Perlin: Blind computing for the masses.

Kenta Iwasaki

April 28, 2018

Abstract

Perlin is a decentralized network which aggregates, schedules, and
frames a liquid market around underutilized computing resources to make
massively parallel privacy-preserving supercomputing economically viable
and accessible to enterprises, startups, students, and academics working
on groundbreaking research and industrial applications.

1 Introduction

Supercomputers and other forms of high-performance computing have played a
significant role in advancing scientific research and industry work; leading us to
achieving a greater overall quality of life.

However, as more powerful forms of compute are introduced to alleviate the
ever-growing computational costs necessary for the advancement of technology,
they become far more economically inaccessible to those whom are the forefront
of innovation. This stems from the fact that the market dynamics behind com-
pute power and research in recent years has started to come under the influence,
development, and control of just a few select centralized computing oligopolies
around the world.

Such a problematic case has already affected researchers, students, and ad-
vocates in numerous academic fields such as machine learning, protein folding,
genetic sequencing, supply-chain logistics management, and several others whose
practical applications lie only economically viable and accessible to enterprises
that can effortlessly expend large sums of capital. Large internet giants for ex-
ample hold access to millions of computers and servers around the world and
are slowly becoming the only ones financially capable of advancing and utilizing
the state-of-the-art in computing (ex: quantum computing).

Perlin disintermediates traditional centralized computing oligopolies and re-
places them with an openly accessible peer-to-peer network consisting of smartly
aggregated underutilized computing resources that can be utilized to perform
massively parallelized compute work. By framing a trustless, liquid market
around said resources with an economic incentive, perls, we increase the maxi-
mum potential upper bound for parallelized computation to deliver egalitarian
blind supercomputing at a feasible scale.

Perlin enables and democratizes access to large amounts of underutilized
compute power for startups, enterprises, researchers, developers, students and
advocates working with large amounts of potentially sensitive data for the sake
of hastening the advancement of technology.

2 The Network

As an autonomously governed trustless system, Perlin consists of three core
parties: the wvalidators, the miners, and the clients. End-users of Perlin may
partake in multiple roles at any given moment. Discussions with regards to
how users partake in/withdraw from roles, how roles interact with one another,
how economic incentives are minted, capped, and utilized, and how users are
incentivized to responsibly adhere to their roles is discussed in the next section.

The walidators are nodes of an asynchronous byzantine fault-tolerant dis-
tributed ledger that stores immutable records of events that occur within Per-
lin’s network. Validators are responsible for verifying, timestamping, ingesting,
and forwarding events over to other actors within Perlin’s system, and thus are
crucial for Perlin to converge into an eventually-decentralized system. The state
of Perlin’s network at any moment is derived by replaying through the records
of events. Validators operate in such a manner such that the responsibilities
of a single node when it comes towards querying and updating data is entirely
segregated (command-query-responsibility-segregation).

The miners are nodes that provide underutilized computing resources in the
form of virtualized container instances. Miners sell their computing resources
with respect to the amount of time a client reserves/utilizes said resources for
and solve cryptographic puzzles which allows them to prove to the network
that they truly have provided the computing resources they claim to be able to
supply for.

The clients are nodes that develop, utilize, and deploy decentralized appli-
cations and computing tasks within Perlin’s network. Clients purchase available
computing resources off miners, defining specific resource requirements they re-
quire for tasks that they wish to run on Perlin’s network. Clients are the arbiters
for how tasks are defined and executed off provisioned computing resources and
are responsible for generating and assessing cryptographic puzzles which miners
are to complete.

3 The Market

At the heart of Perlin’s liquidity lies a virtual currency, perls. The dynam-
ics with regards to how Perlin adopts liquidity, garners a supply of compute
power, and encourages differing actors within Perlin’s market to interact with
one another are resultant of a basic supply and demand model.

We define Perlin’s total supply of computing power S, to be a subset of the
total external computing market supply S,,, and for both markets to have a

demand of D, and D,, respectively.

