
Attack Trends
Editors: Marcus Sachs, marcus.sachs@verizon.com
David Ahmad, drma@mac.com

72	 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES ■ 1540-7993/10/$26.00 © 2010 IEEE ■ JULY/AUGUST 2010

whelming the visualization gran-
ularity. Why would this work?
Attacks work because they violate
assumptions. Any finite system—
electronic or otherwise—must by
design incorporate implicit and
explicit assumptions into its struc-
ture, functionality, and language.
Furthermore, systems are formu-
lated with so-called “expected” or
typical cases in mind, and assump-
tions reflect these expected use cas-
es—a man-in-the-middle attack
violates the assumption that you’re
talking to the party you expected;
a buffer-overflow attack violates
an explicit resource assumption;
BGP routing and DNS case poi-
soning attacks violate implicit
trust assumptions of non-malicious
open architecture participants. I’ll
explain the importance of assump-
tions and expected cases with a
model called highly optimized tol-
erance (HOT).

Highly Optimized
Tolerance
HOT is a generative mechanism
that seeks to explain the structure,
static/dynamic attributes, and re-
siliency of interconnected systems.1
Originally proposed to account for
so-called “power law” distribu-
tions in natural and engineered
systems, researchers have used the
model to study forest ecosystems,
router network robustness, In-
ternet traffic, and power and im-
mune systems. By emphasizing
evolved and engineered complex-
ity through feedback, trade-offs
between objective functions and
resource constraints in a proba-
bilistic environment, HOT can
capture a majority of real-life sys-

poison the hops of the beer brew-
ing company. Though the latter
two examples sound farfetched,
these scenarios—attacking some-
thing or someone indirectly—have
occurred on a larger scale in real
life. I call these indirect attacks nth
order attacks against end systems.

One way of defining a system
is to view it as a whole that func-
tions by virtue of the relationships
between constitutive components.
These components—I’ll also call
them ancillary systems—include
control mechanisms, fault detec-
tion and recovery, energy/data
flow, economic viability, human
usability, data processing/struc-
tures, graceful startup/shutdown,
and reputation management. Such
ancillary systems can be embed-
ded in or encompass an end system
and can in turn be composed of
and be influenced by other ancil-
lary systems. A so-called nth order
attack degrades, disables, or sub-
verts a system by targeting one or
more of its ancillary systems. The
n stands for the degree of relation:
0th order targets the end system,
first order targets an ancillary sys-
tem of the end system, and so on.

Let’s apply this view to a net-
work intrusion detection system
(NIDS). One ancillary system,
the control subsystem, negotiates

the data and instruction interplay
between sensors, analysis system,
database, and decision engine.
Another ancillary system, the vi-
sualization subsystem, displays
the events and possible remedia-
tion options. Drilling down, the
visualization ancillary system has
its own ancillary systems: human
operators field a vision subsys-
tem subject to certain parameters,
among them a certain percent-
age of color-blindness and lim-
ited angular resolution. A human
operator’s control system is com-
prised of reasoning strength and
limitations (for example, cognitive
dissonance), as well as physiologi-
cal mechanisms (hypothalamic
hormone secretions that regulate
sleep and hunger, for instance).
The NIDS is embedded in a busi-
ness model that governs aspects of
its design, implementation, and
activity (such as profit model and
distribution channels). This busi-
ness model is itself embedded in
an economic environment, such
as a free market economy, which
influences its setup (tax codes and
corporate structure, for instance).

How would you go about
perpetuating an nth order attack
against a NIDS? A first-order at-
tack can target the visualization
subsystem with noise events, over-

S
ay you wanted to harm your neighbor Vin-

cent. You could go over to Vincent’s home

and punch him in the nose. You could be

more sly, and poison his beer and wait till he

harms himself by taking a sip. You could be even more sly and

Daniel Bilar

University of
New Orleans

Degradation and Subversion
through Subsystem Attacks

Attack Trends

	 www.computer.org/security� 73

tems. Designs generated by HOT
models generally perform well (as
measured by throughput in router
networks, for instance). In addi-
tion, they’re robust towards de-
signed-for uncertainties (so-called
“average” cases) and hypersensi-
tive to unanticipated perturbations
(“rare” cases).

