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1. INTRODUCTION
As large-scale applications such as scientific computing, social media and financial
analysis gain prominence, the computational and storage demands of modern systems
have far exceeded the available resources. It is expected that in the coming decade, the
amount of information managed by worldwide datacenters will grow by 50 times, while
the number of processors will increase by only 10 times [Gantz and Reinsel 2011]. In
fact, the electricity consumption of just the US datacenters is expected to increase from
61 billion kWh (kilo watt hour) in 2006 [Mittal 2014a] and 91 billion kWh in 2013 to
140 billion kWh in 2020 [NRDC 2013]. It is clear that rising performance demands will
soon outpace the growth in resource budget and hence, over-provisioning of resources
alone will not solve the conundrum that awaits computing industry in the near future.

A promising solution for this dilemma is approximate computing (and storage),
which is based on the intuitive observation that while performing exact computation
or maintaining peak-level service demand require high amount of resources, allowing
selective approximation or occasional violation of the specification can provide dispro-
portionate gains in efficiency. For example, for k-means clustering algorithm, up to
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50× energy saving can be achieved by allowing classification accuracy loss of 5 per-
cent [Chippa et al. 2014]. Similarly, a neural approximation approach can accelerate
an inverse kinematics application by up to 26× compared to the GPU execution, while
incurring an error of less than 5 percent [Grigorian and Reinman 2015].

AC leverages the presence of error-tolerant code regions in applications and per-
ceptual limitations of users to intelligently trade off implementation, storage and/or
result accuracy for performance or energy gains. In brief, AC exploits the gap between
the level of accuracy required by the applications/users and that provided by the com-
puting system, for achieving diverse optimizations. Thus, AC has the potential to ben-
efit a wide range of applications/frameworks e.g. data analytics, scientific computing,
multimedia and signal processing, machine learning and MapReduce, etc.

However, although promising, AC is not a panacea. Effective use of AC requires ju-
dicious selection of approximable code/data portions and approximation strategy, since
uniform approximation can produce unacceptable quality loss [Ranjan et al. 2015;
Sartori and Kumar 2013; Tian et al. 2015; Venkataramani et al. 2014]. Even worse,
approximation in control flow or memory access operations can lead to catastrophic
results such as segmentation fault [Yetim et al. 2013]. Further, careful monitoring
of output is required to ensure that quality specifications are met, since large loss
makes the output unacceptable or necessitates repeated execution with precise param-
eters. Clearly, leveraging the full potential of AC requires addressing several issues.
Recently, several techniques have been proposed to fulfill this need.

Contribution and article organization: In this paper, we present a survey of
techniques for approximate computing. Figure 1 shows the organization of this paper.
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Fig. 1. Organization of the paper in different sections

We first discuss the opportunities and obstacles in use of AC (Section 2). We
then present techniques for finding approximable program portions and monitoring
output quality, along with the language support for expressing approximable vari-
ables/operations (Section 3). Further, we review the strategies for actually approxi-
mating these data (Section 4). We then discuss research works to show how these
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strategies are used in many ACTs employed for different memory technologies, system
components and processing units (Section 5).

In these sections, we organize the works in different categories to underscore their
similarities and dissimilarities. Note that the works presented in these sections are
deeply intertwined and while we study a work under a single group, several of these
works belong to multiple groups. Further, to show the spectrum of application of AC,
we organize the works based on their workload or application domain (Section 6). We
finally conclude this paper with a discussion on future outlook (Section 7).

Scope of the article: The scope of AC encompasses a broad range of approaches
and for a concise presentation, we limit the scope of this paper in the following man-
ner. We focus on works that use an approximation strategy to trade-off result qual-
ity/accuracy and not those that mainly focus on mitigation of hard/soft errors or other
faults. We mainly focus on ACTs at architecture, programming and system-level and
briefly include design of inexact circuits. We do not typically include works on theoret-
ical studies on AC. We believe that this paper will be useful for computer architects,
application developers, system designers and other researchers1.

2. PROMISES AND CHALLENGES OF APPROXIMATE COMPUTING
2.1. A note on terminology and quality metrics
Table I summarizes the terminology used for referring to AC and the code regions
amenable to AC.

