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Abstract

Feature-aware sampling and reconstruction are important and widely studied top-

ics in computer graphics. There has been a large amount of work proposed in the

past decades for different applications. Nevertheless, the problems remain challeng-

ing. Among them, two of the challenges caught particular attentions. One is the lack

of a universal definition of “feature” and the other is the lack of effective algorithmic

tools to describe, extract as well as manipulate shapes and their features, especially

for high dimensional complex data.

This dissertation work is dedicated to tackling these two challenges. First, we

focus on two and three dimensional shapes, and propose a generic feature aware sam-

pling strategy that is applicable in a general setting. Secondly, for more complex

and potentially high dimensional shape/spaces, we provide a study focusing on re-

constructing a specific family of feature structure – 1D skeleton, which has many

applications in modern data analysis. Specifically, we achieve both of them by using

geometric and topological methods.

Sampling a domain embedded in two or three-dimensional space is a fundamental

topic in computer graphics. Recently, sampling methods with both randomness and

uniformity have attracted great attention. At this frontier, blue noise sampling has

been widely used for its effectiveness in reducing both the reconstruction artifacts

and the information bias. However, most traditional uniform blue noise sampling
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methods treat the sampling domain equally everywhere. Therefore, with a limited

sample budget, they tend to put unnecessarily dense samples in the non-feature area

while undersampling regions of features. We propose a general feature-aware blue

noise sampling framework by considering a new metric which consists of both Eu-

clidean distance and feature measurement. Unlike earlier feature-aware blue-noise

sampling work that are only applicable to specific problems, our framework can be

easily adapted to a range of applications with different notions of “features”. We

further demonstrate its effectiveness with three applications.

Given a sample set from a hidden domain, accurately recovering the domain or

inferring features/structures behind it is a fundamental topic in modern data anal-

ysis. We are particularly interested in a specific family of features – 1D non-linear

skeleton structure behind the data that occurs naturally in many application such as

image silhouette identification, road network reconstruction from GPS data, model-

ing filamentary structure behind galaxies, as well as high-dimensional samples for the

use of describing evolution of topics in documents or in tweeter database. Automatic

extraction of such 1D-graph like features is not a trivial problem. In particular, it is

usually hard to reliably identify junctions in the graph structure, especially for high

dimensional data, and/or when noise are present. To this end, we propose to use a

topological structure, called the Reeb graph, to help recover such graph-like features

from potentially high-dimensional data usually coming in the form of unorganized

point cloud. We further provide applications of our proposed methods, including one

application in reconstructing the so-called singular surface in R3.
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Finally, to handle the noisy data, we introduce a persistence based Reeb graph

simplification strategy to remove small spurious branches or loops and provide theo-

retical study of it. In particular, we show that our method guarantees that no major

topological features in the original graph will be destroyed during such simplification

processes.
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Chapter 1: Introduction

Feature-aware sampling and reconstruction are two widely studied topics in com-

puter graphics. Throughout literature, there has been a large amount of work pro-

posed in the past decades for different applications. Even though the topics are

broadly studied, challenges still remain. This work focuses on tackling two of them.

One is about the lack of universally applied “feature” aware sampling algorithm. The

other is about the lack of effective algorithmic tools to extract as well as to manipulate

shapes and their features, especially for high dimensional complex data.

The first challenge is frequently seen in the applications such as sampling for

image resize, downsampling for a dense point cloud, and global illumination based

rendering. Traditionally, regular sampling or evenly spaced stochastic sampling pat-

tern was used for its simplicity in implementation. However, these methods tend

to cause undesirable side-effects, such as, the artifacts in the reconstructed data, or

the missing of feature information due to an inappropriate sample distribution. To

reduce the artifacts, a sequence of work has been proposed aiming at generating sets

of randomly distributed samples from an input domain. Among them, the sample

distribution complied with the so-called blue noise property is widely used. For the

other side effect — poorly sampled features, however, so far there is no commonly

applied method which can tackle the problem in a general way. This is partly due to
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the fact that the definition of “feature” is highly application or domain dependent.

Thus, it’s hard to extend most of the existing empirical methods to a broader usage.

To this end, we propose a general feature-aware blue noise sampling framework for

lower dimensional space applications (2D or 3D), by considering a new metric which

consists of both Euclidean distance and feature measurement. This forms the first

part of this dissertation work.

The second part of this work makes an step towards to address the second chal-

lenge: developing effective algorithm tools to extract as well as manipulate shapes

and features, especially for high dimensional complex data. Analyzing and extract-

ing hidden structures for complex and potentially high dimensional shape/spaces has

been not only a fundamental problem in computer graphics, but also ubiquitous in a

broad rang of applications in engineering and scientific fields. With the rapid generat-

ing of diverse data, extracting geometric structure is often a crucial first step towards

interpreting the data at hand. One of the prevailing ideas is to provide descriptor that

encodes useful information about the hidden feature structure from the observed data.

We provide a study focusing on reconstructing a specific family of feature structure

– 1D skeleton, which has many applications in modern data analysis.

In the remaining part of this chapter, we present a brief introduction of the topics

covered in this dissertation work.

1.1 Sampling

Sampling is a fundamental topic in computer graphics whose presence can be

found across a wide range of fields, including image processing, mesh reconstruction

and motion capture, etc. In recent years, sampling methods with both randomness

2



and uniformity have attracted a great amount of interests. At this frontier, blue

noise sampling has been widely used due to its effectiveness in reducing both the

reconstruction artifacts and the information bias.

1.1.1 Blue noise

Before talking about the rational behind the first benefit of blue noise – effective-

ness in reducing reconstruction artifacts (i.e., aliasing), we first give a brief review of

the regular (grid-like) sampling pattern and the source of aliasing. Take 2D image

sampling as an example. In a point-sampled image, the frequency band beyond the

Nyquist limit (i.e., half of the sampling rate) are inadequately sampled. If the samples

are regularly spaced, such high frequencies can appear as aliases. This usually occurs,

for example, around the edges in the input image. To see how this happens, consider

a one-dimensional sampling along the time axis t. Let a signal f(t) be sampled at

regular intervals of time, which is equivalent to multiplying the input signal with a

periodic impulse train, a.k.a shah function, III(t/T ), where III(t) =
∑∞

n=−∞ δ(t− n)

and δ is the Kronecker delta function. After that, information about the original

signal f(t) is preserved only at the sample points f [n], where we use [.] to denote

a discrete signal, and n is its discrete index. Its spectrum in frequency domain is a

sequence of periodic replicas of the original signal. Based on the sampling theorem, if

f(t) contains no frequency above the Nyquist limit, then by passing an ideal lowpass

filter (reconstruction filter), the sampled signal can be exactly recovered. However,

for the signal with spectrum energy beyond the Nyquist band, its high frequency part

can appear falsely as low frequencies due to the overlapping of the adjacent replicas,

thus cause aliasing [63, 44].
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The most straight-forward way to reduce aliasing is to increase the overall sampling

rate. However, it seldom works in practices due to the fact that the frequency range

of the input signal (usually with noise) is hard to predict. An alternative way is to

change the sampling pattern (i.e., sample distribution). If the sample points are not

regularly placed, the energy which causes aliasing in the reconstructed signal may

reduce to be white noise – an artifact that is much less objectionable in humans

visual perception system. An excellent example of non-regular sample distribution is

human retina, which has a limited number of photoreceptor cells, but are not prone to

aliasing. Those cells appear to have a random and locally uniform distribution that

is usually referred as Poisson disk distribution [44], whose spectrum lacks the energy

in lower frequency band (Figure 1.1(b), right) and is coincident with the concept of

blue noise in terms of The colors of noise defined in Telecommunications: Glossary

of Telecommunication Terms.

Due to such coincidence, in computer graphics, blue noise is usually used to refer a

random sample distribution whose samples are “well separated”. In other words, these

samples are evenly distributed yet with stochastic properties. In practice, Poisson disk

distribution can be generated by placing samples randomly with the restriction that

no two samples are closer to each other than a certain distance. Its commonly seen

implementations include dart throwing [81], energy based sample relaxation [28], or

some variations like best-candidate sampling method [72], etc. We will give a further

discussion about these methods in Chapters 2.

The second benefit of blue noise sampling is its effectiveness in reducing informa-

tion bias compared with some other random pattern like white noise (Figure 1.1(a)).

This can be inferred from the definition of Poisson disk sampling, where samples are
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(a) (b)

Figure 1.1: (a) shows the sample distribution (left) and frequency domain spectrum
(right) of white noise in 2D domain. (b) shows the corresponding distribution (left)
and spectrum (right) of Poisson disk sampling pattern. All spectrum shown here are
generated via 2D Fourier transform, and darker color denotes the area with less energy
while lighter color refers the area with relatively higher energy. In the spectrum chart,
the frequencies increases radiately from the center (0 frequency, a.k.a, DC component
in signal processing context) towards the boundary.

well separated. Thus, with the same sample budget, the sampling with blue noise

properties tends to give a better coverage of the entire domain.

1.1.2 Feature awareness

However, most traditional uniform blue noise sampling methods treat the sam-

pling domain equally everywhere. Therefore, with a limited sample budget, they tend

to put unnecessarily dense samples in the non-feature area while inadequately sample

the feature region. The left figure in Figure 1.2 shows an example of the problems

which can be potentially caused by using a uniform blue noise sampling in the im-

age subsampling application. The thin features like the music lines are tend to be

undersampled which leads to a problematic reconstruction result.

In the recent years, there have been several pieces of work dedicated to the topic

of adaptive noise blue sampling [56, 14, 28, 24], namely, the sampling distribution
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complies with a specific density distribution (not necessary to be uniform) — for

example, the density defined based on the greyscale of an image or the curvature of

a surface. One main drawback of these methods is that they are usually application

dependent.

Figure 1.2: Left: image subsampling result by using uniform blue noise sampling.
Some music lines are broken. Right: the corresponding result by using feature aware
blue noise sampling. All lines and notes are well preserved.

Our contribution. We propose a general feature-aware blue noise sampling frame-

work by considering a new metric which consists of both Euclidean distance and fea-

ture measurement. Unlike earlier feature-aware blue-noise sampling methods that are

only applicable to specific problems, our framework can be easily adapted to a range

of applications where “features” are differently defined. The right figure in Figure 1.2

shows the image subsampling result generated by using our feature aware blue noise

sampling. As shown, comparing with the left figure (generated via traditional uniform

blue noise sampling), our result gives a better reconstruction in terms of the image
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features, such as the music lines and notes. We show the details of the algorithm and

demonstrate its effectiveness through more applications in Chapter 2.

1.2 1D Feature Structure Recovering

Given a sample set from a hidden domain, accurately recovering the domain or

inferring structures behind it is a long-standing topic in modern data analysis. At this

frontier, geometric graph (1D skeleton structure) can serve as the underlying structure

for modeling many natural phenomena from river/road networks, root systems for

trees, to particle trajectories. For example, if we are interested in obtaining the road

network of a city, we may sent out cars to explore various streets of the city, with

each car recording its position using GPS devices. The resulting data is a set of

potentially noisy points sampled from the roads in the city. Given these data, the

goal is to automatically reconstruct the road network, which can be described as a

geometric graph embedded in the two dimensional space.

The importance and applications of extracting hidden graph structure goes much

beyond the GPS example we gave above. At a broad level, the graph-extraction prob-

lem is also related to manifold learning and nonlinear dimensionality reduction which

has a rich literature, see e.g [9, 73, 77]. Manifold learning methods typically assume

that the hidden domain has a manifold structure. An even more general scenario is

that the hidden domain is a stratified space, which intuitively, can be thought of as

a collection of manifolds (strata) glued together. Recently, there has been several

approaches to learn stratified spaces [11, 45]. However, this problem is hard in gen-

eral and requires algorithms both mathematically sophisticated and computationally

intensive. To this end, graphs can be considered as a simplest complex structure
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beyond manifolds — a one dimensional singular manifold structure. For this special

family of singular manifolds, we develop an automatic and light-weighted algorithm

to retrieve them from potentially high dimensional data.

More specifically, we proposed a Reeb graph based method to extract the hidden

1D feature structure from an unorganized input point set. We note that the concept

of the Reeb graph has been used in a number of applications in graphics, visualization,

and computer vision [13]. However, in the previous work, it has been typically used

with mesh structures rather than a tool for analyzing unorganized point cloud data,

especially in high dimensions, where constructing meshes is prohibitively expensive.

1.2.1 Reeb graph

Many problems in science and engineering can be posed in terms of real-valued

functions, and the structure of such continuous function can be sometimes made

explicit by considering the evolution of the components in the level set [39]. Reeb

graph is one such topological concept.

Let f : X → R be a continuous function defined on a topological space X as

shown in Figure 1.3 (a). For each scalar value α ∈ R, the set {x ∈ X : f(x) = α} is

called a level set of the function f . The Reeb graph of f is obtained by continuously

collapsing every component of each level set into a single point. As α increases or

decreases, those components appear, disappear, split and merge [47]. Reeb graph

of f tracks such changes and provides a simple yet meaningful abstraction of the

input scalar field. Several works have been proposed to implement fast Reeb graph

computing in different applications [26, 70, 34, 47, 69].
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Figure 1.3: (a) For a topological space X with height function f as its scalar field,
Rf (X) is its corresponding reeb graph. In the level set of f(x) = a, v1 and v2 belong
to one component, and v3 belongs to another. (b) Taking height function f as the
scalar field, components C1 and C2 are generated when we sweep through minima
v1 and v2, and they are merged when we arrive downfork saddle v3, so that create
branching features. The loop γ spanned by v4 and v6 is created when we pass through
downfork saddle v6 (cycle features).
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Our contribution We proposed a light-weight Reeb graph based method to re-

construct the 1D skeleton hidden in the input (potentially high dimensional) point

cloud data. Given a set of unorganized points, we start the process by first building

its Vietoris-Rips complex (see Figure 1.4). The Rips complex intuitively provides an

approximation of the underlying space that these input points are sampled from. It

is popular in topological data analysis since its construction extends easily to higher

dimensional space [86]. After constructing the complex, we then define a specific

function on it, and retrieve its Reeb graph to approximate the hidden graph struc-

ture. This approach is very efficient, while at the same time it provides a reliable

graph structure, especially in the junction area, which is typically hard for many

prior approaches. In addition, a theoretical understanding of using Reeb graph to

approximate metric graph has been provided in [21].

The algorithm we proposed has applications not only in low dimensional space,

such as GPS road network reconstruction [42], 1d singular feature reconstruction in

R3 [29], etc., but also be helpful in the analysis and description of potentially high-

dimensional data [42]. See Chapter 3 and Chapter 4 for details.

1.2.2 Reeb graph simplification

Ideally, if the input point set is well organized (i.e., well approximate the hidden

space), by choosing an appropriate scalar field f , the Reeb graph constructed in

the above scenario catches the topology of the 1D skeleton structure. However, in

practice, the point cloud usually comes with noise. To handle the noisy data, we

introduce a persistence based Reeb graph simplification strategy to remove small

“features” (i.e., branches and loops) potentially caused by the noise in the data [42].
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(a) (b) (c) (d)

Figure 1.4: Above figure briefly shows the process of building the Rips complex
of an input point set. Given a point set shown in (a), a radius r (shown as blue
disk) is chosen and the neighbor relationship is built (b); (c)-(d) show the process of
connecting the neighbor points and filling in the simplex (i.e., edge and triangle).

For Reeb graph Rf , there is a natural way to define “features” and rank their

“importance”. That way turns out to be consistent with so-called persistent homology

induced by the function f : Rf → R. Since Rf is a graph, we only need to consider

its 0- and 1-dimensional persistent homology, which corresponds to branching feature

and cycle feature, respectively (See Figure 1.3(b)). The importance of these features

can be measured according to their persistence, which is the absolute f difference

between their birth and death events. More details would be provided in Chapter 3

and 5.

