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Abstract  Dynamic Traffic Assignment is currently a key topic for the most advanced traffic management systems. 

Basically, it consists on automatically diverting traffic to the optimal choice of a set of alternatives – or combination of 

alternatives – towards each vehicle‟s destination node. A truly dynamic traffic assignment system could, potentially, cope 

with a highly variable traffic user demand and conditions, even with unexpected situations, like accidents. The research 

question for us is: Can we create an adaptive predictive architecture that provides, for each driver, the best choice at each 

intersection, for its destination and the current global traffic situation? In this work we share the results of an intensive set of 

tests accomplished with the Adaptive Evolutionary Travel Route System (AETROS). This model was designed to solve the 

travel route assignment problem in a new dynamic way. Urban traffic use to be highly changing scenarios where statistic 

based optimization approaches cannot cope with unforeseeable situations. When it is about assigning travel routes to users, it 

is usually approached in a static manner: when a traveler is assigned a route, it remains fixed from origin to destination. 

However, in the meantime the traffic scenario may suddenly change. And all those already assigned routes may became 

easily suboptimal. That is why AETROS is designed to be constantly adapting to the current situation and drivers are not 

assigned a fixed origin-destination route. Instead, as they approach an intersection they will receive the last optimal option for 

their destination. We have tested two different networks using a Beowulf cluster and a supercomputing facility. The smaller 

network was used to test whether the system correctly suggests the best option, by us introducing controlled accidents. The 

second bigger network has been used to deeply test the system through a wider range of traffic demands and accident 

probabilities. With the bigger network tests are subdivided into three different subsets. The same setup parameters where 

tested allowing drivers to use or not the suggested best options, forcing drivers to take the optimized options and finally 

without any route optimization. The presented results are meaningful, giving us important clues to keep on pushing the 

AETROS development.  

Keywords  Traffic Microsimulation, AETROS, Dynamic Travel Route Assignment, Cellular Automata, Parallel Genetic 

Algorithms 

 

1. Introduction 

Travel Route Assignment is a very important issue when 

planning, designing, and management of Intelligent 

Transportation Systems. Essentially, traffic is unpredictable. 

One can try to extract statistics for daily demand profiles 

depending on the day of the week, the labor year period, 

school vacations, local festive times, etc. However, when a 

person is behind the wheel of an vehicle, which is imperfect 

as all devices are – and this device has a large mass capable 

of moving at high speeds, determining traffic patterns that 

will never be predictable. Unforeseen events – such as 

accidents, demonstrations, and the effect of natural  
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phenomena – can make even the most efficient traffic 

network break down. Therefore, there always will be a gap 

between a statistics-based approach and real traffic behavior, 

likely resulting in sub-optimal setups of the existing traffic 

networks. 

By using a model-based predictive-control approach, the 

aim of this study was to generate travel route assignments 

that could adapt to quickly changing demand profiles [1]. In 

developing the optimization model, three objectives were 

considered. First, it was necessary to have an accurate 

picture of the current traffic situation. Second, the 

near-future forecast as to what the traffic situation might be 

needed to be trustworthy. Finally, the optimization system 

needed to be powerful and flexible in order produce the setup 

changes needed in the network as fast as possible so that its 

performance was maximized. 

In order to develop this model, the current state-of-the-art 

methods in image detection were investigated as well the 
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widespread availability of positioning technologies to assess 

the current traffic situation for the network in question. 

Regarding forecasting of future traffic, a cellular 

automata-based simulation model was used (see Section 3) 

that was very flexible and quite lightweight. Finally, to 

optimize the traffic network, a genetic algorithm (GA) 

running over a Beowulf cluster multi-computer was used 

because it is powerful, flexible, extendible, and has a very 

good price/performance ratio. The main idea of the model – 

called the Adaptive Evolutionary Travel Route Optimization 

System (AETROS) – was to provide drivers with a freshly 

optimized set of „next options‟ as they approached an 

intersection; depending on their destination, these options 

were designed to maximize the system performance. 

Therefore, the approach used employed a system-optimal 

moving horizon. 

This paper discusses the results of two sets of tests. The 

first test involved a small network having only two options in 

order to see whether the genetic algorithm worked 

reasonably well. The second one, a bigger and more complex 

network, served as a test bench to explore the strong and 

weak points of the system in order to determine the next 

direction the research should take. 

This article is organized as follows. For the remainder of 

Section 1, past relevant research is discussed. Section 2 

describes the overall elements of the AETROS model. In 

Sections 3 and 4, two components of the AETROS model 

that are of importance are explained in detail: the 

microscopic simulator and the genetic algorithm that was 

used. Finally, in Sections 5 and 6, the experimental results 

obtained are discussed, concluding remarks are in Section 7. 

A small collection of related works was examined 

regarding 1) optimization of traffic lights using genetic 

algorithms and 2) parallel computing using a static statistic 

approach (e. g., [2], [3]). Similarly, studies on cellular 

automata-based traffic microsimulation were explored. In a 

beautiful work, Sheu [4] proposed an analytical solution to 

best-path calculation in the event of a lane-blocking incident. 

This author presented a step-by-step methodology to cope 

with such situations. Moreover, a set of numerical examples 

were performed to obtain the best results for conditions 

involving low-volume traffic flow. Gao and Chabini [5] 

proposed a policy-based stochastic model for dynamic traffic 

assignment (DTA). In this model, drivers do not have a 

predetermined path; instead, they make a decision at a set of 

intersections. The information used to make that decision is 

provided by the system, based on the vehicles that already 

have driven through that link. The drivers receive 

information close to the current travel time, more or less, by 

choosing one path or another.  

Similar to the DRACULA microsimulation model 

developed at the University of Leeds [needs citation], Liu et 

al. [6] proposed a model that integrated drivers' decisions and 

vehicle movements by representing the drivers' day-to-day 

choices plus a detailed within-day traffic simulation model 

of vehicle trajectories according to car-following and 

lane-changing rules and intersection regulations. The paper 

described a modelling approach to road network traffic that 

emphasized the integrated microsimulation of decisions 

made by individual trip-makers and movements of 

individual vehicles across the network. To achieve this, the 

simulated represented directly the choices of individual 

drivers and their experiences as evolved from day to day, 

combined with a detailed within-day traffic simulation 

model of the space-time trajectories of individual vehicles. 

Therefore, it modeled both day-to-day and within-day 

variability in both demand and supply conditions. This is 

particularly suitable for realistic modelling of real-time 

strategies, such as those listed above. Full model 

specifications were given along with details of the 

algorithmic implementations. An impressive number of 

representative numerical applications were presented, 

including sensitivity studies of the impact of day-to-day 

variability, an application to the evaluation of alternative 

signal-control policies, and the evaluation of introducing 

bus-only lanes in a sub-network of Leeds.  

Park and Kim [7] proposed a hybrid real-time and off-line 

approach to the dynamic path assignment problem. They 

used autonomous agents and systolic parallel processing as 

simulation paradigms. A repertoire of predetermined paths 

was computed off-line, using conventional optimal 

path-finding algorithms, such as the Frank-Wolf algorithm. 

