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Background: The role of growth hormone (GH) in augmenting fracture 
healing has been postulated for over half a century. GH has been shown to 
play a role in bone metabolism and this can be mediated directly or indi-
rectly through IGF-I. Objectives: The use of GH was evaluated as a possible 
therapeutic agent in augmenting fracture healing. Method: A literature 
search was undertaken on GH and its effect on bone fracture healing primarily 
using MEDLINE/OVID (1950 to January 2009). Key words and phrases including 
‘growth hormone’, ‘insulin like growth factor’, ‘insulin like growth factor 
binding protein’, ‘insulin like growth factor receptor’, ‘fracture repair’, ‘bone 
healing’, ‘bone fracture’, ‘bone metabolism’, ‘osteoblast’ and ‘osteoclast’ 
were used in different combinations. Manual searches of the bibliography 
of key papers were also undertaken. Results: Current evidence suggests a 
positive role of GH on fracture healing as demonstrated by in vitro studies 
on osteoblasts, osteoclasts and the crosstalk between the two. Animal stud-
ies have demonstrated a number of factors influencing the effect of GH 
in vivo such as dose, timing and method of administration. Application of 
this knowledge in humans is limited but clearly demonstrates a positive 
effect on fracture healing. Concern has been raised in the past regarding 
the safety profile of the pharmacological use of GH when used in critically 
ill patients. Conclusion: The optimal dose and method of administration  
is still to be determined, and the safety profile of this novel use of GH 
needs to be investigated prior to establishing its widespread use as a  
fracture-healing agent.
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1.	 Introduction

Growth hormone (GH) is a single-chain polypeptide composed of 191 amino 
acids, intermittently released from somatotroph cells located in the anterior pituitary 
gland. Its regulation is controlled via a negative feedback system involving IGF-I, 
somatostatins and neurological signals  [1]. Among its many essential physiological 
roles, it increases insulin-like growth factor I (IGF-I) secretion  [2], which is primarily 
released in the liver  [3] but also in local tissue sites such as adipocytes  [4] and various 
skeletal sites  [5,6].

GH and IGF have well-known effects on bone metabolism, although the 
mechanisms have yet to be fully elucidated. Many studies have shown that GH 
mediates its effect on bone via IGF-I, a theory termed the somatomedin hypothesis  [7-9]. 
However, a subsequent study demonstrated the direct effect of GH on long bone 
proliferation following local injection into rat tibia  [10], and this finding was further 
supported by other in vivo and in vitro studies  [11-14]. These two contrasting findings 
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were reconciled by the dual effector theory, put forward by 
Green and colleagues  [15], which suggests that GH and IGF-I 
acted on different stages of the cell cycle. This theory 
remains controversial, as GH and IGF-I have both been 
shown to have synergistic effects on bone growth  [16] and no 
additive effect  [17]. Nevertheless, it has been demonstrated 
that GH can mediate effects on long bone via both  
IGF-I-dependent and -independent means  [18].

GH has been shown to directly and indirectly affect bone 
metabolism. It stimulates osteoblast differentiation/prolifera-
tion  [19,20] and positively influences osteoclast activity  [21,22]. 
Furthermore, evidence on the pivotal role GH plays in bone 
metabolism can be observed in GH-deficient models. Hypo-
physectomised rats demonstrate an increase in bone forma-
tion markers upon administration of GH  [21] and treatment 
of GH-deficient patients led to an increase in bone-remod-
elling activity combined with net gain in bone mineral 
density (BMD)  [23]. Similarly, an increase in bone turnover 
was observed in elderly adults when administered with the 
GH secretagogue MK-677, which increases the release of 
GH  [24].

IGF-I may act through endocrine and paracrine/autocrine 
routes. It increases osteoblast activation  [25] as well as 
proliferation  [26] and has been shown to inhibit collagenase 
activity when endogenously administered  [27], increase mRNA 
osteoblast markers  [26], and optimise the environment for 
bone mineralisation to occur  [28]. IGF-I may also activate 
osteoclast activity  [29]. Furthermore, IGF-I levels in humans 
were shown to be positively associated with BMD, following 
correction of confounding factors  [30]. Such anabolic activity 
may be partly explained by IGF-I’s ability to enhance ascor-
bic acid uptake in osteoblasts, an essential component for 
differentiation and collagen synthesis  [31].

1.2	 Physiology	and	biochemistry	of	the	two	
mechanisms	by	which	GH	may	affect	bone	
metabolism
1.2.1 Mechanism 1: direct GH action
The physiological and biochemical effects of GH may be 
explained by the direct activation of various signalling 
pathways  [32] upon binding to its membrane receptor GHR, 
which is expressed by chondrocytes and osteoblasts  [33,34]. 
Such pathways are mediated by the phosphorylation of the 
enzyme Janus kinase 2 (JAK2), which can in turn lead to 
activation of two other enzymes, namely MAPK and phos-
phoinositide 3-kinases (PI3K), and their corresponding  
cascades (Figure 1). These pathways then go on to influence, 
among others, bone morphogenetic protein (BMP)-induced 
osteoblast differentiation  [35,36], thyroid hormone-induced 
osteocalcin synthesis  [37] and BMP-2 gene expression  [38], 
which play a pivotal role in bone metabolism  [39]. 
Additionally, GH-induced JAK2 may lead to tyrosyl phos-
phorylation, and therefore activate members of the signal 
transducer and activators of transcription (STAT) family 1, 
3, 5a and 5b, which are involved in gene transcription. 

STAT 1 and 3 may then go on to mediate the metabolic 
effects of GH on bone by activating the proto-oncogene 
c-fos, which is associated with cell growth in response to 
GH  [40,41]. Interestingly, GH-induced MAPK and PI3K 
have also been shown to influence c-fos expression by phos-
phorylating the transcription factor CCAAT/enhancer binding 
protein β (C/EBPβ), which is a vital component in the 
GH-c-fos pathway  [41]. STAT 5 is thought to be involved in 
inducing the transcription of IGF-I. However, despite this 
knowledge, exactly how GH can affect bone metabolism 
remains unclear. Indeed, GH activation of the MAPK pathway 
appears to be cell-specific  [42], and its specific mechanism on 
osteoblasts and osteoclasts has yet to be fully elucidated.

Among its many physiological functions, GH has been 
shown to induce growth hormone binding protein (GHBP), 
a molecule that binds to 40 – 50% of circulating GH under 
normal physiological conditions  [43]. Upon binding of GH 
to GHR in humans, GHBP is produced as a result of prote-
olytic cleavage of the extracellular domain of the receptor by 
TNF-α converting enzyme (TACE)  [44,45], a zinc-dependent 
metalloprotease. The function of GHBP remains largely 
unclear, but it is thought to enhance GH half-life and 
inhibit GH binding to GHR, cell proliferation and IGF-I 
production (Figure 1)  [46].