Necessary assumptions are made that S, is relatively elastic with respect
to Dy, and as a result initially leaves D, to be a miniscule proportion of D,,.
Assumptions are additionally made that small price increases over the comput-
ing market supply S, despite lower marginal costs in existing underutilized
devices leads to movement of sales towards smaller-scale suppliers. This move-
ment of sales can be derived from how the economies of scale is invocated over
the computing market.

Given that Perlin recycles underutilized computing resources such as long-
idling laptops, smartphones, and tablets, S, inherently holds lower costs.

This initially leaves Perlin to be a price taker with respect to the external
computing market and sets Perlin as a market with low opportunity cost. We
label this supply curve as S,.

Price
Sm
Sp
Sp
Quantity
0O H(m,N,r)

Figure 1: Supply-demand curve of the price of perls w.r.t the quantity of com-
puting power measured in terms of H(m, N,r).

As computing power in the hands of the consumer trendily becomes more
powerful and available however, Perlin does require justification with regards
how it’s able to suave over the global computing market demand D,, such that
Sp may further saturate Sp,.

To accomplish the following, Perlin introduces a virtual currency, perls,
which acts as an economic incentive to suppliers of S, which is logarithmi-
cally minted over time with respect to Perlin’s present computing power supply
and demand. perls are intended to have a higher market value compared to the
fees expended by a supplier to maintain their computing power supply, such
that suppliers are motivated to provide computing power despite there being
lower demands at the beginning of Perlin’s regime.

perls also act as an economic policy in which inflation is autonomously con-
trolled, as perls are steadily minted over time from a pool with a maximum

capacity of 1 billion perls instantiated at the beginning of Perlin.

Thus, with the introduction of an economic incentive to wager against fees
necessary to manage supply, we assume the supply curve will shift in. We label
this new supply curve with the introduction of these incentives as SI’), with
respect to the global computing market supply curve as an equilibrium S,,.

3.1 Proof of Computing Resources

To establish a trustless computing market, a supplier must be able to prove
they truly own a batch of available computational resources before delivering
and selling them to another party. Perlin makes use of diodon, which is an
asymmetric memory-hard cryptographic hash function to quantitatively deter-
mine that supplier truly holds some amount of computing resources.

3.1.1 Parameters of diodon

diodon’s parameters M, L and 7 is configurable to allow for one to represent
some amount of RAM capacity and CPU clock frequency available on a device.
The work load factor M enforces a block mixing process on diodon to have
M sequential round results sequentially stored and gated with one another in
memory, and thus requires truly random memory access requiring long wall
clock times and large amounts of memory.

Parameters L and 7 enforces longer periods of CPU time required for each
block mixing round as it configures diodon to achieve larger time complexity
from hashing mixed blocks L times over 2" random memory accesses.

diodon may be supplemented with an additional parameter, p, to be attuned
to represent some level of parallelism which is possible on a device. Since the
introduction of a scheduler requiring multiple block mixing rounds to coordinate
one another introduces more work, p can somewhat be used to enforce a longer
CPU/wall clock time off a given device.

Although p could be used to measure some number of virtualized/real cores
available on a device, we choose to leave it out of Perlin’s proof of computing
supply due to Perlin’s network inherently provisioning parallelism from mil-
lions of underutilized computing instances to clients/consumers. We leave p for
Perlin’s use case to be 1.

With the parameters M, L and 7, we can estimate a lower bound memory
requirement for diodon being M * 128 bytes. To simplify notation, we define
the diodon function to hash a message m with the salt provided by a user as
H(m, M, L,n), given p = 1.

3.1.2 Cryptographic puzzle protocol

We start off with two potentially malevolent entities, Alice and Bob; with Alice
wishing to supply spare computing power, and Bob wishing to purchase Alice’s
computing power.