Mahut et al. [8] evaluated measures for on-line intelligent 

transportation system (ITS) measures, such as adaptive 

route-guidance and traffic management systems, which 

depend heavily on the use of faster-than-real-time traffic 

simulation models. Fast-running traffic models are needed 

off-line for use in iterative approaches that imitate drivers' 

adaptations to changes to the network topology. The paper 

describes a simulation-based dynamic-equilibrium traffic 

assignment model. The determination of time-dependent 

path flows was modelled as a master problem that is solved 

using the method of successive averages (MSA). The 

determination of path travel times for a given set of path 

flows is the network-loading sub-problem, which is solved 

using a space-time queueing approach of Mahut (2000). This 

loading method has been shown to provide reasonably 

accurate results with very little computational effort. The 

model was applied to the Stockholm road network, which at 

the time consisted of 4342 links, 1980 nodes, and 250 zones, 

representing over 11,000 turns. The results showed that this 

model was applicable to medium-sized networks with a very 

reasonable computation time. 

Semi-Dynamic traffic route assignment approaches are 

quite common in literature, like [9]. That method proposed a 

very interesting multimodal methodology. However, it does 

not implement a fully dynamic route assignment, but it 

divides day in a number of periods, 15 to 90 min long. This is 

not as flexible as the method proposed in this paper, which 

can cope with really sudden conditions changes. 

Another interesting work on DTA is presented in [10]. 

Their proposed methodology is challenging. 

However, it relies in an assumption that may prove quite 

insufficient. They assume that travelers select their routes 
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based on their subjective better route perception. Our method, 

on the other hand does a global optimization. 

In this current study, a stochastic approach is proposed to 

cope indirectly with lane-blocking incidents by means of a 

new dynamic model for travel-route optimization. The 

approach that Gao and Chabini [5] used is similar the model 

developed in this study. In both cases, drivers do not have a 

predetermined path; instead, they make decisions at a set of 

intersections. In the model developed in this study, drivers 

will not receive that kind of information to make their 

choices. Rather, they will receive the system-preferred 

option obtained by a global optimization using a genetic 

algorithm and by traffic microsimulation. The model 

developed by Liu [6] was found to be computationally 

feasible as a method for providing a fully internally 

consistent, microscopic, dynamic assignment, incorporating 

both within- and between-day demand and supply dynamics. 

This is an example of many research initiatives that 

implement prefixed paths for the traffic-route-assignment 

problem. In the case of this study, however, that kind of 

repertoire of possible paths does not exist. However, this 

model provides a set of possible options at the intersections 

of the traffic network provided to the drivers by an automatic 

terminal information service (ATIS), thus allowing the 

optimized best option depending on their destinations. 

2. Travel Route Assignment 
Architecture 

An urban traffic network is composed of lanes, 

intersections, and input lanes by which cars get into the 

network toward a set of destinations (outputs). This study 

tried to solve the challenge of how this can be best managed 

and to optimize traffic network performance without huge 

money investments. The traffic control model proposed does 

not need a big budget, and can improve traffic network 

performance. 

The overall concepts of the AETROS model are 

summarized in Figure 1. For this research, the real traffic 

network was simulated. In near future, however, plans 

include obtaining sample data from an actual urban traffic 

network in order to have an accurate snapshot of the situation. 

That snapshot, whether simulated or real, must include the 

current position and speed of every vehicle in the zone in 

question. Additionally, virtual/actual drivers must 

communicate their destinations when entering into the 

network for two reasons: 1) to determine the destination of 

every new vehicle is as it arrives every optimized 

intersection and 2) to calculate the current 

Origin-Destination probability matrix in order to ensure that 

the simulations are accurate. 

 

Figure 1.  Overall concepts of the AETROS model for traffic route 

assignment 

These two information sources are obtained from the 

''Current State Sampling'' hardware/software module, which 

is launched every Tperiod seconds. A Moving Horizon 

approach using a parallel genetic algorithm searches for the 

optimal next cell at the crossroad cells, which are defined at 

every intersection, depending on every possible destination. 

The genetic algorithm needs a proper way to estimate if a 

combination, or chromosome, is better or worse; that is done 

with a carefully selected fitness function. In this case, for 

every chromosome, a microscopic simulation was launched, 

and a set of significant variables were sampled to associate 

every chromosome with a fitness value. Equation 1, the 

fitness function, is expressed as: 
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where the number of free cells, occupied cells, and cells with accidents are Nfree, Noccu, and Naccid, respectively. 

The parallel genetic algorithm (PGA) runs on a Beowulf cluster, which is a multiple instruction/multiple data (MIMD) 

multicomputer having very good cost and performance. The resulting combination is transmitted to drivers using ATIS, for 

example, variable message signs, smart navigation devices, and so forth. Just by adding nodes to the Beowulf cluster to the 

proposed model, a wide range of traffic-network sizes can be tested without writing a new line of code. The microsimulator 

used for the fitness function is described in detail in Section 3, and the genetic algorithm in Section 4. 
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It is important to note that there is a strong real-time 

restriction in this architecture. The GA must finish its work 

in a less than Tperiod seconds to be able to give the next 

combination on time to the control module. That is why it is 

so important to have a parallel and scalable architecture. Two 

kinds of processes are running, a GA Master process, which 

performs all the standard tasks a GA should do except the 

evaluation of the potential solutions (chromosomes); and 

evaluations that are run by GA Slave processes in parallel. 

The parallel evaluation done by GA slave processes consist 

of cellular automata microsimulation in which some 

parameters are sampled, as is explained in Section 3.2.  

The steps of the dynamic travel-route-assignment model is 

summarized as follows:  

1. A snapshot of the current traffic situation is captured. 

2. A genetic algorithm is run to ensure that the optimal 

combination for the „preferred next cell‟ is obtained in 

less than Tperiod seconds. The GA steps are: 

a. A combination population is created. 

b. For each combination or individual, the future traffic 

situation is simulated for a number of Tperiod 

iterations. 

c. Using performance measurements from the predicted 

traffic situations for the future, every individual is 

assigned a fitness value. 

d. According to the fitness value, the population is 

ordered. Then, the GA algorithms operators are 

applied to the population – Crossover and Mutation – 

in order to produce a new combination population. 

e. The genetic algorithm evolves during a number of 

generations.  

3. An optimized „next suggested cell‟ for every crossroad 

cell and destination is produced by the GA and sent to 

the traffic control module, which displays it in the 

ATIS. 

4. The first step is repeated ad infinitum. 

So far, this model has been tested in a simulated 

environment. Currently, cooperative agreements with city 

local governments are being explored in order to implement 

the model, at least partially and progressively, into a real 

world network. 

