Structural Form of Bridges Reflecting the Construction Processes

OYusuke Mizuno Yoshiaki Kubota

Flow of the Presentation

- □ Basic Theory
- Basic Ideas of this Thesis
- How to Illustrate the Construction Processes
- Examples (Real Construction Methods)
- Evaluation from the Analysis
- Conclusions

Introduction

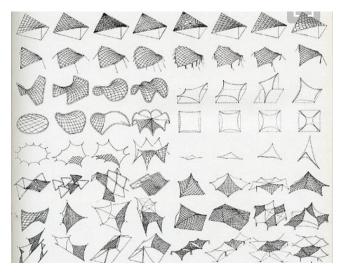
Sir Ove Arup (1895-1988)

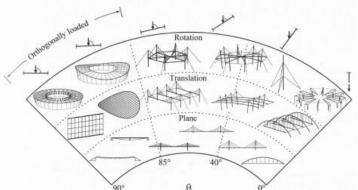
Source; Arup HP http://www.arup.com/projects/kin gsgate_footbridge "Design without considering the construction process is nonsense."

He (Sir Ove Arup) always said this phrase when talked with us (while working).

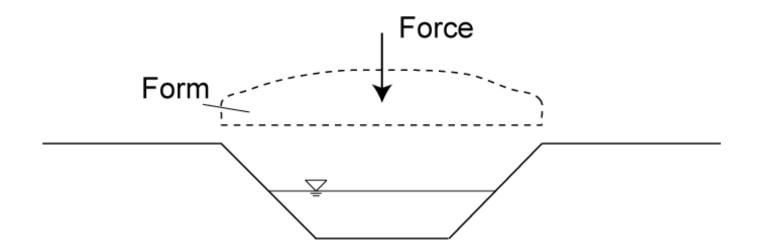
Yuzo Mikami; Archtecture,

Source; Kenchikushiryokenkyusya (2006) "Zokei" pp 74-81