For Alice to advertise that she is selling off her power, she emits an event
containing a public IP to her computing resources to the Perlin network with
proof that she holds access to computing power she claims to be able to provide.
The proof is written as an appended signature to the event H(dy, My, La, M),
with d, being a serialized message representing her device specifications in terms
of M,, L, and n,, alongside access information to her supplied resources. By
submitting this event, Alice has registered herself as a miner on Perlin’s network.

Alice must follow this process using a miner node client from Perlin or any
other entity, which will automate for Alice the process of segregating and secur-
ing underutilized computing resources into a virtualized container instance and
automate the process of becoming and being a miner.

To automate choosing M,, L, and 7,, Perlin tests upper bounds for M, and
factorizes M, to be the smallest power of 2 that would saturate Alice’s desired
deliverable memory and processing power.

Now, any client who has developed a decentralized application or has a
computation task which requires significant computing effort may have Alice
process/work on a portion or on the entirety of their application.

Bob holds a task T and registers T" onto Perlin’s network with a fixed amount
of perls to provide to miners T.. Bob is now officially registered as a client on
Perlin’s network and may utilize Alice’s resources for T

Alice and Bob connect to one another provided Alice’s public IP through
SSH, and Bob may now use Alice’s computing instance.

While Bob is connected to Alice, Alice and Bob must work with one another
to solve a cryptographic puzzle such that Bob has constant access to Alice’s
computing instance, and Alice gets rightfully paid by both Bob and Perlin’s
network. The cryptographic puzzle goes as follows:

On a constant interval, Bob must generate, stream, and publish to Perlin’s
network a string of random bytes b.. Alice must publish an event containing
H(mglbe, Mo, La,n,) as soon as possible with m, being the health and status
of Alice’s computing instance.

3.1.3 Economic incentives

Should Alice or Bob fail to submit their piece of the cryptographic puzzle in
time, either Alice would not be provided pay from Bob and the network, or
Bob would get disconnected from Alice and have 5% of his investment into T
recycled back into the network’s pool of unminted peris.

Should one round of the cryptographic puzzle be successful, Alice would
be paid M = M,, + M.(N,r), where M,, is a logarithmically minted amount
of perls from the network, and M, represents the total fees Bob pays from T,
which amounts to:

M
1012

The minted proportion of Alice’s salary M, is determined with respect to
the total number of seconds required for Alice to submit the hash of her payout

Mc(M)

request H(mg|be, My, Lo, 1), which is an approximation of the number of CPU
cycles Alice provided Bob.

As the transacted proportion of Alice’s salary M, paid by Bob is propor-
tional to parameters of M, L and 7 to a memory-hard cryptographic function,
M. approximates the device memory specifications of the virtualized container
instance Alice provided to Bob.

Given the volatility of underutilized computing resources however, before
Alice receives compensation M,,, she must serve Bob for a minimum of 3 rounds
for free as a bond.

The constant interval in which the cryptographic puzzle executes between
Alice and Bob is described in the next section detailing Perlin as a distributed,
asynchronous Byzantine fault-tolerant system.

4 The Ledger

For Perlin to track, audit, and validate the state of different actors in its network,
Perlin requires a decentralized ledger which is immutable in the face of numerous
potentially malevolent entities. In addition to that, Perlin requires an immutable
source of time to execute its cryptographic puzzle protocol across miners and
clients.

Perlin represents streams of events in the form of a historical graph of events
synchronized across a quorum of validators.

To ensure Byzantine fault-tolerance of the contents of the graph, Perlin
draws in inspiration from other forms of distributed ledger technology to se-
curely achieve fast consensus in the finality of event sequences established by a
decentralized autonomous government.

More specifically, with inspiration from distributed ledgers Hashgraph and
Dfinity, Perlin models its ledger as a directed-acyclic graph whose consensus
mechanism consists of a rotating quorum of a maximum of 1024 staking valida-
tors randomly chosen from an entire pool of candidate validators.

