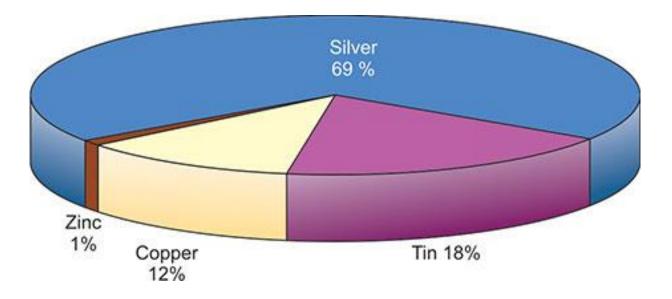
Dental Amalgam

DR. AHMED MAGDY SAYED LECTURER OF DENTAL BIOMATERIALS

Definitions

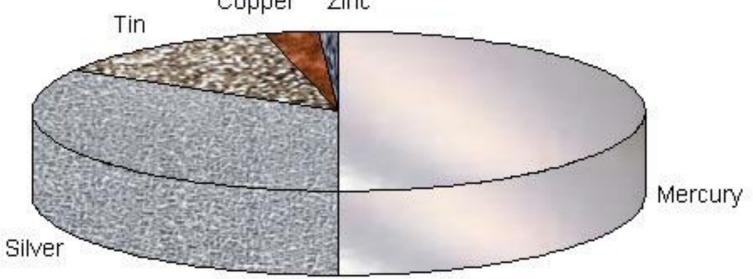
Amalgam:

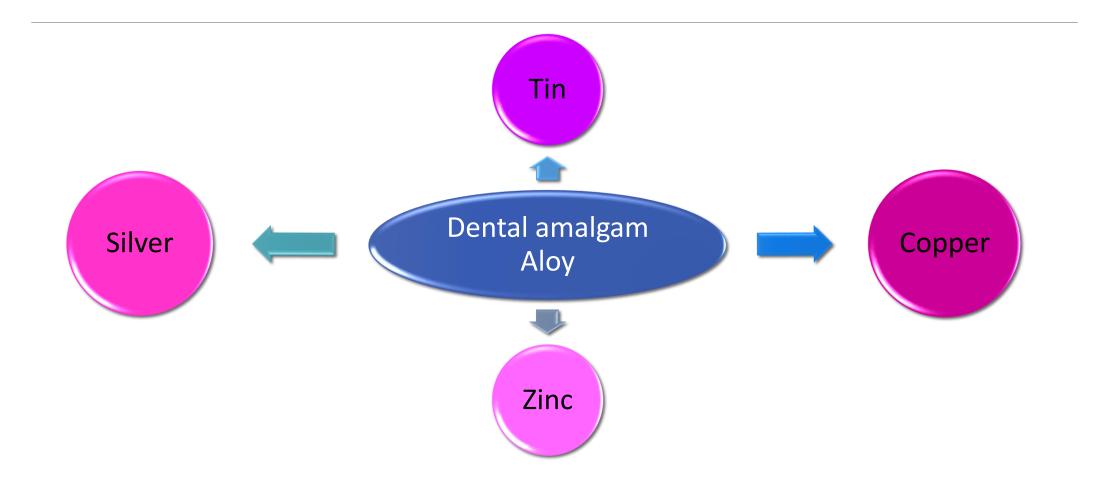
Any alloy containing mercury.



Definitions

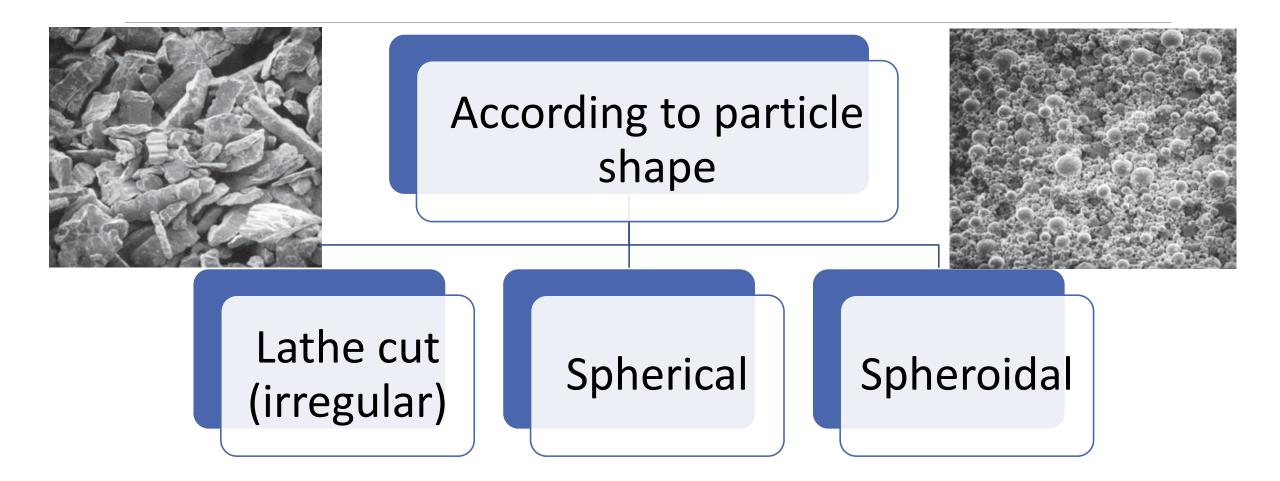
Dental Amalgam Alloy:


It is a distinct alloy that is formed of silver, tin, copper and occasionally zinc.

