
SDFGI

Solving the accessible Global Illumination problem in Godot

Juan Linietsky (Godot Engine co-creator and technical lead)
juan@godotengine.org

Requirements

● Easy to use (no scene or object setup at import time, no setting up SDF, cards,
lightmaps, etc). Ideally enable with one click, no set-up.

● Real-time (or at least fast updates).
● Good enough quality (no light leaks -or keep to minimum-).
● Supports both diffuse and reflected light.
● Supports light into transparent objects.
● Works as source of light for volumetric fog.
● Works in all hardware that supports Vulkan, even IGP.
● Can work in VR (so, using TAA is not required).

Sacrifices

● Not the best possible quality (high frequency GI missing, has to be
compensated with screen space lighting).

● Poor dynamic object support (dynamic objects get light from environment, but
don't contribute to it). Light blocking may be added to some extent in the
future.

● Needs to use cascades.
● Limited amount of samples means small emissive objects are spotty.

Previous work

● Uses DDGI by Morgan McGuire as
a base.

● Uses Signed Distance Fields
generated with Jump Flood.

● The devil is in the details.

https://morgan3d.github.io/articles/2019-04-01-ddgi/
https://www.comp.nus.edu.sg/~tants/jfa.html

General Idea

How light is stored and read

GOAL: Generate Irradiance and Occlusion Fields

● Irradiance field allows computing diffuse light at a
point in space.

● Fields are arranged in a 3D grid of light probes.
● To obtain the diffuse light at any point in space, the

surface normal is probed into the eight surrounding
probes, weighted against the closest ones.

● To avoid light leaks (probes across walls), the
occlusion field is used.

● Cascades are used to blend GI between far and
near distances (open world).

Cascade anatomy:

Cascade: 128³ cells (Distance Field)
 17³ irradiance/occlusion probes
 (must cover the volume)

Cascade relationship and blend areas
(up to 8 cascades).

Light Probe Blending

● Probes capture light from all direction
(trace rays from probe, hit geometry or
sky, read light at point and store it for that
direction).

● When geometry is drawn, it finds the 8
probes surrounding it and blends the
amount of lighting depending on the
distance to each and the surface normal.

Light Probe Storage

● Stored as a 5x5 octahedron encoded
image.

● Similar to a 2x2 cubemap or a SHL2 in
resolution, which is the standard.

● 25 pixels is a very good number for a
Compute workgroup (more on this later).

● Cascades are light probes stored in a
texture array layer (all probes of a cascade
in a single layer), and need a 1px border
for interpolation. Image Source: Valentín Sagrario

Image Source: Morgan McGuire

https://github.com/RomkoSI/G3D/blob/master/data-files/shader/octahedral.glsl
https://twitter.com/val_sagrario/status/1231771907437010949

Occlusion Probes

● Occlusion probes know the radial distance to
geometry outwards the probe (within the 8
adjacent cells)

● When rendering, geometry must be biased a bit
by the geometric normal and the resulting
position is used for sampling.

● The direction to that position is used to sample
depths, used to compute occlusion using the
same algorithm as exponential shadow maps
(Chevysheb inequality).

● Resulting value is added to the probe weight
when color blending.

Occlusion probe storage.

● Stored as a 16x16 octahedron encoded depth
image.

● Stores a radial distance from within the probe
to geometry in all directions. Max distance is
the max diagonal distance between the cube
formed by 8 probes.

● Used to probe occlusion (walls). If a probe is
occluded, it has less influence on the final
average. This significantly reduces light leaks.

● Filtered a bit to smooth out discontinuities.

https://github.com/RomkoSI/G3D/blob/master/data-files/shader/octahedral.glsl

Code used for probing (McGuire):

http://casual-effects.com/research/McGuire2017LightField/McGuire2017LightField-GDCSlides.pdf

Rendering DF and occlusion

Preparing the data structures for tracing

No raytracing, all sorts of problems

● In order to run on every hardware, raytracing is not supported.
● Closest approximation is sphere tracing signed distance fields.
● Generating signed distance fields is expensive, and for a cascaded approach

they need to be generated often.
● The resolution of SDFs is not enough for occlusion probes, solid blocks can

occlude them easily.
● Creative solutions are required for all these problems.

Solution: sphere-tracing distance fields

Advantages:

● Works without raytracing support.
● Good performance, even if very old hardware.

Disadvantages:

● Costly to generate, needs optimizations (see optimization section).
● Lacks resolution, which causes problems (see next slide).

Main problems with distance fields:

● Lack of resolution (rendering to cascaded
voxels) results in bad quality.

● Voxel sized-geometry results in worse
quality occlusion probes.

● As such, thin walls that fit within a voxel
either leak light or require a voxel-sized
bias (due to chebyshev inequality).

