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CHAPTER 20

Hypnotic modulation of resting state fMRI default
mode and extrinsic network connectivity
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Abstract: Resting state fMRI (functional magnetic resonance imaging) acquisitions are characterized by
low-frequency spontaneous activity in a default mode network (encompassing medial brain areas and
linked to self-related processes) and an anticorrelated “extrinsic” system (encompassing lateral
frontoparietal areas and modulated via external sensory stimulation). In order to better determine the
functional contribution of these networks to conscious awareness, we here sought to transiently modulate
their relationship by means of hypnosis. We used independent component analysis (ICA) on resting state
fMRI acquisitions during normal wakefulness, under hypnotic state, and during a control condition of
autobiographical mental imagery. As compared to mental imagery, hypnosis-induced modulation of resting
state fMRI networks resulted in a reduced “extrinsic” lateral frontoparietal cortical connectivity, possibly
reflecting a decreased sensory awareness. The default mode network showed an increased connectivity in
bilateral angular and middle frontal gyri, whereas its posterior midline and parahippocampal structures
decreased their connectivity during hypnosis, supposedly related to an altered “self” awareness and
posthypnotic amnesia. In our view, fMRI resting state studies of physiological (e.g., sleep or hypnosis),
pharmacological (e.g., sedation or anesthesia), and pathological modulation (e.g., coma or related states) of
“intrinsic” default mode and anticorrelated “extrinsic” sensory networks, and their interaction with other
cerebral networks, will further improve our understanding of the neural correlates of subjective awareness.
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connectivity.
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Introduction

Spontaneous brain activity has recently received
increasing interest in the neuroimaging commu-
nity. However, the value of functional magnetic
resonance imaging (fMRI) resting-state studies
to a better understanding of brain-behavior
relationships has been challenged (e.g., Boly
et al., 2008). During task-negative conditions, sev-
eral cerebral networks, characterized by low-fre-
quency dynamic fluctuations, appear to play a
potential functional role in sensory and higher
cognitive functioning (Damoiseaux et al., 20006).
Correlation analysis among these distinct
networks has identified functional correlations
between distinct somatosensory systems which in
turn appear to anticorrelate with an “intrinsic sys-
tem” or default network (Fox et al., 2005; Tian
et al., 2007). More particularly, the “extrinsic”
system, encompassing lateral frontoparietal areas,
has been linked to processes of externally derived
input via somatosensory (Boly et al., 2007,
Bornhovd et al., 2002; Buchel et al., 2002), visual
and auditory modalities (Fuhrmann et al., 2008;
Rees, 2007). The default mode network
encompasses midline brain areas and it has been
associated with internally oriented cognitive pro-
cesses, such as mind wandering or daydreaming
(Mason et al., 2007; McKiernan et al., 2006), men-
tal imagery (Knauff et al., 2003; Wang et al.,
2008), inner speech (Morin and Michaud, 2007),
and self-oriented thoughts (Goldberg et al.,
2006; Lou et al., 2004). The functional significance
of this anticorrelated pattern is not completely
understood but there seems to be a link between
cerebral function and its conscious behavioral
counterpart under healthy situations
(Vanhaudenhuyse et al., 2011) and during experi-
mentally manipulated states of unconsciousness,
such as anesthesia (Boveroux et al., 2010).

In order to better determine the functional con-
tribution of these anticorrelated networks to con-
sciousness, we sought to transiently modulate
their relationship by means of hypnosis. Hypnosis
is “a procedure during which a health

professional or researcher suggests that a patient
or subject experiences changes in sensations,
perceptions, thoughts, or behavior” (The Execu-
tive Committee of the American Psychological
Association — Division of Psychological Hypnosis,
1994) by inducing an altered state of conscious-
ness with a distinct cerebral pattern (Maquet
et al., 1999; Rainville et al., 2002). At the phe-
nomenological level, hypnosis is characterized by
increased degrees of private processes, such as
absorption (i.e., the capacity to remain implicated
in a mental state), dissociation (i.e., the mental
separation from the environment), disorientation
in time, space and person, diminished tendency
to judge and censor, whereas it reduces spontane-
ous thoughts and gives the feeling of one's
own response as automatic or extravolitional
(Oakley and Halligan, 2009; Rainville and
Price, 2003). The experimental manipulation of
these basic dimensions of experience is thought
to provide leverage to investigate not only the
contents of consciousness but also the neural
correlates of its background states (Chalmers,
2000).