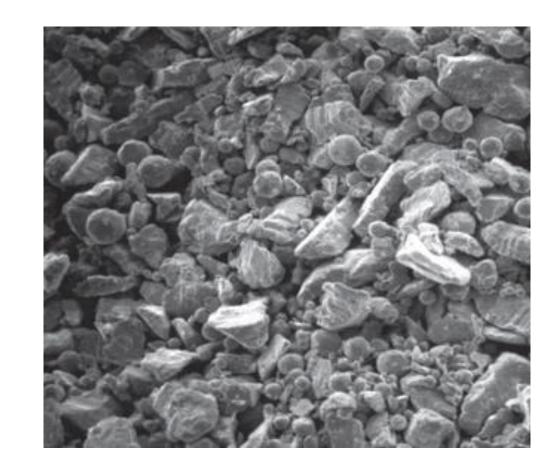

Definitions

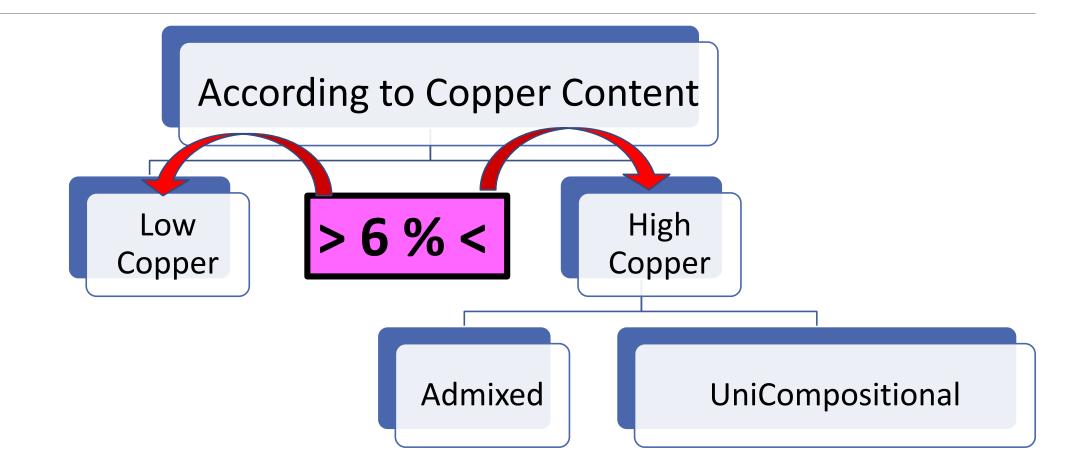
Dental Amalgam:

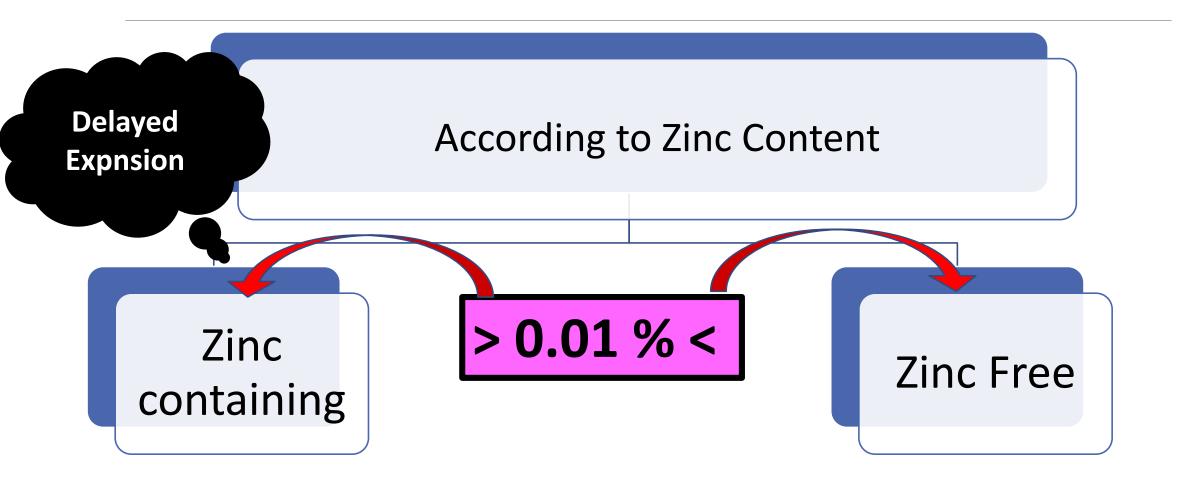
It is the restoration results from mixing dental amalgam alloy with mercury at room temperature to give a plastic mix that is placed into the prepared cavity.



Composition of Dental amalgam:


Composition of Dental amalgam:


	Silver	Tin	Copper	Mercury
Main role	It is the main element of the reaction	It controls the reaction between silver and mercury		As a liquid, it forms the plastic mix of restoration
Strength	1	\downarrow	1	\downarrow
Setting expansion	1	\downarrow	1	\downarrow
Corrosion resistance	1	\downarrow	↑	\downarrow
Creep	\downarrow	↑ DR AHMED MAGL	↓ V	1



Admixed amalgam

It is amalgam with spherical and irregular silver alloy particles.

Percentage Composition of Dental Amalgam Alloys

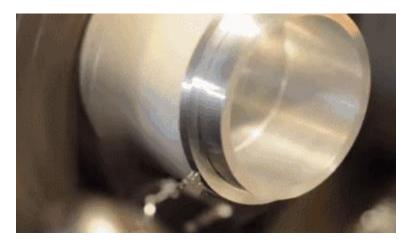
	Low copper amalgam	High copper amalgam		
		Admixed		Unicompositional
		Lathe cut (2/3)	Spherical (1/3)	
Silver	63 – 70%	40 – 70%	40 – 65%	40 - 60%
Tin	26 – 29%	26 – 30 %	0-30%	22 – 30%
Copper	2 – 5 %	2 – 30 %	20 – 40%	13 - 30%
Zinc	0 – 2%	0 – 2 %	0%	0-2%

1. Ingot production:

- The constituent elements are melt and cast into a cylindrical ingot (≈3.8 X 25 cm).
- It is slowly cooled under 480° C to produce an intermetallic compound Ag₃Sn (γ-phase)
- > It is non-homogenous in nature (cored structure).

2. Homogenization heat treatment:

- The cored ingot should be subjected to homogenization heat treatment to improve mechanical properties and corrosion resistance.
- \geq It is done by heating the ingot at 400° C for 24 hours.


3. <u>Powder production:</u>

Lathe cut:

The constituent elements are melted and cast into an ingot.

DR AHMED MAGD

The ingot is lathe cut or ball milled into irregular particles.

3. <u>Powder production:</u>

Spherical:

The constituent elements are melt and atomized (sprayed) into inert gas.

3. <u>Powder production:</u>

Spheroidal:

The constituent elements are melt and atomized (sprayed) into water.