Our contribution. Noise in the input data can cause small spurious branching

features and loop features. To remove them, we sort the graph features (both branch

feature and cycle feature) in their increasing persistence order and set up a user-

defined threshold δ. Intuitively, the branches and loops with persistence value less

than δ will be categorized as “less important” and be merged (progressively) as shown

in Figure 1.5.
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Figure 1.5: Reeb graph simplification. With the assumption that f is the height
function, (a) shows a noisy Reeb graph Rf . The spurious branches and loops with
persistence value less than δ are highlighted in (b). (c) shows the simplified reeb

graph R̃f with all these branches and loops removed.

We describe the details for the above simplification scheme for Reeb graph and

demonstrate its effectiveness in Chapter 3 and 4. Furthermore, we present a theo-

retical study of the distortion caused by such simplification in Chapter 5. Let Rf

and R̃f denote the original Reeb graph and the one after the simplification process,

respectively, we will see that the distortion distance between Rf and R̃f would be

smaller than cδ, where c is a constant. In other words, it implies that the Reeb graph

simplification approach we provide will not destroy major topological features in the

original graph Rf .
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Chapter 2: Feature Aware Blue Noise Sampling

Blue noise sampling is a commonly used sampling method in graphics. As men-

tioned in Chapter 1, over the years, a variety of research efforts targeting both the

characteristics and the generation of blue noise distributions have been conducted

[27, 79, 81, 28]. In this chapter, we first review some usual blue noise sampling

generating strategies. After that, we introduce a metric based blue noise sampling

framework which can function as a generic feature aware stochastic sampling scheme.

Part of the work presented in this chapter can also be found in the publication [43]

and [22].

2.1 Blue Noise Sampling

In computer graphics, blue noise sampling generally refers to a sample distribution

which is random yet uniform1. In the rest of this chapter we use “blue noise” to denote

such distribution for abbreviation, though the original definition of blue noise may

actually refer to a spectrum with less energy in low frequency band.

In prior work, the generating of blue noise can be roughly categorized into two

families. One family uses a rejection-based scheme, called dart throwing. The other

uses energy-driven approaches that can be further divided into a set of subcategories,

1Here, by “uniform”, we mean an “evenly spaced distribution”, instead of the distribution that
has constant probability. The latter one is the concept usually used in probability theory.

13



such as Voronoi Diagram based ones [5, 59, 28, 84], kernel function based ones [67, 61],

and so on.

2.1.1 Dart throwing

Generally speaking, dart throwing algorithm aims to directly preserve the Poisson

disk property: no two samples are closer to each other than a certain distance. The

general idea of dart throwing is: Assume we have a random sample generator. Each

time, it randomly generate a trial sample in the domain. If this trial sample’s influence

zone conflicts with the one of any sample which already exists in the domain, the trial

sample will be rejected; otherwise, be accepted. Figure 2.1(a) shows this process. In

the figure, the trial sample sr will be rejected since its influence region (i.e., a disk

centering at sr) overlaps with the influence regions of existing sample s1 and s2, while

the trial sample sa will be accepted since no such conflict occurs.

The method is quite straightforward and, empirically, it produces a random as well

as uniform sample distribution. However, it has some drawbacks. First, without an

appropriate termination condition, the algorithm tends to be time consuming. This

is due to the fact that the algorithm runs on a “rejection” based schema. Suppose in

ideal case the domain can contain no more than Nmax samples. When the number of

accepted sample approaches Nmax, the dart throwing process will suffer an obvious

slowing down. That is caused by the fact that the trial sample could potentially have

gone through a large amount of rejections before being finally accepted. To prevent it

from happening, some termination conditions are commonly used, such as setting up

a max trial sample count or a max failure count (the number of contiguous rejections),

or both.
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The second disadvantage is that it’s hard to give a precise control of the final

sample count. Because the sample generating process is a stochastic process, the

number of samples that eventually get accepted can be case dependent. To see if the

domain has contained reasonably dense samples, people empirically use a measure-

ment ρ = n
Nmax

, where n is the actual sample count accepted, Nmax = D
2
√

3r2
is the

maximum number of samples the domain can contain, D denotes the domain area,

and r is the disk radius [54, 55]. The formula of Nmax comes from the most compact

sample pattern — hexagon tiling, where 2
√

3r2 is the area of each hexagon cell. A

Poisson disk distribution with reasonably good quality usually has ρ ∈ [0.65, 0.85]. If

ρ is too low, i.e., ρ < 0.65, the sample is over sparsely distributed. If ρ is too high,

i.e., ρ > 0.85, a hexagon like regular pattern tends to appear, which conflicts with

the randomness prerequisite. One thing worthy to note is that this ρ formula can

also be rearranged as ρ = r
rmax

, where rmax is the largest possible radius in case the

actual sample count n is restricted, i.e., rmax =
√

1
2
√

3n
. By setting ρ around 0.75,

we can roughly compute an optimal r that empirically balances uniformity and ran-

domness, therefore generates a reasonably good Poisson disk distribution. So, ρ, in

some context, is also referred as “relative radius” [55]. Empirical though this schema

is, it works reasonably well in practices. To some degree, it also eases the problem of

uncontrollable final sample count.

Some other variant methods can handle “sample count” better, but the common

trade-off is that the Poisson disk properties are less strictly met. Such methods include

the soft disk dart throwing introduced in [81] and the best candidate algorithm in

[72].
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Figure 2.1: (a) shows the process of dart throwing algorithm. In each iteration, a
trail sample is thrown out, if its neighbor area conflicts with the turf of the existing
samples in the domain. The sample will be rejected, e.g., sample sr will be rejected
since its disk overlapped with the ones of the existed sample s1 and s2. sa will be
accepted since there is no such conflict occurred. (b) shows the result of dart throwing
algorithm. (c) shows the relaxation result by taking (b) as the input.

Finally, the sample distribution generated via dart throwing may not have a sat-

isfying local uniformity as shown in Figure 2.1(b). To this end, a relaxation process

is usually implemented after the dart throwing process. In the relaxation, samples

are slightly shifted around so that a better locally uniform distribution is achieved

as shown in Figure 2.1(c). Some commonly used relaxation schemas, like Lloyd re-

laxation and kernel energy minimization, actually drop into the category of energy

driven algorithm, which we will discuss soon.

According to the recently published survey work [85], the simplest data structure

for uniform Poisson disk sampling is the quad-tree [83]. In this data structure, the

cell size of the base grid is set to be
√

2r, so that each grid cell will receive no

more than one sample. During the sampling process, the partially covered cells will

be subdivided into smaller fragments in quad-tree. The follow-up work [37] further

accelerated the sampling process by using a flat fragment array. Furthermore, GPU
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based parallel computing strategies, e.g., [81, 14], are also widely used nowdays to

speed up the dart throwing process.

2.1.2 Minimum energy driven algorithms

Minimum energy driven algorithms form another family of blue noise generating

methods, though most of them are not initially aiming at generating a stochastic

sampling distribution. In 2D case, the ultimate convergence state of these algorithms

tends to be a regular sample pattern like hexagon tiling. The blue noise sample

distribution is more like an intermediate state, which appears transitionally in the

process of the convergence. We briefly introduce some commonly seen energy driven

algorithms below.

Centroidal Voronoi tessellation Given a domain Ω ⊆ RN , the set {Vi}ki=1 is

called a tessellation of Ω if Vi ∩ Vj = ∅ and the union of {Vi}ki=1 covers Ω completely.

Given a set of points {pi}ki=1 in Ω, the Voronoi region (or sometimes referred as

Voronoi cell) Vi corresponding to pi is defined as [35]

Vi = {x ∈ Ω | ‖x− pi‖ < ‖x− pj‖,∀j 6= i} ,

where ‖.‖ denotes the Euclidean distance in this context. Such tessellation and its

dual, e.g., Delaunay triangulation, have numerous applications in computational ge-

ometry. The mass centroid ci of region Vi is computed as

ci =

∫
Vi

x%(x) dx∫
Vi
%(x) dx

, (2.1)

where %(x) denotes the domain density at point x.

The discrete version of above definition is similar, but instead of having a contin-

uous domain Ω, we now focus on the underlying domain which is represented as a set
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of points, denoted by Ω̂ = {xi}mi=1 in RN . The Voronoi sets are now defined as

V̂i = {x ∈ Ω̂ | ‖x− pi‖ ≤ ‖x− pj‖,∀j 6= i, [tie-breaking condition]} ,

where [tie-breaking condition] is an optional condition, which works in case ‖x−pi‖ =

‖x− pj‖. The corresponding mass centroid ĉi is then defined as

ĉi =

∑
V̂i

x%(x) dx∑
V̂i
%(x) dx

. (2.2)

Note, Eqn 2 works under the assumption that P is not restricted to be a subset of Ω̂.

Namely, P ⊂ Ω̂ is not necessarily true. Otherwise, the mass centroid could be more

appropriately defined as [35]

∑

x∈V̂i

%(x)‖x− ĉi‖ = inf
p∈Ω̂

∑

x∈V̂i

%(x)‖x− p‖ .

In practice, if the underlying discrete domain Ω̂ is dense enough i.e., |Ω̂| � |P |,

to simplify the computation process, one may first compute the “expected” mass

centroid c̄i, via Eqn 2.2, then find a p∗ ∈ Ω̂ which is closest to this expected mass

centroid as

p∗ = arg min
p∈Ω̂

‖p− c̄i‖ .

Then set ĉi equal to p∗.

There are several deterministic or stochastic approaches can be used to compute

such tessellation, like Lloyd algorithm, sequential sampling algorithms, random sam-

pling algorithm, and so on [35]. Here we give a brief introduction on Lloyd algorithm

for its simplicity and wide usage. For other methods, one may refer to [35] for a

thorough description.
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Lloyd algorithm Lloyd algorithm, also sometimes called Lloyd relaxation in the

literature, is an algorithm named after Stuart P. Lloyd aiming to find evenly-spaced

points in subsets of Euclidean spaces, as well as partitions of these subsets into well-

shaped and roughly equal-sized convex cells [60]. Lloyd relaxation in a continuous

domain is an implementation based on the Voronoi cell partition; and its discrete

version bears a resemblance to the k-mean clustering process.

In general, the algorithm of Lloyd relaxation can be summarized as following:

Given a set of points P = {p1, · · · ,pN}, a.k.a, sites in some context, three steps are

repeated until the process converges or some user defined criteria are met.

1. compute the Voronoi diagram of P

2. integrate/sum each Voronoi cell; and compute the mass centroid ci for
the Voronoi cell of pi

3. update the position of pi to be ci

Kernel-based method Kernel function based approaches are another type of algo-

rithms aiming at generating uniform sample/point distributions. In those algorithms,

a global energy E is defined usually in the form of kernel function k(.) as follows:

E =
∑

pi,pj∈P ,i 6=j

f
(
k(pi,pj)

)
.

This energy E is then progressively decreased so that a locally even-spaced sam-

ple distribution is achieved. Spectral method [67] and graph Laplacian method [61]

are two typical kernel function based algorithms. In both of them, Gaussian kernel

k(pi,pj) = e−g(pi,pj) is used, where the non-negative function g(pi,pj) indicates the

difference between pi and pj. Figure 2.2 shows an example result from the Gaussian

weighted graph Laplacian approach proposed in [61], where the input is a point cloud
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in white noise distribution; and after several iterations, the point cloud become more

and more evenly spaced.

(a) (b)

Figure 2.2: (a) shows the input point cloud P in white noise distribution. (b) shows
the output of the approach proposed in [61], which relies on Gaussian-weighted graph
Laplacian.

Kernel methods are prevalently used in surface remesh or 3D space point cloud

uniformization, where the surface can either be explicitly given or be represented

by a underlying point cloud [58, 67, 50, 61]. One major drawback of these energy

minimizing strategies is that they tend to converge and terminate at local minimums

instead of the global one. The direct consequence of such premature convergence is

that the global evenness is hard to guarantee (in the final sample distribution), though

the local uniformity is usually well achieved. To ease this problem, some auxiliary

strategies are used, for example, adding a random shift to the sample position or

a simulated annealing process in [61]. The later one moves points in a multi-scale
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manner so that a better well-separateness properties can be obtained. An alternative

way to solve this problem is, instead of taking an arbitrary distributed point set as

the input, one can use the output of a dart throwing process, in which the global

evenness has been well achieved.

2.2 Feature Aware Blue Noise Sampling

We have talked about some general methods used in blue noise sampling. The

sample set produced by them covers the domain evenly, but it may potentially inade-

quately sample the feature area so that cause trouble in the subsequent processes, such

as reconstruction. Figure 2.3(a) and (c) show the image subsampling and RGB image

stippling result generated by using uniform blue noise sampling2. In Figure 2.3(a),

to save the sample budget, the sample radius is set to be greater than the minimum

river width. As a consequence, parts of the river are inadequately sampled and it

leads to some noticeable errors in the reconstructed image. Similarly, without special

care on the feature region, the girl’s facial expression is blurred out in Figure 2.3(c).

Generally speaking, in the sampling process, given a fixed number of samples, the

goal is to return a good coverage of sampling domain as well as a good representation

of the features inside the domain. Here, the notion of “feature” is application varied.

For example, in image stippling [5, 56, 40] or resizing [43], the feature is the difference

between pixel color, and the goal is to distribute the stipples uniformly and yet depict

the image boundary well. In 3D space point cloud downsampling application[67, 22],

the feature can be the curvature of the underlying surface or the variation in surface

2The input image of the first row in Figure 2.3 and the input image of Figure 2.8 are from National
Geographic. The input image of the second row in Figure 2.3 and the input image of Figure 2.6 are
from a computer-animated short film Alma.
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(a) (b)

(c) (d)

Figure 2.3: Comparison between uniform blue noise sampling and feature aware blue
noise sampling. (a) and (c) show the output of uniform blue noise sampling in image
subsampling and RGB stippling application. (b) and (d) show the corresponding
results generated via feature aware blue noise sampling.

normals, and the goal is to reduce the number of samples so that the subsequent

reconstruction process could be less costly while the underlying surface are still be

able to roughly accurately reconstructed.
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There lacks a general method to combine these two components. To this end, we

propose a general feature-aware blue noise sampling framework — bilateral blue noise

sampling, mainly for lower dimensional space applications (i.e., 2D or 3D).

2.2.1 Bilateral metric

The core idea of our framework is a new metric which considers the spatial differ-

ence as well as the “differential” features between two samples si and sj. Here we use

“differential” feature to indicate a type of features which can be represented as the

difference between the “property” value of two samples. The “property” here can be

a scalar value or a vector as long as it’s discriminative enough. For example, in the

discrete case, surface curvature can be roughly illustrated as the normal difference

between two neighbor surface points; and the boundary in an image can be identified

via the color difference between two adjacent pixels.

In particular, we define each sample si as a high dimensional vector si = [pi,ηi],

where pi is si’s position in Euclidean space, and ηi represents its property of interest.

The bilateral metric (bilateral distance) is then in the form of

ξ(si, sj) = f(g(pi,pj), h(ηi,ηj)), (2.3)

where ξ is positively proportional to both the spatial function value g(., .) and the

feature function value h(., .). Given this, one possible definition could be

ξ(si, sj) =

(
1

σ2
p

‖pi − pj‖2 +
1

σ2
η

‖ηi − ηj‖2

) 1
2

, (2.4)

where 1
σp

and 1
ση

work as the weights to balance the spatial and the feature terms.

