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Abstract—Motion capture (MoCap) system uses sensors or
markers, placed on human body joints, to record the movements
of a human in space over time. Motion capture data is used in
many entertainment applications such as in virtual reality envi-
ronments to drive avatars, in video games to animate characters,
in movies to produce CG effects, etc. In this paper, we present
an efficient method for modeling and compression of motion
capture data. The method uses quadratic Bézier curve fitting to
smoothly model and compress the MoCap data. The temporal
variation of MoCap data of each joint is approximated and
parameterized using Bézier segments. Simulation results shows
that our method uses smaller storage and better visual quality
compared to other methods. The low degree of quadratic Bézier
curve ensures computationally efficiency required for the real-
time gaming applications.

I. INTRODUCTION

Motion capture (MoCap) data is widely used in many
multimedia and entertainment applications such as in online
gaming [1], [2] and streaming animation [3] et al. Due to big
size of MoCap data, a compact representation and storage that
can support real-time applications is very important. In our
work, we focused on modeling and compression of motion
capture data using quadratic Bézier curve (QBC) fitting. A
Bézier curve can model large number of data points with far
less number of control points. This is essentially an approxi-
mate modeling and lossy compression technique. However, this
loss is acceptable when taking into account the limitations of
human visual system and high frame rate of motion capture
data.

MoCap data is represented as hierarchies of joints pa-
rameterized by a translation and rotation. Joints are usually
organized in a tree like hierarchical structure as illustrated in
Figure 1. Consequently, when a joint moves, its connected
joints lower in the hierarchy move too. For example, elbow is
connected to wrist, which is connected to hand. Then as the
elbow moves, the wrist and the hand also move. The ability of
a joint to move is referred as a channel or degree-of-freedom
(DOF). An individual joint usually has between one and six
DOFs, but all together, a detailed skeleton may have more
than a hundred DOFs. Motion data of a joint in a sequence of
frames can be considered as a function of time. Figure 2 shows
rotational data of right-wrist joint in 148 frames. Let MoCap
data consists of m channels and each channel has translation
and/or rotation values in a series of n frames. Then we can
store MoCap data in a matrix of size n×m as written in the
Eq. (1).

Fig. 1. Skeleton and joints.
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Fig. 2. Motion data of right wrist joint (rotation about X-axis) in 148 frames.



Each row of the matrix X in Eq. (1) corresponds to
motion data of all the channels for a single specific frame,
i.e., X [i,1 . . .m] = {θi1,θi2, . . . ,θim} contains the motion data
of ith frame for channels (1 . . .m). Each column of matrix X
corresponds to motion data of a specific channel for n frames,
i.e., and X [1 . . .n, j] =

{
θ1 j,θ2 j, . . . ,θn j

}
contains the motion

data of jth channel for frames (1 . . .n).

Organization of the rest of the paper is as follows: Related
work is discussed in Section II. Compression of motion data
using principal component analysis (PCA) and discrete wavelet
transform (DWT) are briefly described in Section III and
IV respectively. The mathematical model of quadratic Bézier
curve (QBC) is described in Section V. The modeling and
compression strategy of MoCap data via QBC is illustrated in
Section VI. Selected simulation results are presented in Section
VII. Section VIII analyzes results and gives insight view of
the proposed method. In Section sec:makerspace, we discussed
how our method can support and contribute to the success of
Makerspace. Final concluding remarks are in Section X.

II. RELATED WORK

Several authors [4], [5], [6], [7], [8], [9] et al. used
Principal Component Analysis (PCA) to compress the motion
data. [4] proposed a motion compression method that exploits
both spatial and temporal coherences and divides a motion
sequence into segments of simple motions, each of which
falls into a space with low linear dimensionality. Segments
are compressed individually using PCA and only the key
frames’ projections are stored, the other in-between frames are
interpolated via Spline functions. In the method of [5], spatial
correlations of animation sequences are captured using PCA,
then second-order linear prediction coding (LPC) is applied to
the PCA coefficients to further reduce the code size.

