
Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Bio-op Errors in DNA Computing
A Sensitivity Analysis

Daniel Bilar

University of New Orleans
Department of Computer Science

New Orleans, Louisiana, USA

May 27, 2009
ACIS SNPD ’09

Catholic University of Daegu
Daegu, Republic of Korea

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Talk Roadmap

Motivation DNA Computing

Parallelizable combinatorial problems such as Hamiltonian Path,
DES code breaking and knapsack problems [1, 2, 3] can be solved
Error rates of biological operation range from 10−5 to 0.05 [4]

Sensitivity Analysis on DNA Algorithm

Simulate DNA algorithm for Shortest Common Superstring
Problem
Perform sensitivity analysis for each step of algorithm
Goal is to make algorithm error resistant

Tuning the Errors

Good Encoding focus on input data error-resistance
Multiplexing focus on operation error-resistance
Constant Volume Transformation focus on algorithm as a whole
error-resistance

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Chosen Problem

Shortest Common Superstring Problem

NP-Complete Combinatorial Problem Given an alphabet Σ, a
finite set R of strings from Σ

∗ (the set of all words over Σ) and a
positive integer K, find a string w ∈ Σ

∗ with length |w| ≤ K such that
each string x ∈ R is a substring of w.

Gloor’s Algorithm [5]

1 Encode all the strings x1, x2, . . . , xn ∈ R as DNA strands

2 Generate all possible solutions which are DNA strands w of
length less than or equal to K

3 Iteratively refine solution Let xj be a string of R. From our
solution population, select only the ones which contain xj as a
sub-string. Let this be our new solution population. Repeat this
step for each string xi ∈ R, 1 ≤ i ≤ n

4 Return result if our solution population is non-empty, return
’Yes’ and the solution string(s). Otherwise, return ’No’

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Empirical Error Rates

Step Bio-op Type I Error Type II Error

1) Encoding sub-strings Synthesizing through se-
quential coupling

NA Wrong letter is bonded
(0.05)

2) Generate solution pop-
ulation

Synthesizing through se-
quential coupling

NA Wrong letter is bonded
(0.05)

3) Match sub-strings to so-
lution population

Extraction using affinity
purification

Correct match is not rec-
ognized as match (0.05)

Incorrect match is recog-
nized as match (10−6)

4) Detect and output final
solution

Sequencing using poly-
merase chain reaction and
gel electrophoresis

Correct match is not rec-
ognized as match (0.05)

Incorrect match is recog-
nized as match (10−5)

Table: Error rates of bio-operations [4][6]

Gloor’s Algorithm [5]

1 Encode all the strings x1, x2, . . . , xn ∈ R as DNA strands

2 Generate all possible solutions which are DNA strands w of length less than
or equal to K

3 Iteratively refine solution Let xj be a string of R. From our solution
population, select only the ones which contain xj as a sub-string. Let this be our
new solution population. Repeat this step for each string xi ∈ R, 1 ≤ i ≤ n

4 Return result if our solution population is non-empty, return ’Yes’ and the
solution string(s). Otherwise, return ’No’

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Experiment and Results

Step Type I Error Levels Type II Error Levels

1) Encoding sub-strings NA 0.05, 0.005

2) Generate solution pop-
ulation

NA 0.05, 0.005, 0.0005, 0.00005

3) Match sub-strings to so-
lution population

0.05, 0.005, 0.0005, 0.00005 NA

Table: Bio-op error levels for factorial experiments

Setup

Algorithm implementation of all possible solutions of length K ≤ 6

and chosen sub-string matches gg, t, cg, tg, tgg

Factorial experiment varied error rates for three bio-ops

Result

Hit rate most sensitive to the type II errors in step 1. In conjunction
with lower type I error of step 3, pushed hit rate above the 90% mark
Lesson is encoding and extraction steps most important

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Targeting Input Data: Good Encoding Overview