1.2.2 Mechanism 2: indirect action mediated via IGF-I 
and IGFBPs
GH has been shown to enhance IGF-I gene transcription 
in vivo  [47], but the manner in which this occurs has only 
recently been postulated  [48]. GH may induce STAT5b 
homodimerisation via the JAK2 pathway, which then proceeds 
to translocate into the nucleus and in turn binds to a DNA 
segment, termed HS-7. HS-7 may then proceed to activate 
IGF-I promoters. This has been substantiated by further 
studies demonstrating an increase in IGF-I in response to 
GH and reduced serum IGF-I levels in mice carrying  
gh receptor mutations  [2,40]. However, in a study involving 
STAT5 knockout mice, bone trabecular remodelling appeared 
to be normal, suggesting that its role in bone cells is not yet 
clearly understood  [49].

GH has also been shown to indirectly affect the metabolism 
of bone by modulating the activity of 1α-hydroxylase and 
24-hydroxylase, key enzymes in the production of  
1,25-dihyroxyvitamin D3, possibly via the action of 
IGF-I  [50]. Interestingly, 1,25-dihyroxyvitamin D3 has also 
been shown to increase the concentration of IGF-I recep-
tor IGF-IR in osteoblasts  [51].

1.2.2.1	 IGF-I
Binding of IGF-I and IGF-II to IGF-IR is postulated to 
influence cell proliferation and differentiation through a 
complex series of intracellular pathways  [52]. IGF-I binds to 
IGF-IR with greater affinity than IGF-II, although mutational 
models have not been able to completely elucidate the binding 
sites involved  [53]. Nevertheless, it has been shown that each 
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protein possesses individual unique activities and these cannot 
be compensated for by the other. Once bound to IGF-IR, 
autophosphorylation occurs at different tyrosine residues, 
which may proceed to activate the rat sarcoma (Ras)-MAPK 
signalling pathway. Also, upon autophosphorylation of 
IGF-IR, phosphorylation of other substrates occurs. This 
includes insulin receptor substrate-1 (IRS-1), a protein that 
may combine with other molecules containing SH2 domains, 
such as PI3K; GRB-2, which may go on to influence the 
Ras-MAPK pathway  [54]; and Syp, which is involved in 
mitogenic signal transduction  [55] and may act as an adaptor 
between growth factors and GRB-2 complexes  [56]. In addi-
tion, IGF-I enhances calcium absorption  [57] and has been 
shown to stabilise β-catenin  [58], which is a component of the 
Wnt signalling pathway necessary for osteoblastogenesis  [59]. 
Interestingly, IRS-1 is able to bind to β-catenin, leading to 
nuclear translocation and activation of genes that may 
induce mitogenesis and cell growth (Figure 2)  [60].

1.2.2.2	 IGFBPs:	regulators	of	IGFs	and	direct	effectors	on	
bone	metabolism
The physiological mechanism of IGF on bone metabolism 
has been further elucidated by the discovery of IGF interaction 
with IGF binding proteins (IGFBP), a family of six proteins 
that bind to 99% of circulating IGFs  [53]. GH has been 
shown to influence levels of IGFBP, and these proteins in 
turn have been shown to both enhance and repress the 
activity of IGFs. GH may increase the levels of IGFBP-2 in 
chondrocytes  [61], a protein that has been postulated to 

either inhibit  [62] or enhance  [63] IGF action, dependent on 
experimental conditions. GH administration has also been 
shown to increase levels of IGFBP-3  [64], a binding protein 
which, when combined with IGF, increases cortical bone 
formation in ovariectomised rats  [65]. However, there has 
been in vitro evidence to suggest that IGFBP-3 may inhibit 
the IGF-I pathway in a dose-dependent manner, albeit inde-
pendently of IGF-I  [66,67]. In circulation, IGF-I forms a  
150 kDa ternary complex with IGFBP3 or IGFBP-5 along-
side an acid labile unit (ALS)  [68] and, interestingly, GH has 
been shown to stimulate transcription of the ALS gene by 
the binding of STAT5a/b to the gene promoter site  [69]. The 
function of ALS is not yet completely understood, but it is 
thought to be necessary for extending the half-life of IGFs 
and responsible for maintaining the high levels of serum 
IGF-IGFBP complexes  [70].

Similarly, GH may decrease IGFBP-4, which may go on to 
inhibit IGF action by preventing its binding to IGF-receptor 
(IGFR)  [71]. However, in vivo evidence suggests that, upon 
systemic IGFBP-4 administration, IGF-I levels are increased. 
This may be a result of IGFBP-4 proteolysis by the protease, 
pregnancy-associated plasma protein A (PAPP-A), found to be 
released by different cells including osteoblasts  [72]. Proteolysis 
increases free IGF-I, leading to enhanced bone formation  [73,74]. 
IGFBP-5 is the most abundant binding protein found in 
bone and the administration of GH has been observed to 
increase mRNA levels of IGFBP-3 and IGFBP-5  [75]. However, 
the role of IGFBP-5 in bone metabolism remains controversial. 
Studies have shown that it inhibits IGF function, possibly as 
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Figure	1.	The	direct	mechanism	by	which	GH	induces	cell	metabolism	and	IGF-I	production.
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a result of sequestering IGF  [76]. Interestingly, in the same 
study, IGF may impede IGFBP, resulting in prolongation of 
its bioeffectiveness. Other studies have shown the stimulatory 
effects of IGFBP-5 on bone cells  [77,78], or even via an IGF-
independent pathway  [78]. Despite the contentious results 
regarding the role of IGFBP, there remains firm evidence 
that GH influences the expression of these proteins, and 
these then go on to play a pivotal role in the mechanism of 
IGF function and hence bone metabolism. IGFBP-6 is a 
specific binding protein for IGF-II, and so its role in relation 
to GH will not be considered here  [79].

2.	 Results

Selected bibliographies regarding the evidence of GH on 
bone healing in vitro (Table 1) and in vivo (Table 2) animal 
studies have been presented. There have been few human 
studies undertaken to evaluate the direct effect of GH and 
fractures, with most used to determine its indirect effect, 
such as functional outcome (Table 3).

2.1	 In vitro	studies
2.1.1 GH on osteoblasts
GH’s effect on osteogenesis in vitro was demonstrated in  
the late 1980s, with several studies showing increased  
chondrogenesis and osteogenesis in chondrocyte progenitor 
cells  [12], as well as increased mitogenic effects and DNA 
synthesis on osteoblasts  [80,81]. Since then, other studies have 
been published attempting to give an insight into the exact 

mechanism of this effect. Studies in cartilage progenitor cells 
have demonstrated the activation of JAK2 tyrosine kinase 
after binding of GH to the GH receptor, and the subsequent 
phosphorylation of GHR and JAK2 after its activation  [82]. 
The phosphorylation and DNA binding of STAT5 after 
culturing rat osteoblast-like cells with r-hGH was demonstrated 
in 2000 by Gerland et al.  [83]. GH also influence the extracel-
lular signal-regulated kinase pathway (ERK1/2) and MAPK 
pathways that are essential for the function, growth and dif-
ferentiation of osteoblasts  [35,84-86]. Growth hormone has also 
been shown to induce the proliferation of human osteoblast-like 
cells, as well as increase the levels of alkaline phosphatase 
(ALP) and procollagen type 1 carboxy-terminal propeptide 
(PICP), both indicators of osteoblastic differentiation  [11].