Discrete Wavelet Transform (DWT) based techniques suit-
able for compression of motion data are described by [10], [11]
et al. DWT based method of [11] uses a cubic interpolating
bi-orthogonal wavelet basis to exploit the temporal coherence
of skeletal animations. Since the search space of wavelet
coefficients is very large, [11] gives a heuristic for optimized
wavelet coefficient selection. But if chosen metric is not
dependent enough on the joint hierarchy then the heuristic is
too limited to yield good optimization results. A recent work
that uses discrete cosine transform (DCT) to compress the
MoCap data is proposed by [12]. The method segments the
MoCap sequences into clips represented as 2D matrices then
computes a set of MoCap data dependent orthogonal bases
(DCT) to transform the matrices to frequency domain. Finally
entropy coding is applied to quantized coefficients and the
bases.

A hybrid method to compress large databases of motion
capture data is presented in [13]. This method approximates
(compresses) short clips of motion using combination of cubic
Bézier curves, clustered PCA and DCT. The technique uses
virtual markers as an internal representation and thus requires
conversion to and from this representation. Another method to
compress MoCap database is proposed by [14]. The method
organizes motion markers into a hierarchy of human body
nodes. Then the motion sequence corresponding to each body
part is extracted using K-means clustering and coded. A

technique based on active contour fitting for compression of
motion trajectories is investigated by [15]. The method initially
takes first and last points of the input motion trajectory in the
active contour then add more points in an iterative process
based on minimizing energy related to active contour.

III. COMPRESSION OF MOCAP DATA BY PCA

Principal component analysis (PCA) is an orthogonal linear
transformation that transforms the data to a new coordinate
system such that the greatest variance by any projection of the
data comes to lie on the first coordinate, the second greatest
variance on the second coordinate, and so on. We used PCA to
reduce the number of channels of MoCap data by exploiting
correlations among channels. From the input matrix of motion
data, we determined covariance matrix, Eigen values, and
Eigen vectors. We sort the Eigen values and corresponding
Eigen vectors in order of decreasing Eigen values. Compres-
sion is achieved by retaining only q eigenvectors, where q<m.
Note that for q = m, it will be lossless coding

IV. COMPRESSION OF MOCAP DATA BY DWT

Discrete wavelet transform (DWT) consists of decom-
posing a signal into a hierarchical set of approximations
coefficients (low frequencies) and details coefficients (high fre-
quencies). Approximations coefficients contain coarser details
while details coefficients contain fine details of the signal at
each level. Both the approximation and details coefficients can
be obtained by convolving the coefficient of approximation at
a coarser resolution with a filter and down sampling it by a
dyadic scale (factor of 2). The wavelet compression is based
on the concept that the regular signal component can be ac-
curately approximated using a small number of approximation
coefficients and some of the detail coefficients. In order to
compress motion data by DWT we decomposed each channel
data into approximation coefficients and detail coefficients up
to DWT chosen level k. Then the detail coefficients less than
or equal to some predefined threshold, let say tw, are quantized
to zero. Finally approximation coefficients, detail coefficients,
and decomposition structure are saved. Approximated data
of each channel is reconstructed (decoded) by applying the
inverse wavelet transform. The inverse wavelet transform uses
the original approximation coefficients of level k and the
threshold detail coefficients of levels from 1 to k.

V. QUADRATIC BÉZIER CURVE (QBC)

A quadratic Bézier curve (QBC) is a smooth continuous
curve. A QBC segment is defined by three control points: P0,
P1, and P2. A QBC segment (sold line) and its control polygon
(dotted line) are shown in Fig. 3. P0 and P2 are called end
control points (ECP), while P1 is called middle control point
(MCP). A QBC interpolates (passes through) its end control
points, while the middle control point is used to control the
shape of the curve. Equation of a QBC segment can be written
as follows:

Q(ti) = (1− ti)
2

P0 +2ti (1− ti)P1 + t2
i P2, (2)

where ti is a parameter of interpolation, 0 ≤ ti ≤ 1. In order to
generate m points between P0 and P2 inclusive, the parameter



280

300

320

340

360

140

160

180

200

−100

0

100

200

300

 

X−axisY−axis
 

Z
−

a
x
is

Quadratic Bezier Curve

Control Polygon

End Control Points

Middle Control Point

Fig. 3. A quadratic Bézier curve segment in 3-D space.

ti is uniformly divided into (m−1) intervals between 0 and 1
inclusive as follows:

ti =







0 i = 1;

ti = ti−1 +δ , δ = 1
m−1

, 2 ≤ i ≤ m−1;

1 i = m.

