edexcel

Mark Scheme (Results)
Summer 2016

Pearson Edexcel GCSE in Astronomy (5AS01/01) Unit 1: Understanding the Universe

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:
www.pearson.com/uk

Summer 2016
Publications Code 5AS01_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	B Orion		1
(b)	D Sirius		1
(c)	D Nebula		1

Question number	Answer	Notes	Marks
$\mathbf{2}$ (a)	A William Herschel		1
	(b)	D Variable star	
	(c)	B Goldilocks Zone	
(d)	B 21 st March		1
	(e)	C Exoplanets	

Question number	Answer	Notes	Marks
$\mathbf{3}$ (a)	Heliocentric / helio-centred	Reject: Sun- centred or Copernican	$\mathbf{1}$
(b)	It made predictions of the positions of the planets easier/quicker to calculate. OR: Explained retrograde motion of planets	Accept: Better predictions Reject: It had the Sun at the centre / didn't have the Earth at the centre	Any 2 from: Moons orbiting Jupiter Phases of planet Venus Earth-like / relief features on Moon Milky Way resolved into individual stars Sunspots Invention of telescope

Question number	Answer	Notes	Marks
4 (a)	Moving / curtains / streamers of (coloured) light	Insufficient: Patches of light	$\mathbf{1}$
(b)	Point of light moving quickly / steadily across sky	Insufficient: Point of light / dot	$\mathbf{1}$
(c)	(Bright) Streak of light / bright meteor Meteor brighter than -3	Insufficient: meteor	$\mathbf{1}$
(d)	Just visible / very faint object Insufficient: Point of light or star	$\mathbf{1}$	

Question number	Answer	Notes	Marks
$\mathbf{5}$ (a)	C Mercury		$\mathbf{1}$
	(b)	B Neptune	
	(c)	D Venus	
	(d)	D Venus	

Question number	Answer	Notes	Marks
$\mathbf{8}$ (a)	Either mathematical calculation / prediction of position and Any one of Irregularities in orbit of Uranus Gravitational pull of another planet Identified from telescope search Named astronomer, e.g. Adams/Le Verrier/ Galle/d'Arrest In 1846	$\mathbf{1}$	
(b)	Any two from: Some moons orbiting amongst Neptune's rings One very large moon (Triton) Triton has retrograde / highly inclined / almost circular orbit Triton large enough to have atmosphere Triton likely to be captured from KBOs/TNOs Capture of Triton destroyed previous satellites Nereid has highly elliptical orbit	$\mathbf{2}$	

Question number	Answer	Notes	Marks
9 (a) (i)	C Mercury		1
(ii)	B Conjunction		1
(b)	Sequence S V E or E V S		1
(c)	Any two from		2
	Disc of Venus appears very small in sky Sun is very bright		
	Telescope needed to observe it in detail Transits not accurately predicted		
(d)	Venus (or Earth) has a tilted orbit/ orbital plane	Reject: Venus/Earth is	1
	compared to each other / ecliptic or orbits only cross/align in two places	tilted Accept: Inclined to ecliptic $=2$	1

Question number	Answer	Notes	Marks
10 (a)	Any two from: Large objective lenses are difficult to make Large lenses are hard to support Reflectors can be made of multiple mirrors Telescopes with large lenses are difficult to keep stable and steer/point accurately Lenses introduce false colour/chromatic aberration Reflector design has higher resolution The mark scheme for this question is tiered depending on the complexity/detail level with which candidates discuss the advantages/disadvantages of each telescope.	Insufficient: Cheaper	Easier to build
(b)	6		

	Hale	Hubble
Simple statement	Bigger mirror	Is above atmosphere
Explanation	Gives improved light grasp or resolution	Gives brighter/sharper/higher contrast/lower distortion images. Insufficient: 'better' or 'clearer' images
Detail or quantitative comparison	Light grasp four times better or resolution twice as good	Any one from: Can observe in near UV/IR Unaffected by weather/Earth's rotation Harder to repair

Question number	Answer	Notes	Marks
11 (a)	To avoid risking human life in early missions / safer / easier cheaper / no return		1
(b) (i)	Lower gravity on Moon	Reject: No gravity	1
(ii)	No atmosphere / air resistance for parachutes		1
(c) (i)	Apollo (any number)	Reject: Eagle	1
(ii)	Any two from: Seismic measurements	Reject: Any other answers	2
	Charged particle measurements Solar Wind measurements		
	Atmospheric pressure measurements		
	Heat flows in/out of lunar surface LASER reflection measurements of		
	distance to		
	Earth		
	Composition of lunar atmosphere		
	Micrometeorite detection and		
	measurement		
	Surface gravity measurements		
	Surface magnetic field measurements		
(d)			
	Sunlight is not scattered... ... as the Moon has no atmosphere		$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \end{aligned}$

