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whelming the visualization gran-
ularity. Why would this work? 
Attacks work because they violate 
assumptions. Any finite system—
electronic or otherwise—must by 
design incorporate implicit and 
explicit assumptions into its struc-
ture, functionality, and language. 
Furthermore, systems are formu-
lated with so-called “expected” or 
typical cases in mind, and assump-
tions reflect these expected use cas-
es—a man-in-the-middle attack 
violates the assumption that you’re 
talking to the party you expected; 
a buffer-overflow attack violates 
an explicit resource assumption; 
BGP routing and DNS case poi-
soning attacks violate implicit 
trust assumptions of non-malicious 
open architecture participants. I’ll 
explain the importance of assump-
tions and expected cases with a 
model called highly optimized tol-
erance (HOT).

Highly Optimized 
Tolerance
HOT is a generative mechanism 
that seeks to explain the structure, 
static/dynamic attributes, and re-
siliency of interconnected systems.1 
Originally proposed to account for 
so-called “power law” distribu-
tions in natural and engineered 
systems, researchers have used the 
model to study forest ecosystems, 
router network robustness, In-
ternet traffic, and power and im-
mune systems. By emphasizing 
evolved and engineered complex-
ity through feedback, trade-offs 
between objective functions and 
resource constraints in a proba-
bilistic environment, HOT can 
capture a majority of real-life sys-

poison the hops of the beer brew-
ing company. Though the latter 
two examples sound farfetched, 
these scenarios—attacking some-
thing or someone indirectly—have 
occurred on a larger scale in real 
life. I call these indirect attacks nth 
order attacks against end systems.

One way of defining a system 
is to view it as a whole that func-
tions by virtue of the relationships 
between constitutive components. 
These components—I’ll also call 
them ancillary systems—include 
control mechanisms, fault detec-
tion and recovery, energy/data 
flow, economic viability, human 
usability, data processing/struc-
tures, graceful startup/shutdown, 
and reputation management. Such 
ancillary systems can be embed-
ded in or encompass an end system 
and can in turn be composed of 
and be influenced by other ancil-
lary systems. A so-called nth order 
attack degrades, disables, or sub-
verts a system by targeting one or 
more of its ancillary systems. The 
n stands for the degree of relation: 
0th order targets the end system, 
first order targets an ancillary sys-
tem of the end system, and so on.

Let’s apply this view to a net-
work intrusion detection system 
(NIDS). One ancillary system, 
the control subsystem, negotiates 

the data and instruction interplay 
between sensors, analysis system, 
database, and decision engine. 
Another ancillary system, the vi-
sualization subsystem, displays 
the events and possible remedia-
tion options. Drilling down, the 
visualization ancillary system has 
its own ancillary systems: human 
operators field a vision subsys-
tem subject to certain parameters, 
among them a certain percent-
age of color-blindness and lim-
ited angular resolution. A human 
operator’s control system is com-
prised of reasoning strength and 
limitations (for example, cognitive 
dissonance), as well as physiologi-
cal mechanisms (hypothalamic 
hormone secretions that regulate 
sleep and hunger, for instance). 
The NIDS is embedded in a busi-
ness model that governs aspects of 
its design, implementation, and 
activity (such as profit model and 
distribution channels). This busi-
ness model is itself embedded in 
an economic environment, such 
as a free market economy, which 
influences its setup (tax codes and 
corporate structure, for instance).

How would you go about 
perpetuating an nth order attack 
against a NIDS? A first-order at-
tack can target the visualization 
subsystem with noise events, over-

S
ay you wanted to harm your neighbor Vin-

cent. You could go over to Vincent’s home 

and punch him in the nose. You could be 

more sly, and poison his beer and wait till he 

harms himself by taking a sip. You could be even more sly and 
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tems. Designs generated by HOT 
models generally perform well (as 
measured by throughput in router 
networks, for instance). In addi-
tion, they’re robust towards de-
signed-for uncertainties (so-called 
“average” cases) and hypersensi-
tive to unanticipated perturbations 
(“rare” cases).