Eqn 2.4 shows that the bilateral distance ξ will increase if two samples either stay

further away from each other, or become very different in terms of the feature value.
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ση →∞ ση = 25 ση = 10 ση = 5

Figure 2.4: Above figure shows the bilateral blue noise sampling results by using
various ση weight, where η is set to be surface normal.

An alternative but related definition of the bilateral metric could be

ξ(si, sj) =
1

σp
‖pi − pj‖2 e

−
‖ηi−ηj‖

2

σ2η . (2.5)

In both Eqn 2.4 and Eqn 2.5, decreasing ση will emphasize the impact of the

feature term. By setting ση approaching∞, the bilateral distance ξ reduces to be the

Euclidean distance between two samples. Figure 2.4 shows the sample distribution

with various ση value, where a smaller ση implies that more samples will concentrate

on the feature area, i.e., the higher curvature area in this example.

2.2.2 Bilateral blue noise sampling

The bilateral metric defined in Eqn 2.3 can be used in both dart throwing blue

noise generating algorithm and the energy driven algorithms we introduced in Sec-

tion 2.1.

Dart throwing. The bilateral dart throwing algorithm follows a similar process

as the traditional dart throwing, but uses bilateral distance ξ instead of the original

Euclidean distance for the conflict check. Note that since we only change the distance
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ξ but not the conflict threshold r, our method can be orthogonally combined with

not only uniform (r is a constant) but also adaptive radius setting (r(s) depends on

spatial sample position).

Lloyd relaxation. Being similar to the definition of CVT in Section 2.1.2, we write

the CVT in bilateral distance case as

Vi = {x ∈ Ω | ξ(x, si) < ξ(x, sj),∀j 6= i} .

Note, since the bilateral metric is not isotropic, there is no guarantee that the Voronoi

cell Vi would be in a convex shape. But in practice, we haven’t been aware of any

notifiable problem which could be potentially caused by the non-convex property. We

compute the mass centroid in the same way as shown in Eqn 2.1.

Kernel function We define the global energy E as

E =
1

N

N∑

i=1

e−
ξ2(si,S)

τ2

where S is the sample set S = {s1, · · · , sN}. By taking the dart throwing result as

the input, the global energy E reduces quickly if an appropriate step size is selected.

2.2.3 Applications

In the rest part of this chapter, we will demonstrate our framework with three

applications: stippling, image subsampling and surface reconstruction.

Stippling Stippling refers to a technique that uses small primitives (e.g. dots) to

illustrate images [75, 5, 40]. The primitives can be of the same color (e.g.black) or

from a small palette of colors. The later one works due to the fact that human visual
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systems tend to blend multiple dots in local spatial regions. Such trick for trading off

spatial for color resolutions has also been used in image halftoning where samples lie

on discrete regular pixel grids [68, 16, 57].

For both stippling (continuous domain) and halftoning (discrete domain) applica-

tions, it has arrived a common ground that a sample set with blue noise distribution

is more visually attractive. Furthermore, maintaining image structures or features is

also highly desired.

Bilateral blue noise sampling can be applied for such feature-aware image stippling

or halftoning by simply using the image color as features η in Eqn 2.4. Figure 2.5 and

Figure 2.6 show our image stippling result in both greyscale and RGB case. As shown,

our results have a better feature preservation comparing to the adaptive blue noise

sampling results, while a better space uniformity than the halftoning work shown in

[57].

Image subsampling Nonlinear filtering, such as bilateral and medial filtering, has

a variety of applications. However, its computation process tends to be slower com-

pared to linear filtering. To this end, various acceleration methods have been proposed

for the acceleration (see e.g. [82, 23, 2, 41].

Among them, sub-sampling is a viable approach for filters. Banterle et al.[6]

further demonstrated that the blue noise sampling offers the advantage of reducing

aliasing. The method we proposed here offers a potential content-aware sub-sampling

method for nonlinear filtering. In a nutshell, by treating image color as features η

in Eqn 2.4, we perform bilateral blue noise sampling according to the underlying

image content, and implement the filtering based on the samples we just obtained.
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We propose two implementations of our method to meet different speed/memory

expectations: the local one, in which sample pattern within a filter kernel is generated

independently for each output pixel; and the global one, in which sample pattern of

the entire output image is produced as a pre-process, from which samples locating

within individual output kernels are used during the following filtration.

Quality speaking, bilateral sampling tends to produce better quality than uni-

form sampling, especially under sparse sample distributions. This is illustrated in

Figure 2.7 and Figure 2.8 for perceptual image quality, and Figure 2.9 for numerical

error measurements under a variety of images and parameter settings. From the ex-

periments, it seems that the bilateral sampling can achieve similar quality to uniform

sampling with fewer samples, i.e., usually 75/60% for local/global sampling.

Global sampling tends to be less noisy than local sampling, both visually and

numerically. This is because in a global method, two adjacent output pixels can

have overlaps in their filter tap/sample sets, providing extra coherence than the case

where the filter sets are produced independently. We have observed that such sample

set coherence may cause bias in a very sparse sampling setting (e.g. large missing

chunks in Figure 2.7(e)), but in most cases, it outperforms a local sampling. For

above experiments, more implementing details can be found in the technique report

[43].

Surface reconstruction with various sample size Geometry sampling is an-

other important component in computer graphics, and can be benefited by using a

sample distribution that preserves both features and blue noise properties[67]. In

particular, more samples are usually allocated around the features such as tips and
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creases, so that a better reconstruction can be achieved. Furthermore, distributing

samples with blue noise properties can avoid the potential biases. Our framework can

be helpful here by simply using surface normal as the feature η in Eqn 2.4.

One application of our method is that it can preserve features reasonably well

even though the sample budget is relatively tight. Figure 2.10 shows the surface

reconstruction result for Bimba model, with sample size reducing from 95K to 7K.

As shown, even in the case with only 7K samples, the major features, like the bread

and knot, are still roughly preserved.

In addition, our method is helpful in reconstructing thin features like the bowl

model shown in Figure 2.11. Given a dense point cloud sampled on the surface of the

bowl, the traditional uniform blue noise downsampling approach may have troubles

in preserving the thin features such as the bowl wall, where samples in the inner

and outer side of the wall are far from each other in terms of the bilateral distance

but close enough to cause disk influence conflict if we only consider the Euclidean

distance. This causes a poorly reconstructed surface as shown in the first row in

Figure 2.11. However, using bilateral distance will ease the problem and give a better

reconstruction in general3.

3The bowl model is from Autodesk 123D.
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(a) (b)

(c) (d)

Figure 2.5: Stippling results. (a) shows the input image. (b) shows the result of
adaptive Lloyd relaxation [81]. (c) shows the result of halftoning method in [57]. (d)
is generated via bilateral Lloyd relaxation.
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(a) (b) (c)

Figure 2.6: Stippling results. (a) shows the input image. (b) shows the result of
adaptive Lloyd relaxation [81]. (d) is generated via bilateral Lloyd relaxation.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Image subsampling results — music sheet. (a) shows the input image.
(b) shows the result of a full sampling. (c) shows the result of uniform sampling via
local method. (d) shows the result of bilateral sampling via local method. (e) shows
the result of uniform sampling via global method. (f) shows the result of bilateral
sampling via global method. 31



(a) (b) (c)

(d) (e) (f)

Figure 2.8: Image subsampling results — bay. (a) shows the input image. (b) shows
the result of a full sampling. (c) shows the result of uniform sampling via local method.
(d) shows the result of bilateral sampling via local method. (e) shows the result of
uniform sampling via global method. (f) shows the result of bilateral sampling via
global method.
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(a) (b)

(c) (d)

Figure 2.9: Image subsampling results quality comparison. (a) and (b) show the
quality of “music sheet” result shown in Figure 2.7. (c) and (b) show the quality
of the result of “bay” in Figure 2.8. The left column, i.e., (a) and (c), is generated
by using per-kernel sample count Ns = 0.5K, where K denotes the kernel size (in
the number of pixels). The right column, i.e., (b) and (d), is generated by using
per-kernel sample count Ns = 2K.
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192K (original mesh) 95K 57K

21K 12K 7K

Figure 2.10: All results are produced by our bilateral dart throwing algorithm. As
shown, our method can well preserve major features under a variety of sampling rates.
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uniform blue noise sampling

bilateral blue noise sampling

Figure 2.11: The first row shows the sample distribution and final surface reconstruc-
tion result for the bowl model by using uniform blue noise sampling. The second row
shows the corresponding results generated via bilateral blue noise sampling. In both
images, blue dots and orange dots denote the samples on the inner and outer side of
the bowl, respectively.
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Chapter 3: 1D Feature Structure Detecting and

Reconstruction

In last chapter, we introduced a general method for feature aware sampling in low

dimensional space — 2D and 3D space. The method can be potentially extended

to higher dimensional space by manipulating the feature term in the feature aware

metric, i.e., bilateral metric ξ. Given such a sample set from a hidden domain,

accurately recovering the domain (e.g., image or surface reconstruction) or inferring

features/structures behind it (e.g., GPS roadmap extracting) has been a long-standing

topic in graphics and many other data analysis related fields. For low dimensional

applications, e.g., image or 2D manifold reconstruction, a variety of approaches have

been proposed in the past decades. However, for more complex and potentially high-

dimensional data, though attracts growing interest, this problem remains challenging.

In the complex and noisy non-linear data case, when the input data is high-

dimensional, it is often of interest to approximate it with a low-dimensional or even

one-dimensional space, since many important aspects of data are often intrinsically

low-dimensional. Specifically, there are many scenarios where the underlying struc-

ture is graph-like, e.g, river/road networks or various trajectories. In this chapter,

we introduce a framework to extract, as well as to simplify, a one-dimensional non-

linear “skeleton” from unorganized data using a topological concept called the Reeb
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graph. The algorithm we proposed is light-weighted, yet robust and effective. It does

not require complex optimizations and can be easily applied to unorganized high-

dimensional data such as point clouds or proximity graphs. In addition, it can also

represent arbitrary graph structures in the data. We provide a number of experi-

ments to demonstrate the effectiveness and generality of our algorithm, including the

comparisons to the existing methods, such as principal curves. The work presented

in this chapter can also be found in the publication [42].

3.1 Motivation

Geometric graphs are the underlying structures for modeling many natural phe-

nomena from river/road networks, animal migration routes, root systems for trees, to

blood vessels, and particle trajectories. An excellent example would be roadmap re-

construction from potentially noisy GPS data collected by commercial GPS devices.

Nowadays, such data are quite popular and available at some open-streets project

website like http://www.openstreetmap.org.

In addition, geometric graphs also arise from many modeling processes, such as

molecular simulations. They can sometimes provide a natural platform to study a

collection of time-series data, where each time-series corresponds to a trajectory in

the feature space. These trajectories converge and diverge, which can be represented

by a graph. Such graph in turn can then be used as a starting point for further

processing (such as matching) or inference tasks.

Generally, there are a number of scenarios where we wish to extract a one-

dimensional skeleton from an input space. The goal here is to develop, as well as
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to demonstrate the use of a practical and general algorithm aiming at extracting

graph structures from the input data (in any dimensions).

3.2 Related Work

At a broad level, the graph-extraction problem is related to manifold learning and

nonlinear dimensionality reduction which has a rich literature, see e.g [9, 73, 74, 77].

Manifold learning methods typically assume that the hidden domain has a manifold

structure. An even more general scenario is assuming that the hidden domain is

a stratified space, which intuitively, can be thought of as a collection of manifolds

(strata) glued together. This general problem is harder and requires algorithms both

sophisticated mathematically and computationally intensive. By this token, we aim

to learn a graph structure, which is simply a one-dimensional stratified space, allowing

for simple approaches.

The most relevant previous work related to our graph-extraction problem is based

an elegant concept of principal curves, originally proposed by Hastie and Stuetzle

[48, 49]. Intuitively, principal curves are “self-consistent” curves that pass through

the middle of the data. Since its debut introduction, there has been much follow-up

work on analyzing and extending the concept and algorithms as well as on numerous

applications. Please refer to e.g, [17, 36, 33, 53, 66, 76, 78, 80] among many others,

for details. Below we discuss the approaches most relevant to the current work.

The original principal curves are simple smooth curves with no self-intersections.

In [53], Kégl et al. represented principal curves as polygonal lines, and proposed a

regularized version of principal curves. They gave a practical algorithm to compute

such a polygonal principal curve. This algorithm was later extended into a principal

38



graph algorithm to compute the skeleton graph of hand-written digits and characters

(see [52]).

Very recently in [66], Ozertem and Erdogmus proposed a new definition for the

principal curve which associates it to the probability density function. Intuitively,

one can imagine the probability density function as a terrain, then their principal

curves resemble the mountain ridges. A rigorous definition can be made in terms of

the Hessian of the probability density. Their approach has several nice properties,

including the connections to the popular mean-shift clustering algorithm. It also

allows for certain bifurcations and self-intersections. However, the output of the

algorithm is only a collection of points lacking of the connectivity information. In

addition, there is no explicit information showing which points should be the junction

points (graph nodes) and which points belong to a single arc in the principal graph.

Furthermore, the algorithm depends on reliable density estimation from input data,

which is challenging for high dimensional data.

Aanijaneya et al.[1] recently proposed perhaps the first general algorithm to ap-

proximate a hidden metric graph from an input graph with theoretical guarantees.

While the goal of [1] is to approximate a metric graph, their algorithm can also be

used to skeletonize data. The algorithm relies on inspecting the local neighborhood

of each point to first classify whether it should be a “branching point” or an “edge

point”. This approach has theoretical guarantees when the domain is nicely sampled

and the parameters are correctly chosen. However, it is often hard to find suitable

parameters in practice; in addition, the local decision, owing to its full reliance on the

local information, tends to be less reliable when the input data contains bias (such
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as a “fat” junction region). In Section 3.4, we show that our algorithm tends to be

more robust in practical applications.

3.3 Reeb Graph Approach

Given a set of points P sampling a hidden domain X, we present a simple and

practical algorithm to extract a skeleton graph G for X. In our case, the input

points do not have to be embedded — we only need their distance matrix or simply

a proximity graph as input to our algorithm.

The algorithm we proposed is based on using the Reeb graph, which provides

a meaningful abstraction of the scalar field, and has been widely used in graphics,

visualization, and computer vision. However, it has not yet been aimed as a tool to

analyze high dimensional data from unorganized input data. By using the concept

of Reeb graph in hidden structure extraction and data analysis, we can leverage

the recent algorithms developed for computing and processing Reeb graphs, such

as [30, 46, 69]. Moreover, combing the Reeb graph with the Rips complex allows

us to obtain some theoretical guarantees for our approach (See Theorem 3.3.1 in

Section 3.3.1).

3.3.1 Method

Given a topological space X and a scalar function f defined on this space, in

Chapter 1.2.1, we have introduced the definition of the Reeb graph Rf (X) and Fig-

ure 1.3 (a) shows a simple example of Reeb graph with f as the height function.

Alternatively speaking, Rf (X) can be defined as the image of a continuous subjec-

tive map ϕ : X → Rf (X) where ϕ(x) = ϕ(y) if and only if x and y come from the

connected component in a level set of f .
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The Reeb graph is an abstract graph whose nodes (i.e., critical points) indicate

the changes in the connected components in level sets; and its arc represents the

evolution of a connected component after it is generated but before it is merged, split

or killed.

Computing Reeb graph in discrete setting. Assume the input domain is mod-

eled by a simplicial complex K. Specifically, a k-dimensional simplex σ is simply

the convex combination of k + 1 independent vertices {v0, · · · , vk}, and any simplex

formed by a subset of its vertices is called a face of σ. A simplicial complex K is a

collection of simplices with the property that if a simplex σ is in K, then any face

of σ is also in K. A piecewise-linear (PL) function f defined on K is a function

with values given at vertices of K and linearly interpolated within each simplex in

K. Given a PL function f on K, its Reeb graph Rf (K) is decided by all the 0, 1,

and 2-simplices from K (i.e., vertex, edge, and triangles from K). Hence from now

on we use only up to 2-dimensional simplicial complex.