4. Aging or annealing heat treatment:

- > Lathe cutting develops internal stresses in the powder.
- The internal stresses lead to very fast setting and severe setting expansion.
- > Aging or annealing eliminates the internal stresses.

4. Aging or annealing heat treatment:

- Aging store the powder at room temperature for several months.
- > Annealing \rightarrow heat the powder at 100° C for 1-6 hours.

4. Aging or annealing heat treatment:

Spherical and spheroidal particles require homogenization heat treatment only. They do not require aging or annealing heat treatment.

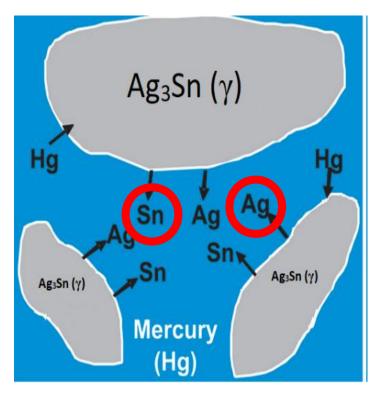
Advantages of spherical particles over lathe cut:

- Have lower surface area → requires less mercury to obtain homogenous mix → produce amalgam with superior properties (↑ mechanical properties and ↑ corrosion resistance).
- 2. Produce smooth surface during carving and finishing.
- 3. Requires less condensation pressure.

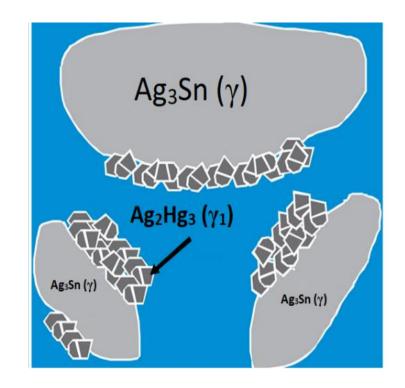
Phase	Name	Composition
γ	Gamma	Ag₃Sn
γ1	Gamma 1	Ag₂Hg₃
γ2	Gamma2	Sn ₈ Hg
η	Eta	Cu ₆ Sn ₅
ε	Epsilon	Cu₃Sn

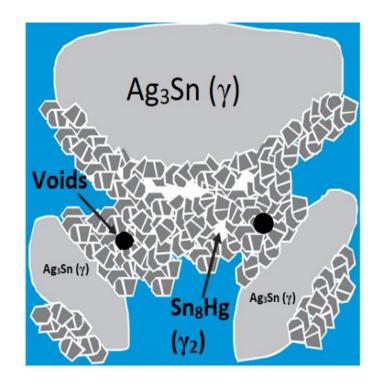
1. Low Copper amalgam:

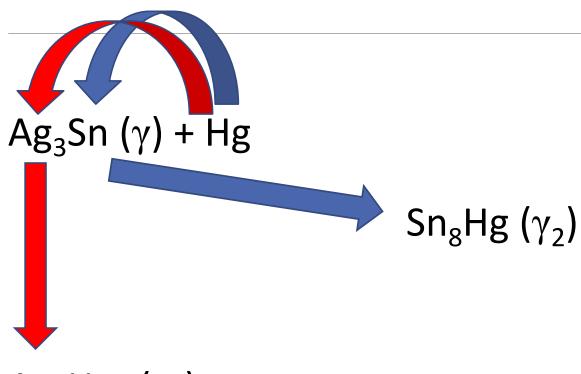
The powder is formed mainly of γ (Ag₃Sn) phase.

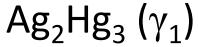

After amalgam mixing with the alloy powder, the following stages occurs:

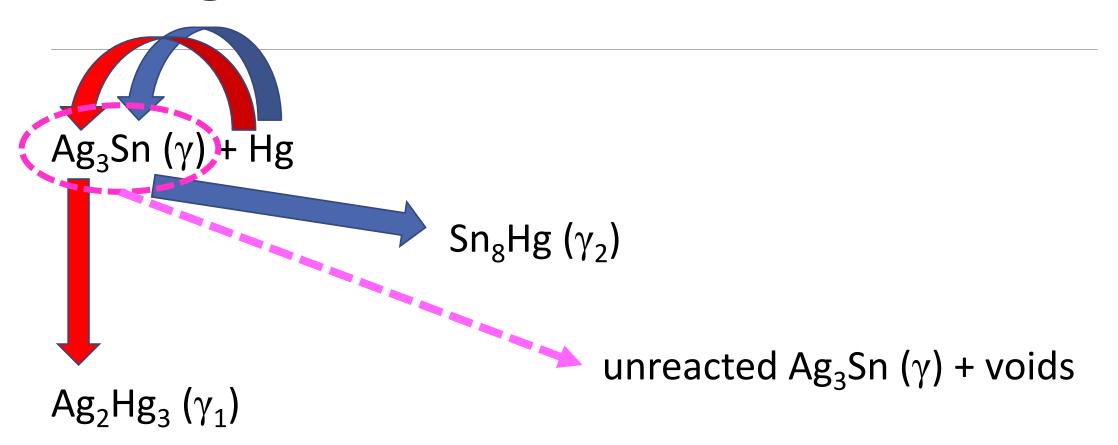
- a) Wetting.
- b) Diffusion.
- c) Surface reaction.


- 1. Low Copper amalgam:
- a) Wetting:
 - The liquid mercury is added to the powder alloy and triturated (vigorous mix).
 - > The mercury wets the **surface** of the γ (Ag₃Sn) particles.

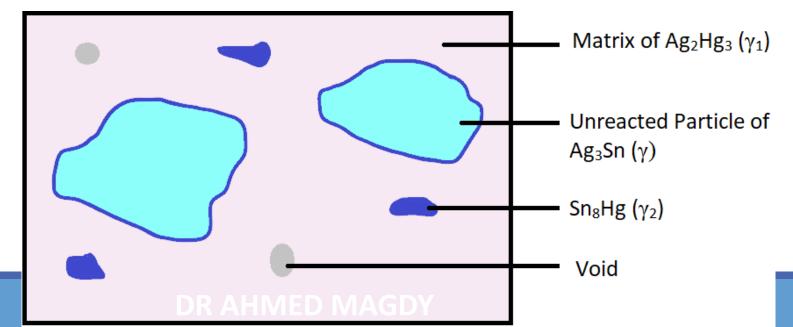

- 1. Low Copper amalgam:
- **b)** Diffusion:
 - The mercury diffuses into the outer layer of the γ phase leads to its dissolution in to silver and tin.


