O 000 00000 O 00	Overview	Problem Setup And Analysis	Tuning the Errors	Conclusion	Sources
	0	000	000000	0	00

Bio-op Errors in DNA Computing A Sensitivity Analysis

Daniel Bilar

University of New Orleans Department of Computer Science New Orleans, Louisiana, USA

May 27, 2009 ACIS SNPD '09 Catholic University of Daegu Daegu, Republic of Korea

Overview	Problem Setup And Analysis	Tuning the Errors	Conclusion	Sources
●	000		O	00
Talk Road	lmap			

Motivation DNA Computing

Parallelizable combinatorial problems such as Hamiltonian Path, DES code breaking and knapsack problems [1, 2, 3] can be solved **Error rates** of biological operation range from 10^{-5} to 0.05 [4]

Sensitivity Analysis on DNA Algorithm

Simulate DNA algorithm for Shortest Common Superstring Problem

Perform sensitivity analysis for each step of algorithm

Goal is to make algorithm error resistant

Tuning the Errors

Good Encoding focus on *input data* error-resistance **Multiplexing** focus on *operation* error-resistance **Constant Volume Transformation** focus on *algorithm* as a whole error-resistance

Overview	Problem Setup And Analysis	Tuning the Errors	Conclusion	Sources
0	$\bullet \circ \circ$	000000	0	00
Choser	Droblom			

Shortest Common Superstring Problem

NP-Complete Combinatorial Problem Given an alphabet Σ , a finite set R of strings from Σ^* (the set of all words over Σ) and a positive integer K, find a string $w \in \Sigma^*$ with length $|w| \leq K$ such that each string $x \in R$ is a substring of w.

Gloor's Algorithm [5]

- $\bullet \ \textbf{Encode} \ all \ the \ strings \ x_1, x_2, \ldots, x_n \in R \ as \ DNA \ strands$
- ② Generate all possible solutions which are DNA strands w of length less than or equal to K
- **3** Iteratively refine solution Let x_j be a string of R. From our solution population, select only the ones which contain x_j as a sub-string. Let this be our new solution population. Repeat this step for each string $x_i \in R, 1 \le i \le n$
- **Return result** if our solution population is non-empty, return 'Yes' and the solution string(s). Otherwise, return 'No'

Overview	Problem Setup And Analysis	Tuning the Errors	Conclusion	Sources
O	○●○		O	00
T •				

Empirical Error Rates

Step	Bio-op	Type I Error	Type II Error
1) Encoding sub-strings	Synthesizing through se-	NA	Wrong letter is bonded
	quential coupling		(0.05)
2) Generate solution pop-	Synthesizing through se-	NA	Wrong letter is bonded
ulation	quential coupling		(0.05)
3) Match sub-strings to so-	Extraction using affinity	Correct match is not rec-	Incorrect match is recog-
lution population	purification	ognized as match (0.05)	nized as match (10^{-6})
4) Detect and output final	Sequencing using poly-	Correct match is not rec-	Incorrect match is recog-
solution	merase chain reaction and	ognized as match (0.05)	nized as match (10^{-5})
	gel electrophoresis		

Table: Error rates of bio-operations [4][6]

Gloor's Algorithm [5]

- **1** Encode all the strings $x_1, x_2, \ldots, x_n \in R$ as DNA strands
- **2** Generate all possible solutions which are DNA strands w of length less than or equal to K
- **3** Iteratively refine solution Let x_j be a string of R. From our solution population, select only the ones which contain x_j as a sub-string. Let this be our new solution population. Repeat this step for each string $x_i \in R, 1 \le i \le n$
- **4 Return result** if our solution population is non-empty, return 'Yes' and the solution string(s). Otherwise, return 'No'

Overview	Problem Setup And Analysis	Tuning the Errors	Conclusion	Sources
O	00●		O	00
Experime	nt and Results			

Step	Type I Error Levels	Type II Error Levels
1) Encoding sub-strings	NA	0.05, 0.005
2) Generate solution pop-	NA	0.05, 0.005, 0.0005, 0.00005
ulation		
3) Match sub-strings to so-	0.05, 0.005, 0.0005, 0.00005	NA
lution population		

