Lecture - 25

Friday, 7 October 2016 (16:15-17:05)
Chernoff Bound

1 Need for Chernoff Bound

Assume Dr. Sudarshan is playing Chess with i of his students. He either wins or loses a game. We model this situation with the help of random variables as follows :
Let X_{i} be a random variable associated with the student i.

$$
X_{i}= \begin{cases}1 & \text { if Dr. Sudarshan wins the game with } i^{t h} \text { student } \\ 0 & \text { otherwise }\end{cases}
$$

The total number of games won by Dr. Sudarshan can now be expressed as a random variable X, where $X=X_{1}+X_{2}+\ldots+X_{n}$

Expected number of games won by him $=E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+\ldots+E\left[X_{n}\right] \quad$ (from Linearity of Expectations)

If his probability of winning with the $i^{\text {th }}$ student is p_{i}, then
$E[X]=p_{1}+p_{2}+\ldots+p_{n} \quad$ (Since, $E\left[X_{i}\right]=p_{i}$, as it is an indicator random variable)

We now know $E[X]$. We also know that on an average, the value of X for an experiment will be close to $E[X]$, but how much close? How much the value of X can deviate from its expected value. Let $E[X]=\mu$, then we are interested in finding the following

$$
\begin{aligned}
& \operatorname{Pr}(X \geq \mu+\mu \delta)=? \\
& \operatorname{Pr}(X \leq \mu-\mu \delta)=?
\end{aligned}
$$

We derive the first expression in this lecture. The proof for the second inequality is left as a homework exercise.

2 Some Prerequisites for the Derivation

2.1 Markov's Inequality

If there is a random variable Y taking values from the set $\{1,2, \ldots, n\}$, then

$$
\operatorname{Pr}(Y \geq a) \leq \frac{E[Y]}{a}
$$

The proof is straightforward and is left as an exercise problem.

2.2 Moment Generating Function

If Y is a random variable taking values from the set $\{1,2, \ldots, \mathrm{n}\}$ then, $e^{t Y}$ is the corresponding generating function for Y.

$$
\operatorname{Pr}(Y \geq a)=\operatorname{Pr}\left(e^{t Y} \geq e^{t a}\right)
$$

$2.31+y \leq e^{y}$ if y is positive
$e^{y}=1+y+\frac{y^{2}}{2!}++\frac{y^{3}}{3!}+\ldots$.

Hence,

$$
1+y \leq e^{y}
$$

$2.4 E\left[e^{t Y}\right]=p\left(e^{t}-1\right)+1$ for an indicator random variable Y which is 1 with probability p

Let $Y=1$ with probability p and $Y=0$ with probability $1-p$.
If $Y=1$, then $e^{t Y}=e^{t}$. If $Y=0$, then $e^{t Y}=1$.

So, $e^{t Y}=e^{t}$ with probability p and $e^{t Y}=1$ with probability $1-p$.
Hence, $E\left[e^{t Y}\right]=p\left(e^{t}\right)+(1-p)$

$$
E\left[e^{t Y}\right]=p\left(e^{t}-1\right)+1
$$

2.5 $E[Y \times Z]$ where Y and Z are independent random variables

$$
E[Y \times Z]=E[Y] \times E[Z]
$$

3 Chernoff Bound- Inequality and Derivation

3.1 Inequality

As explained in section 1 , let X be a random variable which is the sum of n independent random variables $X_{1}, X_{2}, \ldots, X_{n}$.
$X_{i}=1$ with probability p_{i}.
Let $E[X]=\mu$, then

$$
\operatorname{pr}(X \geq(1+\delta) \mu) \leq \frac{e^{\delta \mu}}{(1+\delta)^{(1+\delta) \mu}}
$$