The effect of GH on in vitro osteogenesis and expression 
of mRNA in osteoblastic cells obtained from alveolar bone 
fragments from healthy women of three age groups (adolescents, 
young adults, and adults) was recently studied  [87]. The 
authors used an osteogenic medium in which the cells were 
cultured, in contrast to previous studies  [11,80] where  
non-osteogenic medium was used. Furthermore, the cells 
were cultured for a total of 21 days for alarazin red mineral 
quantification staining assays to be assessed, which was a 
significantly longer period compared with previous studies 
where culture periods were as short as 24 h  [11]. The authors 
concluded that the GH effect on culture growth, ALP activity, 
collagen synthesis, mineral staining and mRNA expression 
of osteoblast markers was age-dependent. Cells from adolescents 
and young adults cultured with GH showed a significant 

IGF-I
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Figure	2.	The	mechanism	by	which	IGF-I	causes	cell	growth.
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rise in collagen content (day 7), ALP activity (day 7) and 
culture growth (4, 7 and 10 days), while cells from adult 
donors were not affected. Mineralisation at day 21 increased 
significantly only in cells from adolescents, with similar 
results regarding mRNA expression. mRNA expression of 
genes encoding ALP, osteocalcin, type I collagen, osteopontin 
and core binding factor alpha 1 was increased in cells from 
adolescent donors, while young adult cells only showed 
increased ALP mRNA expression. The transcription of these 
genes in cells from adults did not appear to be affected by 
GH. This study demonstrated an age-dependent response to 
GH. The exact mechanism of this is not understood; 
whether this effect is due to alterations in IGF-I levels is not 
known, but may be of significance when attempting to 
stimulate osteoblasts in adults to enhance healing.

2.1.2 GH-induced IGF-I and osteoblasts
The question of whether or not the effect of GH on osteoblasts 
is mediated via IGF-I has been addressed several times in the 
last decade. Utilising IGF-I knockout mice and GH mice, 
researchers have shown markedly impaired BMD in the 
deficient mice, with the effect being more severe in IGF-I-
deficient mice  [88]. A recent study utilised calvarial osteoblasts 
from genetically manipulated mice, in which the IGF-IR 
was selectively knocked out. The study demonstrated that 
IGF-IR-deficient cells retained the GH-induced phosphoryla-
tion of ERK and Akt, which are components of the GH 
signalling pathway, as well as IGF-I and IGFBP-3 production. 
The GH-induced osteoblast proliferation was abolished in 
IGF-IR-deficient cells, but GH-mediated osteoblast apoptosis 
inhibition was retained. It was therefore concluded that the 
anti-apoptotic effect of GH appears to be IGF-I-independent, 
but the main anabolic effect of GH appears to be mediated 
via local production of IGF-I  [86].

The effect of IGF-I via the Ras/Raf-1/MAPK and PI3K 
pathways on osteoblast action have been demonstrated utilising 
IGF-IR deplete (Cre/loxP) mature osteoblasts that had 
severely impaired mineral apposition  [89]. Furthermore, 
IGF-I has been shown to increase type 1 collagen synthesis, 
ALP activity and osteocalcin production in osteoblasts  [90,91], 
while decreasing the levels of collagenase 3  [92,93]. IGF-I 
exposure decreased apoptosis of osteoblasts in a time- and 
dose-dependent manner  [94], with normal human bone cells 
demonstrating decreased apoptosis after 6 h of exposure to 
IGF-I. Similarly, IGF-I doses of 0.1 – 20 ng/ml had a statis-
tically significant effect, with a maximum effect observed at 
2 ng/ml. IGF-I has also been shown to enhance the function 
of differentiated osteoblasts and adipocytes, but does not 
directly modulate the genes committing the multipotent 
precursor cells to a specific cell type  [95]. In a study involving 
human marrow stromal cells (hMS(3 – 4)) cultured with 
10 nM of IGF-I for 6 days, the expression of neither Cbfa1 
(a transcription factor translating osteoblastic differentiation) 
nor PPARγ2 (the transcription factor involved in adipocyte 
lineage) was affected.

Several recent studies have been able to demonstrate the 
pathway of differentiation of cells of the osteoblast lineage, 
allowing better understanding of the role of several key molecules 
involved in the process. The osteoblast differentiation pathway 
involves the gradual change in phenotype of the mesenchymal 
progenitor cell to the pre-osteoblast and finally to the mature 
osteoblast. Pre-osteoblasts express low levels of type 1 collagen 
(COL1A1) and ALP while the functional osteoblasts express 
high levels of COL1A1, bone sialoprotein and osteocalcin  [96]. 
The regulation of this process is dependent on two tran-
scriptional factors, runt-related transcription factor 2 (Runx2) 
and Osterix (Osx)  [97,98]. IGF-I appears to be involved in 
the differentiation of the cells of the osteoblastic lineage via 
both of those transcription factors.

IGF-I can activate Akt, a serine-threonine kinase, via the 
PI3K/phosphoinositide-dependent kinase 1 (PDK-1)/Akt 
pathway  [99]. This pathway is then deeply involved in Runx2-
dependent osteoblast and chondrocyte differentiation and 
migration  [100]. This activation enhances DNA binding and 
Runx2-dependent transcription of several genes including 
the PI3K and Akt genes, the expression of which is upregulated 
by Runx2, thus creating a positive feedback loop that further 
enhances differentiation and migration of cells. Furthermore, 
Celil and colleagues have demonstrated the involvement of 
IGF-I and MAPK signalling in mediating Osx, with the 
inhibition of MAPK component ERK1/2 not affecting Runx2 
but inhibiting Osx expression, thus impairing differentiation  [101]. 
GH also has a part in this differentiation pathway, by promot-
ing the DNA binding of Runx2 but restraining its transcription 
potential  [102].

2.1.3 GH on osteoclasts
GH has been shown to have direct effects on osteoclastic 
resorption, mainly via IGF-I. IGF-I increased bone resorption 
from pre-existing osteoclasts derived from rats as well as 
inducing multinucleated tartrate-resistant acid phosphatase 
(TRAP)-positive cells from pre-existing osteoclast-free 
cultures  [29]. Another study demonstrated the inhibition of 
the stimulatory effect of GH and IGF-I on osteoclastic bone 
resorption by the addition of antiserum against h-IGF-I 
addition to the culture.[103] The IGF-I receptor has been 
identified on human preosteclastic cells  [104] and IGF-I has 
been shown to promote osteoclast formation and culture at 
the dose range of 10-9 to 5 × 10-8 M  [105] but did not 
stimulate bone resorption in cultured mouse calvarial bones 
at a dose of 100 nM. It was concluded that the effect of IGF-I 
on osteoclasts may not be direct and is possibly mediated by 
osteoblast-derived substances, on which IGF-I may have an 
inhibitory effect  [106].

2.1.4 Osteoblast–osteoclast crosstalk
The process of fracture healing involves the regulated resorption 
of bone matrix by multinucleated osteoclasts and thereafter 
the formation of collagen and mineralisation of new bone 
by osteoblasts. The process appears to be regulated by a 

E
xp

er
t O

pi
n.

