
26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 1/176

Hello World! Today I prepared a huge list of Javascript Interview Questions from this awesome repo,
their really cool and have lots of this kind of resources.

⚡ Giveaway ⚡

We are giving away any course you need on Udemy. Any price any course. Steps to enter the
giveaway

--> React to this post

--> Subscribe to our Newsletter <-- Very important

--> Extra: Join us at Discord to participate in our next events

Extra --> For beginners:

What is JS (Javascript)

JavaScript is a scripting or programming language that allows you to implement complex
features on web pages — every time a web page does more than just sit there and display static
information for you to look at — displaying timely content updates, interactive maps, animated
2D/3D graphics, scrolling video jukeboxes, etc. — you can bet that JavaScript is probably
involved. It is the third layer of the layer cake of standard web technologies. MDN

https://github.com/sudheerj/javascript-interview-questions
https://worldindev.ck.page/
https://discord.gg/7sRmnhCs6H
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 2/176

What it used for?

To put things simply, JavaScript is an object orient programming language designed to make
web development easier and more attractive. In most cases, JavaScript is used to create
responsive, interactive elements for web pages, enhancing the user experience. Things like
menus, animations, video players, interactive maps, and even simple in-browser games can be
created quickly and easily with JavaScript. JavaScript is one of the most popular programming
languages in the world. BitDegree - What Is JavaScript Used For And Why You Should Learn It

Hello World In Javascript:

Resources to learn it:

Mozilla’s JavaScript Guide JavaScript track on Codecademy: Interactive tutorials for beginners.
JavaScript for Cats by Max Ogden Eloquent JavaScript by Marijn Haverbeke Wikibooks’ JavaScript
book JavaScript Lectures by Douglas Crockford You Don't Know JS - Possibly the best book written on
modern JavaScript, completely readable online for free, or can be bought to support the author.
braziljs/js-the-right-way - An easy-to-read, quick reference for JS best practices, accepted coding
standards, and links around the Web. JSbooks - Directory of free JavaScript ebooks. Superhero.js - A
collection of resources about creating, testing and maintaining a large JavaScript code base. SJSJ -
Simplified JavaScript Jargon is a community-driven attempt at explaining the loads of buzzwords
making the current JavaScript ecosystem in a few simple words. How to Write an Open Source
JavaScript Library - A comprehensive guide through a set of steps to publish a JavaScript open source
library. JavaScript Tutorials - Learn Javascript online from a diverse range of user ranked online
tutorials. Functional-Light JavaScript - Pragmatic, balanced FP in JavaScript. Clean Code JavaScript -
Clean Code concepts adapted for JavaScript. List at GitHub - Awesome Javascript - By Alexandru
Gherasim

At Reddit - What 10 Things Should a Serious Javascript Developer Know Right
Now?

Scope. If you don't understand this intimately then you aren't that serious about this language.
This is the number one point intentionally and I cannot stress it enough.

Architecture. You don't have to be a master software architect, but if you cannot perform some
basic planning and put pieces together without massive layers of tooling you are an imposter.

alert("Hello World") — Output data in an alert box in the browser window
confirm("Hello World") — Opens up a yes/no dialog and returns true/false depending on user cli
console.log("Hello World") — Writes information to the browser console, good for debugging pur
document.write("Hello World") — Write directly to the HTML document
prompt("Remember the like!") — Creates a dialogue for user input

https://www.bitdegree.org/tutorials/what-is-javascript-used-for/#:~:text=To%20put%20things%20simply%2C%20JavaScript,pages%2C%20enhancing%20the%20user%20experience.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://github.com/ShinobiWPS/awesome-javascript#worth-reading
https://www.reddit.com/r/javascript/comments/6mlc9d/what_10_things_should_a_serious_javascript/

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 3/176

Expecting frameworks and other tools to simply do it for you isn't very impressive.

DOM. It is very common to see developers hiding from the DOM by layers of abstractions and
other stupid crap. querySelectors are great, but are also 2800x slower than the standard DOM
methods. That isn't trivial. These methods are super simple, so there is no valid excuse for
developers fumbling over this or hiding in fear. http://prettydiff.com/guide/unrelated_dom.xhtml

Node.js If you are a serious developer should have a pretty solid grasp of how to walk the file
system. You should understand how to conveniently read files as text or less conveniently read
files as bit for bit binary buffers.

Timing and asynchronous operations. Events, timers, network requests are all asynchronous and
separate from each other and exist both in Node and in the browser. You have to be able to
understand how to work with callbacks or promises.

Accessibility. The interactions imposed by JavaScript can present accessibility barriers. A serious
JavaScript developer is already familiar with WCAG 2.0 and knows how to work within its
recommendations or when to push back on violating business requirements.

Security. You need to have at least a basic understanding of security violations, security controls,
and privacy. You don't need to be a CISSP, but you need to be able to supply recommendations
and avoid obvious failures. If you cannot get this right in the most basic sense you aren't a
serious developer.

Data structures. You need to understand how to organize data in a way that allows the fastest
possible execution without compromising maintenance. This is something that is learned
through academic study and repeated experience writing applications.

Presentation and semantics. You really need to have a basic understanding how to properly
organize the content your users will consume and how to present in a consumable way
efficiently. This is something almost completely learned from experience only. You might think
CSS and HTML are simple skills that can be picked up when needed, but you would be absolutely
wrong.

Knowing when to avoid the bullshit. Many developers lack the years of experience to be
confident in their performance.... so some of these developers will try to fake it. Don't be an
imposter, because everybody will see straight through it. Hoping mountains of abstractions,
tooling, frameworks, compilers, and other bullshit will save you just bogs down your application
and screws over your teammates. If you aren't confident then be honest about that and seek
mentorship or get involved with open source software outside of work.

http://prettydiff.com/guide/unrelated_dom.xhtml

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 4/176

Source

Table of Contents:

No. Questions

1 What are the possible ways to create objects in JavaScript

2 What is prototype chain

3 What is the difference between Call, Apply and Bind

4 What is JSON and its common operations

5 What is the purpose of the array slice method

6 What is the purpose of the array splice method

7 What is the difference between slice and splice

8 How do you compare Object and Map

9 What is the difference between == and === operators

10 What are lambda or arrow functions

11 What is a first class function

12 What is a first order function

13 What is a higher order function

14 What is a unary function

https://www.mindmeister.com/283065198/getting-started-with-javascript?fullscreen=1

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 5/176

No. Questions

15 What is the currying function

16 What is a pure function

17 What is the purpose of the let keyword

18 What is the difference between let and var

19 What is the reason to choose the name let as a keyword

20 How do you redeclare variables in switch block without an error

21 What is the Temporal Dead Zone

22 What is IIFE(Immediately Invoked Function Expression)

23 What is the benefit of using modules

24 What is memoization

25 What is Hoisting

26 What are classes in ES6

27 What are closures

28 What are modules

29 Why do you need modules

30 What is scope in javascript

31 What is a service worker

32 How do you manipulate DOM using a service worker

33 How do you reuse information across service worker restarts

34 What is IndexedDB

35 What is web storage

36 What is a post message

37 What is a cookie

38 Why do you need a Cookie

39 What are the options in a cookie

40 How do you delete a cookie

41 What are the differences between cookie, local storage and session storage

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 6/176

No. Questions

42 What is the main difference between localStorage and sessionStorage

43 How do you access web storage

44 What are the methods available on session storage

45 What is a storage event and its event handler

46 Why do you need web storage

47 How do you check web storage browser support

48 How do you check web workers browser support

49 Give an example of web worker

50 What are the restrictions of web workers on DOM

51 What is a promise

52 Why do you need a promise

53 What are the three states of promise

54 What is a callback function

55 Why do we need callbacks

56 What is a callback hell

57 What is server-sent events

58 How do you receive server-sent event notifications

59 How do you check browser support for server-sent events

60 What are the events available for server sent events

61 What are the main rules of promise

62 What is callback in callback

63 What is promise chaining

64 What is promise.all

65 What is the purpose of race method in promise

66 What is a strict mode in javascript

67 Why do you need strict mode

68 How do you declare strict mode

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 7/176

No. Questions

69 What is the purpose of double exclamation

70 What is the purpose of delete operator

71 What is typeof operator

72 What is undefined property

73 What is null value

74 What is the difference between null and undefined

75 What is eval

76 What is the difference between window and document

77 How do you access history in javascript

78 How do you detect caps lock key turned on or not

79 What is isNaN

80 What are the differences between undeclared and undefined variables

81 What are global variables

82 What are the problems with global variables

83 What is NaN property

84 What is the purpose of isFinite function

85 What is an event flow

86 What is event bubbling

87 What is event capturing

88 How do you submit a form using JavaScript

89 How do you find operating system details

90 What is the difference between document load and DOMContentLoaded events

91 What is the difference between native, host and user objects

92 What are the tools or techniques used for debugging JavaScript code

93 What are the pros and cons of promises over callbacks

94 What is the difference between an attribute and a property

95 What is same-origin policy

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 8/176

No. Questions

96 What is the purpose of void 0

97 Is JavaScript a compiled or interpreted language

98 Is JavaScript a case-sensitive language

99 Is there any relation between Java and JavaScript

100 What are events

101 Who created javascript

102 What is the use of preventDefault method

103 What is the use of stopPropagation method

104 What are the steps involved in return false

105 What is BOM

106 What is the use of setTimeout

107 What is the use of setInterval

108 Why is JavaScript treated as Single threaded

109 What is an event delegation

110 What is ECMAScript

111 What is JSON

112 What are the syntax rules of JSON

113 What is the purpose JSON stringify

114 How do you parse JSON string

115 Why do you need JSON

116 What are PWAs

117 What is the purpose of clearTimeout method

118 What is the purpose of clearInterval method

119 How do you redirect new page in javascript

120 How do you check whether a string contains a substring

121 How do you validate an email in javascript

122 How do you get the current url with javascript

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 9/176

No. Questions

123 What are the various url properties of location object

124 How do get query string values in javascript

125 How do you check if a key exists in an object

126 How do you loop through or enumerate javascript object

127 How do you test for an empty object

128 What is an arguments object

129 How do you make first letter of the string in an uppercase

130 What are the pros and cons of for loop

131 How do you display the current date in javascript

132 How do you compare two date objects

133 How do you check if a string starts with another string

134 How do you trim a string in javascript

135 How do you add a key value pair in javascript

136 Is the '!--' notation represents a special operator

137 How do you assign default values to variables

138 How do you define multiline strings

139 What is an app shell model

140 Can we define properties for functions

141 What is the way to find the number of parameters expected by a function

142 What is a polyfill

143 What are break and continue statements

144 What are js labels

145 What are the benefits of keeping declarations at the top

146 What are the benefits of initializing variables

147 What are the recommendations to create new object

148 How do you define JSON arrays

149 How do you generate random integers

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 10/176

No. Questions

150 Can you write a random integers function to print integers with in a range

151 What is tree shaking

152 What is the need of tree shaking

153 Is it recommended to use eval

154 What is a Regular Expression

155 What are the string methods available in Regular expression

156 What are modifiers in regular expression

157 What are regular expression patterns

158 What is a RegExp object

159 How do you search a string for a pattern

160 What is the purpose of exec method

161 How do you change style of a HTML element

162 What would be the result of 1+2+'3'

163 What is a debugger statement

164 What is the purpose of breakpoints in debugging

165 Can I use reserved words as identifiers

166 How do you detect a mobile browser

167 How do you detect a mobile browser without regexp

168 How do you get the image width and height using JS

169 How do you make synchronous HTTP request

170 How do you make asynchronous HTTP request

171 How do you convert date to another timezone in javascript

172 What are the properties used to get size of window

173 What is a conditional operator in javascript

174 Can you apply chaining on conditional operator

175 What are the ways to execute javascript after page load

176 What is the difference between proto and prototype

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 11/176

No. Questions

177 Give an example where do you really need semicolon

178 What is a freeze method

179 What is the purpose of freeze method

180 Why do I need to use freeze method

181 How do you detect a browser language preference

182 How to convert string to title case with javascript

183 How do you detect javascript disabled in the page

184 What are various operators supported by javascript

185 What is a rest parameter

186 What happens if you do not use rest parameter as a last argument

187 What are the bitwise operators available in javascript

188 What is a spread operator

189 How do you determine whether object is frozen or not

190 How do you determine two values same or not using object

191 What is the purpose of using object is method

192 How do you copy properties from one object to other

193 What are the applications of assign method

194 What is a proxy object

195 What is the purpose of seal method

196 What are the applications of seal method

197 What are the differences between freeze and seal methods

198 How do you determine if an object is sealed or not

199 How do you get enumerable key and value pairs

200 What is the main difference between Object.values and Object.entries method

201 How can you get the list of keys of any object

202 How do you create an object with prototype

203 What is a WeakSet

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 12/176

No. Questions

204 What are the differences between WeakSet and Set

205 List down the collection of methods available on WeakSet

206 What is a WeakMap

207 What are the differences between WeakMap and Map

208 List down the collection of methods available on WeakMap

209 What is the purpose of uneval

210 How do you encode an URL

211 How do you decode an URL

212 How do you print the contents of web page

213 What is the difference between uneval and eval

214 What is an anonymous function

215 What is the precedence order between local and global variables

216 What are javascript accessors

217 How do you define property on Object constructor

218 What is the difference between get and defineProperty

219 What are the advantages of Getters and Setters

220 Can I add getters and setters using defineProperty method

221 What is the purpose of switch-case

222 What are the conventions to be followed for the usage of swtich case

223 What are primitive data types

224 What are the different ways to access object properties

225 What are the function parameter rules

226 What is an error object

227 When you get a syntax error

228 What are the different error names from error object

229 What are the various statements in error handling

230 What are the two types of loops in javascript

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 13/176

No. Questions

231 What is nodejs

232 What is an Intl object

233 How do you perform language specific date and time formatting

234 What is an Iterator

235 How does synchronous iteration works

236 What is an event loop

237 What is call stack

238 What is an event queue

239 What is a decorator

240 What are the properties of Intl object

241 What is an Unary operator

242 How do you sort elements in an array

243 What is the purpose of compareFunction while sorting arrays

244 How do you reversing an array

245 How do you find min and max value in an array

246 How do you find min and max values without Math functions

247 What is an empty statement and purpose of it

248 How do you get meta data of a module

249 What is a comma operator

250 What is the advantage of a comma operator

251 What is typescript

252 What are the differences between javascript and typescript

253 What are the advantages of typescript over javascript

254 What is an object initializer

255 What is a constructor method

256 What happens if you write constructor more than once in a class

257 How do you call the constructor of a parent class

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 14/176

No. Questions

258 How do you get the prototype of an object

259 What happens If I pass string type for getPrototype method

260 How do you set prototype of one object to another

261 How do you check whether an object can be extendable or not

262 How do you prevent an object to extend

263 What are the different ways to make an object non-extensible

264 How do you define multiple properties on an object

265 What is MEAN in javascript

266 What Is Obfuscation in javascript

267 Why do you need Obfuscation

268 What is Minification

269 What are the advantages of minification

270 What are the differences between Obfuscation and Encryption

271 What are the common tools used for minification

272 How do you perform form validation using javascript

273 How do you perform form validation without javascript

274 What are the DOM methods available for constraint validation

275 What are the available constraint validation DOM properties

276 What are the list of validity properties

277 Give an example usage of rangeOverflow property

278 Is enums feature available in javascript

279 What is an enum

280 How do you list all properties of an object

281 How do you get property descriptors of an object

282 What are the attributes provided by a property descriptor

283 How do you extend classes

284 How do I modify the url without reloading the page

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 15/176

No. Questions

285 How do you check whether an array includes a particular value or not

286 How do you compare scalar arrays

287 How to get the value from get parameters

288 How do you print numbers with commas as thousand separators

289 What is the difference between java and javascript

290 Is javascript supports namespace

291 How do you declare namespace

292 How do you invoke javascript code in an iframe from parent page

293 How do get the timezone offset from date

294 How do you load CSS and JS files dynamically

295 What are the different methods to find HTML elements in DOM

296 What is jQuery

297 What is V8 JavaScript engine

298 Why do we call javascript as dynamic language

299 What is a void operator

300 How to set the cursor to wait

301 How do you create an infinite loop

302 Why do you need to avoid with statement

303 What is the output of below for loops

304 List down some of the features of ES6

305 What is ES6

306 Can I redeclare let and const variables

307 Is const variable makes the value immutable

308 What are default parameters

309 What are template literals

310 How do you write multi-line strings in template literals

311 What are nesting templates

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 16/176

No. Questions

312 What are tagged templates

313 What are raw strings

314 What is destructuring assignment

315 What are default values in destructuring assignment

316 How do you swap variables in destructuring assignment

317 What are enhanced object literals

318 What are dynamic imports

319 What are the use cases for dynamic imports

320 What are typed arrays

321 What are the advantages of module loaders

322 What is collation

323 What is for...of statement

324 What is the output of below spread operator array

325 Is PostMessage secure

326 What are the problems with postmessage target origin as wildcard

327 How do you avoid receiving postMessages from attackers

328 Can I avoid using postMessages completely

329 Is postMessages synchronous

330 What paradigm is Javascript

331 What is the difference between internal and external javascript

332 Is JavaScript faster than server side script

333 How do you get the status of a checkbox

334 What is the purpose of double tilde operator

335 How do you convert character to ASCII code

336 What is ArrayBuffer

337 What is the output of below string expression

338 What is the purpose of Error object

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 17/176

No. Questions

339 What is the purpose of EvalError object

340 What are the list of cases error thrown from non-strict mode to strict mode

341 Is all objects have prototypes

342 What is the difference between a parameter and an argument

343 What is the purpose of some method in arrays

344 How do you combine two or more arrays

345 What is the difference between Shallow and Deep copy

346 How do you create specific number of copies of a string

347 How do you return all matching strings against a regular expression

348 How do you trim a string at the beginning or ending

349 What is the output of below console statement with unary operator

350 Does javascript uses mixins

351 What is a thunk function

352 What are asynchronous thunks

353 What is the output of below function calls

354 How to remove all line breaks from a string

355 What is the difference between reflow and repaint

356 What happens with negating an array

357 What happens if we add two arrays

358 What is the output of prepend additive operator on falsy values

359 How do you create self string using special characters

360 How do you remove falsy values from an array

361 How do you get unique values of an array

362 What is destructuring aliases

363 How do you map the array values without using map method

364 How do you empty an array

365 How do you rounding numbers to certain decimals

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 18/176

No. Questions

366 What is the easiest way to convert an array to an object

367 How do you create an array with some data

368 What are the placeholders from console object

369 Is it possible to add CSS to console messages

370 What is the purpose of dir method of console object

371 Is it possible to debug HTML elements in console

372 How do you display data in a tabular format using console object

373 How do you verify that an argument is a Number or not

374 How do you create copy to clipboard button

375 What is the shortcut to get timestamp

376 How do you flattening multi dimensional arrays

377 What is the easiest multi condition checking

378 How do you capture browser back button

379 How do you disable right click in the web page

380 What are wrapper objects

381 What is AJAX

382 What are the different ways to deal with Asynchronous Code

383 How to cancel a fetch request

384 What is web speech API

385 What is minimum timeout throttling

386 How do you implement zero timeout in modern browsers

387 What are tasks in event loop

388 What are microtasks

389 What are different event loops

390 What is the purpose of queueMicrotask

391 How do you use javascript libraries in typescript file

392 What are the differences between promises and observables

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 19/176

No. Questions

393 What is heap

394 What is an event table

395 What is a microTask queue

396 What is the difference between shim and polyfill

397 How do you detect primitive or non primitive value type

398 What is babel

399 Is Node.js completely single threaded

400 What are the common use cases of observables

401 What is RxJS

402 What is the difference between Function constructor and function declaration

403 What is a Short circuit condition

404 What is the easiest way to resize an array

405 What is an observable

406 What is the difference between function and class declarations

407 What is an async function

408 How do you prevent promises swallowing errors

409 What is deno

410 How do you make an object iterable in javascript

411 What is a Proper Tail Call

412 How do you check an object is a promise or not

413 How to detect if a function is called as constructor

414 What are the differences between arguments object and rest parameter

415 What are the differences between spread operator and rest parameter

416 What are the different kinds of generators

417 What are the built-in iterables

418 What are the differences between for...of and for...in statements

419 How do you define instance and non-instance properties

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 20/176

No. Questions

420 What is the difference between isNaN and Number.isNaN?

421 How to invoke an IIFE without any extra brackets?

422 Is that possible to use expressions in switch cases?

423 What is the easiest way to ignore promise errors?

424 How do style the console output using CSS?

Questions:

1. What are the possible ways to create objects in JavaScript

There are many ways to create objects in javascript as below

i. Object constructor:

The simplest way to create an empty object is using the Object constructor. Currently this
approach is not recommended.

var object = new Object();

ii. Object's create method:

The create method of Object creates a new object by passing the prototype object as a
parameter

var object = Object.create(null);

iii. Object literal syntax:

The object literal syntax is equivalent to create method when it passes null as parameter

var object = {};

iv. Function constructor:

Create any function and apply the new operator to create object instances,

function Person(name){
 var object = {};

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 21/176

 object.name=name;
 object.age=21;
 return object;
}
var object = new Person("Sudheer");

v. Function constructor with prototype:

This is similar to function constructor but it uses prototype for their properties and methods,

function Person(){}
Person.prototype.name = "Sudheer";
var object = new Person();

This is equivalent to an instance created with an object create method with a function
prototype and then call that function with an instance and parameters as arguments.

function func {};

new func(x, y, z);

(OR)

vi. ES6 Class syntax:

ES6 introduces class feature to create the objects

class Person {
 constructor(name) {
 this.name = name;
 }
}

var object = new Person("Sudheer");

vii. Singleton pattern:

// Create a new instance using function prototype.
var newInstance = Object.create(func.prototype)

// Call the function
var result = func.call(newInstance, x, y, z),

// If the result is a non-null object then use it otherwise just use the new instance
console.log(result && typeof result === 'object' ? result : newInstance);

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 22/176

A Singleton is an object which can only be instantiated one time. Repeated calls to its
constructor return the same instance and this way one can ensure that they don't
accidentally create multiple instances.

var object = new function(){
 this.name = "Sudheer";
}

2. What is a prototype chain

Prototype chaining is used to build new types of objects based on existing ones. It is similar to
inheritance in a class based language.

The prototype on object instance is available through Object.getPrototypeOf(object) or proto
property whereas prototype on constructors function is available through Object.prototype.

Screenshot

3. What is the difference between Call, Apply and Bind

The difference between Call, Apply and Bind can be explained with below examples,

Call: The call() method invokes a function with a given this value and arguments provided one
by one

Apply: Invokes the function with a given this value and allows you to pass in arguments as an
array

var employee1 = {firstName: 'John', lastName: 'Rodson'};
var employee2 = {firstName: 'Jimmy', lastName: 'Baily'};

function invite(greeting1, greeting2) {
 console.log(greeting1 + ' ' + this.firstName + ' ' + this.lastName+ ', '+ greeting2);
}

invite.call(employee1, 'Hello', 'How are you?'); // Hello John Rodson, How are you?
invite.call(employee2, 'Hello', 'How are you?'); // Hello Jimmy Baily, How are you?

var employee1 = {firstName: 'John', lastName: 'Rodson'};
var employee2 = {firstName: 'Jimmy', lastName: 'Baily'};

function invite(greeting1, greeting2) {
 console.log(greeting1 + ' ' + this.firstName + ' ' + this.lastName+ ', '+ greeting2);
}

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 23/176

bind: returns a new function, allowing you to pass any number of arguments

Call and apply are pretty interchangeable. Both execute the current function immediately. You
need to decide whether it’s easier to send in an array or a comma separated list of arguments.
You can remember by treating Call is for comma (separated list) and Apply is for Array.

Whereas Bind creates a new function that will have this set to the first parameter passed to
bind().

4. What is JSON and its common operations

JSON is a text-based data format following JavaScript object syntax, which was popularized by
Douglas Crockford . It is useful when you want to transmit data across a network and it is

basically just a text file with an extension of .json, and a MIME type of application/json

Parsing: Converting a string to a native object

JSON.parse(text)

Stringification: converting a native object to a string so it can be transmitted across the network

JSON.stringify(object)

5. What is the purpose of the array slice method

The slice() method returns the selected elements in an array as a new array object. It selects the
elements starting at the given start argument, and ends at the given optional end argument
without including the last element. If you omit the second argument then it selects till the end.

invite.apply(employee1, ['Hello', 'How are you?']); // Hello John Rodson, How are you?
invite.apply(employee2, ['Hello', 'How are you?']); // Hello Jimmy Baily, How are you?

var employee1 = {firstName: 'John', lastName: 'Rodson'};
var employee2 = {firstName: 'Jimmy', lastName: 'Baily'};

function invite(greeting1, greeting2) {
 console.log(greeting1 + ' ' + this.firstName + ' ' + this.lastName+ ', '+ greeting2);
}

var inviteEmployee1 = invite.bind(employee1);
var inviteEmployee2 = invite.bind(employee2);
inviteEmployee1('Hello', 'How are you?'); // Hello John Rodson, How are you?
inviteEmployee2('Hello', 'How are you?'); // Hello Jimmy Baily, How are you?

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 24/176

Some of the examples of this method are,

let arrayIntegers = [1, 2, 3, 4, 5];
let arrayIntegers1 = arrayIntegers.slice(0,2); // returns [1,2]
let arrayIntegers2 = arrayIntegers.slice(2,3); // returns [3]
let arrayIntegers3 = arrayIntegers.slice(4); //returns [5]

Note: Slice method won't mutate the original array but it returns the subset as a new array.

6. What is the purpose of the array splice method

The splice() method is used either adds/removes items to/from an array, and then returns the
removed item. The first argument specifies the array position for insertion or deletion whereas
the option second argument indicates the number of elements to be deleted. Each additional
argument is added to the array.

Some of the examples of this method are,

Note: Splice method modifies the original array and returns the deleted array.