Table I. Terminology used in approximate computing research

(a) AC is synonymous with or has significant overlap with the ideas of . . .
Dynamic effort-scaling [Chippa et al. 2014], quality programmability/configurability [Venkataramani
et al. 2013, 2014] and variable accuracy [Ansel et al. 2011]

(b) Applications or their code portions that are amenable to AC are termed as . . .
Approximable [Esmaeilzadeh et al. 2012b], relaxable [Yazdanbakhsh et al. 2015a], soft
slices/computations [Esmaeilzadeh et al. 2012a], best-effort computations [Chakradhar and Raghu-
nathan 2010], non-critical/crucial [Shi et al. 2015], error-resilient/tolerant [Esmaeilzadeh et al. 2012b],
error-acceptable [Kahng and Kang 2012], tunable [Sidiroglou et al. 2011], having ‘forgiving nature’
[Venkataramani et al. 2015] and being ‘optional’ (versus guaranteed/mandatory) [Chakradhar and
Raghunathan 2010]

As we show in Sections 2.2 and 2.3, use of a suitable quality metric is extremely
important to ensure correctness and balance quality-loss with efficiency-gain. For this
reason, Table II shows the commonly-used metrics for evaluating QoR of various ap-
plications/kernels (note that some of these applications may be internally composed
of these kernels. Also, these metrics are not mutually exclusive.). For several appli-
cations, multiple metrics can be used for evaluating quality loss, e.g. both clustering
accuracy and mean centroid distance can be used as metrics for k-means clustering
[Chippa et al. 2013]. In essence, all these metrics seek to compare some form of output
(depending on the application e.g., pixel values, body position, classification decision,
execution time, etc.) in the approximate computation with that in exact computation.
Some other quality metrics include universal image quality index (UIQI) for image

1We use the following acronyms throughout the paper: bandwidth (BW), dynamic binary instrumentation
(DBI), embedded DRAM (eDRAM), error-correcting code (ECC), finite impulse response (FIR), floating point
(FP) unit (FPU), hardware (HW), instruction set architecture (ISA), multi-layer perceptron (MLP), multi-
level cell (MLC), neural network (NN), neural processing unit (NPU), non-volatile memory (NVM), peak
signal to noise ratio (PSNR), phase change memory (PCM), quality of result (QoR), resistive RAM (ReRAM),
single instruction multiple data (SIMD), software (SW), solid state drive (SSD), spin transfer torque RAM
(STT-RAM).
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processing, satisfiability check for SAT (Boolean satisfiability) solver, difference in file
size for dedup (PARSEC), etc.

Table II. Some quality metrics used for different approximable applications/kernels (SSIM = structural similarity)

Quality metric(s) Corresponding applications/kernels
Relative difference/
error from standard
output

Fluidanimate, blackscholes, swaptions (PARSEC), barnes, water, cholesky, LU
(Splash2), vpr, parser (SPEC2000), Monte Carlo, sparse matrix multiplica-
tion, Jacobi, discrete Fourier transform, MapReduce programs (e.g. page rank,
page lenth, project popularity etc.), forward/inverse kinematics for 2-joint arm,
Newton-Raphson method for finding roots of a cubic polynomial, n-body simula-
tion, adder, FIR filter, conjugate gradient

PSNR and SSIM H.264 (SPEC2006), x264 (PARSEC), MPEG, JPEG, rayshade, image resizer, im-
age smoothing, OpenGL games (e.g., Doom 3)

Pixel difference Bodytrack (PARSEC), eon (SPEC2000), raytracer (Splash2), particlefilter (Ro-
dinia), volume rendering, Gaussian smoothing, mean filter, dynamic range com-
pression, edge detection, raster image manipulation

Energy conserva-
tion across scenes

Physics based simulation (e.g. collision detection, constraint solving)

Classification/ clus-
tering accuracy

Ferret, streamcluster (PARSEC), k-nearest neighbor, k-means clustering, gen-
eralised learning vector quantization (GLVQ), MLP, convolutional neural net-
works, support vector machines, digit classification

Correct/incorrect
decisions

Image binarization, jmeint (triangle intersection detection), ZXing (visual bar
code recognizer), finding Julia set fractals, jMonkeyEngine (game engine)

Ratio of error of ini-
tial and final guess

3D variable coefficient Helmholtz equation, image compression, 2D Poisson’s
equation, preconditioned iterative solver

Ranking accuracy Bing search, supervised semantic indexing (SSI) document search

2.2. Motivation behind and scope for approximate computing
In many scenarios, use of AC is unavoidable, or the opportunity for AC arises inher-
ently, while in other scenarios, AC can be proactively used for efficiency optimization.
We now discuss the motivations behind and opportunity for AC.