(3)

Q(ti) is evaluated at m values of ti. Since a QBC interpolates
its first and last control points, therefore, Q(t1 = 0) = P0 and
Q(tm = 1) =P2. More than one Bézier curves can be connected
together to generate a multi-segment continuous curve.

VI. COMPRESSION OF MOCAP DATA BY QBC

This section describes the parametric representation (mod-
eling) and compression of motion data using quadratic Bézier
Curve (QBC) fitting. The process is applied to motion data of
each joint individually. A joint data consists of at least one
and at most six channels. Now we would describe the fitting
process to motion data of a single joint.

Let input data of a joint consists of set of translation and
rotation values in n frames. We consider input data as a set of
points, I = {p1, p2, . . . , pn}. A point pi is an Euclidean space
RN . For example, if a joint in a frame has three rotational
channels (3-DOF), i.e., rotational values along X, Y and Z axes
then a point is in Euclidean space R3, i.e., p = (θX ,θY ,θZ).

As an input to our algorithm two parameters are required:
(1) upper limit of error d2

lmt , i.e., maximum allowed squared

distance between original and fitted data, e.g., d2
lmt = 100,

(2) initial breakpoint interval ∆, i.e., after ∆ points (frames)
a point (rotational and/or translational value of the channel)
is taken as a breakpoint. For example, ∆ = 80 then set of
breakpoints is BP= {p1, p81, p161, . . . , pn} (first and last points
of input data are always taken as a breakpoints). The fitting
process divides the data into segments based on breakpoints,
i.e., S = {S1,S2, . . . ,Sl}. A segment is a set of all points
between two consecutive breakpoints, e.g., if ∆ = 80 then
S1 = {p1, p2, . . . , p81}, S2 = {p81, p82, . . . , p161}, etc. Since we
are fitting a continuous curve, therefore, the last point of
each segment Si and first point of next segment Si+1 are
common (except for last segment which does not have next
segment). Each segment is modeled by a parametric quadratic
Bézier curve. Let a segment S1 = {p1, p2, . . . , pm} has m points

(m=∆+1). The first and the last points of a segment are taken
as end control points (ECP) of quadratic Bézier curve, i.e.,

P0 = p1, (4)

P2 = pm. (5)

The middle control point (MCP) i.e., P1 is obtained by least
square method. Least square method minimizes the squared
distance between the original data of the segment, S1 and ap-
proximated data, Q(ti). We can write the least square equation
for segment S1 = {p1, p2, . . . , pm} as follows:

U =
m

∑
i=1

[pi −Q(ti)]
2
. (6)

Substituting the value of Q(ti) from (2) in (6) yields:

U =
m

∑
i=1

[pi − (1− ti)
2P0 +2ti(1− ti)P1 + t2

i P2]
2
. (7)

To find value of P1 differentiating (7) partially with respect to
P1 yields:

∂U

∂P1
= 0. (8)

Solving (8) for P1 gives:

P1 =
∑

m
i=1

[
pi − (1− ti)

2P0 − t2
i P2

]

∑
n
i=1 2ti(1− ti)

. (9)

Equations (4), (5), and (9) give us the values of three control
points of QBC. Once all three control points are determined
then approximated data of the segment S1 is obtained by
substituting the values of control points, i.e., P0, P1 and P2

in Eq. (2) and varying the value of parameter ti uniformly in
EQ. (2) using Eq. (3).

Same procedure is repeated for each segment. Common
points between each pair of adjacent segments are taken
only once. This yields n values of approximated data, Q =
{q1,q2, . . . ,qn} for a joint. Then we compute error of fitting,
i.e., squared distance of each point between the original data
and the approximated data, d2

i = |pi−qi|
2, 1 ≤ i≤ n. Among

all the values of d2
i , we compute maximum squared distance,

d2
max = Max

(
d2

1 ,d
2
2 , . . . ,d

2
n

)
. If maximum squared distance of

any jth segment is greater than d2
lmt then this segment is

split and replaced with two new segments, jth1 and jth2 , i.e.,

S =
[
{S}−

{
S j

}]⋃{
S j1 ,S j2

}
. A new breakpoint bpnew from

original data is added in the set of breakpoints where the
error is maximum, i.e., BP = {BP}