● Bias helps to some extent, but large
values cause different types of problems.

Solution:

● Render solid geometry to a grid 16x times
the resolution.

● Use bit-fields and raster using
imageStoreAtomicOr (which is very fast).

● For 128³ distance field, a 512³ cascade
can be used for rendering (just 16mb).

● More precise occlusion probes and more
precise (sub-voxel) distance fields can be
built.

Overview: Create the distance field and occlusion maps

● Cascade SDF size is 128³ grid, contains 16 bit distances.
● Irradiance and occlusion probes are placed every 16 cells, hence a grid of 17³ probes.
● Render (raster) into an empty framebuffer (no attachments), 4x the size in 2D (512^2), either

from all sides or use a geometry shader to choose side depending on triangle facing.
● Use imageStore atomic OR to "blit" to a 128³ "solid bits" grid containing 2xUINT32 buffers (64

bits), each is a 4³ bitfield containing 64 bits more solid resolution on the geometry.
● Use subgroup operations to condense the 4x4 2D pixels rastered for albedo and emissive,

use imageStore to put then in 64³ grids, since we don't need a lot of detail for sampling.

In detail: Render scene to solid bits, albedo and emissive

Creating the distance field

● Use jump flood based on proximity to the closest
sub-voxel (set bit). This allows more precise distance
fields than just to solid voxels.

● Create the 128³ distance field 3D texture.

Creating the occlusion probes

● For the occlusion probes, the maximum distance is 28
voxels (max distance in the 16³ voxel space between
probes).

● For each pixel in the octahedral encoded texture for
occlusion probes, get the ray direction. If the SDF
determines that the distance is > 28, then just place 28
as distance.

● If not, trace the bitfield (solid bid grid) using a DDA until
a hit is found. This will result in a precise distance
(sub-voxel).

Creating the light texture and buffer

● This is an array of empty voxels that are next to solid
voxels that will be used for computing the light
information, then bliting it to the 3D light texture.

● The 3D light texture is used for sampling light after a ray
is traced and hits something.

● The light buffer is just an 1D array containing positions
(and indirect dispatch command memory with amount of
elements). It is generated at the time the SDF is
generated.

● The light textures contain RG32U values used to read
light information as RGBE + Anisotropy.

Tracing light into the probes

Not raytracing, but sphere tracing

Filling the light texture with light

● All the elements of the light buffer array are processed.
● All the lights are iterated for each element.
● Shadows are sphere traced.
● Indirect light is added here by reading from surrounding

light probes.
● Light is accumulated with anisotropy.
● The light value is combined into a single RGBE9995, but

the anisotropic weights (5 bits each) are saved in the
anisotropic part of the light texture.

Overview of tracing light

● As mentioned before, each probe information is stored in a 5x5 texture.
● The compute shader will trace the whole probe in a single workgroup.
● Each ray direction is picked by running octahedral map in reverse, picking a jittered position

within the pixel.
● Biasing is not generally needed, since we have the occlusion probes to do a bit of an extra

initial boost in the distance we want the tracing to go.
● The ray is sphere traced from the current cascade to upper cascades.
● If it hits something, it reads albedo and emission from those 3D textures, and computes a

surface normal from the SDF texture.
● Because the hit position may not contain light information, retracing back a bit until a cell

containing light information is found may be needed.
● Light information is merged with the computed normal based on the anisotropy weights.
● Finally, after a group barrier (wait until all rays done), integrate the probe pixels by averaging

neighbours in 180 degrees.
● Use the typical temporal function (lerp with a partial delta) to converge.

Pseudocode

layout(local_size_x = 5, local_size_y = 5, local_size_z = 1) in;

shared vec4 light_cache[25];

void main() {

vec2 octa_pos = vec2(gl_LocalInvocationID.xy);
vec3 ray_dir = octahedron_decode((octa_pos + jitter_func(frame)) / 5.0);
vec3 hit_pos;
uint hit_cascade;
vec4 light;
if (trace_ray(ray_dir,hit_pos,hit_cascade) {

// Hit something, compute light from it.
light = compute_light(hit_pos,hit_cascade);

} else {
// No hit, read from the sky.
light = compute_light_from_sky(ray_dir);

}

// Store in shared light cache, to later allow averaging
uint light_cache_index = gl_LocalInvocationID.x + gl_LocalInvocationID.y * 5;
light_cache[light_cache_index] = light;

groupMemoryBarrier();
barrier();
// Average with neighbours to ensure light reaches from 180 degrees.
light = average_light(light_cache_index);

save_to_lightfield(light);

}

All is nice but..

● Doing the whole process every frame (rastering,
generating SDF, generating occlusion and sphere
tracing) is very slow.

● Computing all lights (specially shadows) for all ray
hits is slow.

● To make this algorithm useful, it needs to be sped
up.