Question number	Answer	Notes	Marks
13 (a)	Diagram/explanation shows:		
	Oort Cloud centred around the Sun		1
	Highly elliptical orbit (open / closed) with		1
	Sun at focus		
	P marked as point on orbit closest to Sun.		1
	Gravitational pull of major planet / nearby star		1
(b)	100		2
	10 (or evidence of squaring)		1
(c)	27(years)		2
	Evidence of $9^{3}(=729)$		1

Question number	Answer	Notes	Marks
$\mathbf{1 4}$ (a)	Objects in the sky which never set / are always above the observer's horizon.	Reject: Always visible orbit Polaris	1
(b)			

	Viewed from London (Latitude: $52^{\circ} \mathrm{N}$)	Viewed from Brazil (Latitude: $16^{\circ} \mathrm{S}$)
Pole Star	C	N
Sun at midday on June 21 ${ }^{\text {st }}$	R	R
Sirius (Declination: -16°)	R	Z
Orion's Belt (Declination: 0°)	R	R

	6 correct 4 or 5 correct 2 or 3 correct 0 or 1 correct	$\mathbf{3}$
(c)		$\mathbf{2}$
	Any two from: Most southerly point(s)/Iatitude where Sun is directly overhead at noon on Winter/Southern Summer solstice $21^{\text {st }}$ December	$\mathbf{0}$

Question number	Answer	Notes	Marks
15 (a) (i)	New		1
(ii)	Photosphere	Insufficient: Disc Reject: Corona	1
(b) (i) (ii)	Ellipse / Elliptical		1
	Establishes that shadow cone of Moon doesn't reach Earth's surface		1
	OR: angle of Moon's disc is less than angle of Sun's disc Labelled diagram to illustrate this.		1

Question number	Answer	Notes	Marks
17 (a)	Two stars/objects Linked by force of gravity / in orbit around each other	Insufficient 'close'	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
(b) (i)	Escape velocity greater than speed of light Extremely strong gravity pulls back even light/EM waves		2
(ii)	Any one of three alternative answers: Binary systems Star orbiting black hole Shows gravitational pull of black hole		2 1 1
	Emissions from nearby mass Material falling into black hole / accretion disc Emits strong X-ray signals		1
	Gravitational Lensing Gravity of black hole bends space/light from another star Causes a double image of the star for viewers on Earth		1
(c)	X-rays do not penetrate the Earth's atmosphere		1
(d)	$\begin{gathered} 25000 / 2.5^{11}(=23842) / 2.512^{11} \\ (=25131) \end{gathered}$	$\begin{aligned} & \text { [Magnitude } \\ & \text { difference }=4.5- \\ & 6.5=11 \\ & 11 \text { magnitudes }= \\ & 2.5 \times 100 \times 100= \\ & 25000] \end{aligned}$	2
	11 (or clear evidence of an initial error carried forward, e.g. calculating 2.5^{10})		1

Question number	Answer	Notes	Marks
18 (a)	Star dims as planet transits / passes in front		1
(b)	150000 km	```[1 st }-\mp@subsup{2}{}{\mathrm{ nd }}\mathrm{ contact time from graph = 1 hour 1 hour x 150 000 km/h - 150 000 km]```	2
	Time of 1 h read from graph		1
(c)	Very accurate measurement of star's position / astrometry	Reject: Transit method	1
	To detect tiny 'wiggles' as it is orbited by planet or		1
	Radial velocity / Doppler measurement		1
	To detect tiny 'wiggles' as it is orbited by planet		1

Question number	Answer	Notes	Marks
$\mathbf{1 9}$ (a)	Universe was originally very small Expanded outwards after Big Bang (b)	CMB = 'left over' radiation from the Big Bang Wavelength of CMB agreed with estimates of rate of cooling of Universe (or similar argument based on temperature)	Accept: 'echo of Big Bang'
(c)	Quasars are (only) observed at very large distances/high red-shifts Indicating early universe was different to present day (i.e. not Steady State)	1	
QWC: 'organise relevant information clearly and coherently, using specialist vocabulary when appropriate'	1		
	Student answer contains a clearly expressed argument with the correct use of ANY TWO of the following terms: Red shift Universe Steady State Luminosity Galaxy AGN Spectrum/a or Spectral line(s)	1	

Question number	Answer	Notes	Marks
20 (a)	Group of nearby galaxies		1
	linked to Milky Way by gravity		1
(b) (i)	3.5		3
	-11.5		2
	Correct substitution of values and evaluation of $\log (1000000)=6$		1
	OR: $\log (1000)+\text { ecf }=-31.5$		
(ii)	-1.5	$\begin{aligned} & {[10 \times \text { closer }=100} \\ & \times \text { brighter }=5 \\ & \text { mags }] \end{aligned}$	2
	Any evidence of squaring or log (100 000)		1
(iii)	Bright object in night sky / easily visible to naked eye / large angle in sky		1