- 1. Low Copper amalgam:
- c) Surface reaction:
 - The mercury reacts with the silver and tin leading to formation of new phases (γ1 phase Ag₂Hg₃ "silver-mercury phase" and γ2 phase Sn₈Hg "tin-mercury phase").




- 1. Low Copper amalgam:
- c) Surface reaction:
 - The new phases production increase with time leading to hardening of the plastic mix.
 - > The new phases ($\gamma_1 \& \gamma_2$) surrounds and bound the unreacted parts of γ phase.

Ag₃Sn (γ) + Hg \longrightarrow Ag₂Hg₃ (γ_1) + Sn₈Hg (γ_2) + unreacted Ag₃Sn (γ) + voids



Microstructure:

Cored structure

- > Formed of unreacted $Ag_3Sn(\gamma) + Sn_8Hg(\gamma_2)$.
- > They are surrounded and bounded by a matrix of $Ag_2Hg_3(\gamma_1)$ with some voids.

Properties of the different phases:

- \geq Ag₃Sn (γ) phase: the strongest and most resistant to corrosion.
- > Ag₂Hg₃ (γ_1) phase: less strong and less resistant to corrosion.
- > $Sn_8Hg(\gamma_2)$ phase: the weakest and least resistant to corrosion.

Phase	Tensile strength
γ	170 MPa
γ1	30 MPa
γ2	20 MPa

Properties of the different phases:

Excess mercury will produce more γ_1 and γ_2 on the expense of γ phase will lead to:

- Decrease strength.
- Decrease corrosion resistance.
- Increase creep.

Properties of the different phases:

> Elimination of $Sn_8Hg(\gamma_2)$ phase will lead to improve dental amalgam properties.

High copper amalgam (γ_2 free amalgam):

Increasing the copper content of the dental amalgam alloy will lead to elimination of Sn_8Hg (γ_2) phase and improving the dental amalgam properties.

The copper content varies from 13 - 30%.

Admixed high copper amalgam:

The copper content of the alloy powder is increased by mixing two alloys particles:

- Silver copper (Ag-Cu) eutectic alloy.
- > Silver-tin Ag₃Sn (γ) alloy.

The setting reaction occurs in two steps:

- 1. Amalgamation reaction.
- 2. Solid-state reaction

Setting reaction:

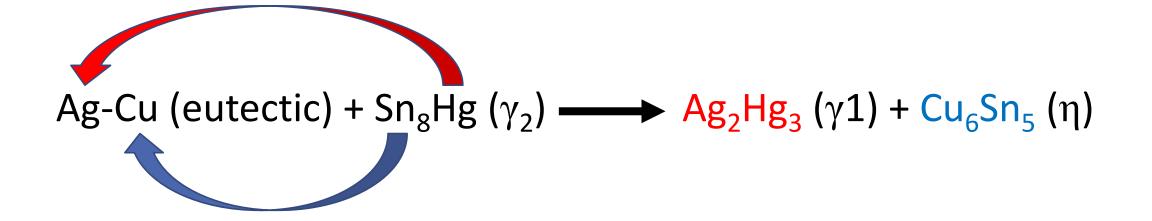
1. Amalgamation reaction:

Like the low copper amalgamation reaction.

The silver-copper eutectic alloy does not participate in the reaction.

Ag₃Sn (γ) + Ag-Cu (eutectic) + Hg \longrightarrow Ag₂Hg₃ (γ_1) + Sn₈Hg (γ_2) + unreacted Ag₃Sn (γ) + unreacted Ag-Cu (eutectic) + voids.

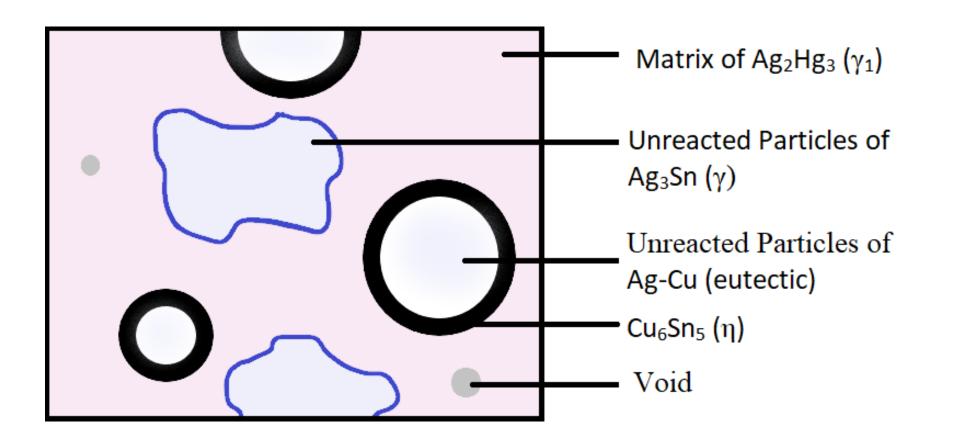
Setting reaction:


2. Solid-state reaction:

- > It is the $Sn_8Hg(\gamma_2)$ phase elimination step.
- The reaction between Ag-Cu (eutectic) and Sn₈Hg (γ₂) takes place slowly resulting in formation of Ag₂Hg₃ (γ₁) and a new phase Cu₆Sn₅ (η) "eta phase" as a reaction zone around Ag-Cu eutectic particles.

Setting reaction:

2. Solid-state reaction:


Microstructure:

Cored structure

> It is formed of a matrix of $Ag_2Hg_3(\gamma_1)$ surrounds the unreacted $Ag_3Sn(\gamma)$ and unreacted Ag-Cu (eutectic).

> The Ag-Cu (eutectic) particles is surrounded by halos of Cu_6Sn_5 (η).

Microstructure:

Drawbacks of admixed high copper amalgam

- 1. Uneven distribution of the two particles in the powder due to sedimentation of one particle in the container.
- 2. Surface oxidation of the silver-copper eutectic alloy.