 I
nv

es
tig

. D
ru

gs
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
M

cM
as

te
r 

U
ni

ve
rs

ity
 o

n 
11

/0
3/

14
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



LFT	Growth	hormone:	does	it	have	a	therapeutic	role	in	fracture	healing?

900	 Expert	Opin.	Investig.	Drugs	(2009) 18(7)

cytokine system composed of osteoprotegrin (OPG), receptor 
activator of nuclear factor-κB ligand (RANKL) and its 
receptor activator of nuclear factor κB (RANK). OPG is a 
receptor produced by cells of the osteoblast lineage and can 
bind to RANKL and inactivate it  [107,108]. RANKL binds to 
its receptor RANK and acts on differentiation of osteoclast 
precursors, osteoclast apoptosis and activation  [107,108].

GH appears to play a part in the regulation of this pathway, 
both directly and indirectly via IGF-I.

A recent study investigating the effect of IGF-I on mouse 
ST-2 stromal cells via the OPG/RANKL pathway demonstrated 
that IGF-I reduced OPG levels in a time- and dose-dependent 
manner  [109]. It was observed that the estimated half-maximal 
inhibitory dose of IGF-I was 35 – 50 μg/l (4.5 – 6.5 nM), 
with little further effect after 100 μg/l (13 nM). Further-
more, a statistically significant inhibitory effect was seen 
between control and intervention groups, as well as between 
the two intervention groups, when cells were exposed to 
100 μg/l at 24 and 48 h. The stability of OPG was not 
affected as measured by half-life studies, indicating that  
the effect on OPG was at the transcriptional level. Fur-
thermore, the RANKL levels were increased, suggesting  
that IGF-I influences bone resorption by affecting the  
OPG/RANKL ratio.

The role of GH in the osteoblast/osteoclast crosstalk was 
demonstrated when human osteoblast-like cells were treated 
with GH and a dose- and time-dependent increase in OPG 
levels and on OPG mRNA production was observed  [110]. 
GH induced OPG significantly at the doses of 1, 5 and  
10 ng/ml, while larger or smaller doses did not demonstrate 
this. The effect of 5 ng/ml of GH on OPG mRNA expres-
sion was statistically significant at 6 h and was minimised at 
24 h. Subsequently, the same procedure was repeated with 
cells treated with a GH antagonist (pegvisomant) or an 
antagonist of the JAK2 pathway, tyrphostin AG490. Both 
these substances inhibited the effect of GH on OPG levels 
and OPG m-RNA expression, indicating that the effect was 
mediated directly via GH. The discrepancy between the 
effects of GH and IGF-I on OPG, taking into consideration 
the positive effect of GH on serum IGF-I levels, is not well 
understood.

2.2	 In vivo	studies
2.2.1 GH on fracture healing
The positive effects of GH on animal models were initially 
demonstrated by Koskinen  [111], who histologically showed an 
increase in fracture healing in 15 female rats when adminis-
tering GH intramuscularly. Many studies have lent further 
support to the role of GH in fracture healing in animal 
models  [112-122]. The stimulation of secondary fracture heal-
ing was demonstrated in a recent study involving micropigs, 
where 100 μg/kg weight recombinant porcine (r-p) GH was 
systemically administered for 4 weeks leading to both 
increased biomechanical strength and greater callus formation 
compared with untreated controls  [113]. This finding was further 

supported by another recent study where, under the same 
experimental dose and delivery method, torsional failure and 
stiffness was 70 and 83% higher in the treatment group 
after 6 weeks  [114].

r-pGH has also been shown to accelerate bone formation 
in a distraction osteogenesis model in micropigs  [112]. 
Increased bone formation and resorption were observed after 
daily 100 μg/kg injection of r-pGH for 25 days. Interest-
ingly, the structural parameters of the callus were histologically 
shown to be unaffected, suggesting that although bone fracture 
healing was accelerated, this was not achieved by altering the 
structural parameters of the bone.

2.2.2 IGF-I on fracture healing
Despite no studies directly implicating IGF-I mediating the 
role of GH in bone fracture healing itself, several experiments 
have observed a concomitant increase in IGF-I following 
GH administration  [113-115]. There is evidence to suggest 
that the promotion of bone growth by GH is mediated by 
IGF-I  [123], where administration of 0.25, 1 and 4 μg rGH 
into rat epiphyseal cartilage plate mediated growth, but this 
growth effect was nullified by the coadministration of antiserum 
to IGF-I. Furthermore, such an effect was demonstrated to 
be dose-dependent, with the highest dose providing greatest 
increase in mean epiphyseal plate width.

The positive effects of IGF-I on bone fracture healing 
were postulated in rats who were treated with either placebo, 
local administration of growth factors (recombinant human 
IGF-I and TGFβ-1) using poly(D,L-lactide)-coated Kirschner 
wires and 2 mg/kg weight of subcutaneous GH, or local growth 
factor and systemic GH in combination  [17]. Bone healing 
was shown to be enhanced biomechanically, radiographi-
cally and histologically when GH alone or IGF-I/TGF-β1 were 
applied individually, but interestingly no additive effect was 
seen when they were given in combination. However, since 
TGF-β1 is itself a growth factor, it would be difficult to 
evaluate which of the two (IGF-I or TGF-β1) would be 
responsible for increased fracture healing. IGF-I has further 
been shown to positively affect bone healing, as infusion  
of 25 and 50 ng/day of IGF-I directly into rat bone  
marrow demonstrated an increase in the osteoblastic markers 
procollagen, osteopontin and ALP mRNA for the 25 and 50 ng 
groups  [26].

Increased IGF-I mRNA expression has also been observed 
after 7 days of healing from a rat mandibular osteotomy, 
suggesting its importance in fracture healing repair  [124]. In 
the study, four rat mandibles were assessed postoperatively 
on each of the days 0, 3, 5, 7, 9, 23 and 37 and mRNA 
expression was assessed using PCR and Southern hybridisa-
tion. It was noted that IGF expression peaked at day 7, with 
subsequent decreases on the following days. This finding 
supports a previous study where IGF-I mRNA expression 
levels in rat tibial fractures were analysed at days 4, 6, 8, 14, 18 
and 24. Levels were found to be elevated and subsequently 
peaked at day 8  [125].
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2.2.3 Timing of administration
The timing of administration of GH appears to be important, 
as the length of administration and period of fracture healing 
in which GH is delivered have been observed to play a vital 
role. In a 3-month-old rat model, maximum stiffness was 
observed to increase by 31% when 2.7 mg/kg GH was 
administered for 3 weeks, compared with 1 week  [116]. In a 
separate study, administration of GH during the first 3 weeks 
of healing or throughout the entire 6-week period enhanced 
bone healing, but not when GH was administered in the 
last 3 weeks  [117]. The authors demonstrated that maximum 
load was increased by 222% at 40 days in rats administered 
with b-hGH for the initial 20 days and 175% for rats 
treated for the entire period, compared with control. In 
contrast, there was no significant difference in fracture healing 
in rats treated with b-hGH in the last 20 days compared 
with control.