Let’s tie the concepts of nth 
order and HOT together with an 
example of a 0th order attack. The 
equation system below is the for-
mulation of a probability, loss, re-
source optimization problem (this 
PLR can be interpreted as a gener-
alization of Shannon source cod-
ing for data compression, yielding 
the Shannon-Kolmogorov entro-
py for the objective function J2). 

min J� (1)

Subject to 

∑ ≤r Ri � (2)

where 

J p li i= ∑ � (3)

li = f(ri)� (4)

1 ≤ i ≤ M� (5)

We have a set of M events 
(Equation 5) occurring indepen-
dently and equally distributed 
with probability pi incurring loss li 
(Equation 3), the sum product of 
which is the objective function to 
be minimized (Equation 1). Re-
sources ri are hedged against losses 
li, with normalizing f(ri)= –log ri  
(Equation 4) subject to resource 
bounds R (Equation 2).  Now, I 
can map the resources and the loss 
to elements of a C program, then 
subject it to a 0th order attack (a 
buffer overflow):

int provePequalsNP()
{
 /* Next paper .. */ 
}
int bof()

{ 
 char buffer[8]; /* an 8 
byte char buffer */ 
 strcpy(buffer, gets()); 
/*get input from user*/ 
 /* may not return if 
buffer overflowed */ 
 return 42;
}

int main(int argc, char 
**argv) 
{
 bof(); /*call bof() 
function*/ 
 /* execution may never 
reach next function 
because of overflow*/ 
 provePequalsNP(); 
 return 1000000; /*exit 
with Clay prize*/
} 

The probabilistic environment 
is the user, who is asked for in-
put in gets(), representing the 
event. In the C code, the human 
designer specifies an 8-byte buf-
fer char buffer[8] and the 
compiler allocates the minimum 
buffer needed for 8 bytes (re-

source r). Hence, the constrained 
resource r is the variable buffer. 
The loss associated with the user 
input event is really a step func-
tion: as long as the user satisfies 
the designer’s assumption, the loss 
is just the “normal” loss incurred 
through proper continuation of 
control flow. As long as user in-
put is ≤ 8 bytes, the resource r is 
minimally sufficient to ensure 
normal control-flow continuation. 
If, however, the user decides to in-
put “Honorificabilitudinitatibus” 
(implicitly assumed to be an un-
likely/impossible event by the hu-
man designer in the code), the loss 
function takes a huge step jump: a 
catastrophic failure ensues because 
strcpy(buffer,gets())over-
flows buffer. The improbable 
event breaches the resource hedge 
and the process crashes. 

How did this vulnerability 
come about? I think two distinct 
HOT processes had a hand in allo-
cating the breached resource. The 
first mechanism inducing a cost-
optimized, resource-constrained 
executable program is the human 
programmer. As we all know, 

Figure 1. Oscillation between over- and underload conditions. Reduction of 

quality (RoQ) attacks force the adaptation mechanism with malicious traffic 

into dropping from a high system steady state rate (x*) into a lower system 

steady state (y*). 
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programmers juggle conflicting 
objective functions and resource 
constraints: the system’s evolvabil-
ity versus specificity, functionality 
versus code size, source read-
ability versus development time, 
debugging time versus time to 
market. The second mechanism is 
the compiler. Cost functions here 
are memory footprint, execution 
cycles, and power consumption 
minimization, whereas the con-
straints typically involve register 
and cache line allocation, opcode 
sequence selection, pipelines, and 
arithmetic logic unit and floating 
point unit utilization. 

nth Order Attacks 
on End Systems
More real-life illustrative attack 
examples exist—their salient char-
acteristic lies in the targeting of 
ancillary systems to degrade or 
subvert respective end systems. 

Protocols 
Reduction of quality (RoQ) at-
tacks constitute a first-order deg-
radation attack,3 which targets 
adaptation mechanisms used in 
network protocols. Non-denial-
of-service, low-bandwidth traffic, 
maliciously optimized against the 
admission controllers and load bal-
ancers, forces the adaptive mecha-
nism to oscillate between overload 
and underload conditions (Figure 
1). The RoQ attack’s d requests 
per second for burst time t (grey 
shaded) repeated over period T 
constitutes the rare event that the 
adaptation system wasn’t expected 
to handle efficiently. The adap-
tation mechanism—as a HOT 
process designed for common per-
turbations, but fragile toward rare 
events—finds its assumptions de-
signed for normal traffic violated.