We here used independent component analysis
(ICA) on resting state fMRI acquisitions during
normal wakefulness, under hypnotic state and
during a control condition of autobiographical
mental imagery. The ICA approach to study func-
tional connectivity is a user-independent way to
analyze complex signals as it does not require
predefined regions of interest or the identification
of a seed voxel location and is powerful to sepa-
rate the neuronal from the global signal and other
noise-related signal variations (Beckmann et al.,
2005). Hence, the anticorrelations of the resting
state cannot be explained as an artifact of the
global signal regression, which underlies their
biological basis (Fox et al., 2009).

We here hypothesized that, compared to auto-
biographical mental imagery, subjects under hyp-
notic state would report a phenomenology of an
altered state of consciousness, showing increased
“self” absorption, dissociated from decreased
external sensory awareness. Recording of “resting



state” fMRI networks under hypnosis was pre-
dicted to show an altered functional connectivity
of both the default mode network and the anti-
correlated “extrinsic” system.

Methods
Subjects and procedure

Twelve healthy subjects (4 women, 8 men; mean
age 21 years, SD +3) with no previous neurologi-
cal or psychiatric history participated in the study
after giving written informed consent in accor-
dance with the Ethics Committee of the Faculty
of Medicine of the University of Liege. For their
inclusion in the study, subjects needed to report
an absorption and dissociation level >6/10 during
a familiarization session with hypnosis which pre-
ceded the main experiment. During this session,
detailed information about past pleasant life
experiences, which the subject wanted to use dur-
ing hypnotic induction, was obtained through a
semi-structured interview as described elsewhere
(Faymonville et al., 2003).

The hypnotic state was induced in the same
way as in our patients during surgery
(Faymonville et al., 1995, 1997, 1999) and as in
our previous functional neuroimaging studies
with healthy volunteers (Faymonville et al.,
2003; Maquet et al., 1999; Vanhaudenhuyse
et al, 2009a). The hypnotic instruction
encompassed a 3-min induction procedure involv-
ing progressive eye fixation and muscle relaxa-
tion. Subjects were then invited to reexperience
their pleasant autobiographical memories. As in
clinical conditions, permissive and indirect
suggestions were used to develop and deepen
the hypnotic state. Subjects were continuously
given cues for maintaining a hypnotic state. The
exact words and details of the induction tech-
nique and specific suggestions and details during
the course of the induction varied depending
upon the experimenter's (M.E.F.) observation of
subject behavior, and on her judgment of
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subjects’ needs. During the experimental session,
the experimenter remained silent.

Data acquisition and analysis

Three scanning sessions were performed: during
normal wakefulness, under hypnotic state, and
during a controlled condition of mental imagery
of autobiographical memories (i.e., the same
memories used in hypnotic session but here with-
out the hypnotic induction). In order to exclude
carry-over effects, the order of the sessions was
randomized across subjects. In all subjects, resting
state fMRI data were acquired on a 3T magnetic
resonance scanner (Magnetom Allegra; Siemens
Medical Solutions, Erlangen, Germany). Three
hundred and fifty multislice 7,*-weighted fMRI
images were obtained with a gradient echoplanar
sequence using axial slice orientation (32 slices,
FoV=220x220mm’, voxel size=34x 3.4x
3 mm’, 30% interslice gap, matrix size= 64 x
64x 32, TR=2460ms, TE=40ms, FA=90°).
Head movements were minimized using customized
cushions. A T1 magnetization prepared rapid gradi-
ent echo sequence was also acquired in the same ses-
sion for coregistration of subject's anatomy with
functional data. The most comfortable supine posi-
tion attainable was sought to avoid painful stimula-
tion related to position. During data acquisition,
subjects wore earplugs and headphones through
which they were receiving the instructions for the
hypnotic induction. After each session, subjects
were asked to rate on a 0 (not at all) to 10 (fully)
scale their subjective experiences concerning the
level of arousal, absorption, dissociation, and exter-
nal thoughts.