7. What is the difference between slice and splice

Some of the major difference in a tabular form

Slice Splice

Doesn't modify the original
array(immutable)

Modifies the original array(mutable)

Returns the subset of original array Returns the deleted elements as array

Used to pick the elements from array
Used to insert or delete elements to/from
array

8. How do you compare Object and Map

let arrayIntegersOriginal1 = [1, 2, 3, 4, 5];
let arrayIntegersOriginal2 = [1, 2, 3, 4, 5];
let arrayIntegersOriginal3 = [1, 2, 3, 4, 5];

let arrayIntegers1 = arrayIntegersOriginal1.splice(0,2); // returns [1, 2]; original array
let arrayIntegers2 = arrayIntegersOriginal2.splice(3); // returns [4, 5]; original array:
let arrayIntegers3 = arrayIntegersOriginal3.splice(3, 1, "a", "b", "c"); //returns [4]; or

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 25/176

Objects are similar to Maps in that both let you set keys to values, retrieve those values, delete
keys, and detect whether something is stored at a key. Due to this reason, Objects have been
used as Maps historically. But there are important differences that make using a Map preferable
in certain cases.

i. The keys of an Object are Strings and Symbols, whereas they can be any value for a Map,
including functions, objects, and any primitive.

ii. The keys in Map are ordered while keys added to Object are not. Thus, when iterating over
it, a Map object returns keys in order of insertion.

iii. You can get the size of a Map easily with the size property, while the number of properties in
an Object must be determined manually.

iv. A Map is an iterable and can thus be directly iterated, whereas iterating over an Object
requires obtaining its keys in some fashion and iterating over them.

v. An Object has a prototype, so there are default keys in the map that could collide with your
keys if you're not careful. As of ES5 this can be bypassed by using map = Object.create(null),
but this is seldom done.

vi. A Map may perform better in scenarios involving frequent addition and removal of key pairs.

9. What is the difference between == and === operators

JavaScript provides both strict(===, !==) and type-converting(==, !=) equality comparison. The
strict operators take type of variable in consideration, while non-strict operators make type
correction/conversion based upon values of variables. The strict operators follow the below
conditions for different types,

i. Two strings are strictly equal when they have the same sequence of characters, same length,
and same characters in corresponding positions.

ii. Two numbers are strictly equal when they are numerically equal. i.e, Having the same
number value. There are two special cases in this,

a. NaN is not equal to anything, including NaN.
b. Positive and negative zeros are equal to one another.

iii. Two Boolean operands are strictly equal if both are true or both are false.
iv. Two objects are strictly equal if they refer to the same Object.
v. Null and Undefined types are not equal with ===, but equal with ==. i.e, null===undefined

--> false but null==undefined --> true

Some of the example which covers the above cases,

0 == false // true
0 === false // false
1 == "1" // true
1 === "1" // false
null == undefined // true
null === undefined // false

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 26/176

'0' == false // true
'0' === false // false
[]==[] or []===[] //false, refer different objects in memory
{}=={} or {}==={} //false, refer different objects in memory

10. What are lambda or arrow functions

An arrow function is a shorter syntax for a function expression and does not have its own this,
arguments, super, or new.target. These functions are best suited for non-method functions, and
they cannot be used as constructors.

11. What is a first class function

In Javascript, functions are first class objects. First-class functions means when functions in that
language are treated like any other variable.

For example, in such a language, a function can be passed as an argument to other functions,
can be returned by another function and can be assigned as a value to a variable. For example, in
the below example, handler functions assigned to a listener

const handler = () => console.log ('This is a click handler function');
document.addEventListener ('click', handler);

12. What is a first order function

First-order function is a function that doesn’t accept another function as an argument and
doesn’t return a function as its return value.

const firstOrder = () => console.log ('I am a first order function!');

13. What is a higher order function

Higher-order function is a function that accepts another function as an argument or returns a
function as a return value or both.

const firstOrderFunc = () => console.log ('Hello, I am a First order function');
const higherOrder = ReturnFirstOrderFunc => ReturnFirstOrderFunc();
higherOrder(firstOrderFunc);

14. What is a unary function

Unary function (i.e. monadic) is a function that accepts exactly one argument. It stands for a
single argument accepted by a function.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 27/176

Let us take an example of unary function,

15. What is the currying function

Currying is the process of taking a function with multiple arguments and turning it into a
sequence of functions each with only a single argument. Currying is named after a
mathematician Haskell Curry. By applying currying, a n-ary function turns it into a unary
function.

Let's take an example of n-ary function and how it turns into a currying function,

const multiArgFunction = (a, b, c) => a + b + c;
console.log(multiArgFunction(1,2,3));// 6

const curryUnaryFunction = a => b => c => a + b + c;
curryUnaryFunction (1); // returns a function: b => c => 1 + b + c
curryUnaryFunction (1) (2); // returns a function: c => 3 + c
curryUnaryFunction (1) (2) (3); // returns the number 6

Curried functions are great to improve code reusability and functional composition.

16. What is a pure function

A Pure function is a function where the return value is only determined by its arguments without
any side effects. i.e, If you call a function with the same arguments 'n' number of times and 'n'
number of places in the application then it will always return the same value.

Let's take an example to see the difference between pure and impure functions,

//Impure
let numberArray = [];
const impureAddNumber = number => numberArray.push(number);
//Pure
const pureAddNumber = number => argNumberArray =>
 argNumberArray.concat([number]);

//Display the results
console.log (impureAddNumber(6)); // returns 1
console.log (numberArray); // returns [6]
console.log (pureAddNumber(7) (numberArray)); // returns [6, 7]
console.log (numberArray); // returns [6]

const unaryFunction = a => console.log (a + 10); // Add 10 to the given argument and displ

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 28/176

As per above code snippets, Push function is impure itself by altering the array and returning an
push number index which is independent of parameter value. Whereas Concat on the other hand
takes the array and concatenates it with the other array producing a whole new array without
side effects. Also, the return value is a concatenation of the previous array.

Remember that Pure functions are important as they simplify unit testing without any side effects
and no need for dependency injection. They also avoid tight coupling and make it harder to
break your application by not having any side effects. These principles are coming together with
Immutability concept of ES6 by giving preference to const over let usage.

17. What is the purpose of the let keyword

The let statement declares a block scope local variable. Hence the variables defined with let
keyword are limited in scope to the block, statement, or expression on which it is used. Whereas
variables declared with the var keyword used to define a variable globally, or locally to an
entire function regardless of block scope.

Let's take an example to demonstrate the usage,

let counter = 30;
if (counter === 30) {
 let counter = 31;
 console.log(counter); // 31
}
console.log(counter); // 30 (because the variable in if block won't exist here)

18. What is the difference between let and var

You can list out the differences in a tabular format

var let

It is been available from the beginning of JavaScript Introduced as part of ES6

It has function scope It has block scope

Variables will be hoisted Hoisted but not initialized

Let's take an example to see the difference,

function userDetails(username) {
 if(username) {
 console.log(salary); // undefined due to hoisting
 console.log(age); // ReferenceError: Cannot access 'age' before initialization
 let age = 30;
 var salary = 10000;
 }

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 29/176

 console.log(salary); //10000 (accessible to due function scope)
 console.log(age); //error: age is not defined(due to block scope)
}
userDetails('John');

19. What is the reason to choose the name let as a keyword

let is a mathematical statement that was adopted by early programming languages like
Scheme and Basic. It has been borrowed from dozens of other languages that use let already
as a traditional keyword as close to var as possible.

20. How do you redeclare variables in switch block without an error

If you try to redeclare variables in a switch block then it will cause errors because there is only
one block. For example, the below code block throws a syntax error as below,

let counter = 1;
switch(x) {
 case 0:
 let name;
 break;

 case 1:
 let name; // SyntaxError for redeclaration.
 break;
}

To avoid this error, you can create a nested block inside a case clause and create a new block
scoped lexical environment.

let counter = 1;
 switch(x) {
 case 0: {
 let name;
 break;
 }
 case 1: {
 let name; // No SyntaxError for redeclaration.
 break;
 }
 }

21. What is the Temporal Dead Zone

The Temporal Dead Zone is a behavior in JavaScript that occurs when declaring a variable with
the let and const keywords, but not with var. In ECMAScript 6, accessing a let or const
variable before its declaration (within its scope) causes a ReferenceError. The time span when

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 30/176

that happens, between the creation of a variable’s binding and its declaration, is called the
temporal dead zone.

Let's see this behavior with an example,

function somemethod() {
 console.log(counter1); // undefined
 console.log(counter2); // ReferenceError
 var counter1 = 1;
 let counter2 = 2;
}

22. What is IIFE(Immediately Invoked Function Expression)

IIFE (Immediately Invoked Function Expression) is a JavaScript function that runs as soon as it is
defined. The signature of it would be as below,

(function ()
 {
 // logic here
 }
)
();

The primary reason to use an IIFE is to obtain data privacy because any variables declared within
the IIFE cannot be accessed by the outside world. i.e, If you try to access variables with IIFE then
it throws an error as below,

(function ()
 {
 var message = "IIFE";
 console.log(message);
 }
)
();
console.log(message); //Error: message is not defined

23. What is the benefit of using modules

There are a lot of benefits to using modules in favour of a sprawling. Some of the benefits are,

i. Maintainability
ii. Reusability
iii. Namespacing

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 31/176

24. What is memoization

Memoization is a programming technique which attempts to increase a function’s performance
by caching its previously computed results. Each time a memoized function is called, its
parameters are used to index the cache. If the data is present, then it can be returned, without
executing the entire function. Otherwise the function is executed and then the result is added to
the cache. Let's take an example of adding function with memoization,

25. What is Hoisting

Hoisting is a JavaScript mechanism where variables and function declarations are moved to the
top of their scope before code execution. Remember that JavaScript only hoists declarations, not
initialisation. Let's take a simple example of variable hoisting,

console.log(message); //output : undefined
var message = 'The variable Has been hoisted';

The above code looks like as below to the interpreter,

var message;
console.log(message);
message = 'The variable Has been hoisted';

26. What are classes in ES6

const memoizAddition = () => {
 let cache = {};
 return (value) => {
 if (value in cache) {
 console.log('Fetching from cache');
 return cache[value]; // Here, cache.value cannot be used as property name starts with t
 }
 else {
 console.log('Calculating result');
 let result = value + 20;
 cache[value] = result;
 return result;
 }
 }
}
// returned function from memoizAddition
const addition = memoizAddition();
console.log(addition(20)); //output: 40 calculated
console.log(addition(20)); //output: 40 cached

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 32/176

In ES6, Javascript classes are primarily syntactic sugar over JavaScript’s existing prototype-based
inheritance. For example, the prototype based inheritance written in function expression as
below,

function Bike(model,color) {
 this.model = model;
 this.color = color;
}

Bike.prototype.getDetails = function() {
 return this.model + ' bike has' + this.color + ' color';
};

Whereas ES6 classes can be defined as an alternative

class Bike{
 constructor(color, model) {
 this.color= color;
 this.model= model;
 }

 getDetails() {
 return this.model + ' bike has' + this.color + ' color';
 }
}

27. What are closures

A closure is the combination of a function and the lexical environment within which that function
was declared. i.e, It is an inner function that has access to the outer or enclosing function’s
variables. The closure has three scope chains

i. Own scope where variables defined between its curly brackets
ii. Outer function’s variables
iii. Global variables

Let's take an example of closure concept,

function Welcome(name){
 var greetingInfo = function(message){
 console.log(message+' '+name);
 }
return greetingInfo;
}
var myFunction = Welcome('John');
myFunction('Welcome '); //Output: Welcome John
myFunction('Hello Mr.'); //output: Hello Mr.John

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 33/176

As per the above code, the inner function(i.e, greetingInfo) has access to the variables in the
outer function scope(i.e, Welcome) even after the outer function has returned.

28. What are modules

Modules refer to small units of independent, reusable code and also act as the foundation of
many JavaScript design patterns. Most of the JavaScript modules export an object literal, a
function, or a constructor

29. Why do you need modules

Below are the list of benefits using modules in javascript ecosystem

i. Maintainability
ii. Reusability
iii. Namespacing

30. What is scope in javascript

Scope is the accessibility of variables, functions, and objects in some particular part of your code
during runtime. In other words, scope determines the visibility of variables and other resources in
areas of your code.

31. What is a service worker

A Service worker is basically a script (JavaScript file) that runs in the background, separate from a
web page and provides features that don't need a web page or user interaction. Some of the
major features of service workers are Rich offline experiences(offline first web application
development), periodic background syncs, push notifications, intercept and handle network
requests and programmatically managing a cache of responses.

32. How do you manipulate DOM using a service worker

Service worker can't access the DOM directly. But it can communicate with the pages it controls
by responding to messages sent via the postMessage interface, and those pages can manipulate
the DOM.

33. How do you reuse information across service worker restarts

The problem with service worker is that it gets terminated when not in use, and restarted when
it's next needed, so you cannot rely on global state within a service worker's onfetch and
onmessage handlers. In this case, service workers will have access to IndexedDB API in order to

persist and reuse across restarts.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 34/176

34. What is IndexedDB

IndexedDB is a low-level API for client-side storage of larger amounts of structured data,
including files/blobs. This API uses indexes to enable high-performance searches of this data.

35. What is web storage

Web storage is an API that provides a mechanism by which browsers can store key/value pairs
locally within the user's browser, in a much more intuitive fashion than using cookies. The web
storage provides two mechanisms for storing data on the client.

i. Local storage: It stores data for current origin with no expiration date.
ii. Session storage: It stores data for one session and the data is lost when the browser tab is

closed.

36. What is a post message

Post message is a method that enables cross-origin communication between Window objects.
(i.e, between a page and a pop-up that it spawned, or between a page and an iframe embedded
within it). Generally, scripts on different pages are allowed to access each other if and only if the
pages follow same-origin policy(i.e, pages share the same protocol, port number, and host).

37. What is a Cookie

A cookie is a piece of data that is stored on your computer to be accessed by your browser.
Cookies are saved as key/value pairs. For example, you can create a cookie named username as
below,

document.cookie = "username=John";

Screenshot

38. Why do you need a Cookie

Cookies are used to remember information about the user profile(such as username). It basically
involves two steps,

i. When a user visits a web page, the user profile can be stored in a cookie.
ii. Next time the user visits the page, the cookie remembers the user profile.

39. What are the options in a cookie

There are few below options available for a cookie,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 35/176

i. By default, the cookie is deleted when the browser is closed but you can change this
behavior by setting expiry date (in UTC time).

document.cookie = "username=John; expires=Sat, 8 Jun 2019 12:00:00 UTC";

i. By default, the cookie belongs to a current page. But you can tell the browser what path the
cookie belongs to using a path parameter.

document.cookie = "username=John; path=/services";

40. How do you delete a cookie

You can delete a cookie by setting the expiry date as a passed date. You don't need to specify a
cookie value in this case. For example, you can delete a username cookie in the current page as
below.

document.cookie = "username=; expires=Fri, 07 Jun 2019 00:00:00 UTC; path=/;";

Note: You should define the cookie path option to ensure that you delete the right cookie. Some
browsers doesn't allow to delete a cookie unless you specify a path parameter.

41. What are the differences between cookie, local storage and session storage

Below are some of the differences between cookie, local storage and session storage,

Feature Cookie
Local
storage

Session
storage

Accessed on client or
server side

Both server-side & client-
side

client-side
only

client-side
only

Lifetime
As configured using Expires
option

until
deleted

until tab is
closed

SSL support Supported
Not
supported

Not
supported

Maximum data size 4KB 5 MB 5MB

42. What is the main difference between localStorage and sessionStorage

LocalStorage is the same as SessionStorage but it persists the data even when the browser is
closed and reopened(i.e it has no expiration time) whereas in sessionStorage data gets cleared
when the page session ends.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 36/176

43. How do you access web storage

The Window object implements the WindowLocalStorage and WindowSessionStorage objects
which has localStorage (window.localStorage) and sessionStorage (window.sessionStorage)
properties respectively. These properties create an instance of the Storage object, through which
data items can be set, retrieved and removed for a specific domain and storage type (session or
local). For example, you can read and write on local storage objects as below

localStorage.setItem('logo', document.getElementById('logo').value);
localStorage.getItem('logo');

44. What are the methods available on session storage

The session storage provided methods for reading, writing and clearing the session data

// Save data to sessionStorage
sessionStorage.setItem('key', 'value');

// Get saved data from sessionStorage
let data = sessionStorage.getItem('key');

// Remove saved data from sessionStorage
sessionStorage.removeItem('key');

// Remove all saved data from sessionStorage
sessionStorage.clear();

45. What is a storage event and its event handler

The StorageEvent is an event that fires when a storage area has been changed in the context of
another document. Whereas onstorage property is an EventHandler for processing storage
events. The syntax would be as below

 window.onstorage = functionRef;

Let's take the example usage of onstorage event handler which logs the storage key and it's
values

window.onstorage = function(e) {
 console.log('The ' + e.key +
 ' key has been changed from ' + e.oldValue +
 ' to ' + e.newValue + '.');
};

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 37/176

46. Why do you need web storage

Web storage is more secure, and large amounts of data can be stored locally, without affecting
website performance. Also, the information is never transferred to the server. Hence this is a
more recommended approach than Cookies.

47. How do you check web storage browser support

You need to check browser support for localStorage and sessionStorage before using web
storage,

if (typeof(Storage) !== "undefined") {
 // Code for localStorage/sessionStorage.
} else {
 // Sorry! No Web Storage support..
}

48. How do you check web workers browser support

You need to check browser support for web workers before using it

if (typeof(Worker) !== "undefined") {
 // code for Web worker support.
} else {
 // Sorry! No Web Worker support..
}

49. Give an example of a web worker

You need to follow below steps to start using web workers for counting example

i. Create a Web Worker File: You need to write a script to increment the count value. Let's
name it as counter.js

let i = 0;

function timedCount() {
 i = i + 1;
 postMessage(i);
 setTimeout("timedCount()",500);
}

timedCount();

Here postMessage() method is used to post a message back to the HTML page

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 38/176

i. Create a Web Worker Object: You can create a web worker object by checking for browser
support. Let's name this file as web_worker_example.js

if (typeof(w) == "undefined") {
 w = new Worker("counter.js");
}

and we can receive messages from web worker

w.onmessage = function(event){
 document.getElementById("message").innerHTML = event.data;
};

i. Terminate a Web Worker: Web workers will continue to listen for messages (even after the
external script is finished) until it is terminated. You can use the terminate() method to
terminate listening to the messages.

w.terminate();

i. Reuse the Web Worker: If you set the worker variable to undefined you can reuse the code

w = undefined;

50. What are the restrictions of web workers on DOM

WebWorkers don't have access to below javascript objects since they are defined in an external
files

i. Window object
ii. Document object
iii. Parent object

51. What is a promise

A promise is an object that may produce a single value some time in the future with either a
resolved value or a reason that it’s not resolved(for example, network error). It will be in one of
the 3 possible states: fulfilled, rejected, or pending.

The syntax of Promise creation looks like below,

 const promise = new Promise(function(resolve, reject) {
 // promise description
 })

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 39/176

The usage of a promise would be as below,

const promise = new Promise(resolve => {
 setTimeout(() => {
 resolve("I'm a Promise!");
 }, 5000);
}, reject => {

});

promise.then(value => console.log(value));

The action flow of a promise will be as below,

Screenshot

52. Why do you need a promise

Promises are used to handle asynchronous operations. They provide an alternative approach for
callbacks by reducing the callback hell and writing the cleaner code.

53. What are the three states of promise

Promises have three states:

i. Pending: This is an initial state of the Promise before an operation begins
ii. Fulfilled: This state indicates that the specified operation was completed.
iii. Rejected: This state indicates that the operation did not complete. In this case an error value

will be thrown.

54. What is a callback function

A callback function is a function passed into another function as an argument. This function is
invoked inside the outer function to complete an action. Let's take a simple example of how to
use callback function

function callbackFunction(name) {
 console.log('Hello ' + name);
}

function outerFunction(callback) {
 let name = prompt('Please enter your name.');
 callback(name);
}

outerFunction(callbackFunction);

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 40/176

55. Why do we need callbacks

The callbacks are needed because javascript is an event driven language. That means instead of
waiting for a response javascript will keep executing while listening for other events. Let's take an
example with the first function invoking an API call(simulated by setTimeout) and the next
function which logs the message.

function firstFunction(){
 // Simulate a code delay
 setTimeout(function(){
 console.log('First function called');
 }, 1000);
}
function secondFunction(){
 console.log('Second function called');
}
firstFunction();
secondFunction();

Output
// Second function called
// First function called

As observed from the output, javascript didn't wait for the response of the first function and the
remaining code block got executed. So callbacks are used in a way to make sure that certain
code doesn’t execute until the other code finishes execution.

56. What is a callback hell

Callback Hell is an anti-pattern with multiple nested callbacks which makes code hard to read
and debug when dealing with asynchronous logic. The callback hell looks like below,

async1(function(){
 async2(function(){
 async3(function(){
 async4(function(){

 });
 });
 });
});

57. What are server-sent events

Server-sent events (SSE) is a server push technology enabling a browser to receive automatic
updates from a server via HTTP connection without resorting to polling. These are a one way

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 41/176

communications channel - events flow from server to client only. This has been used in
Facebook/Twitter updates, stock price updates, news feeds etc.

58. How do you receive server-sent event notifications

The EventSource object is used to receive server-sent event notifications. For example, you can
receive messages from server as below,

if(typeof(EventSource) !== "undefined") {
 var source = new EventSource("sse_generator.js");
 source.onmessage = function(event) {
 document.getElementById("output").innerHTML += event.data + "
";
 };
}

59. How do you check browser support for server-sent events

You can perform browser support for server-sent events before using it as below,

if(typeof(EventSource) !== "undefined") {
 // Server-sent events supported. Let's have some code here!
} else {
 // No server-sent events supported
}

60. What are the events available for server sent events

Below are the list of events available for server sent events

Event Description

onopen It is used when a connection to the server is opened

onmessage This event is used when a message is received

onerror It happens when an error occurs

61. What are the main rules of promise

A promise must follow a specific set of rules,

i. A promise is an object that supplies a standard-compliant .then() method
ii. A pending promise may transition into either fulfilled or rejected state
iii. A fulfilled or rejected promise is settled and it must not transition into any other state.
iv. Once a promise is settled, the value must not change.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 42/176

62. What is callback in callback

You can nest one callback inside in another callback to execute the actions sequentially one by
one. This is known as callbacks in callbacks.

loadScript('/script1.js', function(script) {
 console.log('first script is loaded');

 loadScript('/script2.js', function(script) {

 console.log('second script is loaded');

 loadScript('/script3.js', function(script) {

 console.log('third script is loaded');
 // after all scripts are loaded
 });

 })

});

63. What is promise chaining

The process of executing a sequence of asynchronous tasks one after another using promises is
known as Promise chaining. Let's take an example of promise chaining for calculating the final
result,

new Promise(function(resolve, reject) {

 setTimeout(() => resolve(1), 1000);

}).then(function(result) {

 console.log(result); // 1
 return result * 2;

}).then(function(result) {

 console.log(result); // 2
 return result * 3;

}).then(function(result) {

 console.log(result); // 6
 return result * 4;

});

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 43/176

In the above handlers, the result is passed to the chain of .then() handlers with the below work
flow,

i. The initial promise resolves in 1 second,
ii. After that .then handler is called by logging the result(1) and then return a promise with

the value of result * 2.
iii. After that the value passed to the next .then handler by logging the result(2) and return a

promise with result * 3.
iv. Finally the value passed to the last .then handler by logging the result(6) and return a

promise with result * 4.

64. What is promise.all

Promise.all is a promise that takes an array of promises as an input (an iterable), and it gets
resolved when all the promises get resolved or any one of them gets rejected. For example, the
syntax of promise.all method is below,

Note: Remember that the order of the promises(output the result) is maintained as per input
order.

65. What is the purpose of the race method in promise

Promise.race() method will return the promise instance which is firstly resolved or rejected. Let's
take an example of race() method where promise2 is resolved first

var promise1 = new Promise(function(resolve, reject) {
 setTimeout(resolve, 500, 'one');
});
var promise2 = new Promise(function(resolve, reject) {
 setTimeout(resolve, 100, 'two');
});

Promise.race([promise1, promise2]).then(function(value) {
 console.log(value); // "two" // Both promises will resolve, but promise2 is faster
});

66. What is a strict mode in javascript

Strict Mode is a new feature in ECMAScript 5 that allows you to place a program, or a function, in
a “strict” operating context. This way it prevents certain actions from being taken and throws

Promise.all([Promise1, Promise2, Promise3]) .then(result) => { console.log(result) }) .c

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 44/176

more exceptions. The literal expression "use strict"; instructs the browser to use the javascript
code in the Strict mode.

67. Why do you need strict mode

Strict mode is useful to write "secure" JavaScript by notifying "bad syntax" into real errors. For
example, it eliminates accidentally creating a global variable by throwing an error and also
throws an error for assignment to a non-writable property, a getter-only property, a non-existing
property, a non-existing variable, or a non-existing object.

68. How do you declare strict mode

The strict mode is declared by adding "use strict"; to the beginning of a script or a function. If
declared at the beginning of a script, it has global scope.

"use strict";
x = 3.14; // This will cause an error because x is not declared

and if you declare inside a function, it has local scope

x = 3.14; // This will not cause an error.
myFunction();

function myFunction() {
 "use strict";
 y = 3.14; // This will cause an error
}

69. What is the purpose of double exclamation

The double exclamation or negation(!!) ensures the resulting type is a boolean. If it was falsey
(e.g. 0, null, undefined, etc.), it will be false, otherwise, true. For example, you can test IE version
using this expression as below,

let isIE8 = false;
isIE8 = !! navigator.userAgent.match(/MSIE 8.0/);
console.log(isIE8); // returns true or false

If you don't use this expression then it returns the original value.

console.log(navigator.userAgent.match(/MSIE 8.0/)); // returns either an Array or null

Note: The expression !! is not an operator, but it is just twice of ! operator.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 45/176

70. What is the purpose of the delete operator

The delete keyword is used to delete the property as well as its value.

var user= {name: "John", age:20};
delete user.age;

console.log(user); // {name: "John"}

71. What is the typeof operator

You can use the JavaScript typeof operator to find the type of a JavaScript variable. It returns the
type of a variable or an expression.

typeof "John Abraham" // Returns "string"
typeof (1 + 2) // Returns "number"

72. What is undefined property

The undefined property indicates that a variable has not been assigned a value, or not declared
at all. The type of undefined value is undefined too.

var user; // Value is undefined, type is undefined
console.log(typeof(user)) //undefined

Any variable can be emptied by setting the value to undefined.

user = undefined

73. What is null value

The value null represents the intentional absence of any object value. It is one of JavaScript's
primitive values. The type of null value is object. You can empty the variable by setting the value
to null.

var user = null;
console.log(typeof(user)) //object

74. What is the difference between null and undefined

Below are the main differences between null and undefined,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 46/176

Null UndefinedNull Undefined

It is an assignment value which indicates
that variable points to no object.

