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A number of organs have the intrinsic ability to regenerate, a distinctive
feature that varies among organisms. Organ regeneration is a process
not fully yet understood. However, when its underlying mechanisms are
unraveled, it holds tremendous therapeutic potential for humans. In this
review, we chose to summarize the repair and regenerative potential of
the following organs and organ systems: thymus, adrenal gland, thyroid
gland, intestine, lungs, heart, liver, blood vessels, germ cells, nervous
system, eye tissues, hair cells, kidney and bladder, skin, hair follicles,
pancreas, bone, and cartilage. For each organ, a review of the following
is presented: (a) factors, pathways, and cells that are involved in the
organ’s intrinsic regenerative ability, (b) contribution of exogenous cells
– such as progenitor cells, embryonic stem cells, induced pluripotent
stem cells, and bone marrow-, adipose- and umbilical cord blood-
derived stem cells – in repairing and regenerating organs in the absence
of an innate intrinsic regenerative capability, (c) and the progress made
in engineering bio-artificial scaffolds, tissues, and organs. Organ regen-
eration is a promising therapy that can alleviate humans from diseases
that have not been yet cured. It is also superior to already existing
treatments that utilize exogenous sources to substitute for the organ’s
lost structure and/or function(s). Birth Defects Research (Part C)
96:1–29, 2012. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION
In this review, we present the re-
generative and reparative capabil-
ities of different organs. To help us
distinguish between the two proc-
esses, we have set up specific
guidelines. In order for a tissue ‘‘re-
covery’’ process to be classified as
regeneration, the following require-
ments need to be met: (a) first, the
experiment needs to demonstrate
that the organ is significantly dam-
aged (e.g., agents, diseases), or
partially or completely removed
(e.g., surgery), (b) the study needs
to show that the organ is com-
pletely regenerated – in the sense
that at least most of the organ’s
original cell types have been

renewed and have successfully
regained their function – using
markers for cell proliferation and
differentiation, tracking techniques
(e.g., transgenic using cre-loxP
system), and physiological tests
(e.g., gas/nutrient transport), and
(c) studies that make use of
induced pluripotent stem cells
(iPSC), embryonic stem cells (ESC),
and mesenchymal stem cells need
to further show that tumors do not
appear following the completion of
the experiment (the reason for that
being that homeostasis signals that
promote repair have been shown to
induce the formation of a tumor
from these cells). When these crite-
ria are met, then the damaged

organ has regenerated. As for
organ repair, it is characterized by:
(a) epithelial proliferation, and res-
titution of the injury site, and (b) fi-
brosis and extracellular matrix dep-
osition. In many of the studies we
have reviewed, we noted that the
authors have not made it clear
whether the regenerated/repaired
organ is fully functional, or whether
all the cell types have been indeed
regenerated/renewed – two miss-
ing important criteria that were
reflected in our decision to treat the
study as either a case of organ
regeneration or repair. In these
regards, we have chosen a number
of major organs that play key roles
in physiology and homeostasis of
the human body (e.g., lung, heart),
glands that secrete hormones that
affect gene expression throughout
the body (e.g., thyroid), and large
body parts in which the process of
pattern formation is recapitulated
(e.g., limbs).
In addition to studying the intrin-

sic regenerative and repair capabil-
ities of organs, we also aim to intro-
duce the readers to novel therapeu-
tic strategies and tissue engineering
techniques that are currently being
tested/used to aid the organs in
their recovery process following
injury. Furthermore, a brief over-
view of clinical trials, if any, is pre-
sented in each of the organ’s sec-
tion. In the end, we hope to have
addressed a great deal of the most
current studies on this topic, as well
as some of the excellent reviews,
and we do apologize for not being
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able to take into account the en-
tirety of the publications on organ
regeneration and repair.

THYMUS

Thymus is part of the lymphoid
system and its function is directly
related to the immune system. It
is composed of the external cap-
sule, the cortex, and medulla.
Immature T cells migrate from the
bone marrow (BM) to the thymus
where they differentiate into naive
T cells that play a key role in im-
munity. The differentiation process
involves a series of selections via
dendritic and mesenchymal cells.
Thymus has the ability to regener-
ate. However, thymus loses its
structure, function, and regenera-
tive capability with age, resulting
in atrophy. In addition, diseases,
chemicals, clinical treatments, and
radiation can play a role in the
involution of this organ. When the
thymus and/or BM seize to func-
tion properly, they result in a
weakened immune system which
mostly affects elderly people. Sim-
ilarly, a weakened immune system
is observed in BM transplant
receivers. These patients are sus-
ceptible to serious diseases –
including virus infections of the cy-
tomegalovirus and Epstein–Barr
virus – during a period of 6
months post-transplantation, the
time required for immature T cells
to mature. In these regards, a
review on thymus can take on two
pathways: one that focuses on the
potential of thymus regeneration
and the other on the potential of
mature T cells production (Taub
and Longo, 2005; Zhang et al.,
2007; Gordon and Manley, 2011).
Young animal models have

shown great regenerative potential
of the thymus. Thus, the thymus of
young animals has been adopted
as a model for ex vivo production
of mature T cells. Moreover,
experiments in beef cattle have
shown that the thymus is regener-
ated following a treatment with a
chemical that damages it. How-
ever, this regenerative potential,
as well as the organ’s function, are
lost with age (Cannizzo et al.,
2010). Partial repair of the dam-

aged parts of the thymus can be
achieved by progenitor cells from
the cortex and the medulla, or by
the intrinsic ability of the epithelial
cells of the thymus to proliferate
(Gill et al., 2002; Rossi et al.,
2006). Studies show that one thy-
mic progenitor cell can reconstruct
a functional thymus in mice (Bleul
et al., 2006). Additional studies in
animals have demonstrated that a
functional thymus can be regener-
ated after transplantation of thy-
mic parts (Hong et al., 1979; Waer
et al., 1990; Barry et al., 1991;
Kamano et al., 2004). Thymus
transplantation has also been
attempted in infants with DiGeorge
Syndrome (Markert et al., 2003).
Another interesting aspect is the
effect of sex steroids in damaging
thymus and/or BM. Experiments
have shown that when sex steroids
are inhibited (by gonadectomy or
other inhibitors), thymus’ function
is improved (Greenstein et al.,
1986; Greenstein et al., 1992;
Goldberg et al., 2005; Heng et al.,
2005; Sutherland et al., 2005).
Conversely, treatment with testos-
terone inhibits thymus’ repair
(Greenstein et al., 1986).
Numerous studies in this field

focus on the second aspect – T cell
reconstitution in blood (Barthlott
et al., 2007; Chidgey et al.,
2007). In this respect, researchers
have tried the following: induction
of T cell production with different
molecules (Alpdogan et al., 2001;
Chadwick et al., 2003; Lu et al.,
2005), in vitro models, ex vivo
thymus-xenografts (Schmitt and
Zuniga-Pflucker, 2002), and T cell
transferring (Zakrzewski et al.,
2006) [for reviews see, van den
Brink et al. (2004), Taub and
Longo (2005), and Legrand et al.
(2007)]. In vitro cultures and ex
vivo xenografts of humanized
models, which have been exten-
sively studied, use mostly fetal
mice thymus. These models,
although expensive, are widely
used to coax T cells into matura-
tion (Legrand et al., 2007).

ADRENAL GLAND

The adrenal gland is comprised of
two areas: the cortex and the me-

dulla. The cortex is composed of
four different zones (from capsule
to medulla: zona glomerulosa,
zona intermedia, zona fasciculata,
and zona reticularis) which serve
different functions mainly by syn-
thesizing different hormones. The
secreted hormones can influence
various responses, mostly stress-
related. In response to stress, the
hypothalamus regulates the secre-
tion of aldosterone (zona glomeru-
losa) and corticosterone (zona fas-
ciculata and zona reticularis) from
the cortex. In parallel, the medulla
secretes epinephrine and norepi-
nephrine. It is, therefore, crucial
that regeneration restores both
the structure and function of the
adrenal gland following injury.
Although the medulla does not

have the intrinsic ability to regen-
erate, the cortex can regenerate
after injury. Cortex regeneration is
achieved by the dedifferentiation,
proliferation, and redifferentiation
of the remaining cells in the cortex
and/or from the stem cells present
in the zona glumerolosa (Taki and
Nickerson, 1985; Engeland et al.,
1996; Mitani et al., 2003).
Adrenocorticotropic hormone and
pro-gamma-melanocyte-stimulating
hormone seem to play a crucial
role in adrenal cortex regeneration.
After complete removal of one of
the two adrenal glands, the
remaining gland grows through
interactions with the ventromedial
hypothalamus to compensate for
the lost gland. This process, called
compensatory adrenal growth, is
mediated by steroidogenic factor-1
(SF-1), a transcriptional factor that
is related to the proliferation of re-
sidual progenitor cells (Ikeda et al.,
1995; Dellovade et al., 2000;
Beuschlein et al., 2002). Studies
have shown that pro-gamma-
melanocyte-stimulating hormone
can be involved in the regulation of
compensatory adrenal growth
(Lowry et al., 1983), and could be
controlled by SF-1 (Bland et al.,
2003).
Many peptides and neuropepti-

des have been found to control the
growth and regeneration of the
adrenal cortex. Neuromedin-U can
aid regeneration after adrenalec-
tomy (Trejter et al., 2008). Also,
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beacon (Ziolkowska et al., 2006),
galanin (Hochol et al., 2000),
orexin (Spinazzi et al., 2006), and
arginine–vasopressin (Trejter et al.,
2005) can positively control growth
through stimulation of proliferation
of residual cells in the adrenal
gland. Conversely, leptin (Mar-
kowska et al., 2004) and enkepha-
lin (Malendowicz et al., 2005) can
negatively control growth.
Mutations in SF-1 (Achermann

et al., 1999) and Dax1 are com-
monly related to problems associ-
ated with the adrenal gland. Dys-
regulation of the adrenocorticotro-
pic hormone can lead to problems
in hormone production and secre-
tion (Babu et al., 2002). Patients
that have dysfunctional adrenal
cortex are treated with exogenous
glucocorticoids. ESC expressing
SF-1 have also been used in an
attempt to regenerate the adrenal
gland in experimental models,
with promising results for human
trials (Yanase et al., 2003). In
addition, transplantation studies
have proved promising in regards
to the regeneration of a fully func-
tional adrenal gland (Allende
et al., 2001).