2.2.1. Inherent scope or need for approximation. In case of inherently noisy input [Bornholt
et al. 2014], limited data precision, a defect in HW, sudden additional load or hard
real-time constraints, use of AC becomes unavoidable, for example, AC is natural for
FP computations where rounding off happens frequently. For many complex problems,
an exact solution may not be known, while an inexact solution may be efficient and
sufficient.

2.2.2. Error-resilience of programs and users. The perceptual limitations of humans pro-
vide scope for AC in visual and other computing applications. Similarly, many pro-
grams have non-critical portions, and small errors in these do not affect QoR signifi-
cantly, for example, Esmaeilzadeh et al. [2012a] note that in a 3D raytracer applica-
tion, 98% of FP operations and 91% of data accesses are approximable. Similarly, since
the lower-order bits have smaller significance than the higher-order bits, approximat-
ing them may have only minor impact on QoR [Cho et al. 2014; Ganapathy et al. 2015;
Gupta et al. 2011; Rahimi et al. 2015; Ranjan et al. 2015; Sampson et al. 2013; Tian
et al. 2015].

In several iterative refinement algorithms, running extra iterations with reduced
precision of intermediate computations can still provide the same QoR [Chippa et al.
2014; Khudia et al. 2015; Lopes et al. 2009; Raha et al. 2015; Tian et al. 2015]. In
some scenarios, e.g. search engines, no unique answer exists, but multiple answers are
admissible. Similarly, redundancy due to spatial/temporal correlation provides scope
for AC [Raha et al. 2015; Samadi et al. 2013; Sartori and Kumar 2013; Sutherland
et al. 2015; Yazdanbakhsh et al. 2015b].
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2.2.3. Efficiency optimization. In image processing domain, PSNR value greater than
30dB and in typical error-resilient applications, errors less than 10% are generally
considered acceptable [Rahimi et al. 2015]. By exploiting this margin, AC can aggres-
sively improve performance and energy efficiency. For example, by intelligently re-
ducing eDRAM/DRAM refresh rate or SRAM supply voltage, the energy consumed in
storage and memory access can be reduced with minor loss in precision [Mittal 2012,
2014b]. Similarly, AC approach can allow alleviating scalability bottleneck [Yeh et al.
2007], improving performance by early loop termination [Chippa et al. 2014; Sidiroglou
et al. 2011], skipping memory accesses [Yazdanbakhsh et al. 2015b], offloading compu-
tations to an accelerator [Moreau et al. 2015], improving yield [Ganapathy et al. 2015],
and much more.

2.2.4. Quality configurability. AC can provide knobs to trade-off quality with efficiency
and thus, instead of executing every computation to full fidelity, the user needs to
expend only as much effort (e.g. area, energy) as dictated by the QoR requirement
[Chakradhar and Raghunathan 2010]. For example, an ACT can use different preci-
sions for data storage/processing, program versions of different quality (refer Table
IV), different refresh rates in eDRAM/DRAM (refer Table V) etc., to just fulfill the QoR
requirement.

2.3. Challenges in approximate computing
As we show below, AC also presents several challenges, which need to be addressed to
fully realize the potential of AC.

2.3.1. Limited application domain and gains of AC. Due to their nature, some applications
are not amenable to approximation, e.g. cryptography, hard real-time applications, etc.
Some approximation strategies are only valid in a certain range, for example, Zhang
et al. [2014] approximate inverse operation (y = 1/x) using the function y = 2.823 −
1.882x which produces low errors only when x ∈ [0.5, 1]. Similarly, approximating sin
function using an NN on an unbounded range is intractably hard [Eldridge et al. 2014].
Further, the gains of AC are bounded, e.g. inexact storage does not reduce the number
of operations on the data and vice versa.

2.3.2. Correctness issues. Aggressive ACTs may prevent program termination (e.g. a
matrix computation kernel where AC can lead to an unsolvable problem), or lead to
corrupt output which may not even be detected by the quality metric used [Akturk
et al. 2015]. For example, approximating a compression program may lead to corrupt
output and this may go undetected on using output file size as the quality metric. This
necessitates choosing an accurate and yet, light-weight quality metric.