It is not an assignment value where a variable
has been declared but has not yet been
assigned a value.

Type of null is object Type of undefined is undefined

The null value is a primitive value that
represents the null, empty, or non-
existent reference.

The undefined value is a primitive value used
when a variable has not been assigned a value.

Indicates the absence of a value for a
variable

Indicates absence of variable itself

Converted to zero (0) while performing
primitive operations

Converted to NaN while performing primitive
operations

75. What is eval

The eval() function evaluates JavaScript code represented as a string. The string can be a
JavaScript expression, variable, statement, or sequence of statements.

console.log(eval('1 + 2')); // 3

76. What is the difference between window and document

Below are the main differences between window and document,

Window Document

It is the root level element in any web
page

It is the direct child of the window object. This is
also known as Document Object Model(DOM)

By default window object is available
implicitly in the page

You can access it via window.document or
document.

It has methods like alert(), confirm()
and properties like document, location

It provides methods like getElementById,
getElementByTagName, createElement etc

77. How do you access history in javascript

The window.history object contains the browser's history. You can load previous and next URLs in
the history using back() and next() methods.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 47/176

function goBack() {
 window.history.back()
}
function goForward() {
 window.history.forward()
}

Note: You can also access history without window prefix.

78. How do you detect caps lock key turned on or not

The mouseEvent getModifierState() is used to return a boolean value that indicates whether the
specified modifier key is activated or not. The modifiers such as CapsLock, ScrollLock and
NumLock are activated when they are clicked, and deactivated when they are clicked again.

Let's take an input element to detect the CapsLock on/off behavior with an example,

 <input type="password" onmousedown="enterInput(event)">

 <p id="feedback"></p>

 <script>
 function enterInput(e) {
 var flag = e.getModifierState("CapsLock");
 if(flag) {
 document.getElementById("feedback").innerHTML = "CapsLock activated";

 } else {
 document.getElementById("feedback").innerHTML = "CapsLock not activated";
 }
 }
 </script>

79. What is isNaN

The isNaN() function is used to determine whether a value is an illegal number (Not-a-Number)
or not. i.e, This function returns true if the value equates to NaN. Otherwise it returns false.

isNaN('Hello') //true
isNaN('100') //false

80. What are the differences between undeclared and undefined variables

Below are the major differences between undeclared and undefined variables,

undeclared undefined

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 48/176

undeclared undefined

These variables do not exist in a program and
are not declared

These variables declared in the program
but have not assigned any value

If you try to read the value of an undeclared
variable, then a runtime error is encountered

If you try to read the value of an undefined
variable, an undefined value is returned.

81. What are global variables

Global variables are those that are available throughout the length of the code without any
scope. The var keyword is used to declare a local variable but if you omit it then it will become
global variable

msg = "Hello" // var is missing, it becomes global variable

82. What are the problems with global variables

The problem with global variables is the conflict of variable names of local and global scope. It is
also difficult to debug and test the code that relies on global variables.

83. What is NaN property

The NaN property is a global property that represents "Not-a-Number" value. i.e, It indicates that
a value is not a legal number. It is very rare to use NaN in a program but it can be used as return
value for few cases

Math.sqrt(-1)
parseInt("Hello")

84. What is the purpose of isFinite function

The isFinite() function is used to determine whether a number is a finite, legal number. It returns
false if the value is +infinity, -infinity, or NaN (Not-a-Number), otherwise it returns true.

isFinite(Infinity); // false
isFinite(NaN); // false
isFinite(-Infinity); // false

isFinite(100); // true

85. What is an event flow

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 49/176

Event flow is the order in which event is received on the web page. When you click an element
that is nested in various other elements, before your click actually reaches its destination, or
target element, it must trigger the click event for each of its parent elements first, starting at the
top with the global window object. There are two ways of event flow

i. Top to Bottom(Event Capturing)
ii. Bottom to Top (Event Bubbling)

86. What is event bubbling

Event bubbling is a type of event propagation where the event first triggers on the innermost
target element, and then successively triggers on the ancestors (parents) of the target element in
the same nesting hierarchy till it reaches the outermost DOM element.

87. What is event capturing

Event capturing is a type of event propagation where the event is first captured by the outermost
element, and then successively triggers on the descendants (children) of the target element in
the same nesting hierarchy till it reaches the innermost DOM element.

88. How do you submit a form using JavaScript

You can submit a form using JavaScript use document.form[0].submit(). All the form input's
information is submitted using onsubmit event handler

function submit() {
 document.form[0].submit();
}

89. How do you find operating system details

The window.navigator object contains information about the visitor's browser OS details. Some
of the OS properties are available under platform property,

console.log(navigator.platform);

90. What is the difference between document load and DOMContentLoaded
events

The DOMContentLoaded event is fired when the initial HTML document has been completely
loaded and parsed, without waiting for assets(stylesheets, images, and subframes) to finish
loading. Whereas The load event is fired when the whole page has loaded, including all
dependent resources(stylesheets, images).

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 50/176

91. What is the difference between native, host and user objects

Native objects are objects that are part of the JavaScript language defined by the ECMAScript
specification. For example, String, Math, RegExp, Object, Function etc core objects defined in the
ECMAScript spec. Host objects are objects provided by the browser or runtime environment
(Node). For example, window, XmlHttpRequest, DOM nodes etc are considered as host objects.
User objects are objects defined in the javascript code. For example, User objects created for

profile information.

92. What are the tools or techniques used for debugging JavaScript code

You can use below tools or techniques for debugging javascript

i. Chrome Devtools
ii. debugger statement
iii. Good old console.log statement

93. What are the pros and cons of promises over callbacks

Below are the list of pros and cons of promises over callbacks,

Pros:

i. It avoids callback hell which is unreadable
ii. Easy to write sequential asynchronous code with .then()
iii. Easy to write parallel asynchronous code with Promise.all()
iv. Solves some of the common problems of callbacks(call the callback too late, too early, many

times and swallow errors/exceptions)

Cons:

i. It makes little complex code
ii. You need to load a polyfill if ES6 is not supported

94. What is the difference between an attribute and a property

Attributes are defined on the HTML markup whereas properties are defined on the DOM. For
example, the below HTML element has 2 attributes type and value,

<input type="text" value="Name:">

You can retrieve the attribute value as below,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 51/176

const input = document.querySelector('input');
console.log(input.getAttribute('value')); // Good morning
console.log(input.value); // Good morning

And after you change the value of the text field to "Good evening", it becomes like

console.log(input.getAttribute('value')); // Good morning
console.log(input.value); // Good evening

95. What is same-origin policy

The same-origin policy is a policy that prevents JavaScript from making requests across domain
boundaries. An origin is defined as a combination of URI scheme, hostname, and port number. If
you enable this policy then it prevents a malicious script on one page from obtaining access to
sensitive data on another web page using Document Object Model(DOM).

96. What is the purpose of void 0

Void(0) is used to prevent the page from refreshing. This will be helpful to eliminate the
unwanted side-effect, because it will return the undefined primitive value. It is commonly used
for HTML documents that use href="JavaScript:Void(0);" within an <a> element. i.e, when you
click a link, the browser loads a new page or refreshes the same page. But this behavior will be
prevented using this expression. For example, the below link notify the message without
reloading the page

Click Me!

97. Is JavaScript a compiled or interpreted language

JavaScript is an interpreted language, not a compiled language. An interpreter in the browser
reads over the JavaScript code, interprets each line, and runs it. Nowadays modern browsers use
a technology known as Just-In-Time (JIT) compilation, which compiles JavaScript to executable
bytecode just as it is about to run.

98. Is JavaScript a case-sensitive language

Yes, JavaScript is a case sensitive language. The language keywords, variables, function & object
names, and any other identifiers must always be typed with a consistent capitalization of letters.

99. Is there any relation between Java and JavaScript

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 52/176

No, they are entirely two different programming languages and have nothing to do with each
other. But both of them are Object Oriented Programming languages and like many other
languages, they follow similar syntax for basic features(if, else, for, switch, break, continue etc).

100. What are events

Events are "things" that happen to HTML elements. When JavaScript is used in HTML pages,
JavaScript can react on these events. Some of the examples of HTML events are,

i. Web page has finished loading
ii. Input field was changed
iii. Button was clicked

Let's describe the behavior of click event for button element,

<!doctype html>
<html>
 <head>
 <script>
 function greeting() {
 alert('Hello! Good morning');
 }
 </script>
 </head>
 <body>
 <button type="button" onclick="greeting()">Click me</button>
 </body>
</html>

101. Who created javascript

JavaScript was created by Brendan Eich in 1995 during his time at Netscape Communications.
Initially it was developed under the name Mocha , but later the language was officially called
LiveScript when it first shipped in beta releases of Netscape.

102. What is the use of preventDefault method

The preventDefault() method cancels the event if it is cancelable, meaning that the default action
or behaviour that belongs to the event will not occur. For example, prevent form submission
when clicking on submit button and prevent opening the page URL when clicking on hyperlink
are some common use cases.

document.getElementById("link").addEventListener("click", function(event){
 event.preventDefault();
});

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 53/176

Note: Remember that not all events are cancelable.

103. What is the use of stopPropagation method

The stopPropagation method is used to stop the event from bubbling up the event chain. For
example, the below nested divs with stopPropagation method prevents default event
propagation when clicking on nested div(Div1)

<p>Click DIV1 Element</p>
<div onclick="secondFunc()">DIV 2
 <div onclick="firstFunc(event)">DIV 1</div>
</div>

<script>
function firstFunc(event) {
 alert("DIV 1");
 event.stopPropagation();
}

function secondFunc() {
 alert("DIV 2");
}
</script>

104. What are the steps involved in return false usage

The return false statement in event handlers performs the below steps,

i. First it stops the browser's default action or behaviour.
ii. It prevents the event from propagating the DOM
iii. Stops callback execution and returns immediately when called.

105. What is BOM

The Browser Object Model (BOM) allows JavaScript to "talk to" the browser. It consists of the
objects navigator, history, screen, location and document which are children of the window. The
Browser Object Model is not standardized and can change based on different browsers.

Screenshot

106. What is the use of setTimeout

The setTimeout() method is used to call a function or evaluate an expression after a specified
number of milliseconds. For example, let's log a message after 2 seconds using setTimeout
method,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 54/176

setTimeout(function(){ console.log("Good morning"); }, 2000);

107. What is the use of setInterval

The setInterval() method is used to call a function or evaluate an expression at specified intervals
(in milliseconds). For example, let's log a message after 2 seconds using setInterval method,

setInterval(function(){ console.log("Good morning"); }, 2000);

108. Why is JavaScript treated as Single threaded

JavaScript is a single-threaded language. Because the language specification does not allow the
programmer to write code so that the interpreter can run parts of it in parallel in multiple threads
or processes. Whereas languages like java, go, C++ can make multi-threaded and multi-process
programs.

109. What is an event delegation

Event delegation is a technique for listening to events where you delegate a parent element as
the listener for all of the events that happen inside it.

For example, if you wanted to detect field changes in inside a specific form, you can use event
delegation technique,

var form = document.querySelector('#registration-form');

// Listen for changes to fields inside the form
form.addEventListener('input', function (event) {

// Log the field that was changed
console.log(event.target);

}, false);

110. What is ECMAScript

ECMAScript is the scripting language that forms the basis of JavaScript. ECMAScript standardized
by the ECMA International standards organization in the ECMA-262 and ECMA-402
specifications. The first edition of ECMAScript was released in 1997.

111. What is JSON

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 55/176

JSON (JavaScript Object Notation) is a lightweight format that is used for data interchanging. It is
based on a subset of JavaScript language in the way objects are built in JavaScript.

112. What are the syntax rules of JSON

Below are the list of syntax rules of JSON

i. The data is in name/value pairs
ii. The data is separated by commas
iii. Curly braces hold objects
iv. Square brackets hold arrays

113. What is the purpose JSON stringify

When sending data to a web server, the data has to be in a string format. You can achieve this by
converting JSON object into a string using stringify() method.

var userJSON = {'name': 'John', age: 31}
var userString = JSON.stringify(user);
console.log(userString); //"{"name":"John","age":31}"

114. How do you parse JSON string

When receiving the data from a web server, the data is always in a string format. But you can
convert this string value to a javascript object using parse() method.

var userString = '{"name":"John","age":31}';
var userJSON = JSON.parse(userString);
console.log(userJSON);// {name: "John", age: 31}

115. Why do you need JSON

When exchanging data between a browser and a server, the data can only be text. Since JSON is
text only, it can easily be sent to and from a server, and used as a data format by any
programming language.

116. What are PWAs

Progressive web applications (PWAs) are a type of mobile app delivered through the web, built
using common web technologies including HTML, CSS and JavaScript. These PWAs are deployed
to servers, accessible through URLs, and indexed by search engines.

117. What is the purpose of clearTimeout method

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 56/176

The clearTimeout() function is used in javascript to clear the timeout which has been set by
setTimeout()function before that. i.e, The return value of setTimeout() function is stored in a
variable and it’s passed into the clearTimeout() function to clear the timer.

For example, the below setTimeout method is used to display the message after 3 seconds. This
timeout can be cleared by the clearTimeout() method.

<script>
var msg;
function greeting() {
 alert('Good morning');
}
function start() {
 msg =setTimeout(greeting, 3000);

}

function stop() {
 clearTimeout(msg);
}
</script>

118. What is the purpose of clearInterval method

The clearInterval() function is used in javascript to clear the interval which has been set by
setInterval() function. i.e, The return value returned by setInterval() function is stored in a variable
and it’s passed into the clearInterval() function to clear the interval.

For example, the below setInterval method is used to display the message for every 3 seconds.
This interval can be cleared by the clearInterval() method.

<script>
var msg;
function greeting() {
 alert('Good morning');
}
function start() {
 msg = setInterval(greeting, 3000);

}

function stop() {
 clearInterval(msg);
}
</script>

119. How do you redirect new page in javascript

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 57/176

In vanilla javascript, you can redirect to a new page using the location property of window
object. The syntax would be as follows,

function redirect() {
 window.location.href = 'newPage.html';
}

120. How do you check whether a string contains a substring

There are 3 possible ways to check whether a string contains a substring or not,

i. Using includes: ES6 provided String.prototype.includes method to test a string contains a
substring

var mainString = "hello", subString = "hell";
mainString.includes(subString)

i. Using indexOf: In an ES5 or older environment, you can use String.prototype.indexOf
which returns the index of a substring. If the index value is not equal to -1 then it means the
substring exists in the main string.

var mainString = "hello", subString = "hell";
mainString.indexOf(subString) !== -1

i. Using RegEx: The advanced solution is using Regular expression's test
method(RegExp.test), which allows for testing for against regular expressions

var mainString = "hello", regex = /hell/;
regex.test(mainString)

121. How do you validate an email in javascript

You can validate an email in javascript using regular expressions. It is recommended to do
validations on the server side instead of the client side. Because the javascript can be disabled on
the client side.

 The above regular expression accepts unicode characters.

function validateEmail(email) {
 var re = /^(([^<>()\[\]\\.,;:\s@"]+(\.[^<>()\[\]\\.,;:\s@"]+)*)|(".+"))@((\[[0-9]{1,3}
 return re.test(String(email).toLowerCase());
}

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 58/176

122. How do you get the current url with javascript

You can use window.location.href expression to get the current url path and you can use the
same expression for updating the URL too. You can also use document.URL for read-only
purposes but this solution has issues in FF.

console.log('location.href', window.location.href); // Returns full URL

123. What are the various url properties of location object

The below Location object properties can be used to access URL components of the page,

i. href - The entire URL
ii. protocol - The protocol of the URL
iii. host - The hostname and port of the URL
iv. hostname - The hostname of the URL
v. port - The port number in the URL
vi. pathname - The path name of the URL
vii. search - The query portion of the URL
viii. hash - The anchor portion of the URL

124. How do get query string values in javascript

You can use URLSearchParams to get query string values in javascript. Let's see an example to
get the client code value from URL query string,

const urlParams = new URLSearchParams(window.location.search);
const clientCode = urlParams.get('clientCode');

125. How do you check if a key exists in an object

You can check whether a key exists in an object or not using three approaches,

i. Using in operator: You can use the in operator whether a key exists in an object or not

"key" in obj

and If you want to check if a key doesn't exist, remember to use parenthesis,

!("key" in obj)

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 59/176

i. Using hasOwnProperty method: You can use hasOwnProperty to particularly test for
properties of the object instance (and not inherited properties)

obj.hasOwnProperty("key") // true

i. Using undefined comparison: If you access a non-existing property from an object, the
result is undefined. Let’s compare the properties against undefined to determine the
existence of the property.

const user = {
 name: 'John'
};

console.log(user.name !== undefined); // true
console.log(user.nickName !== undefined); // false

126. How do you loop through or enumerate javascript object

You can use the for-in loop to loop through javascript object. You can also make sure that the
key you get is an actual property of an object, and doesn't come from the prototype using
hasOwnProperty method.

var object = {
 "k1": "value1",
 "k2": "value2",
 "k3": "value3"
};

for (var key in object) {
 if (object.hasOwnProperty(key)) {
 console.log(key + " -> " + object[key]); // k1 -> value1 ...
 }
}

127. How do you test for an empty object

There are different solutions based on ECMAScript versions

i. Using Object entries(ECMA 7+): You can use object entries length along with constructor
type.

i. Using Object keys(ECMA 5+): You can use object keys length along with constructor type.

Object.entries(obj).length === 0 && obj.constructor === Object // Since date object length

Object.keys(obj).length === 0 && obj.constructor === Object // Since date object length is

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 60/176

i. Using for-in with hasOwnProperty(Pre-ECMA 5): You can use a for-in loop along with
hasOwnProperty.

function isEmpty(obj) {
 for(var prop in obj) {
 if(obj.hasOwnProperty(prop)) {
 return false;
 }
 }

 return JSON.stringify(obj) === JSON.stringify({});
}

128. What is an arguments object

The arguments object is an Array-like object accessible inside functions that contains the values
of the arguments passed to that function. For example, let's see how to use arguments object
inside sum function,

function sum() {
 var total = 0;
 for (var i = 0, len = arguments.length; i < len; ++i) {
 total += arguments[i];
 }
 return total;
}

sum(1, 2, 3) // returns 6

Note: You can't apply array methods on arguments object. But you can convert into a regular
array as below.

var argsArray = Array.prototype.slice.call(arguments);

129. How do you make first letter of the string in an uppercase

You can create a function which uses a chain of string methods such as charAt, toUpperCase and
slice methods to generate a string with the first letter in uppercase.

function capitalizeFirstLetter(string) {
 return string.charAt(0).toUpperCase() + string.slice(1);
}

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 61/176

130. What are the pros and cons of for loop

The for-loop is a commonly used iteration syntax in javascript. It has both pros and cons
####Pros

i. Works on every environment
ii. You can use break and continue flow control statements

####Cons

i. Too verbose
ii. Imperative
iii. You might face one-by-off errors

131. How do you display the current date in javascript

You can use new Date() to generate a new Date object containing the current date and time.
For example, let's display the current date in mm/dd/yyyy

var today = new Date();
var dd = String(today.getDate()).padStart(2, '0');
var mm = String(today.getMonth() + 1).padStart(2, '0'); //January is 0!
var yyyy = today.getFullYear();

today = mm + '/' + dd + '/' + yyyy;
document.write(today);

132. How do you compare two date objects

You need to use date.getTime() method to compare date values instead of comparison operators
(==, !=, ===, and !== operators)

var d1 = new Date();
var d2 = new Date(d1);
console.log(d1.getTime() === d2.getTime()); //True
console.log(d1 === d2); // False

133. How do you check if a string starts with another string

You can use ECMAScript 6's String.prototype.startsWith() method to check if a string starts
with another string or not. But it is not yet supported in all browsers. Let's see an example to see
this usage,

"Good morning".startsWith("Good"); // true
"Good morning".startsWith("morning"); // false

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 62/176

134. How do you trim a string in javascript

JavaScript provided a trim method on string types to trim any whitespaces present at the
beginning or ending of the string.

" Hello World ".trim(); //Hello World

If your browser(<IE9) doesn't support this method then you can use below polyfill.

if (!String.prototype.trim) {
 (function() {
 // Make sure we trim BOM and NBSP
 var rtrim = /^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g;
 String.prototype.trim = function() {
 return this.replace(rtrim, '');
 };
 })();
}

135. How do you add a key value pair in javascript

There are two possible solutions to add new properties to an object. Let's take a simple object to
explain these solutions.

var object = {
 key1: value1,
 key2: value2
};

i. Using dot notation: This solution is useful when you know the name of the property

object.key3 = "value3";

i. Using square bracket notation: This solution is useful when the name of the property is
dynamically determined.

obj["key3"] = "value3";

136. Is the !-- notation represents a special operator

No,that's not a special operator. But it is a combination of 2 standard operators one after the
other,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 63/176

i. A logical not (!)
ii. A prefix decrement (--)

At first, the value decremented by one and then tested to see if it is equal to zero or not for
determining the truthy/falsy value.

137. How do you assign default values to variables

You can use the logical or operator || in an assignment expression to provide a default value.
The syntax looks like as below,

var a = b || c;

As per the above expression, variable 'a 'will get the value of 'c' only if 'b' is falsy (if is null, false,
undefined, 0, empty string, or NaN), otherwise 'a' will get the value of 'b'.

138. How do you define multiline strings

You can define multiline string literals using the '' character followed by line terminator.

var str = "This is a \
very lengthy \
sentence!";

But if you have a space after the '' character, the code will look exactly the same, but it will raise a
SyntaxError.

139. What is an app shell model

An application shell (or app shell) architecture is one way to build a Progressive Web App that
reliably and instantly loads on your users' screens, similar to what you see in native applications.
It is useful for getting some initial HTML to the screen fast without a network.

140. Can we define properties for functions

Yes, We can define properties for functions because functions are also objects.

fn = function(x) {
 //Function code goes here
}

fn.name = "John";

fn.profile = function(y) {

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 64/176

 //Profile code goes here
}

141. What is the way to find the number of parameters expected by a function

You can use function.length syntax to find the number of parameters expected by a function.
Let's take an example of sum function to calculate the sum of numbers,

function sum(num1, num2, num3, num4){
 return num1 + num2 + num3 + num4;
}
sum.length // 4 is the number of parameters expected.

142. What is a polyfill

A polyfill is a piece of JS code used to provide modern functionality on older browsers that do
not natively support it. For example, Silverlight plugin polyfill can be used to mimic the
functionality of an HTML Canvas element on Microsoft Internet Explorer 7.

143. What are break and continue statements

The break statement is used to "jump out" of a loop. i.e, It breaks the loop and continues
executing the code after the loop.

for (i = 0; i < 10; i++) {
 if (i === 5) { break; }
 text += "Number: " + i + "
";
}

The continue statement is used to "jump over" one iteration in the loop. i.e, It breaks one
iteration (in the loop), if a specified condition occurs, and continues with the next iteration in the
loop.

for (i = 0; i < 10; i++) {
 if (i === 5) { continue; }
 text += "Number: " + i + "
";
}

144. What are js labels

The label statement allows us to name loops and blocks in JavaScript. We can then use these
labels to refer back to the code later. For example, the below code with labels avoids printing the
numbers when they are same,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 65/176

var i, j;

loop1:
for (i = 0; i < 3; i++) {
 loop2:
 for (j = 0; j < 3; j++) {
 if (i === j) {
 continue loop1;
 }
 console.log('i = ' + i + ', j = ' + j);
 }
}

// Output is:
// "i = 1, j = 0"
// "i = 2, j = 0"
// "i = 2, j = 1"

145. What are the benefits of keeping declarations at the top

It is recommended to keep all declarations at the top of each script or function. The benefits of
doing this are,

i. Gives cleaner code
ii. It provides a single place to look for local variables
iii. Easy to avoid unwanted global variables
iv. It reduces the possibility of unwanted re-declarations

146. What are the benefits of initializing variables

It is recommended to initialize variables because of the below benefits,

i. It gives cleaner code
ii. It provides a single place to initialize variables
iii. Avoid undefined values in the code

147. What are the recommendations to create new object

It is recommended to avoid creating new objects using new Object() . Instead you can initialize
values based on it's type to create the objects.

i. Assign {} instead of new Object()
ii. Assign "" instead of new String()
iii. Assign 0 instead of new Number()
iv. Assign false instead of new Boolean()

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 66/176

v. Assign [] instead of new Array()
vi. Assign /()/ instead of new RegExp()
vii. Assign function (){} instead of new Function()

You can define them as an example,

var v1 = {};
var v2 = "";
var v3 = 0;
var v4 = false;
var v5 = [];
var v6 = /()/;
var v7 = function(){};

148. How do you define JSON arrays

JSON arrays are written inside square brackets and arrays contain javascript objects. For example,
the JSON array of users would be as below,

"users":[
 {"firstName":"John", "lastName":"Abrahm"},
 {"firstName":"Anna", "lastName":"Smith"},
 {"firstName":"Shane", "lastName":"Warn"}
]

149. How do you generate random integers

You can use Math.random() with Math.floor() to return random integers. For example, if you want
generate random integers between 1 to 10, the multiplication factor should be 10,

Math.floor(Math.random() * 10) + 1; // returns a random integer from 1 to 10
Math.floor(Math.random() * 100) + 1; // returns a random integer from 1 to 100

Note: Math.random() returns a random number between 0 (inclusive), and 1 (exclusive)

150. Can you write a random integers function to print integers with in a range

Yes, you can create a proper random function to return a random number between min and max
(both included)

function randomInteger(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
}
randomInteger(1, 100); // returns a random integer from 1 to 100
randomInteger(1, 1000); // returns a random integer from 1 to 1000

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 67/176

151. What is tree shaking

Tree shaking is a form of dead code elimination. It means that unused modules will not be
included in the bundle during the build process and for that it relies on the static structure of
ES2015 module syntax,(i.e. import and export). Initially this has been popularized by the ES2015
module bundler rollup .