This positive effect of fracture healing was further validated 
by a later study  [118], where the recombinant GH-treated 
group demonstrated increased ultimate load and stiffness by 
100 and 200%, respectively, compared with vehicle at the 
end of the 3-week administration period. Interestingly, ultimate 
load was increased by 67%, 98 days post-fracture and 
77 days after withdrawal of GH. Similar results have been 
observed demonstrating enhanced bone fracture healing post 
GH withdrawal, suggesting a potentially latent effect of GH 
on bone  [119].

2.2.4 Dose-related effect
The effect of fracture healing may also be dependent on the 
dose administered  [120,121]. Systemic biosynthetic human 
(b-h) GH s.c. injections twice daily at doses of 0.08, 0.4, 
2.0 and 10 mg/kg into 3-month-old female rats showed a 
significant increase in strength of healing fractures in animals 
administered with the higher doses of 2.0 and 10 mg/kg 
only  [120]. Using the lower doses a moderate, but not signifi-
cant, increase in strength of healing fractures was observed. 
Similarly, hGH delivered locally via macroporous biphasic 
calcium phosphate (MBCP) implants at doses of 0.1, 1.0 
and 10 μg in a rabbit femoral defect model for 3 weeks 
determined that MBCP ceramic resorption into the bone 
was significantly enhanced by 140% (p < 0.001) in hGH 1 
μg only, with the 0.1 and 10 μg groups exhibiting a nonsig-
nificant increase of approximately 60% increased resorption. 
In addition, bone formation was significantly raised in all 
three test groups compared with control, but interestingly the 
1-μg hGH group demonstrated significantly increased bone 
ingrowth compared with the 0.1 and 10 μg groups (p < 0.05). 
This suggests that despite an increase in bone formation 
upon administration of a wide range of doses, there may 
exist an optimum dose in which hGH functions  [121]. In both 
studies, the highest doses of either 10 mg/kg twice-daily s.c. 
injections into a rat model, or 10 μg locally released via MBCP 
implants into rabbit femurs, showed significantly increased 
bone growth without notable side effects.

2.2.5 Mode of delivery
The osteogenerative effect of GH through both local and 
systemic administration of human and bovine GH on rat 
mandibular defects has also demonstrated the mode of delivery 
as an important factor  [122]. Histological analysis revealed 
that systemic administration of 200 μg/day hGH signifi-
cantly increased bone fracture healing. Local delivery of 0.2, 
2.0 and 20 μg/day of hGH for 4 weeks also showed highly 
significant enhancement in all healing parameters in the 2.0 
and 20 μg/day groups, suggesting firstly a locally mediated  
IGF-I-produced effect on bone tissue formation, and secondly 
that such effects appeared to be dose-related. Furthermore, 
support for the importance of the timing of GH administra-
tion was shown when hGH administration on fracture heal-
ing over time demonstrated that the stimulatory effect of h-GH 
was discernible at 3 and 4 weeks, but not at 2 weeks.

The effects of GH on bone fracture healing have been 
further demonstrated on large animals  [115]. Bilateral ulna 
bone defects were produced in eight mature Labrador dogs 
who then received continuous local s.c. 1.8 mg/day r-pGH 
infusion for 4 weeks in the right-sided defect only. Histological 
evidence showed that an increase in bone healing and for-
mation in the critical-sized bone defects occurred, although 
the additional infusion of GH locally did not demonstrate 
any significant difference between contralateral fracture sites. 
In addition, a corresponding increase in plasma IGF-I and 
IGF-II was observed with GH administration, suggesting its 
role in bone healing.

2.2.6 Contradicting studies
However, not all studies have corroborated the findings of 
the positive effect of GH on bone fracture healing  [126-131]. 
One study, through the histological profiling of healing rat 
tibial fractures, concluded that administration of 2.7 mg/kg 
b-hGH led to a delayed remodelling and normalisation of 
the fracture site, despite an initial stimulatory effect of callus 
formation  [126]. This is in contrast to Bail and co-workers  [112], 
who observed no effect on callus parameters in their study. 
Similarly, Northmore-Ball  [128] was unable to demonstrate a 
reduced fracture healing time after administration of 5 mg 
bGH intramuscularly and testing for mechanical strength at 
2, 3, 4, 5 and 7 weeks. The mechanical strength of healing 
fractured femurs compared with that of controls in mature 
rats did not statistically differ, although a statistically significant 
increase (p = 0.011), in torque indices, in the GH group 
was observed at 2 weeks only. This may suggest an early, 
albeit small, beneficial effect of GH and fracture healing.

No effect of GH on fracture healing has been observed in 
studies involving its systemic administration in rabbits  [127,129-131]. 
In one study, no effect on accelerating healing time or  
tensile strength of the healing fractures could be demonstrated 
using 150 μg/kg r-hGH delivered intramuscularly  [127]. In 
addition, no effect on IGF-I serum levels were observed 
upon GH administration. Such a finding contrasts with 
those of Raschke and colleagues, where GH-induced IGF-I 
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was observed  [114], suggesting that the GH-IGF-I axis plays 
an important role and that its activation is a necessary part 
of the healing process. A further study has substantiated the 
reduced strength of healing fractures, where 0.46 IU/kg, 
approximately equivalent to 0.15 mg/kg, was administered 
via the i.m. route into rabbit tibial fractures. Testing every 
10 days for 50 days did not result in increased tensile 
strength compared with control  [131]. Additionally, no effect 
on healing time was noted when 4 mg bovine growth hormone 
(b-GH) was administered twice weekly i.m. in a rabbit 
model with bilateral resection of the radii  [130]. Furthermore, 
no effect was seen on the rate of recovery of mechanical 
strength in previously atrophied long bone when h-GH was 
delivered 0.03 IE/kg i.m.  [129].

2.3	 Human	studies
Attempts to elucidate the effect of GH on fracture healing 
in humans have been present in the literature since the early 
1970s, when the serum GH levels of a patient with delayed 
fracture healing were compared with those of normal human 
volunteers  [132]. The authors injected the patient with insulin, 
arginine and glucose, measuring GH levels at several intervals 
post each injection, and compared these with the results of 
normal volunteers. The study showed reduced GH levels of 
the patient compared with normal human volunteers. 
Further insight into the response of the GH axis in fracture 
healing was recently given by the prospective study involving 
measurements of IGFBP and ALS, which form a complex 
with IGF in circulation  [133]. The study involved measurements 
of each of these components in the serum of patients with 
delayed fracture healing, compared with normal healing 
controls, over a period of 6 months and reported statistically 
significant low levels of IGFBP-3 (week 8) and ALS (weeks 
1, 6 and 8) in patients with atrophic type of nonunion 
compared with controls with normal fracture healing.

The first interventional studies aimed at evaluating fracture 
healing with the use of GH were reported in 1977 with a 
case control study on the effect of GH on fresh fractures  [134] 
and a case series on nonhealing fractures  [135]. Human GH 
was administered at a dose of 16 IU, approximately 5 mg, 
on alternate days to 20 patients admitted with long bone 
nonunion or delayed union after a fracture. The study 
reported 100% healing rate, with 85% of the fractures consid-
ered stable within 12 weeks  [135]. GH was also administered at 
the same dose to 12 patients with lower leg fractures for a 
period of 5 weeks, but the healing response did not appear 
to differ from that of the eight patients in the control 
group  [134]. Recent human studies on the effects of GH on 
patients sustaining fractures place emphasis on the functional 
recovery of patients; therefore, most of the published data 
include indirect evidence of fracture healing. The intended 
benefit of GH administration in human fracture patients in 
most of the available studies has been to determine the systemic 
effect against the catabolic state that these patients enter after 
their injury/operation  [133,136-140].