3. Microscopic Traffic-Simulation 
Model 

 

Figure 2.  Discretized traffic network. Circles represent the cells, or possible positions for vehicles, triangles represent the inputs and outputs, squares 

indicate traffic lights, and diamonds indicate network intersections 
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Figure 3.  Data structure of the cells in the discretized traffic network 

shown in Figure 2 

The microscopic traffic model developed in this study is a 

Cellular Automata model that has a set of new abstractions, 

making it more flexible and more comparable to the actual 

traffic. First, a traffic network was discretized into a set of 

cells, formulating a graph similar to the one shown in Figure 

2. As is usually done, a cell was sampled every 7 meters. In 

this figure, circles represent the cells, or possible positions 

for vehicles. Not more than one vehicle per cell is permitted 

in the model. Triangles represent the inputs and outputs. The 

inputs are places where the new vehicles are created. Section 

3.2.4 explains the vehicle creation times and the parameters 

assigned to every new vehicle. Squares indicate traffic lights, 

which so far, may be in one of two states: red and green. 

Section 3.2.3 describes the control policy applied to traffic 

lights. Diamonds indicate network intersections. Every 

traffic light is assigned to an intersection. 

The main feature of the proposed model is how the 

vehicles move. It is assumed that an ATIS was available for 

the network. Vehicles at every cell has a set of possible next 

cells to which they can move, depending on their 

destinations (output). There are two kind of cells: 1) plain 

cells, for which the next possible cells are in the same set, no 

matter what is the destination of the vehicle; and 2) crossroad 

cells (marked with a pattern), for which the set of possible 

next cells may vary, depending on the destination of the 

vehicle. Section 3.2.1 explains in more detail how vehicles 

move in the simulation. 

In addition, time is discretized in the microscopic 

simulation. In this case, a time step was assigned to a second, 

where 1 ≡ 1s. This is the sampling period that is 

conventionally chosen because it allows greater ease during 

calculations and it represents the reaction time of a human 

driver, more or less. 

3.1. Data Structures 

In this section, the main data structures used in the 

proposed model are described. Figure 2 we represents an 

example of a discretized traffic network. In the model, every 

cell was treated as a row in the matrix, represented in Figure 

3. For every cell, a vehicle present at that cell was stored, 

whether an input or an output as well as the maximum 

allowed speed at that cell and if it was a crossroad cell, 

represented by being filled with hatching in the figures. 

Figure 4 represents the data structure used for the vehicles 

currently in the network as well as for those that already left 

the network. For every vehicle, its position (current cell) is 

stored, its destination number (output), its speed, the time 

step when it was introduced into the network, and the time 

step when it left the network, in case it already left. 

 

Figure 4.  Data structure of the vehicles in the discretized traffic network 

shown in Figure 2 

The most important data structure in the proposed model 

involves the paths. In this abstraction, paths are stored for 

every cell in the network, and for every possible destination, 

the allowed next cells. If the cell is a plain cell, a path is 

useful to simulate overtaking another car. When a vehicle 

cannot go on to the cell ahead, it may try alternative cells in 

the set of possible next cells. If the cell is a crossroad cell, the 

same rule applies. However, in order to reach the same 

destination, a vehicle may choose among a set of different 

routes. The adaptive-control model proposed in this study 

recommends an option by means of a convenient ATIS. If 

the suggested cell is free, then the vehicle will continue to the 

proposed cell. This abstraction is represented in Figure 5, 

which includes all the possible next cells for every cell. This 

figure also represents all the path information for the traffic 

network. 

In Figure 6, the data structure for the paths is partially 

represented, and may contain that information. 

Other data structures are used by this microscopic 

simulation model. The more important ones are as follows. 

Updating_Order, Dependencies, Dependents, and 

N_Dependents. Updating_Order simply is the order for 

updating the vehicles in the network. A recursive routine was 

developed to calculate that order, intended to avoid possible 

problems. This data structure is described in detail in Section 

3.2.2. Dependencies, Dependents, and N_Dependents are 

auxiliary data structures to the calculation of 

Updating_Order. 
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Figure 5.  Paths in the improved Cellular Automata Model for Intersection #0 of the traffic network shown in Figure 2 

 

Figure 6.  Data structure for paths of the traffic network shown in Figure 2 

Input_ProbMatrix and Dest_ProbMatrix. Two types of 

microscopic simulation were developed, deterministic and 

stochastic. Both types need to know when to create new 

vehicles and which destination will be assigned to every 

newly created vehicle. Input_ProbMatrix includes the 

probability of creating a new vehicle during every simulation 

period.1 This probability may change from time to time in 

order to simulate a variable demand across a lapse of time. 

This data structure can be used in such a way that the 

simulation may be fed with current input probability values 

from the real traffic network. Dest_ProbMatrix works in a 

very similar way. It contains destination probabilities for 

every input, and also can contain inferred values from 

current traffic in the network. 

CR_Cells, CR_N_Options, and CR_option. This 

simulation needs to know which cells are crossroad cells, 

how many options are available for every crossroad cell, and 

the current preferred option. The preferred option is 

calculated by means of genetic algorithm optimization. 

Cells_TLs, TL_Queue_cells, and Inter_TLs. In this 

adaptive traffic-control model, traffic is controlled mainly 

                                                             
1 A period consists of a set of simulation time steps. For every period, the next 

optimized combination for the traffic network is calculated. 

using a combination of preferred option for all the crossroad 

cells. In addition, traffic lights at intersections need to be 

included because of safety reasons as well as to avoid the 

Queue Spit Back Blockage (QSBB) effect. Section 3.2.3 

describes this in detail. In these data structures, which cells 

may be affected by traffic lights have been stored as well as 

which traffic lights are related to every intersection and those 

cells making up the queue of every traffic light in the 

network. 

3.2. Simulation 

The microscopic simulation model developed in this study 

works by updating of a variable set of vehicles running over 

a graph of possible positions or cells. The microscopic traffic 

simulator is an abstraction of reality based on a great many 

simplifications. In real traffic, when two cars try to occupy 

the same position at the same time, human drivers find a way 

to decide who will go first. However, virtual drivers are 

much less intelligent, so eventually, intersections may get 

blocked, provoking a chain reaction and finally collapsing 

the whole network. This effect, known as queues spillback 

blockage, a problem during traffic simulation, and can 

handled by two means, the updating order (Section 3.2.2) 

and the policy for controlling traffic lights (Section 3.2.3). 
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A crucial part of the simulation model is the creation 

routine for new vehicles (Section 3.2.4). The control model 

is supposed to be adaptive with regards to a changing traffic 

situation. Traffic is an intrinsic stochastic process, the 

simulation model needed to reflect a consistent re-creation of 

every periodic traffic snapshot. To do so, two issues had to 

be addressed. First, we need to know every time we want to 

all the vehicles in the network, their position, speed and 

destination. This was a really difficult task. Second, for every 

input to the network, the current origin-destination 

probability matrix needed to be known as well as the current 

arrival frequency and the mean speed. 

3.2.1. Vehicles Updating 

Every time step all the cells in the traffic network were 

visited, and all the vehicles in that cells were updated. The 

cells were inspected in a carefully chosen order, called the 

updating order. Basically, the update order was designed to 

reduce potential deadlocks and queue spillback blockage. 

How the updating order was calculated is explained in 

Section 3.2.2. 