Given a PL function defined on a simplicial complex domain K, its Reeb graph

can be computed efficiently via either a deterministic O(mlogm) algorithm proposed

in [69], or a randomized O(mlogm) expected time algorithm proposed in [46], where

m is the size of K. In the later one, the algorithm outputs the so-called augmented

Reeb graph R̂f (K), which contains the image of all vertices in K under the surjection

map ϕ : K → R introduced earlier. Figure 3.1 shows an example of such augmented

graph R̂f (right), its abstracted Reeb graph Rf (middle), and the simplicial complex

domain K (left). In this case, the abstracted Reeb graph Rf only has four nodes,

while the augmented Reeb graph R̂f shows the image of all vertices {v1, · · · , v11}.
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Figure 3.1: An example of the augmented graph R̂f (right), its abstracted Reeb graph
Rf (middle) and the simplicial complex domain K (left). To simplify the problem,
we set the function f as the height field.

From the augmented Reeb graph, we can easily extract the junctions points (i.e.,

graph nodes in abstracted Reeb graph) and the regular points (i.e., vertices with

degree 2) (e.g., vertices {v2, v3, v5, v7, v9, v10} form the left arc between node v2 and

v10).

Algorithm The basic algorithm we proposed here can be divided into two steps.

First we set up the simplicial complex domain K. Then, we define a scalar function

f on it, and retrieve its Reeb graph to approximate the hidden graph structure.

Step 1: Set up complex K. The input data can be a set of points sampled from

a hidden domain or a probabilistic distribution, a distance matrix, or, simply, the

proximity graph among a set of points. In other words, the input points do not have

to be embedded. Our goal is to compute (possibly an embedding of) a skeleton graph

from the input data. First, we construct an appropriate space approximating the
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hidden domain that input points are sampled from. We use a simplicial complex K

to model such a space.

Specifically, given input sampled points P and the distance matrix of P , we first

construct a proximity graph based on either r-neighborhood or k-nearest neighbors

(k-NN) information, where r and k are user-defined parameters; that is, a point p ∈ P

is connected either to all its neighbors within 2r distance to p, or to its k nearest

neighbors. We add all points in P and all edges from this proximity graph to the

simplicial complex K. Next, for any three vertices pi, pj, pt ∈ P , if they are pairwise

connected in the proximity graph, we insert the triangle 4pipjpt into the complex

K. Figure 1.4 shows the main steps of this building process (r-neighborhood). We

remark that there is only one parameter involved in the basic algorithm, which is the

parameter r (if we are using r-neighborhood) or k (if we are using k-NN) to specify

the scale with which we look at the input data.

To further elaborate the motivation behind this construction, if the proximity

graph is built based on r-neighborhood, then the above construction is simply the

Vietoris-Rips complex, which has been widely used in manifold reconstruction (espe-

cially surface reconstruction) community to recover the hidden domain from its point

samples. Intuitively, imagine that we grow a ball of radius r around each sample

point. The union of these balls roughly captures the hidden domain at scale r.

The topological structure of the union of these balls is captured by the so-called

Čech complex, which mathematically is the nerve of this union of balls. Hence the

Čech complex captures the topology of the hidden domain when the sampling is

appropriate (see e.g., [18, 65]). However, Čech complex is hard to compute, and the

Vietoris-Rips complex is a practical approximation of the Čech complex that is much
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easier to construct. Furthermore, it has been shown that the Reeb graph of a hidden

manifold can be approximated with theoretical guarantees from the Rips complex

[30].

Step 2: Reeb graph computation. Now we have a simplicial complex K that

approximates the hidden domain. In order to extract the skeleton graph using the

Reeb graph, we need to define a function g on K that respects its shape. It is also

desirable that this function is intrinsic, given that input points may not be embedded.

Figure 3.2: Geodesic dis-
tance function.

To this end, we construct the function g as the geodesic

distance in K to a certain base point b ∈ K. We com-

pute the base point by taking an arbitrary point v ∈ K

and choosing b as the point furtherest away from v . Intu-

itively, this base point is an extreme point. If the underly-

ing domain indeed has a branching filamentary structure,

then the geodesic distance to b tends to progress along

each filament, and branch out at junction points. See

Figure 3.2 for an example, where the thin curves are level sets of the geodesic dis-

tance function to the base point b. Since the Reeb graph tracks the evolution of the

connected components in the level sets, a branching (splitting in the level set) will

happen when the level set passes through the saddle point v . In our algorithm, the

geodesic distance function g in K is approximated by the shortest distance in the

proximity graph (i.e, the set of edges in K). We then perform the algorithm from [46]

to compute the Reeb graph of K with respect to g, and denote the resulting Reeb

graph as Rg. Recall that this algorithm in fact outputs the augmented Reeb graph
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R̂g. Hence we not only obtain a graph structure, but also the set of input points

(together with their connectivity) that are mapped to every graph arc in R̂g.

Theoretical guarantees. Given a domain X and a function f : X → R defined on

it, the topology of the Reeb graph Rf (X) may not reflect the topology of the given

domain X. However, in our case, we have the following result which offers partial

theoretical guarantee for aforementioned algorithm. Intuitively, the theorem states

that if the hidden space is a graph G, and if our simplicial complex K approximates

G both in terms of topology (as captured by homotopy equivalent) and metric (as

captured by the ε-approximation), then the Reeb graph captures all loops in G.

Below, we use dX(., .) to denote the geodesic distance in domain X.

Theorem 3.3.1 Suppose K is homotopy equivalent to a graph G, and h : K → G

is the corresponding homotopy. Assume that the metric is ε-approximated under h;

that is, |dK(x, y) − dG(h(x), h(y))| ≤ ε for any x, y ∈ K. Assume that ε < l/4,

where l is the length of the shortest arc in G. Let R be the Reeb graph of K w.r.t the

geodesic distance function to an arbitrary base point b ∈ K. We have that there is a

one-to-one correspondence between loops in R and loops in G.

The proof of theorem 3.3.1 can be found in [42] Appendix A.

Time complexity. The time complexity of above algorithm is the summation of the

time in computing (A) the proximity graph, (B) the complex K from the proximity

graph, (C) the geodesic distance, and (D) the Reeb graph. (A) is O(n2) for high

dimensional data (and can be made near-linear for data in very low dimensions)

where n is the number of input points. (B) is O(k3n) in case that each point takes k
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(a) (b) (c)

Figure 3.3: Overview of the algorithm. (a) is the detected edge points (blue) by
implementing Robert edge filter. (b) shows the augmented Reeb graph (blue), where
the edge points are in yellow. (c) shows the Reeb graph after a smooth/refinement
process.

neighbors. (C) and (D) take time O(m log n) = O(k3nlogn) where m is the size of K.

Hence, overall, the time complexity is O(n2 + k3nlogn). For high dimensional data

sets, this time complexity is dominated by the computation of the proximity graph

O(n2).

Embedding The Reeb graph is an abstract graph. To visualize the skeleton graph,

we need to embed it in a reasonable way which reflects the geometry of the hidden

domain. To this end, if points are not already embedded in 2D or 3D space, we

project the input points P to R3 by using any standard dimensionality reduction

algorithm. We then connect projected points based on their connectivity given in

the augmented Reeb graph R̂. Each arc of the Reeb graph is now embedded as a
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Figure 3.4: Left: the smoothed Reeb graph. Right: The fixing of the broken curves
(upper) and the removing of the small noisy loops (lower) . The most right figure
shows the zoomed in details.

polygonal curve. To further improve the quality of this curve, we fix its endpoints,

and iteratively smooth it by repeatedly assigning a point’s position to be the average

of its neighbor’s positions (Figure 3.3 (c))

3.3.2 Post processes

In practice, data can be noisy, and there may be spurious branches or loops in the

Reeb graph R constructed. Following [3], there is a natural way to define “features”

in a Reeb graph and measure their “importance”. In this section, we present an

intuitive interpretation of this method. A more detailed definition and description

can be found in Chapter 5.

Graph simplification. Specifically, given a function f : X → R, imagine we plot

its Reeb graph Rf (X) such that the height of each point y ∈ Rf (X) is the function

value of all those points in X mapped to y. Now we sweep the Reeb graph bottom-up

in increasing order w.r.t. the function value. As we sweep through a point y, we
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inspect what happens to the part of Reeb graph that we already swept, denoted by

Ry
f := {w ∈ Rf (X) | f(w) ≤ f(y)}. When we sweep past a down-fork saddle s, there

are two possibilities:

1. Branching feature: The two branches merged at s belong to different compo-

nents C1 and C2. In such case, we say s ends a branching feature. The impor-

tance of this feature is the smaller height of the lower-branches being merged.

See Figure 1.3 as an example, the down-fork saddle point v3 merges the com-

ponents C1 and C2, and generates a branching feature with the importance

|f(v3)− f(v2)|.

2. Cycle feature: The two branches merged at s are already connected below s in

Rs
f . In such case, a new family of loops is created. This is called a cycle feature.

Its size is measured as the smallest height of an loop formed with s in Rs
f . Let

γ denote such a loop. Its height is defined as maxz∈γf(z) − minz∈γf(z). See

Figure 1.3, where v6 is such a down-fork saddle, and the importance of loop γ

is measured as |f(v6)− f(v4)|.

Now if we sweepRf (X) top-down, we will obtain another set of branching-features

and cycle-features captured by up-fork saddles in a symmetric manner. It turns out

that these features (and their sizes) correspond to the so-called extended persistence

of the Reeb graph Rf (X) with respect to function f [39]. The size/importance of

each feature is called its persistence.

Detecting features and computing their persistence can be achieved in O(nlog2n)

time, where n is the number of nodes and arcs in the Reeb graph [3]. We can now

simplify the Reeb graph by merging features whose persistence value is smaller than
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a given threshold δ (details see Chapter 5.3.1). This simplification process removes

noise, and changes the topology structure of the Reeb graph. In Chapter 5, we show

that the distortion caused by such modification can be bounded by cδ, where c is a

constant. In other words, the simplification process will remove the small loops and

branches, but guarantees that no major topological features in the original graph will

be destroyed.

Graph fixing. Finally, in case there is some missing data that causes missing links

in the constructed skeleton graph, an extra fixing step is implemented. The fixing

is achieved by connecting pairs of degree-1 nodes (x, y) in the Reeb graph whose

distances d(x, y) is smaller than a certain distance threshold. Here we use d(x, y) to

denote the input distance between x and y (if the input points are embedded, or the

distance matrix is given), instead of the distance in the simplicial complex K which

is constructed by our algorithm. Connecting x and y may either connect two disjoint

components in the Reeb graph, thus creating new branch-features (Figure 3.4, right);

or form new loop-features. We do not check the size of the new features created

when connecting pairs of vertices. Small newly-created features will be removed in

the subsequent simplification step.

3.4 Experiments and Results

In this section we first provide comparisons of our algorithm to some closely rel-

evant prior methods. We then present three sets of experiments to demonstrate the

effectiveness of our approach and show potential applications of skeleton graph ex-

traction for data analysis.
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(a) (b) (c)

Figure 3.5: (a) shows our result. (b) shows the result generated via PGA [52]. (c)
shows the result generated via LDPC [66].

Methods to compare with. We compare our approach with three existing com-

parable algorithms (see Section 3.2 for more detailed description):

• the principal graph algorithm (PGA)[52];

• the local-density principal curve algorithm (LDPC) [66];

• the metric-graph reconstruction algorithm (MGR) [1].

Note that PGA only works for 2D images. LDPC only outputs point cloud at the

center of the input data with no connectivity information.

In Figure 3.5, we show the skeleton graph of the image of a hand-written Chinese

character. Our result is shown in (a). The output of PGA [52] and (the KDE version

of) LDPC [66] are shown in (b) and (c), respectively. We see that the algorithm

from [52], specifically designed for these 2-D applications, provides the best output.
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(a) (b) (c)

Figure 3.6: (a) shows the input image web. (b) shows our result. (c) shows the result
generated via MGR [1]

However, the results of our algorithm, which is completely generic, are comparable.

The output of LDPC is a point cloud (rather than a graph). In this example, many

points do not belong to the 1D structure.

For the second set of comparisons we build a skeleton graph out of an input metric

graph. Note that PGA and LDPC cannot handle such graph-type input, and the only

comparable algorithm is MGR [1]. We use the image web data previously used in [1].

Figure 3.6 (b) is our output and Figure 3.6(c) is the output by MGR [1]. The input

image web graph is shown in Figure 3.6(a), also shown in light (gray) color as the

background of (b) and (c).

We further show two applications. One is for image edge detection (Figure 3.8 and

Figure 3.3) and the other is for GPS road map reconstruction (Figure 3.7). The image

edge samples (yellow points) are obtained by implementing a standard edge-detecting
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(a) (b) (c)

Figure 3.7: (a) shows the reconstructed road map for GPS trace 972358 from open-
streetmap.org. (b) shows reconstructed map for GPS trace 1004945. (c) shows recon-
structed result for the Moscow city (part).

algorithm, e.g., Robert edge filter or Sobel filter, onto the input image. The original

GPS data in Figure 3.7 are denoted as yellow dots. In both cases (image edge and GPS

trace), the final graphs are show in blue curve. In Figure 3.8, for completeness of the

result, we keep all the graph components in the final result. Extra filtering processes

can be used to easily remove the small components. In spite of these low dimensional

applications, our method can also be useful in analyzing complex and potentially high-

dimensional data. For example, it can be used to produce summary representation

for multiple similar utterance trajectories (low and high-dimensional curves) for the

purpose of trajectories alignment and discovering convergent and divergent portions of

the trajectories [42]. In additions, in Chapter 4, we will show an extended application

of our algorithm in singular surface reconstruction.

Combination with principle curve and LDPC algorithms. Finally, our algo-

rithm can be used in combination with principal curve algorithms. In particular, one

way to do this is to use our algorithm to first decompose the input data into different
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Figure 3.8: First row: the edge detection and reconstruction result for a dragon model
picture. Bottom row: the corresponding result for a window picture. In both rows,
the left column shows the input image and right column shows in the reconstruction
edge graph.
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(a) (b)

Figure 3.9: (a) shows the result generated by suing our algorithm to seed the principal
curve algorithm in [53]. (b) shows the result generated by using LDPC algorithm [66]
to seed our algorithm.

arcs of a graph structure, and then use a principal curve algorithm to compute the

embedding of this arc locating in the center of the points contributing to it. An exam-

ple is shown in Figure 3.9(a), where we apply the polyline principal curve algorithm

from [53] to each branch output by our algorithm. We remark that we simply put

these two algorithms together in a straightforward way, the result may not be ideal

yet. For example, since we do not have any control on the endpoints of the branches

when the principal curve algorithm from [53] is applied, the endpoints of the graph

arcs may drift away and no longer meet. It will be an interesting future direction to

see how to best combine our algorithm with a principal curve algorithm.
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Alternatively, we can first use the LDPC algorithm [66] to move points to the

center of the data, and then perform our algorithm to connect them into a graph

structure. An example of such implementation is shown in Figure 3.9(b), where we

apply our algorithm to the output of LDPC (using σ = 2 in KDE density estimation).
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Chapter 4: Singular Surface Feature Reconstruction

In Chapter 3, we introduced an algorithm for 1D feature reconstruction. In this

Chapter, we show how it helps in singular surface reconstruction which recently

catches growing interest.