152. What is the need of tree shaking

Tree Shaking can significantly reduce the code size in any application. i.e, The less code we send
over the wire the more performant the application will be. For example, if we just want to create
a “Hello World” Application using SPA frameworks then it will take around a few MBs, but by tree
shaking it can bring down the size to just a few hundred KBs. Tree shaking is implemented in
Rollup and Webpack bundlers.

153. Is it recommended to use eval

No, it allows arbitrary code to be run which causes a security problem. As we know that the eval()
function is used to run text as code. In most of the cases, it should not be necessary to use it.

154. What is a Regular Expression

A regular expression is a sequence of characters that forms a search pattern. You can use this
search pattern for searching data in a text. These can be used to perform all types of text search
and text replace operations. Let's see the syntax format now,

/pattern/modifiers;

For example, the regular expression or search pattern with case-insensitive username would be,

/John/i

155. What are the string methods available in Regular expression

Regular Expressions has two string methods: search() and replace(). The search() method uses an
expression to search for a match, and returns the position of the match.

var msg = "Hello John";
var n = msg.search(/John/i); // 6

The replace() method is used to return a modified string where the pattern is replaced.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 68/176

var msg = "Hello John";
var n = msg.replace(/John/i, "Buttler"); // Hello Buttler

156. What are modifiers in regular expression

Modifiers can be used to perform case-insensitive and global searches. Let's list down some of
the modifiers,

Modifier Description

i Perform case-insensitive matching

g Perform a global match rather than stops at first match

m Perform multiline matching

Let's take an example of global modifier,

var text = "Learn JS one by one";
var pattern = /one/g;
var result = text.match(pattern); // one,one

157. What are regular expression patterns

Regular Expressions provide a group of patterns in order to match characters. Basically they are
categorized into 3 types,

i. Brackets: These are used to find a range of characters. For example, below are some use
cases,

a. [abc]: Used to find any of the characters between the brackets(a,b,c)
b. [0-9]: Used to find any of the digits between the brackets
c. (a|b): Used to find any of the alternatives separated with |

ii. Metacharacters: These are characters with a special meaning For example, below are some
use cases,

a. \d: Used to find a digit
b. \s: Used to find a whitespace character
c. \b: Used to find a match at the beginning or ending of a word

iii. Quantifiers: These are useful to define quantities For example, below are some use cases,
a. n+: Used to find matches for any string that contains at least one n
b. n*: Used to find matches for any string that contains zero or more occurrences of n
c. n?: Used to find matches for any string that contains zero or one occurrences of n

158. What is a RegExp object

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 69/176

RegExp object is a regular expression object with predefined properties and methods. Let's see
the simple usage of RegExp object,

var regexp = new RegExp('\\w+');
console.log(regexp);
// expected output: /\w+/

159. How do you search a string for a pattern

You can use the test() method of regular expression in order to search a string for a pattern, and
return true or false depending on the result.

var pattern = /you/;
console.log(pattern.test("How are you?")); //true

160. What is the purpose of exec method

The purpose of exec method is similar to test method but it executes a search for a match in a
specified string and returns a result array, or null instead of returning true/false.

161. How do you change the style of a HTML element

You can change inline style or classname of a HTML element using javascript

i. Using style property: You can modify inline style using style property

document.getElementById("title").style.fontSize = "30px";

i. Using ClassName property: It is easy to modify element class using className property

 document.getElementById("title").className = "custom-title";

162. What would be the result of 1+2+'3'

The output is going to be 33 . Since 1 and 2 are numeric values, the result of the first two
digits is going to be a numeric value 3 . The next digit is a string type value because of that the
addition of numeric value 3 and string type value 3 is just going to be a concatenation value
33 .

var pattern = /you/;
console.log(pattern.exec("How are you?")); //["you", index: 8, input: "How are you?", grou

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 70/176

163. What is a debugger statement

The debugger statement invokes any available debugging functionality, such as setting a
breakpoint. If no debugging functionality is available, this statement has no effect. For example,
in the below function a debugger statement has been inserted. So execution is paused at the
debugger statement just like a breakpoint in the script source.

function getProfile() {
// code goes here
debugger;
// code goes here
}

164. What is the purpose of breakpoints in debugging

You can set breakpoints in the javascript code once the debugger statement is executed and the
debugger window pops up. At each breakpoint, javascript will stop executing, and let you
examine the JavaScript values. After examining values, you can resume the execution of code
using the play button.

165. Can I use reserved words as identifiers

No, you cannot use the reserved words as variables, labels, object or function names. Let's see
one simple example,

var else = "hello"; // Uncaught SyntaxError: Unexpected token else

166. How do you detect a mobile browser

You can use regex which returns a true or false value depending on whether or not the user is
browsing with a mobile.

167. How do you detect a mobile browser without regexp

You can detect mobile browsers by simply running through a list of devices and checking if the
useragent matches anything. This is an alternative solution for RegExp usage,

window.mobilecheck = function() {
 var mobileCheck = false;
 (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|e
 return mobileCheck;
};

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 71/176

function detectmob() {
 if(navigator.userAgent.match(/Android/i)
 || navigator.userAgent.match(/webOS/i)
 || navigator.userAgent.match(/iPhone/i)
 || navigator.userAgent.match(/iPad/i)
 || navigator.userAgent.match(/iPod/i)
 || navigator.userAgent.match(/BlackBerry/i)
 || navigator.userAgent.match(/Windows Phone/i)
){
 return true;
 }
 else {
 return false;
 }
}

168. How do you get the image width and height using JS

You can programmatically get the image and check the dimensions(width and height) using
Javascript.

var img = new Image();
img.onload = function() {
 console.log(this.width + 'x' + this.height);
}
img.src = 'http://www.google.com/intl/en_ALL/images/logo.gif';

169. How do you make synchronous HTTP request

Browsers provide an XMLHttpRequest object which can be used to make synchronous HTTP
requests from JavaScript

function httpGet(theUrl)
{
 var xmlHttpReq = new XMLHttpRequest();
 xmlHttpReq.open("GET", theUrl, false); // false for synchronous request
 xmlHttpReq.send(null);
 return xmlHttpReq.responseText;
}

170. How do you make asynchronous HTTP request

Browsers provide an XMLHttpRequest object which can be used to make asynchronous HTTP
requests from JavaScript by passing the 3rd parameter as true.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 72/176

function httpGetAsync(theUrl, callback)
{
 var xmlHttpReq = new XMLHttpRequest();
 xmlHttpReq.onreadystatechange = function() {
 if (xmlHttpReq.readyState == 4 && xmlHttpReq.status == 200)
 callback(xmlHttpReq.responseText);
 }
 xmlHttp.open("GET", theUrl, true); // true for asynchronous
 xmlHttp.send(null);
}

171. How do you convert date to another timezone in javascript

You can use the toLocaleString() method to convert dates in one timezone to another. For
example, let's convert current date to British English timezone as below,

console.log(event.toLocaleString('en-GB', { timeZone: 'UTC' })); //29/06/2019, 09:56:00

172. What are the properties used to get size of window

You can use innerWidth, innerHeight, clientWidth, clientHeight properties of windows, document
element and document body objects to find the size of a window. Let's use them combination of
these properties to calculate the size of a window or document,

var width = window.innerWidth
|| document.documentElement.clientWidth
|| document.body.clientWidth;

var height = window.innerHeight
|| document.documentElement.clientHeight
|| document.body.clientHeight;

173. What is a conditional operator in javascript

The conditional (ternary) operator is the only JavaScript operator that takes three operands
which acts as a shortcut for if statements.

174. Can you apply chaining on conditional operator

var isAuthenticated = false;
console.log(isAuthenticated ? 'Hello, welcome' : 'Sorry, you are not authenticated'); //So

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 73/176

Yes, you can apply chaining on conditional operators similar to if … else if … else if … else chain.
The syntax is going to be as below,

function traceValue(someParam) {
 return condition1 ? value1
 : condition2 ? value2
 : condition3 ? value3
 : value4;
}

// The above conditional operator is equivalent to:

function traceValue(someParam) {
 if (condition1) { return value1; }
 else if (condition2) { return value2; }
 else if (condition3) { return value3; }
 else { return value4; }
}

175. What are the ways to execute javascript after page load

You can execute javascript after page load in many different ways,

i. window.onload:

window.onload = function ...

i. document.onload:

document.onload = function ...

i. body onload:

<body onload="script();">

176. What is the difference between proto and prototype

The __proto__ object is the actual object that is used in the lookup chain to resolve methods,
etc. Whereas prototype is the object that is used to build __proto__ when you create an object
with new

(new Employee).__proto__ === Employee.prototype;
(new Employee).prototype === undefined;

177. Give an example where do you really need semicolon

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 74/176

It is recommended to use semicolons after every statement in JavaScript. For example, in the
below case it throws an error ".. is not a function" at runtime due to missing semicolon.

// define a function
var fn = function () {
 //...
} // semicolon missing at this line

// then execute some code inside a closure
(function () {
 //...
})();

and it will be interpreted as

var fn = function () {
 //...
}(function () {
 //...
})();

In this case, we are passing the second function as an argument to the first function and then
trying to call the result of the first function call as a function. Hence, the second function will fail
with a "... is not a function" error at runtime.

178. What is a freeze method

The freeze() method is used to freeze an object. Freezing an object does not allow adding new
properties to an object,prevents from removing and prevents changing the enumerability,
configurability, or writability of existing properties. i.e, It returns the passed object and does not
create a frozen copy.

const obj = {
 prop: 100
};

Object.freeze(obj);
obj.prop = 200; // Throws an error in strict mode

console.log(obj.prop); //100

Note: It causes a TypeError if the argument passed is not an object.

179. What is the purpose of freeze method

Below are the main benefits of using freeze method,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 75/176

i. It is used for freezing objects and arrays.
ii. It is used to make an object immutable.

180. Why do I need to use freeze method

In the Object-oriented paradigm, an existing API contains certain elements that are not intended
to be extended, modified, or re-used outside of their current context. Hence it works as the
final keyword which is used in various languages.

181. How do you detect a browser language preference

You can use navigator object to detect a browser language preference as below,

var language = navigator.languages && navigator.languages[0] || // Chrome / Firefox
 navigator.language || // All browsers
 navigator.userLanguage; // IE <= 10

console.log(language);

182. How to convert string to title case with javascript

Title case means that the first letter of each word is capitalized. You can convert a string to title
case using the below function,

 function toTitleCase(str) {
 return str.replace(
 /\w\S*/g,
 function(txt) {
 return txt.charAt(0).toUpperCase() + txt.substr(1).toLowerCase();
 }
);
 }
 toTitleCase("good morning john"); // Good Morning John

183. How do you detect javascript disabled in the page

You can use the <noscript> tag to detect javascript disabled or not. The code block inside
<noscript> gets executed when JavaScript is disabled, and is typically used to display alternative

content when the page generated in JavaScript.

<script type="javascript">
 // JS related code goes here
</script>
<noscript>
 JavaScript is disabled in the page. Please click Ne
</noscript>

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 76/176

184. What are various operators supported by javascript

An operator is capable of manipulating(mathematical and logical computations) a certain value
or operand. There are various operators supported by JavaScript as below,

i. Arithmetic Operators: Includes + (Addition),– (Subtraction), * (Multiplication), / (Division), %
(Modulus), + + (Increment) and – – (Decrement)

ii. Comparison Operators: Includes = =(Equal),!= (Not Equal), ===(Equal with type), > (Greater
than),> = (Greater than or Equal to),< (Less than),<= (Less than or Equal to)

iii. Logical Operators: Includes &&(Logical AND),||(Logical OR),!(Logical NOT)
iv. Assignment Operators: Includes = (Assignment Operator), += (Add and Assignment

Operator), – = (Subtract and Assignment Operator), *= (Multiply and Assignment), /=
(Divide and Assignment), %= (Modules and Assignment)

v. Ternary Operators: It includes conditional(: ?) Operator
vi. typeof Operator: It uses to find type of variable. The syntax looks like typeof variable

185. What is a rest parameter

Rest parameter is an improved way to handle function parameters which allows us to represent
an indefinite number of arguments as an array. The syntax would be as below,

function f(a, b, ...theArgs) {
 // ...
}

For example, let's take a sum example to calculate on dynamic number of parameters,

function total(…args){
let sum = 0;
for(let i of args){
sum+=i;
}
return sum;
}
console.log(fun(1,2)); //3
console.log(fun(1,2,3)); //6
console.log(fun(1,2,3,4)); //13
console.log(fun(1,2,3,4,5)); //15

Note: Rest parameter is added in ES2015 or ES6

186. What happens if you do not use rest parameter as a last argument

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 77/176

The rest parameter should be the last argument, as its job is to collect all the remaining
arguments into an array. For example, if you define a function like below it doesn’t make any
sense and will throw an error.

function someFunc(a,…b,c){
//You code goes here
return;
}

187. What are the bitwise operators available in javascript

Below are the list of bitwise logical operators used in JavaScript

i. Bitwise AND (&)
ii. Bitwise OR (|)
iii. Bitwise XOR (^)
iv. Bitwise NOT (~)
v. Left Shift (<<)
vi. Sign Propagating Right Shift (>>)
vii. Zero fill Right Shift (>>>)

188. What is a spread operator

Spread operator allows iterables(arrays / objects / strings) to be expanded into single
arguments/elements. Let's take an example to see this behavior,

function calculateSum(x, y, z) {
 return x + y + z;
}

const numbers = [1, 2, 3];

console.log(calculateSum(...numbers)); // 6

189. How do you determine whether object is frozen or not

Object.isFrozen() method is used to determine if an object is frozen or not.An object is frozen if
all of the below conditions hold true,

i. If it is not extensible.
ii. If all of its properties are non-configurable.
iii. If all its data properties are non-writable. The usage is going to be as follows,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 78/176

const object = {
 property: 'Welcome JS world'
};
Object.freeze(object);
console.log(Object.isFrozen(object));

190. How do you determine two values same or not using object

The Object.is() method determines whether two values are the same value. For example, the
usage with different types of values would be,

Object.is('hello', 'hello'); // true
Object.is(window, window); // true
Object.is([], []) // false

Two values are the same if one of the following holds:

i. both undefined
ii. both null
iii. both true or both false
iv. both strings of the same length with the same characters in the same order
v. both the same object (means both object have same reference)
vi. both numbers and both +0 both -0 both NaN both non-zero and both not NaN and both

have the same value.

191. What is the purpose of using object is method

Some of the applications of Object's is method are follows,

i. It is used for comparison of two strings.
ii. It is used for comparison of two numbers.
iii. It is used for comparing the polarity of two numbers.
iv. It is used for comparison of two objects.

192. How do you copy properties from one object to other

You can use the Object.assign() method which is used to copy the values and properties from
one or more source objects to a target object. It returns the target object which has properties
and values copied from the target object. The syntax would be as below,

Object.assign(target, ...sources)

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 79/176

Let's take example with one source and one target object,

const target = { a: 1, b: 2 };
const source = { b: 3, c: 4 };

const returnedTarget = Object.assign(target, source);

console.log(target); // { a: 1, b: 3, c: 4 }

console.log(returnedTarget); // { a: 1, b: 3, c: 4 }

As observed in the above code, there is a common property(b) from source to target so it's
value has been overwritten.

193. What are the applications of assign method

Below are the some of main applications of Object.assign() method,

i. It is used for cloning an object.
ii. It is used to merge objects with the same properties.

194. What is a proxy object

The Proxy object is used to define custom behavior for fundamental operations such as property
lookup, assignment, enumeration, function invocation, etc. The syntax would be as follows,

var p = new Proxy(target, handler);

Let's take an example of proxy object,

var handler = {
 get: function(obj, prop) {
 return prop in obj ?
 obj[prop] :
 100;
 }
};

var p = new Proxy({}, handler);
p.a = 10;
p.b = null;

console.log(p.a, p.b); // 10, null
console.log('c' in p, p.c); // false, 100

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 80/176

In the above code, it uses get handler which define the behavior of the proxy when an
operation is performed on it

195. What is the purpose of seal method

The Object.seal() method is used to seal an object, by preventing new properties from being
added to it and marking all existing properties as non-configurable. But values of present
properties can still be changed as long as they are writable. Let's see the below example to
understand more about seal() method

 const object = {
 property: 'Welcome JS world'
 };
 Object.seal(object);
 object.property = 'Welcome to object world';
 console.log(Object.isSealed(object)); // true
 delete object.property; // You cannot delete when sealed
 console.log(object.property); //Welcome to object world

196. What are the applications of seal method

Below are the main applications of Object.seal() method,

i. It is used for sealing objects and arrays.
ii. It is used to make an object immutable.

197. What are the differences between freeze and seal methods

If an object is frozen using the Object.freeze() method then its properties become immutable
and no changes can be made in them whereas if an object is sealed using the Object.seal()
method then the changes can be made in the existing properties of the object.

198. How do you determine if an object is sealed or not

The Object.isSealed() method is used to determine if an object is sealed or not. An object is
sealed if all of the below conditions hold true

i. If it is not extensible.
ii. If all of its properties are non-configurable.
iii. If it is not removable (but not necessarily non-writable). Let's see it in the action

const object = {
property: 'Hello, Good morning'
};

Object.seal(object); // Using seal() method to seal the object

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 81/176

199. How do you get enumerable key and value pairs

The Object.entries() method is used to return an array of a given object's own enumerable string-
keyed property [key, value] pairs, in the same order as that provided by a for...in loop. Let's see
the functionality of object.entries() method in an example,

const object = {
 a: 'Good morning',
 b: 100
};

for (let [key, value] of Object.entries(object)) {
 console.log(`${key}: ${value}`); // a: 'Good morning'
 // b: 100
}

Note: The order is not guaranteed as object defined.

200. What is the main difference between Object.values and Object.entries
method

The Object.values() method's behavior is similar to Object.entries() method but it returns an array
of values instead [key,value] pairs.

 const object = {
 a: 'Good morning',
 b: 100
 };

 for (let value of Object.values(object)) {
 console.log(`${value}`); // 'Good morning'
 100
 }

201. How can you get the list of keys of any object

You can use the Object.keys() method which is used to return an array of a given object's own
property names, in the same order as we get with a normal loop. For example, you can get the
keys of a user object,

const user = {
 name: 'John',

console.log(Object.isSealed(object)); // checking whether the object is sealed or not

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 82/176

 gender: 'male',
 age: 40
};

console.log(Object.keys(user)); //['name', 'gender', 'age']

202. How do you create an object with prototype

The Object.create() method is used to create a new object with the specified prototype object
and properties. i.e, It uses an existing object as the prototype of the newly created object. It
returns a new object with the specified prototype object and properties.

203. What is a WeakSet

WeakSet is used to store a collection of weakly(weak references) held objects. The syntax would
be as follows,

new WeakSet([iterable]);

Let's see the below example to explain it's behavior,

var ws = new WeakSet();
var user = {};
ws.add(user);
ws.has(user); // true
ws.delete(user); // removes user from the set
ws.has(user); // false, user has been removed

204. What are the differences between WeakSet and Set

The main difference is that references to objects in Set are strong while references to objects in
WeakSet are weak. i.e, An object in WeakSet can be garbage collected if there is no other

 const user = {
 name: 'John',
 printInfo: function () {
 console.log(`My name is ${this.name}.`);
 }
 };

 const admin = Object.create(user);

 admin.name = "Nick"; // Remember that "name" is a property set on "admin" but not on "use

 admin.printInfo(); // My name is Nick

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 83/176

reference to it. Other differences are,

i. Sets can store any value Whereas WeakSets can store only collections of objects
ii. WeakSet does not have size property unlike Set
iii. WeakSet does not have methods such as clear, keys, values, entries, forEach.
iv. WeakSet is not iterable.

205. List down the collection of methods available on WeakSet

Below are the list of methods available on WeakSet,

i. add(value): A new object is appended with the given value to the weakset
ii. delete(value): Deletes the value from the WeakSet collection.
iii. has(value): It returns true if the value is present in the WeakSet Collection, otherwise it

returns false.
iv. length(): It returns the length of weakSetObject Let's see the functionality of all the above

methods in an example,

var weakSetObject = new WeakSet();
var firstObject = {};
var secondObject = {};
// add(value)
weakSetObject.add(firstObject);
weakSetObject.add(secondObject);
console.log(weakSetObject.has(firstObject)); //true
console.log(weakSetObject.length()); //2
weakSetObject.delete(secondObject);

206. What is a WeakMap

The WeakMap object is a collection of key/value pairs in which the keys are weakly referenced. In
this case, keys must be objects and the values can be arbitrary values. The syntax is looking like
as below,

new WeakMap([iterable])

Let's see the below example to explain it's behavior,

 var ws = new WeakMap();
 var user = {};
 ws.set(user);
 ws.has(user); // true
 ws.delete(user); // removes user from the map
 ws.has(user); // false, user has been removed

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 84/176

207. What are the differences between WeakMap and Map

The main difference is that references to key objects in Map are strong while references to key
objects in WeakMap are weak. i.e, A key object in WeakMap can be garbage collected if there is
no other reference to it. Other differences are,

i. Maps can store any key type Whereas WeakMaps can store only collections of key objects
ii. WeakMap does not have size property unlike Map
iii. WeakMap does not have methods such as clear, keys, values, entries, forEach.
iv. WeakMap is not iterable.

208. List down the collection of methods available on WeakMap

Below are the list of methods available on WeakMap,

i. set(key, value): Sets the value for the key in the WeakMap object. Returns the WeakMap
object.

ii. delete(key): Removes any value associated to the key.
iii. has(key): Returns a Boolean asserting whether a value has been associated to the key in the

WeakMap object or not.
iv. get(key): Returns the value associated to the key, or undefined if there is none. Let's see the

functionality of all the above methods in an example,

var weakMapObject = new WeakMap();
var firstObject = {};
var secondObject = {};
// set(key, value)
weakMapObject.set(firstObject, 'John');
weakMapObject.set(secondObject, 100);
console.log(weakMapObject.has(firstObject)); //true
console.log(weakMapObject.get(firstObject)); // John
weakMapObject.delete(secondObject);

209. What is the purpose of uneval

The uneval() is an inbuilt function which is used to create a string representation of the source
code of an Object. It is a top-level function and is not associated with any object. Let's see the
below example to know more about it's functionality,

var a = 1;
uneval(a); // returns a String containing 1
uneval(function user() {}); // returns "(function user(){})"

210. How do you encode an URL

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 85/176

The encodeURI() function is used to encode complete URI which has special characters except (, /
? : @ & = + $ #) characters.

var uri = 'https://mozilla.org/?x=шеллы';
var encoded = encodeURI(uri);
console.log(encoded); // https://mozilla.org/?x=%D1%88%D0%B5%D0%BB%D0%BB%D1%8B

211. How do you decode an URL

The decodeURI() function is used to decode a Uniform Resource Identifier (URI) previously
created by encodeURI().

 var uri = 'https://mozilla.org/?x=шеллы';
 var encoded = encodeURI(uri);
 console.log(encoded); // https://mozilla.org/?x=%D1%88%D0%B5%D0%BB%D0%BB%D1%8B
try {
 console.log(decodeURI(encoded)); // "https://mozilla.org/?x=шеллы"
} catch(e) { // catches a malformed URI
 console.error(e);
}

212. How do you print the contents of web page

The window object provided a print() method which is used to print the contents of the current
window. It opens a Print dialog box which lets you choose between various printing options.
Let's see the usage of print method in an example,

 <input type="button" value="Print" onclick="window.print()" />

Note: In most browsers, it will block while the print dialog is open.

213. What is the difference between uneval and eval

The uneval function returns the source of a given object; whereas the eval function does the
opposite, by evaluating that source code in a different memory area. Let's see an example to
clarify the difference,

var msg = uneval(function greeting() { return 'Hello, Good morning'; });
var greeting = eval(msg);
greeting(); // returns "Hello, Good morning"

214. What is an anonymous function

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 86/176

An anonymous function is a function without a name! Anonymous functions are commonly
assigned to a variable name or used as a callback function. The syntax would be as below,

function (optionalParameters) {
 //do something
}

const myFunction = function(){ //Anonymous function assigned to a variable
 //do something
};

[1, 2, 3].map(function(element){ //Anonymous function used as a callback function
 //do something
});

Let's see the above anonymous function in an example,

var x = function (a, b) {return a * b};
var z = x(5, 10);
console.log(z); // 50

215. What is the precedence order between local and global variables

A local variable takes precedence over a global variable with the same name. Let's see this
behavior in an example.

var msg = "Good morning";
function greeting() {
 msg = "Good Evening";
 console.log(msg);
}
greeting();

216. What are javascript accessors

ECMAScript 5 introduced javascript object accessors or computed properties through getters
and setters. Getters uses the get keyword whereas Setters uses the set keyword.

var user = {
 firstName: "John",
 lastName : "Abraham",
 language : "en",
 get lang() {
 return this.language;
 }
 set lang(lang) {
 this.language = lang;

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 87/176

 }
};
console.log(user.lang); // getter access lang as en
user.lang = 'fr';
console.log(user.lang); // setter used to set lang as fr

217. How do you define property on Object constructor

The Object.defineProperty() static method is used to define a new property directly on an object,
or modify an existing property on an object, and returns the object. Let's see an example to know
how to define property,

218. What is the difference between get and defineProperty

Both have similar results until unless you use classes. If you use get the property will be defined
on the prototype of the object whereas using Object.defineProperty() the property will be
defined on the instance it is applied to.