Unicompositional high Copper amalgam

➤ The amalgam alloy powder is formed of one particle type with a copper content 13 – 30%.

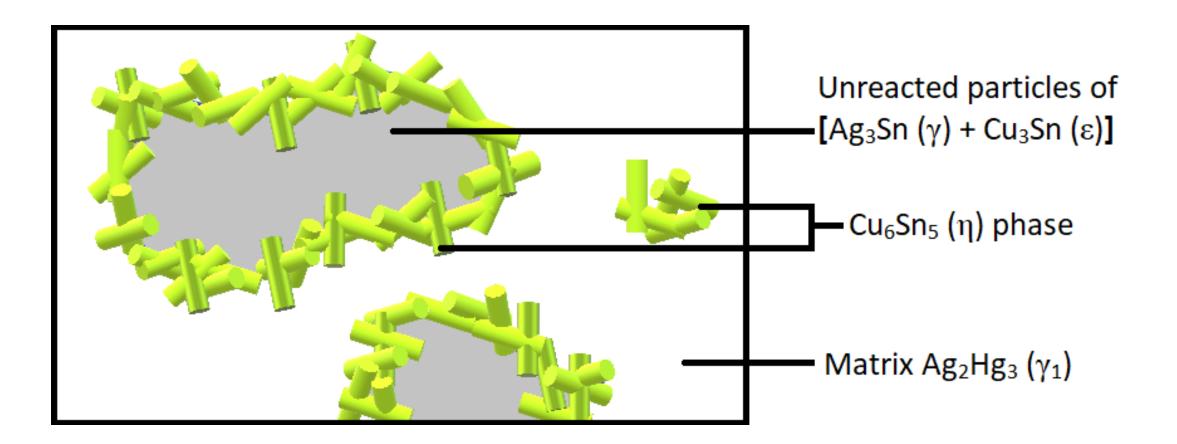
> Each particle contains $Ag_3Sn(\gamma)$ and $Cu_3Sn(\varepsilon)$ "epsilon" phases.

Unicompositional high Copper amalgam

- This unicompositional form overcome the drawbacks of admixed type.
- > The Sn₈Hg (γ_2) phase is eliminated at the beginning of the reaction.

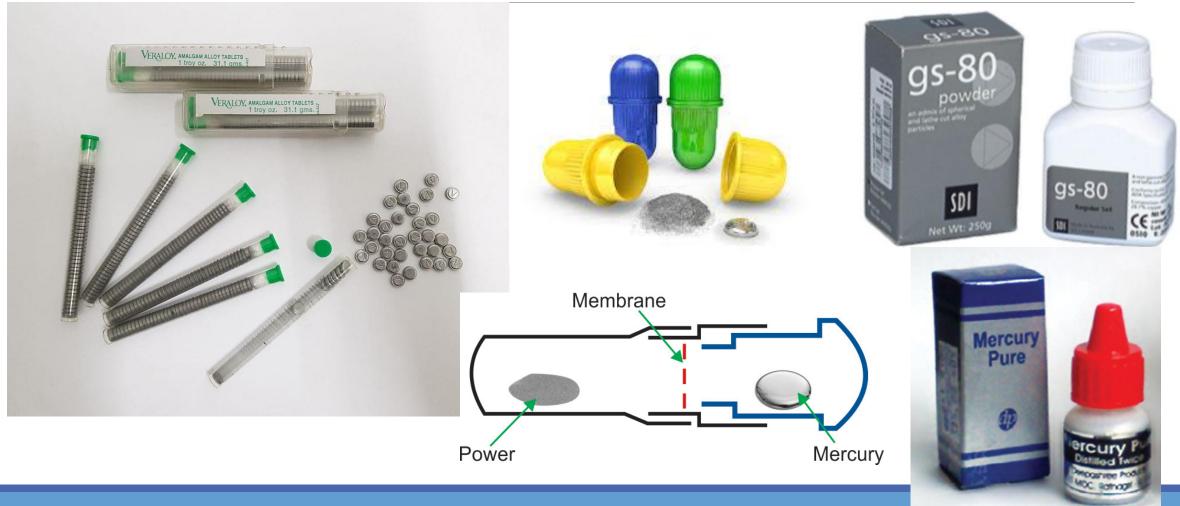
Setting Reaction:

$[Ag_{3}Sn(\gamma) + Cu_{3}Sn(\epsilon)] + Hg \longrightarrow Ag_{2}Hg_{3}(\gamma_{1}) + Cu_{6}Sn_{5}(\eta) +$


unreacted [Ag₃Sn (γ) + Cu₃Sn (ϵ)]

Microstructure:

Cored structure


- > It is formed of a matrix $Ag_2Hg_3(\gamma_1)$ surrounds unreacted particles of $[Ag_3Sn(\gamma) + Cu_3Sn(\epsilon)]$.
- > The Cu_6Sn_5 (η) phase formed in a rod shape structure.
- The Cu₆Sn₅ (η) phase surrounds the unreacted particles of $[Ag_3Sn (\gamma) + Cu_3Sn (ε)]$ and embedded as crystals in $Ag_2Hg_3 (\gamma_1)$ phase.

Microstructure:

Mode of presentation:

- 1. Tablets and mercury.
- 2. Preproportioned capsules.
- 3. Powder and mercury.

Selection of the alloy:

> According to several factors such as; particle shape, particle

size, zinc content and copper content.

Proportioning:

Two techniques are recommended:

- Wet technique: the mercury/alloy ratio is slightly more than
 1:1.
- 2. Dry technique (Eam's technique): the mercury/alloy ratio is 1:1.

Proportioning:

Preproportioned capsules are widely used nowadays. .

Proportioning:

Excess mercury leads to more formation of γ_1 and γ_2 on the expense of stronger γ phase.

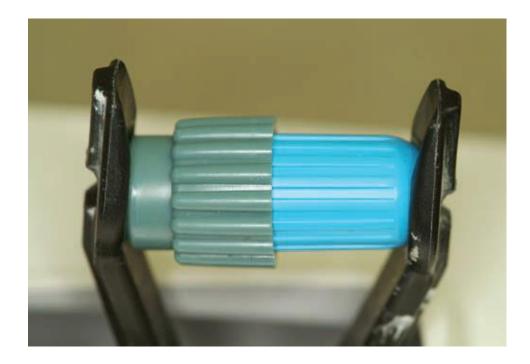
This results in ψ : strength, ψ corrosion resistance, \uparrow setting expansion and \uparrow creep.