Reconstructing a surface mesh from a set of point samples is a long-standing topic

in geometric modeling. It becomes challenging in presence of boundaries and sharp

features. Furthermore, in practice, the point cloud data can be sampled from more

general domains, including non-manifolds where multiple surface patches meet or

intersect with each other. In the work of [29], also in the following chapter, we consider

the so-called singular surfaces which consist of a collection of smooth surface patches

with boundaries. These surface patches can intersect, or be “glued” along their

common boundaries (i.e., sharp crease lines). For simplicity, we unify boundaries,

intersections, and sharp creases under the aegis of singularities, and refer to them

as feature curves. To date, an effective and practical algorithm to recover a singular

surface from point data is still missing.

4.1 Our Approach

We propose a simple yet effective reconstruction algorithm for singular surfaces

that can handle all three aforementioned singularities in a unified framework. Our
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: The workflow of the singular surface reconstruction framework. (a) Input
point cloud. The hidden domain is a sphere intersecting a half-cube with only three
faces. (b) Feature points are identified (in purple). (c) A zoom-in view of feature
points around intersections. (d) Coarse feature curves are reconstructed. (e) Refined
feature curves, with junction nodes and sharp corners marked as red points. (f)
Reconstructed singular surface. Two zoomed-in views of reconstructed model near
intersections in (g) and (h).
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algorithm has two components (see Figure 4.1): (1) feature curve identification and

reconstruction, and (2) singular surface reconstruction that respects these features.

For the first step, we employ a novel combination of the Gaussian-weighted graph

Laplacian [10] and the Reeb graph we introduced in Chapter 3. This approach has

several nice properties. First, it is general: it provides a unified approach to handle all

three types of singularities. Second, it is simple: only the proximity graph from input

points is required, and it does not involve estimating normals or tangent spaces, which

could be unreliable around singularities. Furthermore, higher-order singularities, such

as junction nodes where multiple feature curves meet, are automatically and reliably

detected without any ad-hoc handling. Our approach is robust to noise and can

possibly be used in other applications involving point cloud processing, such as in

stylish drawing [71].

4.2 Singular Curves Identification and Reconstruction

4.2.1 Algorithm overview

Suppose we have a collection of smooth 2-manifolds with boundaries {Ω1, · · · ,Ωk}

isometrically embedded in R3. We call each Ωi a surface patch. These surface patches

may intersect each other in their interior, which gives rise to intersection feature

curves. They can also be “glued” along (part of) their boundaries, producing the

sharp-feature curves. Finally, we call boundary curves that are not shared by multiple

manifolds as boundary-feature curves.

See Figure 4.2 and Figure 4.1 (e) for illustrations of different types of feature

curves we consider. A regular point refers to a point not on these feature curves.

Given a set of points P sampled from the singular surface Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk,
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Ω1

Ω3

Ω4

Ω2

boundary curves

intersections

sharp feature curves

Figure 4.2: Above figure shows different types of singularity, including surface patches
intersections, sharp feature curves, and boundary curves.

which is the union of Ωis, our goal is to reconstruct Ω while preserving various types

of feature curves. To this end, we use a combination of Gaussian-weighted graph

Laplacian with the Reeb graph to identify and reconstruct the feature curves; and

use a variant Cocone algorithm to reconstruct the patch set Ω.

4.2.2 Gaussian-weighted Graph Laplacian

The feature points identification algorithm leverages the widely used Gaussian-

weighted graph Laplace operator which we describe in this section. Given a set

of points P = {p1, · · · ,pn} ⊂ R3, the (un-normalized) Gaussian-weighted graph

Laplacian operator Lt is an n× n matrix where

Lt[i][j] =




− 1
nt2

e−
‖pi−pj‖

2

t , if i 6= j

1
nt2

∑n
j=1,j 6=i e

−
‖pi−pj‖

2

t , if i = j.
(4.1)
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For any fixed function f : P → R and a point pi ∈ P , it is easy to verify that if we

apply Lt to function f , we would get

Ltf(pi) =
1

nt2

n∑

j=1

e−
‖pi−pj‖

2

t

(
f(pi)− f(pj)

)

It was shown in [9] that if points in P are uniformly randomly sampled from a smooth

d-manifold M , then in the limit as n goes to infinity and t tends to 0 at an appropriate

rate, Ltf(p) converges to ∆f(p) where ∆ is the Laplace-Beltrami operator for M .

The connection to the manifold Laplacian is made via the continuous analog of Lt,

the so-called function Laplacian [9]:

Ltf(p) =
1

t
d
2

+1

∫

M

e−
‖x−p‖2

t (f(p)− f(x)) dx .

Intuitively, the Gaussian-weighted graph Laplacian Lt is simply the discretization of

the integral operator Lt at the points in point set P . It has been shown that for a

sufficiently small t, the integral operator has following property,

Ltf(p) = ∆f(p) + o(1). (4.2)

Now suppose that the underlying domain where data are sampled from is not a

manifold, but a singular d-manifold Ω. It turns out that the functional Laplacian

Lt behaves differently around various singularities (i.e., feature curves in 2D) from

around a regular point. See [10] for details. In particular, for a point x lying on a

boundary-feature curve of a surface patch Ωi (i.e., 2-manifold with boundary), we

have

Ltf(x) =
1√
t

π
1
2

2
∂nf(x) + o(

1√
t
) , (4.3)
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√
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√
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√
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0

O(
√
t)

(a) (b) (c)

Figure 4.3: The value of the term O( 1√
t
) for points on and around (a) boundary,

(b) intersection and (c) sharp corner singularity. In all three figures, 0 is where the
singularity locates, x-axis indicates the distance between a point to the singularity,
and y-axis indicates the value of the term O( 1√

t
).

where n is the unit outward normal to the boundary-feature curve at x (that is, n

is in the tangent space of Ωi at x and normal to the boundary-feature curve); and

∂nf(x) is the directional derivative of f in the direction of n.

Compare Eqn 4.3 with Eqn 4.2, we see the scale dependence on t is different in

these two cases: O(1) for a regular point versus O( 1√
t
) for a singular point. For a

small t value, which usually is the case in practice, the scale 1√
t

is large, implying that

Ltf(x) will have a significantly larger value at a boundary point than a regular one

(assuming |∂nf(x)| is bounded from below by a constant).

The dominance of the O( 1√
t
) term in fact affects a “band” of points within Θ(

√
t)

distance away from the boundary-feature curves. But its value follows a Gaussian

distribution centering at the boundary-feature curves with variance t; thus this effect

wears off rapidly. See Figure 4.3 for an illustration.

The detailed summary of the behaviour of Ltf around these feature curves can

be found in [29] Appendix.A or [10]. As mentioned earlier, Lt can be regarded as
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a discretization of Lt and thus shares the similar behaviors as Lt. Our method

leverages the different scaling behavior of Lt around feature curves to help identify

feature points in the input point cloud.

4.2.3 Feature curves identification and reconstruction

Now we give a brief introduction of how the Gaussian-weighted graph Laplacian

helps us to identify the feature curves hidden in the input point cloud and how

to reconstruct such features curves via the Reeb graph strategy we introduced in

Chapter 3.

Potential feature points identification. Let the input point cloud be P =

{p1, · · · ,pn}. Suppose each point pi has the coordinate (x , y , z ), we apply the graph

Laplacian Lt to the coordinate functions X ,Y ,Z : R3 → R, where X (pi) = x ,

Y(pi) = y and Z(pi) = z .

Now let P = [X ,Y ,Z] denote the coordinate functions restricted to the input

point set P , which is a n× 3 matrix and can be considered as n 3-dimensional (row)

vectors. Applying Lt to P gives rise to a list of 3-dimensional vectors V = LtP =

[LtX ,LtY ,LtZ], where the ith row vi = V [i] is a 3-dimensional vector associated

with point pi ∈ P . Also, to simplify the notation, we define another n-dimensional

vector Vt, where Vt[i] = ‖vi‖ is the normal of vector vi.

Regular surface point. It is known that for a regular surface point p from a

smooth surface, its second-order differential quantity has following relation

∆P(p) = Hp · np ,
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where Hp denotes the mean-curvature at p and np is the unit surface normal at p.

Therefore, we have vi = LtP(pi) ≈ Hpi · npi at a regular surface point pi.

Point around singular features. However, if point pi is on or near the three

types of aforementioned feature curves, vi will then reflect fundamentally different

information. Specifically, consider a point p on the boundary of a surface path Ωi.

Let n denote the unit outward normal vector to the boundary curve at p. Note,

n = [nx, ny, nz] is not the surface normal at p, but the unit vector in the tangent

plane at p normal to the boundary curve. By Eqn 4.3, setting C = π1/2

2
, we have

LtX (p) ≈ C√
t

∂X
∂n

=
C√
t
· 〈[1, 0, 0, ]T ,n〉 =

C√
t
nx

where [1, 0, 0, ]T is the unit vector in the x-direction, and 〈., .〉 stands for the standard

inner product of two vectors. By using the approximation ≈, we omit the lower order

terms o( 1√
t
). Similarly, we can obtain the y and z-direction portion via LtY(p) =

C√
t
ny and LtZ(p) = C√

t
nz. Putting them together, we have

LtP(p) ≈ LtP(p) ≈ C√
t
[nx, ny, nz]

T =
1√
t
· π

1/2

2
· n .

Note that LtP(p) is independent on the choice of the coordinate system, and the

magnitude of LtP(p) is always 1√
t
· π1/2

2
, which is usually larger than the magnitude

of Hpi · npi at a regular surface point. However, as a point p moves away from the

boundary, its magnitude of graph Laplacian operator decreases rapidly from 1√
t
· π1/2

2
to

the mean curvature (i.e., reduce to be a regular surface point), following the tendency

of a Gaussian distribution shape with variance t. At the same time, the direction of

LtP(p) also changes from the outward normal to the boundary curve to the surface

normal for a regular point. Points on and around other type of feature curves share

similar behavior.
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In other words, Vt[i] is the mean curvature (and thus of the order O(1)) for a

regular point pi. But vi is of order Θ( 1√
t
) for a point on and near feature curves.

By “near”, we mean points are within O(c
√
t) distance away from the feature curves,

where c is a constant whose value depends on the type of singularity we have. Under

such setting, the proposed algorithm can easily identify the potential feature curve

points as those whose Vt value is above a given threshold τ .

As an example, Figure 4.1 (b) and (c) show the potential feature points identified

by our algorithm. Note that as we lower the threshold τ , points with local high mean-

curvature will also start to appear as feature points. We remark that as consistent

with the theoretical analysis in [10], points “on” intersection-feature curves actually

have low LtP magnitude, but points “around” them have high values and are captured

as feature points (also shown in Figure 4.3(b)). Hence around an intersection-feature

curve, there are two small bands of feature points (see Figure 4.1 (c)). We will see

later that our feature curve reconstruction algorithm is able to close the gap between

these two bands.

Coarse feature curves reconstruction. Once we identified a set of potential

feature points Q from input point clouds P , we aim to reconstruct feature curves

(graphs) based on them. The subsequent surface reconstruction approaches could be

various. Some of them may not explicitly rely on the feature curves. However, in

the work we presented in [29], we still need to generate sample points on the feature

curves and identify the junction points for the reason we will give soon in Section 4.3

(or see [29] for a thorough description). We achieve this in two steps.
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First, we obtain an initial reconstruction of the feature graph Π. This coarse

feature graph captures the correct topology of the feature graph that we wish to

reconstruct. However, it may not have satisfactory geometry embeddings (such as

smooth feature lines aligned with boundaries or sharp features). To this end, we need

to further refine the feature graph.

The feature points we obtain are around the feature curves that we wish to recon-

struct. We use the algorithm from Chapter 3 (also see [42]) to extract a graph-like

structure from input points. In particular, first, we build a simplicial complex K from

Q to connect these discrete points. We take K as the Rips complex of Q using radius

parameter
√
t; that is, two feature points are connected if their distance is smaller

than
√
t, and when the three edges spanned by p, q, u ∈ Q are in K, we also add the

triangle pqu to K (See Figure 1.4, by setting r to be 1
2

√
t).

Since all the potential feature points are roughly within a band of width O(
√
t)

around the feature curves, we choose
√
t as the radius parameter to compute the Rips

complex. The resulting simplicial complex K “warp” the feature curves (including

closing the gap around intersection-feature curves as seen in Figure 4.1 (c) and (d)).

Next, we use the algorithm shown in Chapter 3 to compute the Reeb graph of some

specific function defined on K to capture the skeleton of the underlying space of K.

The output of this graph extraction algorithm is an augmented Reeb graph where

each branch is a polygonal curve with vertices being the input feature points in Q.

The junction nodes where multiple feature curves meet are obtained naturally as

graph nodes (i.e., critical points) in the Reeb graph.
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(a) before simplification (b) after simplification

Figure 4.4: (a) shows the original Reeb graph with small and noisy loops. (b) shows
the same Reeb graph but with those noisy loops removed.

Furthermore, we can easily simplify the resulting feature graphs and remove noisy

or less important loops/branches by the simplification process introduced in Chap-

ter 3. See Figure 4.4 as an example where several small spurious loops in the Reeb

graph (Figure 4.4(a)) are removed (Figure 4.4(b)).

Feature curve refinement. The feature graphs Π reconstructed above reflect the

structures of the hidden feature graphs that we wish to capture. However, the feature

curves we obtained are not smooth, and may not be aligned with the real features.

In the feature curve refinement step, we are trying to improve the quality of the

geometry embedding of the feature graphs. There are two components involved.

One is for feature graph smoothing, the other is for sharp feature corner location

correcting. Figure 4.1(e) shows an example of the the final (refined) feature curve.

1. Smoothing of feature graphs. First, we want to smooth each branch in the

feature graph, which is represented as a polygonal curve. A standard curve smoothing

algorithm, such as the Laplacian smoothing, tends to push the curve to the center
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of the “band” spanned by the feature points involved. Such schema works properly

in the intersection curve case but will cause shrinkage for the boundary curves and

sharp feature curves. To align them with real features in the process of smoothing,

similar to [71], we use an active-contour based approach to deform the feature curve,.

In particular, we design the following energy function:

Esnake =
m∑

k=1

(
Eint(qk) + Eext(qk)

)
, (4.4)

where qk is the k-th vertex in the feature curve which we intend to smooth. The first

term Eint(qk) in Eqn 4.4 aims to ensure the smoothness of the feature curve at qk,

which is based on approximated derivatives using finite differences and is the same as

the one introduced in the original active contour work [62]. The second term Eext(qk)

works to align the actual curves with the real features curves, and is defined as

Eext(qk) = −
m∑

i=1

e−
‖pi−qk‖

2

σ2 Vt[i] , (4.5)

where σ is empirically set to be 2
√
t. Note that in practice, only the points within

2σ = 4
√
t distance from qk are considered in computing this Eext(qk).

Intuitively, to minimize Eext(qk), we need to maximize the sum of the Gaussian

kernel term, e−
‖pi−qk‖

2

σ2 , for point pi with high Vt values. In other words, qk should

be relocated closer to the points with high Vt. For boundary and sharp feature

curves, points with high Vt value lie along the singularities, and this energy term

pushes qk towards them. For the intersection-type of singularity, points with high

Vt values are around the intersection lines but not on them (recall Figure 4.1(c) and

Figure 4.3(b)). However, if we can assume that the Vt distribution is symmetric along

the intersection curve, it is still beneficial to put qk in the middle of these band of

high Vt values, which is coincident with the intersection curves in most cases. While
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we cannot prove that this energy function achieves minimum on the singularities, we

found that it is effective in practice in handling all three types of singularities within

this integrated framework. Another thing to note is that since we have the explicit

form for Eext(qk), we can compute its gradient directly in closed form, which helps to

reduce the computational cost.

