first passage percolation project

tomtiger6

February 10, 2022

1 preliminaries and notation

We define \mathcal{E} the set of all edges of our grid (lets say \mathbb{Z}^{2}), τ some positive random variable, and $\left\{\tau_{e}\right\}_{e \in \mathcal{E}}$ a collection of positive i.i.d copies of τ (so $\tau_{e} \underset{\mathrm{~d}}{=} \tau$). Define the passage time

$$
T_{n}(\tau)=\inf _{\gamma} \sum_{e \in \gamma} \tau_{e}
$$

where the infimum is over all the paths γ which goes from $(0,0)$ to $(0, n)$ (so the fastest we can get from the origin to $(0, n)$ if τ_{e} is the time it takes to cross the edge e).

We denote $\Gamma_{n, \tau}$ the minimal path in the above (with some deterministic law for the case of multiple minimal paths, while existence is well known) so we have $T_{n}(\tau)=\sum_{e \in \Gamma_{n, \tau}} \tau_{e}$. The basic result in the study of first passage percolation is the existence of the limit

$$
\begin{equation*}
\mu(\tau)=\lim _{n \rightarrow \infty} \frac{T_{n}(\tau)}{n} \tag{1.1}
\end{equation*}
$$

And here we are interested in what happens when we add to each τ_{e} some small number (this is called the shifted weights model $)$, i.e we study the real valued function $\mu_{\tau}(t):=\mu(\tau+t)$ for some fixed τ (it is well defined as long as $\tau+t$ is positive a.s), which is known to be a concave function. In particular we will be interested in its relation to the asyimptotical size of $\Gamma_{n, \tau}$. For that we define

$$
\lambda(\tau)=\frac{\left|\Gamma_{n, \tau}\right|}{n}
$$

where while it is not known if the limit always exist (so λ may not be defined everywhere) we do know that the liminf and limsup of the above are between the right and left dirivative of μ_{τ} at 0 (which exists since its concave), in particular if μ_{τ} is differentiable at 0 then λ is well defined and equal to $\mu_{\tau}^{\prime}(0)$, or in general if we define $\lambda_{\tau}(t)=\lambda(\tau+t)$ then $\lambda_{\tau}=\mu_{\tau}^{\prime}$ whenever μ^{\prime} exist (which is a.e since μ is concave).

2 the result

our main theorem is
Theorem 1 : Assume that λ_{τ} is continuous in some interval $(-r, r)$ than we have that it is constant in that interval and μ_{τ} is linear in it.

Note that (since if a concave function is differentiable in an interval the derivative is continuous there) this is equivalent to the statement that μ_{τ} is differentiable in an interval iff it is linear in it. This is surprising since we may expect a concave function to be differentiable in general, but some known result also suggest that we expect μ_{τ} to be strictly concave and in particular not linear (see Theorem 2.2 in 1)

Now our main theorem will follow from the existence of the (random) functional ϕ_{t} (for any $t \in \mathbb{R}$ satisfying $\tau+t>0$ a.s) such that

$$
\begin{align*}
& \phi_{t}(x+t)=\mu_{\tau}(t) \tag{a}\\
& \phi_{t} t=t \lambda_{\tau}(t) \tag{b}\\
& \forall t, s \quad \phi_{t}(x+t) \leq \phi_{s}(x+t) \tag{c}
\end{align*}
$$

Where here and in what follows $x+t$ is the function $x \rightarrow x+t, t$ is the constant t function (and in general we will always denote the variable of our function with x, everything else will be a parameter), and the second and third condition obviously only need to hold when $\lambda_{\tau}(t), \phi_{t}, \phi_{s}$ are well defined.

This construction is the only non trivial part of the proof, and as such it is of course not mine, but rater the result of a (great) work by Erik Bates (see section 2.2 in 2 for more), expect we work with functional instead of measures (but this is obviously equivalent). To summarize the idea is that for any n we can define the functional

$$
\phi_{n, t}(f)=\sum_{e \in \Gamma_{n, \tau+t}} f\left(\tau_{e}\right)
$$

and then using compactness argument to get that $\frac{\phi_{n, t}}{n}$ has some weak $*$ convergent subsequunce, and it's limit is our desired functional ϕ_{t}.
Note that by definition of weak * convergence