2.3.1 GH effect on fracture healing
The only human study evaluating GH on fracture healing is 
a recent randomised controlled trial (RCT) looking into the 
effect of r-hGH on 368 patients with tibial fractures treated 
with intramedullary nailing  [141]. The main end point of the 
study was the radiological healing of the fracture, defined as 
the disappearance of the fracture line and/or cortical bridging 
in three out of four cortices seen in two perpendicular X-ray 
views. This double-blinded trial lasted for 16 weeks or until 
the healing of the fracture if earlier, with a follow-up of  
12 months. Serum levels of IGF-I, IGFBP-3, osteocalcin 
and serum CrossLaps (CTX) were also measured during the 
24-week period of the study. Clinical examination and safety 
measurements – including blood pressure, serum glucose 
and HBA1c – were also performed. The study involved four 
treatment groups consisting of three different GH dose 
groups (0.01, 0.03 or 0.06 mg/kg/day) and a placebo group. 
A reduced healing time (26%) for the patients in the higher 
dose group (0.06 mg/kg), along with significantly higher 
IGF-I, osteocalcin and serum CrossLaps levels, was observed. 
However, the beneficial effect was evident only in patients 
with closed fractures – perhaps, according to the authors, 
reflecting the longer healing period of the open fractures. 
There were no safety issues with the study, although  
an increased number of adverse events were reported in  
the treatment groups, especially in the higher-dose group. 
These events, possibly related to the intervention, were 
extraskeletal ossification (0.015 mg/kg/day), allergic derma-
titis (0.03 mg/kg/day), increased plasma glucose, acute 
cholecystitis, pyrexia and hyperglycaemic hyperosmolar non-
ketotic coma (0.06 mg/kg/day).

2.3.2 GH administration to hip fracture patients
In 2000, a RCT was undertaken to determine the effect of 
0.02 mg/kg/day of r-hGH on 76 hip fracture patients  [138]. 
The intervention included daily s.c. injections of GH and 
lasted for 6 weeks, with follow-up for 6 months. The study 
reported a significant increase in the levels of IGF-I and 
IGFBP-3 in the treatment group (with maximum effect  
at 4 weeks), as well as an increased percentage of return  
to prefracture state, in patients aged > 75 (93.8 vs 75%,  
p = 0.034).

Similarly, an increase in IGF-I was demonstrated in another 
study undertaken to evaluate the use of GH on patients 
undergoing elective total hip replacement (THR)  [139]. This 
study focused on administering r-hGH for 14 weeks preop-
eratively at a dose of 0.04 IU/kg/day with once-daily s.c. 
injection and doubling the dose for the first 2 weeks postop-
eratively. The authors concluded that this strategy increased 
the lean muscle mass preoperatively and increased function 
postoperatively, as measured by the 4-min walking distance. 
Again, dose-related adverse events of fluid retention and 
joint pains were noted in the treatment groups.

In 2003, a placebo-controlled double-blinded trial was 
undertaken to evaluate the effects of r-hGH on 31 women 
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sustaining hip fractures, where 0.05 and 0.025 mg/kg/day 
r-hGH was administered s.c. once daily for 14 days  [140]. 
The results of this study, in accordance with the previous 
ones, demonstrated a rise in IGF-I and IGFBP-3 between 
the placebo and r-hGH groups but not between the two 
r-hGH groups. Furthermore, the pretreatment indicators of 
frailty were inversely related to the IGF-I and IGFBP-3 
response to r-hGH. This study also demonstrated an 
increased rate of adverse events in the treatment group, 
including acute renal failure, pulmonary emboli (two nonfatal, 
one fatal), and a myocardial infarction, while no such events 
were noted in the placebo group. The small numbers of 
participants and events did not allow the authors to draw 
firm conclusions on safety, while previous trials on r-hGH 
have shown no increase in thromboembolic events.

Hedstrom and colleagues in 2004  [137] published their 
results on a RCT trial of r-hGH on 20 hip fracture patients. 
GH was administered at a dose of 0.1 IU/kg/day (equivalent 
to 0.03 mg/kg/day) via a daily s.c. injection, but the study 
was interrupted following safety issues that emerged from a 
recent trial  [142] on GH for critically ill patients. Parallel 
RCTs on GH for critically ill patients requiring ICU admission 
demonstrated increased mortality in the GH treatment 
groups and caused concern regarding GH administration 
among researchers studying the effects of GH at the time. 
The study continued after 1 year with the dose reduced to 
0.04 IU/kg/day (0.013 mg/kg/day). The parameters measured 
included bone mineral density and composition with the 
use of DEXA and quantitative CT. The authors report  
significant IGF-I response in the treatment group as well as 
retention of total body mineral composition, lean body mass 
and loss of subcutaneous fat in the treatment group. The 
only side effects reported in this study were two cases of 
soft-tissue oedema in the treatment group (improved after 
50% reduction of dose) and a case of hypertension in the 
placebo group.

2.3.3 Route of administration
In an attempt to retain the beneficial effects of GH on hip 
fracture patients but avoiding the parenteral administration 
route, an oral GH secretagogue was studied in a multicentre 
RCT of hip fracture patients. A once-daily dose of 25 mg of 
MK-0677 was administered postoperatively for 6 months to 
84 patients who were medically stable. The follow-up lasted 
for 12 months and the measurements included IGF-I levels 
as well as functional performance measures. The study 
showed significant IGF-I response, with the treatment group 
demonstrating an 84% increase compared with 14% in the 
placebo group at week 26, but no difference was observed in 
functional performance measures. The adverse events 
reported in this study include four thromboembolic events 
(although these were reported as not drug-related) in the 
treatment group compared with none in the control group. 
More reports of fluid overload and oedema were also 
reported in the treatment group along with significantly 

higher glucose, insulin and HbA1c levels, while the placebo 
group had more musculoskeletal adverse experiences  [143].

2.3.4 IGF-I
Boonen and co-workers in 2002 published a RCT on hr-IGF-I/
IGFBP-3 complex on patients aged > 65 years sustaining a 
proximal femoral fracture  [136]. The complex used was 
reported to have a better safety and efficacy profile com-
pared with that of IGF-I alone. The route of administration 
differed in this trial, as the patients had a continuous s.c. 
infusion for a period of 8 weeks during which the infusion 
site was changed every 48 h or less. The dose used was 
equivalent to 0.1 and 0.2 mg/kg/day of IGF-I in the two 
treatment groups. The study reported increased dose-dependent 
serum IGF-I levels as well as increased osteocalcin and 
N-telopeptide in the treatment group, while the BMD and 
bone-remodelling markers did not show any difference 
between the groups. The end points of the study also 
included functional tests such as grip strength and functional 
ability (standing from seated position), which were improved 
in the treatment group.