3.2 Derivation

$\operatorname{pr}(X \geq(1+\delta) \mu)$
$=\operatorname{pr}\left(e^{t X} \geq e^{t(1+\delta) \mu}\right) \quad$ (From subsection 2.2)
$\leq \frac{E\left[e^{t X}\right]}{e^{t(1+\delta) \mu}} \quad$ (From subsection 2.1)
$=\frac{E\left[e^{t \sum_{i=1}^{n}\left(X_{i}\right)}\right]}{e^{t(1+\delta) \mu}} \quad\left(\right.$ Since, $\left.X=X_{1}+X_{2}+\ldots+X_{n}\right)$
$=\frac{E\left[\prod_{i=1}^{n} e^{t\left(X_{i}\right)}\right]}{e^{t(1+\delta) \mu}} \quad$ (Since, $\left.e^{a+b+c}=e^{a} e^{b} e^{c}\right)$
$=\frac{\prod_{i=1}^{n} E\left[e^{t\left(X_{i}\right)}\right]}{e^{t(1+\delta) \mu}}$
(From subsection 2.5)
$=\frac{\prod_{i=1}^{n}\left(1+p_{i}\left(e^{t}-1\right)\right)}{e^{t(1+\delta) \mu}} \quad$ (From subsection 2.4)
$=\frac{\prod_{i=1}^{n} e^{\left(p_{i}\left(e^{t}-1\right)\right)}}{e^{t(1+\delta) \mu}} \quad$ (From subsection 2.3)
$=\frac{e^{\sum_{i=1}^{n}\left(p_{i}\left(e^{t}-1\right)\right)}}{e^{t(1+\delta) \mu}} \quad\left(\right.$ Since,$\left.e^{a+b+c}=e^{a} e^{b} e^{c}\right)$
$=\frac{e^{\left(e^{t}-1\right) \sum_{i=1}^{n}\left(p_{i}\right)}}{e^{t(1+\delta) \mu}} \quad\left(\right.$ Since,$\left.e^{a+b+c}=e^{a} e^{b} e^{c}\right)$
$=\frac{e^{\left(e^{t}-1\right) \mu}}{e^{t(1+\delta) \mu}} \quad\left(\right.$ Since, $\left.E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} p_{i}\right)$
Put $t=\log (1+\delta)$, Intuition for choosing this value of t is- To maximise this function, differentiate w.r.t. t and equate to 0 .
$p r(X \geq(1+\delta) \mu) \leq \frac{e^{\left(e^{\log (1+\delta)}-1\right) \mu}}{e^{\log (1+\delta) \times(1+\delta) \mu}}$
$=\frac{e^{(1+\delta-1) \mu}}{e^{\log (1+\delta)(1+\delta) \mu}}$
$=\frac{e^{\delta \mu}}{(1+\delta)^{(1+\delta) \mu}}$
Hence,

$$
\operatorname{pr}(X \geq(1+\delta) \mu) \leq \frac{e^{\delta \mu}}{(1+\delta)^{(1+\delta) \mu}}
$$

A Moment Generating Function

If Y is a random variable taking values from the set $\{1,2, \ldots, \mathrm{n}\}$ then, $e^{t Y}$ is the corresponding generating function for Y .
$E[Y]=\sum_{i=1}^{n} i \times p r(Y=i)$
$E\left[e^{t Y}\right]=E\left[t Y+\frac{(t Y)^{2}}{2!}+\frac{(t Y)^{3}}{3!}+\frac{(t Y)^{4}}{4!}+\ldots . .+\frac{(t Y)^{n}}{n!}\right]$
$=t E[Y]+\frac{t^{2}}{2!} E\left[Y^{2}\right]+\frac{t^{3}}{3!} E\left[Y^{3}\right]+\ldots \frac{t^{n}}{n!} E\left[Y^{n}\right]$
The $i^{t h}$ term in the above equation is called the $i^{t h}$ moment.

The reason why the function $e^{t Y}$ is called the moment generating function is - We can get different moments of Y. We differentiate the equation i times and equate it to zero. This gives us the expected value i.e. the $i^{t h}$ moment.