fMRI data were preprocessed and analyzed
with “Brain Voyager” software package (Brain
Innovation, Maastricht, The Netherlands).
Preprocessing of functional scans included 3D
motion correction, linear trend removal, slice scan
time correction and filtering out low frequencies
of up to 0.005Hz. The data were spatially
smoothed with a Gaussian filter of full width at
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half maximum value of 6 mm. The first three
fMRI volumes were discarded to allow for signal
equilibration. In two subjects, 197 scans were kept
in the analysis due to increased motion across
time (i.e., >6 mm). The functional images from
each participant were each aligned to the par-
ticipant's own anatomical scan and warped into
the standard anatomical space of Talairach and
Tournoux, 1988 by individually defining bounding
boxes for the entire brain, using anterior com-
misure (AC) and posterior commisure (PC) as
anchor points for the transformation. ICA, as
implemented in “Brain Voyager” (Formisano
et al., 2004), was performed using 30 components
(Ylipaavalniemi and Vigario, 2008). Then self-
organizing ICA (Esposito et al., 2005) permitted a
spatial similarity test on single subjects’ indepen-
dent components and an averaged template
obtained in seven independent controls (mean
age = 48 years, SD =+ 13, range: 25-65, 3 females;
300 functional scans acquired on a 3T MR scanner,
Trio Tim, Siemens, Germany; gradient echo-
planar sequence with axial slice orientation: 32
slices; voxel size: 3.0 x 3.0 x 3.75 mm?; matrix size:
64 x 64 x 32; repetition time: 2,000 ms, echo time %
30 ms, flip angle: 78°; field of view: 192 mm).

At a first-level analysis, the component of inter-
est (z-map) was transformed into a statistical
parametric map (SPM) for each individual sub-
ject: the time courses of all components but that
of interest (i.e., which contained the z values of
the two systems) were used to regress out the ini-
tial BOLD signal; the saved residuals represented
the BOLD activity of the default mode and the
“extrinsic” system. Then by using the time course
of the component of interest as a predictor of this
residual BOLD activity, the fmaps were
obtained. At a second-level analysis, the beta
values extracted from the previous step were
entered in repeated-measures multiple subjects
general linear models (random effects) with three
levels (normal wakefulness, hypnotic state, men-
tal imagery). One-sample ANOVAs (FDR
corrected p <0.05) were ordered to calculate the
mean effects of each level. The contrast between

hypnotic state versus mental imagery was
ordered. Statistical parametric maps resulting
from the voxel wise analysis were considered sig-
nificant for statistical values that survived a clus-
ter-based correction for multiple comparisons as
implemented in Brain Voyager (Goebel et al.,
2006) using the “cluster-level statistical threshold
estimator” plug-in. This approach to correction
for multiple comparisons is based on a 3D exten-
sion of the randomization procedure described by
Forman and colleagues (Forman et al., 1995).
First, voxel-level threshold was set at t=2.2
(p=0.05, uncorrected). Thresholded maps were
then submitted to a region of interest (ROI)
brain-based correction criterion (masks for the
default mode and “extrinsic” systems) that was
based on the estimate of the map's spatial
smoothness and on an iterative procedure (Monte
Carlo simulation) for estimating cluster-level
false-positive rates. After 1000 iterations, the min-
imum cluster size threshold that yielded a cluster-
level false positive rate of 5% was applied to the
statistical maps. After each session, subjective
reports were collected as regards the level of
arousal, absorption, dissociation and intensity of
external thoughts on a 10-point scale (0: not at
all, 10: totally). Wilcoxon's signed-rank tests
(SPSS v. 16) were preformed to test the
differences in scores within each variable across
the three conditions per subject. Results were
considered significant at a p<0.05 (two-tailed).

Results

Participants reported similar arousal scores dur-
ing normal wakefulness (6.4+2.0 mean and SD;
range 2-10), mental imagery 6.1+1.8 (range
3-8), and hypnotic state (5.3+2.3). Dissociation
and absorption scores were higher in hypnotic
state as compared to mental imagery and normal
wakefulness. Self-reported intensity scores of
external thoughts were lower in hypnotic state,
as compared to mental imagery and normal wake-
fulness (Fig. 1).
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Fig. 1. Absorption, dissociation, and external awareness scores in normal wakefulness (white), autobiographical mental imagery
(light gray), and hypnotic state (dark gray) (mean values with 95% confidence intervals; ** p <0.01; *p <0.05).