Let’s tie the concepts of nth
order and HOT together with an
example of a 0th order attack. The
equation system below is the for-
mulation of a probability, loss, re-
source optimization problem (this
PLR can be interpreted as a gener-
alization of Shannon source cod-
ing for data compression, yielding
the Shannon-Kolmogorov entro-
py for the objective function J2).

min J� (1)

Subject to

∑ ≤r Ri � (2)

where

J p li i= ∑ � (3)

li = f(ri)� (4)

1 ≤ i ≤ M� (5)

We have a set of M events
(Equation 5) occurring indepen-
dently and equally distributed
with probability pi incurring loss li
(Equation 3), the sum product of
which is the objective function to
be minimized (Equation 1). Re-
sources ri are hedged against losses
li, with normalizing f(ri)= –log ri
(Equation 4) subject to resource
bounds R (Equation 2). Now, I
can map the resources and the loss
to elements of a C program, then
subject it to a 0th order attack (a
buffer overflow):

int provePequalsNP()
{
 /* Next paper .. */
}
int bof()

{
 char buffer[8]; /* an 8
byte char buffer */
 strcpy(buffer, gets());
/*get input from user*/
 /* may not return if
buffer overflowed */
 return 42;
}

int main(int argc, char
**argv)
{
 bof(); /*call bof()
function*/
 /* execution may never
reach next function
because of overflow*/
 provePequalsNP();
 return 1000000; /*exit
with Clay prize*/
}

The probabilistic environment
is the user, who is asked for in-
put in gets(), representing the
event. In the C code, the human
designer specifies an 8-byte buf-
fer char buffer[8] and the
compiler allocates the minimum
buffer needed for 8 bytes (re-

source r). Hence, the constrained
resource r is the variable buffer.
The loss associated with the user
input event is really a step func-
tion: as long as the user satisfies
the designer’s assumption, the loss
is just the “normal” loss incurred
through proper continuation of
control flow. As long as user in-
put is ≤ 8 bytes, the resource r is
minimally sufficient to ensure
normal control-flow continuation.
If, however, the user decides to in-
put “Honorificabilitudinitatibus”
(implicitly assumed to be an un-
likely/impossible event by the hu-
man designer in the code), the loss
function takes a huge step jump: a
catastrophic failure ensues because
strcpy(buffer,gets())over-
flows buffer. The improbable
event breaches the resource hedge
and the process crashes.

How did this vulnerability
come about? I think two distinct
HOT processes had a hand in allo-
cating the breached resource. The
first mechanism inducing a cost-
optimized, resource-constrained
executable program is the human
programmer. As we all know,

Figure 1. Oscillation between over- and underload conditions. Reduction of

quality (RoQ) attacks force the adaptation mechanism with malicious traffic

into dropping from a high system steady state rate (x*) into a lower system

steady state (y*).

Attack Trends

74	 IEEE SECURITY & PRIVACY

programmers juggle conflicting
objective functions and resource
constraints: the system’s evolvabil-
ity versus specificity, functionality
versus code size, source read-
ability versus development time,
debugging time versus time to
market. The second mechanism is
the compiler. Cost functions here
are memory footprint, execution
cycles, and power consumption
minimization, whereas the con-
straints typically involve register
and cache line allocation, opcode
sequence selection, pipelines, and
arithmetic logic unit and floating
point unit utilization.

nth Order Attacks
on End Systems
More real-life illustrative attack
examples exist—their salient char-
acteristic lies in the targeting of
ancillary systems to degrade or
subvert respective end systems.

Protocols
Reduction of quality (RoQ) at-
tacks constitute a first-order deg-
radation attack,3 which targets
adaptation mechanisms used in
network protocols. Non-denial-
of-service, low-bandwidth traffic,
maliciously optimized against the
admission controllers and load bal-
ancers, forces the adaptive mecha-
nism to oscillate between overload
and underload conditions (Figure
1). The RoQ attack’s d requests
per second for burst time t (grey
shaded) repeated over period T
constitutes the rare event that the
adaptation system wasn’t expected
to handle efficiently. The adap-
tation mechanism—as a HOT
process designed for common per-
turbations, but fragile toward rare
events—finds its assumptions de-
signed for normal traffic violated.

P2P Networks
RoQ attacks can be mounted
against distributed hash tables used
for efficient routing in structured
P2P networks through join/leave
collusions and bogus peer new-

comer notifications.4

Power Grid
Load balancing in electricity grids
relies on accurate state estimation.
Data integrity attacks on a cho-
sen subset of sensors make these
estimates unreliable, which could
push such feedback systems into
an unstable state.5

Democracy
Voting systems assume honest
participants vote their actual pref-
erence. In elections with more
than two candidates, the system
can be undermined by strategic
voting, targeting the ranking pro-
cess subsystem.6

Trusted Code
A second-order control-flow
subversion attack termed return-
oriented programming (ROP)
has gained some notoriety. Its
mechanism can induce innocu-
ous code to perform malicious
computations.7 ROP vitiates the
need for foreign code injection; as
such, it renders security controls
such as W ⊕ X obsolete. Detec-
tion schemes (shadow stacks for
instance) exist, but are bypassed by
new ROP implementations.