THYROID GLAND

The thyroid gland consists of fol-
licles and specialized cells called
thyrocytes. Thyrocytes have a ba-
sal-lumen (apical) polarity which
aids in their function of transport-
ing hormones in and out of the
gland. The thyroid gland secretes
thyroid hormones for homeostatic
regulation, such as the regulation
of blood pressure, metabolic activ-
ities, and development. The thy-
roid stimulating hormone secreted
by the anterior pituitary gland reg-
ulates the secretion of the thyroid
hormones triiodothyronine and
thyroxine. Disruption of this hor-
mone balance can lead to Graves
and goiter diseases that result in
hyperthyroidism and hypothyroid-
ism, respectively.
One model used for studying

thyroid folliculogenesis in vitro is
three-dimensional (3D) cultures
using collagen (Toda et al., 2001).
This model has been used to test
for different factors and the role

they play in thyroid regeneration.
Subacute thyroiditis is a human
disease that destroys follicles. Fol-
licles regenerate continuously,
thus, making subacute thyroiditis
a suitable model for studying thy-
roid folliculogenesis. Factors iden-
tified from biopsies of human
patients with subacute thyroiditis
have been evaluated using the 3D
collagen culture model. A number
of growth factors [vascular endo-
thelial cell growth factor (VEGF),
basic fibroblast growth factor
(bFGF), platelet-derived growth
factor (PDGF), transforming
growth factor (TGF)-b 1, epider-
mal growth factor (EGF), hepato-
cyte growth factor (HGF)] (West-
ermark et al., 1991; Nilsson et al.,
1995; Toda et al., 1997, 1999)
and other factors that contribute
to apoptosis (Koga et al., 1999)
have been identified to play a role
in folliculogenesis.
Regeneration of the thyroid has

been reported with the contribu-
tion of the following cells: stem
cells, ESC, and bone marrow-
derived mesenchymal stem cells
(BMMSC). Recently, stem cells
residing in the thyroid (Thomas
et al., 2006; Hoshi et al., 2007;
Lan et al., 2007) have been
coaxed to acquire a thyroid fate to
contribute to thyroid regeneration
(Lan et al., 2007). In addition, in
vivo studies have shown that
CD24 is essential for thyroid
regeneration in autoimmune thy-
roiditis (Chen et al., 2009a). Fur-
thermore, ESC were used and
their fate committed to becoming
thyrocytes (Lin et al., 2003). It is
important to note, though, that
thyroid stem cells have been asso-
ciated in some cases with cancer
formation in the thyroid (Gibelli
et al., 2009). Finally, through the
use of green fluorescent protein
mice grafts to wild type, BMMSC
were found to contribute to thy-
roid regeneration (Mikhailov et al.,
2011).

INTESTINE

The intestine is the organ through
which various nutrients and other
solutes are transported to the rest
of the body. To serve this role, the

intestine is comprised of epithelial
cells and subepithelial myofibro-
blasts. Epithelial cells are of two
types – the mature epithelial cells
present in the villi in contact with
the gastrointestinal tract and are
responsible for nutrient transport
and defense, and the stem cells
residing in the crypt. Subepithelial
myofibroblasts can interact with
various processes of the overlay-
ing epithelial cells. The acquisition
of nutrients requires that the gas-
trointestinal tract be in contact
with the external environment. The
intestine is, therefore, exposed to
various pathological agents from
which the organ ought to protect
itself and the organism. Two of the
intestine defense mechanisms
include a tight epithelial barrier,
and the secretion of large amounts
of glycoproteins that form the
mucin.
The intestine possesses a very

high turnover rate which aids in
the organ’s regenerative capability
following injury (Podolsky, 1999).
Stem cells, located in a stem cell
niche inside the crypt, have the
ability to rapidly proliferate and
can differentiate into all the cell
types of the intestine wall. These
differentiated cells include differ-
ent types of epithelial cells (colum-
nar, mucin-secreting, endocrine,
and Paneth) and myofibroblasts.
Following injury, the epithelial
cells that are near the injury site
restitute and form a barrier (Feil
et al., 1989). Subsequently, sig-
naling pathways including those
involving fibroblast growth factor
(FGF) (Itoh et al., 2000), Wnt
(Pinto et al., 2003; Kuhnert et al.,
2004), bone morphogenetic pro-
tein (BMP) (Haramis et al., 2004;
He et al., 2004; Ishizuya-Oka and
Hasebe, 2008), and Sonic Hedge-
hog (Shh) and Indian Hedgehog
(Ishizuya-Oka and Hasebe, 2008;
van Dop et al., 2010) are enabled
to stimulate the proliferation and
differentiation of the intestine
stem cells of the crypt.
A number of studies have

reported gene regulation as well as
the effect of different molecules on
the regeneration and repair of the
intestine. These include repair
roles of bombesin, neurotensin

ORGAN REPAIR AND REGENERATION 3

Birth Defects Research (Part C) 96:1–29, (2012)



(Alexandris et al., 2004), and leco-
pene (Saada et al., 2010) in oxida-
tive stress protection, tadalafil in
iscemic anastomosis (Kaya et al.,
2010), interleukin-11 in necrotizing
enterocolitis animal models (Dick-
inson et al., 2000), carnitine in
reperfusion (Hosgorler et al., 2010),
bael (aegle marmelos, AME) after
irradiation (Jagetia et al., 2006),
and anabolic steroids (Ishihara
et al., 2011). In addition, BMMSC
can repopulate the intestine. Stud-
ies in humans with sex-mismatched
BM transplants show that BMMSC
are found in the intestine and con-
tribute to the turnover and/or repair
of the organ (Brittan et al., 2002;
Okamoto et al., 2002; Matsumoto
et al., 2005). Recently, human
pluripotent stem cells have been
successfully differentiated into the
intestine’s major cell types in vitro
composing an intestine tissue
(Spence et al., 2011).
Transplantation studies and tis-

sue engineering pursuits hold great
promise for the intestine regenera-
tion and the de novo reconstruction
of the intestinal wall. Scaffold-free
cells (Hori et al., 2001) and scaf-
folds seeded with intestinal epithe-
lial cells (Choi et al., 1998), Mesen-
chymal Stem Cells (MSC) (Hori
et al., 2002), and smooth muscle
cells (Nakase et al., 2007) have
been designed to simulate the bal-
anced cellular environment of the
intestine. In pigs, Sala et al.
(2009) were able to utilize a biode-
gradable scaffold and autologous
organoid units to construct an
intestine.

LUNGS

The lung is the organ responsible
for gas exchange. Incoming air
from the trachea passes through
the bronchi and bronchioles to the
alveoli, where gas exchange
occurs. This branching results in
the very large surface area of the
lungs which enables the effective
exchange of gas. Lungs are made
of different types of cells that play
critical roles in scaffolding, defense
against microbes, damage repair,
and certainly in gas exchange.
Many studies today focus mostly

on stem and progenitor cell research.

These studies have identified several
areas of cells with proliferating capa-
bilities. The first evidence for the
presence of progenitor cells in lungs
emerged as the result of a study in
which rats were exposed to nitric ox-
ide or ozone, and proliferating cells
were labeled with tritiated thymi-
dine. These labeled cells, the noncili-
ated Clara cells, were later identified
as precursor progenitor cells of cili-
ated cells (Evans et al., 1976). In the
years following this study, novel
tracing methods, and methods to
induce and simulate lung injury have
been improved. These techniques
allowed the identification of specific
sites in different areas of the lungs as
stem cell niches. These sites are ca-
pable of regenerating parts of the
damaged lungs. Treatment with
naphthalene has led to the depletion
of Clara cells which helped detect
new sources of progenitor cells. In
lungs, neuroepithelial bodies func-
tion as progenitor cells capable of
regenerating proximal bronchiolar
epithelium (Reynolds et al., 2000)
containing Clara cell secretory-
expressing cells (Hong et al., 2001).
Progenitor cells from the bronchoal-
veolar duct junction, also called
bronchioalveolar stem cells (Kim
et al., 2005a), contribute to the ter-
minal bronchiolar regeneration of
the epithelium (Giangreco et al.,
2002). Today, several studies aim to
identify which stem cells contribute
to the regeneration of which tissue,
and more specifically to which cell
type of the tissue. In these regards,
Clara cells expressing the Scgb1a1
marker were found to contribute to
bronchioli repair, but not to alveoli
repair (Rawlins et al., 2009). How-
ever, recent studies have demon-
strated that bronchioalveolar stem
cells slightly contributed to alveoli
epithelial cell repair (Nolen-Walston
et al., 2008), that p631 Krt51 ba-
sal-like cells can regenerate alveoli
structures (Kumar et al., 2011), and
that cytokeratin14-expressing basal
cells are capable of restoring bron-
chiole epithelium (Hong et al.,
2004). Other factors have also been
found to play a role in lung repair;
these include Wnt pathway through
Gata6 (Zhang et al., 2008b), matrix
metalloprotease14 expression and
EGF, VEGF signaling (Ding et al.,

2011), HGF through Smad7 (Shukla
et al., 2009), and extracellular ma-
trix (Hoffman et al., 2010), including
tenascin C (Snyder et al., 2009).
More recently, additional molecules
and signaling pathways have been
extensively reviewed (Crosby and
Waters, 2010).
BMMSC and umbilical cord blood-

derived mesenchymal stem cells
(UCBMSC) also contribute to lung
repair. Green fluorescent protein,
lacZ, or sex-mismatched BM trans-
plants or injections of BM cells have
been commonly used for tracing.
BMMSC contribute to lung epithelial
(Theise et al., 2002; Kleeberger
et al., 2003; Suratt et al., 2003;
Mattsson et al., 2004; Kahler et al.,
2007) and endothelial cells (Yan
et al., 2007b) repair, by regenerat-
ing a variety of cell types including
the alveoli type II epithelial cells,
also known as alveoli progenitor
cells (Yan et al., 2007a). The
engraftment of BMMSC can be
mediated by CXCL12 (Gomperts
et al., 2006). Improved colonization
of BMMSC to the lung can be
achieved with all-trans retinoic acid,
and granulocyte colony-stimulating
factor (G-CSF) (Aliotta et al., 2006;
Ishizawa et al., 2004). BMMSC have
also been used to improve survival
of animal models after Escherichia
coli endotoxin treatment, by reduc-
ing inflammation (Gupta et al.,
2007) and restoring fluid balance in
the lungs (Lee et al., 2009).
Furthermore, BMMSC contributed
to lung repair after E. coli (Serikov
et al., 2008) and Streptococcus
pneumoniae- (Suzuki et al., 2008a)
induced pneumonia, and also to the
improvement of hyperoxia or bron-
chopulmonary dysplasia (Aslam
et al., 2009; van Haaften et al.,
2009), allergic reactions by inhibi-
ting Th2 pathway (Goodwin et al.,
2011), pulmonary emphysema
induced by papain (Zhen et al.,
2008), and lipopolysaccharide-
induced injury by components of
bacterial wall (Yamada et al.,
2004). BMMSC also contribute to
the repair of bleomycin-induced
injury (inflammation and fibrosis)
(Kotton et al., 2001) by reducing fi-
brosis (Ortiz et al., 2003), increas-
ing G-CSF and granulocyte-macro-
phage colony-stimulating factor
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(Rojas et al., 2005), reducing nitric
oxide (Lee et al., 2010), and reduc-
ing inflammation cytokines (Lee
et al., 2010; Rojas et al., 2005).
The ability of BMMSC to incorporate
into the lungs has been recently
used as a tool for gene therapy.
BMMSC transfected with cystic fi-
brosis transmembrane conductance
regulator can help on cystic fibrosis
(Wang et al., 2005), and those
transfected with angiopoietin-1 can
help on lipopolysaccharide-induced
injury (Mei et al., 2007; Xu et al.,
2008a). As for human UCBMSC,
they have been used in animal mod-
els to help on hyperoxia (Chang
et al., 2009) and repair of the lung
epithelium (Sueblinvong et al.,
2008). In one case, a patient with
systemic lupus erythematosus had
her condition improved after trans-
plantation of UCBMSC (Liang et al.,
2010). ESC have also been used in
lung repair and have been differen-
tiated to alveoli type I (Rippon
et al., 2004) and type II epithelial
cells, and nonciliated secretory
Clara cells (Coraux et al., 2005).
In addition, the use of ESC resulted
in increased survival (Wang et al.,
2010a) and reduced fibrosis
(Moodley et al., 2009) in bleomycin-
induced lung injury animal models.
Using biomaterial scaffolds, sci-