Further, AC may interfere with synchronization and memory ordering and may lead
to non-deterministic output which makes debugging difficult [Khudia et al. 2015].
Avoiding this may require executing higher number of iterations or tightening con-
vergence criterion in iterative methods or comparing with single-threaded exact exe-
cution.

2.3.3. Finding application-specific strategies. A naive approximation approach such as uni-
form approximation is unlikely to be efficient, and while some strategies for approx-
imation such as precision scaling, memoization, etc. are known, no strategy can be
universally applied to all approximable applications. Hence, the approximation strate-
gies need to be determined on a per-application basis by the user or a sophisticated
program module [Ansel et al. 2011].

2.3.4. Overhead and scalability. Several ACTs may have large implementation over-
head, for example, voltage scaling may require voltage shifters for moving data be-
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tween different voltage domains [Esmaeilzadeh et al. 2012a]. Similarly, analog NN
implementations [Amant et al. 2014; Li et al. 2015] require conversion of signals
between digital and analog domain. Other techniques may require the programmer
to write multiple approximate versions of a program or annotating the source code,
which do not scale to complex programs and legacy software. Similarly, some ACTs re-
quire ISA extension [Esmaeilzadeh et al. 2012a,b; Keramidas et al. 2015; Ranjan et al.
2015; Sampson et al. 2011; Venkataramani et al. 2013; Yazdanbakhsh et al. 2015b]
and hence, implementing them on existing platforms may be challenging.

2.3.5. Providing high quality and configurability. ACTs must maintain the QoR to a desired
level and also provide tunable knob(s) to tradeoff quality with efficiency [Venkatara-
mani et al. 2014]. If QoR falls below a threshold, the application may have to be ex-
ecuted precisely which increases design and verification cost and may even nullify
the gains from approximation. Also, apart from average error, worst-case error needs
to be bounded to maintain high QoR [Grigorian and Reinman 2014; Khudia et al.
2015]. These facts necessitate monitoring the QoR and adaptively changing the knobs
to reach a desired QoR. However, this may be infeasible or prohibitively expensive in
several ACTs.

The techniques proposed in next several sections aim to address these challenges.

3. IDENTIFYING APPROXIMABLE PORTIONS AND EXPRESSING THIS AT LANGUAGE LEVEL
Finding approximable variables and operations is the crucial initial step in every ACT.
While this is straightforward in several cases (e.g. approximating lower-order bits of
graphics data), in other cases, it may require insights into program characteristics, or
error-injection to find the portions that can be approximated with little impact on QoR
(Section 3.1). Closely related to it is the output monitoring step, which verifies adher-
ence to the quality constraint and triggers parameter-adjustment or precise execution
in case of unacceptable quality loss (Section 3.2).

Further, once relaxable portions are identified, conveying this to the software or
compiler requires source-code annotations and several programming frameworks pro-
vide support for this (Section 3.3). This source-code annotation can be in the form of
OpenMP-style pragma directives (Section 3.4), which provides several benefits, e.g.,
non-intrusive and incremental program transformation, and easy debugging or com-
parison with exact code by disabling the approximation directives with a single com-
piler flag, etc. Table III classifies the techniques based on the above mentioned factors.
We now discuss several of these techniques.

3.1. Automatically finding approximable code/data
Roy et al. [2014] present a SW framework for automatically discovering approximable
data in a program by using statistical methods. Their technique first collects the vari-
ables of the program and the range of values they can take. Then, using binary instru-
mentation, the values of the variables are perturbed and the new output is measured.
By comparing this against the correct output which fulfills the acceptable QoS thresh-
old, the contribution of each variable in the program output is measured. Based on this,
the variables are marked as approximable or non-approximable. Thus, their frame-
work obviates the need of programmer’s involvement or source code annotations for
AC. They show that compared to a baseline with type-qualifier annotations by the pro-
grammer [Sampson et al. 2011] (refer Section 3.3), their approach achieves nearly 85%
accuracy in determining the approximable data. The limitation of their technique is
that some variables which are marked as non-approximable in programmer-annotated
version may be marked as approximable by their technique which can lead to errors.
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Table III. A classification based on implementation approach and other features