Financial Exchange
The semi-strong Efficient Mar-
ket Hypothesis—a founda-
tional assumption of financial
markets—asserts that markets’
prices assimilate past and present
information near instantaneously.
So-called statistical arbitrage al-
gorithms, however, have been
able to systematically generate
profits over buy-and-hold strate-
gies for 30 years, suggesting at
least short-term exploitable inef-
ficiencies. The advent of high-
frequency trading infrastructures
(physically collocated, hence low
latency) gave rise to trading ap-
proaches targeting the EMH and
its subsystems to the detriment
of other market participants. So-
called “Immediate or Cancel”

price discovery algorithms used
by automated market makers find
the buy side’s hidden limit order,
forcing longer-term (predomi-
nantly institutional) investors to
pay higher prices. Some market
centers grant collocated (and thus
latency-privileged) participants’
algorithms a peek at future order
data, enabling trading opportu-
nities that would be illegal if hu-
mans were involved.8 These and
other predatory algorithms target
in effect (and sometimes in intent)
market price stability and trans-
parency. As such, they constitute
first- and second-order degrada-
tion and subversion attacks against
the market.

My discussion of nth order at-
tacks isn’t merely of technical in-
terest. It goes also to the heart of
how conflicts between open soci-
eties and their enemies are waged:
trust subsystems. Trust helps lower
tangible and intangible transaction
costs between individuals, corpo-
rations, and the state. Members
of “high-trust” societies like the
United States leverage trust be-
yond family ties to form efficient
civic and economic organizations.9
Because trust permeates every fac-
et of open societies, it’s a very easy
assumption for malicious actors to
violate. This realization wasn’t lost
on Jihadi terrorists articulating a
2nd order degradation attack strat-
egy against open societies:

[O]ur war with America is fun-
damentally different, for the
first priority is defeating it eco-
nomically [..] Any operation
targeting an area of infrastruc-
ture in a new country that does
not have a history of counter-
ing these operations is consid-
ered as bleeding (exhausting)
to the greater enemy America
and the targeted nation itself.
It is so because these nations
will be required to protect all
similar potential targets which
results in economic exhaus-
tion (bleeding)... For example,

Attack Trends

	 		www.computer.org/security 75

if a hotel that caters to western
tourists in Indonesia is target-
ed, the enemy will be required
to protect all hotels that cater
to western tourists in all coun-
tries which may become a tar-
get of similar attacks. You can
say the same thing about living
residences, economic establish-
ments, embassies [..]10

I will elaborate on these examples
and discuss defenses in future

columns.

References
1. J. Carlson and J. Doyle, “Highly

Optimized Tolerance: Robustness
and Design in Complex Systems,”
Physical Rev. Letters, vol. 84, no.
11, 2000, pp. 2529--2532

2. J. Doyle and J. Carlson, “Power
Laws, Highly Optimized Toler-
ance, and Generalized Source
Coding,” Physical Rev. Letters, vol.
84, no. 24, 2000, pp. 5656–5659

3. M. Guirguis and A. Bestavros,

“Reduction of Quality (RoQ)
Attacks on Internet End-Sys-
tems,” Proc. IEEE INFOCOM,
2005, pp. 1362--1372

4. H. Yanxiang et al., “Reduction of
Quality (RoQ) Attacks on Struc-
tured Peer-to-Peer Networks,”
IEEE Int’l Parallel and Distrib-
uted Processing Symp. (IPDPS 09),
IEEE Press, 2009, pp. 1–9

5. Y. Liu, M.K. Reiter, and P. Ning,
“False Data Injection Attacks
against State Estimation in Elec-
tric Power Grids,” ACM Conf.
on Computer and Communications
Security (CCS 09), ACM Press,
2009, pp. 21–32.

6. W. Poundstone, Gaming the Vote:
Why Elections Aren’t Fair, Hill and
Wang, 2008

7. R. Roemer et al., “Return-Ori-
ented Programming: Systems,
Languages, and Applications,”
2009, cseweb.ucsd.edu/~hovav/
dist/rop.pdf.

8. H. Mittal, “Are You Playing in a
Toxic Dark Pool ?,” J. Trading, vol.
3, no. 3, 2008, pp. 20–33.

9. F. Fukuyama, Trust: The Social

Silver Bullet Security Podcast
In-depth inter v iews w i th secur i t y gurus . Hos ted by Gar y McGraw.

w w w.computer.org /secur i t y /podcasts
Sponsored by

Virtues and the Creation of Prosper-
ity. Free Press, 1996.

10. G. Ackerman and J. Tamsett, eds,
Jihadists and Weapons of Mass Destruc-
tion, CRC Press, 2009, pp. 89–90.

Daniel Bilar is an assistant profes-

sor of computer science at the Univer-

sity of New Orleans. He has degrees

in Computer Science (Brown), Opera-

tions Research (Cornell) and Engineer-

ing Sciences (Dartmouth). //please

indicate which of these is your highest

degree (PhD?)// As a founding mem-

ber of Dartmouth’s Institute for Se-

curity, Technology, and Society (ists.

dartmouth.edu), has conducted criti-

cal infrastructure protection research

for the US Department of Justice and

US Department of Homeland Security.

Current research areas include detec-

tion and containment of highly evolved

malware and compositional risk analy-

sis and management of networks. Con-

tact him at daniel@cs.uno.edu.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