$$
\begin{aligned}
& \phi_{t}(x+t)=\lim _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{e \in \Gamma_{n_{k}, \tau+t}} \tau_{e}+t=\lim _{k \rightarrow \infty} \frac{T_{n_{k}}(\tau+t)}{n_{k}}=\mu_{\tau}(t) \\
& \phi_{t}(t)=t \phi_{f}(1)=t \lim _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{e \in \Gamma_{n_{k}, \tau+t}} 1=t \lim _{k \rightarrow \infty} \frac{\left|\Gamma_{n_{k}, \tau+t}\right|}{n_{k}}=t \lambda_{\tau}(t)
\end{aligned}
$$

and we clearly have that $\phi_{t}(x+t) \leq \phi_{s}(x+t)$ for all t, s by definition of $\Gamma_{n, \tau+t}$ as the minimal path for $\tau+t$. So our functional dose have the desired properties.

Now first we claim that if $\lambda_{\tau}(t)$ is continuous in $(-r, r)$ than we have for all $c \in(-r, r)$

$$
\begin{equation*}
\phi_{c}(x)=\phi_{0}(x)=\mu_{\tau}(0) \tag{2.1}
\end{equation*}
$$

Proof : using linearity of ϕ and its properties we have (for small $t>0$)

$$
\begin{aligned}
& \phi_{c+t}(x)+t \lambda_{\tau}(c+t) \underset{\mathrm{b}}{=} \phi_{c+t}(x+t) \underset{\mathrm{c}}{\leq} \phi_{c}(x+t) \underset{\mathrm{b}}{=} \phi_{c}(x)+t \lambda_{\tau}(c) \\
& \phi_{c-t}(x)-t \lambda_{\tau}(c-t) \underset{\mathrm{b}}{=} \phi_{c-t}(x-t) \underset{\mathrm{c}}{\leq} \phi_{c}(x-t) \underset{\mathrm{b}}{=} \phi_{c}(x)-t \lambda_{\tau}(c)
\end{aligned}
$$

so from the above we get

$$
\lambda_{\tau}(c-t)-\lambda_{\tau}(c) \leq \frac{\phi_{c}(x)-\phi_{c-t}(x)}{t} \leq_{\mathrm{c}} 0 \leq_{\mathrm{c}} \frac{\phi_{c+t}(x)-\phi_{0}(x)}{t} \leq \lambda_{\tau}(c+t)-\lambda_{\tau}(c)
$$

And since λ_{τ} is continuous at c we can take the limit $t \rightarrow 0$ to get that the function $h(t)=\phi_{t}(x)$ is differentiable at c and its derivative there is $h^{\prime}(c)=0$. Implying that $h(c)=\phi_{c}(x)$ is indeed constant in the interval. an interesting corollary form the above is that for any $t \in(-r, r)$ we have

$$
\mu_{\tau}(t) \underset{\mathrm{a}}{=} \phi_{t}(x+t)=\phi_{t}(x)+\phi_{t}(t) \underset{2.1}{=} \phi_{0}(x)+\phi_{t}(t) \underset{\mathrm{a}, \mathrm{~b}}{=} \mu_{\tau}(0)+t \lambda_{\tau}(t)
$$

From which we get $\frac{\mu_{\tau}(t)-\mu_{\tau}(0)}{t}=\lambda_{\tau}(t)$, and since we only need continuity of λ_{τ} and by definition $\lambda_{\tau+c}(t)=\lambda_{\tau}(c+t)$ (and the same for μ_{τ}) we can conclude

$$
\begin{equation*}
\frac{\mu_{\tau}(c+t)-\mu_{\tau}(c)}{t}=\frac{\mu_{\tau+c}(t)-\mu_{\tau+c}(0)}{t}=\lambda_{\tau+c}(t)=\lambda_{\tau}(c+t) \tag{2.2}
\end{equation*}
$$

Which by taking t to 0 gives $\mu_{\tau}^{\prime}(c)=\lambda_{\tau}(c)$, and in particular μ_{τ} is differentiable in $(-r, r)$ and inserting this remark back to the above (2.2) with $c=0$ gives $\mu_{\tau}(t)=\mu_{\tau}(0)+t \mu_{\tau}^{\prime}(t)$. Solving this simple ODE will indeed give us that μ_{τ} is linear and $\mu_{\tau}^{\prime}=\lambda_{x} i$ is constant, as we claimed.

3 References

[1] Krishnan, A., F. Rassoul-Agha and T. Seppalainen. "Geodesic length and shifted weights in first-passage percolation." (2021).
[2] Bates, E.. "Empirical Measures, Geodesic Lengths, and a Variational Formula in FirstPassage Percolation." (2020).