In normal wakefulness, the identified default
mode network encompassed posterior cingulate
and adjacent precuneal cortices, anterior cingu-
late and adjacent medial prefrontal cortices, bilat-
eral angular, middle and inferior temporal, and
parahippocampal gyri. The anticorrelated “extrin-
sic” system encompassed bilateral inferior frontal
and supramarginal gyri (Table 1). In autobio-
graphical mental imagery, the identified default
mode and anticorrelated “extrinsic” networks
encompassed similar areas as described above
albeit less widespread (Table 2). In hypnotic
state, a further decrease in default mode and
“extrinsic” network connectivity extent and inten-
sity was observed, as illustrated graphically in
Fig. 2.

The comparison between hypnosis and mental
imagery showed an increased connectivity in part
of the default network encompassing the middle
frontal and bilateral angular gyri whereas the
restrosplenial/posterior cingulate and bilateral
parahippocampal areas showed a decreased con-
nectivity. The “extrinsic” network did not show
any increased connectivity but we identified a

decreased connectivity in the right supramarginal
and left superior temporal areas in hypnosis as
compared to mental imagery (Table 3; Fig. 3).

Discussion

Resting state fMRI acquisitions are characterized
by low-frequency spontaneous activity in a
default mode network (i.e., relatively decoupled
from external input, encompassing medial brain
areas and linked to self-related processes;
Gusnard and Raichle, 2001) and an anticorrelated
“extrinsic” or externally oriented network (i.e.,
modulated via external sensory stimulation
encompassing lateral parietal areas; Damoiseaux
et al., 2006; Golland et al., 2007; Raichle et al.,
2001). We here aimed to determine how these
two networks are influenced by a transient
altered conscious state, such as hypnosis. In nor-
mal wakefulness, we first identified both networks
in accordance to prior studies (Damoiseaux et al.,
2006; Fox et al., 2005; Golland et al., 2007; Tian
et al., 2007). The relationship between these two
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Table 1. Peak voxels of the default mode network and anticorrelated extrinsic system identified in normal wakefulness

Cluster size

Common names (Brodmann area) (number of voxels) X y z t P
Default mode network
Posterior cingulate/precuneus (23, 31, 7) 68,050 -1 -59 24 2519  <0.001
Medial prefrontal cortex/anterior cingulate (24, 32, 10) 47,407 -1 40 12 1489  <0.001
R Angular gyrus (39) 7287 47 =59 18 1131  <0.001
L Angular gyrus (39) 5609 —-43 =59 21 820  <0.001
R Middle temporal gyrus (21) 3827 62 -8 —15 6.91 <0.001
L Middle temporal gyrus (21) 4594 —55 -17 —12 9.66 <0.001
R Inferior temporal gyrus (38) 521 41 22 =24 549  <0.001
L  Inferior temporal gyrus (38) 255 —43 22 =21 520  <0.001
L  Postcentral gyrus (2) 313 -13  -29 69 597  <0.001
Medial occipitotemporal gyrus (17) 278 -7 -89 6 4.30 0.001
Thalamus 421 2 —-17 15 491 <0.001
Brainstem 510 -1 -23 —24 7.52 <0.001
Cerebellar tonsils 252 5 -53 —33 4.95 <0.001
Extrinsic system
R Inferior frontal gyrus (45) 10,403 41 1 15 =732 <0.001
R Inferior frontal gyrus (47) 376 47 31 0 -510  <0.001
L  Inferior frontal gyrus (47) 12,612 —49 19 -3 -7.98  <0.001
R Supermarginal gyrus (40) 3971 53 -32 24 -7.02 <0.001
L  Supermarginal gyrus (40) 2923 -67 =29 15 =579  <0.001
L Superior frontal gyrus (9) 1416 —40 37 27 =558  <0.001
L  Medial frontal gyrus (32) 4130 —4 7 45 -7.67  <0.001
L Precentral gyrus (6) 615 —46 -2 45  —5.05 <0.001
L  Inferior occipital gyrus (19) 469 —-43 =53 0 -5.21 <0.001
Anterior cingulate gyrus (24) 437 17 -20 42 544 <0.001

Stereotaxic coordinates are in normalized Talairach space, p values are FDR corrected for multiple comparisons at the whole brain level.