2. Locations of sharp feature corners. To use the active contour approach

described above for refining each individual branch in the feature graph, we need to

fix their endpoints (to avoid unwanted shrinkage or shift), which can be represented

either by a node where multiple feature curve pieces meet (i.e., graph nodes of degree

3 or more) or a tip of feature curves (i.e., degree-1 graph nodes). We also want to

preserve sharp corners within a single feature curve: see Figure 4.5 (a) and (b); such

degree-2 corners are not available in the Reeb graph node set (but correspond to the

regular points in Reeb graph’s arc) and have to be identified separately.

To identify degree-2 sharp corners, we simply compute the local maxima of the

function Vt (the magnitude of LtP) in the Rips complex K that we constructed to

compute the Reeb graph. It turns out that the Vt values are not effective at identifying

very sharp corners, due to the limited amount of points available around such corners.

To handle this, in spite of the standard weighted graph Laplacian Lt, we also compute

its normalized version of the weighted graph Laplacian, L̄t, and take the local maxima

of the magnitude of L̄tP .

Corners where 3 or more feature curves meet appear automatically as nodes in

the Reeb graph. For each Reeb graph node pi, let NN(pi) denote its neighbors in

the Rips complex K. Our goal is to find a good location for pi to align with the real
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(a) (b) (c)

Figure 4.5: (a) The sharp degree-2 corner is smoothed out after active contour. (b)
Our algorithm first identifies degree-2 sharp corners and preserves them during the
active contour. (c) Corner points (red dots) computed by our algorithm: they are
first identified as nodes of degree≥ 3 in the Reeb graph, and then relocated to align
with geometric corners.

sharp geometric corner (0-dimensional singularities) of the hidden domain. Simply

taking the centroid of points in NN(pi) does not serve as a good choice since it tends

to push pi off the domain and away from the sharp corners. So we again take the

point with largest Vt value in NN(pi) as the new position for the corner node pi.

See Figure 4.5(c) as an example where the degree-3 nodes are identified by using our

algorithm on the “fandisk” model from Aim@Shape.

4.3 Feature-Aware Singular Surfaces Reconstruction

So far, we have introduced the algorithm for singular feature curve identification

and reconstruction. In some applications, it may require to reconstruct the entire
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surfaces instead of merely the feature curves. To this end, one can use a variant of

the well known Cocone algorithm [4] for surface reconstruction.

Inspired by the success of ball protection idea of [25] in generating meshes from

piecewise smooth complexes, one can use a weighted variant of the Cocone algorithm

as proposed in [29] (also see [32]). The original Cocone algorithm filters triangles

from the Delaunay triangulation of the input points to reconstruct a smooth surface

without boundary. After identifying the feature curves and generating sample points

on them in the first step, protecting ball are put centering at each sample point

along these curves. The balls are turned into weighted points. These weighted points

together with the input points, which remain unweighted, constitute the input to

the surface reconstruction algorithm. The Cocone algorithm is run on the weighted

Delaunay triangulation of the resulting point set with the constraint that only the

unweighted points are allowed to choose the Cocone triangles. This simple modifica-

tion of the Cocone algorithm allows a quite effective singular surfaces reconstruction

as shown in Figure 4.6.

4.4 Remarks

In this chapter, we introduced an algorithm to reconstruct singular surfaces from

point could samples. The algorithm can handle boundaries, sharp feature curves, and

intersection curves in a unified framework.

The current algorithm can identify the approximate location of corner points where

multiple feature curves meet. However, we find it difficult to align these points with

the real corner point of the hidden domain when they represent concave corners. A
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further investigation to identify the position of these concave corners using only local

information would be an interesting direction.

Very recently, some methods other than the protection ball related approaches

were proposed for constructing meshes with sharp features, e.g., constructing Isosur-

faces using cube merging [12]. It would be interesting to see how to combine the 1D

graph feature structure to those algorithms.

71



(a) (b)

(c) (d)

Figure 4.6: Surface reconstruction results for various models.
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Chapter 5: Theoretical Bound for Reeb Graph Simplification

Distortion

In the previous two chapters, we introduced a Reeb graph based 1D feature struc-

ture extracting strategy and demonstrated its effectiveness and usefulness via several

applications, including reconstructing singular surfaces from point samples. In the

proposed algorithm, a Reeb graph simplification process is used to remove small noisy

loops and branches based on their persistence measurement. Such simplification pro-

cess changes the topology structure of the original Reeb graph. In particular, a prior,

it is not clear whether collapsing small features will trigger a domino or cascade effect

that causes the killing or significant distortion of large features. In this chapter, we

provide a theoretical study on such distortion. Specifically, we will leverage a metric

recently proposed in our paper [8], called the functional distortion distance between

two Reeb graphs.

5.1 Reeb Graph and Persistent Homology

As mentioned in previous chapters, the Reeb graph of a scalar field on a manifold

can be approximated from a point sample set efficiently with theoretical guarantees

[30]. It encodes meaningful information on the input scalar field; and being a graph

structure, it is simple to represent and manipulate.
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Reeb Graph. The basic concept of Reeb graph has been given in Chapter 1.2.1 , so

we will not repeat it here. Instead, we introduce an alternative view of the definition

in terms of the quotient space. First we define an equivalence relation ∼ on the

topological space X such that x ∼ y if and only if f(x) = f(y) = α and x is connected

to y in the level set f−1(α). The Reeb space of the function f : X → R, denoted

by Rf , is the quotient space X/ ∼., i.e., the set of equivalent classes equipped with

the quotient topology induced by the quotient map µ : X → Rf . Under appropriate

regularity assumptions, Rf has the structure of a finite 1-dimensional regular CW

complex, and we call it a Reeb graph. ( Throughout this chapter, we assume that all

mentioned connected components are also path-connected.)

The input function f : X → R also induces a continuous function from Reeb graph

to the scalar field f̃ : Rf → R defined as f̃(z) = f(x) for any preimage x ∈ µ−1(z)

of z. We following write f̃(z) as f(z) for z ∈ Rf to simplify the notation. For all the

illustrations in this chapter, if not mention specifically, we plot the Reeb graph with

the vertical coordinate of a point z corresponding to the function value f(z). That

is, one can assume the function f is always the height field.

Given a point x ∈ Rf , we use the term up-degree (resp. down-degree) of x to

denote the number of branches (1-cells) incident to x that have higher (resp. lower)

values of f than x. A point is called regular point if both of its up-degree and down-

degree equal to 1; otherwise, it’s a critical point. A critical point is a minimum

(maximum) if it has down-degree 0 (up-degree 0), and a down-fork (up-fork) if it has

down-degree (up-degree) larger than 1. In some literature, down-fork and up-fork are

also referred as down-saddle and up-saddle or down-fork saddle and up-fork saddle,

respectively. A critical point can be degenerate, that is, it can have more than one
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types of criticality. From now on, we use the term node to refer to a critical point in

the Reeb graph. For simplicity of exposition, we assume that all nodes of the Reeb

graph have distinct f̃ function values.

Persistent homology and persistence diagrams. The notion of persistence was

originally introduced by Edelsbrunner et al. in [38]. Since then, there has been a

great amount of developments both in theory and in applications [87, 15, 19, 31].

Here we do not concern the theory of persistence but merely use it to describe the

graph “features” and their “importance”. Hence, as follows, we only provide a simple

description so as to introduce the notion of persistence diagrams.

We first introduce the concept of sublevel set and suplevel set, which is analogous

to the level set concept shown in Chapter 1.2.1. Given a function f : X → R on a

topological space, we call the topology space X≤a = {x ∈ X|f(x) ≤ a} the sublevel set

of X w.r.t. f . The corresponding concept of suplevel set can be defined as X≥a = {x ∈

X|f(x) ≥ a}. As we sweep through X in increasing value of a, we inspect the changes

in Hp(X≤a), where we use Hp(X) to denote the p-th homology group of topology space

X. In this procedure, some new homology classes such as new components, which

give 0-dimensional homology classes, or loops, which give 1-dimensional classes, will

be created; also, existing homology classes can be destroyed (e.g. two components

merge to be a single one). Persistent homology records such birth and death events,

and the corresponding information will be encoded in persistence diagram.

For Reeb graph Rf , there is a natural way to define “features” and rank their

“importance”. That way turns out to be consistent with the persistence diagram

of function f : Rf → R. Since Rf is a graph, we only need to consider persistent
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homology in dimensions 0 and 1. We provide an intuitive treatment below. For

simplicity of exposition, we assume that all nodes have different function values and

are either a minimum, a maximum, a down-fork with down-degree 2, or an up-fork

with up-degree 2. Note that these assumptions hold in the generic case.

Imagine that we sweep through Rf in increasing values of a and inspect changes

in H0

(
(Rf )≤a

)
. New components in the sublevel sets are created at minima of Rf .

For any value a, associate each component C in the sublevel set of (Rf )≤a with the

lowest local minimum m contained in C: intuitively, C is created at m.

Consider a down-fork node s with f(s) = a. If the two lower branches are con-

tained in different connected components C1 and C2 of the open sublevel set (Rf )<a,

we call s an ordinary fork ; otherwise, it is an essential fork. Let v1 and v2 be the

global minimum of components C1 and C2, respectively. Assume that f(v1) < f(v2).

The homology class [v1 + v2] is created at v2, which is the minimum of the “younger”

component, and dies at down-fork node s, giving rise to a unique point
(
f(v2), f(s)

)

in the 0-th ordinary persistence diagram Dg0(Rf ). There is a one-to-one correspon-

dence between the set of such pairs of minima and ordinary down-fork and points

in the 0th persistence diagram Dg0(Rf ) with finite coordinates. See Figure 5.1 and

Figure 5.2(left) as an example. A symmetric procedure with −f will produce pairs of

maxima and ordinary up-forks, which correspond to the points in the 0th persistence

diagram Dg0(R−f ). Together, these pairs capture the branching features of a Reeb

graph.

On the other hand, if the two lower branches of s have been connected in the

sublevel set, we call s an essential fork ; see Figure 5.1 and Figure 5.2(right). In such

case, a set of 1-cycle in the sublevel set (Rf )≤f(s) are/is born at s. Since Rf is a
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v7
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v9
v10

v11

v12Rf

Figure 5.1: In above Reeb graph Rf , nodes v1, v2 and v8 are minimum; v11 and v12

are maximum. v3, v4 and v5 are up-fork nodes and the rest are the down fork nodes.
The down fork v6 (original saddle) merges components C1 (highlighted in yellow) and
C2 (highlighted in light blue) in the sublevel set below it, represented by minima v1

and v2, respectively. The down fork v9 (an essential saddle) is paired with the up
fork v4, corresponding to the thin loop/cycle v4v9v5v6v7v4.
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Figure 5.2: The critical pair (v2, v6) generated in Figure 5.1 gives rise to the point
(a2, a6) in the ordinary persistence diagram, Dg0 (left), where ai = f(vi) for i =
1, · · · , 12. The essential fork v9 is paired with the up-fork v4, corresponding to the
thin loop v4v9v5v6v7v4 created at v9. This gives rise to the point (a9, v4) in the
extended persistence diagram ExDg1 (right).

graph, such cycles are non-trivial in Rf , and their corresponding homology classes

will not be destroyed in ordinary persistent homology. Consider the unique cycle γ

with largest minimum value of f among all cycles born at s and corresponding to an

embedded loop in Rf . Let s′ be the point achieving the minimum on γ. Then we

say that cycle γ is created at f(s) and killed at time f(s′) in the extended part. This

gives rise to a unique point
(
f(s), f(s′)

)
in the 1st extended persistence diagram of

f . It turns out that s′ is necessarily an essential up-fork node [3], and we call such

a pair (s′, s) an essential pair. Indeed, the collection of essential pairs has a one-to-

one correspondence to points in ExDg1(Rf ). Note, the extended persistence diagram

ExDg1(R−f ) is the reflection of ExDg1(Rf ) and thus encodes the same information

as ExDg1(Rf ). These essential pairs capture the cycle features of a Reeb graph.
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Figure 5.3: The height functions on the two trees have the same persistence diagrams
(thus the bottleneck distance between their persistence diagrams is 0), but their tree
structures are different. The functional distortion distance will differentiate these two
cases.

In short, the branching features and cycle features of a Reeb graph give rise to

the points in the 0th ordinary and 1st extended persistence diagrams, respectively.

In order to measure changes in persistence diagram for two different Reeb graphs, it

turns out that we can use a concept called functional distortion distance.

5.2 A Metric on Reeb graph

Given the popularity of the Reeb graph in data analysis, it is important to un-

derstand its stability and robustness with respect to changes in the input function

(both in function values and in the domain). To measure the stability, we first need

to define a distance between two Reeb graphs. To this end, we propose a metric

for Reeb graphs, called the functional distortion distance. Under this distance, the

Reeb graph is stable against perturbations of the input function; at the same time,

it retains a certain ability to discriminate between different functions.
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5.2.1 Distance between two points in graph

In the remaining of this chapter, by a distance, we mean an extended pseudometric,

i.e., a binary symmetric function d : X ×X → R≥0 s.t., ∀x, y, z ∈ X

(1) d(x, x) = 0

(2) d(x, z) ≤ d(x, y) + d(y, z)

From now on, we will consider two Reeb graphs Rf and Rg, generated by functions

f : X → R and g : X → R, respectively. While topologically each Reeb graph is

simply a 1-dimensional regular CW complex, it is important to note that it also has a

function associated with it (induced from the input scalar field). Hence the distance

should depend on both the graph structures and the functions f̃ and g̃. Approaching

the problem through graph isomorphisms does not seem viable, as small perturbation

of the function f may create an arbitrary number of new branches and loops in the

graph. To this end, we first put the following metric structure on a Reeb graph Rf

to capture information about the function f .

Specifically, for any two points u, v ∈ Rf (not necessarily to be graph nodes), let

π be a continuous path between u and v. The range of this path is the interval

range(π) := [min
x∈π

f(x),max
x∈π

f(x)] ,

and its height is simply the length of the range, denoted by

height(π) = max
x∈π

f(x)−min
x∈π

f(x) .

We then define the distance as

df (u, v) = min
π:u v

height(π) , (5.1)
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where π ranges over all paths from u to v, denoted by u v. Equivalently, df (u, v)

is the minimum length of any interval I such that u and v are in the same component

of f−1(I). Note that this is in fact a metric, since on Reeb graphs there is no path

of constant function value between two points u 6= v. Intuitively, df (u, v) can be

regarded as the minimal function difference one has to overcome to move from u to

v.

5.2.2 Functional distortion distance dFD

We can view the Reeb graphs Rf and Rg as metric graphs Rf = (Rf , df ) and

Rg = (Rg, dg), equipped with metrics df and dg, respectively. A natural distance for

metric spaces is called Gromov-Hausdorff distance (GH-distance), which we define

below, following the definitions and results from [64].

Definition 5.2.1 (Correspondence [64]) For set A and B, a subset C ⊂ A × B

is a correspondence between A and B, if and only if,

(1) ∀ a ∈ A, there exists b ∈ B s.t. (a, b) ∈ C;

(2) ∀ b ∈ B, there exists a ∈ A s.t. (a, b) ∈ C.

Let Λ(A,B) denote the set of all possible correspondences between sets A and B.

Definition 5.2.2 (Gromov-Hausdorff Distance [64]) The Gromov-Hausdorff dis-

tance between two metric spaces X = (X, dX) and Y = (Y, dY ) is

dGH(X ,Y ) =
1

2
inf

C∈Λ(A,B)
max

(x,y),(x′,y′)∈C
|dX(x, x′)− dY (y, y′)| .