4.1 Hash Graphs

Drawing inspiration from Hashgraph, we divide events into sequences repre-
sented as rounds which are established whenever a single event is strongly wit-
nessed’. Rounds define a measure of time in which a sequence of events were
executed and are markers for the frequency in which the cryptographic puzzle
between miners and clients should be executed.

We define an event e to be strongly witnessed when:

e ﬁw (1)

where e, is the set of all validators who notarized e, and v, is the set of all
validators chosen in a given round r. We define an event e to be notarized when
a validator signs and gossips out an event.

An entity is considered to have gossiped out an event when an entity forwards
an event to another entity; akin to how epidemic messaging protocols work in
the context of distributed systems. Signatures are provided by a validator by
hashing said event.

2
r; = {ey : |es] > ’73|UT|“} (2)

To establish Perlin’s historical graph of events, we formulate the data struc-
ture of the graph to be a directed-acyclic-graph representative of the hashes of
all events published by Perlin’s prior and present groups of validators.

The hash function utilized in Perlin H'(m) is Keccak SHA-256, whose se-
curity comes from its unique preimage hash whose difficulty stems from the
discrete log problem in mathematics.

Node identities in Perlin comprise of private/public keys derived from multi-
plicative and additive operations applied under an elliptic curve algebraic group
defined by the Edwards 25519 curve such that public key Kpup = Kpriv x G
where K, is a node’s private key, and G is the base/generator point of the
Edwards 25519 curve.

To minimize the amount of memory needed to cache and update the graph,
hash signatures are appended together through the Schnorr signature scheme
where signature S(m, s,e) = H'(m|s« G + e xy) = H'(m|r) = e is represented
through the signature components s and r = s % G + e x y) for message m.

The line of events which end users of Perlin may trust is a single line of
events from said graph which has the greatest number of strongly witnessed
events at any present moment.

|R|
2
pg={{eer} € R:maz(Y_ ey : les] = L}Ivrﬂ D} (3)
i=0

where R is the set of all events, and p, is the ground-true sequence of events
derived from Perlin’s historical directed-acyclic event graph.

Hence, the selected group serves to linearize the sequences of events estab-
lished and gossiped throughout Perlin’s network, which will then eventually be

immutably ledgered into Perlin’s historical graph of events.

4.2 Random Oracle

Drawing inspiration from Dfinity, the hash of Perlin’s genesis set of events con-
sisting of a centrally selected set of validators will be used to seed a secure
random generator Rs.

To select an initial group of validators during the genesis around, a Fisher-
Yates shuffle is performed to permute over all initial candidate validators into
a single group of a maximum of 1024 members that are responsible collecting,
linearizing, hashing, and piecing together events which occur on Perlin’s network
to Perlin’s historical graph of events.

For every perl a candidate validator stakes, they are singly ledgered onto a
list that is permuted by the Fisher-Yates shuffle to determine a round’s group
of validators.

Algorithm 1: Perform Fisher-Yates shuffle to select validator(s) for
round r out of a pool of candidate validators.

Data: Array of n candidate validators a.
Result: Round r’s validators v.
fori+n—1to1ldo

j+— Rsst. 0<j <1

swap a[j] with al[i]
end
return v « pop from a until |[v| = 1024

g W

After a set of validators are chosen, provided node software will connect
all validators together to form a small distributed cluster that will represent
Perlin’s network such that all parties of Perlin may monitor the present state
of the network.

After a round has ended through the event witnessing scheme discussed in
the last section, we concatenate and utilize the set of all validator signatures for
the strongly witnessed event of the latest round e, € r to reseed the random
number generator that will then be utilized to choose the next group of validators
managing Perlin.

Since the contents of the next strongly witnessed event is unpredictable and
thus entirely stochastic, it is difficult for a malicious attacker to predict who the
next round’s set of validators will be.

Therefore, Perlin’s recording of events by nature is asynchronously Byzan-
tine fault tolerant as potential attackers lose information about the validator
selection process over rounds.