entists have also successfully cre-
ated lung tissue in vitro (Mon-
drinos et al., 2007), alveolar tis-
sues both in vitro and in vivo
(Cortiella et al., 2006), bronchioles
(Miller et al., 2010), and lungs
(Ott et al., 2010; Petersen et al.,
2010; Beronja and Fuchs, 2011)
that were both transiently func-
tional in vivo. These scaffolds, in
addition to FGF2, improved vascu-
larization in vivo (Mondrinos et al.,
2008). In humans, transplantation
of matrix with trachea donor cells
have successfully replaced the left
bronchus (Macchiarini et al., 2008).
Tissue engineering is promising for
trachea regeneration. Patients in
need of a trachea resection can
have their trachea reconstructed
using Marlex mesh scaffold with
collagen sponge (Omori et al.,
2005; Omori et al., 2008). In addi-
tion, different types of scaffolds
seeded with different types of cells
have been used in animal models

to efficiently engineer a functional
trachea. Scaffolds seeded with epi-
thelial cells (Nomoto et al., 2006),
adipose-derived stem cells (Suzuki
et al., 2008b) with gingival fibro-
blasts (Kobayashi et al., 2010),
MSC co-cultured with lung tissue
(Le Visage et al., 2004), BMMSC
(Liu et al., 2010), chondrocytes
with b-FGF (Komura et al., 2008)
or fibrin and hyaluronic acid (Kim
et al., 2010), or epithelial and mes-
enchymal-derived stem cells (Go
et al., 2010), as well as scaffold-
free autologous or auricular chon-
drocytes (Gilpin et al., 2010; Wei-
denbecher et al., 2008) have all
been used for the regeneration of
the trachea.

HEART

The heart is the organ responsible
for the body’s blood and oxygen
supply. The human heart is di-
vided into four chambers and is
contained in a fluid filled sac,
called the pericardium, within the
chest cavity. Together with the cir-
culatory system, the heart forms
the cardiovascular system. The
cardiac muscular tissue is com-
posed of specialized cells called
cardiac myocytes or cardiomyo-
cytes (CMs). A deficiency in CMs
typically results in heart failure, a
major cause of death worldwide
every year. Two to four billion CMs
constitute the human left ventri-
cle: some are slowly killed over
the years by hypertension and
cardiac overload disorders, 25%
are usually destroyed in the few
hours following a myocardial in-
farction, and about 20 million per
year are lost due to ageing [as
reviewed by Laflamme and Murry
(2011)].
Being one of the least regenera-

tive organs, the heart with its
innate ability to regenerate has
been extensively reported in
amphibians (Oberpriller and Ober-
priller, 1974) and fish, and only
recently in developing mammals
(Laflamme and Murry, 2011).
Experimentally, heart response to
injury has been reported following
induced injury to the organ using
mechanical, chemical, and biologi-
cal means from stabbing and snip-

ping to toxin injection and infec-
tion. Typically, mammalian hearts
respond to injury by scarring,
whereby the damaged cardiac
muscle is replaced by fibrotic scar
tissue. Nonetheless, regeneration
of the heart is possible, and the
zebrafish is one example of partic-
ular importance due to the animal’s
ability to regenerate approximately
20% of its resected ventricular
mass 2 months following heart
injury (Poss et al., 2002; Laflamme
and Murry, 2011). Initially, a popu-
lation of progenitor cells was
thought to be solely responsible for
heart regeneration in zebrafsh by
contributing CMs with increased
mitotic capability (Lepilina et al.,
2006). However, two subsequent
studies using genetic fate-mapping
techniques demonstrated that pre-
existing committed CMs are the
major contributors to cardiac
regeneration in zebrafish (Jopling
et al., 2010; Kikuchi et al., 2010).
Furthermore, these studies estab-
lished the critical role of the embry-
onic cardiogenesis gene, gata4
(Kikuchi et al., 2010), and the cell
cycle regulator, polo-like kinase
(plk1) (Jopling et al., 2010), during
heart regeneration in zebrafish.
This innate ability to regenerate
injured or lost cardiac tissue does
not, however, seem to occur in
mammals. Studies have shown
that mammalian CMs rapidly prolif-
erate during fetal life, as well as in
one-day-old neonatal mice (Por-
rello et al., 2011), but noticeably
decrease their proliferation activity
after birth. Thus far, extremely low
levels of CM activity have been
reported in postnatal mammalian
hearts during normal ageing and
disease without any meaningful
regeneration of cardiac tissue
(Soonpaa and Field, 1997, 1998).
Similarly with humans, heart
regeneration at the macroscopic
level has not been detected yet,
and only limited to very slow CMs
replacement has been reported in
human hearts after birth (Mac-
mahon, 1937; Beltrami et al.,
2001). Most human CMs seem to
undergo DNA synthesis without nu-
clear division (Bergmann et al.,
2009; Kajstura et al.; 2010; Berg-
mann et al., 2011). Therefore, and
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as previously mentioned, injured
human hearts respond to injury
by scar formation and fibrotic
deposition (Mummery and Passier,
2011).
Efforts to overcome the re-

stricted proliferation of adult CMs
include the over-expression of cell
cycle activators and mitogens
(such as neuregulin1, FGFs, cyclin
D2, and periostins) (Pasumarthi
et al., 2005; Engel et al., 2006;
Kuhn et al., 2007; Hassink et al.,
2008; Bersell et al., 2009; Lorts
et al., 2009) [for a comprehensive
review see Ahuja et al. (2007)]. To
date, only a few proteins have also
been shown to induce sustained
ventricular CM cell cycle activity
when expressed in adult transgenic
animals. These include simian virus
40 Large T antigen (Katz et al.,
1992), an inducible form of c-myc
(Xiao et al., 2001), cyclin-depend-
ent kinase 2 (Liao et al., 2001),
tuberous sclerosis complex 2
(Pasumarthi et al., 2000), p53 and
p193 (Nakajima et al., 2004),
cyclin A2 (Chaudhry et al., 2004),
insulin-like growth factor (IGF)-1
(Reiss et al., 1996), and bcl-2
(Limana et al., 2002).
Apart from studying CM prolifer-

ation and renewal from pre-exist-
ing CMs, recent studies have
focused on CMs derived from pro-
genitor cells (Hsieh et al., 2007).
C-kit-positive CD45-negative car-
diac progenitor cells have been
shown to contribute to the forma-
tion of new myocardium and ves-
sels following cardiac injury (Bearzi
et al., 2007; Kubo et al., 2008; Tal-
lini et al., 2009; Sandstedt et al.,
2010; Tang et al., 2010). Numer-
ous studies argue about the poten-
tial of transplanted cardiosphere-
derived cells (Smith et al., 2007) to
contribute to the enhanced cardiac
function following infarction (Mes-
sina et al., 2004; Andersen et al.,
2009; Chimenti et al., 2010). Addi-
tionally, bone marrow-derived cells
were shown to play a role in cardiac
repair, both directly (Orlic et al.,
2001a, b, c; Toma et al., 2002;
Chen et al., 2004; Hare et al.,
2009; Maltais et al.; 2011) and
indirectly through signals and mol-
ecules (Balsam et al., 2004; Murry
et al., 2004; Mirotsou et al., 2007;

Hatzistergos et al., 2010). Further-
more, CMs derived from human
iPSC (Laflamme et al., 2007; Xu
et al., 2008b; Yang et al., 2008;
Zhang et al., 2009; Zwi et al.,
2009; Zhu et al., 2010) and ESC
(Laflamme et al., 2007; Xu et al.,
2008b; Yang et al., 2008; Zhang
et al., 2009; Zwi et al., 2009; Zhu
et al., 2010) have been reported to
improve myocardial performance
following cardiac injury (Caspi
et al., 2007a; Fernandes et al.,
2010), but in some cases to be
incapable of restoring heart func-
tion (Caspi et al., 2007a; Fer-
nandes et al., 2010). Cellular
reprogramming has also been
adopted as an alternative avenue
for cardiac repair. Reprogramming
of mouse embryonic fibroblasts to
CMs has been performed by Efe and
coworkers (Efe et al., 2011).
Finally, tissue engineered scaf-

folds for cardiac therapy has
emerged as a rapidly growing field.
In an attempt to build in vitro tissue
models for in vivo regenerative car-
diac therapy, biodegradable scaf-
folds and biomaterials have been
widely adopted (Ratner and Bryant,
2004; Madden et al., 2010). Non-
vascularized (Stevens et al., 2009)
and vascularized (Reinecke et al.,
1999; Radisic et al., 2004; Zim-
mermann et al., 2006; Caspi et al.,
2007b; Dvir et al., 2009; Stevens
et al., 2009; Zakharova et al.,
2010) scaffold-free cardiac tissue
patches derived from human ESC
have been designed to overcome a
lack of suitable sources of human
CMs. Furthermore, scaffold-free
cardiac progenitor and stromal cells
were shown to promote cardiogen-
esis after transplantation onto
injured myocardium (Reinecke
et al., 1999; Radisic et al., 2004;
Zimmermann et al., 2006; Caspi
et al., 2007b; Dvir et al., 2009; Ste-
vens et al., 2009; Zakharova et al.,
2010). In addition, the construction
of scaffolds with neonatal cardiac
cells (Reinecke et al., 1999; Radisic
et al., 2004; Zimmermann et al.,
2006; Caspi et al., 2007b; Dvir
et al., 2009; Stevens et al., 2009;
Zakharova et al., 2010), combined
with angiogenic factors (Reinecke
et al., 1999; Radisic et al., 2004;
Zimmermann et al., 2006; Caspi

et al., 2007b; Dvir et al., 2009; Ste-
vens et al., 2009; Zakharova et al.,
2010), have been successfully used
for studying their contribution dur-
ing heart repair.