Target Input Data

False encoding of search strings most sensitive factor. Practical mechanism
that produces error is hybridization stringency (number of complementary
base pairs that have to match for DNA oligonucleotides to bond)

Deaton’s Upper Bound [7]

Studied Hamiltonian Path Problem
Found upper bound of number of vertices that can be encoded in
oligonucleotides of length n without producing mismatches

|C|
t
∑

i=0

(

n
2

i

)

(q − 1) ≤ q
n
2

where t is the number of errors that occur in hybridization, q is cardinality of
the alphabet (q = 4 for DNA), and |C| is the number of vertices.
Mismatch-free defined as every codeword being a distance greater than t

from any other codeword
If the Hamming bound satisfied, no type II matching errors

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Targeting Input Data: Good Encoding Discussion

Deaton’s Upper Bound [7]

Upper bound of number of vertices that can be encoded in oligonucleotides
of length n without producing mismatches

|C|
t
∑

i=0

(

n
2

i

)

(q − 1) ≤ q
n
2

where t is the number of errors that occur in hybridization, q is cardinality of
the alphabet (q = 4 for DNA), and |C| is the number of vertices.
Mismatch-free defined as every codeword being a distance greater than t

from any other codeword
If the Hamming bound satisfied, no type II matching errors

Discussion

Biological pendant of the Hamming error-correcting code

Requires mismatch-free encoding, may not be possible for a given
problem
Conclusion Added error flexibility has to be bought with carefully designed
oligonucleotide encoding.

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Targeting Operation: Multiplexing Overview

Target Operations

System rebound from error assuming a certain number of faulty inputs

von Neumann’s Multiplexing [8]

Given input error rate and operation error rate ǫ, critical level of input must
be determined for a desired output error rate ψ. Interpret group of inputs
higher than critical level δ as a positive state, lower than critical level as
negative state.

DNA computing adaption

For every bio-op with error rate ǫ, fix your output error rate ψ to a desirable
level by replicating the inputs N times. Given N, find your critical level δ
using

ρ(N) =
1√
2πk

e
−

k
2 ,with k = 0.62

√
N

Interval zone (δ, 1 − δ) is one of uncertainty, where the error rate may or
may not have been achieved. If at least the fraction 1 − δ of inputs remains
the same, operation produces a positive result. If at most fraction δ of your
inputs is same, operation produces negative result

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Targeting Operation: Multiplexing Discussion

N 1000 2000 3000 5000 10000 20000

ρ(N) 2.7 ∗ 10−2 2.6 ∗ 10−3 2.5 ∗ 10−4 4 ∗ 10−6 1.6 ∗ 10−10 2.8 ∗ 10−19

Table: Given bio-op error rate ǫ = 0.005, probability of uncertainty as a function of N

DNA computing adaption

For every bio-op with error rate ǫ, fix your output error rate ψ to a desirable
level by replicating the inputs N times. Given N, find your critical level δ.
Interval zone (δ, 1 − δ) is one of uncertainty, where the error rate may or
may not have been achieved. If at least fraction 1 − δ of inputs remains the
same, operation produces positive result. If at most fraction δ, operation
produces negative result

Discussion

N becomes very large to decrease the probability of uncertainty
Multiplexing helps stabilize errors in algorithms with little data dependencies.
In some situations, multiplexing amplifies errors (divide-and-conquer
algorithms)
Suggests reformulation of algorithms to suit m.o. of DNA computing

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Targeting Algorithm: Constant Volume Overview

Target Algorithm

Previous two approaches concentrated on improving the operand and
statistically improving error rate of operation
Broader view of adapting algorithm to the particularities of DNA computing

Boneh’s Transform Approach [6]

Classify problems as Decreasing Volume’ if number of strings decrease as the
algorithm executes, ‘Constant Volume’ if number remains the same and
‘Mixed’ otherwise. DNA algorithms are ‘Decreasing Volume’, transform into

‘Constant Volume’

Modification of bio-op steps 3 and 4 from Table 1

Step 3* Let s be the number of extraction steps, and let the initial solution
population be 2n strings. Double the solution population every s

n
steps using

a PCR (a DNA amplification technique) operation.
Step 4* Pick m strands at random from the final solution population and
check whether at least one of them is the desired solution. If not, report
failure.