219. What are the advantages of Getters and Setters

Below are the list of benefits of Getters and Setters,

i. They provide simpler syntax
ii. They are used for defining computed properties, or accessors in JS.
iii. Useful to provide equivalence relation between properties and methods
iv. They can provide better data quality
v. Useful for doing things behind the scenes with the encapsulated logic.

220. Can I add getters and setters using defineProperty method

Yes, You can use the Object.defineProperty() method to add Getters and Setters. For example,
the below counter object uses increment, decrement, add and subtract properties,

const newObject = {};

Object.defineProperty(newObject, 'newProperty', {
 value: 100,
 writable: false
});

console.log(newObject.newProperty); // 100

newObject.newProperty = 200; // It throws an error in strict mode due to writable setting

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 88/176

var obj = {counter : 0};

// Define getters
Object.defineProperty(obj, "increment", {
 get : function () {this.counter++;}
});
Object.defineProperty(obj, "decrement", {
 get : function () {this.counter--;}
});

// Define setters
Object.defineProperty(obj, "add", {
 set : function (value) {this.counter += value;}
});
Object.defineProperty(obj, "subtract", {
 set : function (value) {this.counter -= value;}
});

obj.add = 10;
obj.subtract = 5;
console.log(obj.increment); //6
console.log(obj.decrement); //5

221. What is the purpose of switch-case

The switch case statement in JavaScript is used for decision making purposes. In a few cases,
using the switch case statement is going to be more convenient than if-else statements. The
syntax would be as below,

switch (expression)
{
 case value1:
 statement1;
 break;
 case value2:
 statement2;
 break;
 .
 .
 case valueN:
 statementN;
 break;
 default:
 statementDefault;
}

The above multi-way branch statement provides an easy way to dispatch execution to different
parts of code based on the value of the expression.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 89/176

222. What are the conventions to be followed for the usage of switch case

Below are the list of conventions should be taken care,

i. The expression can be of type either number or string.
ii. Duplicate values are not allowed for the expression.
iii. The default statement is optional. If the expression passed to switch does not match with

any case value then the statement within default case will be executed.
iv. The break statement is used inside the switch to terminate a statement sequence.
v. The break statement is optional. But if it is omitted, the execution will continue on into the

next case.

223. What are primitive data types

A primitive data type is data that has a primitive value (which has no properties or methods).
There are 7 types of primitive data types.

i. string
ii. number
iii. boolean
iv. null
v. undefined
vi. bigint
vii. symbol

224. What are the different ways to access object properties

There are 3 possible ways for accessing the property of an object.

i. Dot notation: It uses dot for accessing the properties

objectName.property

i. Square brackets notation: It uses square brackets for property access

objectName["property"]

i. Expression notation: It uses expression in the square brackets

objectName[expression]

225. What are the function parameter rules

JavaScript functions follow below rules for parameters,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 90/176

i. The function definitions do not specify data types for parameters.
ii. Do not perform type checking on the passed arguments.
iii. Do not check the number of arguments received. i.e, The below function follows the above

rules,

function functionName(parameter1, parameter2, parameter3) {
 console.log(parameter1); // 1
}
functionName(1);

226. What is an error object

An error object is a built in error object that provides error information when an error occurs. It
has two properties: name and message. For example, the below function logs error details,

try {
 greeting("Welcome");
}
catch(err) {
 console.log(err.name + "
" + err.message);
}

227. When you get a syntax error

A SyntaxError is thrown if you try to evaluate code with a syntax error. For example, the below
missing quote for the function parameter throws a syntax error

try {
 eval("greeting('welcome)"); // Missing ' will produce an error
}
catch(err) {
 console.log(err.name);
}

228. What are the different error names from error object

There are 6 different types of error names returned from error object,

Error Name Description

EvalError An error has occurred in the eval() function

RangeError An error has occurred with a number "out of range"

ReferenceError An error due to an illegal reference

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 91/176

Error Name Description

SyntaxError An error due to a syntax error

TypeError An error due to a type error

URIError An error due to encodeURI()

229. What are the various statements in error handling

Below are the list of statements used in an error handling,

i. try: This statement is used to test a block of code for errors
ii. catch: This statement is used to handle the error
iii. throw: This statement is used to create custom errors.
iv. finally: This statement is used to execute code after try and catch regardless of the result.

230. What are the two types of loops in javascript

i. Entry Controlled loops: In this kind of loop type, the test condition is tested before entering
the loop body. For example, For Loop and While Loop comes under this category.

ii. Exit Controlled Loops: In this kind of loop type, the test condition is tested or evaluated at
the end of the loop body. i.e, the loop body will execute at least once irrespective of test
condition true or false. For example, do-while loop comes under this category.

231. What is nodejs

Node.js is a server-side platform built on Chrome's JavaScript runtime for easily building fast and
scalable network applications. It is an event-based, non-blocking, asynchronous I/O runtime that
uses Google's V8 JavaScript engine and libuv library.

232. What is an Intl object

The Intl object is the namespace for the ECMAScript Internationalization API, which provides
language sensitive string comparison, number formatting, and date and time formatting. It
provides access to several constructors and language sensitive functions.

233. How do you perform language specific date and time formatting

You can use the Intl.DateTimeFormat object which is a constructor for objects that enable
language-sensitive date and time formatting. Let's see this behavior with an example,

var date = new Date(Date.UTC(2019, 07, 07, 3, 0, 0));
console.log(new Intl.DateTimeFormat('en-GB').format(date)); // 07/08/2019
console.log(new Intl.DateTimeFormat('en-AU').format(date)); // 07/08/2019

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 92/176

234. What is an Iterator

An iterator is an object which defines a sequence and a return value upon its termination. It
implements the Iterator protocol with a next() method which returns an object with two
properties: value (the next value in the sequence) and done (which is true if the last value in
the sequence has been consumed).

235. How does synchronous iteration works

Synchronous iteration was introduced in ES6 and it works with below set of components,

Iterable: It is an object which can be iterated over via a method whose key is Symbol.iterator.
Iterator: It is an object returned by invoking [Symbol.iterator]() on an iterable. This iterator
object wraps each iterated element in an object and returns it via next() method one by one.
IteratorResult: It is an object returned by next() method. The object contains two properties;
the value property contains an iterated element and the done property determines whether
the element is the last element or not.

Let's demonstrate synchronous iteration with an array as below,

const iterable = ['one', 'two', 'three'];
const iterator = iterable[Symbol.iterator]();
console.log(iterator.next()); // { value: 'one', done: false }
console.log(iterator.next()); // { value: 'two', done: false }
console.log(iterator.next()); // { value: 'three', done: false }
console.log(iterator.next()); // { value: 'undefined, done: true }

236. What is an event loop

The Event Loop is a queue of callback functions. When an async function executes, the callback
function is pushed into the queue. The JavaScript engine doesn't start processing the event loop
until the async function has finished executing the code. Note: It allows Node.js to perform non-
blocking I/O operations even though JavaScript is single-threaded.

237. What is call stack

Call Stack is a data structure for javascript interpreters to keep track of function calls in the
program. It has two major actions,

i. Whenever you call a function for its execution, you are pushing it to the stack.
ii. Whenever the execution is completed, the function is popped out of the stack.

Let's take an example and it's state representation in a diagram format

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 93/176

function hungry() {
 eatFruits();
}
function eatFruits() {
 return "I'm eating fruits";
}

// Invoke the `hungry` function
hungry();

The above code processed in a call stack as below,

i. Add the hungry() function to the call stack list and execute the code.
ii. Add the eatFruits() function to the call stack list and execute the code.
iii. Delete the eatFruits() function from our call stack list.
iv. Delete the hungry() function from the call stack list since there are no items anymore.

Screenshot

238. What is an event queue

239. What is a decorator

A decorator is an expression that evaluates to a function and that takes the target, name, and
decorator descriptor as arguments. Also, it optionally returns a decorator descriptor to install on
the target object. Let's define admin decorator for user class at design time,

function admin(isAdmin) {
 return function(target) {
 target.isAdmin = isAdmin;
 }
}

@admin(true)
class User() {
}
console.log(User.isAdmin); //true

 @admin(false)
 class User() {
 }
 console.log(User.isAdmin); //false

240. What are the properties of Intl object

Below are the list of properties available on Intl object,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 94/176

i. Collator: These are the objects that enable language-sensitive string comparison.
ii. DateTimeFormat: These are the objects that enable language-sensitive date and time

formatting.
iii. ListFormat: These are the objects that enable language-sensitive list formatting.
iv. NumberFormat: Objects that enable language-sensitive number formatting.
v. PluralRules: Objects that enable plural-sensitive formatting and language-specific rules for

plurals.
vi. RelativeTimeFormat: Objects that enable language-sensitive relative time formatting.

241. What is an Unary operator

The unary(+) operator is used to convert a variable to a number.If the variable cannot be
converted, it will still become a number but with the value NaN. Let's see this behavior in an
action.

var x = "100";
var y = + x;
console.log(typeof x, typeof y); // string, number

var a = "Hello";
var b = + a;
console.log(typeof a, typeof b, b); // string, number, NaN

242. How do you sort elements in an array

The sort() method is used to sort the elements of an array in place and returns the sorted array.
The example usage would be as below,

var months = ["Aug", "Sep", "Jan", "June"];
months.sort();
console.log(months); // ["Aug", "Jan", "June", "Sep"]

243. What is the purpose of compareFunction while sorting arrays

The compareFunction is used to define the sort order. If omitted, the array elements are
converted to strings, then sorted according to each character's Unicode code point value. Let's
take an example to see the usage of compareFunction,

let numbers = [1, 2, 5, 3, 4];
numbers.sort((a, b) => b - a);
console.log(numbers); // [5, 4, 3, 2, 1]

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 95/176

244. How do you reversing an array

You can use the reverse() method to reverse the elements in an array. This method is useful to
sort an array in descending order. Let's see the usage of reverse() method in an example,

let numbers = [1, 2, 5, 3, 4];
numbers.sort((a, b) => b - a);
numbers.reverse();
console.log(numbers); // [1, 2, 3, 4 ,5]

245. How do you find min and max value in an array

You can use Math.min and Math.max methods on array variables to find the minimum and
maximum elements within an array. Let's create two functions to find the min and max value with
in an array,

var marks = [50, 20, 70, 60, 45, 30];
function findMin(arr) {
 return Math.min.apply(null, arr);
}
function findMax(arr) {
 return Math.max.apply(null, arr);
}

console.log(findMin(marks));
console.log(findMax(marks));

246. How do you find min and max values without Math functions

You can write functions which loop through an array comparing each value with the lowest value
or highest value to find the min and max values. Let's create those functions to find min and max
values,

 var marks = [50, 20, 70, 60, 45, 30];
 function findMin(arr) {
 var length = arr.length
 var min = Infinity;
 while (length--) {
 if (arr[length] < min) {
 min = arr[len];
 }
 }
 return min;
 }

 function findMax(arr) {
 var length = arr.length

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 96/176

 var max = -Infinity;
 while (len--) {
 if (arr[length] > max) {
 max = arr[length];
 }
 }
 return max;
 }

 console.log(findMin(marks));
 console.log(findMax(marks));

247. What is an empty statement and purpose of it

The empty statement is a semicolon (;) indicating that no statement will be executed, even if
JavaScript syntax requires one. Since there is no action with an empty statement you might think
that it's usage is quite less, but the empty statement is occasionally useful when you want to
create a loop that has an empty body. For example, you can initialize an array with zero values as
below,

// Initialize an array a
for(int i=0; i < a.length; a[i++] = 0) ;

248. How do you get metadata of a module

You can use the import.meta object which is a meta-property exposing context-specific meta
data to a JavaScript module. It contains information about the current module, such as the
module's URL. In browsers, you might get different meta data than NodeJS.

<script type="module" src="welcome-module.js"></script>
console.log(import.meta); // { url: "file:///home/user/welcome-module.js" }

249. What is a comma operator

The comma operator is used to evaluate each of its operands from left to right and returns the
value of the last operand. This is totally different from comma usage within arrays, objects, and
function arguments and parameters. For example, the usage for numeric expressions would be
as below,

var x = 1;
x = (x++, x);

console.log(x); // 2

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 97/176

250. What is the advantage of a comma operator

It is normally used to include multiple expressions in a location that requires a single expression.
One of the common usages of this comma operator is to supply multiple parameters in a for
loop. For example, the below for loop uses multiple expressions in a single location using comma
operator,

for (var a = 0, b =10; a <= 10; a++, b--)

You can also use the comma operator in a return statement where it processes before returning.

function myFunction() {
 var a = 1;
 return (a += 10, a); // 11
}

251. What is typescript

TypeScript is a typed superset of JavaScript created by Microsoft that adds optional types,
classes, async/await, and many other features, and compiles to plain JavaScript. Angular built
entirely in TypeScript and used as a primary language. You can install it globally as

npm install -g typescript

Let's see a simple example of TypeScript usage,

function greeting(name: string): string {
 return "Hello, " + name;
}

let user = "Sudheer";

console.log(greeting(user));

The greeting method allows only string type as argument.

252. What are the differences between javascript and typescript

Below are the list of differences between javascript and typescript,

feature typescript javascript

Language
paradigm

Object oriented programming
language

Scripting language

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 98/176

feature typescript javascript

Typing support Supports static typing It has dynamic typing

Modules Supported Not supported

Interface It has interfaces concept Doesn't support interfaces

Optional
parameters

Functions support optional
parameters

No support of optional parameters
for functions

253. What are the advantages of typescript over javascript

Below are some of the advantages of typescript over javascript,

i. TypeScript is able to find compile time errors at the development time only and it makes
sures less runtime errors. Whereas javascript is an interpreted language.

ii. TypeScript is strongly-typed or supports static typing which allows for checking type
correctness at compile time. This is not available in javascript.

iii. TypeScript compiler can compile the .ts files into ES3,ES4 and ES5 unlike ES6 features of
javascript which may not be supported in some browsers.

254. What is an object initializer

An object initializer is an expression that describes the initialization of an Object. The syntax for
this expression is represented as a comma-delimited list of zero or more pairs of property names
and associated values of an object, enclosed in curly braces ({}). This is also known as literal
notation. It is one of the ways to create an object.

var initObject = {a: 'John', b: 50, c: {}};

console.log(initObject.a); // John

255. What is a constructor method

The constructor method is a special method for creating and initializing an object created within
a class. If you do not specify a constructor method, a default constructor is used. The example
usage of constructor would be as below,

class Employee {
 constructor() {
 this.name = "John";
 }
}

var employeeObject = new Employee();

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 99/176

console.log(employeeObject.name); // John

256. What happens if you write constructor more than once in a class

The "constructor" in a class is a special method and it should be defined only once in a class. i.e,
If you write a constructor method more than once in a class it will throw a SyntaxError error.

 class Employee {
 constructor() {
 this.name = "John";
 }
 constructor() { // Uncaught SyntaxError: A class may only have one constructor
 this.age = 30;
 }
 }

 var employeeObject = new Employee();

 console.log(employeeObject.name);

257. How do you call the constructor of a parent class

You can use the super keyword to call the constructor of a parent class. Remember that
super() must be called before using 'this' reference. Otherwise it will cause a reference error.

Let's the usage of it,

class Square extends Rectangle {
 constructor(length) {
 super(length, length);
 this.name = 'Square';
 }

 get area() {
 return this.width * this.height;
 }

 set area(value) {
 this.area = value;
 }
}

258. How do you get the prototype of an object

You can use the Object.getPrototypeOf(obj) method to return the prototype of the specified
object. i.e. The value of the internal prototype property. If there are no inherited properties then
null value is returned.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 100/176

const newPrototype = {};
const newObject = Object.create(newPrototype);

console.log(Object.getPrototypeOf(newObject) === newPrototype); // true

259. What happens If I pass string type for getPrototype method

In ES5, it will throw a TypeError exception if the obj parameter isn't an object. Whereas in ES2015,
the parameter will be coerced to an Object .

// ES5
Object.getPrototypeOf('James'); // TypeError: "James" is not an object
// ES2015
Object.getPrototypeOf('James'); // String.prototype

260. How do you set prototype of one object to another

You can use the Object.setPrototypeOf() method that sets the prototype (i.e., the internal
Prototype property) of a specified object to another object or null. For example, if you want to

set prototype of a square object to rectangle object would be as follows,

Object.setPrototypeOf(Square.prototype, Rectangle.prototype);
Object.setPrototypeOf({}, null);

261. How do you check whether an object can be extendable or not

The Object.isExtensible() method is used to determine if an object is extendable or not. i.e,
Whether it can have new properties added to it or not.

const newObject = {};
console.log(Object.isExtensible(newObject)); //true

Note: By default, all the objects are extendable. i.e, The new properties can be added or
modified.

262. How do you prevent an object to extend

The Object.preventExtensions() method is used to prevent new properties from ever being
added to an object. In other words, it prevents future extensions to the object. Let's see the
usage of this property,

const newObject = {};
Object.preventExtensions(newObject); // NOT extendable

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 101/176

263. What are the different ways to make an object non-extensible

You can mark an object non-extensible in 3 ways,

i. Object.preventExtensions
ii. Object.seal
iii. Object.freeze

var newObject = {};

Object.preventExtensions(newObject); // Prevent objects are non-extensible
Object.isExtensible(newObject); // false

var sealedObject = Object.seal({}); // Sealed objects are non-extensible
Object.isExtensible(sealedObject); // false

var frozenObject = Object.freeze({}); // Frozen objects are non-extensible
Object.isExtensible(frozenObject); // false

264. How do you define multiple properties on an object

The Object.defineProperties() method is used to define new or modify existing properties
directly on an object and returning the object. Let's define multiple properties on an empty
object,

const newObject = {};

Object.defineProperties(newObject, {
 newProperty1: {
 value: 'John',
 writable: true
 },
 newProperty2: {}
});

265. What is MEAN in javascript

try {
 Object.defineProperty(newObject, 'newProperty', { // Adding new property
 value: 100
 });
} catch (e) {
 console.log(e); // TypeError: Cannot define property newProperty, object is not extensib
}

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 102/176

The MEAN (MongoDB, Express, AngularJS, and Node.js) stack is the most popular open-source
JavaScript software tech stack available for building dynamic web apps where you can write both
the server-side and client-side halves of the web project entirely in JavaScript.

266. What Is Obfuscation in javascript

Obfuscation is the deliberate act of creating obfuscated javascript code(i.e, source or machine
code) that is difficult for humans to understand. It is something similar to encryption, but a
machine can understand the code and execute it. Let's see the below function before
Obfuscation,

function greeting() {
 console.log('Hello, welcome to JS world');
}

And after the code Obfuscation, it would be appeared as below,

267. Why do you need Obfuscation

Below are the few reasons for Obfuscation,

i. The Code size will be reduced. So data transfers between server and client will be fast.
ii. It hides the business logic from outside world and protects the code from others
iii. Reverse engineering is highly difficult
iv. The download time will be reduced

268. What is Minification

Minification is the process of removing all unnecessary characters(empty spaces are removed)
and variables will be renamed without changing it's functionality. It is also a type of obfuscation .

269. What are the advantages of minification

Normally it is recommended to use minification for heavy traffic and intensive requirements of
resources. It reduces file sizes with below benefits,

i. Decreases loading times of a web page
ii. Saves bandwidth usages

270. What are the differences between Obfuscation and Encryption

eval(function(p,a,c,k,e,d){e=function(c){return c};if(!''.replace(/^/,String)){while(c--){

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 103/176

Below are the main differences between Obfuscation and Encryption,

Feature Obfuscation Encryption

Definition
Changing the form of any
data in any other form

Changing the form of information to an
unreadable format by using a key

A key to
decode

It can be decoded without
any key

It is required

Target
data
format

It will be converted to a
complex form

Converted into an unreadable format

271. What are the common tools used for minification

There are many online/offline tools to minify the javascript files,

i. Google's Closure Compiler
ii. UglifyJS2
iii. jsmin
iv. javascript-minifier.com/
v. prettydiff.com

272. How do you perform form validation using javascript

JavaScript can be used to perform HTML form validation. For example, if the form field is empty,
the function needs to notify, and return false, to prevent the form being submitted. Lets' perform
user login in an html form,

<form name="myForm" onsubmit="return validateForm()" method="post">
User name: <input type="text" name="uname">
<input type="submit" value="Submit">
</form>

And the validation on user login is below,

function validateForm() {
 var x = document.forms["myForm"]["uname"].value;
 if (x == "") {
 alert("The username shouldn't be empty");
 return false;
 }
}

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 104/176

273. How do you perform form validation without javascript

You can perform HTML form validation automatically without using javascript. The validation
enabled by applying the required attribute to prevent form submission when the input is
empty.

<form method="post">
 <input type="text" name="uname" required>
 <input type="submit" value="Submit">
</form>

Note: Automatic form validation does not work in Internet Explorer 9 or earlier.

274. What are the DOM methods available for constraint validation

The below DOM methods are available for constraint validation on an invalid input,

i. checkValidity(): It returns true if an input element contains valid data.
ii. setCustomValidity(): It is used to set the validationMessage property of an input element.

Let's take an user login form with DOM validations

function myFunction() {
 var userName = document.getElementById("uname");
 if (!userName.checkValidity()) {
 document.getElementById("message").innerHTML = userName.validationMessage;
 } else {
 document.getElementById("message").innerHTML = "Entered a valid username";
 }
}

275. What are the available constraint validation DOM properties

Below are the list of some of the constraint validation DOM properties available,

i. validity: It provides a list of boolean properties related to the validity of an input element.
ii. validationMessage: It displays the message when the validity is false.
iii. willValidate: It indicates if an input element will be validated or not.

276. What are the list of validity properties

The validity property of an input element provides a set of properties related to the validity of
data.

i. customError: It returns true, if a custom validity message is set.
ii. patternMismatch: It returns true, if an element's value does not match its pattern attribute.
iii. rangeOverflow: It returns true, if an element's value is greater than its max attribute.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 105/176

iv. rangeUnderflow: It returns true, if an element's value is less than its min attribute.
v. stepMismatch: It returns true, if an element's value is invalid according to step attribute.
vi. tooLong: It returns true, if an element's value exceeds its maxLength attribute.
vii. typeMismatch: It returns true, if an element's value is invalid according to type attribute.
viii. valueMissing: It returns true, if an element with a required attribute has no value.
ix. valid: It returns true, if an element's value is valid.

277. Give an example usage of rangeOverflow property

If an element's value is greater than its max attribute then rangeOverflow property returns true.
For example, the below form submission throws an error if the value is more than 100,

<input id="age" type="number" max="100">
<button onclick="myOverflowFunction()">OK</button>

function myOverflowFunction() {
 if (document.getElementById("age").validity.rangeOverflow) {
 alert("The mentioned age is not allowed");
 }
}

278. Is enums feature available in javascript

No, javascript does not natively support enums. But there are different kinds of solutions to
simulate them even though they may not provide exact equivalents. For example, you can use
freeze or seal on object,

var DaysEnum = Object.freeze({"monday":1, "tuesday":2, "wednesday":3, ...})

279. What is an enum

An enum is a type restricting variables to one value from a predefined set of constants.
JavaScript has no enums but typescript provides built-in enum support.

enum Color {
 RED, GREEN, BLUE
}

280. How do you list all properties of an object

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 106/176

You can use the Object.getOwnPropertyNames() method which returns an array of all properties
found directly in a given object. Let's the usage of it in an example,

const newObject = {
 a: 1,
 b: 2,
 c: 3
};

console.log(Object.getOwnPropertyNames(newObject)); ["a", "b", "c"]

281. How do you get property descriptors of an object

You can use the Object.getOwnPropertyDescriptors() method which returns all own property
descriptors of a given object. The example usage of this method is below,

 const newObject = {
 a: 1,
 b: 2,
 c: 3
 };
const descriptorsObject = Object.getOwnPropertyDescriptors(newObject);
console.log(descriptorsObject.a.writable); //true
console.log(descriptorsObject.a.configurable); //true
console.log(descriptorsObject.a.enumerable); //true
console.log(descriptorsObject.a.value); // 1

282. What are the attributes provided by a property descriptor

A property descriptor is a record which has the following attributes

i. value: The value associated with the property
ii. writable: Determines whether the value associated with the property can be changed or not
iii. configurable: Returns true if the type of this property descriptor can be changed and if the

property can be deleted from the corresponding object.
iv. enumerable: Determines whether the property appears during enumeration of the

properties on the corresponding object or not.
v. set: A function which serves as a setter for the property
vi. get: A function which serves as a getter for the property

283. How do you extend classes

The extends keyword is used in class declarations/expressions to create a class which is a child
of another class. It can be used to subclass custom classes as well as built-in objects. The syntax
would be as below,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 107/176

class ChildClass extends ParentClass { ... }

Let's take an example of Square subclass from Polygon parent class,

 class Square extends Rectangle {
 constructor(length) {
 super(length, length);
 this.name = 'Square';
 }

 get area() {
 return this.width * this.height;
 }

 set area(value) {
 this.area = value;
 }
 }

284. How do I modify the url without reloading the page

The window.location.url property will be helpful to modify the url but it reloads the page.
HTML5 introduced the history.pushState() and history.replaceState() methods, which allow
you to add and modify history entries, respectively. For example, you can use pushState as
below,

window.history.pushState('page2', 'Title', '/page2.html');

285. How do you check whether an array includes a particular value or not

The Array#includes() method is used to determine whether an array includes a particular value
among its entries by returning either true or false. Let's see an example to find an
element(numeric and string) within an array.

var numericArray = [1, 2, 3, 4];
console.log(numericArray.includes(3)); // true

var stringArray = ['green', 'yellow', 'blue'];
console.log(stringArray.includes('blue')); //true

286. How do you compare scalar arrays

You can use length and every method of arrays to compare two scalar(compared directly using
===) arrays. The combination of these expressions can give the expected result,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 108/176

If you would like to compare arrays irrespective of order then you should sort them before,

287. How to get the value from get parameters

The new URL() object accepts the url string and searchParams property of this object can be
used to access the get parameters. Remember that you may need to use polyfill or
window.location to access the URL in older browsers(including IE).