LIVER

Liver is a lobed organ in the ab-
dominal cavity. Some of its major
functions are toxic agent detoxifi-
cation, energy storing in the form
of glycogen, and lipid catabolism
via enzymes. Liver can regenerate
even when 70% of the organ tis-
sue has been removed. The organ
evolved with this intrinsic regener-
ative ability because of the funda-
mental roles it plays in the orga-
nism, especially in cleaning the
blood from hazardous substances
to which it is also exposed.
In rodents, partial hepatectomy,

toxic agents (e.g., CCl4, allyl alco-
hol) and viruses (Hepatitis A/B/C)
can affect the liver and damage it.
After surgical resection of 70% of
the liver, hepatocytes begin to
gradually proliferate starting from
the peri-portal and ending near
the central vein. In response to
various signals, Kupffer cells, stel-
late cells, vascular and biliary en-
dothelial cells interact with hepa-
tocytes and also proliferate follow-
ing hepatectomy. After 10 days,
the liver is regenerated by com-
pensatory growth of the remaining
liver tissue, rather than recreating
an exact copy of the lost lobes (Hig-
gins and Anderson, 1931). Liver
regeneration has been extensively
studied and excellent reviews
clearly document the underlying
process mechanisms. Some com-
monly studied factors are HGF,
FGF1, FGF2, stem cell factor, epi-
dermal patterning factor, interferon
gamma tumor necrosis factor, and
interleukin-6 (Michalopoulos and
DeFrances, 1997; Fausto, 2000;
Michalopoulos and DeFrances,
2005; Fausto et al., 2006; Michalo-
poulos, 2007). During liver regener-
ation, the expression and function
of chemokines and chemokine-
related receptors in hepatocytes, as
well as toll-like receptors, have
been recently reviewed (Van Swer-
ingen et al., 2011). Furthermore,
the role of and potential treatments
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with connective tissue growth fac-
tor, IGF binding protein 3, somato-
statin, stromal cell derived factor-1,
G-CSF, and TGF-b (Shupe and
Petersen, 2011), as well as the role
of the Wnt pathway and b-catenin
(Nejak-Bowen and Monga, 2011),
extracellular matrix and matrix
metalloproteinases (Kollet et al.,
2003; Lorenzini et al., 2010), tran-
scriptional factor hierarchies (Kur-
inna and Barton, 2011), and reac-
tive oxygen species and inflamma-
tion (Jaeschke, 2011) have all been
studied and well-reviewed. Comple-
ment component C5 has also been
shown to play a role in liver regen-
eration (Mastellos et al., 2001). The
extensive study of liver regenera-
tion brings to light many other fac-
tors that play a role in the process,
as well as potential mechanisms
and pathways which are discussed
in recent reviews (Fujiyoshi and
Ozaki, 2011; Riehle et al., 2011).
Progenitor cells are present in

the liver (Farber, 1956) in the
Canals of Hering (Theise et al.,
1999; Zhang et al., 2008a) and
they can contribute to regeneration
if proliferation of the hepatocytes is
blocked by the following treat-
ments: N-2-acetylaminofluorene,
choline deficient and ethionine
diets, 3,5 – diethoxycarbonyl-1,4-
dihydrocollidine (Sell et al., 1981),
or dipin (Factor et al., 1994). Pro-
genitor cells express cytokeratin
19, c-glutamyl transpeptidase, and
a-fetoprotein (Petersen et al.,
1998). Other progenitor cells
express epithelial cell adhesion mol-
ecule, cytokeratin 19, CD44, but
not a-fetoprotein (Schmelzer et al.,
2007; Dan and Yeoh, 2008; Inada
et al., 2008; Yovchev et al., 2008).
A recent study suggests that there
are four potential stem cell niches in
the liver: Canals of Hering, intra-
ductular, peribiliary non-hepato-
cytes non-biliary, and peribiliary
hepatocytes (Kuwahara et al.,
2008). These progenitor cells can
give rise to the two main hepatic
cell types: hepatocytes and cholan-
giocytes (Fausto and Campbell,
2003). In humans, progenitor cells
contribute to liver regeneration dur-
ing viral hepatitis (Libbrecht et al.,
2000) and cirrhosis (Xiao et al.,
2004), and the progenitor cell num-

ber is correlated to the severity of
the hepatic chronic disease (Lowes
et al., 1999). However, liver
progenitor/stem cells have been
associated with the formation of fi-
brosis via myofibroblast formation
(Greenbaum and Wells, 2011).
The introduction of target inac-

tive gene in in vitro culture of iso-
lated hepatocytes followed by the
autologous transplantation to the
liver is one way of gene therapy.
Hepatocyte transplantation in ani-
mal models is being studied by
transplanting normal hepatocytes
to animals that do not express
fumaryl acetoacetate hydrolase
and are treated with 2(2-nitro-4
trifluoromethylbenzoyl)-1,3 cyclo-
hexane dione, a drug that leads to
the proliferation of the implanted
cells (Overturf et al., 1998). In
humans, transplantation of hepa-
tocytes (Strom et al., 1999), fetal
hepatocytes (Habibullah et al.,
1994), and bone marrow stem
cells (am Esch et al., 2005; Houli-
han and Newsome, 2008) have
been used to treat liver problems.
Also, the transplantation of hepa-
tocytes have been used in clinical
trials to treat Crigler–Najjar syn-
drome type I (hyperbilirubinemia)
(Fox et al., 1998), glycogenosis
type Ia (Muraca et al., 2002),
arginosuccinate lyase deficiency
(Stephenne et al., 2006), fulminant
liver failure (Habibullah et al.,
1994), terminal liver failure (Strom
et al., 1997), acute liver failure (Bilir
et al., 2000), and postresectional
liver failure (Ezzat et al., 2011).
Bone marrow-derived cells can

be found in the liver only following
injury, and can improve metabolic
disorders such as Gunn (Muraca
et al., 2007). BMMSC can contrib-
ute to the progenitor pool of oval
cells in the liver (Petersen et al.,
1999). Studies also suggest that
BMMSC fuse with already existing
hepatocytes in the liver (Wang
et al., 2003), a process that can
be traced by sex-mismatched
transplants. Clinical trials include
treatments for drug-induced toxic-
ity (Gasbarrini et al., 2007) and
cirrhosis (Pai et al., 2008). The
contribution of extra-hepatic cells
to liver regeneration and cell ther-
apy has been extensively reviewed

(Duncan et al., 2009; Kisseleva
et al., 2010; Li et al., 2011;
Muraca, 2011). Conversely, other
studies suggest that the engraft-
ment of BMMSC in the liver is
insufficient and can not play a
substantial role in liver regenera-
tion (Cantz et al., 2004; Menthena
et al., 2004).
Bioengineering a liver is a very

promising method for treating liver
failures (Fukumitsu et al., 2011).
Clinical trials of bioartificial livers
have had modest success (Ellis
et al., 1996; Demetriou et al.,
2004). Newer methods that make
use of scaffolds of decellularized
liver tissue, seeded with hepato-
cytes or progenitor cells have
been shown to possess potential
clinical applications (Linke et al.,
2007). Finally, methods developed
by Shupe and Petersen (2011), as
well as Uygun et al. (2010) have
shown great potential for liver
regeneration.

BLOOD VESSELS

Blood vessels extend throughout
the body and mediate gas
exchange, nutrient and waste
transport, and immune defense.
The blood vessels consist of endo-
thelial cells that are in contact
with the blood, vascular smooth
muscle cells that cover the endo-
thelial cells, and fibroblasts and
matrix that form the vessels’ outer
layer. These layers of cells play a
role in repair, remodeling, and
blood vessels maintenance follow-
ing injury. All these cell types
have been involved in cardiovas-
cular diseases (Wilcox and Scott,
1996; Parizek et al., 2011). The
role of blood vessels is crucial;
when they deliver insufficient
blood to a tissue, ischemia occurs,
and when they deliver excessive
blood, other diseases may result.
To maintain a balance in blood
delivery, endothelial cells respond
to certain signals (VEGF, oxygen,
low blood flow) by creating more
blood vessels or by decreasing the
branching in already existing
blood vessels (Potente et al.,
2011).
The vascular endothelium can

be repaired by the mature vessel
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wall-resident endothelial cells that
migrate to the injured area. Using
pigs and in vitro cultured cells of
damaged and normal endothelial
cells, it has been shown that
regeneration of the endothelium
can occur but that the regenerate
is not fully functional. The mecha-
nisms of this process involve G-
coupled proteins and nitric oxide
[reviewed by Vanhoutte (2010)].
Platelets and hematopoietic cells
can also contribute to the endo-
thelium repair process. Further-
more, mature circulating endothe-
lial cells, endothelial progenitor
cells, and/or vascular-resident
progenitor cells have all been
shown to play a role in blood ves-
sel repair (Becher et al., 2010).
Studies using ischemia models
show that circulating endothelial
progenitor cells seem to contribute
to angiogenesis (Kalka et al.,
2000; Hur et al., 2004; Yoon
et al., 2005). Nonetheless, endo-
thelial progenitor cells have con-
troversial origins and this issue
has been reflected on the markers
used in identification and isolation
methods. In this respect, some
progenitor cells have hematopoi-
etic origin while expressing endo-
thelial progenitor marker (Case
et al., 2007). More thoughts on
this topic, as well as factors that
play a role in angiogenesis and
repair of blood vessels, are dis-
cussed by Watt et al. (2010). Only
endothelial colony forming cells
(also termed endothelial out-
growth cells – cells that possess
high proliferation capabilities)
have been shown to form de novo
blood vessels in vitro that can be
used with matrix in vivo (Yoder
et al., 2007). Transplantation of
human skin substitutes with kera-
tinocytes and endothelial colony-
forming cells in mice have demon-
strated that blood vessels can be
incorporated in the circulatory sys-
tem (Kung et al., 2008; Shepherd
et al., 2006). Other cells, such as
pericytes/mullar cells have also
been reviewed for their role in
vascular repair (Corselli et al.,
2010).
Human BMMSC, UCBMSC, and

adipose stromal cells can aid in
stabilizing blood vessel formation

from endothelial colony-forming
cells with appropriate matrix in
vivo (Au et al., 2008; Critser
et al., 2011; Melero-Martin-Martin
et al., 2008; Traktuev et al.,
2009). Chew and Low (2011) and
Ravi and Chaikof (2010) have
recently reviewed novel ways to
differentiate and tissue-engineer
cardiovascular tissues using ma-
trix-based biomaterials. These
elaborate studies show that more
research is required in order to
fully simulate the cell microenvir-
onment in vitro for de novo recon-
struction of blood cells. As previ-
ously mentioned, smooth muscle
cells have been associated with
various cardiovascular diseases,
including stenosis. Scaffolds
seeded with vascular smooth mus-
cle cells in a suitable environment
were found to be essential for tis-
sue engineered blood vessels
[reviewed by Parizek et al.
(2011)].
The role and therapeutic poten-

tial of ESC and iPSC in human vas-
cular repair is discussed by Iaco-
bas et al. (2010). In addition,
Kane et al. (2011) discuss in a
very informative review the differ-
entiation of pluripotent cells to
vascular cells in association with
factors and pathways involved in
this process. Nonetheless, studies
involving pluripotent cells have not
been yet tested for vascular
regeneration in large animals in
vivo.