networks at conscious resting state has been pre-
viously characterized as competing, where one
system can disturb or even interrupt the other
(Boly et al.,, 2008; Fox et al., 2005; Golland
et al., 2007; Tian et al., 2007) with a consequence
on the way we perceive the external world. For
example, this ongoing resting activity has been
shown to mediate sensory awareness in the sense
that increased activity in the “extrinsic”
frontoparietal network seemed to facilitate the
conscious perception of low-intensity somatosen-
sory stimuli, whereas unperceived intensity-
matched stimuli were preceded by increased
activity in the default mode network (Boly et al.,
2007). Previous studies have also shown that
increasing attentional demands in cognitive tasks

lead to decreased activity in the default mode net-
work (McKiernan et al., 2003) and lapses in atten-
tion were shown to correlate with reduced
prestimulus activity in the anterior cingulate and
right prefrontal regions, areas involved in
controlling attention (Weissman et al., 2006).
We recently showed that this opposed functional-
ity of the default mode and anticorrelated “extrin-
sic”  system has a cognitive behavioral
counterpart. Explicit subjective reports for
increased intensity of “internal” awareness (i.e.,
self-related stimulus-independent processes) were
related to increased connectivity in the default
network, whereas increased “external” awareness
scores (i.e., perception of the environment) was
associated with increased connectivity in the
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Table 2. Peak voxels of the default mode network and anticorrelated extrinsic system identified in mental imagery (A) and

hypnotic state (B)

Common names

Cluster size

(Brodmann area) (number of voxels) x y z t )4
A. Mental imagery
Default mode network
Posterior cingulate/precuneus (23, 31,502 -7 -53 12 19.79  <0.001
30, 7)
Medial prefrontal cortex/anterior 11,372 2 49 3 14.44  <0.001
cingulate (32)
R Angular gyrus (39) 1908 38 62 21 6.08 <0.001
L Angular gyrus (39) 2068 —40 -62 27 6.8 <0.001
R Parahippocampal gyrus (35) 2874 26 -26 —-15 10.08 <0.001
R Middle frontal gyrus (8) 923 23 19 42 6.46  <0.001
L Middle frontal gyrus (8) 823 =22 19 36 6.67 <0.001
L Superior temporal gyrus (38) 309 —34 22 24 541 <0.001
R Middle occipital gyrus (17) 234 17 -89 -3 538  <0.001
Cerebellar tonsil 340 -10 -56 33 545  <0.001
Extrinsic system
R Inferior frontal gyrus (44) 4167 47 7 6 —-8.05 <0.001
L Inferior frontal gyrus (6) 3063 —49 4 21 =715 <0.001
L Inferior frontal gyrus (44) 1461 —43 34 18 548 <0.001
R Supermarginal gyrus (40) 5863 53 -32 36 —-749 <0.001
L Supermarginal gyrus (40) 4715 —61 =32 33 —-817 <0.001
R Middle occipital gyrus (17) 337 29 80 9 -5.61 <0.001
B. Hypnotic state
Default mode network
Posterior cingulate/precuneus (31) 14,718 —4 —56 30 1795 <0.001
Anterior cingulate/mesiofrontal 8272 —4 28 -9 729  <0.001
(32)
R Angular gyrus (39) 3755 4 =59 24 1275 <0.001
L Angular gyrus (39) 1598 —49  -56 21 6.85 <0.001
R Superior frontal gyrus (8) 534 23 19 48 7.04  <0.001
L Superior frontal gyrus (10) 624 —13 46 18 824 <0.001
R Middle temporal gyrus (38) 216 56 -8 —-15 6.51 <0.001
Extrinsic system
R Inferior frontal gyrus (45) 440 32 31 9 -7.57 <0.001
L Inferior frontal gyrus (44) 637 —43 4 6 -6.04 <0.001

Stereotaxic coordinates are in normalized Talairach space, p values are FDR corrected for multiple comparisons at the whole brain level.

“extrinsic” system (Vanhaudenhuyse et al., 2011),
confirming the functional significance underlying
the activity of both resting networks to conscious
experience in health and disease (e.g., Laureys
et al., 2007; Qin et al., 2010).