3.	 Discussion

There is robust evidence to suggest that GH has a multimodal 
effect on bone metabolism and fracture healing. In vitro 
studies have observed the role of GH in osteoblast differentia-
tion, proliferation and maturation  [11,86], as well as osteoclast 
activity  [103] and the interaction between the two  [109,110]. 
Given that the process of bone metabolism and fracture 
healing share common pathways, in vivo studies have been 
undertaken to investigate the positive effect of GH on fracture 
healing in both animal and human models.

Our understanding of bone cell biology has increased 
significantly in the last decade. Several pathways have been 
demonstrated to take part in bone cell metabolism and their 
interactions appear to be important when it comes to the 
coupled process of bone remodelling and fracture healing. 
Genetically mutated mice have been utilised to demonstrate 
the mechanism of GH on osteoblasts, indicating the crucial 
role of IGF-I in this process  [86]. However, the exact mechanism 
of GH action on bone remodelling is not completely under-
stood despite the better understanding of the crosstalk 
between osteoblasts and osteoclasts. Several intracellular  
systems appear to be a part of this, with the osteoprotegrin/
RANK-L ratio playing a key role. The process of fracture 
healing depends on effective interaction between bone 
resorption and new bone formation, in both of which GH 
and IGF-I appear to have a role. GH and IGF-I appear to 
take part in the regulation of the process, but initial data 
present a discrepancy in their function, with GH increasing 
OPG levels and therefore reducing RANKL-related osteoclast 
activation, while IGF-I has the opposite effect  [109,110]. 
Despite the difficulties in extrapolating the effects of GH 
and IGF-I on culture models to living organisms due to the 
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complex interactions of different hormones, there remains 
evidence to suggest a role of GH in bone healing.

The therapeutic dose of GH has produced conflicting 
results in animal studies  [112-122,126-131,144] and such contrasting 
data may, in part, be due to the heterogeneity of methods 
employed in the different animal models. Indeed, two studies 
were able to show the importance of dosing in terms of 
strength of healing, with one demonstrating that the highest 
systemically administered doses (2 and 10 mg/kg) exerted 
the most beneficial effect in rats  [120], and the other observing 
that local delivery of 1 μg GH exhibited significantly better 
healing than the 0.1 and 10 μg doses in rabbits  [121]. This 
difference in the effective GH dose may be attributable to 
the animal model used. The majority of animal studies 
involving rabbits have observed no effect of GH on bone 
fracture healing, suggesting that animal species is an important 
variable when comparing results  [145]. This can be explained 
when considering the differences in amino acid sequence 
homologies of both GH and GHR between different  
species  [146,147]. It has been shown that key residues on the 
GHR and GH are vital in determining species-specific sen-
sitivity of GH binding  [147,148], and such differences may 
influence the affinity and potency of GH-GHR binding and 
activation. Furthermore, the production of GHBP, a protein 
that binds to GH and is thought to be important in influencing 
GH activity, has been shown to possess species-specific  
generation  [46]. Therefore exogenously administered GH 
may not necessarily reflect true physiological function. Also, 
the production of antibodies to non-species-specific GH  
has been detected in animals  [149], explaining its limited 
action  [150].

The effect on the human studies also appears to be dose-
dependent  [136,140,141]. Dose-dependent IGF-I response to 
GH, as well as a dose-dependent effect on fracture healing and 
improved functional outcome, has been demonstrated  [136,141]. 
Raschke and colleagues  [141] showed accelerated fracture 
healing in closed tibial fractures treated with 0.06 mg/kg/day 
of GH via daily s.c. injections, while the administration of 
lower doses did not produce a statistically significant effect. 
Similarly, Boonen and co-workers  [136] demonstrated a dose-
dependent increase in IGF-I levels after treatment with  
0.1 mg/kg/day of an IGF-I/IGFBP3 complex in elderly 
patients sustaining hip fractures. The effects on the human 
studies are in accordance with the in vivo animal data  
indicating the presence of an optimal GH dose, below which 
its effect cannot be obtained.

The direct delivery of GH to the fracture site offers the 
potential to expose local areas to relatively low dosing levels, 
thus reducing any potential side effects that may result from 
the increased doses required for systemic administration. It 
has been shown in animals that continuous locally delivered 
doses of 2 μg/day hGH by infusion pumps in rat mandibular 
fractures were able to promote fracture healing  [122], and 
locally delivered 0.1 μg hGH via implants in rabbits has 
demonstrated significantly increased bone formation  [121].  

A further study showed an increased rate of bone healing in 
rat tibial fractures when 20 μg rGH was injected over the 
fracture site  [118]. Studies evaluating the systemic doses in 
bone fracture healing have used in excess of these levels, 
ranging from 100 μg/kg  [113,114] to 2.7 mg/kg  [116], in order 
to demonstrate a positive effect. Furthermore, a recent study 
evaluating the effects of 0.08, 0.4, 2.0 or 10 mg/kg of 
b-hGH systemically administered via the s.c. route has shown 
that only the higher doses of 2.0 or 10 mg/kg were effective.

In the human studies, the effect of local administration 
has not yet been evaluated, as GH has only been administered 
systemically via either daily s.c. injections  [137-141] or continu-
ous infusion pumps  [136]. In addition, the sole study where 
the agent was administered via a s.c. infusion pump utilised 
a different agent, namely the IGF-I/IGFBP-3 complex, and 
therefore cannot be compared with the studies in which GH 
was delivered via a daily s.c. injection. The systematic 
administration of GH in humans had positive effect on 
fracture healing  [141], although dose-dependent, and caused 
increased serum IFG-1 levels  [137-141]. Some of the human 
studies on fracture patients were designed for, and demonstrated, 
systemic beneficial effects such as retained lean body mass  [137], 
increased return to prefracture state  [138] and increased grip 
strength  [136].

The length of GH administration is yet another contributing 
factor in influencing fracture healing, as it has been shown 
in rat models that a sustained administration of GH of at 
least 3 weeks at the initial stage of fracture healing is important 
in determining healing rate. When GH was either delivered 
systemically by s.c. injections at doses of 2.7 mg/kg or delivered 
locally over the fracture site at doses of 20 μg  [116-119], an 
increased rate of bone formation was observed. Fracture 
healing is a complex and well-orchestrated process consisting 
of temporal, as well as spatial, sequences. Healing involves 
haematoma formation, angiogenesis, cartilage formation and 
calcification followed by bone formation and remodelling. 
Such healing properties are mediated by the sequential 
release of key molecules such as BMP and growth factors. 
The expression of such signalling molecules has been shown 
to occur over the first few weeks of fracture healing, and  
it may be that it is this stage at which GH may be most 
influential in augmenting its effect on healing via activation 
of these molecules  [151,152]. Indeed, BMP-2 and BMP-4 
mRNA expression has been shown to be induced by both 
GH and IGF-I  [153]. However, the physiological differences 
between humans and animal models means that the optimum 
length of administration of GH in animal models cannot be 
applied to humans, and further studies need to be undertaken 
in order for such an optimum period to be elucidated.