⋃
{bpnew}. For example,

if segment S1 splits at point p35 then a new breakpoint
bpnew = p35 is inserted between breakpoints p1 and p81

(BP =






p1,

bpnew
︷︸︸︷
p35 , p81, p161, . . . , pn






) and two new segments

{p1, p2, . . . , p35} and {p35, p36, . . . , p161} replace S1. The fitting
process is repeated with new set of breakpoints until mean
squared error of all the segments is equal to or less than d2

lmt .
The same fitting process is applied to motion data of all the
joints. Fig. 4 show quadratic Bézier curve least square fitting
to motion data of right femur joint in Euclidean space R3. The
QBC output data to be stored for approximated motion data
of each joint consists of:
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1) Set of control-points, i.e., CP, where CPi =
{BPi,MCPi}, BPi = {P0i

,P2i
} for all the segments.

Note that breakpoints BP are nothing but ECP, see
Eq. (4) and Eq. (5). Obviously, if a joint has N-
channels then its control points are in Euclidean space
RN

2) Set of count of interpolating points, i.e., C for all
the segments. C is needed to calculate number of
interpolating points between ECP of each segment.
Count of interpolating points are always in Euclidean
space R1, regardless of the dimension of the joint
motion data.

Let r connected Bézier curve segments are required to ap-
proximate the input data of a joint. Then the set of control-
points is CP = {CP1,CP2, . . . ,CPr}, and the set of count of

interpolating points is C = {C1,C2, . . . ,Cr}. For a jth segment,
1 ≤ j ≤ r, CPj and C j are control-points (P0 j

, P1 j
, and P2 j

)
and count of interpolating point respectively. We used uniform
parameterization, therefore, there is no need to store values of
parameter ti, it can be generated on the fly during decoding
using Eq. (3). Compression is achieved due to the fact that
large input data of each joint is approximated with very few
control-points.

The reconstruction/decoding of a segment S j of a channel
is very simple. Let CPj is P0 j

, P1 j
, and P2 j

. P0 j
and P2 j

are
ECP while P1 j

is MCP. Let count of interpolating points of
S j between P0 j

and P2 j
is C j = m (all this is obtained from

stored output data). Then the parameter value ti j
, 1 ≤ i ≤ m, is

obtained by uniformly dividing ti j
into m−1 intervals between

0 and 1 inclusive. Finally approximated values of the segment
S j are obtained by substituting the value of P0 j

, P0 j
, and P2 j

and ti j
in (2). All the segments of all the channels are decoded

in the same way. We encoded/decoded the motion data of
each joint independently. We used the break-and-fit strategy
that splits the motion curve of joint at the frame where the
distance between approximated and fitted data exceeds the
predefined threshold. Therefore, number of breakpoints are
not equal for motion data of different joints. However, since
initially we took ∆ as initial breakpoint interval, this ensures
that motion data of every joint has a breakpoint after ∆ frames.

For example, if ∆= 80 then joint 1 may have final break points
BPjoint−1 = {p1, p35, p81, p98, p161, . . . , pn} and joint 2 may
have final break points BPjoint−2 = {p1, p81, p110, p161, . . . , pn}.
Note that {p1, p81, p161, . . . , pn} are common breakpoints be-
tween joint 1 and joint 2 due to ∆, while other breakpoints
(frames) are not common due to splitting of motion curve at
arbitrary points (frames). The common breakpoints (frames)
after every ∆ frames have another implication. The complete
frames of encoded data can be previewed/played at these
common breakpoints (frames) without decoding. This feature
is very helpful when a user wants to preview an animation
without completely playing it. Similar technique is used in
video coding, where these frames are called I frames.

VII. EXPERIMENTS AND RESULTS

We have tested above described methods on motion capture
data obtained from [16] on several animations. Table I provides
details of environment of experiments. Table II gives the details
of selected clips. We compressed the motion data of each

TABLE I. ENVIRONMENT OF EXPERIMENTS

Hardware Intel Core i3-3217U, 1.8 GHz

Operating System Windows 10 Home, 64-bit

MoCap data Processing MATLAB R2012b

MoCap data Playback MotionBuilder 2014

animation using PCA, DWT and QBC methods. Then in order
to measure the performance of all the methods we computed
Compression ratio (CR) and Mean squared error (MSE) as
follows:

1) Compression ratio (CR), i.e., ratio between size of
original motion data file fo and size of compressed
motion data file fc:

CR =
fo

fc

. (10)

2) Mean squared error (MSE) between original motion
data Xo and reconstructed motion data Xc from the
compressed representation:

MSE =
1

nm

n

∑
i=1

m

∑
j=1

‖Xo −Xc‖
2
. (11)

In Eq. (11), the motion data matrix (Xo or Xc) has the form
as described in (1).