The vehicle updating process included two phases, 1) 

updating its position and 2) updating its speed. Depending on 

the current speed of the vehicle, its next position was 

calculated. For instance, if its speed was two cells per time 

step (or per second, in our case), the vehicle was positioned 

two cells away. To do so, paths data structure was used to 

determined which were the next possible positions/cells in 

that vehicle‟s destination route, as has been shown in Figures 

5 and 6. If the vehicle could not find free cells when 

considering all the alternatives in order to reach its 

destination, it must stay and wait in the current cell. If there 

is a red traffic light ahead, it will has to stop and wait. 

After the next position is calculated, then the vehicle‟s 

next speed is calculated. To do so, and to avoid abrupt speed 

changes, the future free cells are considered. If there are free 

cells ahead the vehicle, then the speed is allowed to increase 

up to a maximum legal value. If there are not free cells for 

future movements, or there is a red traffic light ahead, speed 

is decreased or set to zero. 

3.2.2. Updating Order Calculation 

Using the paths data structure, for a single cell, one may 

know how many neighboring cells depend on it to move on. 

In other words, how many cells have among their next 

possible cells the observed cell? For this model, recursive 

routing was designed to explore the entire graph by 

following neighboring connections and determining the 

number of cells that could depend on a single cell in order to 

move on in future. Figure 7 depicts a number of dependent 

cells for Intersection #0 based on the paths as displayed in 

Figure 5. Note that every cell may have a number of 

dependent cells even higher than the total number of cells in 

the network. This is because the recursive routine may visit 

the same cell more than once following a different path. 

Common sense indicates that it would be wise to update first 

vehicles in cells with a higher number of dependent cells.  

 

Figure 7.  Number of dependent cells for every cell for Intersection #0 

However, as stated in Section 3.2, the queue spillback 

blockage effect needs to be taken into consideration. 

Therefore, another criterion was added for the 

updating-order calculation. For a fixed number of dependent 

cells, crossroad cells are updated first. 

3.2.3. Updating the Traffic Lights State 

To prevent queue spillback blockage, both in the 

simulation and in real traffic situations, this adaptive 

traffic-control model includes a local optimization policy for 

traffic lights that consists of opening the traffic lights for the 

most crowded queues. In the simulation, for every 

intersection are a set of traffic lights, and for each traffic light, 

a group of cells were identified as part of its queue. These 

cells are positions at which point there is no other option but 

to pass through that traffic light. 

As mentioned in Section 2, this model divided time into 

periods. In every period, the current traffic situation is passed 

to the genetic algorithm, which replies with the optimized 

combination of preferred crossroad cell options to be applied 

in the next period. In every simulation period, the number of 

vehicles waiting in every traffic light queue is sampled, and 

the set of traffic lights having the longest queue is turned to 

green at every intersection. This local optimization policy 

attempts to reduce queues and prevent queue spillback 

blockage from growing out of control. 

So far, only two states for traffic lights have been 

implemented in the simulator, red and green. In real-world 

applications, the control system must include transitional 

states – for instance, amber – when turning from green to red. 

However, the optimization can be assigned fixed size slices 

to those transitional states. 

3.2.4. Creation of New Vehicles 

A crucial part of the simulation model is the creation 
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routine for new vehicles. The control model is supposed to 

be adaptive regarding the changing traffic situation, and 

traffic is an intrinsic stochastic process. Therefore, demand is 

variable. For the simulation model to consistently re-create 

every periodic traffic snapshot, two issues needed to be 

addressed. First, the current vehicles in the network, their 

position, speed, and destination needed to be known. In this 

study, it was assumed that that information was provided by 

a system such as ATIS. In fact, this model assumed that there 

was an ATIS to inform drivers of preferred options at every 

crossroad cell in order to reach their destination. Second, the 

current origin-destination probability matrix, the current 

arrival frequency, and the mean speed at every input to the 

network needed to be determined. 

For creating a new vehicle routine, three variables were 

used, 1) the current Input_ProbMatrix data structure, 2) the 

Dest_ProbMatrix data structure, and the average speed of 

that vehicle. Input_ProbMatrix provided the probability of a 

new vehicle arriving at every input. This variable was used to 

adjust the incoming flow to the network according to reality. 

It is well known that the demand for each network varies 

across by day, by week, and so forth. Moreover, it may 

change unexpectedly because unforeseeable factors, such as 

crashes and vehicle breakdowns. Using Input_ProbMatrix, 

when to introduce a new vehicle at an input can be calculated. 

However, its destination needs to be known. This 

information is obtained from Dest_ProbMatrix, the 

probability of every destination for each input is stored. This 

information changes with time, and the system has been 

designed considering that change. Finally, every newly 

created vehicle is assigned an average speed. 

3.3. Beowulf Cluster 

The architecture of this system was based on a Beowulf 

cluster due to its price/performance relationship and the 

possibility of employing open-source software. This is a very 

scalable MIMD computer, a very desirable feature in order to 

solve all sorts and scales of traffic problems. For this 

research project, an eight-node cluster was set up, each node 

consisting of an AMD Opteron64. The nodes were 

connected using a gigabit ethernet backbone. Every node had 

the same hardware except the master node, which had an 

extra gigabit ethernet network card for an „out world‟' 

connection. Every node had installed CentOS (Kernel 

2.6.9-78.0.13.ELsmp). For parallel programming, the 

installation of Open MPI (openmpi-1.2.9-1) was necessary 

as well. 

4. Genetic Algorithm Optimization 

4.1. Chromosome Encoding 

Figure 8 depicts the chromosome encoding used in the 

model. This was represented in Figures 5 and 6 as the 

possible next cells for the crossroad Cells 2 and 3. In the 

genetic algorithm, the chromosomes included the preferred 

next cell for every crossroad cell (CRCell) for each output. 

„Preferred next cell‟ means that when a vehicle is in this cell, 

it should choose the preferred next cell unless it is occupied. 

In Figure 8, for CRCell 2 and Output 0, the preferred next 

cell is 3. In the same row (CRCell 2), Output 1 also is 

Preferred Cell Number 3. However, for Outputs 2 and 11, the 

preferred option is Cell Number 16. So far, only two possible 

states have been considered for traffic signals: red (0) and 

green (1).   

 

Figure 8.  Example of a chromosome in the traffic network simulation 

4.2. Initial Population 

Every time the genetic algorithm is run, an initial 

population of feasible combinations or individuals has to be 

generated. As explained in Section 4.1, a chromosome 

consists of a set of preferred next cells for every crossroad 

cell, and for every output. In Section 3.1 the data structure 

CR_N_Options was introduced, in which the number or 

possible next positions for every crossroad cell is stored. 

Therefore, both for the initialization of the population and 

mutation, very simply, a random option is chosen within the 

allowed range stored in that matrix. 

4.3. Random Number Generation 

For random number generation, Makoto Matsumoto and 

Takuji Nishimura's MT19937 generator was employed, also 

known as the „Mersenne Twister‟ generator, using the GNU 

Scientific Library (gsl-1.5-2.rhel4). This generator has 

passed the DIEHARD statistical tests [11]. The seeds for that 

algorithm were obtained from the „/dev/urandom‟' device 

provided by the CentOS operating system. 