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Targeting Algorithm: Constant Volume Discussion

Modification of bio-op steps 3 from Table 1

Step 3* Let s be the number of extraction steps, and let the initial solution
population be 2n strings. Double solution population every s

n
steps using

a PCR (a DNA amplification technique) operation.

Keeping Constant Volume

Assume worst-case only one solution in 2n population, let Ps be probability
that solution survived extraction and is in final population.
Crucial step of bounding Ps Every s

n
steps, solution population is doubled.

Hence, through growth process every s/n steps, chances increase that
solution will survive all extractions

Ps = 2 − α−

s
n ,with α being the type I error

Discussion

Assumes PCR operation is error-free; accommodate by reducing α
Unmanageable for constant-volume algorithms, since quasi-exponential
bio-mass growth

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

Concluding Thoughts

Figure: Yolshimhi hapsida! “Let’s do our best”

Why bother with problem and DNA Computing?

Universally programmable DNA computers [9, 10]
Assumptions crucial Accept basic premise (e.g. DNA computing -
operations inherently probabilistic)
Each distinct computing environment may require particular

algorithmic approach (digital, DNA, hypercomputing, quantum [11])

Thank you

Thank you very much for your time and consideration of these ideas
and for the opportunity to speak at SNPD 09 at the Catholic
University of Daegu ⌣̈

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

References I

L. Adleman, “Molecular Computation of Solutions to Combinatorial Problems,” Science,
no. 266, pp. 1021–1024, 1994.

L. Adleman, P. Rothemund, and et al, “On Applying Molecular Computation to the Data

Encryption Standard,” Journal of Computational Biology, vol. 6, no. 1, pp. 53–63, 1999.

E. B. Baum and D. Boneh, “Running Dynamic Programming Algorithms on a DNA Computer,”

in DNA-Based Computers II: DIMACS, vol. 44, pp. 77–87, 1999.

K. Langohr, “Sources of Error in DNA Computation,” tech. rep., University of Western

Ontario, 1997.

G. Gloor, L. Kari, and et al, “Towards a DNA Solution to the Shortest Common Superstring

Problem,” in INTSYS ’98: Proceedings of the IEEE International Joint Symposia on
Intelligence and Systems, p. 140, IEEE Computer Society, 1998.

D. Boneh and R. Lipton, “TR-491-95: Making DNA Computers Error Resistant,” tech. rep.,

Princeton University (NJ), 1995.

R. Deaton and R. Murphy, “Good Encodings for DNA-based Solutions to Combinatorial

Problems,” in DNA-Based Computers II: DIMACS, vol. 44, pp. 247–258, 1999.

J. v. Neuman, “Probabilistic Logics and the Synthesis of Reliable Organisms From Unreliable

Components,” Annals of Mathematics Studies, no. 34, 1956.

X. Su and L. M. Smith, “Demonstration of a Universal Surface DNA Computer,” Nucleic

Acids Research, vol. 32, no. 10, pp. 3115–3123, 2004.

Overview Problem Setup And Analysis Tuning the Errors Conclusion Sources

References II

Y. Benenson, B. Gil, and et al., “An autonomous Molecular Computer for Logical Control of

Gene Expression,” Nature, vol. 429, no. 6990, pp. 423–429, 2004.

M. J. Biercuk and H. Uys, “Optimized dynamical decoupling in a model quantum memory,”

Nature, vol. 458, pp. 996–1000, 2009.

	Overview
	Roadmap

	Problem Setup And Analysis
	Algorithm

	Tuning the Errors
	Good Encoding:Input Data
	Multiplexing: Operation
	Constant Volume Transformation: Algorithm

	Conclusion
	Remarks

	Sources
	References

