The Stall Seat Journal

Having trouble keeping up with notes in class?		
Symbol	Name	Explanation
\Rightarrow	Logical implication	$A \Rightarrow B$ (If A is True, then B is True)
\Leftrightarrow	Double implication	$A \Leftrightarrow B$ (If A or B are True, the other must be True)
$\rightarrow \mathrm{A}$	Logical negation	$\neg A$ (If A is True, $\neg A$ is False; If A is False, $\neg A$ is True)
\wedge	Logical conjunction	$A \wedge B$ (True when both A and B are True) "AND"
\vee	Logical disjunction	$A \vee B$ (True when either A or B are True) " $O R$ "
\forall	"For every"	$\forall \mathrm{x}$ "For every element x "
\exists	"At least one"	$\exists \mathrm{x}$ "There exists some x "
\in	Set membership	$x \in S$ "Element x is a member of set S "
¢	Set non-membership	$x \notin S$ "Element x is not a member of set S "
\subseteq	Is a subset of	$A \subseteq B$ "All elements in set A are in set B "
=	Set equality	$A=B$ "Sets A and B are the same (subsets of each other)"
\cup	Set union	$A \cup B$ (The set of all elements in sets A OR B)
n	Set intersection	$A \cap B$ (The set of all elements in sest A AND B)
-	Set difference	$A-B$ (The set of all elements in A but not B)
A^{c} OR A^{\prime}	Set complement	$A^{c} O R A^{\prime}$ (The set of all elements in universe not in A)

\forall element \in period table . has a unique Atomic Number
"Every element in the period table has a unique Atomic number."

Sweden \ddagger NATO
"Sweden is not a member of NATO."
$(\mathrm{n}<30) \wedge($ distribution -normal $) \Rightarrow$
t-score
"If the sample size is less than 30 and the population isn't normally distributed, then the t-score must be used"

Vasoconstriction $\Leftrightarrow \neg$ Bronchoconstriction
"Vasoconstriction and
bronchoconstriction do not occur simultaneously"
$\forall x \in$ composite numbers $. \exists \mathrm{n}, \mathrm{a} \in(\mathrm{Z}$
$-1-x) \cdot n^{*} a=x$
"For every composite number there exists some other whole number that it is divisible by"
$\mathrm{P}(\mathrm{A} \wedge \mathrm{B})=0 \Rightarrow$ mutual exclusivity "If the probability of both events A and B taking place is zero, then events A and B are mutually exclusive"