GERM CELLS

Germ cells are derived from pri-
mordial germ cells. Oogenesis in
females and spermatogenesis in
males are enabled by the migra-
tion of germ cells to the genital
ridge. In females, oogenesis is
completed upon birth so that the
starting number of oocytes can
not be increased throughout life.
Conversely, spermatogenesis con-
tinues until death in males, pro-
ducing a large number of sperm
via the self-renewal capability and
differentiation of spermatogonia.
Germ cells are considered the
‘‘fourth’’ embryonic layer. Pluripo-
tent stem-like cells need to con-
tribute to this fourth embryonic

layer in order for them to be used
for transgenic method purposes.
In the last couple of years, the
mechanisms underlying the self-
renewal capability of spermatogo-
nia, ways to ‘‘regenerate’’ oocytes
after birth, and the differentiation
of germ cells to other types of tis-
sues have been studied.
Two factors (germ cell nuclear

factor and Plzf) have been found
to play a role in spermatogonia’s
ability for self-renewal. Germ cell
nuclear factor is a marker for
germ cells that can directly
repress Oct4 pluripotency factor
(Fuhrmann et al., 2001). Plzf has
been found to be essential for the
stem cell self-renewal of the germ-
line and has been found to be
coexpressed with the germ cell
nuclear factor (Buaas et al.,
2004).
ESC have been used to create

oocyte-like cells with follicles that
express lineage specific markers
and estrogen (Hubner et al.,
2003). In vitro cultured Mvh-posi-
tive human ESC-derived cells with
BMP4 and BMP8b primodial germ-
specific inducers have been found
able to participate in spermato-
genesis (Toyooka et al., 2003).
Interestingly, stem cells from skin
were also found to make oocyte-
like cells in vitro (Dyce et al.,
2006). Recently, studies show that
oogenesis after birth can be possi-
ble using ‘‘putative’’ germ cells
from BM and the peripheral blood
(Johnson et al., 2005; Lee et al.,
2007). Furthermore, hematopoi-
etic progenitor cells have been
shown to express germline
markers (Pessac et al., 2011). A
recent review discusses the data
supporting, or not, these findings
(Oktem and Oktay, 2009). More
recently, ESC and iPSC were used
to successfully produce primodial
germ cell-like cells through inter-
action with the epiplast-like cells.
These newly formed cells also con-
tributed to gametogenesis and off-
spring production in mice (Hayashi
et al., 2011).
Germ cells have also been

exploited for their stem cell-like
capabilities. They have been used
to create other cell types of all
three embryonic layers (Simon
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et al., 2009), such as muscle cells
(Kim et al., 2005b), neurons (Pan
et al., 2005), and mature oocytes
(Qing et al., 2008). They have
also been used to aid in the regen-
eration of other body parts, such
as the mouse distal digit (Rinke-
vich et al., 2011). In these
regards, attempts have been
made to simulate the stem cell-
like environment in vitro for prop-
agation and differentiation studies,
and of course for studying the dif-
ferent aspects of potential thera-
pies (Chu et al., 2009).

NERVOUS SYSTEM

The nervous system is an organ
system composed of two main
types of cells: neurons and glial
cells. Neurons are of three types:
sensory neurons that transport
signals from sensory receptors to
the central nervous system (CNS),
motor neurons that carry signals
from the CNS to muscles and
glands, and the interneurons of
the CNS that transmit impulses
between neurons. Statistics have
shown that peripheral nerve injury
affects more than 67,000 people
in the Unites States per year
(Taylor et al., 2008). Nerve injury
rapidly generates a cascade of
events that lead to the degenera-
tion of the axon stump and the
myelin sheath distal to the lesion.
Following axotomy, the mature
peripheral nervous system of adult
mammals possesses the intrinsic
ability to regenerate (Wood et al.,
2011). A cDNA array hybridization
study has allowed the identifica-
tion of 192 genes, 91 of which
(that is 47%) are detected after
nerve-injury as well as during de-
velopment, suggesting that regen-
eration only partially recapitulates
development (Bosse et al., 2006).
As it has been previously demon-
strated, regeneration best occurs
immediately following injury when
the environment of the peripheral
nerves best supports nerve regen-
eration and reinnervation (Tessier-
Lavigne and Goodman, 1996; Fu
and Gordon, 1997; Burnett and
Zager, 2004).
Despite the peripheral nervous

system’s ability for regeneration,

nerve recovery is far from normal.
It is often the case that whenever
a nerve injury involves the
destruction of the basal lamina
and Schwann cells, a nonpermis-
sive fibroblastic scar tissue forms
that traps the outgrowing axon
and compromises regeneration
(Morgenstern et al., 2003).
Another cause of axon regenera-
tion impairment is axon misalign-
ment at the site of injury that
causes the axon to re-grow to the
wrong target (Brown and Hopkins,
1981). Additionally, chronic axot-
omy and denervation often result
in the impairment of the underly-
ing regenerative mechanisms of
the nerve cells (Wood et al.,
2011). Therefore, efforts have
focused on promoting axon regen-
eration by using neurotrophic fac-
tors [such as brain-derived neuro-
trophic factors and glial-derived
neurotrophic factor] through os-
motic pumps, microspheres, or
gene therapy (Young et al., 2001;
Tannemaat et al., 2009; Zacchi-
gna and Giacca, 2009; de Boer
et al., 2010). Similarly, axon
regeneration can be promoted
through the activation of atrophic
dormant Schwann cells with cyto-
kine TGF-b (Midha et al., 2005),
transplantation of Schwann cells,
or skin derived Schwann cell pre-
cursors (or progenitor cells)
(Walsh and Midha, 2009; Walsh
et al., 2010), use of artificial bio-
degradable nerve guides (Schmidt
and Leach, 2003), use of photody-
namic therapy (Rochkind et al.,
2009), and the short-term electri-
cal stimulation of the injured nerve
(Al-Majed et al., 2000; Gordon
et al., 2007, 2008, 2009, 2010;
Pfister et al., 2011). Furthermore,
improved nerve healing has been
promoted using techniques such
as microtechnology, electrokinetic
axonal manipulation, and cell
fusion (Sretavan et al., 2005).
Currently, surgical intervention
aims at coapting the proximal and
distal end of the injured nerve, ei-
ther directly or through the inser-
tion of autografts or allografts
(Evans et al., 1991; Weber et al.,
2000; Whitlock et al., 2009;
Isaacs, 2010; Ray and Mackinnon,
2010).

Alternatively, the regeneration
and repair of the axon and nerve
have been improved using a vari-
ety of artificial implants, such as
degradable nerve conduits, scaf-
folds, and electrodes that over-
come the limitations associated
with autografts (Smith, 1966a, b;
Meek and Coert, 2002; Moore
et al., 2009; Siemionow and Brze-
zicki, 2009; Whitlock et al., 2009).
Generally, conduits act to localize
Schwann cells, allow the accumu-
lation of trophic factors, and guide
the regenerating nerve toward the
disconnected distal nerve (Evans,
2001; Meek and Coert, 2002; Bel-
kas et al., 2004; Moore et al.,
2009). Scaffolds often comprise
cells (such as glial cells, Schwann
cells, and stem cells), and factors
(such as laminin-1, neural growth
factor, brain-derived neurotrophic
factors, and bFGF) (Dubey et al.,
1999; Hudson et al., 1999; Rosner
et al., 2003; Bellamkonda, 2006;
Dodla and Bellamkonda, 2008;
Kemp et al., 2008; Dahlin et al.,
2009; de Ruiter et al., 2009; Yan
et al., 2009). The application of
nanotubes and nanofibers to pro-
mote nerve repair has also been
studied and, with proper training
and a biocompatible design, these
materials could direct axonal
growth and promote nerve healing
[for a review see Olakowska et al.
(2010)].
As for the CNS, it was long

believed that adult mammalian
brain and spinal cord do not
regenerate following injury. Typi-
cally, injury of the axons in the
CNS is often accompanied by
inflammation and glial scar forma-
tion, both of which inhibit the re-
generative response of the CNS.
Nevertheless, several recent stud-
ies have shown that neurogenesis
is possible in several regions of
the CNS, such as hypothalamus,
neocortex, cerebellum, striatum,
amygdala, and substantia nigra
[for a review see Gould (2007)
and Martino et al. (2011)]. It is
thought that neural stem/progeni-
tor cells residing in the CNS are
capable of undergoing proliferation
and differentiation and could,
thus, promote repair of the CNS.
Cell therapy using BMMSC [for
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review see Wright et al. (2011)]
and neural stem cells [for review
see Martino et al. (2011)] into the
spinal cord has been performed in
an attempt to enhance axonal
regeneration in the CNS.
Some amphibian and especially

urodeles have nevertheless re-
markable regenerative ability of
spinal cord and the brain. Spinal
cord regenerates perfectly after
transaction of the tail, most likely
from ependymal cells. Ependymal
cells seem to be the source of
regeneration of parts of the brain.
In a recent study, a whole optic
tectum was removed from newts
to result in complete regeneration
within 8 months (Okamoto et al.,
2007).
The ongoing search for novel

strategies to promote neural
regeneration and repair has gen-
erated substantial progress so far.
However, there remains a need to
design scaffolds and tissue-like
constructs that can repair lengthy
axonal injuries and can match the
advantages offered by autografts.

EYE – LENS AND RETINA

Lens and retina are two organs
inside the eye cup that perform
the basic function of vision. Lens
is transparent mostly due to solu-
ble proteins such as crystallins
and denucleated fibers. The lens
comprises a monolayer of epithe-
lial cells that resides in the ante-
rior side. These cells continuously
proliferate and differentiate into
fibers toward the posterior side of
the lens. The lens capsule, that
covers the lens on the outside,
consists of extracellular matrix.
Light passes through the lens and
is focused on the retina. Retina
converts light into signals, and
this process is mediated by a fam-
ily of proteins, called opsins. The
light signals are then transmitted
through the optic nerve to the
brain to enable vision. Retina con-
sists of a number of cell types:
Müller cells, cones, rods, ganglion
cells, horizontal cells, bipolar cells,
amacrine cells, and pigment epi-
thelial cells.
Mammalian lens can not regen-

erate. Opacification of the lens or

cataract is a common eye disease
that can lead to blindness in
humans. Depending on the cause
and the affected position of the
lens, cataract can be of a number
of types: age-related nuclear cata-
ract (Truscott, 2005), anterior
subcapsular cataract, posterior
capsule opacification, posterior
subcapsular cataract, and Sparc-
related cataract (Hejtmancik,
2008; Martinez and de Iongh,
2010). Today, the standard treat-
ment for lens opacification is cata-
ract surgery that consists in
removing the lens fibers and leav-
ing the lens capsule behind. The
residual epithelial cells remaining
in the capsular bag can then pro-
liferate and differentiate to form
new fibers. However, cataract sur-
gery might lead to secondary cata-
ract through epithelial to mesen-
chymal transition (EMT). This pro-
cess is regulated by TGF-b that
mediates differentiation of epithe-
lial cells to elongated myofibro-
blast cells expressing a-smooth
muscle protein. It has been
recently shown that a C5R antago-
nist can delay the formation of
secondary cataract (Suetsugu-
Maki et al., 2011).
Lens regeneration can, however,

occur in lower vertebrates such as
newts that can regenerate the
lens even as adults, and frog tad-
poles. In newts, iris pigmented
epithelial cells from the dorsal side
of the eye transdifferentiate to
lens epithelial cells that eventually
regenerate the lens. This process
has been shown to involve Pax6
(Del Rio-Tsonis et al., 1995; Mad-
havan et al., 2006), Prox1 (Del
Rio-Tsonis et al., 1999), FGF (Del
Rio-Tsonis et al., 1997), Wnt
(Hayashi et al., 2006), Shh
(Tsonis et al., 2004), BMP, Six3
(Grogg et al., 2005), and retinoic
acid (Tsonis et al., 2000). In frog
tadpoles, lens regeneration occurs
through transdifferentiation of the
cornea. This process involves tran-
scriptional factors Otx2, Pax6,
Sox3, and Prox1 (Schaefer et al.,
1999; Henry et al., 2002). Signal-
ing pathways involved in amphib-
ian lens regeneration have been
recently reviewed (Henry and Tso-
nis, 2010).