4.4. Selection Strategy 

A truncation and elitism combination was selected as the 

strategy. This meant that at every generation, a reduced 

group of individuals – in our case, the best two individuals – 

was cloned to the next generation. The remainder of the next 

generation was created by crossing the individuals from a 

best fitness subset, usually 66% of the entire population. 

4.5. Crossover Operator 

A standard two-point crossover operator was used. At 

random points – for a pair of \textit{parent} chromosomes – 

this selects two random points, cuts them at these positions 

into three pieces, and then interchanges the central chunk. 

4.6. Mutation Operator 

When an individual is chosen to be mutated according to 
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the mutation probability, the value stored at a randomly 

chosen position of its chromosome is overwritten using the 

random generator (Section 4.3).  The mutation probability is 

not fixed. It starts with a high mutation probability that 

progressively decreases until reaching probability values 

near to the inverse of the population size at the end of the 

planned number of generations. 

4.7. Evaluation 

The genetic algorithm used for the experiments presented 

in this paper was equipped with a fitness function. Since this 

is a Moving Horizon Approach, for every real world Tperiod 

seconds, a slave process has to run a deterministic simulation 

for every chromosome, lasting for  

Tperiod x Neva_periods iterations, where 1 iteration ≡ 1 s. Every 

chromosome, consisting of a combination of next advised 

cells for every crossroad cell/destination pair, is used to set 

up a deterministic simulation at a slave process. 

For every crossroad cell/destination pair, a network cells 

subset can be easily obtained, including those cells that can 

be visited in the path from that specific couple. After every 

simulation ends at the slave process, the resulting situation 

for traffic network occupancy at the corresponding cells 

subset is inspected. The number are counted of free cells, 

occupied cells, and cells with accidents or Nfree, Noccu, and 

Naccid, respectively.  

 

Figure 9.  Parallel processes of the simulator 
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Figure 10.  Case A: A two-options network a) in its entirety and b) a detailed segment for Crossroad Cells and Forced Accident Emplacements 

Equation 1 (in Section 2) depicted the fitness function 

used to evaluate every chromosome at the genetic algorithm 

that was run. This equation represented how the proportion 

of free cells against all cells and accidents was averaged 

across all the possible crossroad cells and destination couples. 

The number of accidents was weighted by a factor of Ka. In 

this study, Ka = 10 was used in order to give more importance 

to the number of accidents with respect to the number of 

occupied cells. 

This fitness function approach was designed to be used in 

maximization mode. Additionally, it was designed to let the 

genetic algorithm to provide optimized option combinations 

with a higher number of free cells and/or a lower number of 

accidents. This was the result of experimenting with various 

fitness functions. 

4.8. The Parallel Genetic Algorithm 

The parallel program used the OpenMpi (ver. 1.2.9) 

library. In this application, three kinds of processes were 

defined, namely, the stochastic simulator, the GA master, 

and the GA slave processes. Figure 9 summarizes the 

message-passing scheme of the parallel algorithm that was 

designed. The duties of each process are as follows.  

Stochastic Simulator - P_0 (Sto Sim): As will be 

explained in detail in Section 5.1, so far, this optimization 

model has not been applied to a real network. Therefore, 

testing purposes, a simulated „real world‟ had to be 

developed. The $P_0$ process was the thread that simulated 

real-world stochastic traffic, the current-state sampling 

module and the real-time traffic-control module. In a few 

words, it simulates the stochastic traffic, passes the current 

state, and applies the optimized chromosome. To do so, it 

needs to communicate to the GA master process ($P_1$), 

keeping it up to date with the current state of „real‟ traffic and 

with current traffic statistics. It needs to receive the next 

period‟s optimized combination to adaptively control traffic. 

It sends the start and stop signals for the entire experiment. 

GA Master - P_1: The GA master process delivers the 

chromosomes for evaluation at the slave processes, receives 

the evaluations, and runs all the rest of the functions 

regarding the optimization, including selection, crossover, 

and mutation. Besides that, it receives the current traffic 

situation from the P_0 process and sends back the resulting 

best chromosome to be applied. Finally, when it receives a 

termination signal from P_0, it multicasts this signal to all 

the slave processes to make them stop.   

GA Slave - Pn: The duty of slave processes – n ϵ [1, 

Nprocesses) – is to receive chromosomes, run deterministic  

microsimulations, sample the needed parameters, and send 

back the corresponding evaluation to the GA master, P1. 

In testing, the best speed-up 2  was obtained running a 

single slave process per core. There were eight dual-core 

computers in the Beowulf Cluster3 , as was explained in 

Section 3.3. Therefore, 14 free cores were available to run 

the slave processes.  

5. Experiments  

The purpose for testing the model was two-fold. First, the 

system needed to be checked to see if it worked, providing 

reasonable good options to drivers with a simple two 

options/two possible routes network. This was Test A, 

shown in Figure 10. 

After that, the AETROS model needed to be tested in a 

quite harsh situation, using a very complex traffic network. 

This was Test B, shown in Figure 11. with 420 possible 

positions (cells), nine intersections, with no very large 

queueing space in the nodes links (91.43\%), 144 possible 

origin-destination pairs, and up to four alternative routes for 

                                                             
2 Speed-up occurs when a parallel program can be evaluated measuring the 

CPU time needed by a single process (sequential program) and by N processes 

(parallel program). The ratio between the two measures is the speed-up. Ideally, 

speed-up is N for a parallel-process program. 

3  For about a 30% of the experiments, Atlante, the Canary Islands 

Supercomputing Infrastructure, was used due to time constraints. 
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every origin-destination pair. Additionally, accidents were 

randomly provoked, making some cells unusable for a period 

of time. While not extraordinary, the results from this test 

were encouraging, and uncovered some weaknesses in the 

system that will be tackled in future research. 

A set of configuration parameters were fixed for both Test A 

and Test B. For the genetic algorithm:   

 Population size (the number of individual potential 

combinations evaluated each generation): 200 

individuals.   

 Truncation surviving proportion (the subset of every GA 

population selected to survive attending their fitness): 

2/3.   

 Cloned size (number of top fitness individuals which are 

just cloned to the next generation): 2.   

 Initial (Hyper) Mutation Probability: 0.99   

 Mutation Probability factor (every generation, the 

mutation probability is ameliorated by this factor): 0.91  

For the simulation:  

 Number of evaluated Tperiod within the microscopic 

simulation: 4 periods   

 Crash Duration Average (the average number of periods 

that a simulated crash lasts): 10 periods   

 Crash Duration Std (the standard deviation of periods 

for a simulated crash): 5 periods   

 Time sampling relationship: 1 it ≡ 1 s   

 Space sampling distance (approx.): One cell every 7 m. 

 

Figure 11.  Test B: A large, complex network having multiple origin-destination options 
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Regarding the Tperiod value, 180 iterations were chosen for 

Test A and only 15 iterations for Test B for a faster 

adaptation of the AETROS system to avoid queue spillback 

blockage. 