Proportioning:

Less mercury leads to not wetting of all powder particles with mercury.

This results in friable mix, \uparrow voids, \downarrow strength and \downarrow corrosion resistance.

Trituration:


It is the vigorous mixing of dental amalgam alloy with the mercury.

Trituration could be performed manually (using mortar and pestle)

or mechanically (using amalgamator).

Trituration:

Advantages of mechanical trituration:

- 1. Less risk of mercury exposure.
- 2. Lower mercury/ alloy ratio can be used.
- 3. More uniform and reproducible mix.
- 4. Save time and effort.

The properly triturated mix:

- > It has a shiny surface and soft consistency.
- It results in the best mechanical properties and corrosion resistance.

Over trituration (increasing time or speed):

- \geq It tends to crumble and sticks to the capsule.
- \succ It is difficult to condense.
- > It has lower working time.
- > It has higher contraction and creep.

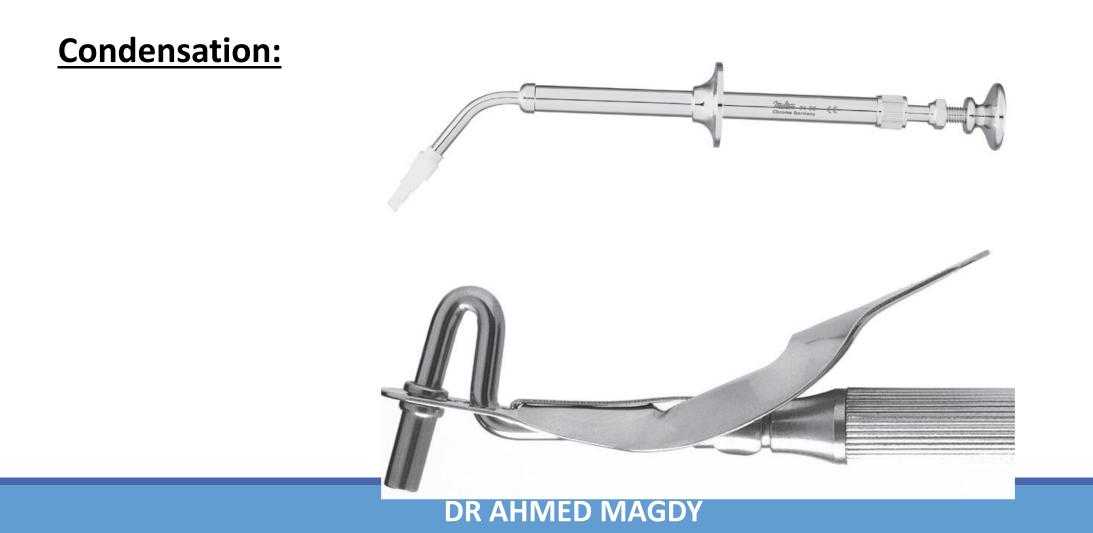
Under trituration (decreasing time or speed):

- > It is grainy and friable with dull appearance.
- It has lower working time and more excess mercury (Poor Properties).

Under Triturated

Proper Triturated

Over Triturated


Under Triturated Proper Triturated Over Triturated

Mulling:

It is the rubbing of the triturated mix into a rubber finger-stall.

Condensation:

It is the packing of the triturated amalgam mix inside the prepared cavity incrementally with condensation of each increment separately.

Condensation:

Condensation:

Condensation:

Condensation:

Condensation:

Objectives of condensation:

- 1. Increase adaptation of the restoration to the cavity wall.
- 2. Decrease the mercury content by express excess mercury to the surface.
- 3. Reduce the porosity providing a strong compact mass.

Condensation:

Condensation **should not** be done after 3 minutes from trituration.

Effect of delayed condensation (after 3 minutes from trituration):

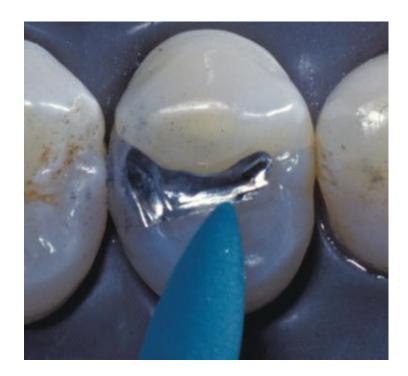
- 1. Reduce strength due to breaking up of partially formed matrix.
- 2. Partially set matrix contains excess mercury and excess porosities.
- 3. Decrease the adaptation to the cavity wall due to decrease plasticity.
- 4. Decrease the **bonding** between increments.

Carving:

The cavity is overfilled, then the top mercury-rich layer is carved.

Objectives of carving:

- 1. Reproduce the anatomy of the tooth.
- 2. Removal of the top mercury-rich layer.


Finishing and polishing:

Finishing is done using finishing burs.

Polishing is done using rubber cups and soft brushes with pumice.

Finishing and polishing:

Timing of finishing and polishing:

Conventional low copper amalgam \rightarrow after 24 hours.

High copper amalgam \rightarrow shortly after insertion.

Timing of finishing and polishing:

Avoid overheating of restoration to prevent raising the mercury to the surface.

Objectives of finishing and polishing:

- 1. Increase patient acceptance to restoration.
- 2. Increase corrosion resistance by obtaining smooth surface.

Properties of Dental Amalgam:

- 1. Dimensional Changes (Immediate + Delayed).
- 2. Flow and Creep
- 3. Strength
- 4. Bond to tooth structure
- 5. Biological properties

Ideally, any restoration should be dimensionally stable during setting.

Contraction of restoration:

It leads to leakage at the tooth-restoration interface. This leakage

leads to recurrent caries and hypersensitivity.

Expansion of restoration

It leads to tooth fracture or protrusion of the restoration form the cavity

Protrusion occlusally → overhanging margins that may ditch or accumulate food.

Protrusion gingivally \rightarrow gingival irritation.