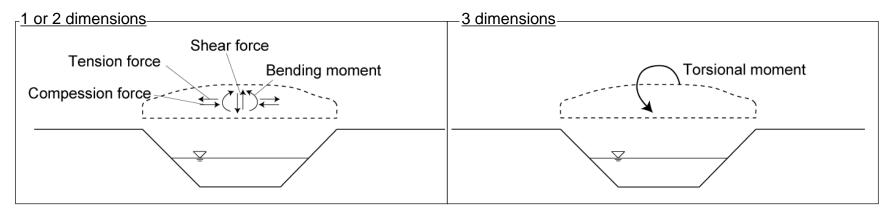

Tranlated by author


Background and Purpose of This Research

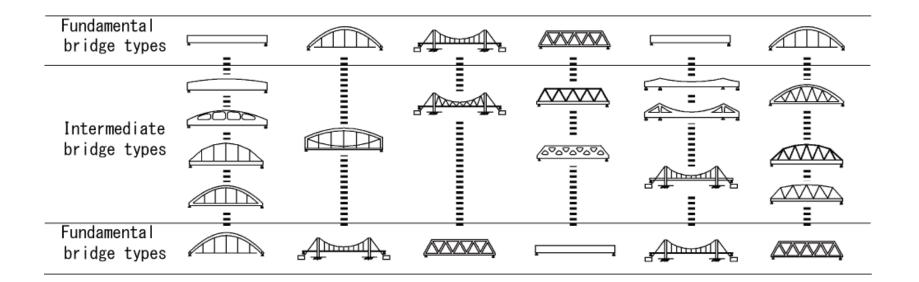
Researchers who Systematized Structures


- Frei Otto
- Mike Schaich
- Yoshiaki Kubota

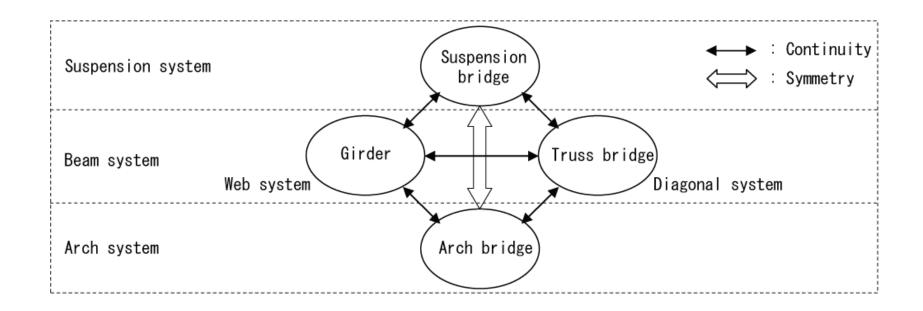
and so forth



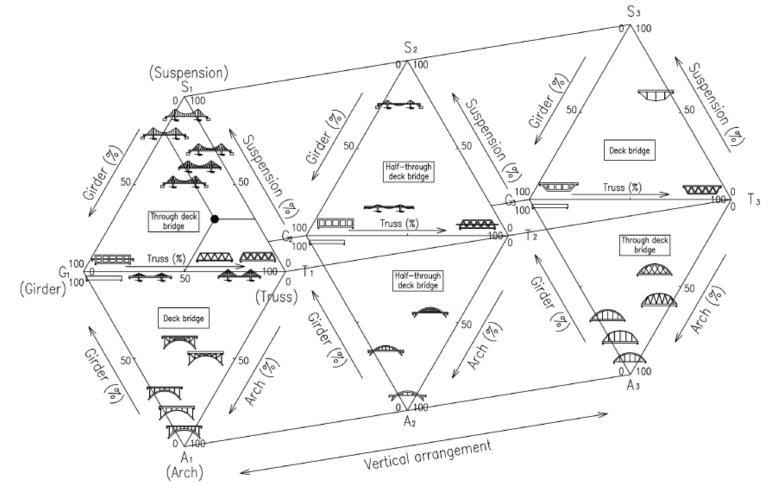
- Form and Force -



- Form and Force -

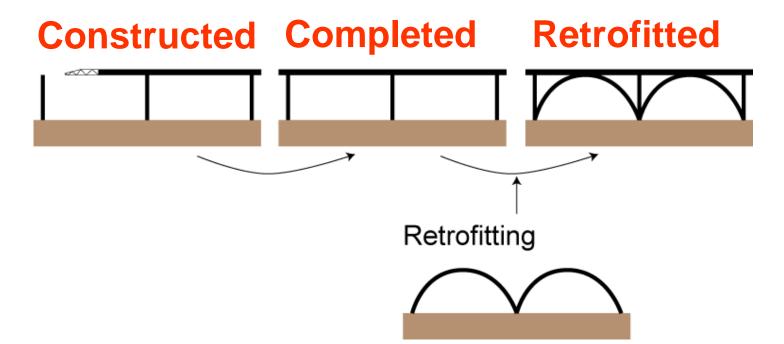


Acting force	1 dimension	2 dimensions	3 dimensions	Typical Structural systems	Fundamental bridge types
Tension force	*	*	*	Suspension system	Suspension bridge
Compression force	*	*	*	Arch system	Arch bridge
Bending moment		*	*	Beam system (Web system)	Girder
Shear force		*	*	Beam system (Diagonal system)	Truss bridge
Torsional moment			*	-	-