The selection of a control condition for hyp-
notic state remains challenging as, a priori, no
cerebral state is close to hypnotic state. Thus,

results from studies with hypnosis need to be
interpreted based on the chosen control condition
because the generation of different types of men-
tal images will be associated with different cere-
bral activation patterns (e.g., Gardini et al,
2005; Ishai et al., 2000). We here chose to study
hypnotic state as we use it in the clinical setting
and during surgery (Faymonville et al., 1997,
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(a) DEFAULT MODE NETWORK
a Normal wakefulness

T-values

Normal Mental Hypnotic
wakefulness imagery state

(b) EXTRINSIC SYSTEM

= Def
Extrinsic system

Normal ' Mental " Hypnotic
wakefulness imagery state

Fig. 2. The default mode network (a) and its anticorrelated “extrinsic” system (b) under normal wakefulness, mental imagery, and
hypnotic state. Results are thresholded at whole brain false discovery rate corrected p <0.05. The graphs illustrate the global
connectivity strength (left; summed 7 values of all identified clusters in the random effect analysis) and extend (right; total
number of voxels of all identified clusters) in both networks during the three conditions.

2000), asking subjects to revive pleasant autobio-
graphical memories. Hence, our control condition
employed mental imagery of pleasant autobio-
graphical memories without induction of hypnosis
because it is characterized by a polymodal con-
tent (motor, visual, and contextual) of episodic
nature (Conway and Pleydell-Pearce, 2000).

We here observed that, in comparison to auto-
biographical mental imagery, under hypnosis the

“extrinsic” system exhibited reduced functional
connectivity, whereas the default network showed
reduced connectivity in its posterior midline and
parahippocampal structures but increased con-
nectivity in its lateral parietal and middle frontal
areas. The hypnosis-related increases in cerebral
connectivity is in line with previous activation
studies showing enhanced functional connectivity
of anterior midline structures during hypnotic
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Table 3. Peak voxels of areas showing increased and decreased connectivity in (A) the default mode network and (B) extrinsic

system in hypnotic state as compared to mental imagery

Cluster size

Common names (number of

(Brodmann area) voxels) x y z t p

A. Default mode network

Increases in connectivity

R Medial prefrontal (10) 2417 8 62 18 3.53 0.005

L Angular gyrus (39) 997 —-58 =52 18 321 0.008

R Angular gyrus (39) 775 51 =59 33 3.03 0.011

Decreases in connectivity

L Parahippocampal gyrus (35)/ Posterior 19,088 -25 =23 -18 —633 <0.0001
cingulate (30)

B. Extrinsic system

Increases in connectivity

Decreases in connectivity

R Supermarginal gyrus (40) 385 47 -39 27 —2.98 0.013

L Superior temporal gyrus (22) 936 -68 —-32 18 —4.64 0.001

Stereotaxic coordinates are in normalized Talairach space, p values are cluster level corrected.

analgesia (Faymonville et al., 2003). Frontal
increases in regional cerebral blood flow have
also previously been demonstrated by positron
emission tomography (PET) in the hypnotic state
(e.g., Faymonville et al., 2000; Rainville et al.,
1999) However, a recent fMRI study showed a
hypnosis-related reduction in default mode con-
nectivity in the middle frontal areas (McGeown
et al.,, 2009). These divergent findings may be
explained by the distinct suggestion instructions
used to induce hypnosis and the different experi-
mental fMRI designs utilized. In our study, we
acquired continuous eyes-closed resting state data
during each condition where pleasant autobio-
graphical memories were performed during
both hypnosis and the control mental imagery
task. McGeown et al. (2009) employed a block
design comparing an eyes-open visual perceptual
task with and without hypnosis. It could also
be that the observed persisting activity in the
anterior midline part of the default network in
our study is due to the chosen less challenging
experimental conditions (Greicius and Menon,
2004).

The observed reduction in connectivity of the
posterior midline parts of the default mode net-
work during hypnosis might reflect a decreased
degree of continuous information gathering from
the external world with its relation to oneself
(Gusnard and Raichle, 2001). These posterior ret-
rosplenial, cingulate, and precuneal areas of the
default network have been previously associated
with various cognitive functions, such as visuospa-
tial orientation, episodic memory retrieval, and
self-processing (e.g., self-relevance, social cogni-
tion, visuospatial perspective taking, and agency;
Cavanna and Trimble, 2006) and support
functions concerning both orientation within,
and interpretation of, the environment (Vogt
and Laureys, 2005). The special contribution of
the precuneus to consciousness is supported by
evidence of its dysfunction in profound uncon-
scious states, such as deep sleep (Horovitz et al.,
2009), pharmacological coma (Boveroux et al.,
in press), and pathological coma and vegetative
states (Laureys et al., 1999; Vanhaudenhuyse
et al., 2009b) suggesting that it is a critical node
in the neural network subserving conscious
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Fig. 3. Increased (in red) and decreased (in blue) functional connectivity in the default mode network and its anticorrelated
“extrinsic” system. Results are thresholded at cluster level corrected p <0.05. The graph illustrates the effect size in the medial
prefrontral cortex (MPFC), bilateral angular gyri (AG), and parahippocampal gyrus/posterior cingulate cortex (PHG/PCC) for
the default mode network and in the temporoparietal cortices (supramarginal gyrus-SMG and superior temporal gyrus-STG) for
the extrinsic system (mean beta values and 95% confidence intervals).