Retina does not regenerate in
mammals after injury. Studies of
embryonic stages of animal mod-
els have revealed only a limited
number of stem cell-like cells in
the eye. Experiments with mam-
malian models have shown that
Müller glia cells respond to dam-
age, and that pigmented progeni-
tor cells can transdifferentiate to
neuronal progenitor-like cells.
Attempts have also been made to
increase the efficiency of retina
regeneration by manipulating pu-
tative proliferation pathways,
including Wnt and FGF (Karl and
Reh, 2010). As for amphibians,
fishes and pre-, post-hatch chicks
have been the dominant models
for retina regeneration. During
regeneration of the amphibian ret-
ina, the retina pigmented epithe-
lium recapitulates retinal normal
development by transdifferentia-
tion. Retina regeneration in fish is
achieved by the differentiation of
residual progenitor cells to rod
photoreceptors (Raymond et al.,
1988), and the dedifferentiation of
Müller glia to a progenitor-like
state to regenerate rods and other
neuronal cell types (Bernardos
et al., 2007). Other potential sour-
ces of cells that contribute to ret-
ina regeneration in fish reside in
the circumferential germinal zone
and the ciliary marginal zone, both
of which are well-known for con-
taining stem-like cells (Stenkamp
et al., 2001; Hitchcock et al.,
2004). For a review on the genetic
aspect of zebrafish retina regener-
ation, see Brockerhoff and Fadool
(2011). Furthermore, embryonic
chicks have the ability to regener-
ate retina upon treatment with
growth factors (Park and Hollen-
berg, 1991). Essential pathways
have been identified to play a role
in this process, and these path-
ways include FGF, BMP, and Shh
(Spence et al., 2004; Haynes
et al., 2007; Spence et al., 2007).
Müller glia of post-hatch chicks
have been shown to possess lim-
ited regenerative ability when it
comes to retina regeneration.
Nonetheless, alternative potential
sources of cells are present in the
circumferential germinal zone, the
ciliary marginal zone, and the par
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plana of the ciliary zone (Fischer
and Reh, 2003), [for review see
(Fischer and Bongini (2010) and
Bermingham-McDonogh and Reh
(2011)]. Factors and processes
that play a role in transdifferentia-
tion of retinal pigmented epithe-
lium to retinal cells in various ani-
mal models have been extensively
studied [for a review see Wang
et al. (2010b)].
Studies on the differentiation of

bone marrow-derived stem cells to
retinal cells have been reported
with low efficiencies (Chen et al.,
2006). Mesenchymal cells have
been used extensively for regener-
ation purposes in other organs,
and their potential therapeutic use
in the context of ocular diseases is
discussed in a review by Joe and
Gregory-Evans (2010). ESC and
iPSC have also been studied for
their contribution to retinal regen-
eration in vivo through their differ-
entiation into retinal neurons
(Lamba et al., 2009, 2010) [for a
review on iPSC role in retina
regeneration see Osakada et al.
(2010)]. Tissue engineering meth-
ods have also been applied for eye
tissues [and their potential thera-
peutic aspects are reviewed by
Silva et al. (2011)].

HAIR CELLS

Hair cells are found in the inner
ear (Cochlear) with the fundamen-
tal role of converting the sound
waves to nerve signals that get
sent to the brain. Mammalian
cochlear hair cells can not regen-
erate following injury or when lost
with age. Birds, amphibians, and
fishes have been extensively stud-
ied for their ability to regenerate
and restore cochlear hair cells
throughout their life. In chicks,
supporting non-hair cells transdif-
ferentiate to hair cells. Supporting
cells also proliferate to maintain
the progenitor reservoir. Atoh1
and Notch signaling are potential
mechanisms for the transdifferen-
tiation or proliferation of the sup-
porting cells. Notch signaling
keeps a reservoir of progenitor
cells by inhibiting their differentia-
tion, whereas Atoh1 promotes

their differentiation [for review see
Cotanche and Kaiser (2010)].
As mammalian supporting coch-

lear hair cells are present but do
not transdifferentiate, studies have
focused on using several growth
factors to induce mitosis. Alterna-
tively, downregulation of prolifera-
tion inhibitors, such as the protein
p27kip1, have also been attempted
(Lowenheim et al., 1999). Further-
more, activating Atoh1 pathway in
big animal models has led to prom-
ising results. For a review on hair
cell regeneration and the pathways
involved in mammalian and non-
mammalian regeneration models,
see Bermingham-McDonogh and
Reh (2011)].

KIDNEY AND BLADDER

Kidney is the organ that cleans the
blood from unwanted substances,
and regulates osmotic pressure and
salt concentration. It is composed of
the cortex on the outside and the
medulla on the inner side. Glomeruli
are the site in the kidney where fil-
tration occurs. Filtrate then flows
through proximal tubules (close to
glomeruli), Henle’s loop, and distal
tubules to end up in the collecting
tube. Reabsorption of certain mole-
cules across this network occurs.
Mammalian kidneys do not have
regeneration capabilities. In addi-
tion, they possess a slow turnover
rate which is reflected on the
low number of stem cell-like cells
or inactive stem cell-like cells.
Following injury (ischemic- or
toxic-related), mammalian kidneys
restore filtrate flow and repair the
tubular epithelium by the action of
renal residual epithelial cells, pro-
genitor cells, and/or extra-renal
cells. Factors and processes that
play a role in repair following acute
kidney injury include angiogenesis,
inflammation/immune responses/
chemokines, apoptosis, and oxida-
tive stress, and they have been
recently reviewed by El Sabbahy
and Vaidya (2011). Also in a recent
review, Guo and Cantley (2010) dis-
cuss kidney maintenance, turnover
rate, and regeneration. Gene ther-
apy for acute kidney injury involves
downregulation of NF-kB (Cao et al.,
2004), intercellular adhesion mole-

cule 1 (Dragun et al., 1998), Com-
plement component 3, and caspase
3 (Zheng et al., 2006) using anti-
sense oligodesoxynucleotides or
siRNA. Using viruses or electropora-
tion, increased levels of Bcl-2 (Chien
et al., 2005) and HGF (Herrero-Fres-
neda et al., 2006) have also been
achieved and shown great potential
for kidney regeneration in animal
models.
TGF-b, a major molecule for

EMT, leads to kidney fibrosis by
inducing myofibroblasts formation
(Carew et al., 2012). Aldosterone
effect on kidney fibrosis has been
recently reviewed, along with EMT
and inflammation processes (Brem
et al., 2011). EMT is a major cause
of chronic kidney disease, and
treatments for factors associated
with EMT and its related pathways
have been attempted and shown
to lead to positive results in animal
models. An interesting aspect of
kidney repair is compensatory
mammalian kidney hypertrophy
(Hayslett, 1979). Today, the most
effective therapeutic strategy for
kidney failure is transplantation,
with a less effective treatment
through dialysis tubing. Patients
can delay death from kidney failure
through treatments with drugs
(such as ramipril) that inhibit the
synthesis of angiotensin, and treat
diabetes. The aforementioned show
that kidney diseases are related to
organs that play a role in regulating
the concentration of blood compo-
nents and blood circulation. Other
organisms such as fish (Reim-
schuessel, 2001) have the ability to
regenerate the kidney via neoneph-
ropoieisis, a process by which new
nephrons are generated throughout
the organ. In these organisms,
new nephrons are also regenerated
following injury (Reimschuessel
et al., 1990). A review by Davidson
(2011) discusses kidney repair and
the regenerative capabilities of fish
versus mammals in response to
injury.
Tubular epithelial cells can repair

kidney damage after ischaemic
reperfusion injury by dedifferenti-
ating and proliferating (Humphreys
et al., 2008). Other potential sour-
ces of progenitor cells that have
been shown to participate in kidney
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repair or were able to differentiate
to various cell types in vitro are
distal tubular cells (Gobe and
Johnson, 2007), cells residing in
the renal cortex near the tubules
(Bussolati et al., 2005), cells in
Bowman’s capsules (Sagrinati
et al., 2006), glomerular parietal
epithelial cells (Swetha et al.,
2011), metanephric mesenchymal
cells (Oliver et al., 2002), and cells
in the papilla (Oliver et al., 2004).
BMMSC have been the main

type of cells used for treating
acute kidney injury and chronic
kidney diseases (Choi et al., 2009;
Togel et al., 2009). These cells
have been shown to aid in the
repair process of various injured
kidney parts. They can differenti-
ate to tubular epithelial cells in
human bone marrow recipients
with sex-mismatch bone marrow
transplant (Poulsom et al., 2001).
In animal models, they have also
been shown to differentiate to
podocytes, glomerular, endothe-
lial, and mesangial cells. Mesen-
chymal cells release factors that
have anti-inflammatory action,
can stimulate the residing kidney
stem cells, and can reduce fibrosis
(Bussolati et al., 2008). The differ-
ent animal models used with MSC
have been reviewed in Asanuma
et al. (2010).
Membranes for dialysis have

been engineered using scaffolds
and renal cells (Aebischer et al.,
1987; Ip and Aebischer, 1989;
Dankers et al., 2011a). Functional
analysis of solute transport across
such membranes shows their
great potential for future usage
(Fujita et al., 2002; Sato et al.,
2005). Human cell-seeded bioarti-
ficial kidneys have also been used
in vivo (Humes et al., 2002) and
human clinical trials have been
performed (Humes et al., 2004).
Wearable kidneys have been
recently engineered for dialysis
(Ronco and Fecondini, 2007; Gura
et al., 2009; Rambod et al., 2010).
In addition, decellularized kidneys
seeded with pluripotent stem cells
have been recently used to engi-
neer a kidney in vitro (Ross et al.,
2009; Nakayama et al., 2010).
Dankers et al. (2011b) and Perin

et al. (2011) have recently

reviewed the field of kidney regen-
eration and repair.
The bladder is the organ responsi-

ble for the storage of urine made in
the kidneys and the voluntary con-
trol of urination. The organ’s func-
tion can be compromised due to
loss of bladder tissue (as a result of
injury, disease, inflammation,
etc.), a condition that has been gen-
erally treated with reconstructive
surgery (e.g., autoaugmentation,
ureterocystoplasty). However, and
to overcome the complications
associated with surgical proce-
dures, tissue engineered bladder
tissues have been designed using
non-seeded or cell-seeded scaf-
folds, with the latter demonstrating
a higher tissue engineering effi-
ciency. Synthetic materials (e.g.,
silicone) have been mostly used to
construct artificial bladders,
whereas biomaterials (e.g., colla-
gen, alginate) have been widely
applied for regenerative medicine
purposes. Bioreactors are currently
being constructed for bladder de-
velopment in vitro, and used to sim-
ulate the mechanical environment
in which the bioartificial bladder is
to be implanted. Furthermore,
nanoscaffolds have been designed
for bladder repair or replacement.
Transplantation of cells (e.g.,
native cells, amniotic fluid and BM-
derived stem cells, ESC) for the
reconstruction of functional bladder
segments has also been attempted.
Clinical trials were also conducted in
which patients received either colla-
gen or PGA-collagen seeded scaf-
folds for bladder replacement. For a
detailed review on this topic, see
Atala (2011).