Dimensional changes during setting

It is the dimensional changes between 5 minutes and 24 hours after amalgam insertion.

It should be less than $\pm 20 \ \mu$ m/cm according to ADA specification which is achieved by all types of dental amalgam.

Dimensional changes during setting

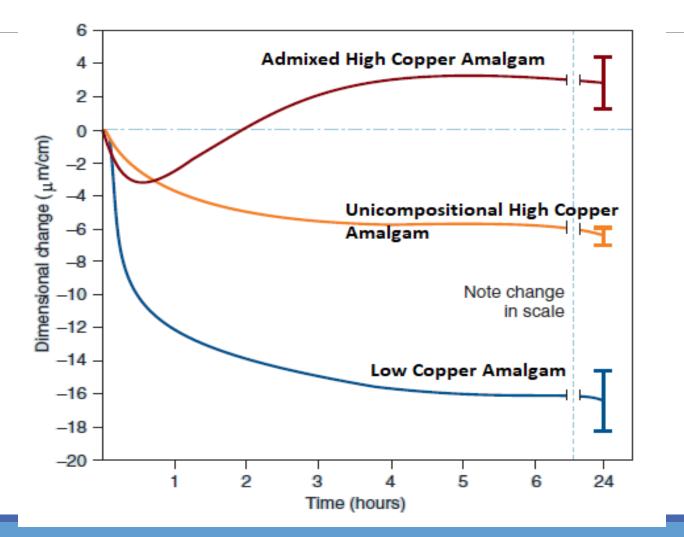
After trituration, the following changes occurs:

- 1. Initial contraction in the first 30 minutes due to solubility of amalgam powder by mercury.
- 2. Expansion due to outward pressure of growing γ_1 crystals.
- 3. Dimensional changes became constant after 6 8 hours.

Dimensional changes during setting

Any manipulative variable that \downarrow mercury ratio leads to contraction:

- 1. Lower Hg/alloy ratio.
- 2. High condensation pressure.
- 3. Small particle size (high surface area that react with mercury).

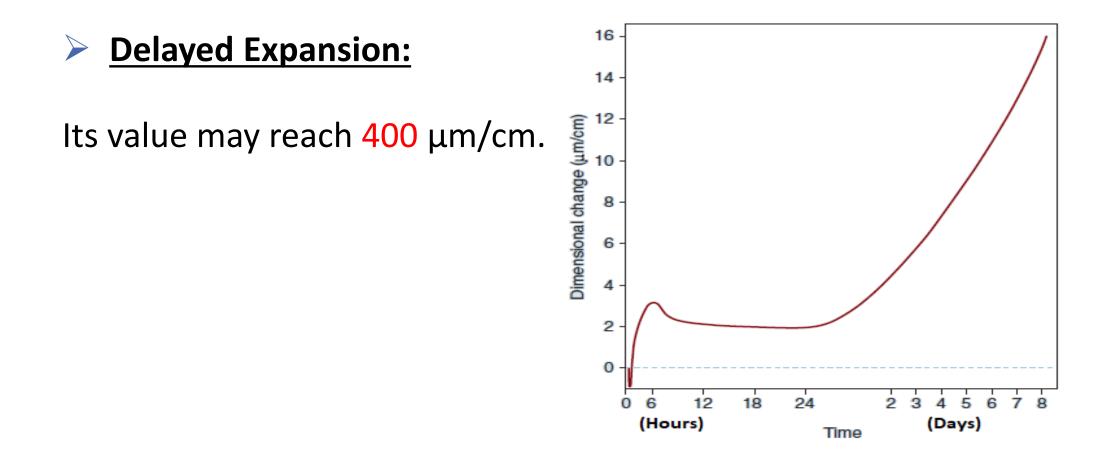

Dimensional changes during setting

The modern dental amalgams showed net contraction due to using smaller particles and using of mechanical amalgamators (low Hg/Powder).

Dimensional changes during setting

Marginal adaptation of dental amalgam restoration achieved by:

- 1. Good condensation.
- Self-seal property of dental amalgam (the corrosion products of dental amalgam are precipitated at the tooth-restoration interface and seal this gap in 2-3 months).


Delayed Expansion:

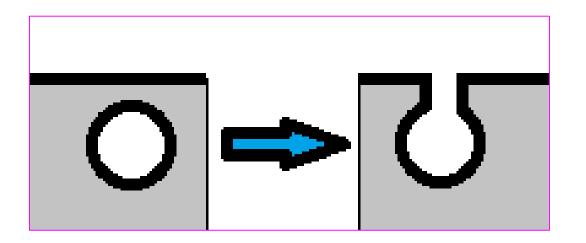
It occurs in zinc containing amalgam when exposed to moisture

during trituration or condensation.

It starts after 3 – 5 days after restoration insertion and may

continue for months.

Delayed Expansion:


The zinc reacted with the water leads to evolution of hydrogen

gas.

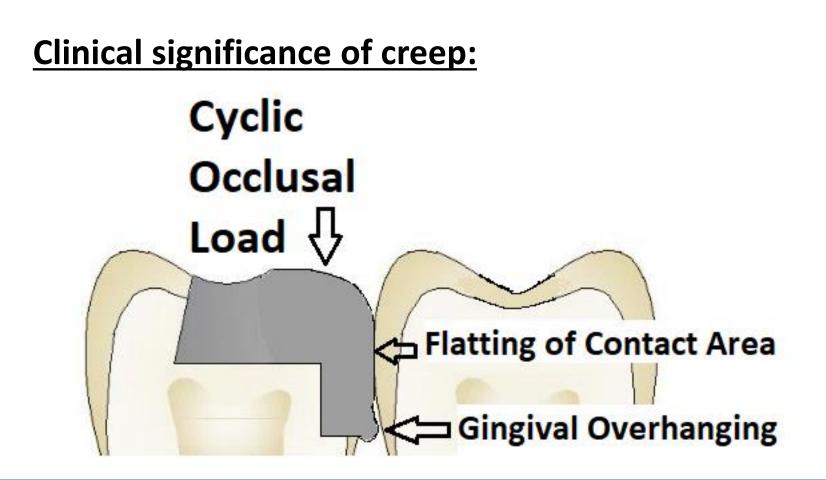
 $Zn + H_2O \longrightarrow ZnO + H_2 \uparrow$

The H₂ gas leads to post-operative sensitivity and blistering .