P2P Networks 
RoQ attacks can be mounted 
against distributed hash tables used 
for efficient routing in structured 
P2P networks through join/leave 
collusions and bogus peer new-

comer notifications.4 

Power Grid 
Load balancing in electricity grids 
relies on accurate state estimation. 
Data integrity attacks on a cho-
sen subset of sensors make these 
estimates unreliable, which could 
push such feedback systems into 
an unstable state.5 

Democracy 
Voting systems assume honest 
participants vote their actual pref-
erence. In elections with more 
than two candidates, the system 
can be undermined by strategic 
voting, targeting the ranking pro-
cess subsystem.6 

Trusted Code 
A second-order control-flow 
subversion attack termed return-
oriented programming (ROP) 
has gained some notoriety. Its 
mechanism can induce innocu-
ous code to perform malicious 
computations.7 ROP vitiates the 
need for foreign code injection; as 
such, it renders security controls 
such as W ⊕ X obsolete. Detec-
tion schemes (shadow stacks for 
instance) exist, but are bypassed by 
new ROP implementations.

Financial Exchange 
The semi-strong Efficient Mar-
ket Hypothesis—a founda-
tional assumption of financial 
markets—asserts that markets’ 
prices assimilate past and present 
information near instantaneously. 
So-called statistical arbitrage al-
gorithms, however, have been 
able to systematically generate 
profits over buy-and-hold strate-
gies for 30 years, suggesting at 
least short-term exploitable inef-
ficiencies. The advent of high-
frequency trading infrastructures 
(physically collocated, hence low 
latency) gave rise to trading ap-
proaches targeting the EMH and 
its subsystems to the detriment 
of other market participants. So-
called “Immediate or Cancel” 

price discovery algorithms used 
by automated market makers find 
the buy side’s hidden limit order, 
forcing longer-term (predomi-
nantly institutional) investors to 
pay higher prices. Some market 
centers grant collocated (and thus 
latency-privileged) participants’ 
algorithms a peek at future order 
data, enabling trading opportu-
nities that would be illegal if hu-
mans were involved.8 These and 
other predatory algorithms target 
in effect (and sometimes in intent) 
market price stability and trans-
parency. As such, they constitute 
first- and second-order degrada-
tion and subversion attacks against 
the market.

My discussion of nth order at-
tacks isn’t merely of technical in-
terest. It goes also to the heart of 
how conflicts between open soci-
eties and their enemies are waged: 
trust subsystems. Trust helps lower 
tangible and intangible transaction 
costs between individuals, corpo-
rations, and the state. Members 
of “high-trust” societies like the 
United States leverage trust be-
yond family ties to form efficient 
civic and economic organizations.9 
Because trust permeates every fac-
et of open societies, it’s a very easy 
assumption for malicious actors to 
violate. This realization wasn’t lost 
on Jihadi terrorists articulating a 
2nd order degradation attack strat-
egy against open societies:

[O]ur war with America is fun-
damentally different, for the 
first priority is defeating it eco-
nomically [..] Any operation 
targeting an area of infrastruc-
ture in a new country that does 
not have a history of counter-
ing these operations is consid-
ered as bleeding (exhausting) 
to the greater enemy America 
and the targeted nation itself. 
It is so because these nations 
will be required to protect all 
similar potential targets which 
results in economic exhaus-
tion (bleeding)... For example, 
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if a hotel that caters to western 
tourists in Indonesia is target-
ed, the enemy will be required 
to protect all hotels that cater 
to western tourists in all coun-
tries which may become a tar-
get of similar attacks. You can 
say the same thing about living 
residences, economic establish-
ments, embassies [..]10

I will elaborate on these examples 
and discuss defenses in future 

columns. 
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