The input parameters to control the rate-distortion (MSE
vs. CR) depend on number of largest value Eigen-vectors
to be retained for PCA, wavelet threshold value for DWT,
and maximum allowed square distance for QBC. These input
parameters are not related to each other. Therefore, it is very
difficult to get the same value of MSE or CR for all the
methods at given value of input parameters. Therefore, in order
to evaluate performance of PCA, DWT and QBC, the best we
can do is to vary the value of their respective input parameters
and obtain the multiple values of MSE and CR and plot the
distortion curve for these methods. Fig. 5, 6, and 7 show the
MSE vs. CR performance of PCA, DWT and QBC respectively
for all the animations listed in Table II. The CR values of these
methods is in different ranges for the same range of MSE.
Therefore, we draw the distortion curves of PCA, DTW and
QBC in separate graphs.



TABLE II. DETAILS OF MOCAP CLIPS. EACH CLIP HAS 31 JOINTS AND

62 CHANNELS. FRAME RATE 60-HZ, FILE FORMAT .ASF/.AMC.

Seq. Seq. Frame No. of File-size

No. Activity Count data samples (bits)

38 01 Jogging 352 21824 2246890

10 03 Soccer-kick 362 22444 2305144

05 01 Walking 598 37076 3838930

143 37 Climbing 551 34162 3507090

In all the results, the values of principal component
transform matrix, detail coefficients of wavelet transform and
control points (BP and MCP) of quadratic Bézier curve are
rounded to 2 decimal places. Wavelet detail coefficients are
also run-length encoded in spirit of their characteristics. Final
data is stored in MATLAB’S MAT-file format [17] for each
method separately.

It is worth to mention that rather than comparing our
results with statistics of other methods as reported in literature,
we preferred to use our own implementation of PCA and
DWT for comparison. This is due to lack of uniform stan-
dard of distortion measure, different simulation environments,
selection of different input animations, the way final data is
encoded, characteristics of file formats, etc. In our experiments,
we selected the input animations with variety of motion
activities with medium to high motion fluctuations. All the
methods (PCA, DTW, and QBC) have same implementation
and simulation environment and final data is encoded and
stored with fairness. Nevertheless, the compression ratio (CR)
of our method is very high and competitive to any method
reported in the literature. Even for Soccer-kick animation,
which has high motion activity, the CR of our method is
greater than 45 at MSE < 1. For Walking animation, which
has low motion activity, the CR of our method reaches to 64
at MSE < 1.

VIII. DISCUSSION

A. Rate distortion curves

Figures 5, 6, and 7 show the compression ratio (CR) vs.
mean squared error (MSE) performance for PCA, DTW, and
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Fig. 5. Compression ratio vs mean squared error performance of PCA for
all animations.
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Fig. 6. Compression ratio vs mean squared error performance of DWT for
all animations.
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Fig. 7. Compression ratio vs mean squared error performance of QBC for
all animations.

QBC respectively. In order to easily compare PCA, DWT,
and QBC, we kept scaling of MSE axis same for all the
methods. The QBC method yields best results, while DWT
performs lesser than QBC and better than PCA. As an example,
Table III shows the mean squared error and compression ratio
comparison of all the methods for a single observation selected
arbitrarily. For example, the (MSE, CR) pairs are (1.4155,
10.855), (1.4196, 42.975), (1.4065, 58.9308) for PCA, DTW,
and QBC respectively for the Climbing animation. In the Table
III, we choose the value of MSE for three methods (PCA,
DWT, and QBC) as close as possible.

B. Subjective quality of reconstructed frames

Fig. 8, 9, 10 and 11 show arbitrary reconstructed frames for
each of the animation described in the Table III. The frames are
reconstructed by decoding the encoded data of QBC method.