Additionally, the unique causality of strongly witnessed events dividing se-
quences of events into rounds ensures that all finalized sequences of events within
Perlin are resultant of democratic finality out of a stochastically determined
group of validators.

Given that validation occurs out of a limited set of validators in quorum,
Perlin can achieve fast finality of events and undergo rounds in the span of a
few seconds.

4.3 Staking Mechanisms

To promote decentralization, anyone can register themselves to be a candidate
validator in Perlin’s system. One may submit a registration event into the

network representing a minimum staking of ﬁ’th of all minted perls, which

will register them as a candidate validator in the next candidate set of sequences
of events.

The reason for staking a minimum proportion of —i—

Toz1 th of all minted perls

is to limit possible candidate validators to a subjective percentile of the masses
who can pay the high staking cost.

One may additionally leave the candidate validator pool at any time and
unlock their initial stake through the submission of a leave event. Thus, those
who were initially registered in Perlin’s genesis may not be in the set of all
candidate validators in future rounds.

The prime incentive for one wanting to be a validator in Perlin’s system is
that every honest member of the group of selectors that publishes one sequence
of events into Perlin’s historical graph gets an equal partition of all transaction
fees derived from said published sequence of events.

These fees can rack up to a large sum of cash and does not require users to
stake in any computing power or work for the sake of gaining back monetary
compensation.

5 Blind Supercomputing

For Perlin to preserve the sovereignty of data it handles with developer /researcher
flexibility in mind, Perlin chooses to establish a processing pipeline in which en-

crypted data is distributed and computed on in parallel across a number of

possibly insecure miner virtual machines.

Should Perlin choose to secure miner virtual machines such that computa-
tions on encrypted data is privacy-preserving, Perlin must sacrifice developer
flexibility by enforcing that developers/researchers create their programs and
mathematical models in a restricted virtual machine which would constrain de-
velopers/researchers to utilizing an esoteric set of programming languages.

However, should an user really wish to establish that computations be privacy-
preserving, an user may simply distribute an encrypted virtual machine along-
side a batch of encrypted data to ensure that the entire processing pipeline
end-to-end on a miner’s virtual machine is completely secure.

Thus, Perlin provides developers and researchers complete freedom in which
they may choose to protect, or to not protect the sovereignty of both their
computations and data.

For Perlin to preserve the sovereignty and computability of data which is
to be distributed and processed by a group of miner nodes, Perlin provides
cryptographic utilities and software development toolkits (SDK’s) implement-
ing a wide plethora of homomorphic cryptosystems and parallel computation
schemes.

5.1 Differential Programming

Numerous state-of-the-art techniques utilized in a wide variety of academic and
industrial fields deal with developing mathematical models whose parameters
are obtained through optimization techniques iterated over continuously differ-
entiable objectives.

Examples of such techniques include predictive maintenance over supply
chain management systems, phenotype modeling over drug discovery operations
condoned by pharmaceutical companies, autoregressive time series prediction
models of stock market features utilized by high-frequency trading firms and
companies, and predictive user behavior modeling established by advertisement
companies.

In broad terms, we can designate said techniques to all fall under an emerging
academic field known as differential programming.

e EAALE @)

where E(f) is a continuously differentiable objective function, f(W,b,z) is

a model parameterized over a set of multiplicative weight parameters W and a

set of additive bias parameters b, and a dataset consisting of a set of inputs =
and ground truth labels /'

Perlin provides flexibility to its users on partitioning the dataset (z,%’), or
the model f(W,b,z) across miner instances with respect to potential gains in
performance and throughput achievable out of massive parallelism.

To allow for differential programming over censored data, one may simply
derive gradients computed off of E(f) with respect to f(W, b, z) given that addi-
tive and multiplicative homomorphisms are preserved on cipher text generated
by Perlin’s cryptographic utilities.

