
SynergisticIT
The best programmers in bay area... Period!



Java Event: Types and How They 
Work?



Java programming is the backbone of several websites, mobile 
applications, servers, and desktop GUI. Due to its platform 
independence, versatility, robustness, security features, it has been a 
core language for multiple startups and top tech organizations.

Many beginners like to start their coding career with Java as Java 
coding is simple. The simple English-like syntax makes it easy for the 
programmers to learn it with training and practice. Considering this, 
many institutions offer short-term training programs for Java.

Most Java training in San Francisco is 3-6 months long and can 
teach the learners basic and advanced programming skills from 
scratch. The training is aimed to help tech enthusiasts build a solid 
coding foundation.

https://www.synergisticit.com/java-training-in-san-francisco/
https://www.synergisticit.com/java-training-in-san-francisco/


You'll learn several concepts as part
of your Java training. One such popular
concept is an event related to Java's
event handling mechanism in the
Swing GUI library.

Java Swing is a lightweight GUI (graphical user

interface) widget toolkit, offering a rich set of

widgets and several packages useful for

developing desktop Java applications.

Java Swing Event Handling



Swing GUI applications are event-driven, meaning they react to 
numerous events generated throughout their lives. These events 
result from user interaction with the application or other means.

This article will help the learners understand what an event is, its 
types, and how event handling works.

What is an Event?
An event is a change in the state of an Object. It is triggered by any 
change in the Graphical User Interface (GUI. Whenever a user clicks 
on a button, moves the cursor, clicks on the combo box, types 
characters in the field, scrolls page, closes the window, etc., a 
relevant object event is created.



In simple words, an event is a signal that the operating system
gives to the program whenever a user does something, or a
change occurs in an instant in time. It indicates the user's
interaction with the GUI components.

Let's understand this phenomenon with an example. Let's say
you have a JButton, a push-button; so, whenever a user clicks
on this button, an event will be triggered and created.

The created event will then be sent to the
relevant event listener. For an event like this,
ActionListener is the relevant listener, which has
the implemented code defining the action to be
taken if such an event occurs.

https://docs.google.com/spreadsheets/d/1pEYGi2OlPf_tehdBICdL-MBL_PD20YyxRBmjM7NACSU/copy


The ActionListener interface is a part of the
Java.awt.event package and has only one
method: actionPerformed (). This method is
automatically invoked when you click on the

JButton.

It is imperative to note that the component
should be paired with the event listener.
Otherwise, no action will initiate from the
trigger caused by the change in the GUI.



An event is generally classified into 
two categories

• Foreground Events – These events occur when the user directly
interacts with the GUI components by clicking on a button, moving
the cursor, typing a character through a keyboard, scrolling the page,
clicking on an item from a list, etc. They are generated by direct user
interaction and triggered when any related change happens.

• Background Events – Unlike the foreground events, these events
don't require the user's interaction. They generally happen due to
interruption in the operating system, hardware/software failure,
timer expiration, completion of the operation, etc. All these events
have less to do with user interaction and happen in the background.



Event Handling

Event handling is an instrument by which the events
can be controlled. It determines what action to take
after an event takes place. Java coding follows the
Delegation Event model to handle the events.

The delegation Event Model comprises two key
elements: source and listener. Event Handling requires
the source to be registered with the listener.

https://www.synergisticit.com/java-training-in-indianapolis/


• Source: Events occur when you make changes in the
GUI, and sources are how you make those changes.
Examples of sources are the push button, checkbox,
menu items, scrollbar, drop-down list, text components,
etc.

• Listener: An event listener is responsible for handling
the event. Each source has a specific event listener that
manages the events triggered by their use.



Types of 
Events



There are various types of events and
listeners in Java. Each event is associated
with a matching listener. Let's look at
some common events types in Java and
their corresponding listeners.



● ActionEvent: It occurs when a
graphical element is clicked, like a
button or an element in a list.
ActionListener is the event listener for
the ActionEvent.

● KeyEvent: This Event is triggered
when the user presses, types, or
releases a key. The event listener
related to it is, KeyListener.



• MouseEvent: This Event occurs after
clicking or pressing the mouse.
MouseListener is the related listener
for it.

• WindowEvent: It is an event relating to
changes happening in the window. For
example, when a window closes, it is
activated or deactivated.
WindowListener is the Related listener
for this event.



Remember that multiple event sources and listeners can interact with
one another at a single point in time. It happens because a single listener
can register multiple events of the same type.

One event listener can handle a set of components performing a similar
action. Similarly, a single event can be related to multiple listeners.
However, it's a rare occurrence.



How Do Events 
Work?



Let's understand how an event works through a common type of 
Event, ActionEvent. ActionEvents are generated when a user 
clicks an item in the list or a button.

As a result of the user interaction, an ActionEvent object 
matching the corresponding event is created. The object includes 
the event source information and the action performed by the 
user. This information is passed to the related ActionListener
object's method:

void actionPerformed(ActionEvent e)



After the method is executed,
an appropriate GUI response
is returned, which could be to
open or close a dialogue box,
give a digital signature,
download a file, or any action
available to the users in the
interface.

https://docs.google.com/spreadsheets/d/1pEYGi2OlPf_tehdBICdL-MBL_PD20YyxRBmjM7NACSU/copy


Conclusion
This article discussed the event, its types,
and event handling in detail. Similar to this
concept, there are several concepts in
Java. If you want to familiarize yourself
with the advanced Java concepts through
hands-on training, a Java coding
bootcamp like SynergisticIT can help.

Experienced mentors will help you learn
the OOP concepts, objects, and classes in
Java, collections, interfaces,
multithreading, and more through
interactive lectures and projects.

Source: https://javacodingbootcamp.blogspot.com/2022/03/java-event-types-

and-how-they-work.html

https://www.synergisticit.com/java-training-in-san-francisco/
http://www.synergisticit.com/
https://javacodingbootcamp.blogspot.com/2022/03/java-event-types-and-how-they-work.html


CREDITS: This presentation template was 
created by Slidesgo, including icons by 
Flaticon, infographics & images by Freepik and 
illustrations by Stories

Do you have 
any questions?

Visit website: 
www.synergisticit.com
admin@synergisticit.com
+510-550-7200

Thanks

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://stories.freepik.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=slidesgo_contents_of_this_template&utm_term=stories_by_freepik&utm_content=stories
http://www.synergisticit.com/
mailto:admin@synergisticit.com