5.1. Test Bench Description: A Simulated ‘Real’ World 

The adaptive traffic-control model was meant to be run 

over a real-world traffic network. However, it still is in the 

laboratory stage right now a deeply tested and safe product 

can be provided to traffic managers. Therefore, a test bench 

was required, in this case, a stochastic version of the 

microscopic traffic simulator.  

Real traffic intrinsically is a stochastic process because of 

many factors. Two very important factors are human 

behavior and accidents. This study attempted to emulate that 

stochastic nature of traffic by means of some probabilistic 

functions. A simulated environment was used to test the 

proposed model. A stochastic version was performed using 

the microsimulation model to simulate a real-world 

counterpart of the system. In this simulation, using the same 

basis as the CA-based Microsimulator, key differences were 

added to give the simulated real world some realism. The 

following random variables were implemented: 

 Random times of creating new vehicles arriving the 

network. 

 A random destination assignment for every new vehicle. 

 When a driver can accelerate, a random function 

determines whether it will accelerate or not. 

For every vehicle in the network, there existed a chance to 

have some sort of problem that obstructs the street for a 

period of time. The algorithm that implemented that element 

used three random variables. First, a uniform variable 

decides when a new accident is provoked. To prefix how 

frequently accidents happen, a „crash probability‟ value was 

used, a threshold value that varied across the experiments in 

Test B from 0.0 to 0.1. Second, if a new accident was to be 

set, a random uniform variable was used to choose which cell 

would be among the 420 of the network for Test B. Finally, 

the duration for an accident was decided using a Gaussian 

probability distribution. 

5.2. Test A: The Two-Options Network 

As depicted in Figure 10, Test A uses the two-option 

network composed of 58 cells and including two 

intersections, one with four crossroad cells. Each experiment 

in this test was divided into three phases. Phase A had no 

accidents in any cell during 20 Tperiod. In this case, a length of 

120 time steps for every Tperiod was chosen. In Phase B, 

during other 20 Tperiod, accidents were provoked in Cells 8 

and 29. In Phase B, 20 additional Tperiod, accidents were 

provoked in Cells 41 and 48. This experiment evaluated 

whether the suggested next option for crossroad cells 

reflected a system that could adapt to the provoked accidents. 

The fitness function was used for this test. In other words, for 

every crossroads cell, the number of cells occupied counted; 

or, with an accident, the whole graph was counted from that 

cell to each destination. Every cell occupied by an accident 

was weighted by a factor of 10 (Ka = 10). Thus, more visible 

effects of the accidents were expected for crossroads Cell 27, 

since its alternative graphs to the destination had less cells in 

common.   

Three different probabilities for creating new vehicles 

were tested for each case: 0.1, 0.5, and 0.99. Table 1 shows 

the results for these three phases with regard to the average 

travel time (ATT) in time steps and the average number of 

vehicles that left the network (NVH). These values were the 

result of averaging across all the results for the three input 

probability values and for every origin-destination pair. In 

this table, the first two rows show results when the AETROS 

system was not used. For the last two rows, the AETROS 

system was on, optimizing the next better options for the 

crossroads cells.   

Table 1.  Average Travel Time (ATT) and Average Total Number of 
Vehicles that Left the Network (N\_VH) for the Three Phases of Test A 

AETROS  Phase A Phase B Phase C 

OFF ATT 13.5882 13.6008 13.5999 

OFF NVH 1411.7 1406.8 1404.5 

ON ATT 13.8557 13.9280 13.9384 

ON NVH 1743.3 1728.4 1716.7 

Table 2 represents the maximum, minimum, and median 

differences between using AETROS or not using it for the 

ATT and NVH. In separate rows, these differences were 

calculated, first taking into consideration three phases and 

then only Phases B and C (those having accidents). The the 

value for the average travel time (ATT) is subtracted when 

using AETROS from the value obtained when not using 

AETROS because the AETROS system needed to provide a 

smaller value. For the average number of vehicles (NVH), a 

higher number was expected when using AETROS versus 

not using it; this represented the result of subtracting the 

resulting value when not using the AETROS system to the 

value obtained when using it.    

Table 2.  Differences in Average Travel Time and Average Total Number 
of Vehicles that Left the Network Using and Not Using AETROS 

 Phases Max. Diff Min. Diff. Median Diff. 

ATT A, B, C 
0.5679 

(99/1/0/A) 

-1.2581 

(99/1/1/B) 

-0.2877 

(10/1/0/A) 

ATT B, C 
0.3621 

(50/1/0/C) 

-1.2581 

(99/1/1/C) 

-0.3767 

(50/0/1/C) 

NVH A, B, C 
1726 

(10/1/0/A) 

-887 

(99/0/0/A) 

89 

(50/0/1/A) 

NVH B, C 
1694 

(10/1/0/B) 

-885 

(99/0/0/B) 

83 

(50/0/1/C) 

In Table 2, each value has the values for four elements 

associated with it, which are the experiment setup values. 

The first value is the probability value for new vehicle 

creation, for which 10%, 50% and 99% values were tested. 

The second and third values represent the origin-destination 

pair for which the corresponding value was calculated. The 
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fourth value represents the phase (A, B or C) that caused that average value. 

 

Figure 12.  Input Probability 0.1 

 

Figure 13.  Input Probability 0.5 
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Figure 14.  Input Probability 0.99 

To end this set of test results with Network case A, Figures 

12, 13, and 13 depcit three different demand-probability 

values (0.1, 0.5 and 0.99) and the corresponding histograms 

for the Next Suggested option produced by the GA, for 

crossroad cell, and the output. Figure 12 shows in detail the 

next possible options for each crossroad cell. For every Tperiod 

iteration, the AETROS system suggests one of the available 

options for each destination. Figure 13 and 14 show how the 

AETROS system naturally tends to suggest to drivers how to 

avoid the accidents. In those pictures, each row represents 

the frequency of the next cell suggestions for every one of 

the four crossroads cells (5, 6, 26 and 27). Regarding the 

columns, each column represents the resulting histograms 

for every one of the three phases of the experiments (A, B 

and C). Finally, in every histogram of these three figures, 

each mark has two columns, one for every possible 

destination. 

5.3. Test Case B: A Large, Complex Network 

This section presents the results of experiments for Test B, 

with a large, complex network. Among all the experiments 

performed in Test B, some provoked the network to collapse. 

This meant that the queues grew long enough to interrupt 

previous intersections, causing the queue spillback blockage 

effect. In a short amount of time, all the network was affected, 

and no car could leave the network anymore. In real traffic, 

drivers are skilled enough to solve this situation by somehow 

bending certain traffic rules; however, simulated traffic is 

much weaker. 

For Test B, 45 experiments weren carried out, using three 

different probability values (input probability) for new 

vehicle creation  and five probabilities for new accident 

creation (crash probability). Additionally, these values were 

appllied to experiments with 1) the AETROS system 

disconnected (labelled as „No AETROS‟); 2) with the 

AETROS system running, but forcing driver to choose the 

optimized „suggested next cell‟ (labelled as „AETROS One‟); 

and 3) labelled as „AETROS All‟, with the AETROS on, 

suggesting to drivers a better next option and giving them 

freedom to choose that cell. If the suggested option 

corresponded to an occupied cell, they would choose an 

alternative option for the same destination, in case it is free. 