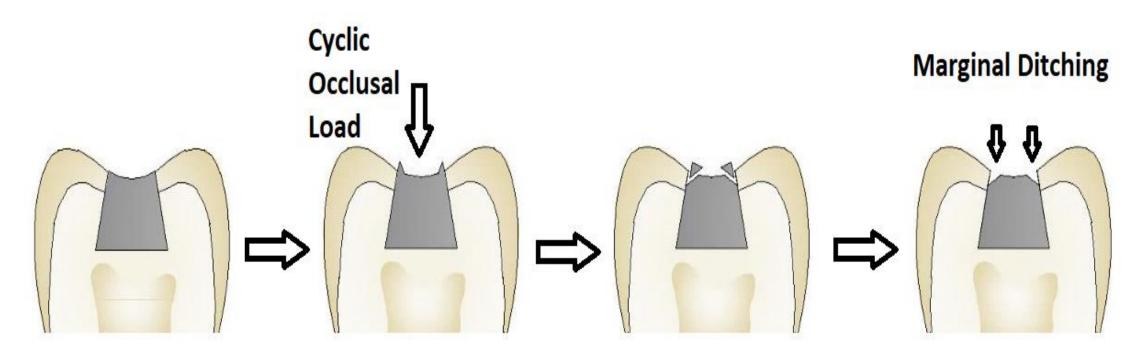
Delayed Expansion:

Using zinc free amalgam is recommended in case of achieving isolation is difficult as in children, handicapped patients and inaccessible area.

Flow: It is a time dependent plastic deformation due to stresses application below the yield strength **before** complete setting of amalgam restoration.


<u>Creep</u>: It is a time dependent plastic deformation due to stresses application below the yield strength **after** complete setting of amalgam restoration.

Causes of creep of dental amalgam:


- 1. Dental amalgam is a viscoelastic material.
- 2. Subjected to stresses below the proportional limit inside the mouth.
- 3. The oral temperature near the softening temperature of amalgam

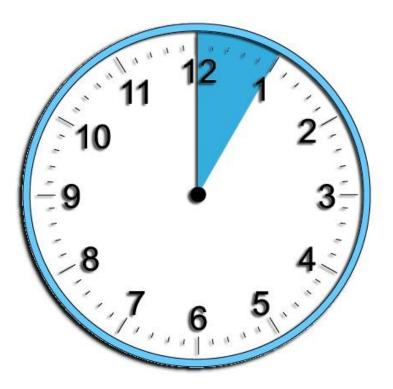
Clinical significance of creep:

- 1. Marginal breakdown (ditching).
- 2. Gingival overhanging margins \rightarrow gingival irritation.
- 3. Flatting of the contact area.

Clinical significance of creep:

Methods of decreasing creep:

- 1. Use high copper alloy.
- 2. Decrease mercury content.
- 3. Proper condensation.



Dental amalgam develops its strength slowly and reaches its final strength after 7 days.

Strength

The dental amalgam should reach 80% of its final strength after

1 hour.

Strength

The one-hour compressive strength is more important that the final strength to avoid fracture of the restoration by

biting of the patient.

Dental amalgam is brittle. i.e: Strong in compression but weak in tension.

Dental amalgam is viscoelastic material. i.e. Sensitive to rate of loading.

To maximize strength of dental amalgam restoration:

1. <u>Cavity preparation:</u>

>Adequate cavity depth and width to provide bulky restoration.

 $>90^{\circ}$ cavo-surface angle to avoid thin restoration.

>Rounding of all sharp line angles to avoid stress concentration.

To maximize strength of dental amalgam restoration:

2. Insulating Base:

>Using rigid insulating base under amalgam restoration

To maximize strength of dental amalgam restoration:

3. <u>Amalgam manipulation:</u>

>Selecting high copper amalgam.

> Decrease Hg/alloy ratio.

To maximize strength of dental amalgam restoration:

- 3. <u>Amalgam manipulation:</u>
- Correct trituration time.
- >Adequate condensation.

> Finish and polish restoration to decrease surface cracks and flaws.

Strength

Amalgam type	1 hour compressive strength (MPa)	7 days compressive strength (MPa)	24 hour Tensile strength (MPa)	Creep (%)
Low copper lathe cut	145	343	60	2
High copper admixed	137	431	48	0.4
High copper	262	510	64	0.13
unicompositional				

Bond to tooth structure:

Dental amalgam bonds to the tooth
 structure by macro-mechanical retention.
 Amalgam bonding systems have been

introduced.

Biological Properties

- 1. Corrosion.
- 2. Thermal Properties.
- 3. Mercury Toxicity.

Causes of Corrosion:

Dental amalgam undergoes corrosion because its heterogeneous

structure.

Corrosion leads to:

- 1. Decreasing strength.
- 2. Release of metallic products inside oral cavity.

Corrosion could be decreased by:

- 1. Selecting high copper amalgam alloy.
- 2. Decrease Hg/alloy ratio.
- 3. Proper condensation.
- 4. Finishing and polishing.

Thermal irritation

> <u>Corrosion could be decreased by:</u>

Dental amalgam is good thermal conductor.

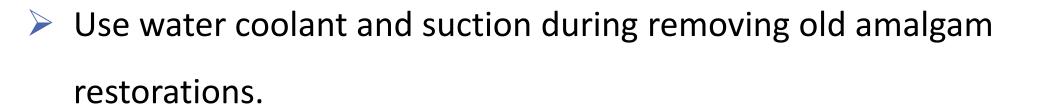
In deep cavities, it should be preceded by an isolating base.

Properties of mercury:

- > Pure mercury has high vapor pressure at room temperature.
- > It is highly toxic (4000 μ m/kg of body weight)

The main resource of the mercury exposure in dental clinic arises

from:


- > Accidental spills.
- > Direct contact with mercury.
- > Amalgamator.
- Remove old restoration.

Mercury hygiene:

- > Using no touch technique.
- > Clean up spilled mercury immediately.

Mercury hygiene:

 Store amalgam scrap under sodium thiosulfate (fixer of dental X-ray film processing solutions)