Hence, with homomorphic cryptosystems, one may train differential models
for numerous objectives given that gradients necessary to update parameters
for model f with respect to encrypted cipher text z’ is equivalent to gradients
with respect to raw inputs x due to preserved homomorphisms.

Utilizing gradients %’b’z)’y’) for parameter p, an user may then apply
a nth-order iterative optimization algorithm over model f to update parameter
sets W and b.

OE(f(Wy, by, @),y OE(f (Wi, by, @), y)

Wi =W —pn W, b1 =b—p an,
OE(f(Wy, by, x),y) _ OE(f(Wyi, by, 2'),y)
Gpt 8]%

(5)

where t represents the t’th iteration of a first-order optimization scheme

with gradients scaled by p being applied to a parameter p such that model error
indicated by E collectively minimizes.

5.2 Distributed Systems

Distributed system components utilized in enterprises and startups such as
databases, persistent messaging queues, stream processors, and virtualized con-
tainer orchestrators are expensive to maintain and operate.

10

Monolithic variants of said components on the other hand hold a problematic
issue of only being vertically scalable, and thus are more expensive to maintain.

Not only are these systems costly, but such centralization of technical in-
frastructure components makes achieving high-availability and fault-tolerance
of one’s distributed technical infrastructure subjective to the quality of comput-
ing power, hardware, and devops team one has.

Perlin introduces a novel application of decentralized ledgers in which it
disintermediates centralized backbones underlying distributed systems deployed
in centralized clusters such that establishing high-availability, consistency, and
throughput of said systems is much more cheaper and easier to achieve.

Utilizing Perlin’s network, one for example may host an eventually-consistent
fault-tolerant database on potentially thousands of miner nodes for low costs.
Data hosted over such a massively distributed system may additionally easily be
censored, encrypted, and operated on given Perlin’s homomorphic cryptosystem
implementations.

Thus, with Perlin, any enterprise or startup may easily build fault-tolerant,
highly available decentralized systems using Perlin’s cryptographic utilities, par-
allelism utilities, and network of idle computing power.

5.3 Homomorphic Cryptography

Perlin provides two state-of-the-art asymmetric homomorphic cryptosystem vari-
ants: the Paillier cryptosystem, and CryptoNets. Paillier is a fully homomorphic
cryptosystem which preserves multiplicative and additive operations; however,
being computationally expensive to utilize on very large datasets and models.
Paillier’s security with respect to differential privacy is achieved through the
discrete log problem in mathematics; akin to RSA and Diffie-Hellman.

CryptoNets on the other hand is a partially homomorphic cryptosystem
which utilizes two noisy polynomial terms which phase one another out to par-
tially preserve homomorphisms on data after numerous additive and multiplica-
tive operation.

Using the properties of superpositions of high-degree noisy polynomials ex-
ponentially increases decryption error because of operations accumulating noise
when sequentially applied to cipher text, though remains much cheaper to com-
pute in comparison to the factorization of discrete logs necessary for Paillier.

In the face of machine learning problems which utilize stochastic mini-batch
first-order optimization algorithms for updating model parameters, the error
imposed over these superpositions however would be much less of a problem.

6 Conclusion
With Perlin’s three major components being a self-audited distributed ledger,

a cryptographic proof of computational resources, and a framework for highly
parallel blind computing, Perlin commodifies underutilized computing resources

11

into highly parallel batches of computing power which can be utilized for ad-
vancing research meaningful to a plethora of industries.

Apart from creating a framework over these computing resources, Perlin also
establishes itself as a foundation for both privacy advocates, communities, and
industries with sensitive data to utilize state-of-the-art research results with
minimal risk and cost.

By commodifying such resources into a decentralized virtual currency, Perlin
can balance the disheveled supply and demand for computing resources across
first world and third world countries.

In doing so, Perlin aims to shed new light to researchers and developers
about the numerous practical applications decentralized systems have yet to
provide for the world.

12