Table: Bio-op error levels for factorial experiments

Setup

Algorithm implementation of all possible solutions of length $K \le 6$ and chosen sub-string matches gg, t, cg, tg, tgg Factorial experiment varied error rates for three bio-ops

Result

Hit rate most sensitive to the type II errors in step 1. In conjunction with lower type I error of step 3, pushed hit rate above the 90% mark **Lesson** is encoding and extraction steps most important

Target Input Data

False encoding of search strings most sensitive factor. Practical mechanism that produces error is *hybridization stringency* (number of complementary base pairs that have to match for DNA oligonucleotides to bond)

Deaton's Upper Bound [7]

Studied Hamiltonian Path Problem

Found upper bound of number of vertices that can be encoded in oligonucleotides of length n without producing mismatches

$$|C|\sum_{i=0}^t \binom{\frac{n}{2}}{i}(q-1) \leq q^{\frac{n}{2}}$$

where t is the number of errors that occur in hybridization, q is cardinality of the alphabet (q = 4 for DNA), and |C| is the number of vertices.

Mismatch-free defined as every codeword being a distance greater than t from any other codeword

If the Hamming bound satisfied, no type II matching errors

Deaton's Upper Bound [7]

Upper bound of number of vertices that can be encoded in oligonucleotides of length n without producing mismatches

$$|C|\sum_{i=0}^t \binom{\frac{n}{2}}{i}(q-1) \le q^{\frac{n}{2}}$$

where t is the number of errors that occur in hybridization, q is cardinality of the alphabet (q = 4 for DNA), and |C| is the number of vertices.

Mismatch-free defined as every codeword being a distance greater than t from any other codeword

If the Hamming bound satisfied, no type II matching errors

Discussion

Biological pendant of the **Hamming error-correcting code Requires mismatch-free encoding**, may not be possible for a given problem

Conclusion Added error flexibility has to be bought with carefully designed oligonucleotide encoding.

Target Operations

System rebound from error assuming a certain number of faulty inputs

von Neumann's Multiplexing [8]

Given input error rate and operation error rate ϵ , critical level of input must be determined for a desired output error rate ψ . Interpret group of inputs higher than critical level δ as a *positive* state, lower than critical level as *negative* state.

DNA computing adaption

For every bio-op with error rate ϵ , fix your output error rate ψ to a desirable level by replicating the inputs N times. Given N, find your critical level δ using

$$\rho(\mathbf{N}) = \frac{1}{\sqrt{2\pi k}} e^{-\frac{k}{2}}$$
, with $\mathbf{k} = 0.62\sqrt{\mathbf{N}}$

Interval zone $(\delta, 1 - \delta)$ is one of uncertainty, where the error rate may or may not have been achieved. If at least the fraction $1 - \delta$ of inputs remains the same, operation produces a positive result. If at most fraction δ of your inputs is same, operation produces negative result

Overview	Problem Setup And Analysis	Tuning the Errors	Conclusion	Sources
Targeting	Operation:	Multiplexing D	iscussion	

N	1000	2000	3000	5000	10000	20000
ho(N)	$2.7 * 10^{-2}$	$2.6 * 10^{-3}$	$2.5 * 10^{-4}$	$4 * 10^{-6}$	$1.6 * 10^{-10}$	$2.8 * 10^{-19}$

Table: Given bio-op error rate $\epsilon = 0.005$, probability of uncertainty as a function of N

DNA computing adaption

For every bio-op with error rate ϵ , fix your output error rate ψ to a desirable level by replicating the inputs N times. Given N, find your critical level δ . **Interval zone** $(\delta, 1 - \delta)$ is one of uncertainty, where the error rate may or may not have been achieved. If at least fraction $1 - \delta$ of inputs remains the same, operation produces positive result. If at most fraction δ , operation produces negative result

Discussion

N **becomes very large** to decrease the probability of uncertainty Multiplexing helps stabilize errors in algorithms with little data dependencies. **In some situations, multiplexing amplifies errors** (divide-and-conquer algorithms) Suggests **reformulation of algorithms** to suit m.o. of DNA computing

Overview	Problem Setup And Analysis	Tuning the Errors	Conclusion	Sources
O	000	○○○○●○	O	00
Targeting	Algorithm:	Constant Volume	Overview	

Target Algorithm

Previous two approaches concentrated on improving the operand and statistically improving error rate of operation Broader view of **adapting algorithm** to the particularities of DNA computing

Boneh's Transform Approach [6]

Classify problems as Decreasing Volume' if number of strings decrease as the algorithm executes, 'Constant Volume' if number remains the same and 'Mixed' otherwise. DNA algorithms are 'Decreasing Volume', **transform into 'Constant Volume'**

Modification of bio-op steps 3 and 4 from Table 1

Step 3* Let s be the number of extraction steps, and let the initial solution population be 2^n strings. Double the solution population every $\frac{s}{n}$ steps using a PCR (a DNA amplification technique) operation.