C. Fitting data of each joint individually

Motion capture system records motion data of each joint
individually. Therefore, it is more natural to parameterize the
motion data of each joint separately and this is the approach



TABLE III. MEAN SQUARED ERROR (MSE) AND COMPRESSION RATIO (CR) COMPARISON OF ALL THE METHODS FOR A SINGLE OBSERVATION OF

EACH ANIMATION. FOR PCA, q IS Number of largest value Eigen vectors. FOR DWT, tw IS wavelet threshold. FOR QBC, d2
lmt IS maximum allowed square

distance.

Seq. Animation PCA DWT QBC

No. Name q MSE CR tw MSE CR d2
lmt MSE CR

38 01 Jogging 13 0.3466 12.593 4 0.3345 31.357 7 0.3297 37.944

10 03 Soccer-kick 22 0.2586 7.9199 3 0.2664 24.887 5 0.2552 26.606

05 01 Walking 13 1.0421 14.373 15 1.0857 47.848 24 1.0875 67.077

143 37 Climbing 17 1.4155 10.855 15 1.4196 43.097 28 1.4065 59.410

Fig. 8. Four arbitrary frames of 38 01 sequence reconstructed from decoded MoCap data.

Fig. 9. Four arbitrary frames of 10 03 sequence reconstructed from decoded MoCap data.

Fig. 10. Four arbitrary frames of 05 01 sequence reconstructed from decoded MoCap data.

Fig. 11. Four arbitrary frames of 143 37 sequence reconstructed from decoded MoCap data.

we adopted. This approach also provides the flexibility to
encode/decode the motion data of any joint independent of
other joints. This flexibility is very useful for interactive motion
editing system where the animator is only interested in motion
editing of selected joints.

D. Fitting in higher dimensional space

QBC fitting works well for high dimensional motion data
as shown in Fig. 4. We fit the root joint in Euclidean space
R6 very well. However, it is difficult to graphically show the
plot this fitting. Applying fitting to motion data in Euclidean
space RN is a novel approach

E. Time and Space efficiency of QBC

Quadratic Bézier curve is computationally more efficient
than other cubic curves e.g., Natural cubic Spline, B-Spline,
cubic Bézier curve, etc. In terms of space efficiency for QBC
we need to store only one middle control point where as cubic
Bézier curve requires to store two middle control points.

F. Limitations

At high value of upper limit of error, i.e., d2
lmt , foot skating

on the ground may cause visible artifacts. One solution of
this problem is to save foot data using lossless encoding. This
would guarantee accuracy but at the cost of less compression.
Another solution for foot skating is to correct the foot contact
during decoding. A technique presented by [18] automatically



detects and corrects foot skate. The technique of [18] can be
applied to our method during decoding process. However, in
our experiments, we did not enforce constraint on environmen-
tal contacts and left it as future work.

IX. SUPPORT AND SUCCESS OF MAKERSPACE

A makerspace is a community center that provides technol-
ogy, manufacturing equipment and educational opportunities
to the public. The free exchange of ideas and resources is a
central tenet of makerspaces. Motion capture (MoCap) data is
used in many fields such as in education, clinical medicine,
video games, movies etc. We envisage that people from
different fields get together at makerspace and use our method
to model and compress MoCap data then use this data to build
their applications of interests. At Umm Al-Qura university, we
are working on a project that uses MoCap data in computer
animation to teach Salah to children. This is an example,
how our method can provide educational opportunities to
public (children) at makerspace. At makerspace, a constructive
discussion among people of different areas will further explore
the opportunities of improving our method and using it for
many more applications for the benefit of community. This
will contribute to the success of makerspace.

X. CONCLUSION

We presented an efficient method for modeling and com-
pression of motion capture (MoCap) data using quadratic
Bézier curve. The method parameterizes and approximates the
motion data of each joint independently. We used least square
method to find optimal solution and break-and-fit strategy to
enforce the upper limit of error. Initially a user has to set
values of few parameters then rest of the process is fully
automated. Practically the method can decode the compressed
data and play the animation in real-time. Experimental results
show that proposed method performs better than principal
component analysis and discrete wavelet transform methods.
The subjective quality of reconstructed animation is also very
good. The method has the limitation that it does not address the
issue of foot skating at hight values of error-limit. Due to low
computational cost and low space requirement the proposed
method is suitable for modeling and compressing motion data
for interactive and real time applications. We also highlighted
how our method can support and contribute to the success of
Makerspace.
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