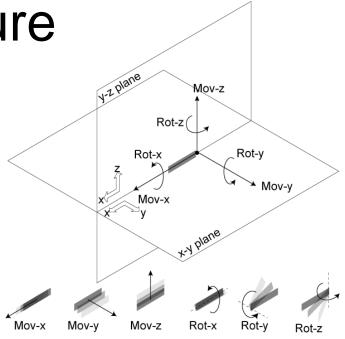

- Continuous relationships between fundamental bridges -

- Relationships between fundamental bridges -

- Structural Form Correlation Chart -


Bridges in use

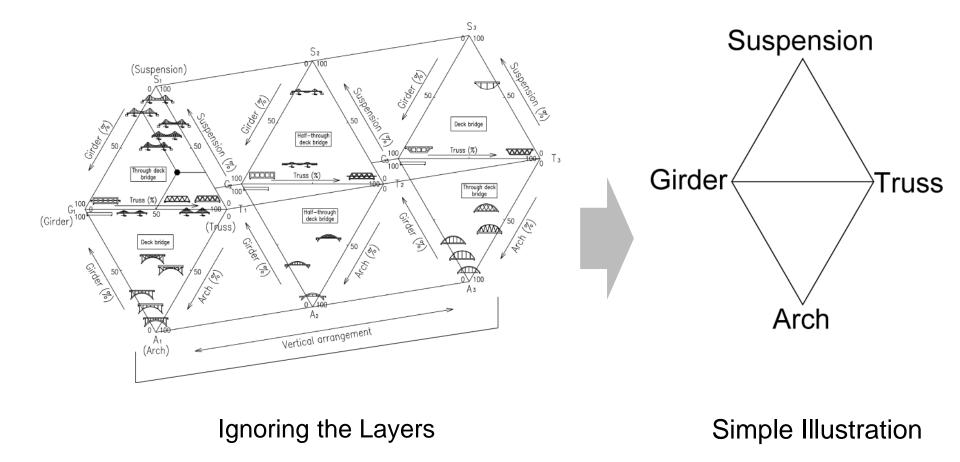
Bridges under construction


Three steps in Life Cycle of Bridges and Retrofitting state

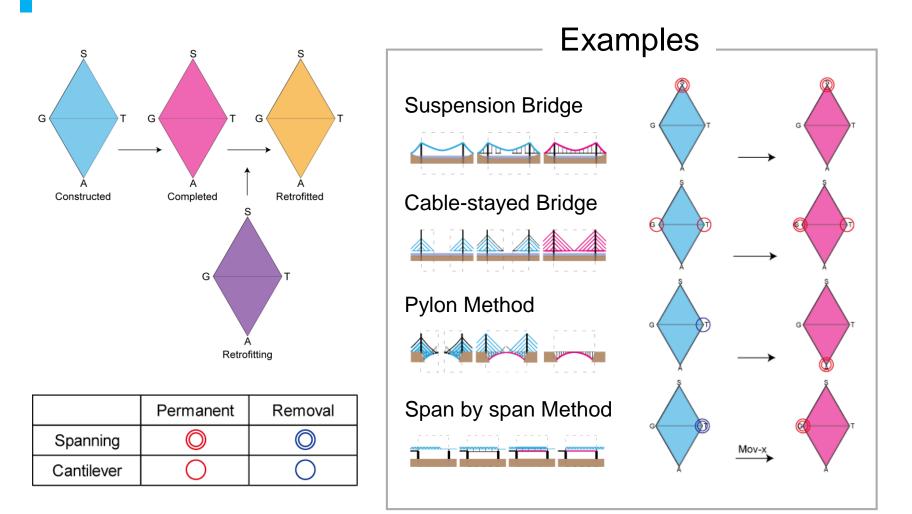
Retrofitting members are seen in the construction process such as reinforcement or repair, but not in the continuous life cycle of one particular bridge.

Movement of Structure

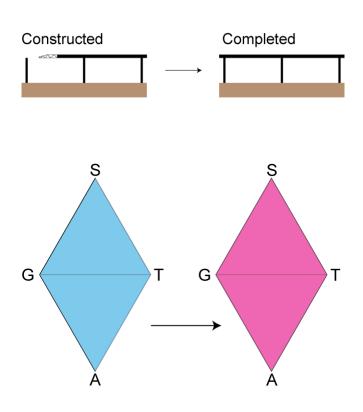
A coordinate system for bridge incorporates the boundary condition, spaning/cantilever condition and the movement which occurs when the bridge is under construction.