𝑀 𝑖, 𝑐, 𝑜, 𝑑 =  
𝑁𝐶(𝑜 ,𝑑)×𝑁𝑉𝐻 (𝑖 ,𝑐 ,𝑜 ,𝑑)

𝐴𝑇𝑇(𝑖 ,𝑐 ,𝑜 ,𝑑)
× (

𝑐𝑒𝑙𝑙𝑠 ×𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
)(2) 

where i represents an input probability value, c represents a 

crash probability value and (o,c) represents an 

origin-destination pair Table 3 lists the experiment setups in 

which the network collapsed. 

Regarding the Average Travel Time, Table 4 represents 

the mean differences resulting when using and not using the 

AETROS system. For every input probability and crash 

probability value, using both versions of the AETROS 

system in both versions the ATT is subtracted from the ATT 

obtained when the AETROS system was off, depending on if 

the „suggested next option‟ was forced in the case of 

AETROS One or it was actually suggested. 

In Table 5, which is very similar to Table 4, the results are 

presented with two exceptions. The parameter now 
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represented is the mean total number of vehicles that left the 

network for each case, and members of the subtraction are 

now interchanged, subtracting the values obtained without 

AETROS to values obtained with the two flavors of 

AETROS running. 

The main two parameters measured in these experiments 

were the average travel time (ATT) and the average total 

number of vehicles (NVH) that were able to leave the network. 

Considering that for Test A, the travel route trajectories are 

quite diverse in length, a very simple metric was devised that 

combined both ATT and NVH, weighting each pair of values 

with the minimum length of every origin-destination pair. In 

Equation 2, this is represented by the M metric. In that 

equation, i represents an input probability value, c represents 

a crash probability value and (o,c) represents an 

origin-destination pair. For each (i, c, o, d) combination, an 

experiment was carried out 1) without using AETROS, 2) 

with the AETROS turned on, 3) allowing drivers to choose 

the „suggested next cell‟' or not if that suggested cell is not 

free (AETROS ALL), and 4) forcing drivers to choose the 

suggested option (AETROS One). 

In Equation 2, NC(o,d) represents the minimum number of 

cells to be transited from origin o towards destination d. 

Hence, with this metric, the average travel time is somehow 

weighted with the Nc(o,d) value. In Table 4, for every 

experiment setup, this value has been calculated and showed 

the average value resulting to the subtraction of the M metric 

value when the AETROS system is turned off to the resulting 

$M$ value when using the two tested AETROS flavors. 

Notice that for two different setups, no NVH was obtained 

because for those two setups, no vehicles were able to leave 

the traffic network. 
 

Table 3.  Combinations of Parameters that Caused the Network to Collapse 

 No AETROS AETROS One AETROS All 

Input Prob. 0.07 0.1 0.2 0.07 0.1 0.2 0.07 0.1 0.2 

Crash Prob.          

0.0 OK OK OK OK OK OK OK OK OK 

0.01 OK OK OK OK OK X OK OK X 

0.02 OK OK OK OK X4 X OK OK X 

0.05 OK OK OK OK OK X OK OK X 

0.1 OK OK X OK X4 X OK OK X 

Table 4.  Mean Differences for Average Travel Times (ATT) with and without AETROS (iterations) 

 AETROS One AETROS All 

Inp. Prob. 0.07 0.1 0.2 0.07 0.1 0.2 

Crash Prob.       

0.0 -4.0752 -4.8635 NaN5 -0.0454 0.0402 0.0391 

0.01 -4.0906 -5.5904 -11.2403 0.1219 -0.1653 -0.9017 

0.02 -5.7970 -7.2758 -8.0891 -0.2149 -0.5500 -1.1353 

0.05 -5.5158 -9.1348 NaN5 0.1411 -0.0930 -0.4503 

0.1 -11.7575 -12.8469 -1.5526 -0.9131 -0.1109 1.8463 

Table 5.  Mean Differences Regarding Total Number of Vehicles with/without AETROS (Vehicles) 

 AETROS One AETROS All 

Input Prob. 0.07 0.1 0.2 0.07 0.1 0.2 

Crash Prob.       

0.0 104.5764 149.5417 -145.8264 1.1736 -0.4028 -0.2708 

0.01 52.9028 46.5000 -139.9653 1.1319 0.2639 -38.6736 

0.02 52.7708 -14.0069 -141.4861 0.8264 0.2431 -44.3958 

0.05 51.4375 15.3472 -148.1667 0.3403 -0.2153 -24.4514 

0.1 28.4236 -3.8403 -11.7361 -0.9167 0.7292 -10.3333 

                                                             
4 For some cases, though in the end the traffic network collapsed, it was all the time in the verge of not doing so. 

5 For two cases when using the only one Available Option flavor of AETROS there were origin/destination pairs with not any vehicle able to leave the traffic 

Network. In that cases, it is not possible to properly calculate the Average Travel Times nor the corresponding M value. 
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Figure 16.  Best case when comparing AETROS One to results without AETROS for a 10% input probability and a 0% crash probability 

 

Figure 17.  Best case when comparing AETROS All to the results without AETROS for a 7% crash probability 

Finally, Figure 13, Figure 14, Figure 15 and Figure 16 

represent all single  difference M' values for the best and 

worst cases, when comparing AETROS One or AETROS 

All to the natural simulated traffic behavior with the 

AETROS turned off. As a side note, for two cases when 

using the only one Available Option flavor of AETROS, 

there were some origin/destination pairs in which no vehicle 

was able to leave the traffic network. In those cases, it was 

not possible to properly calculate the ATT or the 

corresponding M value. 

6. Discussion 

6.1. Test A 

The experiments conducted under Test A are enlightening. 

They show how the AETROS system behaves in a very 

simple situation: two possible paths for the same destination, 

one with no accidents and the other with accidents in one of 

the two links. The evaluation function used within the 

genetic algorithm for every crossroad cell, the whole graph 

of possible next positions is explored, counting the occupied 
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cells, and accidents. These graph are not mutually exclusive 

for all the four crossroad cells, except for Crossroad Cell 27. 

So, better behavior of the AETROS system is expected for 

that cell.  

In Tables 1 and 2, it seems that although the AETROS 

system does not improve reducing the ATT, with respect to 

the average number of vehicles that left the network, there 

clearly is increment with the proposed model. In Table 2, 

another clear effect is that all the worst results, displayed in 

the „Min. Diff‟ column, seem to happen for the 99% input 

probability value. Therefore, that extreme input demand 

seems to be more than the proposed method can handle with 

the current parameter configurations and fitness function. 

