
1 Balls, Bins and Random Graphs: Hashing bit
strings

Most of us faced the scenario that when we create a account on a some website
it says ”your password is weak, please try some other password”. So why it hap-
pens? This happens because it has been observed that most people used same
common words and phrases as their password. So it becomes easy to crack such
passwords. So in order to avoid such scenarios we are asked to enter a compli-
cated password which is not a common .So let us see what exactly happens there.

Let’s say we have a set of commonly used passwords as S, such that
S = {s1, s2, s3,, sm} where s1, s2, s3, ..., sm are the commonly used passwords.
Now given a random password x, find if x ∈ S or x 3 S. (Note: x is a big string
and there are huge number of commonly used password) What should we do?
One method is to store S in a sorted order and whenever x comes perform a
binary search. The time complexity of this will be O(log(n)).
Another method is to use hashing. Basically, hash the passwords in S into a
hash table and when x comes perform a lookup. The time complexity of this
will be the size of the max linked list which will again be of O(log(n)).
So can we do better?

2 Fingerprinting Method

Now let’s say there are 2b slots in the hash table. This hash table contain all
the m commonly used passwords. Now when a random string x comes it can
be hashed to one of the slots that have some sting in that or to an empty slot.
When it is hashed to an empty slot we will allow that string to be used as
passwords otherwise not. Now let us analyse this algorithm.

When x is hashed to an empty slot we can say for sure that x does not be-
long to S as if it does then there should be some not acceptable password si
that should already be present in the slot where x is hashed. But if it is hashed
to a slot that already have some non acceptable password then it may or may
not belong to S. So it can give us false positive(ie saying x is a non acceptable
password while actually it is acceptable) which is alright as this just makes our
algorithm overly conservative.

Now next question is how large our hash table should be such that there are
acceptable number of false positive? Basically we have to find an appropriate
value of b so that there are not too many false positive. For that let us see the
probability of acceptable password to be false positive(let us denote it with P).
The probability that an acceptable password has hashed to a slot already con-
taining a particular not allowable password is (1− 1/2b). There are are m such
passwords. So the probability that it will hash to none of them is (1− 1/2b)m.
So value of P will be,

1

P = 1− (1− 1/2b)m ≥ 1− exp−m/2b

Now let’s say we want this probability to be less then equal to c,ie

P ≤ c
1− exp−m/2b ≤ c

exp−m/2b ≥ 1− c

−m/2b ≥ ln(1− c)

2b ≥ m/ ln(1/(1− c))

b ≥ log2(m/ ln(1/(1− c))), where ln(1/(1− c)) is a constant,

Therefore the value of b = Ω(log2(m)). Now we will use b = 2 log2(m) and
see the value P. The P will become,

P = 1− (1− 1/m2)m

= 1− exp(−1/m)
= 1− (1− 1/m− 1/(2!m2) +)
≤ 1/m

Hence if we choose b = 2 log2(m) then there is very less probability of we
having an acceptable answer as false positive. Also as m tends to infinity the
probability of having an acceptable string as false positive tends to zero.

An alternative proof for the same can be as follows. We have m passwords
in S which we are not allowed to use. Now when we hash these passwords the
total number of slots that are occupied by these is less than equal to m. So the
probability that hash function hash our password x to already occupied slot is
less than equal to m/2b, ie

P ≤ m/2b

Again let’s say we want this probability to be less then equal to c,

P ≤ c

m/2b ≤ c

2b ≥ m/c

b ≥ log2(m/c),

2

Again the value of b = Ω(log2(m)). Now for various values of b the proba-
bility P will be,
for b = 2 log2 m,P ≤ 1/m

for b = 3 log2 m,P ≤ 1/m2

and so on. Basically the probability decreases exponentially as we increase
the number of bits.

3