The Elements			System Condition	Cantilever System	Mov-x	Mov-y	Mov-z	Rot-x	Rot-y	Rot-z
Structure system		Rot	Fix	System						
Suspension System		0	×	×	×	0	0	\triangle	\triangle	×
Beam System	Web System	0	0	0	0	0	0	\triangle	0	0
Deam System	Diagonal System	0	0	0	0	0	0	Δ	0	0
Arch System		0	× (*)	×	×	0	0	Δ	Δ	×

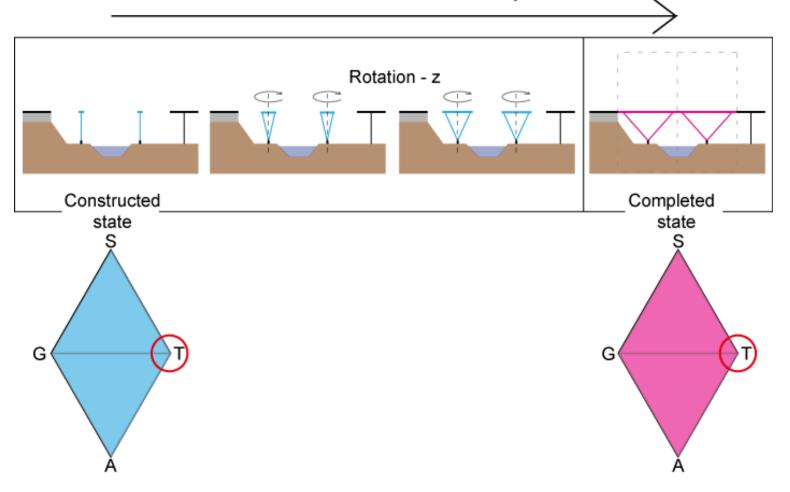

- O ; avilable, × ; unavilable, Δ ; aviilable under the specific condition

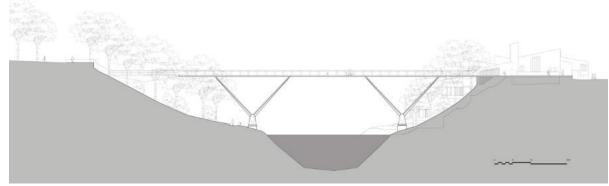
Though Arch Bridge can transfer bending moment at the endpoints because of the bending rigidity, column
(*) is filled with "I" because a pure arch system can transmit only axial compression force.


Simplification of Illustration of Triangular Coordinate System

The way of Analysis

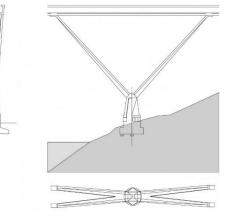
New Construction



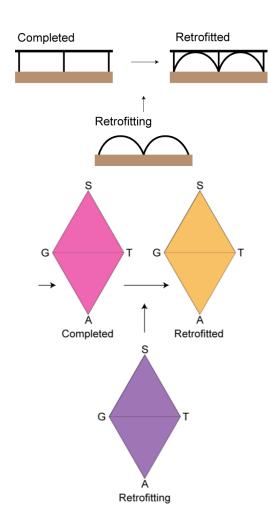

In new construction, bridges are defined as completed when they become available.