288. How do you print numbers with commas as thousand separators

You can use the Number.prototype.toLocaleString() method which returns a string with a
language-sensitive representation such as thousand separator,currency etc of this number.

function convertToThousandFormat(x){
 return x.toLocaleString(); // 12,345.679
}

console.log(convertToThousandFormat(12345.6789));

289. What is the difference between java and javascript

Both are totally unrelated programming languages and no relation between them. Java is
statically typed, compiled, runs on its own VM. Whereas Javascript is dynamically typed,
interpreted, and runs in a browser and nodejs environments. Let's see the major differences in a
tabular format,

Feature Java JavaScript

const arrayFirst = [1,2,3,4,5];
const arraySecond = [1,2,3,4,5];
console.log(arrayFirst.length === arraySecond.length && arrayFirst.every((value, index) =>

const arrayFirst = [2,3,1,4,5];
const arraySecond = [1,2,3,4,5];
console.log(arrayFirst.length === arraySecond.length && arrayFirst.sort().every((value, in

let urlString = "http://www.some-domain.com/about.html?x=1&y=2&z=3"; //window.location.hre
let url = new URL(urlString);
let parameterZ = url.searchParams.get("z");
console.log(parameterZ); // 3

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 109/176

Feature Java JavaScript

Typed
It's a strongly typed
language

It's a dynamic typed language

Paradigm
Object oriented
programming

Prototype based programming

Scoping Block scoped Function-scoped

Concurrency Thread based event based

Memory Uses more memory
Uses less memory. Hence it will be used for
web pages

290. Is javascript supports namespace

JavaScript doesn’t support namespace by default. So if you create any element(function, method,
object, variable) then it becomes global and pollutes the global namespace. Let's take an
example of defining two functions without any namespace,

function func1() {
 console.log("This is a first definition");

}
function func1() {
 console.log("This is a second definition");
}
func1(); // This is a second definition

It always calls the second function definition. In this case, namespace will solve the name collision
problem.

291. How do you declare namespace

Even though JavaScript lacks namespaces, we can use Objects , IIFE to create namespaces.

i. Using Object Literal Notation: Let's wrap variables and functions inside an Object literal
which acts as a namespace. After that you can access them using object notation

var namespaceOne = {
 function func1() {
 console.log("This is a first definition");
 }
}
var namespaceTwo = {
 function func1() {
 console.log("This is a second definition");
 }

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 110/176

 }
namespaceOne.func1(); // This is a first definition
namespaceTwo.func1(); // This is a second definition

i. Using IIFE (Immediately invoked function expression): The outer pair of parentheses of IIFE
creates a local scope for all the code inside of it and makes the anonymous function a
function expression. Due to that, you can create the same function in two different function
expressions to act as a namespace.

(function() {
 function fun1(){
 console.log("This is a first definition");
 } fun1();
}());

(function() {
 function fun1(){
 console.log("This is a second definition");
 } fun1();
 }());

i. Using a block and a let/const declaration: In ECMAScript 6, you can simply use a block and
a let declaration to restrict the scope of a variable to a block.

 {
 let myFunction= function fun1(){
 console.log("This is a first definition");
 }
 myFunction();
 }
 //myFunction(): ReferenceError: myFunction is not defined.

 {
 let myFunction= function fun1(){
 console.log("This is a second definition");
 }
 myFunction();
 }
 //myFunction(): ReferenceError: myFunction is not defined.

292. How do you invoke javascript code in an iframe from parent page

Initially iFrame needs to be accessed using either document.getElementBy or window.frames .
After that contentWindow property of iFrame gives the access for targetFunction

document.getElementById('targetFrame').contentWindow.targetFunction();
window.frames[0].frameElement.contentWindow.targetFunction(); // Accessing iframe this way

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 111/176

293. How do get the timezone offset from date

You can use the getTimezoneOffset method of the date object. This method returns the time
zone difference, in minutes, from current locale (host system settings) to UTC

var offset = new Date().getTimezoneOffset();
console.log(offset); // -480

294. How do you load CSS and JS files dynamically

You can create both link and script elements in the DOM and append them as child to head tag.
Let's create a function to add script and style resources as below,

function loadAssets(filename, filetype) {
 if (filetype == "css") { // External CSS file
 var fileReference = document.createElement("link")
 fileReference.setAttribute("rel", "stylesheet");
 fileReference.setAttribute("type", "text/css");
 fileReference.setAttribute("href", filename);
 } else if (filetype == "js") { // External JavaScript file
 var fileReference = document.createElement('script');
 fileReference.setAttribute("type", "text/javascript");
 fileReference.setAttribute("src", filename);
 }
 if (typeof fileReference != "undefined")
 document.getElementsByTagName("head")[0].appendChild(fileReference)
 }

295. What are the different methods to find HTML elements in DOM

If you want to access any element in an HTML page, you need to start with accessing the
document object. Later you can use any of the below methods to find the HTML element,

i. document.getElementById(id): It finds an element by Id
ii. document.getElementsByTagName(name): It finds an element by tag name
iii. document.getElementsByClassName(name): It finds an element by class name

296. What is jQuery

jQuery is a popular cross-browser JavaScript library that provides Document Object Model
(DOM) traversal, event handling, animations and AJAX interactions by minimizing the
discrepancies across browsers. It is widely famous with its philosophy of “Write less, do more”.
For example, you can display welcome message on the page load using jQuery as below,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 112/176

Note: You can download it from jquery's official site or install it from CDNs, like google.

297. What is V8 JavaScript engine

V8 is an open source high-performance JavaScript engine used by the Google Chrome browser,
written in C++. It is also being used in the node.js project. It implements ECMAScript and
WebAssembly, and runs on Windows 7 or later, macOS 10.12+, and Linux systems that use x64,
IA-32, ARM, or MIPS processors. Note: It can run standalone, or can be embedded into any C++
application.

298. Why do we call javascript as dynamic language

JavaScript is a loosely typed or a dynamic language because variables in JavaScript are not
directly associated with any particular value type, and any variable can be assigned/reassigned
with values of all types.

let age = 50; // age is a number now
age = 'old'; // age is a string now
age = true; // age is a boolean

299. What is a void operator

The void operator evaluates the given expression and then returns undefined(i.e, without
returning value). The syntax would be as below,

void (expression)
void expression

Let's display a message without any redirection or reload

Click here to see a message

Note: This operator is often used to obtain the undefined primitive value, using "void(0)".

300. How to set the cursor to wait

The cursor can be set to wait in JavaScript by using the property "cursor". Let's perform this
behavior on page load using the below function.

$(document).ready(function(){ // It selects the document and apply the function on page lo
 alert('Welcome to jQuery world');
});

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 113/176

function myFunction() {
window.document.body.style.cursor = "wait";
}

and this function invoked on page load

<body onload="myFunction()">

301. How do you create an infinite loop

You can create infinite loops using for and while loops without using any expressions. The for
loop construct or syntax is better approach in terms of ESLint and code optimizer tools,

for (;;) {}
while(true) {
}

302. Why do you need to avoid with statement

JavaScript's with statement was intended to provide a shorthand for writing recurring accesses to
objects. So it can help reduce file size by reducing the need to repeat a lengthy object reference
without performance penalty. Let's take an example where it is used to avoid redundancy when
accessing an object several times.

a.b.c.greeting = 'welcome';
a.b.c.age = 32;

Using with it turns this into:

with(a.b.c) {
 greeting = "welcome";
 age = 32;
}

But this with statement creates performance problems since one cannot predict whether an
argument will refer to a real variable or to a property inside the with argument.

303. What is the output of below for loops

for (var i = 0; i < 4; i++) { // global scope
 setTimeout(() => console.log(i));
}

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 114/176

for (let i = 0; i < 4; i++) { // block scope
 setTimeout(() => console.log(i));
}

The output of the above for loops is 4 4 4 4 and 0 1 2 3

Explanation: Due to the event queue/loop of javascript, the setTimeout callback function is
called after the loop has been executed. Since the variable i is declared with the var keyword it
became a global variable and the value was equal to 4 using iteration when the time setTimeout
function is invoked. Hence, the output of the first loop is 4 4 4 4 .

Whereas in the second loop, the variable i is declared as the let keyword it becomes a block
scoped variable and it holds a new value(0, 1 ,2 3) for each iteration. Hence, the output of the
first loop is 0 1 2 3 .

304. List down some of the features of ES6

Below are the list of some new features of ES6,

i. Support for constants or immutable variables
ii. Block-scope support for variables, constants and functions
iii. Arrow functions
iv. Default parameters
v. Rest and Spread Parameters
vi. Template Literals
vii. Multi-line Strings
viii. Destructuring Assignment
ix. Enhanced Object Literals
x. Promises
xi. Classes
xii. Modules

305. What is ES6

ES6 is the sixth edition of the javascript language and it was released in June 2015. It was initially
known as ECMAScript 6 (ES6) and later renamed to ECMAScript 2015. Almost all the modern
browsers support ES6 but for the old browsers there are many transpilers, like Babel.js etc.

306. Can I redeclare let and const variables

No, you cannot redeclare let and const variables. If you do, it throws below error

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 115/176

Uncaught SyntaxError: Identifier 'someVariable' has already been declared

Explanation: The variable declaration with var keyword refers to a function scope and the
variable is treated as if it were declared at the top of the enclosing scope due to hoisting feature.
So all the multiple declarations contributing to the same hoisted variable without any error. Let's
take an example of re-declaring variables in the same scope for both var and let/const variables.

var name = 'John';
function myFunc() {
 var name = 'Nick';
 var name = 'Abraham'; // Re-assigned in the same function block
 alert(name); // Abraham
}
myFunc();
alert(name); // John

The block-scoped multi-declaration throws syntax error,

307. Is const variable makes the value immutable

No, the const variable doesn't make the value immutable. But it disallows subsequent
assignments(i.e, You can declare with assignment but can't assign another value later)

const userList = [];
userList.push('John'); // Can mutate even though it can't re-assign
console.log(userList); // ['John']

308. What are default parameters

In E5, we need to depend on logical OR operators to handle default values of function
parameters. Whereas in ES6, Default function parameters feature allows parameters to be
initialized with default values if no value or undefined is passed. Let's compare the behavior with
an examples,

let name = 'John';
function myFunc() {
 let name = 'Nick';
 let name = 'Abraham'; // Uncaught SyntaxError: Identifier 'name' has already been decl
 alert(name);
}

myFunc();
alert(name);

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 116/176

//ES5
var calculateArea = function(height, width) {
 height = height || 50;
 width = width || 60;

 return width * height;
}
console.log(calculateArea()); //300

The default parameters makes the initialization more simpler,

//ES6
var calculateArea = function(height = 50, width = 60) {
 return width * height;
}

console.log(calculateArea()); //300

309. What are template literals

Template literals or template strings are string literals allowing embedded expressions. These are
enclosed by the back-tick (`) character instead of double or single quotes. In E6, this feature
enables using dynamic expressions as below,

var greeting = `Welcome to JS World, Mr. ${firstName} ${lastName}.`

In ES5, you need break string like below,

var greeting = 'Welcome to JS World, Mr. ' + firstName + ' ' + lastName.`

Note: You can use multi-line strings and string interpolation features with template literals.

310. How do you write multi-line strings in template literals

In ES5, you would have to use newline escape characters('\n') and concatenation symbols(+) in
order to get multi-line strings.

console.log('This is string sentence 1\n' +
'This is string sentence 2');

Whereas in ES6, You don't need to mention any newline sequence character,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 117/176

console.log(`This is string sentence
'This is string sentence 2`);

311. What are nesting templates

The nesting template is a feature supported within template literals syntax to allow inner
backticks inside a placeholder ${ } within the template. For example, the below nesting template
is used to display the icons based on user permissions whereas outer template checks for
platform type,

const iconStyles = `icon ${ isMobilePlatform() ? '' :
 `icon-${user.isAuthorized ? 'submit' : 'disabled'}` }`;

You can write the above use case without nesting template features as well. However, the nesting
template feature is more compact and readable.

//Without nesting templates
 const iconStyles = `icon ${ isMobilePlatform() ? '' :
 (user.isAuthorized ? 'icon-submit' : 'icon-disabled'}`;

312. What are tagged templates

Tagged templates are the advanced form of templates in which tags allow you to parse template
literals with a function. The tag function accepts the first parameter as an array of strings and
remaining parameters as expressions. This function can also return manipulated strings based on
parameters. Let's see the usage of this tagged template behavior of an IT professional skill set in
an organization,

var user1 = 'John';
var skill1 = 'JavaScript';
var experience1 = 15;

var user2 = 'Kane';
var skill2 = 'JavaScript';
var experience2 = 5;

function myInfoTag(strings, userExp, experienceExp, skillExp) {
 var str0 = strings[0]; // "Mr/Ms. "
 var str1 = strings[1]; // " is a/an "
 var str2 = strings[2]; // "in"

 var expertiseStr;
 if (experienceExp > 10){
 expertiseStr = 'expert developer';
 } else if(skillExp > 5 && skillExp <= 10) {

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 118/176

 expertiseStr = 'senior developer';
 } else {
 expertiseStr = 'junior developer';
 }

 return ${str0}${userExp}${str1}${expertiseStr}${str2}${skillExp};
}

var output1 = myInfoTag`Mr/Ms. ${ user1 } is a/an ${ experience1 } in ${skill1}`;
var output2 = myInfoTag`Mr/Ms. ${ user2 } is a/an ${ experience2 } in ${skill2}`;

console.log(output1);// Mr/Ms. John is a/an expert developer in JavaScript
console.log(output2);// Mr/Ms. Kane is a/an junior developer in JavaScript

313. What are raw strings

ES6 provides a raw strings feature using the String.raw() method which is used to get the raw
string form of template strings. This feature allows you to access the raw strings as they were
entered, without processing escape sequences. For example, the usage would be as below,

var calculationString = String.raw `The sum of numbers is \n${1+2+3+4}!`;
console.log(calculationString); // The sum of numbers is 10

If you don't use raw strings, the newline character sequence will be processed by displaying the
output in multiple lines

var calculationString = `The sum of numbers is \n${1+2+3+4}!`;
console.log(calculationString);
// The sum of numbers is
// 10

Also, the raw property is available on the first argument to the tag function

function tag(strings) {
 console.log(strings.raw[0]);
}

314. What is destructuring assignment

The destructuring assignment is a JavaScript expression that makes it possible to unpack values
from arrays or properties from objects into distinct variables. Let's get the month values from an
array using destructuring assignment

var [one, two, three] = ['JAN', 'FEB', 'MARCH'];

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 119/176

console.log(one); // "JAN"
console.log(two); // "FEB"
console.log(three); // "MARCH"

and you can get user properties of an object using destructuring assignment,

var {name, age} = {name: 'John', age: 32};

console.log(name); // John
console.log(age); // 32

315. What are default values in destructuring assignment

A variable can be assigned a default value when the value unpacked from the array or object is
undefined during destructuring assignment. It helps to avoid setting default values separately for
each assignment. Let's take an example for both arrays and object use cases,

Arrays destructuring:

var x, y, z;

[x=2, y=4, z=6] = [10];
console.log(x); // 10
console.log(y); // 4
console.log(z); // 6

Objects destructuring:

var {x=2, y=4, z=6} = {x: 10};

console.log(x); // 10
console.log(y); // 4
console.log(z); // 6

316. How do you swap variables in destructuring assignment

If you don't use destructuring assignment, swapping two values requires a temporary variable.
Whereas using a destructuring feature, two variable values can be swapped in one destructuring
expression. Let's swap two number variables in array destructuring assignment,

var x = 10, y = 20;

[x, y] = [y, x];
console.log(x); // 20
console.log(y); // 10

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 120/176

317. What are enhanced object literals

Object literals make it easy to quickly create objects with properties inside the curly braces. For
example, it provides shorter syntax for common object property definition as below.

//ES6
var x = 10, y = 20
obj = { x, y }
console.log(obj); // {x: 10, y:20}
//ES5
var x = 10, y = 20
obj = { x : x, y : y}
console.log(obj); // {x: 10, y:20}

318. What are dynamic imports

The dynamic imports using import() function syntax allows us to load modules on demand by
using promises or the async/await syntax. Currently this feature is in stage4 proposal. The main
advantage of dynamic imports is reduction of our bundle's sizes, the size/payload response of
our requests and overall improvements in the user experience. The syntax of dynamic imports
would be as below,

import('./Module').then(Module => Module.method());

319. What are the use cases for dynamic imports

Below are some of the use cases of using dynamic imports over static imports,

i. Import a module on-demand or conditionally. For example, if you want to load a polyfill on
legacy browser

if (isLegacyBrowser()) {
 import(···)
 .then(···);
}

i. Compute the module specifier at runtime. For example, you can use it for
internationalization.

import(`messages_${getLocale()}.js`).then(···);

i. Import a module from within a regular script instead a module.

320. What are typed arrays

https://github.com/tc39/proposal-dynamic-import

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 121/176

Typed arrays are array-like objects from ECMAScript 6 API for handling binary data. JavaScript
provides 8 Typed array types,

i. Int8Array: An array of 8-bit signed integers
ii. Int16Array: An array of 16-bit signed integers
iii. Int32Array: An array of 32-bit signed integers
iv. Uint8Array: An array of 8-bit unsigned integers
v. Uint16Array: An array of 16-bit unsigned integers
vi. Uint32Array: An array of 32-bit unsigned integers
vii. Float32Array: An array of 32-bit floating point numbers
viii. Float64Array: An array of 64-bit floating point numbers

For example, you can create an array of 8-bit signed integers as below

const a = new Int8Array();
// You can pre-allocate n bytes
const bytes = 1024
const a = new Int8Array(bytes)

321. What are the advantages of module loaders

The module loaders provides the below features,

i. Dynamic loading
ii. State isolation
iii. Global namespace isolation
iv. Compilation hooks
v. Nested virtualization

322. What is collation

Collation is used for sorting a set of strings and searching within a set of strings. It is
parameterized by locale and aware of Unicode. Let's take comparison and sorting features,

i. Comparison:

i. Sorting:

var list = ["ä", "a", "z"]; // In German, "ä" sorts with "a" Whereas in Swedish, "ä" so
var l10nDE = new Intl.Collator("de");
var l10nSV = new Intl.Collator("sv");
console.log(l10nDE.compare("ä", "z") === -1); // true
console.log(l10nSV.compare("ä", "z") === +1); // true

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 122/176

323. What is for...of statement

The for...of statement creates a loop iterating over iterable objects or elements such as built-in
String, Array, Array-like objects (like arguments or NodeList), TypedArray, Map, Set, and user-
defined iterables. The basic usage of for...of statement on arrays would be as below,

let arrayIterable = [10, 20, 30, 40, 50];

for (let value of arrayIterable) {
 value ++;
 console.log(value); // 11 21 31 41 51
}

324. What is the output of below spread operator array

[...'John Resig']

The output of the array is ['J', 'o', 'h', 'n', '', 'R', 'e', 's', 'i', 'g'] Explanation: The string is an iterable
type and the spread operator within an array maps every character of an iterable to one element.
Hence, each character of a string becomes an element within an Array.

325. Is PostMessage secure

Yes, postMessages can be considered very secure as long as the programmer/developer is
careful about checking the origin and source of an arriving message. But if you try to
send/receive a message without verifying its source will create cross-site scripting attacks.

326. What are the problems with postmessage target origin as wildcard

The second argument of postMessage method specifies which origin is allowed to receive the
message. If you use the wildcard “*” as an argument then any origin is allowed to receive the
message. In this case, there is no way for the sender window to know if the target window is at
the target origin when sending the message. If the target window has been navigated to another
origin, the other origin would receive the data. Hence, this may lead to XSS vulnerabilities.

targetWindow.postMessage(message, '*');

var list = ["ä", "a", "z"]; // In German, "ä" sorts with "a" Whereas in Swedish, "ä" so
var l10nDE = new Intl.Collator("de");
var l10nSV = new Intl.Collator("sv");
console.log(list.sort(l10nDE.compare)) // ["a", "ä", "z"]
console.log(list.sort(l10nSV.compare)) // ["a", "z", "ä"]

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 123/176

327. How do you avoid receiving postMessages from attackers

Since the listener listens for any message, an attacker can trick the application by sending a
message from the attacker’s origin, which gives an impression that the receiver received the
message from the actual sender’s window. You can avoid this issue by validating the origin of the
message on the receiver's end using the “message.origin” attribute. For examples, let's check the
sender's origin http://www.some-sender.com on receiver side www.some-receiver.com,

//Listener on http://www.some-receiver.com/
window.addEventListener("message", function(message){
 if(/^http://www\.some-sender\.com$/.test(message.origin)){
 console.log('You received the data from valid sender', message.data);
 }
});

328. Can I avoid using postMessages completely

You cannot avoid using postMessages completely(or 100%). Even though your application
doesn’t use postMessage considering the risks, a lot of third party scripts use postMessage to
communicate with the third party service. So your application might be using postMessage
without your knowledge.

329. Is postMessages synchronous

The postMessages are synchronous in IE8 browser but they are asynchronous in IE9 and all other
modern browsers (i.e, IE9+, Firefox, Chrome, Safari).Due to this asynchronous behaviour, we use
a callback mechanism when the postMessage is returned.

330. What paradigm is Javascript

JavaScript is a multi-paradigm language, supporting imperative/procedural programming,
Object-Oriented Programming and functional programming. JavaScript supports Object-
Oriented Programming with prototypical inheritance.

331. What is the difference between internal and external javascript

Internal JavaScript: It is the source code within the script tag. External JavaScript: The source
code is stored in an external file(stored with .js extension) and referred with in the tag.

332. Is JavaScript faster than server side script

Yes, JavaScript is faster than server side script. Because JavaScript is a client-side script it does not
require any web server’s help for its computation or calculation. So JavaScript is always faster
than any server-side script like ASP, PHP, etc.

http://www.some-sender.com/
https://md2pdf.netlify.app/www.some-receiver.com

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 124/176

333. How do you get the status of a checkbox

You can apply the checked property on the selected checkbox in the DOM. If the value is True
means the checkbox is checked otherwise it is unchecked. For example, the below HTML
checkbox element can be access using javascript as below,

 <input type="checkbox" name="checkboxname" value="Agree"> Agree the conditions

console.log(document.getElementById(‘checkboxname’).checked); // true or false

334. What is the purpose of double tilde operator

The double tilde operator(~~) is known as double NOT bitwise operator. This operator is going
to be a quicker substitute for Math.floor().

335. How do you convert character to ASCII code

You can use the String.prototype.charCodeAt() method to convert string characters to ASCII
numbers. For example, let's find ASCII code for the first letter of 'ABC' string,

"ABC".charCodeAt(0) // returns 65

Whereas String.fromCharCode() method converts numbers to equal ASCII characters.

String.fromCharCode(65,66,67); // returns 'ABC'

336. What is ArrayBuffer

An ArrayBuffer object is used to represent a generic, fixed-length raw binary data buffer. You can
create it as below,

let buffer = new ArrayBuffer(16); // create a buffer of length 16
alert(buffer.byteLength); // 16

To manipulate an ArrayBuffer, we need to use a “view” object.

//Create a DataView referring to the buffer
 let view = new DataView(buffer);

337. What is the output of below string expression

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 125/176

console.log("Welcome to JS world"[0])

The output of the above expression is "W". Explanation: The bracket notation with specific index
on a string returns the character at a specific location. Hence, it returns the character "W" of the
string. Since this is not supported in IE7 and below versions, you may need to use the .charAt()
method to get the desired result.

338. What is the purpose of Error object

The Error constructor creates an error object and the instances of error objects are thrown when
runtime errors occur. The Error object can also be used as a base object for user-defined
exceptions. The syntax of error object would be as below,

new Error([message[, fileName[, lineNumber]]])

You can throw user defined exceptions or errors using Error object in try...catch block as below,

try {
 if(withdraw > balance)
 throw new Error("Oops! You don't have enough balance");
} catch (e) {
 console.log(e.name + ': ' + e.message);
}

339. What is the purpose of EvalError object

The EvalError object indicates an error regarding the global eval() function. Even though this
exception is not thrown by JavaScript anymore, the EvalError object remains for compatibility.
The syntax of this expression would be as below,

new EvalError([message[, fileName[, lineNumber]]])

You can throw EvalError with in try...catch block as below,

340. What are the list of cases error thrown from non-strict mode to strict mode

try {
 throw new EvalError('Eval function error', 'someFile.js', 100);
} catch (e) {
 console.log(e.message, e.name, e.fileName); // "Eval function error", "Eval

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 126/176

When you apply 'use strict'; syntax, some of the below cases will throw a SyntaxError before
executing the script

i. When you use Octal syntax

var n = 022;

i. Using with statement
ii. When you use delete operator on a variable name
iii. Using eval or arguments as variable or function argument name
iv. When you use newly reserved keywords
v. When you declare a function in a block

if (someCondition) { function f() {} }

Hence, the errors from above cases are helpful to avoid errors in development/production
environments.

341. Is all objects have prototypes

No. All objects have prototypes except for the base object which is created by the user, or an
object that is created using the new keyword.

342. What is the difference between a parameter and an argument

Parameter is the variable name of a function definition whereas an argument represents the
value given to a function when it is invoked. Let's explain this with a simple function

function myFunction(parameter1, parameter2, parameter3) {
 console.log(arguments[0]) // "argument1"
 console.log(arguments[1]) // "argument2"
 console.log(arguments[2]) // "argument3"
}
myFunction("argument1", "argument2", "argument3")

343. What is the purpose of some method in arrays

The some() method is used to test whether at least one element in the array passes the test
implemented by the provided function. The method returns a boolean value. Let's take an
example to test for any odd elements,

var array = [1, 2, 3, 4, 5, 6 ,7, 8, 9, 10];

var odd = element ==> element % 2 !== 0;

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 127/176

console.log(array.some(odd)); // true (the odd element exists)

344. How do you combine two or more arrays

The concat() method is used to join two or more arrays by returning a new array containing all
the elements. The syntax would be as below,

array1.concat(array2, array3, ..., arrayX)

Let's take an example of array's concatenation with veggies and fruits arrays,

 var veggies = ["Tomato", "Carrot", "Cabbage"];
 var fruits = ["Apple", "Orange", "Pears"];
 var veggiesAndFruits = veggies.concat(fruits);
 console.log(veggiesAndFruits); // Tomato, Carrot, Cabbage, Apple, Orange, Pears

345. What is the difference between Shallow and Deep copy

There are two ways to copy an object,

Shallow Copy: Shallow copy is a bitwise copy of an object. A new object is created that has an
exact copy of the values in the original object. If any of the fields of the object are references to
other objects, just the reference addresses are copied i.e., only the memory address is copied.

