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1 preliminaries and notation

We define E the set of all edges of our grid (lets say Z2), τ some positive random variable,
and {τe}e∈E a collection of positive i.i.d copies of τ (so τe =

d
τ ). Define the passage time

Tn(τ) = inf
γ

∑
e∈γ

τe

where the infimum is over all the paths γ which goes from (0, 0) to (0, n) (so the fastest we
can get from the origin to (0, n) if τe is the time it takes to cross the edge e).

We denote Γn,τ the minimal path in the above (with some deterministic law for the case
of multiple minimal paths, while existence is well known) so we have Tn(τ) =

∑
e∈Γn,τ

τe. The

basic result in the study of first passage percolation is the existence of the limit

µ(τ) = lim
n→∞

Tn(τ)

n
(1.1)

And here we are interested in what happens when we add to each τe some small number (this
is called the shifted weights model ), i.e we study the real valued function µτ (t) := µ(τ + t)
for some fixed τ (it is well defined as long as τ + t is positive a.s), which is known to be a
concave function. In particular we will be interested in its relation to the asyimptotical size
of Γn,τ . For that we define

λ(τ) =
|Γn,τ |
n

where while it is not known if the limit always exist (so λ may not be defined everywhere )
we do know that the liminf and limsup of the above are between the right and left dirivative
of µτ at 0 (which exists since its concave), in particular if µτ is differentiable at 0 then λ
is well defined and equal to µ′

τ (0), or in general if we define λτ (t) = λ(τ + t) then λτ = µ′
τ

whenever µ′ exist (which is a.e since µ is concave).
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2 the result

our main theorem is

Theorem 1 : Assume that λτ is continuous in some interval (−r, r) than we have that
it is constant in that interval and µτ is linear in it.

Note that (since if a concave function is differentiable in an interval the derivative is contin-
uous there) this is equivalent to the statement that µτ is differentiable in an interval iff it is
linear in it. This is surprising since we may expect a concave function to be differentiable in
general, but some known result also suggest that we expect µτ to be strictly concave and in
particular not linear (see Theorem 2.2 in 1)

Now our main theorem will follow from the existence of the (random) functional ϕt (for any
t ∈ R satisfying τ + t > 0 a.s) such that

ϕt(x+ t) = µτ (t) (a)

ϕtt = tλτ (t) (b)

∀t, s ϕt(x+ t) ≤ ϕs(x+ t) (c)

Where here and in what follows x+t is the function x → x+t, t is the constant t function
(and in general we will always denote the variable of our function with x, everything else
will be a parameter), and the second and third condition obviously only need to hold when
λτ (t), ϕt, ϕs are well defined.

This construction is the only non trivial part of the proof, and as such it is of course not
mine, but rater the result of a (great) work by Erik Bates (see section 2.2 in 2 for more),
expect we work with functional instead of measures (but this is obviously equivalent).
To summarize the idea is that for any n we can define the functional

ϕn,t(f) =
∑

e∈Γn,τ+t

f(τe)

and then using compactness argument to get that ϕn,t

n
has some weak * convergent subsequ-

unce, and it’s limit is our desired functional ϕt.
Note that by definition of weak * convergence

ϕt(x+ t) = lim
k→∞

1

nk

∑
e∈Γnk,τ+t

τe + t = lim
k→∞

Tnk
(τ + t)

nk

= µτ (t)

ϕt(t) = tϕf (1) = t lim
k→∞

1

nk

∑
e∈Γnk,τ+t

1 = t lim
k→∞

|Γnk,τ+t|
nk

= tλτ (t)

2



and we clearly have that ϕt(x+t) ≤ ϕs(x+t) for all t, s by definition of Γn,τ+t as the minimal
path for τ + t. So our functional dose have the desired properties.

Now first we claim that if λτ (t) is continuous in (−r, r) than we have for all c ∈ (−r, r)

ϕc(x) = ϕ0(x) = µτ (0) (2.1)

Proof : using linearity of ϕ and its properties we have (for small t > 0)

ϕc+t(x) + tλτ (c+ t) =
b
ϕc+t(x+ t) ≤

c
ϕc(x+ t) =

b
ϕc(x) + tλτ (c)

ϕc−t(x)− tλτ (c− t) =
b
ϕc−t(x− t) ≤

c
ϕc(x− t) =

b
ϕc(x)− tλτ (c)

so from the above we get

λτ (c− t)− λτ (c) ≤
ϕc(x)− ϕc−t(x)

t
≤
c
0 ≤

c

ϕc+t(x)− ϕ0(x)

t
≤ λτ (c+ t)− λτ (c)

And since λτ is continuous at c we can take the limit t → 0 to get that the function
h(t) = ϕt(x) is differentiable at c and its derivative there is h′(c) = 0. Implying that
h(c) = ϕc(x) is indeed constant in the interval. an interesting corollary form the above is
that for any t ∈ (−r, r) we have

µτ (t) =
a
ϕt(x+ t) = ϕt(x) + ϕt(t) =

2.1
ϕ0(x) + ϕt(t) =

a,b
µτ (0) + tλτ (t)

From which we get µτ (t)−µτ (0)
t

= λτ (t), and since we only need continuity of λτ and by
definition λτ+c(t) = λτ (c+ t) (and the same for µτ ) we can conclude

µτ (c+ t)− µτ (c)

t
=

µτ+c(t)− µτ+c(0)

t
= λτ+c(t) = λτ (c+ t) (2.2)

Which by taking t to 0 gives µ′
τ (c) = λτ (c), and in particular µτ is differentiable in (−r, r)

and inserting this remark back to the above (2.2) with c = 0 gives µτ (t) = µτ (0) + tµ′
τ (t).

Solving this simple ODE will indeed give us that µτ is linear and µ′
τ = λxi is constant, as

we claimed.
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