Horizontal Rotation Method

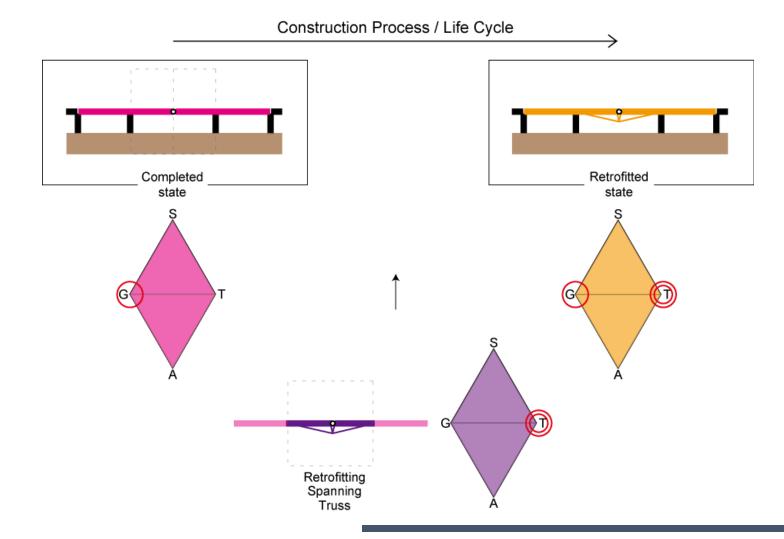
Construction Process / Life Cycle



Ex, Kingsgate Bridge



Span 20m,20m,20m,20m,12m The Completion 1966 Country United Kingdom


Retrofit (reinforce, repair, widening)

In retrofit process, bridges are completed when they are improved and become available again.

Reinforcement of the Middle Hinge PC Bridge with String Beam Structure

Ex, Kireuriwari Bridge

Span 154m The Completion 1979 (Repaired in 2003) Country United Kingdom

Applicability

The likelihood that a structural system will change to another system.

Material Efficiency

Quantity of the material including temporary structures in consideration of bridges' scale.

• Time Efficiency

Speed of the construction in consideration of bridges' scale.

Construction Method / Names of		ency sionless)	Construction Process / Life Cycle	Transition	
Completed Bridge	Material	Time			
Suspension Bridge	Ø	0			
Vertical Cable Erection Method	×	Δ			
Single-operation Method of the Suspension Bridge	0	Ø			
Cable-Stayed Bridge	Ø	×			

Construction Method / Names of	Effici (Dimens		Construction Process / Life Cycle	Transition		
Completed Bridge	Material	Time				
Dischinger-Type Bridge	Ø	×				
Vetrical Rotation Method	0	0		Rot-z		
Pylon Method	×	Δ				
Diagonal Cable Erection Method	×	Δ				

Construction Method / Names of	Efficiency (Dimensionless)		Construction Process	Transition	
Completed Bridge	Material	Time			
Lowering Method	0	Δ			
Overhanging Arch Erection Method with Truss	0	×			
Arch Center Method	×	0			
Balanced Cantilever Method	Ø	Δ			

Construction Method / Names of	Efficiency (Dimensionless)		Construction Process	Transition	
Completed Bridge	Material	Time			
Launching Erection Method	Δ	Ø			
Span by Span Construction Method	×	Ø			
Single-Operation Method with Floating Crane or Pontoon	×	Ø			
Fixed Timbering Erection Method	×	Ø			

Applicability and Efficiency

		bility of al System	Time
	Constructed State	Retrofitted State	Efficiency
Suspension System	Quite Good	Poor	Good
Diagonal System	Good	Good	Good with Parallel translation
Web System	Not Good	Good	Good with Parallel translation
Arch System	Poor	Good	Poor

Material Efficiency becomes good if the structural system doesn't change while the construction process. For example, suspension bridges and cable-stayed bridges are quite good at material efficiency.

Conclusion

Triangular Coordinate System			Constructed	Completed	Retrofitted	Retrofitting
Suspension System (Spanning System)		Efficient because of the material efficiency	More efficient because of the material efficiency	Low efficiency	Efficient because of the material efficiency	
Web System (Beam System)	Diagonal System (Beam System)	G	Efficient at both time and material because of being used as a cantilever	Efficient because of the material efficiency	Efficient	Efficient if being used as a diagonal system
Arch System (Spanning System)			Low efficiency	More efficient because of the material efficiency	Efficient	Efficient for Supporting exisiting spanning systems

- Suspension system is always good at material efficiency.
- Efficiency in constructed and retrofitted state is different.
- In retrofitting state, all systems except web system are efficient.

Future Research

- Examination of the analysis method
- Quantification of the analysis of efficiency
- Evaluation of the application in the retrofit process
- Development of the design method using this theory