In Figure 12, Figure 13 and Figure 14, one can see how, in 

general, the suggested options tend to be balanced for Phase 

A (no accidents), and they tend to lead to paths without 

accidents in Phases B and C. In Figure 11, one can see the 

possible next options for every Crossroad cell. For instance, 

a vehicle in Cell 5 can move ahead towards its destination by 

Cells 6, 26, and 27. It does not make a big difference which 

next cell is chosen since from Cells 6, 26, and 27, a vehicle 

still can chose a link or the other. However, if one pays 

attention to results obtained for Crossroads Cell 27, it is more 

obvious that the suggested next cell is more influenced by the 

accidents in Cells 8 and 29 (Phase B) and Cells 41 and 49 

(Phase C). This is especially obvious when the input 

probability6 is 0.5 and 0.99 (Figure 13 and Figure 14). 

6.2. Test Case B 

From Table 3, one can easily observe that the AETROS 

system tends to collapse the network when the input 

probability demand and/or the crash probability reaches a 

certain level. When the AETROS system is turned off, the 

only traffic control running is very simple, as explained in 

Section 3.2.3. Every intersection has two traffic lights that 

open alternatively. Depending on the number of vehicles in 

the queue before the intersection, at the most crowded queue, 

the traffic lights open. 

In analyzing Table 3, it seems that when we increase the 

pressure of demand, the local traffic control can handle that 

level of demand; however, AETROS ends with collapsing 

the network when the demand pressure reaches higher levels. 

Why this happens needs further examination. It is possible 

that the global optimization developed – in particular, the 

fitness function used – can be fine-tuned to stay stable in 

harder setups. Several fitness functions have been tested; 

however, this approach has revealed itself as the quickest. 

Further, the system needs to be quick because it is designed 

to work online.  

Tables 4 and 5 compare using and not using AETROS for 

the two performance variables, ATT NVH. In Table 4, one can 

observe that results are slightly better when not using 

AETROS, especially compared with the AETROS One' 

version, where drivers are forced to choose the suggested 

option. However, this is not a big difference, considering that 

                                                             
6 New vehicle creation probability, or in other words, the demand pressure. 

the worst statistic value was 12.8469 iterations and 

considering that Test B was 420 cells in size. However, 

looking at NVH, the opposite situation is evident, with better 

results using AETROS One than with AETROS All. 

Therefore, the AETROS system does not seem to offer a 

very big improvement in the average number of vehicles that 

manage to leave the network.  

Aiming to balance the two measured variables and to 

weight the ATT value by taking into consideration the paths 

lengths, the M' parameter was designed. In comparing M' 

values, much better results occurred quite consistently when 

using the AETROS One instead of AETROS All. 

Additionally, a clear result was consistently observed that 

0.2 – averaging a new vehicle at every input cell every 5 

iterations/seconds – is a too harsh input probability value for 

AETROS for this complex traffic network. We plan to focus 

in studding alternative fitness functions to better cope with 

hard demand levels.  Using 0.02 as crash probability (an 

average of one accident every 50 iterations/seconds) seems 

too much to ask of this traffic network using the current 

fitness function. 

The two former boundaries in Figure 15 and Figure 16 are 

the worst experimental results obtained for Input Probability 

0.2 and Crash Probability 0.02. In Figure 13 and Figure 14, 

one can observe much better results when forcing drivers to 

choose the optimized option (AETROS One) instead of 

allowing simulated drivers to choose an alternative option 

when the suggested option leads to an occupied cell 

(AETROS All).  

All in all, results are quite satisfactory when the traffic 

demand probability is a 7% (an average of a new vehicle 

every 14.3 iterations / seconds at every one of the 24 input 

cells of the network) when AETROS One is used, 

encouraging this research team to keep on pushing with the 

development of the presented travel route optimization 

model. 

7. Conclusions and Future Research 

Throughout this paper, some early research results have 

been presented about the AETROS model for traffic-network 

simulation. It is a new optimization model for dynamic 

real-time travel-path assignment, and implements a hybrid 

approach between two paradigms, a system-optimum and 

user-optimum approach. It implements and mixes Predictive 

Time Delay and Reactive Time Delay models. 

We have presented the overall adaptive model, the 

microscopic simulation model and the genetic algorithm 

used. Additionally, we have developed some tests over a 

simulated environment to show the feasibility of the system. 

Preliminary results are encouraging. 

We have developed some tests using a time-dependent 

stochastic user demand, and it seems the system behaves 

well. Under a level of demand the genetic algorithm provides 

preferred option combinations that make the system quickly 

adapt to that variations. 
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We have developed two sets of experiments with it, with two 

simulated traffic network and two different targets: 

 To probe it consistently suggests drivers not to choose a 

path where accidents has been detected (Test Case A, at 

Figure 10). 

 To explore the AETROS strengths and weaknesses with 

a quite complex traffic network (Test Case B at Figure 

12). 

 

Figure 18.  Worst Case When Comparing the ``AETROS One'' to Results without AETROS – Obtained for a 20% Input Probability and a 2% Crash 

Probability 

 

Figure 19.  Worst Case When Comparing the ``AETROS All'' to Results without AETROS – Obtained for a 20% Input Probability and a 2% Crash 

Probability 
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Results are rich with information, revealing that, for Test 

Case B, and with the current fitness function, the higher level 

of traffic demand tried seems to be more than it can properly 

handled without overloading the network. Everything seems 

to indicate that the density has surpassed the Critical Density 

(KC), and that is why the system is no longer stable.  

With this regard we are already exploring alternative 

fitness function approaches in order to make the AETROS 

more robust in that sense. We believe that it is due to the well 

know Queue Spit Back Blockage (QSBB) effect, and it is 

meaningful that when we just use the local traffic lights 

control scheme, it seems to survive well with the tested 

demand levels.  

On the other hand, we cannot forget that QSBB is only 

happening in our simulated real world, where simulated 

drivers are by far less skilled and imaginative that real human 

drivers. Furthermore, we are performing a global 

optimization, which may be maximizing an orthogonal 

criterion with respect a safe intersection-by-intersection 

local optimization criterion. The global traffic changes 

adaptability of the AETROS model may imply sacrificing 

some intersections to stay away from any QSBB scenario. 

All in all, we do believe it is a path worth to be walked 

trying to balance both adaptability and QSBB avoidance, 

because for sure it is interesting to acquire the knowledge on 

what are the keys to tune that balance before trying it at a real 

world traffic network. 

Summarizing, our future research plans include exploring 

alternative fitness functions that may make the AETROS 

system more robust in higher level of congestion. 

Additionally, we need to find a public traffic management 

institution anywhere for starting putting our model to the test, 

at least partially, with real urban traffic networks. 

We plan to develop a study comparing results of including 

or not the crossroad cells priority as a priority in the updating 

order calculation. 

We also plan to implement the following additional tweaks 

in the ''Real World'' simulation in near future: 

 We want to implement in the rules governing the 

movements of vehicles the possibility for a vehicle to 

facilitate others maneuvers. Whether a driver facilitate 

or not others maneuvers may be implemented in a 

random variable. 

 We will include amber as a permitted state for traffic 

lights. A random variable could rule whether a driver 

stop or accelerate when he/she encounters an amber 

(changing to red) traffic light. 
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