4.5: Sample rule base chest.krb
• Figure 4.6: __init__() method of the Text System
• Figure 4.7: access_components() method of the Text System
• Figure 4.8: get_pos() method of the Text System
• Figure 4.9: interpret() method of the Text System
• Figure 4.10: get_syns() method from the TextSystem class
• Figure 4.11: update() method from the Scene class
• Figure 4.12: __init__() method of the Game class
• Figure 4.13: Screenshot of the Test Engine class
• Figure 4.14: Debug data showing the presence of entities in the demo scene
• Figure 4.15: initialise() method from the demo scene
• Figure 4.16: Demo scene update() method performing NLP and knowledge

evaluation
• Figure 4.17: Handling failed rule evaluations in the demo scene
• Figure 4.18: draw() and check_transition() methods from the demo scene-

specific
• Figure 4.19: Rule to trigger a scene transition

Figures 5
• Figure 5.1: Demo screenshot 1
• Figure 5.2: Demo screenshot 2
• Figure 5.3: Demo screenshot 3
• Figure 5.4: Demo screenshot 4
• Figure 5.5: Demo screenshot 5
• Figure 5.6: Demo screenshot 6
• Figure 5.7: Demo screenshot 7
• Figure 5.8: Demo screenshot 8
• Figure 5.9: Demo screenshot 9

Tables

Tables 5

• 5.1: Table illustration the finalised project plan that was used

61