SKIN

Skin is the body’s largest organ
with an epithelium that comes in
direct contact with the external
environment. The skin plays four
key functions: (1) protection
against radiation, and physical, bi-
ological and chemical agents, (2)
regulation of body temperature,
(3) production of vitamin D, and
(4) sensory. In addition, the skin
serves as an ‘‘embedding’’ scaffold
for tissues and organs, such as
hair follicles. Following skin injury,

thrombin cleaves fibrinogen to
fibrin. This latter combined with
platelets, blood cells, and other
matrices (such as fibronectin)
form a clot that serves as a scaf-
fold for infiltration of other cells.
Also in response to injury, kerati-
nocytes release interleukin-1 and
tumor necrosis factor-a. Macro-
phages, neutrophils, T cells, and
platelets populate the area, and
along with residual cell population
produce growth factors essential
for wound closure. Some of the
growth factors include EGF, TGF-b,
PDGF, and various inflammatory
cytokines. Finally, re-epithelializa-
tion is enabled by the proliferation
of keratinocytes. In some instan-
ces, complete regeneration of the
skin might require the regenera-
tion of additional epidermis com-
ponents that might have also been
injured or damaged. Endothelial
and fibroblastic cells often help in
this regenerative process [an
excellent review on the pathway of
skin regeneration following injury
in regards to the role of macro-
phages by (Mahdavian Delavary
et al., 2011). For a detailed review
on the molecules that play a role
in skin repair and disease, also see
Kondo and Ishida (2010)]. cd T
cells residing in the skin have
been shown to play a variety of
roles, including infection, malig-
nancy, inflammation, maintenance
of the epithelium, and repair
(Nestle et al., 2009). A subpopula-
tion of cells in the epidermis of the
skin, called the dendritic epidermal
T cells, that express a single T-cell
antigen receptor, show wound
healing specific roles (Jameson
and Havran, 2007) by potentially
recognizing a specific antigen from
the residing keratinocytes. Subse-
quently, cd T cells synthesize kera-
tinocyte growth factor for kerati-
nocyte proliferation. In addition, cd
T cells signal ab T cells and macro-
phages to invade the injured area.
Humans possess ab T cells and cd
T cells, both of which reside in the
epidermis [for more detail on the
epidermal T cells see Havran and
Jameson, (2010)]).
Bone marrow-derived stem cells

have been shown to contribute to
epithelial repair following injury.
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These cells are recruited by cyto-
kines synthesized near the injury
site (Wu et al., 2007; Sasaki et al.,
2008). Similarly, mesenchymal-
derived fibrocytes from peripheral
blood have been shown to contrib-
ute to epithelial repair (Chesney
and Bucala, 2000) by differentiating
into myofibroblasts and reducing
fibrosis. More recently, fibrocytes
were also identified to participate in
skin repair (Ishida et al., 2009).
Bioartificial dermal substitutes

are widely used for treating
severely damaged skin. Scaffolds
made from different matrix layers
serve for guiding the proliferation
and differentiation of cells present
near the injury site, resulting in
the regeneration of the missing
skin parts. Furthermore, scaffolds
seeded with a mixture of different
types of cells and factors are
extensively studied for their effi-
ciency and effect on wound clo-
sure (Helgeson et al., 2007; Jeng
et al., 2007). Substitutes as such
have been used for treating foot
and ankle deep soft war injuries
(Baechler et al., 2010).

HAIR FOLLICLES

Hair follicles are the organs that
serve sensory and homeostatic
functions in the body. Their move-
ment is enabled by a muscle,
called arrector pili. Nerve fibers
transmit signals from the hair fol-
licles to the nervous system. Pro-
genitor cells residing in these fol-
licles produce keratinocytes
(during anagen phase) that differ-
entiate (during catagen phase) to
make terminally differentiated
‘‘dead’’ keratinized cells (during
telogen phase). From the epider-
mal- and dermal-originating cells,
dermal cells show the highest pro-
liferation capability. The part of
the hair follicle located in the der-
mal layer is composed of the der-
mal papilla at the base and the
dermal sheath near the bulge. The
dermal sheath contains collagen
and fibroblasts whose origin is
partially from neural crest cells
(Fernandes et al., 2004). Cells in
the dermal sheath have been
shown to regenerate the dermal
papilla (Horne and Jahoda, 1992),

a process that involves thrombin
signaling (Feutz et al., 2008). Hair
follicle pluripotent stem cells have
been identified to be positive for
nestin, and have been found to
contribute to hair production. Fur-
thermore, differentiation studies
have shown that hair follicle pluri-
potent stem cells are capable of
differentiating into a number of
nerve lineage cell types. These
cells, even when from human ori-
gin, can contribute to peripheral
nerve repair [reviewed by Amoh
et al. (2010)]. Hair follicles can
also be regenerated from extra-
hair follicle epithelial progenitor
cells (Taylor et al., 2000). Recent
reviews have discussed the molec-
ular mechanisms underlying hair
follicle regeneration (Fuchs, 2009),
as well as the markers for epithelial
and hair regeneration by residual
progenitor cells (Jaks et al., 2010).
In addition, a number of studies
have focused on determining the
appropriate conditions for the dif-
ferent hair follicle parts to maintain
their regenerative capabilities and
generate a hair follicle in vitro
(Amoh et al., 2010; Yang and Cot-
sarelis, 2010). BMP (Rendl et al.,
2008) and Wnt pathways (Kishi-
moto et al., 2000) have both been
found essential for prolonged der-
mal papilla cell inducibility. Dermal
inductive signature molecules are
alkaline phosphatase, a-smooth
muscle actin, versican, corin, and
CD133. A recent review discusses
the role of these molecules in the
dermal compartment of the hair
follicles in regards to regeneration
(Yang and Cotsarelis, 2010).

PANCREAS

The pancreas is an organ of two
compartments: exocrine and endo-
crine. The exocrine tissue, which
forms the majority of the pancreas,
is composed of acinar cells. It
secretes digestive enzymes that
are used in the stomach. The en-
docrine tissue is composed of vari-
ous types of cells including a, b, d,
e, and PP cells, assembled in
regions known as the islet of
Langerhans. These cells secrete
hormones and other pancreatic
peptides. Diabetes type I is a pan-

creatic disorder caused by a dis-
ruption in the secretion of insulin
by b-cells. The majority of the
studies focus on b-cell replenish-
ment as a way to treat diabetes in
the absence of any exogenous
source of insulin.
Models for pancreas regenera-

tion include partial pancreatec-
tomy, partial duct ligation,
chemicals or genetic manipulation.
Pancreatic acinar cells have the
ability to regenerate (Jensen
et al., 2005; Desai et al., 2007)
and this process involves Shh and
Indian Hedgehog pathways (Cano
and Hebrok, 2008; Fendrich et al.,
2008). In contrast, islets have lim-
ited regeneration ability following
injury or other conditions that
promote diabetes. As a result,
patients either receive islet trans-
plants (Shapiro et al., 2000; Ryan
et al., 2005; Shapiro et al., 2006)
or prolonged treatment with exog-
enous insulin. Studies have shown
that insulin-secreting b-cells can
be replenished by proliferation of
existing b-cells or from progenitor
cells (Gonez and Knight, 2010).
IGF-1 has been shown to play a
role in proliferation of existing
b-cells (Agudo et al., 2008). Stud-
ies using BrdU or Ki-67 show that
b-cells are able to proliferate in
mice, and to a lesser extent in
humans (Dor, 2006; Teta et al.,
2007). However, this ability is
reduced with age (Teta et al.,
2005; Salpeter et al., 2010). Using
fate mapping techniques, it has
been shown that b-cells can be
regenerated by progenitors resid-
ing in the pancreatic duct (Bonner-
Weir et al., 2010), by transdiffer-
entiation of a-cells (Chung and
Levine, 2010; Chung et al., 2010;
Collombat et al., 2010; Thorel
et al., 2010; Gianani, 2011), or
from bone marrow-derived stem
cells in vivo (Chamson-Reig et al.,
2010). Furthermore, in vitro and in
vivo functional studies have identi-
fied the antiapoptotic and chaper-
one protein clusterin to play a
crucial role in regeneration of pan-
creatic islets and the formation of
b-cells (Lee et al., 2011).
BMMSC, adipose tissue-derived

MSC, umbilical cord mononuclear
cells, placenta-derived adherent
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cells, and Wharton’s jelly derived
MSC have been used in vitro to
produce insulin-secreting cells [for
an excellent review on this topic,
that also includes an elaborate
literature search on methods,
markers, and results, see Anz-
alone et al. (2011)]. Moreover,
ESC have been differentiated into
insulin-secreting cells and have
been used in functional studies in
vivo to produce insulin-secreting
cells (Soria et al., 2000). Studies
that make use of ESC and iPSC to
make pancreatic cells have been
reviewed by Baiu et al. (2011).
Two signaling pathways that have
been exploited for their role in ESC
and iPSC differentiation are FGF
and BMP, both of which are also
essential for pancreatic lineage. In
addition, Wnt and retinoic acid,
and the inhibition of EGF and TGF-
b have been studied in differentia-
tion studies.
The field of tissue engineering

has focused on the development
of biomaterials (such as silicone-
based chambers) that can be
seeded with different types of cells
(b-cells or progenitor cells) in an
attempt to construct a bioartificial
pancreas. A vascularized silicone
chamber (Cronin et al., 2004)
seeded with islets combined with
extracellular matrix has shown
great potential for glucose regula-
tion in mice (Hussey et al., 2009).
A recent review discusses the con-
struction of bioartificial devices
that can simulate insulin secretion
(Silva et al., 2006).