Step 4* Pick m strands at random from the final solution population and check whether at least one of them is the desired solution. If not, report failure.

Modification of bio-op steps 3 from Table 1

Step 3* Let s be the number of extraction steps, and let the initial solution population be 2^n strings. **Double solution population every** $\frac{s}{n}$ **steps** using a PCR (a DNA amplification technique) operation.

Keeping Constant Volume

Assume worst-case only one solution in 2^n population, let P_s be probability that solution survived extraction and is in final population. **Crucial step of bounding** P_s Every $\frac{s}{n}$ steps, solution population is doubled. Hence, through growth process every s/n steps, chances increase that solution will survive all extractions

 $P_s = 2 - \alpha^{-\frac{s}{n}}$, with α being the type I error

Discussion

Assumes PCR operation is error-free; accommodate by reducing α **Unmanageable for constant-volume algorithms**, since quasi-exponential bio-mass growth

Figure: Yolshimhi hapsida! "Let's do our best"

Why bother with problem and DNA Computing?

Universally programmable DNA computers [9, 10] Assumptions crucial Accept basic premise (e.g. DNA computing operations inherently probabilistic)

Each distinct computing environment may require particular algorithmic approach (digital, DNA, hypercomputing, quantum [11])

Thank you

Thank you very much for your time and consideration of these ideas and for the opportunity to speak at SNPD 09 at the Catholic University of Daegu $\ddot{-}$

Overview	Problem Setup And Analysis	Tuning the Errors	Conclusion	Sources
O	000	000000	O	
Reference	s I			

L. Adleman, "Molecular Computation of Solutions to Combinatorial Problems," *Science*, no. 266, pp. 1021–1024, 1994.

- L. Adleman, P. Rothemund, and et al, "On Applying Molecular Computation to the Data Encryption Standard," *Journal of Computational Biology*, vol. 6, no. 1, pp. 53–63, 1999.
 - E. B. Baum and D. Boneh, "Running Dynamic Programming Algorithms on a DNA Computer," in *DNA-Based Computers II: DIMACS*, vol. 44, pp. 77–87, 1999.
 - K. Langohr, "Sources of Error in DNA Computation," tech. rep., University of Western Ontario, 1997.
 - G. Gloor, L. Kari, and et al, "Towards a DNA Solution to the Shortest Common Superstring Problem," in *INTSYS '98: Proceedings of the IEEE International Joint Symposia on Intelligence and Systems*, p. 140, IEEE Computer Society, 1998.
 - D. Boneh and R. Lipton, "TR-491-95: Making DNA Computers Error Resistant," tech. rep., Princeton University (NJ), 1995.
 - R. Deaton and R. Murphy, "Good Encodings for DNA-based Solutions to Combinatorial Problems," in *DNA-Based Computers II: DIMACS*, vol. 44, pp. 247–258, 1999.
 - J. v. Neuman, "Probabilistic Logics and the Synthesis of Reliable Organisms From Unreliable Components," *Annals of Mathematics Studies*, no. 34, 1956.
 - X. Su and L. M. Smith, "Demonstration of a Universal Surface DNA Computer," *Nucleic Acids Research*, vol. 32, no. 10, pp. 3115–3123, 2004.

Overview	Problem Setup And Analysis	Tuning the Errors	Conclusion	Sources
0	000	000000	0	$\bullet \bullet$
Referen	ces II			

- Y. Benenson, B. Gil, and et al., "An autonomous Molecular Computer for Logical Control of Gene Expression," *Nature*, vol. 429, no. 6990, pp. 423–429, 2004.
- M. J. Biercuk and H. Uys, "Optimized dynamical decoupling in a model quantum memory," *Nature*, vol. 458, pp. 996–1000, 2009.