```
      اذا كانت المصغوفة ! = \begin{pmatrix} Y & u + 7 & 2 \\ 1 & 0 & Y \end{pmatrix}

      هى مصغوفة متماثلة فإن:

      س + 0 + 3 = ......

      س + 0 + 3 = ......

      0

      1

      1
```

Question 2

 $\begin{aligned} \left| \left\{ i \right\} \sum_{i=1}^{n} \left\{ \left\{ Y_{i} \right\} \right\}, \quad \left\{ \sum_{i=1}^{n} \left\{ \left\{ Y_{i} \right\} \right\} \right\}, \quad \left\{ \sum_{i=1}^{n} \left\{ \left\{ Y_{i} \right\} \right\} \right\}, \quad \left\{ \sum_{i=1}^{n} \left\{ Y_{i} \right\} \}, \quad \left\{ \sum_{i=1}^{n}$

Question 3

أثبت أن : جتاءًس - حاءًس = ۱ - ۲ جا ّس

 $\begin{aligned} \frac{1}{2} \frac{$

Question 5

 $\begin{aligned} \|\Delta \tilde{\tau} + \tilde{\tau} = (\circ, \frac{\sigma}{\tau}) \text{ with } \Delta \tilde{\tau} + \delta \tilde{\tau} \\ & \circ \frac{1}{\tau} + \frac{1}{\tau} \frac{\sigma}{\tau} \end{aligned}$ $\begin{aligned} & \circ \frac{1}{\tau} + \frac{1}{\tau} \frac{\sigma}{\tau} \\ & \circ \frac{1}{\tau} + \frac{1}{\tau} \frac{\sigma}{\tau} \end{aligned}$ $\begin{aligned} & \circ \frac{1}{\tau} + \frac{1}{\tau} \frac{\sigma}{\tau} \end{aligned}$ $\begin{aligned} & \circ \frac{1}{\tau} + \frac{1}{\tau} \frac{\sigma}{\tau} \end{aligned}$

51	في الشكل المقابل :
	ا ب جد ی متوازی اضلاع ه منتصف آ
ų,	الثبت أن: ٢ ب هَ + ج اً = ٢ ب اً

```
ابسط صورة للمقدار التالى:
جاس جتا س ظا س + جاس جتا س ظتا س = ......
چا س قلس
ا ظا س
جتا س
قتا س
```

Question 8

```
لِذَا کان آَ = (٣، ٥) ، بَ = (٤، ٢)
فاِن ||-۲ آَ +٣ بَ إَ || = ...
١٤
• ٨
• ٦
```

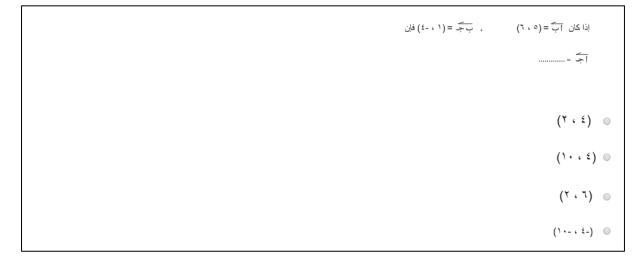
Question 9

```
اِذا کانت / (۲، ۳) ، ب ( ٤، ۷) ، جـ ( ٦، ۱)
فأوجد النسبة التي تنقسم بها آب   بالنقطة جـ، وعين نوع التقسيم
```

```
قیمة الزاویة س التی تحقق المعادلة:
• جا س = ١٢ جنا س حیث س ∈ [. ، π] هی .......
• ١٥٢ ٢٢ ١٩٥٩
• ١١٢ ٣٧ ١,٥١
• ٢٢ ٣٧ ٦١,٥١
• ٢٩ ٤٩.٤٩
• ٢٩ ٤٩.٤٩
```

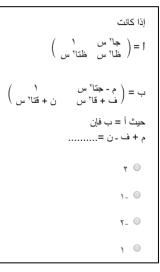
 اذا کان آم متوسط Δ | ب ج حیث م هی نقطة نقاطع متوسطات المثلث

 وکانت ! (۰، ٤)، م (۲، ۸) فان آم =


 • $(\frac{2}{7}, \frac{5}{7})$

 • $(\frac{7}{7}, \frac{2}{7})$

 • (1, 7)


Question 12

إذا كان
$$\begin{vmatrix} 1 & - - \\ - & - \\ + & - \\ \end{vmatrix}$$
 وكان $2 - - - = 7$
أوجد قيمة $\begin{vmatrix} 1 + 7 & - - + 7 \\ - & - \\ \end{vmatrix}$

اذا کان ا (-۷، ۸) ،
فان: ب(،)
('・・'-) 💿
(- ⁷ ^{(, 7})
(¹ ¹)
(¹ ·- · ^Y) 💿

Question 15

تتحرك سيارة (|) بسر عة ١٠٠كم/س وتتحرك سيارة (ب) على نفس الطريق بسر عة ٨٠كم/س، أوجد سر عة السيارة (ب) بالنسبة للسيارة (ا) عندما: (١) تتحركان فى اتجاه واحد (٢) تتحركان فى عكس الاتجاه.