We now can talk about the Gromov-Hausdorff distance between metric graphs Rf

and Rg using the distance we defined in 5.2.1. To do so, we first connect the space
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Rf and Rg, which is achieved by continuous maps φ : Rf → Rg and ψ : Rg → Rf .

Then we borrow above GH-distance definition (or see [51]) and let

G(φ, ψ) =
{

(x, φ(x)) : x ∈ Rf} ∪ {(ψ(y), y) : y ∈ Rg

}
and

D(φ, ψ) = sup
(x,y),(x̃,ỹ)∈G(φ,ψ)

1

2
|df (x, x̃)− dg(y, ỹ)| , (5.2)

where G(φ, ψ), the union of the graphs of φ and ψ, can be thought of as the set

of correspondences between Rf and Rg induced by maps φ and ψ. The functional

distortion distance is defined as:

dFD(Rf ,Rg) = inf
φ,ψ

max
{
D(φ, ψ), ‖f − g ◦ φ‖∞, ‖f ◦ ψ − g‖∞

}
, (5.3)

where φ and ψ range over all continuous maps between Rf and Rg. The latter two

terms address the fact that composition with isometries of the real line (translation,

negation) does not affect the metric df induced by a function f . Note that this defi-

nition can be considered as a continuous, functional variant of the Gromov–Hausdorff

distance, with the additional condition that the maps between Rf and Rg are re-

quired to be continuous, and taking into consideration the difference between the

function values of corresponding points as well. In fact, this definition is the continu-

ous version of the extended Gromov-Hausdorff distance introduced in Definition 2.4

of [20]. Furthermore, it turns out that for metric graphs, our continuous version of

the extended Gromov-Hausdorff (GH) distance is a constant factor approximation of

the extended GH distance induced by arbitrary maps. As an example, consider the

two trees in Figure 5.3. The distortion of distances in the two trees in Figure 5.3(left)

is large no matter how we identify correspondences between points from them. Thus
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the functional distortion distance between them is also large, making it more discrim-

inative than the bottleneck distance between persistence diagrams, which is 0 in this

two-tree case .

It is straightforward to show that the functional distortion distance is a pseudomet-

ric, and a metric on the equivalence classes of Reeb graphs up to function-preserving

homeomorphisms. Note that this definition and our results apply to any graph G

with a function f that is strictly monotonic on the edges. This is easy to see since in

that case Rf = G and f̃ = f .

5.2.3 Relation to Bottleneck Distance and Gromov-Hausdorff
Distance

1. Relation to Bottleneck Distance. We have seen in Figure 5.3 that there

are cases where the functional distortion distance can be strictly larger (more dis-

criminative) than the bottleneck distance between persistence diagrams of according

dimensions (0th ordinary and 1st extended persistent diagrams). In addition, as

shown in Theorem 5.2.3 and 5.2.4, the functional distortion distance is always at

least as large as (as discriminative as) the bottleneck distance. For the branching

features (ordinary persistence diagram), we have

Theorem 5.2.3 dB(Dg0(Rf ), Dg0(Rg)) ≤ dFD(Rf ,Rg).

Similarly, dB(Dg0(R−f ), Dg0(R−g)) ≤ dFD(Rf ,Rg).

For the cycle features (extended persistence diagram), we have the distance relation.

Theorem 5.2.4 dB(ExDg1(Rf ), ExDg1(Rg)) ≤ 3dFD(Rf ,Rg).

The proof of both theorems can be found in [7] Appendix.B.
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2. Relation to Gromov-Hausdorff Distance. We can view the Reeb graphs

Rf and Rg as metric spaces, equipped with metrics df and dg, respectively. A natural

distance for metric spaces is the Gromov–Hausdorff distance, which is defined as

follows, using the notation of Eqn 5.2:

dGH(Rf ,Rg) = inf
φ,ψ

(D(φ, ψ)) , (5.4)

where φ : Rf → Rg and ψ : Rg → Rf are all maps between Rf and Rg. Here the

maps φ, ψ are not necessarily continuous, which is different from our definition of the

functional distortion distance.

Note that translation f + c and negation −f do not change the metric structures

of the Reeb graphRf . To remove the effect of the difference in the function values, we

define the functional Gromov-Hausdorff distance betweenRf andRg, which measures

not only the distance distortion, but also the changes in the function value between

corresponding points:

dfGH(Rf ,Rg) := inf
φ,ψ

max (D(φ, ψ), ‖f − g ◦ ψ‖∞, ‖f ◦ φ− g‖∞) , (5.5)

where φ and ψ range over all maps between Rf and Rg.

It turns out that we have the following relations, which imply that our functional

distortion distanceroughly measures the minimum distortion in both function values

(between f and g) and in their induced metrics (between df to dg). We note that

this result holds if we remove the function value differences (i.e., ‖f − g ◦ φ‖∞ and

‖f ◦ ψ − g‖∞) from both dfGH and dFD. That is, the continuous version of Eqn 5.4

approximates the standard Gromov-Hausdorff distance for metrics df and dg. We

also note that this relation does not generalize to spaces with dimension higher than

one.
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Theorem 5.2.5 dfGH(Rf ,Rg) ≤ dFD(Rf ,Rg) ≤ 3dfGH(Rf ,Rg).

We do not include the proof of Theorem 5.2.5 in this dissertation work. One may

refer to [7] Appendix.A for details if interested.

5.3 Simplification of Reeb graphs

As we described in Section 5.1, there is a natural way to quantify branching and

loop features in terms of ordinary and extended persistence in the according dimen-

sions. The persistence based simplification can help to remove noisy or less important

features. Also it can be used to create a multi-resolution representation of the input

domain as shown in previous chapters. In this section, we prove that by remov-

ing small features using a natural merging strategy, (branching and loop) features

with large persistence value will not be killed, in other words, their persistence, i.e.,

“importance”, will be roughly maintained.

5.3.1 A natural simplification scheme for Reeb graph

We first introduce a merging based simplification strategy for Reeb graphs. The

strategy has been used and roughly mentioned in Chapter 3 and Chapter 4.

Branching feature. Given an ordinary persistence pair (m, s) with m as a mini-

mum and s as a down-fork node. Recall that the down-fork s merges two disconnected

components C1 and C2 of the sublevel set below f(s), and m of the one with higher

f value (in the minimum of C1 and C2). To remove the feature (m, s), we wish to

merge the branch containing m, say C2, into the other branch C1, so that afterwards,

m and s become regular points (i.e, with up-degree and down-degree both equal to

1). In particular, we perform the following operations (as shown in Figure 5.4). In
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Figure 5.4: (a) shows the original Reeb graph before simplification (also see Fig-
ure 1.5). We take the branches inside the dashed box as an example. (b) shows the
paths to be merged, i.e., π1 (green) and π2 (yellow). (c) shows the merged path, i.e.,
a monotonic path, denoted by π3 (blue). The simplification result for the entire Reeb
graph Rf can be found in Figure 1.5(c).

Figure 5.4, let v1 and v2 denote the minimum of component C1 and C2, respectively.

We choose an arbitrarily embedded path π2 ⊂ C2 from v4 to v2, and an arbitrary path

π′ from v4 to v1. Now imagine that starting from v4 we traverse the path π′ down-

wards. We stop when we encounter the first point x ⊂ C1, such that f(x) = f(v2),

and set π1 to be the subcurve of π′ from v4 to x. By identifying points with same

function value, we merge im π1 and imπ2 to form the image of a new monotonic arc

π3 between v4 (i.e., the down-fork node) and x such that any point p ∈ imπ1∪ imπ2 is

mapped to some q ∈ π3 with f(p) = f(q). Pairs of up-fork and maximum are treated

in a symmetric way.
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Figure 5.5: (a) shows the original Reeb graph before simplification (also see Fig-
ure 1.5). We take the small loop inside the dashed box as an example. (b) shows the
paths (two half cycles) to be merged, i.e., π1 (green) and π2 (yellow). (c) shows the
merged cycle. Now it’s a monotonic path denoted by π3 (blue). The simplification
result for the entire Reeb graph Rf can be found in Figure 1.5(c).

Cycle feature. Given an extended persistence pair (s1, s2) between an up-fork s1

and a down-fork s2, let γ be a thin cycle4 spanned by these two nodes. W.l.o.g.

assume that im γ only contains one single connected component: if im γ has multiple

connected components, then there must exist one that contains both s1 and s2. That

component is necessarily an embedded loop and thus we can simply set γ to be the

thin cycle corresponding to that loop. Let π1 and π2 denote the two disjoint sub-

curves of the loop that connect s1 and s2. To cancel the feature, intuitively, we wish

to merge π1 and π2 so that the cycle γ will be destroyed. Note that π1 and π2 may

not be monotonic (w.r.t. the input function f); however, all points in π1 and π2 have

function values within the range [f(s1), f(s2)]. The merging of π1 and π2 results in a

4A cycle γ is thin if there is no other cycle with smaller height than γ but having the same
minimum or maximum value in f as γ
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new monotonic arc π3 from s1 and s2, such that every point p ∈ im γ is mapped to

some q ∈ π3 with f(q) = f(p). See Figure 5.5 for an illustration, where the down-fork

is v8 and the up fork is v5.

Note that since a critical pair (m, s) (resp. an essential pair (s1, s2)) corresponds

uniquely to a persistence pair (f(m), f(s)) in the ordinary persistence diagram (resp.

(f(s1), f(s2)) in the extended persistence diagram), the above process also removes a

point from the respective persistence diagram.

Let R and R′ denote the Reeb graph before and after the simplification of a

persistence pair τ = (b, d) by collapsing its corresponding branching or loop feature.

Let πτ1 and πτ2 be as introduced above. Call γτ = πτ1 ∪ πτ2 the merging path w.r.t. τ .

Note that γτ is a closed curve corresponding to a thin cycle spanning (b, d) when it is

an extended persistence pair, and a connected path with b and d being the respective

minimum and maximum function values on it otherwise. The merging path γτ will be

collapsed into a single monotonic arc in order to eliminate the persistence pair τ . We

can view the removal of τ in a more formal way as follows: We say that two points

x, y ∈ R are τ -equivalent, denoted by x ∼τ y, if f(x) = f(y) and x, y ∈ γτ . The

simplified Reeb graphR′ is the quotient spaceR/∼τ ; the corresponding quotient map

µτ : R → R′ satisfies µτ (x) = µτ (y) if and only if x ∼τ y. The function f : R → R

induces a function f ′ : R′ → R such that for any x′ ∈ R′, f ′(x′) = f(x) for any

x ∈ µ−1
τ (x′).

Now given an input Reeb graph R, suppose we wish to eliminate a set of per-

sistence pairs {τ1 = (b1, d1), τ2 = (b2, d2), . . . , τk = (bk, dk)}. Compute the merging

path γτi for each persistence pair τi in R. We now define an equivalence relation ∼

as the transitive closure of all ∼τis for i ∈ [1, k]. This is equivalent to collapsing γτis
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for all i = 1, · · · , k in an arbitrary order to kill the persistence pairs τ1, . . . , τk The

final simplified Reeb graph R̃ is obtained as the quotient space R/∼. We have a

well-defined function g that

g : R̃ → R induced by the function f : R → R

s.t. g(µ(x)) = f(x), x ∈ R.
(5.6)

Let δ denote the largest persistence of τ1, . . . , τk. We have the following properties of

R̃, whose proof can be found in [8] Appendix.D.

Observation 5.3.1 (i) Given any two points x, y ∈ R, we have dg(µ(x), µ(y)) ≤

df (x, y).

(ii) Given a point x̃ ∈ R̃, for any two points x0, x1 ∈ µ−1(x̃), we have df (x0, x1) ≤ 2δ.

5.3.2 Distance between R and R̃

While the simplification scheme removes persistence pairs τ1, . . . , τk, it is not clear

how other points in the persistence diagram of the original Reeb graph R are affected.

In this section, we bound the bottleneck distance between the persistence diagrams

of R and R̃. Specifically, we bound the functional distortion distance, dFD(R, R̃),

where we have f : R → R and g : R̃ :→ R (defined in Eqn 5.6 Section 5.3.1).

We do so by constructing continuous maps φ : R → R̃ and ψ : R̃ → R as we

did in Section 5.2.2, and bounding the terms in Eqn 5.3, which in turn provides an

upper bound for dFD(R, R̃). Note, by the construction of quotient map µ for the

simplification process and the definition of surjective mapping φ, we see φ = µ.

Construct map ψε. The continuous map φ : R → R̃ can simply be taken as the

surjective map ϕ : R → R̃. For the opposite direction, we will construct a sequence of
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maps ψε : R̃ → R. First, we need the following result, which is a slight generalization

of Observation 5.3.1.

Lemma 5.3.2 Let x̃, ỹ ∈ R̃ be two points in R̃ such that there exists a monotonic

path π̃ between x̃ and ỹ with dg(x̃, ỹ) = g(ỹ) − g(x̃) = ε. Let x and y be arbitrary

preimages for x̃ and ỹ, respectively. Then df (x, y) ≤ 2δ + ε.

In fact, there is a path π from x to y such that the highest point t in imπ satisfies

f(t) ≤ f(y) + δ, and the lowest point b in imπ satisfies f(b) ≥ f(x)− δ.

Now for a fixed positive real ε, we use the following procedure to construct a

continuous map ψε : R̃ → R. First, we subdivide the simplified Reeb graph R̃ by

adding a set of nodes, so that every arc in the resulting graph (still denoted by R̃)

has height at most ε. Note that the height of an monotonic path from x to y is

simply the difference in the function values of x and y. We refer to the resulting

augmented graph R̃ as an ε-subdivision of R̃ with nodes Vε = {ṽ1, . . . ṽm}. Now

for each ṽi ∈ Vε, we set ψε(ṽi) to be an arbitrary but fixed pre-image vi ∈ µ−1(ṽi).

For each arc π̃(ṽi, ṽj) of R̃, consider the path π(vi, vj) connecting the two preimage

points vi and vj as stated in Lemma 5.3.2. We set the restriction of ψε over the

arc π̃(ṽi, ṽj) to be any homeomorphism from π̃(ṽi, ṽj) to π(vi, vj) with ψε(ṽi) = vi

and ψε(ṽj) = vj. The maps ψε(π̃(ṽi, ṽj)) for all arcs π̃(ṽi, ṽj) of R̃ assemble to the

continuous map ψε : R̃ → R.

By definition of φ = µ, we have maxx∈R |f(x)− g ◦φ(x)| = 0. On the other hand,

by the construction of ψε and Lemma 5.3.2, we have

max
y∈R̃
|g(y)− f ◦ ψε(y)| ≤ δ + ε.
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We conclude that

max{‖f − g ◦ φ‖∞, ‖f ◦ ψε − g‖∞} ≤ δ + ε.

To bound the functional distortion distancebetween R and R̃ using Eqn 5.3, we now

need to bound the term D(φ, ψε) from Eqn 5.2. In particular, we wish to bound the

distortion of distances for any pair of correspondences (x1, y1), (x2, y2) ∈ G(φ, ψε);

recall that G(φ, ψε) = {(x, φ(x))} ∪ {(ψε(y), y)} is the set of all correspondences

induced by φ and ψε. Assume that the two pairs (x1, y1) and (x2, y2) we have are of

the form: x1 = ψε(y1) and x2 = ψε(y2). Below we will bound |df (x1, x2)− dg(y1, y2)|.