Example

var empDetails = {
 name: "John", age: 25, expertise: "Software Developer"
}

to create a duplicate

var empDetailsShallowCopy = empDetails //Shallow copying!

if we change some property value in the duplicate one like this:

empDetailsShallowCopy.name = "Johnson"

The above statement will also change the name of empDetails , since we have a shallow copy.
That means we're losing the original data as well.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 128/176

Deep copy: A deep copy copies all fields, and makes copies of dynamically allocated memory
pointed to by the fields. A deep copy occurs when an object is copied along with the objects to
which it refers.

Example

var empDetails = {
 name: "John", age: 25, expertise: "Software Developer"
}

Create a deep copy by using the properties from the original object into new variable

var empDetailsDeepCopy = {
 name: empDetails.name,
 age: empDetails.age,
 expertise: empDetails.expertise
}

Now if you change empDetailsDeepCopy.name , it will only affect empDetailsDeepCopy & not
empDetails

346. How do you create specific number of copies of a string

The repeat() method is used to construct and return a new string which contains the specified
number of copies of the string on which it was called, concatenated together. Remember that
this method has been added to the ECMAScript 2015 specification. Let's take an example of
Hello string to repeat it 4 times,

'Hello'.repeat(4); // 'HelloHelloHelloHello'

347. How do you return all matching strings against a regular expression

The matchAll() method can be used to return an iterator of all results matching a string against
a regular expression. For example, the below example returns an array of matching string results
against a regular expression,

let regexp = /Hello(\d?))/g;
let greeting = 'Hello1Hello2Hello3';

let greetingList = [...greeting.matchAll(regexp)];

console.log(greetingList[0]); //Hello1
console.log(greetingList[1]); //Hello2
console.log(greetingList[2]); //Hello3

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 129/176

348. How do you trim a string at the beginning or ending

The trim method of string prototype is used to trim on both sides of a string. But if you want to
trim especially at the beginning or ending of the string then you can use trimStart/trimLeft
and trimEnd/trimRight methods. Let's see an example of these methods on a greeting message,

var greeting = ' Hello, Goodmorning! ';

console.log(greeting); // " Hello, Goodmorning! "
console.log(greeting.trimStart()); // "Hello, Goodmorning! "
console.log(greeting.trimLeft()); // "Hello, Goodmorning! "

console.log(greeting.trimEnd()); // " Hello, Goodmorning!"
console.log(greeting.trimRight()); // " Hello, Goodmorning!"

349. What is the output of below console statement with unary operator

Let's take console statement with unary operator as given below,

console.log(+ 'Hello');

The output of the above console log statement returns NaN. Because the element is prefixed by
the unary operator and the JavaScript interpreter will try to convert that element into a number
type. Since the conversion fails, the value of the statement results in NaN value.

350. Does javascript uses mixins

351. What is a thunk function

A thunk is just a function which delays the evaluation of the value. It doesn’t take any arguments
but gives the value whenever you invoke the thunk. i.e, It is used not to execute now but it will
be sometime in the future. Let's take a synchronous example,

const add = (x,y) => x + y;

const thunk = () => add(2,3);

thunk() // 5

352. What are asynchronous thunks

The asynchronous thunks are useful to make network requests. Let's see an example of network
requests,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 130/176

function fetchData(fn){
 fetch('https://jsonplaceholder.typicode.com/todos/1')
 .then(response => response.json())
 .then(json => fn(json))
}

const asyncThunk = function (){
 return fetchData(function getData(data){
 console.log(data)
 })
}

asyncThunk()

The getData function won't be called immediately but it will be invoked only when the data is
available from API endpoint. The setTimeout function is also used to make our code
asynchronous. The best real time example is redux state management library which uses the
asynchronous thunks to delay the actions to dispatch.

353. What is the output of below function calls

Code snippet:

const circle = {
 radius: 20,
 diameter() {
 return this.radius * 2;
 },
 perimeter: () => 2 * Math.PI * this.radius
};

console.log(circle.diameter()); console.log(circle.perimeter());

Output:

The output is 40 and NaN. Remember that diameter is a regular function, whereas the value of
perimeter is an arrow function. The this keyword of a regular function(i.e, diameter) refers to
the surrounding scope which is a class(i.e, Shape object). Whereas this keyword of perimeter
function refers to the surrounding scope which is a window object. Since there is no radius
property on window objects it returns an undefined value and the multiple of number value
returns NaN value.

354. How to remove all line breaks from a string

The easiest approach is using regular expressions to detect and replace newlines in the string. In
this case, we use replace function along with string to replace with, which in our case is an empty
string.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 131/176

function remove_linebreaks(var message) {
 return message.replace(/[\r\n]+/gm, "");
}

In the above expression, g and m are for global and multiline flags.

355. What is the difference between reflow and repaint

A repaint occurs when changes are made which affect the visibility of an element, but not its
layout. Examples of this include outline, visibility, or background color. A reflow involves changes
that affect the layout of a portion of the page (or the whole page). Resizing the browser window,
changing the font, content changing (such as user typing text), using JavaScript methods
involving computed styles, adding or removing elements from the DOM, and changing an
element's classes are a few of the things that can trigger reflow. Reflow of an element causes the
subsequent reflow of all child and ancestor elements as well as any elements following it in the
DOM.

356. What happens with negating an array

Negating an array with ! character will coerce the array into a boolean. Since Arrays are
considered to be truthy So negating it will return false .

console.log(![]); // false

357. What happens if we add two arrays

If you add two arrays together, it will convert them both to strings and concatenate them. For
example, the result of adding arrays would be as below,

console.log(['a'] + ['b']); // "ab"
console.log([] + []); // ""
console.log(![] + []); // "false", because ![] returns false.

358. What is the output of prepend additive operator on falsy values

If you prepend the additive(+) operator on falsy values(null, undefined, NaN, false, ""), the falsy
value converts to a number value zero. Let's display them on browser console as below,

console.log(+null); // 0
console.log(+undefined);// NaN
console.log(+false); // 0
console.log(+NaN); // NaN
console.log(+""); // 0

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 132/176

359. How do you create self string using special characters

The self string can be formed with the combination of []()!+ characters. You need to
remember the below conventions to achieve this pattern.

i. Since Arrays are truthful values, negating the arrays will produce false: ![] === false
ii. As per JavaScript coercion rules, the addition of arrays together will toString them: [] + []

=== ""
iii. Prepend an array with + operator will convert an array to false, the negation will make it true

and finally converting the result will produce value '1': +(!(+[])) === 1

By applying the above rules, we can derive below conditions

![] + [] === "false"
+!+[] === 1

Now the character pattern would be created as below,

360. How do you remove falsy values from an array

You can apply the filter method on the array by passing Boolean as a parameter. This way it
removes all falsy values(0, undefined, null, false and "") from the array.

const myArray = [false, null, 1,5, undefined]
myArray.filter(Boolean); // [1, 5] // is same as myArray.filter(x => x);

361. How do you get unique values of an array

You can get unique values of an array with the combination of Set and rest
expression/spread(...) syntax.

 s e l f
 ^^^^^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^

 (![] + [])[3] + (![] + [])[4] + (![] + [])[2] + (![] + [])[0]
 ^^^^^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^
(![] + [])[+!+[]+!+[]+!+[]] +
(![] + [])[+!+[]+!+[]+!+[]+!+[]] +
(![] + [])[+!+[]+!+[]] +
(![] + [])[+[]]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(![]+[])[+!+[]+!+[]+!+[]]+(![]+[])[+!+[]+!+[]+!+[]+!+[]]+(![]+[])[+!+[]+!+[]]+(![]+[])[+[]

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 133/176

console.log([...new Set([1, 2, 4, 4, 3])]); // [1, 2, 4, 3]

362. What is destructuring aliases

Sometimes you would like to have a destructured variable with a different name than the
property name. In that case, you'll use a : newName to specify a name for the variable. This
process is called destructuring aliases.

const obj = { x: 1 };
// Grabs obj.x as as { otherName }
const { x: otherName } = obj;

363. How do you map the array values without using map method

You can map the array values without using the map method by just using the from method of
Array. Let's map city names from Countries array,

364. How do you empty an array

You can empty an array quickly by setting the array length to zero.

let cities = ['Singapore', 'Delhi', 'London'];
cities.length = 0; // cities becomes []

365. How do you rounding numbers to certain decimals

You can round numbers to a certain number of decimals using toFixed method from native
javascript.

const countries = [
 { name: 'India', capital: 'Delhi' },
 { name: 'US', capital: 'Washington' },
 { name: 'Russia', capital: 'Moscow' },
 { name: 'Singapore', capital: 'Singapore' },
 { name: 'China', capital: 'Beijing' },
 { name: 'France', capital: 'Paris' },
];

const cityNames = Array.from(countries, ({ capital}) => capital);
console.log(cityNames); // ['Delhi, 'Washington', 'Moscow', 'Singapore', 'Beijing', 'Paris

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 134/176

let pie = 3.141592653;
pie = pie.toFixed(3); // 3.142

366. What is the easiest way to convert an array to an object

You can convert an array to an object with the same data using spread(...) operator.

var fruits = ["banana", "apple", "orange", "watermelon"];
var fruitsObject = {...fruits};
console.log(fruitsObject); // {0: "banana", 1: "apple", 2: "orange", 3: "watermelon"}

367. How do you create an array with some data

You can create an array with some data or an array with the same values using fill method.

var newArray = new Array(5).fill("0");
console.log(newArray); // ["0", "0", "0", "0", "0"]

368. What are the placeholders from console object

Below are the list of placeholders available from console object,

i. %o — It takes an object,
ii. %s — It takes a string,
iii. %d — It is used for a decimal or integer These placeholders can be represented in the

console.log as below

369. Is it possible to add CSS to console messages

Yes, you can apply CSS styles to console messages similar to html text on the web page.

The text will be displayed as below, Screenshot

Note: All CSS styles can be applied to console messages.

const user = { "name":"John", "id": 1, "city": "Delhi"};
console.log("Hello %s, your details %o are available in the object form", "John", user); /

console.log('%c The text has blue color, with large font and red background', 'color: blue

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 135/176

370. What is the purpose of dir method of console object

The console.dir() is used to display an interactive list of the properties of the specified
JavaScript object as JSON.

const user = { "name":"John", "id": 1, "city": "Delhi"};
console.dir(user);

The user object displayed in JSON representation Screenshot

371. Is it possible to debug HTML elements in console

Yes, it is possible to get and debug HTML elements in the console just like inspecting elements.

const element = document.getElementsByTagName("body")[0];
console.log(element);

It prints the HTML element in the console,

Screenshot

372. How do you display data in a tabular format using console object

The console.table() is used to display data in the console in a tabular format to visualize
complex arrays or objects.

The data visualized in a table format,

Screenshot Not: Remember that console.table() is not supported in IE.

373. How do you verify that an argument is a Number or not

The combination of IsNaN and isFinite methods are used to confirm whether an argument is a
number or not.

function isNumber(n){
 return !isNaN(parseFloat(n)) && isFinite(n);
}

const users = [{ "name":"John", "id": 1, "city": "Delhi"}, { "name":"Max", "id": 2, "city"
console.table(users);

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 136/176

374. How do you create copy to clipboard button

You need to select the content(using .select() method) of the input element and execute the copy
command with execCommand (i.e, execCommand('copy')). You can also execute other system
commands like cut and paste.

document.querySelector("#copy-button").onclick = function() {
 // Select the content
 document.querySelector("#copy-input").select();
 // Copy to the clipboard
 document.execCommand('copy');
};

375. What is the shortcut to get timestamp

You can use new Date().getTime() to get the current timestamp. There is an alternative shortcut
to get the value.

console.log(+new Date());
console.log(Date.now());

376. How do you flattening multi dimensional arrays

Flattening bi-dimensional arrays is trivial with Spread operator.

But you can make it work with multi-dimensional arrays by recursive calls,

377. What is the easiest multi condition checking

You can use indexOf to compare input with multiple values instead of checking each value as
one condition.

const biDimensionalArr = [11, [22, 33], [44, 55], [66, 77], 88, 99];
const flattenArr = [].concat(...biDimensionalArr); // [11, 22, 33, 44, 55, 66, 77, 88, 99]

function flattenMultiArray(arr) {
 const flattened = [].concat(...arr);
 return flattened.some(item => Array.isArray(item)) ? flattenMultiArray(flattened) : fl
 }
const multiDimensionalArr = [11, [22, 33], [44, [55, 66, [77, [88]], 99]]];
const flatArr = flattenMultiArray(multiDimensionalArr); // [11, 22, 33, 44, 55, 66, 77, 88

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 137/176

// Verbose approach
if (input === 'first' || input === 1 || input === 'second' || input === 2) {
 someFunction();
}
// Shortcut
if (['first', 1, 'second', 2].indexOf(input) !== -1) {
 someFunction();
}

378. How do you capture browser back button

The window.onbeforeunload method is used to capture browser back button events. This is
helpful to warn users about losing the current data.

 window.onbeforeunload = function() {
 alert("You work will be lost");
 };

379. How do you disable right click in the web page

The right click on the page can be disabled by returning false from the oncontextmenu attribute
on the body element.

<body oncontextmenu="return false;">

380. What are wrapper objects

Primitive Values like string,number and boolean don't have properties and methods but they are
temporarily converted or coerced to an object(Wrapper object) when you try to perform actions
on them. For example, if you apply toUpperCase() method on a primitive string value, it does not
throw an error but returns uppercase of the string.

i.e, Every primitive except null and undefined have Wrapper Objects and the list of wrapper
objects are String,Number,Boolean,Symbol and BigInt.

381. What is AJAX

let name = "john";

console.log(name.toUpperCase()); // Behind the scenes treated as console.log(new String(n

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 138/176

AJAX stands for Asynchronous JavaScript and XML and it is a group of related
technologies(HTML, CSS, JavaScript, XMLHttpRequest API etc) used to display data
asynchronously. i.e. We can send data to the server and get data from the server without
reloading the web page.

382. What are the different ways to deal with Asynchronous Code

Below are the list of different ways to deal with Asynchronous code.

i. Callbacks
ii. Promises
iii. Async/await
iv. Third-party libraries such as async.js,bluebird etc

383. How to cancel a fetch request

Until a few days back, One shortcoming of native promises is no direct way to cancel a fetch
request. But the new AbortController from js specification allows you to use a signal to abort
one or multiple fetch calls. The basic flow of cancelling a fetch request would be as below,

i. Create an AbortController instance
ii. Get the signal property of an instance and pass the signal as a fetch option for signal
iii. Call the AbortController's abort property to cancel all fetches that use that signal For

example, let's pass the same signal to multiple fetch calls will cancel all requests with that
signal,

const controller = new AbortController();
const { signal } = controller;

fetch("http://localhost:8000", { signal }).then(response => {
 console.log(`Request 1 is complete!`);
}).catch(e => {
 if(e.name === "AbortError") {
 // We know it's been canceled!
 }
});

fetch("http://localhost:8000", { signal }).then(response => {
 console.log(`Request 2 is complete!`);
}).catch(e => {
 if(e.name === "AbortError") {
 // We know it's been canceled!
 }
});

// Wait 2 seconds to abort both requests
setTimeout(() => controller.abort(), 2000);

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 139/176

384. What is web speech API

Web speech API is used to enable modern browsers recognize and synthesize speech(i.e, voice
data into web apps). This API has been introduced by W3C Community in the year 2012. It has
two main parts,

i. SpeechRecognition (Asynchronous Speech Recognition or Speech-to-Text): It provides the
ability to recognize voice context from an audio input and respond accordingly. This is
accessed by the SpeechRecognition interface. The below example shows on how to use this
API to get text from speech,

In this API, browser is going to ask you for permission to use your microphone

i. SpeechSynthesis (Text-to-Speech): It provides the ability to recognize voice context from an
audio input and respond. This is accessed by the SpeechSynthesis interface. For example,
the below code is used to get voice/speech from text,

if('speechSynthesis' in window){
 var speech = new SpeechSynthesisUtterance('Hello World!');
 speech.lang = 'en-US';
 window.speechSynthesis.speak(speech);
}

The above examples can be tested on chrome(33+) browser's developer console. Note: This API
is still a working draft and only available in Chrome and Firefox browsers(ofcourse Chrome only
implemented the specification)

385. What is minimum timeout throttling

Both browser and NodeJS javascript environments throttles with a minimum delay that is greater
than 0ms. That means even though setting a delay of 0ms will not happen instantaneously.
Browsers: They have a minimum delay of 4ms. This throttle occurs when successive calls are
triggered due to callback nesting(certain depth) or after a certain number of successive intervals.
Note: The older browsers have a minimum delay of 10ms. Nodejs: They have a minimum delay
of 1ms. This throttle happens when the delay is larger than 2147483647 or less than 1. The best
example to explain this timeout throttling behavior is the order of below code snippet.

window.SpeechRecognition = window.webkitSpeechRecognition || window.SpeechRecognition; //
const recognition = new window.SpeechRecognition();
recognition.onresult = (event) => { // SpeechRecognitionEvent type
 const speechToText = event.results[0][0].transcript;
 console.log(speechToText);
}
recognition.start();

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 140/176

function runMeFirst() {
 console.log('My script is initialized');
}
setTimeout(runMeFirst, 0);
console.log('Script loaded');

and the output would be in

Script loaded
My script is initialized

If you don't use setTimeout , the order of logs will be sequential.

function runMeFirst() {
 console.log('My script is initialized');
}
runMeFirst();
console.log('Script loaded');

and the output is,

My script is initialized
Script loaded

386. How do you implement zero timeout in modern browsers

You can't use setTimeout(fn, 0) to execute the code immediately due to minimum delay of
greater than 0ms. But you can use window.postMessage() to achieve this behavior.

387. What are tasks in event loop

A task is any javascript code/program which is scheduled to be run by the standard mechanisms
such as initially starting to run a program, run an event callback, or an interval or timeout being
fired. All these tasks are scheduled on a task queue. Below are the list of use cases to add tasks
to the task queue,

i. When a new javascript program is executed directly from console or running by the
<script> element, the task will be added to the task queue.

ii. When an event fires, the event callback added to task queue
iii. When a setTimeout or setInterval is reached, the corresponding callback added to task

queue

388. What is microtask

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 141/176

Microtask is the javascript code which needs to be executed immediately after the currently
executing task/microtask is completed. They are kind of blocking in nature. i.e, The main thread
will be blocked until the microtask queue is empty. The main sources of microtasks are
Promise.resolve, Promise.reject, MutationObservers, IntersectionObservers etc

Note: All of these microtasks are processed in the same turn of the event loop.

389. What are different event loops

390. What is the purpose of queueMicrotask

391. How do you use javascript libraries in typescript file

It is known that not all JavaScript libraries or frameworks have TypeScript declaration files. But if
you still want to use libraries or frameworks in our TypeScript files without getting compilation
errors, the only solution is declare keyword along with a variable declaration. For example, let's
imagine you have a library called customLibrary that doesn’t have a TypeScript declaration and
have a namespace called customLibrary in the global namespace. You can use this library in
typescript code as below,

declare var customLibrary;

In the runtime, typescript will provide the type to the customLibrary variable as any type. The
another alternative without using declare keyword is below

var customLibrary: any;

392. What are the differences between promises and observables

Some of the major difference in a tabular form

Promises Observables

Emits only a single value at a time
Emits multiple values over a period of time(stream
of values ranging from 0 to multiple)

Eager in nature; they are going to be
called immediately

Lazy in nature; they require subscription to be
invoked

Promise is always asynchronous even
though it resolved immediately

Observable can be either synchronous or
asynchronous

Doesn't provide any operators
Provides operators such as map, forEach, filter,
reduce, retry, and retryWhen etc

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 142/176

Promises Observables

Cannot be canceled Canceled by using unsubscribe() method

393. What is heap

Heap(Or memory heap) is the memory location where objects are stored when we define
variables. i.e, This is the place where all the memory allocations and de-allocation take place.
Both heap and call-stack are two containers of JS runtime. Whenever runtime comes across
variables and function declarations in the code it stores them in the Heap.

Screenshot

394. What is an event table

Event Table is a data structure that stores and keeps track of all the events which will be executed
asynchronously like after some time interval or after the resolution of some API requests. i.e
Whenever you call a setTimeout function or invoke async operation, it is added to the Event
Table. It doesn't not execute functions on it’s own. The main purpose of the event table is to keep
track of events and send them to the Event Queue as shown in the below diagram.

Screenshot

395. What is a microTask queue

Microtask Queue is the new queue where all the tasks initiated by promise objects get processed
before the callback queue. The microtasks queue are processed before the next rendering and
painting jobs. But if these microtasks are running for a long time then it leads to visual
degradation.

396. What is the difference between shim and polyfill

A shim is a library that brings a new API to an older environment, using only the means of that
environment. It isn't necessarily restricted to a web application. For example, es5-shim.js is used
to emulate ES5 features on older browsers (mainly pre IE9). Whereas polyfill is a piece of code (or
plugin) that provides the technology that you, the developer, expect the browser to provide
natively. In a simple sentence, A polyfill is a shim for a browser API.

397. How do you detect primitive or non primitive value type

In JavaScript, primitive types include boolean, string, number, BigInt, null, Symbol and undefined.
Whereas non-primitive types include the Objects. But you can easily identify them with the below
function,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 143/176

var myPrimitive = 30;
var myNonPrimitive = {};
function isPrimitive(val) {
 return Object(val) !== val;
}

isPrimitive(myPrimitive);
isPrimitive(myNonPrimitive);

If the value is a primitive data type, the Object constructor creates a new wrapper object for the
value. But If the value is a non-primitive data type (an object), the Object constructor will give the
same object.

398. What is babel

Babel is a JavaScript transpiler to convert ECMAScript 2015+ code into a backwards compatible
version of JavaScript in current and older browsers or environments. Some of the main features
are listed below,

i. Transform syntax
ii. Polyfill features that are missing in your target environment (using @babel/polyfill)
iii. Source code transformations (or codemods)

399. Is Node.js completely single threaded

Node is a single thread, but some of the functions included in the Node.js standard library(e.g, fs
module functions) are not single threaded. i.e, Their logic runs outside of the Node.js single
thread to improve the speed and performance of a program.

400. What are the common use cases of observables

Some of the most common use cases of observables are web sockets with push notifications,
user input changes, repeating intervals, etc

401. What is RxJS

RxJS (Reactive Extensions for JavaScript) is a library for implementing reactive programming
using observables that makes it easier to compose asynchronous or callback-based code. It also
provides utility functions for creating and working with observables.

402. What is the difference between Function constructor and function
declaration

The functions which are created with Function constructor do not create closures to their
creation contexts but they are always created in the global scope. i.e, the function can access its

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 144/176

own local variables and global scope variables only. Whereas function declarations can access
outer function variables(closures) too.

Let's see this difference with an example,

Function Constructor:

var a = 100;
function createFunction() {
 var a = 200;
 return new Function('return a;');
}
console.log(createFunction()()); // 100

Function declaration:

var a = 100;
function createFunction() {
 var a = 200;
 return function func() {
 return a;
 }
}
console.log(createFunction()()); // 200

403. What is a Short circuit condition

Short circuit conditions are meant for condensed way of writing simple if statements. Let's
demonstrate the scenario using an example. If you would like to login to a portal with an
authentication condition, the expression would be as below,

if (authenticate) {
 loginToPorta();
}

Since the javascript logical operators evaluated from left to right, the above expression can be
simplified using && logical operator

authenticate && loginToPorta();

404. What is the easiest way to resize an array

The length property of an array is useful to resize or empty an array quickly. Let's apply length
property on number array to resize the number of elements from 5 to 2,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 145/176

var array = [1, 2, 3, 4, 5];
console.log(array.length); // 5

array.length = 2;
console.log(array.length); // 2
console.log(array); // [1,2]

and the array can be emptied too

var array = [1, 2, 3, 4, 5];
array.length = 0;
console.log(array.length); // 0
console.log(array); // []

405. What is an observable

An Observable is basically a function that can return a stream of values either synchronously or
asynchronously to an observer over time. The consumer can get the value by calling
subscribe() method. Let's look at a simple example of an Observable

import { Observable } from 'rxjs';

const observable = new Observable(observer => {
 setTimeout(() => {
 observer.next('Message from a Observable!');
 }, 3000);
});

observable.subscribe(value => console.log(value));

Screenshot

Note: Observables are not part of the JavaScript language yet but they are being proposed to be
added to the language

406. What is the difference between function and class declarations

The main difference between function declarations and class declarations is hoisting . The
function declarations are hoisted but not class declarations.

Classes:

const user = new User(); // ReferenceError

class User {}

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 146/176

Constructor Function:

 const user = new User(); // No error

 function User() {
 }

407. What is an async function

An async function is a function declared with the async keyword which enables asynchronous,
promise-based behavior to be written in a cleaner style by avoiding promise chains. These
functions can contain zero or more await expressions.

Let's take a below async function example,

async function logger() {

 let data = await fetch('http://someapi.com/users'); // pause until fetch returns
 console.log(data)
}
logger();

It is basically syntax sugar over ES2015 promises and generators.

408. How do you prevent promises swallowing errors

While using asynchronous code, JavaScript’s ES6 promises can make your life a lot easier without
having callback pyramids and error handling on every second line. But Promises have some
pitfalls and the biggest one is swallowing errors by default.