experience (Baars et al., 2003). Our results on
decreased connectivity of retrosplenial and poste-
rior cingulate cortices extend previous PET stud-
ies demonstrating prominent reductions in
regional blood flow and metabolism in these pos-
terior midline structures during the hypnotic state
(e.g., for review, see Faymonville et al., 2006).
The generation of autobiographical episodic
mental images, as evoked in the present study in
both normal and hypnotic conditions, is known to
involve posterior cingulate, precuneal, and para-
hippocampal areas (Gardini et al., 2006). The
reported reduced connectivity in the latter can be
related to posthypnotic amnesia (Barber, 2000),

thought to involve a disruption of retrieval pro-
cesses similar to the functional amnesias observed
in clinical dissociative disorders (Kihlstrom, 1997).

The decreased functional connectivity observed
in the lateral frontoparietal “extrinsic” system,
along with the subjective reports of diminished
external awareness, might reflect a blockage of
the sensory systems to receive sensory stimuli as
a result of hypnotic suggestion which was shown
to induce (Derbyshire et al., 2004) or alter
somatosensory perceptions (Cojan et al., 2009).
Increasing evidence points to the critical role of
lateral associative frontoparietal cortical network
in the emergence of conscious sensory perception



(e.g., Boveroux et al., 2008; Laureys, 2005).
The observed hypnosis-induced decreased
frontoparietal connectivity could elucidate the
clinical finding that patients undergoing surgery
during hypnosedation (e.g., Faymonville et al.,
1997) show modified phenomenological sensory
awareness of their aversive encounters (e.g., see
Kupers et al., 2005).

Our results are also in line with a previous
suggested framework (Soddu et al., 2009), where
it was hypothesized that a hypofunctional “extrin-
sic” system and a preserved default network
activity would account for the participants’ sub-
jective experience of disengagement from their
external environment leading to a “self-centered
absorption” state, translated into a reduced sen-
sory responsivity (i.e., limitation of sensory input
or reduced motor output). Indeed, according to
the behavioral data, participants reported a
higher degree of absorption and dissociation from
their surroundings during hypnosis as compared
to mental imagery and normal wakefulness. Past
phenomenological analysis of reports from
subjects in hypnotic state suggests a diminished
tendency to judge and monitor, a disorientation
in time, space, and person and the experience of
one's own response as automatic (Rainville and
Price, 2003). Such increased absorption and disso-
ciation levels during hypnotic state account for its
antinociceptive effects during various surgical
procedures, where hypnosis in combination with
local anesthesia and minimal conscious sedation
(i.e., “hypnosedation”) is used to reduce pain,
anxiety, intraoperative use of anxiolytic and anal-
gesic drugs as well as faster recovery of the
patient (Faymonville et al., 1998, 2006).

In conclusion, hypnosis-induced modulation of
resting state fMRI networks, as compared to
mental imagery, seems to result in a reduced
“extrinsic” lateral frontoparietal cortical connec-
tivity, possibly reflecting a decreased sensory
awareness. The default mode network showed
an increased connectivity in bilateral angular
and middle frontal gyri whereas its para-
hippocampal and posterior midline structures
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decreased their connectivity during hypnosis,
putatively related to an altered “self”’-awareness
and posthypnotic amnesia. In our view, fMRI
“resting state” studies of physiological (e.g., sleep
or hypnosis), pharmacological (e.g., sedation or
anesthesia), and pathological modulation (e.g.,
coma or related states) of “intrinsic” default
mode and anticorrelated “extrinsic” sensory
networks and their interaction with other cerebral
networks will further improve our understanding
of the neural correlates of subjective awareness.
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