● The devil is in the details.

Optimizing 3D texture gen

Speeding up the 3D texture generation

Optimizing the distance and occlusion field generation

● For now, we deal only with static objects.
● We try to keep the camera centered within the

cascades.
● If the camera leaves the center (moves beyond the

closest probe to the center in a direction), we must
re-render the cascade.

● To optimize, we can just "scroll" the cascade and
re-rendering the slice near the side that changed.

Merging the distance fields

● Distance fields keep closest distance, hence just
running jump flood on the dirty region is not
enough. Both regions (old and re-rendered) need to
be merged.

● Keep, for both sides, the final step of the jump flood
(pointers before they are converted to distance).

● For each cell, check the pointer vs the position
pointed by the closest cell on the other side. If
closer, replace the pointer.

● Re-generate the distance field.

Merging the occlusion probes

● The probes in the new region need to be re-generated.
Use the pre-blurred versions to work with.

● Those at the new edge of the cascade only trace
towards the inside.

● Those at the division between the new regions need
only to only trace the pixels (of the octahedral map)
towards the new region, but the ones tracing towards
the old one can be left intact.

● Re-blur the occlusion probes.

Merging the light buffers.

● The light buffer array (positions) need to be
re-generated from scratch in the distance field
merging step (though this is not an expensive
process).

● The light texture can be safely scrolled and the new
area marked dirty (more on this later).

Conclusion:

● Only re-generating the slice that moved is very
cheap.

● When camera moves, it never goes in a pure
diagonal direction (as in: vec3(1,1,1)), so it only
pushes the limit and causes scrolling once at a time.
No need to implement re-rendering of all 3 sides at
once.

Optimizing sphere tracing

Only trace what needs to be re-traced

Caching rays

● As geometry is static, ray hits (cascade, position in light
texture) can be cached.

● The normal is expensive to compute from the distance
field, so it can be cached too.

● Scrolling will invalidate caches, but not all of them.
● If the hit is local and the hit point remains within the

same cascade, it does not need invalidation.
● If the hit is in an upper cascade and the side the ray

exits from the cascade remains the same, it does not
need invalidation.

Caching light hits

● To avoid computing the light reaching every cell in all
the cascades, ray hits can mark areas from a (coarser)
3D texture as dirty (set a bit).

● This way, when iterating the light array to compute the
lighting, regions not needed by ray hits do not need to
be computed.

● This has a frame of delay, but high temporal coherency.
● Having a separate static light texture (for static lights)

which is computed only once (and updated on dirty
regions) can ensure they work at no cost.

Reducing update frequency on invisible probes

● One large optimization possible is to reduce the
update frequency of probes not contained in the
frustum.

● Processing of some probes can simply be skipped
every some frames if far away from the frustum. If
they take longer to converge, it's not a problem.

● As the camera is always centered, more than half of
the probes will see significantly reduced update
frequency.

Reflected Light

It's not really global if you can't properly do reflections

SDFGI excels at reflections!

● Fully rough reflections are possible, as well as sharp
SDF reflections.

● Combined with Screen Space Reflections, it should
allow having top notch reflections.

● There are three stages for roughness:
1. Tracing rays (sharp)
2. Using the reflection field (medium roughness)
3. Using the irradiance field (full roughness).

● Depending the roughness level, 2 of the above 3 are
used and blended.

Sharp Reflections

● For every pixel on the screen, reconstruct the position
based on depth and projection matrix.

● Find the smallest cascade containing it and trace a the
reflected ray until it hits something.

● Reconstruct the lighting using the light texture.
● NOTE: Tracing the same way as the light probes will not

work, because cascade switches just “pop” in
reflections and become distracting. Combine cascades
by tracing 2 levels together and use minimum distance
of both with a blend function.

Medium roughness

● In the “Overview of tracing light” section, before
doing the barrier, save the unfiltered value to
another buffer (with interpolation average based on
time too).

● This will result in a similar texture array as the
irradiance probe field, but less blurry.

● This works excellent for intermediate rough
reflections.

Fully rough reflections

● Use the irradiance field probes to sample the light
coming in the reflection vector direction.

● This gives you fully free fully rough reflections,
which are very difficult to obtain with regular
raytracing.

Future

Dynamic object support

Dynamic objects

● Dynamic objects can be supported in limited fashion using individual distance fields and
cards (similar to Lumen).

● If only looking for light blockers (doors) they can be supported as boxes that trap light
(rays).

● Dynamic objects do not play along great with grid based irradiance fields because they
can occlude them from one frame to another, causing them to darken. As such, probes
must either "move" out of the way of them or have a fade in-out threshold depending on
occlusion distance.

● For large worlds, they can be disabled in upper cascades (or with an object-cascade
relative size) so only the ones closer to the camera are considered.