Let's say you expect to print an error to the console for all the below cases,

Promise.resolve('promised value').then(function() {
 throw new Error('error');
});

Promise.reject('error value').catch(function() {
 throw new Error('error');
});

new Promise(function(resolve, reject) {
 throw new Error('error');
});

But there are many modern JavaScript environments that won't print any errors. You can fix this
problem in different ways,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 147/176

i. Add catch block at the end of each chain: You can add catch block to the end of each of
your promise chains

Promise.resolve('promised value').then(function() {
 throw new Error('error');
}).catch(function(error) {
 console.error(error.stack);
});

But it is quite difficult to type for each promise chain and verbose too.

ii. Add done method: You can replace first solution's then and catch blocks with done method

Promise.resolve('promised value').done(function() {
 throw new Error('error');
});

Let's say you want to fetch data using HTTP and later perform processing on the resulting
data asynchronously. You can write done block as below,

getDataFromHttp()
 .then(function(result) {
 return processDataAsync(result);
 })
 .done(function(processed) {
 displayData(processed);
 });

In future, if the processing library API changed to synchronous then you can remove done
block as below,

 getDataFromHttp()
 .then(function(result) {
 return displayData(processDataAsync(result));
 })

and then you forgot to add done block to then block leads to silent errors.

iii. Extend ES6 Promises by Bluebird: Bluebird extends the ES6 Promises API to avoid the issue
in the second solution. This library has a “default” onRejection handler which will print all
errors from rejected Promises to stderr. After installation, you can process unhandled
rejections

Promise.onPossiblyUnhandledRejection(function(error){
 throw error;

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 148/176

});

and discard a rejection, just handle it with an empty catch

Promise.reject('error value').catch(function() {});

409. What is deno

Deno is a simple, modern and secure runtime for JavaScript and TypeScript that uses V8
JavaScript engine and the Rust programming language.

410. How do you make an object iterable in javascript

By default, plain objects are not iterable. But you can make the object iterable by defining a
Symbol.iterator property on it.

Let's demonstrate this with an example,

const collection = {
 one: 1,
 two: 2,
 three: 3,
 [Symbol.iterator]() {
 const values = Object.keys(this);
 let i = 0;
 return {
 next: () => {
 return {
 value: this[values[i++]],
 done: i > values.length
 }
 }
 };
 }
};

const iterator = collection[Symbol.iterator]();

console.log(iterator.next()); // → {value: 1, done: false}
console.log(iterator.next()); // → {value: 2, done: false}
console.log(iterator.next()); // → {value: 3, done: false}
console.log(iterator.next()); // → {value: undefined, done: true}

The above process can be simplified using a generator function,

 const collection = {
 one: 1,
 two: 2,

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 149/176

 three: 3,
 [Symbol.iterator]: function * () {
 for (let key in this) {
 yield this[key];
 }
 }
 };
 const iterator = collection[Symbol.iterator]();
 console.log(iterator.next()); // {value: 1, done: false}
 console.log(iterator.next()); // {value: 2, done: false}
 console.log(iterator.next()); // {value: 3, done: false}
 console.log(iterator.next()); // {value: undefined, done: true}

411. What is a Proper Tail Call

First, we should know about tail call before talking about "Proper Tail Call". A tail call is a
subroutine or function call performed as the final action of a calling function. Whereas Proper
tail call(PTC) is a technique where the program or code will not create additional stack frames for
a recursion when the function call is a tail call.

For example, the below classic or head recursion of factorial function relies on stack for each
step. Each step need to be processed upto n * factorial(n - 1)

function factorial(n) {
 if (n === 0) {
 return 1
 }
 return n * factorial(n - 1)
}
console.log(factorial(5)); //120

But if you use Tail recursion functions, they keep passing all the necessary data it needs down the
recursion without relying on the stack.

function factorial(n, acc = 1) {
 if (n === 0) {
 return acc
 }
 return factorial(n - 1, n * acc)
}
console.log(factorial(5)); //120

The above pattern returns the same output as the first one. But the accumulator keeps track of
total as an argument without using stack memory on recursive calls.

412. How do you check an object is a promise or not

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 150/176

If you don't know if a value is a promise or not, wrapping the value as Promise.resolve(value)
which returns a promise

 function isPromise(object){
 if(Promise && Promise.resolve){
 return Promise.resolve(object) == object;
 }else{
 throw "Promise not supported in your environment"
 }
 }

 var i = 1;
 var promise = new Promise(function(resolve,reject){
 resolve()
 });

 console.log(isPromise(i)); // false
 console.log(isPromise(p)); // true

Another way is to check for .then() handler type

function isPromise(value) {
 return Boolean(value && typeof value.then === 'function');
}
var i = 1;
var promise = new Promise(function(resolve,reject){
 resolve()
});

console.log(isPromise(i)) // false
console.log(isPromise(promise)); // true

413. How to detect if a function is called as constructor

You can use new.target pseudo-property to detect whether a function was called as a
constructor(using the new operator) or as a regular function call.

i. If a constructor or function invoked using the new operator, new.target returns a reference
to the constructor or function.

ii. For function calls, new.target is undefined.

function Myfunc() {
 if (new.target) {
 console.log('called with new');
 } else {
 console.log('not called with new');
 }
}

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 151/176

new Myfunc(); // called with new
Myfunc(); // not called with new
Myfunc.call({}); not called with new

414. What are the differences between arguments object and rest parameter

There are three main differences between arguments object and rest parameters

i. The arguments object is an array-like but not an array. Whereas the rest parameters are
array instances.

ii. The arguments object does not support methods such as sort, map, forEach, or pop.
Whereas these methods can be used in rest parameters.

iii. The rest parameters are only the ones that haven’t been given a separate name, while the
arguments object contains all arguments passed to the function

415. What are the differences between spread operator and rest parameter

Rest parameter collects all remaining elements into an array. Whereas Spread operator allows
iterables(arrays / objects / strings) to be expanded into single arguments/elements. i.e, Rest
parameter is opposite to the spread operator.

416. What are the different kinds of generators

There are five kinds of generators,

i. Generator function declaration:

 function* myGenFunc() {
 yield 1;
 yield 2;
 yield 3;
 }
 const genObj = myGenFunc();

ii. Generator function expressions:

const myGenFunc = function* () {
 yield 1;
 yield 2;
 yield 3;
};
const genObj = myGenFunc();

iii. Generator method definitions in object literals:

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 152/176

 const myObj = {
 * myGeneratorMethod() {
 yield 1;
 yield 2;
 yield 3;
 }
 };
 const genObj = myObj.myGeneratorMethod();

iv. Generator method definitions in class:

 class MyClass {
 * myGeneratorMethod() {
 yield 1;
 yield 2;
 yield 3;
 }
 }
 const myObject = new MyClass();
 const genObj = myObject.myGeneratorMethod();

v. Generator as a computed property:

const SomeObj = {
 *[Symbol.iterator] () {
 yield 1;
 yield 2;
 yield 3;
 }
}

console.log(Array.from(SomeObj)); // [1, 2, 3]

417. What are the built-in iterables

Below are the list of built-in iterables in javascript,

i. Arrays and TypedArrays
ii. Strings: Iterate over each character or Unicode code-points
iii. Maps: iterate over its key-value pairs
iv. Sets: iterates over their elements
v. arguments: An array-like special variable in functions
vi. DOM collection such as NodeList

418. What are the differences between for...of and for...in statements

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 153/176

Both for...in and for...of statements iterate over js data structures. The only difference is over what
they iterate:

i. for..in iterates over all enumerable property keys of an object
ii. for..of iterates over the values of an iterable object.

Let's explain this difference with an example,

let arr = ['a', 'b', 'c'];

arr.newProp = 'newVlue';

// key are the property keys
for (let key in arr) {
 console.log(key);
}

// value are the property values
for (let value of arr) {
 console.log(value);
}

Since for..in loop iterates over the keys of the object, the first loop logs 0, 1, 2 and newProp while
iterating over the array object. The for..of loop iterates over the values of a arr data structure and
logs a, b, c in the console.

419. How do you define instance and non-instance properties

The Instance properties must be defined inside of class methods. For example, name and age
properties defined insider constructor as below,

class Person {
 constructor(name, age) {
 this.name = name;
 this.age = age;
 }
}

But Static(class) and prototype data properties must be defined outside of the ClassBody
declaration. Let's assign the age value for Person class as below,

Person.staticAge = 30;
Person.prototype.prototypeAge = 40;

420. What is the difference between isNaN and Number.isNaN?

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 154/176

i. isNaN: The global function isNaN converts the argument to a Number and returns true if
the resulting value is NaN.

ii. Number.isNaN: This method does not convert the argument. But it returns true when the
type is a Number and value is NaN.

Let's see the difference with an example,

isNaN(‘hello’); // true
Number.isNaN('hello'); // false

421. How to invoke an IIFE without any extra brackets?

Immediately Invoked Function Expressions(IIFE) requires a pair of parenthesis to wrap the
function which contains set of statements.

(function(dt) {
 console.log(dt.toLocaleTimeString());
 })(new Date());

Since both IIFE and void operator discard the result of an expression, you can avoid the extra
brackets using void operator for IIFE as below,

 void function(dt) {
 console.log(dt.toLocaleTimeString());
 }(new Date());

422. Is that possible to use expressions in switch cases?

You might have seen expressions used in switch condition but it is also possible to use for switch
cases by assigning true value for the switch condition. Let's see the weather condition based on
temparature as an example,

const weather = function getWeather(temp) {
 switch(true) {
 case temp < 0: return 'freezing';
 case temp < 10: return 'cold';
 case temp < 24: return 'cool';
 default: return 'unknown';
 }
 }(10);

423. What is the easiest way to ignore promise errors?

The easiest and safest way to ignore promise errors is void that error. This approach is ESLint
friendly too.

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 155/176

await promise.catch(e => void e);

424. How do style the console output using CSS?

You can add CSS styling to the console output using the CSS format content specifier %c. The
console string message can be appended after the specifier and CSS style in another argument.
Let's print the red the color text using console.log and CSS specifier as below,

console.log("%cThis is a red text", "color:red");

It is also possible to add more styles for the content. For example, the font-size can be modified
for the above text

console.log("%cThis is a red text with bigger font", "color:red; font-size:20px");

Coding Exercise

1. What is the output of below code

var car = new Vehicle("Honda", "white", "2010", "UK");
console.log(car);

function Vehicle(model, color, year, country) {
 this.model = model;
 this.color = color;
 this.year = year;
 this.country = country;
}

1: Undefined
2: ReferenceError
3: null
4: {model: "Honda", color: "white", year: "2010", country: "UK"}

Answer

2. What is the output of below code

function foo() {
 let x = y = 0;
 x++;
 y++;

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 156/176

 return x;
}

console.log(foo(), typeof x, typeof y);

1: 1, undefined and undefined
2: ReferenceError: X is not defined
3: 1, undefined and number
4: 1, number and number

Answer

3. What is the output of below code

function main(){
 console.log('A');
 setTimeout(
 function print(){ console.log('B'); }
 ,0);
 console.log('C');
}
main();

1: A, B and C
2: B, A and C
3: A and C
4: A, C and B

Answer

4. What is the output of below equality check

console.log(0.1 + 0.2 === 0.3);

1: false
2: true

Answer

5. What is the output of below code

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 157/176

var y = 1;
 if (function f(){}) {
 y += typeof f;
 }
 console.log(y);

1: 1function
2: 1object
3: ReferenceError
4: 1undefined

Answer

6. What is the output of below code

function foo() {
 return
 {
 message: "Hello World"
 };
}
console.log(foo());

1: Hello World
2: Object {message: "Hello World"}
3: Undefined
4: SyntaxError

Answer

7. What is the output of below code

var myChars = ['a', 'b', 'c', 'd']
delete myChars[0];
console.log(myChars);
console.log(myChars[0]);
console.log(myChars.length);

1: [empty, 'b', 'c', 'd'], empty, 3
2: [null, 'b', 'c', 'd'], empty, 3
3: [empty, 'b', 'c', 'd'], undefined, 4

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 158/176

4: [null, 'b', 'c', 'd'], undefined, 4

Answer

8. What is the output of below code in latest Chrome

var array1 = new Array(3);
console.log(array1);

var array2 = [];
array2[2] = 100;
console.log(array2);

var array3 = [,,,];
console.log(array3);

1: [undefined × 3], [undefined × 2, 100], [undefined × 3]
2: [empty × 3], [empty × 2, 100], [empty × 3]
3: [null × 3], [null × 2, 100], [null × 3]
4: [], [100], []

Answer

9. What is the output of below code

const obj = {
 prop1: function() { return 0 },
 prop2() { return 1 },
 ['prop' + 3]() { return 2 }
}

console.log(obj.prop1());
console.log(obj.prop2());
console.log(obj.prop3());

1: 0, 1, 2
2: 0, { return 1 }, 2
3: 0, { return 1 }, { return 2 }
4: 0, 1, undefined

Answer

10. What is the output of below code

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 159/176

console.log(1 < 2 < 3);
console.log(3 > 2 > 1);

1: true, true
2: true, false
3: SyntaxError, SyntaxError,
4: false, false

Answer

11. What is the output of below code in non-strict mode

function printNumbers(first, second, first) {
 console.log(first, second, first);
}
printNumbers(1, 2, 3);

1: 1, 2, 3
2: 3, 2, 3
3: SyntaxError: Duplicate parameter name not allowed in this context
4: 1, 2, 1

Answer

12. What is the output of below code

const printNumbersArrow = (first, second, first) => {
 console.log(first, second, first);
}
printNumbersArrow(1, 2, 3);

1: 1, 2, 3
2: 3, 2, 3
3: SyntaxError: Duplicate parameter name not allowed in this context
4: 1, 2, 1

Answer

13. What is the output of below code

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 160/176

const arrowFunc = () => arguments.length;
console.log(arrowFunc(1, 2, 3));

1: ReferenceError: arguments is not defined
2: 3
3: undefined
4: null

Answer

14. What is the output of below code

console.log(String.prototype.trimLeft.name === 'trimLeft');
console.log(String.prototype.trimLeft.name === 'trimStart');

1: True, False
2: False, True

Answer

15. What is the output of below code

console.log(Math.max());

1: undefined
2: Infinity
3: 0
4: -Infinity

Answer

16. What is the output of below code

console.log(10 == [10]);
console.log(10 == [[[[[[[10]]]]]]]);

1: True, True
2: True, False

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 161/176

3: False, False
4: False, True

Answer

17. What is the output of below code

console.log(10 + '10');
console.log(10 - '10');

1: 20, 0
2: 1010, 0
3: 1010, 10-10
4: NaN, NaN

Answer

18. What is the output of below code

console.log([0] == false);
if([0]) {
console.log("I'm True");
} else {
console.log("I'm False");
}

1: True, I'm True
2: True, I'm False
3: False, I'm True
4: False, I'm False

Answer

19. What is the output of below code

console.log([1, 2] + [3, 4]);

1: [1,2,3,4]
2: [1,2][3,4]
3: SyntaxError

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 162/176

4: 1,23,4

Answer

20. What is the output of below code

const numbers = new Set([1, 1, 2, 3, 4]);
console.log(numbers);

const browser = new Set('Firefox');
console.log(browser);

1: {1, 2, 3, 4}, {"F", "i", "r", "e", "f", "o", "x"}
2: {1, 2, 3, 4}, {"F", "i", "r", "e", "o", "x"}
3: [1, 2, 3, 4], ["F", "i", "r", "e", "o", "x"]
4: {1, 1, 2, 3, 4}, {"F", "i", "r", "e", "f", "o", "x"}

Answer

21. What is the output of below code

console.log(NaN === NaN);

1: True
2: False

Answer

22. What is the output of below code

let numbers = [1, 2, 3, 4, NaN];
console.log(numbers.indexOf(NaN));

1: 4
2: NaN
3: SyntaxError
4: -1

Answer

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 163/176

23. What is the output of below code

let [a, ...b,] = [1, 2, 3, 4, 5];
console.log(a, b);

1: 1, [2, 3, 4, 5]
2: 1, {2, 3, 4, 5}
3: SyntaxError
4: 1, [2, 3, 4]

Answer

25. What is the output of below code

async function func() {
 return 10;
}
console.log(func());

1: Promise {<fulfilled>: 10}
2: 10
3: SyntaxError
4: Promise {<rejected>: 10}

Answer

26. What is the output of below code

async function func() {
 await 10;
}
console.log(func());

1: Promise {<fulfilled>: 10}
2: 10
3: SyntaxError
4: Promise {<resolved>: undefined}

Answer

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 164/176

27. What is the output of below code

function delay() {
 return new Promise(resolve => setTimeout(resolve, 2000));
}

async function delayedLog(item) {
 await delay();
 console.log(item);
}

async function processArray(array) {
 array.forEach(item => {
 await delayedLog(item);
 })
}

processArray([1, 2, 3, 4]);

1: SyntaxError
2: 1, 2, 3, 4
3: 4, 4, 4, 4
4: 4, 3, 2, 1

Answer

28. What is the output of below code

function delay() {
 return new Promise(resolve => setTimeout(resolve, 2000));
}

async function delayedLog(item) {
 await delay();
 console.log(item);
}

async function process(array) {
 array.forEach(async (item) => {
 await delayedLog(item);
 });
 console.log('Process completed!');
}
process([1, 2, 3, 5]);

1: 1 2 3 5 and Process completed!
2: 5 5 5 5 and Process completed!

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 165/176

3: Process completed! and 5 5 5 5
4: Process completed! and 1 2 3 5

Answer

29. What is the output of below code

var set = new Set();
set.add("+0").add("-0").add(NaN).add(undefined).add(NaN);;
console.log(set);

1: Set(4) {"+0", "-0", NaN, undefined}
2: Set(3) {"+0", NaN, undefined}
3: Set(5) {"+0", "-0", NaN, undefined, NaN}
4: Set(4) {"+0", NaN, undefined, NaN}

Answer

30. What is the output of below code

const sym1 = Symbol('one');
const sym2 = Symbol('one');

const sym3 = Symbol.for('two');
const sym4 = Symbol.for('two');

cnsooe.log(sym1 === sym2, sym3 === sym4);

1: true, true
2: true, false
3: false, true
4: false, false

Answer

31. What is the output of below code

const sym1 = new Symbol('one');
console.log(sym1);

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 166/176

1: SyntaxError
2: one
3: Symbol('one')
4: Symbol

Answer

32. What is the output of below code

let myNumber = 100;
let myString = '100';

if (!typeof myNumber === "string") {
 console.log("It is not a string!");
} else {
 console.log("It is a string!");
}

if (!typeof myString === "number"){
 console.log("It is not a number!")
} else {
 console.log("It is a number!");
}

1: SyntaxError
2: It is not a string!, It is not a number!
3: It is not a string!, It is a number!
4: It is a string!, It is a number!

Answer

33. What is the output of below code

console.log(JSON.stringify({ myArray: ['one', undefined, function(){}, Symbol('')] }));
console.log(JSON.stringify({ [Symbol.for('one')]: 'one' }, [Symbol.for('one')]));

1: {"myArray":['one', undefined, {}, Symbol]}, {}
2: {"myArray":['one', null,null,null]}, {}
3: {"myArray":['one', null,null,null]}, "{ [Symbol.for('one')]: 'one' }, [Symbol.for('one')]"
4: {"myArray":['one', undefined, function(){}, Symbol('')]}, {}

Answer

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 167/176

34. What is the output of below code

class A {
 constructor() {
 console.log(new.target.name)
 }
}

class B extends A { constructor() { super() } }

new A();
new B();

1: A, A
2: A, B

Answer

35. What is the output of below code

const [x, ...y,] = [1, 2, 3, 4];
console.log(x, y);

1: 1, [2, 3, 4]
2: 1, [2, 3]
3: 1, [2]
4: SyntaxError

Answer

36. What is the output of below code

const {a: x = 10, b: y = 20} = {a: 30};

console.log(x);
console.log(y);

1: 30, 20
2: 10, 20
3: 10, undefined
4: 30, undefined

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 168/176

Answer

37. What is the output of below code

function area({length = 10, width = 20}) {
 console.log(length*width);
}

area();

1: 200
2: Error
3: undefined
4: 0

Answer

38. What is the output of below code

const props = [
 { id: 1, name: 'John'},
 { id: 2, name: 'Jack'},
 { id: 3, name: 'Tom'}
];

const [,, { name }] = props;
console.log(name);

1: Tom
2: Error
3: undefined
4: John

Answer

39. What is the output of below code

function checkType(num = 1) {
 console.log(typeof num);
}

checkType();

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 169/176

checkType(undefined);
checkType('');
checkType(null);

1: number, undefined, string, object
2: undefined, undefined, string, object
3: number, number, string, object
4: number, number, number, number

Answer

40. What is the output of below code

function add(item, items = []) {
 items.push(item);
 return items;
}

console.log(add('Orange'));
console.log(add('Apple'));

1: ['Orange'], ['Orange', 'Apple']
2: ['Orange'], ['Apple']

Answer

41. What is the output of below code

function greet(greeting, name, message = greeting + ' ' + name) {
 console.log([greeting, name, message]);
}

greet('Hello', 'John');
greet('Hello', 'John', 'Good morning!');

1: SyntaxError
2: ['Hello', 'John', 'Hello John'], ['Hello', 'John', 'Good morning!']

Answer

42. What is the output of below code

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 170/176

function outer(f = inner()) {
 function inner() { return 'Inner' }
}
outer();

1: ReferenceError
2: Inner

Answer

43. What is the output of below code

function myFun(x, y, ...manyMoreArgs) {
 console.log(manyMoreArgs)
}

myFun(1, 2, 3, 4, 5);
myFun(1, 2);

1: [3, 4, 5], undefined
2: SyntaxError
3: [3, 4, 5], []
4: [3, 4, 5], [undefined]

Answer

44. What is the output of below code

const obj = {'key': 'value'};
const array = [...obj];
console.log(array);

1: ['key', 'value']
2: TypeError
3: []
4: ['key']

Answer

45. What is the output of below code

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 171/176

function* myGenFunc() {
 yield 1;
 yield 2;
 yield 3;
}
var myGenObj = new myGenFunc;
console.log(myGenObj.next().value);

1: 1
2: undefined
3: SyntaxError
4: TypeError

Answer

46. What is the output of below code

function* yieldAndReturn() {
 yield 1;
 return 2;
 yield 3;
}

var myGenObj = yieldAndReturn()
console.log(myGenObj.next());
console.log(myGenObj.next());
console.log(myGenObj.next());

1: { value: 1, done: false }, { value: 2, done: true }, { value: undefined, done: true }
2: { value: 1, done: false }, { value: 2, done: false }, { value: undefined, done: true }
3: { value: 1, done: false }, { value: 2, done: true }, { value: 3, done: true }
4: { value: 1, done: false }, { value: 2, done: false }, { value: 3, done: true }

Answer

47. What is the output of below code

const myGenerator = (function *(){
 yield 1;
 yield 2;
 yield 3;
})();
for (const value of myGenerator) {

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 172/176

 console.log(value);
 break;
}

for (const value of myGenerator) {
 console.log(value);
}

1: 1,2,3 and 1,2,3
2: 1,2,3 and 4,5,6
3: 1 and 1
4: 1

Answer

48. What is the output of below code

const num = 0o38;
console.log(num);

1: SyntaxError
2: 38

Answer

49. What is the output of below code

const squareObj = new Square(10);
console.log(squareObj.area);

class Square {
 constructor(length) {
 this.length = length;
 }

 get area() {
 return this.length * this.length;
 }

 set area(value) {
 this.area = value;
 }
}

1: 100

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 173/176

2: ReferenceError

Answer

50. What is the output of below code

function Person() { }

Person.prototype.walk = function() {
 return this;
}

Person.run = function() {
 return this;
}

let user = new Person();
let walk = user.walk;
console.log(walk());

let run = Person.run;
console.log(run());

1: undefined, undefined
2: Person, Person
3: SyntaxError
4: Window, Window

Answer

51. What is the output of below code

class Vehicle {
 constructor(name) {
 this.name = name;
 }

 start() {
 console.log(`${this.name} vehicle started`);
 }
}

class Car extends Vehicle {
 start() {
 console.log(`${this.name} car started`);
 super.start();
 }

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 174/176

}

const car = new Car('BMW');
console.log(car.start());

1: SyntaxError
2: BMW vehicle started, BMW car started
3: BMW car started, BMW vehicle started
4: BMW car started, BMW car started

Answer

52. What is the output of below code

const USER = {'age': 30};
USER.age = 25;
console.log(USER.age);

1: 30
2: 25
3: Uncaught TypeError
4: SyntaxError

Answer

53. What is the output of below code

console.log('🙂' === '🙂');

1: false
2: true

Answer

54. What is the output of below code?

console.log(typeof typeof typeof true);

1: string

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 175/176

2: boolean
3: NaN
4: number

Answer

55. What is the output of below code?

let zero = new Number(0);

if (zero) {
 console.log("If");
} else {
 console.log("Else");
}

1: If
2: Else
3: NaN
4: SyntaxError

Answer

55. What is the output of below code in non strict mode?

let msg = "Good morning!!";

msg.name = "John";

console.log(msg.name);

1: ""
2: Error
3: John
4: Undefined

Answer

56. What is the output of below code?

26/4/2021 md2pdf - Markdown to PDF

https://md2pdf.netlify.app 176/176

let count = 10;

(function innerFunc() {
 if (count === 10) {
 let count = 11;
 console.log(count);
 }
 console.log(count);
})();

1: 11, 10
2: 11, 11
3: 10, 11
4: 10, 10

Answer

Read also:

250+ JS Resources to Master Programming 💥 Cheat Sheet

The ultimate Cheat sheets compilation (200+) - 🔥🎁 / Roadmap to dev 🚀

10 Projects to Become a Javascript Master

Thanks for Reading and Happy coding ❤

Follow us on Discord - Or join our Newsletter

https://dev.to/worldindev/200-js-resources-to-master-programming-3aj6
https://dev.to/devlorenzo/the-ultimate-compilation-of-cheat-sheets-100-268g
https://dev.to/worldindev/10-projects-to-become-a-javascript-master-giveaway-2o4k
https://discord.gg/7sRmnhCs6H
https://worldindev.ck.page/