Question 18

```
      اذا کان ( ب ج ی معین حیث ( ( ، ۲ ) ) ، ب ( ° ، ۲ ) ، ج ( ^ ، ۷ )

      فان ی ( ... ، ... )

      • ( - ۲ ، - ۳ )

      • ( - ۲ ، - ۳ )

      • ( - ۲ ، - ۳ )

      • ( - ۲ ، - ۳ )

      • ( - ۲ ، - ۳ )

      • ( - ۲ ، - ۳ )

      • ( - ۲ ، - ۳ )

      • ( - ۲ ، - ۳ )

      • ( - ۲ ، - ۳ )

      • ( - ۲ ، - ۳ )
```

Question 19

$$\begin{array}{l} (\downarrow l \ge \downarrow j = (\circ, \ P), \ l \neq = (r, \ A) \ l \downarrow j : \ \psi \neq = \dots \end{array}$$

$$\begin{array}{l} ((r, \ V)) \\ ((r, \ V)) \\ \end{array}$$

$$\begin{array}{l} ((r, \ V)) \\ \end{array}$$

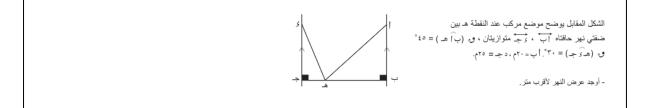
الثالث	الثاني	الأول	النوع
۷ جنیهات	ہ جنیہات	۳ جنيهات	الثمن

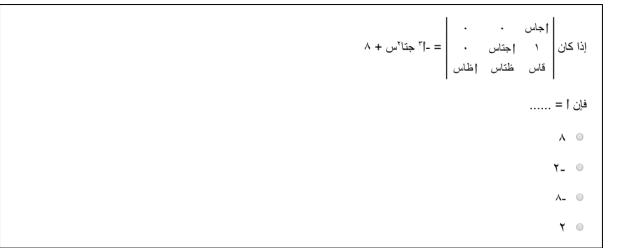
```
      اذا تحركت نقطة مادية في خط مستقيم من الموضع !(?, ?) إلى الموضع ب (٢، ٤)

      فإن متجه الإزاحة \overline{|+|} = \dots

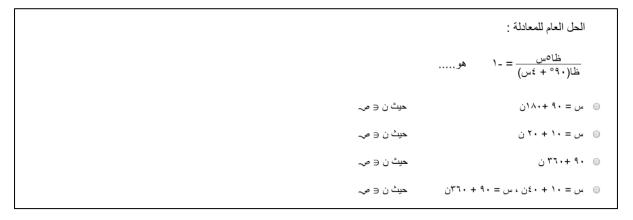
      • (٧، ٨)

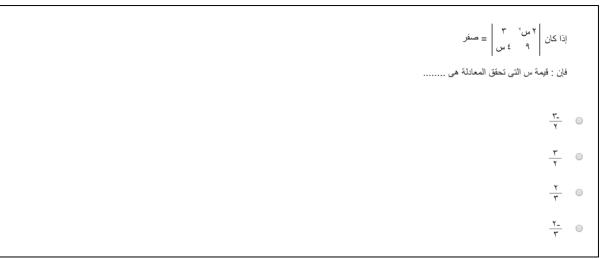
      • (-٤، -١)

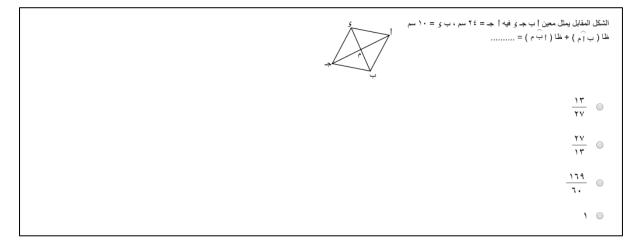

      • (٨، ٧)


      • (٨، ٧)

      • (٨، ٧)
```


Question 22




Question 25

Question 26

إذا قسم محور الصادات القطعة المستقيمة (ب) بنسبة ٢ : ٣ حيث إ (٦، ٣) ، ب (-٩، ٦) فأوجد إحداثيا نقطة التقاطع