It is interesting to note that the contrasting studies  [127,128,131] 
used once-daily intramuscularly administered GH at  
150 μg/kg  [127,131] or 5 mg b-GH  [128], whereas Bak  
and colleagues  [117,144] were able to accelerate fracture heal-
ing by twice-daily s.c. administration of GH at doses of  
2.0 kg or 2.7 mg/kg. This may be a result of the greater 
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doses administered by the latter two studies, but it is  
conceivable that the frequency of GH administration may 
have an important role in determining its effect on bone 
healing. Indeed, longitudinal bone growth has been shown 
to increase when GH is administered 2 – 8 times daily in 
hypophysectomised rats, possibly as a result of mimicking 
the pulsatile nature of GH release  [154]. Furthermore, it has 
been shown that the pulsatile administration of hGh or 
bGH resulted in an increased bone growth compared with 
sustained intravenous GH infusion of the equivalent 
dose  [155]. It can therefore be postulated that the application 
of GH to fracture healing in humans may benefit from  
frequent administrations.

Taken together, GH has been shown to have a positive 
role on bone healing, but this is dependent on the animal 
model and the dose and route of administration, as well as 
on the GH employed. Higher doses delivered systemically 
can enhance bone healing, as can lower doses delivered 
locally. The literature on human studies revealed only one 
study focusing on the direct effect of GH on fracture healing  [141], 
with the remaining trials regarding GH administration on 
fracture patients being aimed at identifying the indirect 
effect of improved functional outcome, rather than the  
effect of GH on fracture healing itself. The sole RCT  
on fracture healing indicated a dose-dependent effect on 
fracture healing by demonstrating a promising 26% reduc-
tion in the healing time of closed fractures. A single daily 
dose of 0.06 mg/kg was administered for a period of 
16 weeks or until the healing of the fracture. While the effect 
of lower doses was investigated, the frequency and duration of 
the intervention was fixed among the study participants  [141]. 
This suggests a potential role in GH in accelerating bone 
healing in the clinical setting.

4.	 Expert	opinion

The clinical question of whether GH is suitable for use as 
an agent to enhance fracture healing is not decisively 
answered by the available evidence. We have demonstrated 
the in vitro evidence of GH action on osteoblasts and  
osteoclasts and looked into the different pathways  [11,29,86,109,110]. 
Furthermore, animal studies have demonstrated that factors 
such as the delivery method  [115,122], the duration  [116], the 
timing  [117] and the dose  [120,121] are also related to the beneficial 
effect on fracture healing. Finally, the effect on fracture healing 
after systematic administration of GH to humans was also 
demonstrated to be significant and dose-dependent  [141].

The safety profile of r-hGH has received significant attention 
concerning its application in the clinical setting. Pharmacological 
administration to critically ill patients has demonstrated 
increased mortality in two parallel RCTs  [142]. The physiological 
effect of GH on insulin metabolism – along with other 
adverse events such as fluid retention, increased lipoproteins, 
cancer risk and tumour recurrence – have also been noted 
when GH has been administered for replacement purposes  [156]. 

The benefits of pharmacological administration of GH will 
have to clearly outweigh the potential risks; the evidence is 
that it does not in the case of critical care patients  [142].

Human studies on fracture healing have demonstrated 
increased adverse events, such as fluid retention, joint pains, 
hyperglycaemia, and thromboembolic events, in the treatment 
groups  [137-141], but firm conclusions cannot be made as 
these studies were designed to demonstrate morbidity and 
mortality effects and indeed had insufficient numbers to do 
so. Furthermore, these studies excluded patients with diabetes, 
renal failure, malignancy, diabetes mellitus  [137-141] and conges-
tive cardiac failure  [138]. This has to be taken into consider-
ation when trying to apply the outcomes to a population 
that would benefit from fracture healing-enhancing agents 
and could carry significant comorbidities.

Pharmacological therapy with GH, where the hormone is 
not intended as a replacement, has not yet been fully established: 
both the therapeutic window and the maximum safe dose of 
GH remain to be determined. Adverse events have been 
observed at various doses of GH administration, and these 
effects appear to be dependent on the patient groups. In 
critically ill patients requiring ICU admission, the possible 
harmful effects of GH were observed in two parallel trials. The 
GH dose used varied from 0.07 to 0.13 mg/kg/day, and 
significantly adverse effects were demonstrated on the treatment 
group with regard to morbidity and mortality  [142]. Other 
studies on pharmacological administration of GH for several 
diseases such as AIDS wasting, postoperative patients, sepsis, 
abdominal aortic aneurysm repair, and cardiomyopathy utilised 
doses as high as 0.19 mg/kg/day, with the majority of the 
studies using a dose of 0.1 mg/kg/day. These studies had 
much smaller numbers compared with the study on critically 
ill patients, but did not show a problematic safety profile for 
GH  [157]. Furthermore, when GH is administered as replace-
ment in GH-deficient patients, the initial dose in adults is 
0.15 – 0.30 mg/day, gradually increased, with the maintenance 
dose seldom exceeding 1 mg/day (0.014 mg/kg/day)  [158]. In 
children, the dosage is more aggressive: 0.025 – 0.05 mg/kg/day, 
reaching a maximum of 0.1 mg/kg/day in adolescents  [159].

The dose required to provide patients with the beneficial 
effect on fracture healing has not been demonstrated clearly. 
In tibial fracture patients, the effective dose of GH that 
enhanced fracture healing was 0.06 mg/kg/day, while patients 
who received a lower dose of 0.03 mg/kg/day demonstrated 
no significant effect compared with placebo. Other studies 
on human fracture patients administered with GH doses 
varied between 0.01 and 0.06 mg/kg/day  [137,138,140,141] 
These doses in humans demonstrated a safe profile for the 
cautiously selected group of patients, although the treatment 
groups had more adverse events  [139-141] such as fluid retention, 
as well as more severe thromboembolic events in two of the 
human studies  [140,143]; however, these were not reported as 
intervention-related or significant.

The problem of therapeutic dose exceeding that of the 
recommended safe levels may be bypassed by the local 
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administration of GH directly into the fracture site, which 
would reduce the necessary levels of GH administration 
while maintaining high levels of GH exposure. Indeed, a 
recent animal study using MBCP implants to deliver GH 
was able to demonstrate increased bone ingrowth in rats at 
concentrations as low as 0.1 μg, with an optimum dose of 1 μg. 
Therefore, the local delivery of GH offers a realistic prospect 
for maintaining adequate concentration within the constraints 
of safety levels. However, human studies must be under-
taken in order to resolve issues such as the effect local  
delivery would have on fracture healing; the optimum dose 
required; whether it is feasible or not; and how it can  
be implemented.

The consensus on adult GH treatment states that research 
for pharmacological intervention should be encouraged 
despite the adverse effects on critically ill patients, since 

these results cannot be extrapolated to other patient 
groups  [156]. Clearly there is a long way to go before  
determining the optimal GH dose required to enhance fracture 
healing in humans and to determine the safety profile in 
this group of patients. The potential for local administration 
has not yet been explored in humans and could possibly 
eliminate some of the side effects of systematic administra-
tion. GH offers an exciting therapeutic option in enhancing 
bone fracture healing, but more data regarding its effect in 
humans are required before it can be fully utilised in the 
clinical setting.
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