BONE AND CARTILAGE

Bone cells, also known as osteo-
cytes, are differentiated specialized
cells capable of responding to me-
chanical stimuli by either increas-
ing or reducing bone apposition
(Lemaire et al., 2004). Throughout
adult life, bone possesses the
intrinsic ability to regenerate dur-
ing skeletal development and to
promote normal fracture healing
(Einhorn, 1998; Ferguson et al.,
1999; Dimitriou et al., 2011). Nat-
ural bone remodeling involves the
participation of two types of cells:
osteoblasts (derived from MSC)
and osteoclasts (derived from he-

matopoietic cells), both of which
are responsible for maintaining a
dynamic equilibrium between bone
formation and bone resorption
(Dalle Carbonare et al., 2011). A
number of circulant factors and
pathways, including interleukin-11,
Wnt, notch, BMP, and SMAD sig-
naling (Lin and Hankenson, 2011;
Matsumoto et al., 2012), are
known for being capable of control-
ling the differentiation of osteo-
blasts (Karsenty, 1999). When pre-
osteoblasts differentiate into active
mature osteoblasts, they undergo
phenotypic changes that lead to
the secretion of bone matrix pro-
teins that are necessary for the
cells’ terminal differentiation to
osteocytes (Dalle Carbonare et al.,
2011).
One master gene that plays a

key role in the osteogenic differen-
tiation process from mesenchymal
precursors is Runx2, also known
as Cbfa1 or Aml3 (Otto et al.,
2003; Lian et al., 2004; Ylonen
et al., 2005; Cohen, 2009; Hu
et al., 2011). Runx2 has 2 iso-
forms: type I and type II (Eno-
moto et al., 2000; Banerjee et al.,
2001; Park et al., 2001; Prince
et al., 2001), and has been shown
to regulate the expression of bone
alkaline phosphatase and osteo-
calcin (Lian et al., 2004). The ac-
tivity of Runx2 can be regulated
by histone deacetylase 7 (Jensen
et al., 2008), twist proteins
(Howard et al., 1997; Bialek et al.,
2004), activator protein 1, and
activating transcription factor 4
(Cohen, 2009). The induction of
Runx2 in human BMMSC has been
shown to induce the expression of
specific osteoblastic markers, such
as collagen type I, bone alkaline
phosphatase, and osteocalcin dur-
ing osteoblastic maturation
(Cohen, 2009). For all of its roles,
Runx2 has been a material of
interest for novel therapeutic
approaches aimed at enhancing
bone regeneration and repair. Jeon
et al. (2006) have succeeded in
preventing the process of Runx2
ubiquination and subsequent deg-
radation by inhibiting histone
deacetylase 4. Furthermore, Runx2
expression was successfully
induced in bone marrow stromal

cells as a mean to increase osteo-
genic expression (Gillissen et al.,
1997; Byers et al., 2004; Donna
et al., 2006).
However, as the number of dis-

eases due to the loss of large bone
quantities as a result of trauma,
neoplasia, reconstructive surgery,
congenital defects, or periodontal
diseases increases, so does the
need for the development of novel
therapeutic approaches to aid in the
compromised regenerative process.
Today, a number of different strat-
egies are used to augment large
bone defects. These include autolo-
gous bone graft (Younger and
Chapman, 1989; Ahlmann et al.,
2002; St John et al., 2003; Knothe
Tate et al., 2011), allograft implan-
tation (Finkemeier, 2002), bone-
graft substitutes with growth
factors (Giannoudis et al., 2005;
Giannoudis and Einhorn, 2009;
Dimitriou et al., 2011), distraction
osteogenesis, bone transport (Green
et al., 1992; Aronson, 1997; Dimi-
triou et al., 2011), and the use of
osteoconductive scaffolds for prolif-
eration and differentiation of bone
cells. More conventional strategies
for correcting and repairing lengthy
bone deformities include external
fixators and the Ilizarov technique
(Green et al., 1992; Aronson,
1997), intramedullary nails com-
bined with external monorail distrac-
tion devices (Raschke et al., 1993),
or intramedullary lengthening devi-
ces (Cole et al., 2001). An alterna-
tive technique used for reconstruct-
ing long-bone defects is a two-step
procedure known as the Masquelet
technique (Giannoudis et al., 2011).
At the molecular level, BMP2 and
BMP7 have been extensively studied
for their osteo-inductive properties
in the induction of bone regeneration
(Blokhuis, 2009; Giannoudis and
Einhorn, 2009; Nauth et al., 2011).
Other growth factors studied for
their implication in bone repair proc-
esses include but are not limited to
PDGF, TGF-b, IGF-1, VEGF, and FGF
(Dimitriou et al., 2005; Chen et al.,
2009b; Nauth et al., 2010). Addi-
tionally, MSC have been exploited
for their application in bone repair
through local injection, systemic
application, recombinant gene
technology, and tissue engineering
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(D’Ippolito et al., 1999; Huibregtse
et al., 2000; Hernigou et al., 2005;
Pountos et al., 2010; Aicher et al.,
2011; Jager et al., 2011; Jones and
Yang, 2011). Alternatively, MSC
have been first expanded in vitro
before their implantation due to the
large number of cells that can be
generated from in vitro cultures
(Bianchi et al., 2003; D’Ippolito
et al., 2004; McGonagle et al.,
2007). Also under study are other
sources of cells that could play a role
in bone regeneration; those include
peripheral blood (Matsumoto et al.,
2006), mesenchymal progenitor
cells from fat (Zuk et al., 2001; Im
et al., 2005; Niemeyer et al., 2010;
Monaco et al., 2011), and cells from
traumatized muscle tissue (Jackson
et al., 2009).
As with every case where regen-

eration or repair has been compro-
mised, tissue engineered scaffolds
come into play to promote healing.
A large number of synthetic bone
substitutes are widely in use (Fin-
kemeier, 2002; Giannoudis et al.,

2005; Lew et al., 2011). However,
synthetic bone grafts often trigger
negative host reaction. Thus, more
recently, therapeutic approaches
use gene (e.g. expressing BMP and
parathyroid hormone) and cell-
based therapies to design biocom-
patible, biodegradable, and osteo-
genic bone tissue grafts and bioma-
terials (Fang et al., 1996; Lauren-
cin et al., 1999). Viral and nonviral
vectors have also been used for
gene transfer in osteogenic precur-
sors and stem cells (Franceschi,
2005; Evans, 2011), and for gene
factor-mediated delivery (Ishihara
et al., 2010, 2011). Furthermore,
3D biodegradable scaffolds for cell
proliferation and matrix formation
have been designed and are cur-
rently being tested for biocompati-
bility (Ishaug-Riley et al., 1998;
Cartmell et al., 2003; Czarnecki
et al., 2008; Buckley and O’Kelly;
2010; Akkouch et al., 2011; Tam-
pieri et al., 2011). Even injectable
scaffolds are currently under study
for their reduced invasiveness and

easy application (Laschke et al.,
2007). Alternatively, biomaterials
made from a combination of natu-
ral or synthetic matrices and micro-
or nano-particles have been tested
for mechanical properties and bone
formation efficacy (Giannoudis
et al., 2005; Cai et al., 2009; Jose
et al., 2009; Shekaran and Garcia,
2010). Moreover, a recent review
by Habibovic and Barralet (2011)
shed light on the potential use of
bioinorganics to promote bone
regeneration. Particulate grafts
have also proven effective in repair-
ing localized defects (Aloy-Prosper
et al., 2011). Tissue-like structures
are also being designed in which
cells, such as MSC, are being
seeded onto 3D scaffolds and com-
bined with growth factors to gener-
ate and maintain bone (Rose and
Oreffo, 2002; Salgado et al., 2004).
Cartilage is a tough but flexible

connective tissue that covers the
end of the bones, generally at the
joint site. Osteochondral defects
result in mechanical instability that
constitutes a challenge for the
regenerating bone tissue and could
lead to disfiguration in the case
where the cartilage of the ear or
nose is destroyed. Today, cartilage
reconstruction is one of the most
pursued fields in tissue repair and
regeneration. Cartilage repair is
achieved using biodegradable syn-
thetic polymers in combination
with cells and proteins to promote
cell adhesion and proliferation [for
a detailed review see Panseri et al.
(2011)]. Ear reconstruction was
one of the earliest models of carti-
lage repair achieved in nude mice
(Cao et al., 1997). In contrast to
auricular cartilage, articular carti-
lage does not require very sophisti-
cated design fabrication. Mesen-
chymal stem cell therapy has been
one general approach used to
repair articular defects (Brittberg
et al., 2003; Wakitani et al., 2007;
Nejadnik et al., 2010; Wakitani
et al., 2011). In one study, the
injection of a suspension of BMMSC
in hyaluronic acid scaffold has led
to the regeneration of the menis-
cus and the retardation of the
degeneration of the cartilage
(Murphy et al., 2003). Bone
marrow stem cells have also been

Figure 1. An illustration depicting artistically the different concepts of regeneration
using as a template the liver. (A) Local cells (either differentiated hepatocytes or tis-
sue specific-stem cells) proliferate and repopulate the injured area, providing as well
important factors for growth. This concept can be applied to dedifferentiation of cells
at the injured site as well. (B) An artificial scaffold is seeded with cells to repopulate
and reconstruct the lost part of the organ. (C) Cells from bone marrow can be brought
via blood vessels to the injured area and contribute to the repair or regeneration.
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seeded on biomaterial scaffolds
and implanted to lead to fully
repaired articular osteochondral
defects (Zhou et al., 2006). Chon-
drocyte-engineered scaffolds are
another alternative that have been
successfully used to repair cartilage
defects (Wakitani et al., 1989;
Brittberg et al., 1994; van Susante
et al., 1998; Liu et al., 2002).
These constructs have repaired de-
fective tracheal cartilage in a rabbit
model as reported in Macchiarini
et al. (2008), Luo et al. (2009),
and Sun et al., 2011.
Current clinical strategies for

enhancing bone and cartilage
regeneration and repair have gen-
erated relatively satisfactory
results. Nonetheless, no currently
available synthetic bone substitute
possesses superior if not similar
biological or mechanical properties
when compared with bone. It,
therefore, remains a necessity to
engineer scaffolds that are bio-
compatible and mechanically sta-
ble, as well as tissue constructs
that are cost-effective and capable
of promoting short-term healing,
and to exploit growth factors that
can be administered at safe opti-
mum dosages and can still induce
vascular ingrowth and bone- or
cartilage-tissue formation.

FUTURE DIRECTIONS

In this review, we have attempted
to present an overview of organ
repair and regeneration with a
main emphasis in mammals. Occa-
sionally, and when appropriate, in-
formation has been provided from
lower vertebrates, such as amphib-
ian and fish. Undoubtedly, mam-
mals do not match the regenera-
tive capabilities of amphibian,
where body parts, such as limbs
and tails, can regenerate perfectly
even in the adult (Tsonis, 1996), or
even invertebrates where whole
animals can be regenerated from
small pieces (Sanchez Alvarado
and Tsonis, 2006). However, the
main take-home message here is
that every animal, including mam-
mals, have devised strategies that
allow in one way or another repair
and regeneration. Will we ever be
able to regenerate human organs

and parts the way that the newt
does? Are stem cells able to recon-
struct a whole damaged tissue or
organ? While an answer at this
point is premature, the news for
the future in our opinion is good
when all possible strategies will be
at use. What is, for example, the
relationship of stem cells as we
know them in mammals to the
dedifferentiating newt cells that
create the source of regenerating
tissues? Are there similarities and,
if yes, can we learn from them.
Indeed, newt cells do express fac-
tors that characterize stem cells
(Maki et al., 2009, 2010). Can we
learn how cells create these
progenitor cells and guide them via
scaffolds to build tissues and
organs? These three concepts
(classical animal regeneration,
stem cells, and tissue engineering)
can provide the necessary raw
materials to materialize the final
goals of regenerative biology and
medicine. These general ideas of
the different ways to regeneration
are depicted in Figure 1.
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