Consider the ε-subdivision of R̃, and assume that y1 falls in the arc π̃(ṽi, ṽi+1) of

the subdivision, and y2 falls in the arc π̃(ṽj, ṽj+1) in the subdivision. Both π̃(ṽi, ṽi+1)

and π̃(ṽj, ṽj+1) are of height at most ε. Let vi be the specific preimages of ṽi as chosen

in the construction of ψε; that is, vi = ψε(ṽi) ∈ µ−1(ṽi). By the construction of ψε,

we have x1 ∈ π(vi, vi+1) and x2 ∈ π(vj, vj+1), where π(vi, vi+1) (resp. π(vj, vj+1)) is

the path connecting vi to vi+1 as specified by Lemma 5.3.2. Now consider the optimal

path π̃(y1, y2) that gives rise to dg(y1, y2). Assume w.l.o.g. that the representation of

π̃(y1, y2) using arcs from the ε-subdivision of R̃ is as follows:

π̃(y1, y2) = 〈y1, ṽi+1 = ṽI0 , ṽI1 , . . . , ṽIs−1 , ṽj = ṽIs , y2〉,

where each ṽIa is a vertex from the ε-subdivision of R̃. By Lemma 5.3.2, each arc

π̃(ṽIa , ṽIa+1) gives rise to a path π(vIa , vIa+1) whose range is within δ-Hausdorff distance

to range(π̃(ṽIa , ṽIa+1)). Let π̃(ṽi+1, ṽj) denote the subpath 〈ṽi+1 = ṽI0 , ṽI1 , . . . , ṽIs−1 , ṽj =

ṽIs〉 of π̃(y1, y2).

Concatenating all such π(vIa , vIa+1) together for a ∈ [0, s − 1], we obtain a path

π(vi+1, vj) in R whose range is within δ-Hausdorff distance from range(π̃(ṽi+1, ṽj)).
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π(ṽi+1, ṽj)
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Figure 5.6: Illustration - I.

Furthermore, by Lemma 5.3.2, the range of the path π(vi, vi+1) is within δ-Hausdorff

distance to range(π̃(ṽi, ṽi+1)). Since the monotone arc π̃(ṽi, ṽi+1)) has height at

most ε, it then follows that π(x1, vi+1) (as a subpath of π(vi, vi+1)) is within Haus-

dorff distance δ + ε to range(π̃(y1, ṽi+1)). A similar statement holds for the path

π(vj, x2). Putting everything together, we have that the path π(x1, vi+1)◦π(vi+1, vj)◦

π(vj, x2) from x1 to x2 satisfies that its range is within (δ+ε)-Hausdorff distance from

range(π̃(y1, y2)). Hence

df (x1, x2) ≤ dg(y1, y2) + 2δ + 2ε.

Now let’s consider the direction from R to R̃. Specifically, consider the optimal

path π∗(x1, x2) that gives rise to df (x1, x2). It is mapped to a path π̃∗(ỹ1, ỹ2) =

φ(π∗(x1, x2)) connecting ỹ1 = φ(x1) and ỹ2 = φ(x2) in R̃ under the map φ = µ : R →

R̃.

Furthermore, since φ is a quotient map that preserves function values, there always

exists a pair of optimal path with range(π̃∗(ỹ1, ỹ2)) = range(π∗(x1, x2)). Similarly,
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π∗(ṽi+1, ṽj)
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under φ, the path π(x1, vi) (resp. π(vj, x2) is mapped to a path π′(ỹ1, ṽi) (resp.

π′(ṽj, ỹ2)) of the same range. By Lemma 5.3.2, we have

height(π(x1, vi)) = height(π′(ỹ1, ṽi)) ≤ 2δ + ε (5.7)

height(π(x1, vi+1)) ≤ height(π′(ỹ1, ṽi+1)) + 2δ . (5.8)

A similar bound holds for the path π(x2, vj) and π(x2, vj+1). Hence the path π′(ṽi+1, ỹ1)◦

π̃∗(ỹ1, ỹ2) ◦ π′(ỹ2, ṽj) is a path connecting ṽi+1 to ṽj whose range is within (2δ + 2ε)-

Hausdorff distance to the range of π∗(x1, x2). Since by the construction of the ε-

subdivision, each arc π̃(y1, ṽi+1) and π̃(y2, ṽj) is of height at most ε, we have that

there is a path in R̃ connecting y1 to y2 whose range is within (2δ + 4ε)-Hausdorff

distance to the range of π∗(x1, x2). In other words, dg(y1, y2) ≤ df (x1, x2) + 4δ + 8ε.

Putting everything together, we have

|df (x1, x2)− dg(y1, y2)| ≤ 4δ + 8ε.
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In other words,

D(φ, ψε) = sup
1

2
|df (x1, x2)− dg(y1, y2)| ≤ 2δ + 4ε.

Using an analogous argument, we obtain the same bound for the cases y1 =

φ(x1), y2 = φ(x2) and y1 = φ(x1), x2 = ψε(y2). Putting everything together, we have

that

dφ,ψε := max{D(φ, ψε), ‖f − g ◦ φ‖∞, ‖f ◦ ψε − g‖∞} ≤ 2δ + 4ε. (5.9)

Let ε approach 0, we then have dFD(R, R̃) ≤ limε→0 dφ,ψε = 2δ. Combining this with

Theorem 5.2.3 and Theorem 5.2.4, we thus obtain





dB(Dg0(R±f ), Dg0(R±g)) ≤ dFD(R, R̃) = 2δ,

dB(ExDg1(Rf ), ExDg1(Rg)) ≤ 3dFD(R, R̃) = 6δ.

(5.10)

5.3.3 An alternative distance bound for R and R̃

In this section, we bound functional Gromov-Hausdorff distance, dfGH(R, R̃),

between R and R̃, and infer the bound of dFD(R, R̃) by Theorem 5.2.5. We do so by

constructing continuous map φ : R → R̃ , which describes the simplification process

implemented on R so that R̃ is obtained, and proving that the Gromov-Hausdorff

distance between R and R̃ is bounded by 2δ.

Being analogous to Eqn 5.2, we define the Gromov Hausdorff distance between R

and R̃ to be

dGH(R, R̃) = inf
C

(D(C(x, y))) , (5.11)

where C denotes the correspondence between the points x ∈ R and y ∈ R̃. Set

Ĉ = {(x, φ(x))|x ∈ R} is indeed a such correspondence since φ is a subjective mapping
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Figure 5.8: Right: An arc (qi, qi+1) ∈ R̃ denotes a monotonic path. Each of them has a
correspondent path (pi, pi+1) ∈ R, with qi = φ(pi). The path between y1 and y2 is the

concatenation of a set of monotonic paths, i.e., π̃(y1, y2) = {(y1, q1, ), · · · , (q5, y2)} ∈ R̃
with range(π̃(y1, y2)) = [la, lb]. Left: There exists a path π(x1, x2) in R, with x1 and
x2 being the arbitrarily preimages of y1 and y2, respectively. The range of π(x1, x2)
can be bounded as [la − δ, lb + δ].

from R to R̃. Given any {(x1, y2), (x2, y2)} ∈ Ĉ with y1 = φ(x1) and y2 = φ(x2), we

show |df (x1, x2)− dg(y1, y2)| ≤ 2δ, which can be rewritten as

−2δ ≤ df (x1, x2)− dg(y1, y2) ≤ 2δ (5.12)

To proof the left inequality in Eqn 5.12, we review the result shown in Observa-

tion 5.3.1 and obtain dg(y1, y2)−df (x1, x2) ≤ 0 , which naturally infers the inequality

−2δ ≤ df (x1, x2)− dg(y1, y2)

Now we show the right part of Eqn 5.12. For two points y1, y2 ∈ R̃, if they are

connected, there exists a set of paths Π = {π1, π2, · · · , πm} ∈ R̃ with each πj being a

path connecting y1, y2. Let π̃(y1, y2) ∈ R̃ denote the path with the minimum height
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in Π. W.l.o.g., assume π̃(y1, y2) ∈ R̃ is the concatenation of a set of monotonic paths

π̃(y1, y2) = {π∗(y1, qs, ), π
∗(qs, qs+1), · · · , π∗(qi, qi+1), · · · , π∗(qe−1, qe), π

∗(qe, y2)} ∈ R̃

By Lemma 5.3.2, each π̃∗(qi, qi+1) gives rise to a path π∗(pi, pi+1) ∈ R with the rela-

tionship height(π∗(pi, pi+1)) ≤ 2δ+height(π̃∗(qi, qi+1)). Concatenating all π∗(pi, pi+1)

with i = s, · · · , e, we obtain a path π∗(ps, pe) with height(π∗(ps, pe)) ≤ height(π̃∗(qs, qe))+

2δ. Since both π̃∗(y1, qs) and π̃∗(qe, y2) are also monotonic paths, now let γ̃ =

range(π̃(y1, y2)) = [la, lb] denote the range of path π̃(y1, y2), and γ = range(π(x1, x2))

denote the range of path π(x1, x2), we have γ ⊆ [la−δ, lb+δ]. Namely, height(π(x1, x2)) ≤

height(π̃(y1, y2)) + 2δ. This proves the right part of Eqn 5.12, that is df (x1, x2) −

dg(y1, y2) ≤ 2δ.

By the definition of functional Gromov-Hausdorff distance shown in Eqn 5.5 and

Eqn 5.11, we bound the functional Gromov-Hausdorff distance between reeb graph

R and its simplified graph R̃ as

dfGH(R, R̃) ≤ 1

2
|df (x1, x2)− dg(y1, y2)| = δ (5.13)

Therefore, by Theorem 5.2.5, we have

dFD(R, R̃) ≤ 3dfGH(R, R̃) = 3δ (5.14)

Though the bounding shown above is looser than the one in Eqn 5.10, its proof

is much shorter and more intuitive compared with the one in Section 5.3.2.

5.4 Conclusion Remark

We proposed a distance for Reeb graphs, under which the Reeb graph is stable with

respect to the changes in the input function under the L∞ norm. More importantly,
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we show that this distance is bounded from below and thus more discriminative at

differentiating scalar fields than the bottleneck distance between both 0th ordinary

and 1st extended persistence diagrams. Similar to the use of the Gromov-Hausdorff

distance for metric spaces, having the Reeb graph distance metric provides a formal

language for describing and studying various properties of the Reeb graphs. By

bounding the functional distortion distance between a Reeb graph and its simplified

version, we can prove that the major features will be preserved under the Reeb graph

simplification process.
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Chapter 6: Final Remarks

In this dissertation work, we proposed a sequence of algorithms from feature aware

sampling to 1D structure reconstruction, and demonstrated their effectiveness via

various applications. These methods work reasonably well for both low dimensional

data feature reconstruction and high dimensional data analysis and description.

A major part of this work is based on the concept of Reeb graph, which is an

abstract graph providing descriptors of the hidden structure or objects in the input

data. To handle the noisy input, we presented a natural way to simplify the Reeb

graph by removing spurious graph features. Furthermore, we provide a theoretical

study on the potential distortion that can be caused in such simplifications. By

bounding the distortion distance, we prove that the important features are guaranteed

to be preserved under the simplification, which addresses a key practical issue of the

Reeb graph usage.

We now list some of the promising research directions.

Feature aware sampling for high-dimensional data. The feature aware sam-

pling approach shown in Chapter 2 is mainly designed for the applications in lower

dimensional space, e.g., image, 2D manifold or video. Though our feature aware

metric is flexible enough to be extended to high dimensional space measurement,
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the sampling algorithm like dart throwing or Voronoi diagram suffers the notorious

curse of dimensionality. Namely, with the increasing of dimensionality, the time/s-

pace consumption increases dramatically. To this end, we believe that designing an

appropriate and generic algorithm for sampling in high dimensional space could be

an interesting direction to pursue.

Geometry embedding for 1D skeleton. Reeb graph is a topological concept

and does not have a natural geometric embedding. However, in most applications

(especially the applications in computer graphics and visualization), an appropriate

geometry embedding is highly desired. Our current algorithm works reasonably well

in detecting the junction area, however, it’s still hard to decide the precise location

for a junction point. It would be interesting to develop an automatic and robust

method to determine the precise junction locations.

Another related problem under the same category is about the detection of con-

cave corners which has been mentioned in Chapter 4. Those corner points, though

sometimes are merely the regular points in a graph arc, impact the quality of the final

reconstructions crucially. Our current Gaussian-weighted graph Laplacian approach

has some inherent difficulties in detecting such concave points. Research work aim-

ing at feature corner/junction points detecting and reconstruction would be another

interesting direction to go.

Robust hidden graph reconstruction from data with statistical and outlier-

type noise. Our current method is robust to Hausdorff noise, however, in practice,

one often encounters data corrupted with statistical or outlier-type noise, which makes

the problem become much more challenging. By this token, we believe designing an
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algorithm for reconstructing hidden graphs from the data with more complicated noise

would potentially be an interesting research topic which has various applications in

data visualization and analysis.
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[16] Jianghao Chang, Benôıt Alain, and Victor Ostromoukhov. Structure-aware er-
ror diffusion. SIGGRAPH Asia ’09, ACM Trans. Graph., 28(5):162:1–162:8,
December 2009.

[17] K. Chang and J. Grosh. A unified model for probabilistic principal surfaces.
IEEE Trans. Pattern Anal. Machine Intell., 24(1):59–64, 2002.

[18] F. Chazal, D. Cohen-Steiner, and A. Lieutier. A sampling theory for compact
sets in Euclidean space. Discrete Comput. Geom., 41(3):461–479, 2009.

[19] Frederic Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and
stability of persistence modules. 2013.

[20] Frédéric Chazal, David C. Steiner, Leonidas J. Guibas, Facundo Mémoli, and
Steve Y. Oudot. Gromov-Hausdorff stable signatures for shapes using persis-
tence. In Proceedings of the Symposium on Geometry Processing, SGP ’09, pages
1393–1403, Aire-la-Ville, Switzerland, Switzerland, 2009. Eurographics Associa-
tion.

102



[21] Frédéric Chazal and Jian Sun. Gromov-hausdorff approximation of filament
structure using reeb-type graph. In Proceedings of the Thirtieth Annual Sympo-
sium on Computational Geometry, SOCG’14, pages 491:491–491:500, New York,
NY, USA, 2014. ACM.

[22] Jiating Chen, Xiaoyin Ge, Li-Yi Wei, Bin Wang, Yusu Wang, Huamin Wang,
Yun Fei, Kang-Lai Qian, Jun-Hai Yong, and Wenping Wang. Bilateral blue noise
samples. In SIGGRAPH Asia ’13, page submitted to, 2013.

[23] Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time edge-aware image
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[59] Yang Liu, Wenping Wang, Bruno Lévy, Feng Sun, Dong-Ming Yan, Lin Lu, and
Chenglei Yang. On centroidal voronoi tessellation&mdash;energy smoothness
and fast computation. ACM Trans. Graph., 28(4):101:1–101:17, September 2009.

[60] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[61] Chuanjiang Luo, Xiaoyin Ge, and Yusu Wang. Uniformization and density adap-
tation for point cloud data via graph laplacian. Technical Report OSU-CISRC-
11/14-TR19, The Ohio State University - Department of Computer Science,
2014. ftp://ftp.cse.ohio-state.edu/pub/tech-report/2014/TR19.pdf.

[62] A. Witkin M. Kass and D. Terzopoulos. Snakes: Active contour models. Inter-
national Journal of Computer Vision, 1:321–331, 1988.

[63] Sanjit K. Mitra. Digital Signal Processing. McGraw-Hill Higher Education, 2005.

[64] Facundo Mmoli. Gromov-hausdorff distances in euclidean spaces. In In Proc.
Computer Vision and Pattern Recognition (CVPR), 2008.

[65] P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete Comput. Geom., 39(1-
3):419–441, 2008.

[66] U. Ozertem and D. Erdogmus. Locally defined principal curves and surfaces.
Journal of Machine Learning Research, 12:1249–1286, 2011.
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