Classification References
Error-injection [Chippa et al. 2013, 2014; Cho et al. 2014; Esmaeilzadeh et al. 2012a; Ganapathy

et al. 2015; Liu et al. 2012; Misailovic et al. 2014; Roy et al. 2014; Venkataramani
et al. 2013; Xu and Huang 2015; Yetim et al. 2013]

Use of DBI [Chippa et al. 2013; Düben et al. 2015; Liu et al. 2012; Miguel et al. 2014; Roy
et al. 2014; Venkataramani et al. 2013]

Output quality
monitoring

[Grigorian et al. 2015; Grigorian and Reinman 2014; Hegde and Shanbhag 1999;
Khudia et al. 2015; Mahajan et al. 2015; Ringenburg et al. 2015, 2014; Roy et al.
2014; Samadi and Mahlke 2014; Yeh et al. 2007; Zhang et al. 2014]

Annotating approx-
imable program
portions

[Amant et al. 2014; Ansel et al. 2011; Carbin et al. 2013; Esmaeilzadeh et al.
2012a,b; Liu et al. 2012; McAfee and Olukotun 2015; Misailovic et al. 2014; Moreau
et al. 2015; Ringenburg et al. 2014; Sampson et al. 2015, 2011; Shi et al. 2015;
Shoushtari et al. 2015; Vassiliadis et al. 2015; Yazdanbakhsh et al. 2015a,b]

Use of OpenMP-
style pragma

[Rahimi et al. 2013; Vassiliadis et al. 2015]

Use of compiler [Amant et al. 2014; Ansel et al. 2011; Baek and Chilimbi 2010; Esmaeilzadeh et al.
2012a,b; Mahajan et al. 2015; McAfee and Olukotun 2015; Mishra et al. 2014;
Moreau et al. 2015; Rahimi et al. 2013; Ringenburg et al. 2015; Samadi et al. 2013;
Sampson et al. 2015; Sartori and Kumar 2013; Sidiroglou et al. 2011; Vassiliadis
et al. 2015; Yetim et al. 2013]

Chippa et al. [2013] present a technique for automatic resilience characterization of
applications. Their technique works in two steps. In the ‘resilience identification’ step,
their technique considers innermost loops that occupy more than 1% of application exe-
cution time as atomic kernels. As the application runs with the input dataset provided,
random errors are introduced into the output variables of a kernel using Valgrind DBI
tool. If the output does not meet the quality criterion or if the application crashes, the
kernel is marked as sensitive, otherwise, it is potentially resilient. In the ‘resilience
characterization’ step, potentially resilient kernels are further explored to see the ap-
plicability of various approximation strategies. In this step, errors are introduced in
the kernels using Valgrind based on the approximation models (and not randomly).
To quantify resilience, they propose an ACT-independent model and an ACT-specific
model for approximation. The ACT-independent approximation model studies the er-
rors introduced due to ACT using a statistical distribution which shows the probability,
magnitude and predictability of errors. From this model, the application quality profile
is generated as a function of these three parameters. The ACT-specific model may use
different ACTs, such as precision scaling, inexact arithmetic circuits and loop perfo-
ration (refer Section 4). Their experiments show that several applications show high
resilience to errors and many parameters such as the scale of input data, choice of
output quality metric and granularity of approximation have significant impact on the
application resilience.

Raha et al. [2015] present two techniques for selecting approximable computations
for reduce-and-rank kernel. A reduce-and-rank kernel (e.g. k-nearest neighbor) per-
forms reduction between an input vector and each reference vector and then ranks
the outputs to find the subset of top reference vectors for that input. Their first tech-
nique decomposes vector reductions into multiple partial reductions and interleaves
them with the rank computation. Then, based on intermediate reduction results and
ranks, this technique identifies whether a particular reference vector is expected to
appear in the final subset. Based on it, future computations that can be relaxed with
little impact on the output are selected. The second technique leverages the tempo-
ral or spatial correlation of inputs. Depending on the similarity between current and
previous input, this technique approximates or entirely skips processing parts of the
current inputs. Approximation is achieved using precision scaling and loop perfora-
tion strategies. They also design a runtime framework for dynamically adapting the
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parameters of their two techniques for minimizing energy consumption while meeting
the QoR target.

Ansel et al. [2011] present language extensions and an accuracy-aware compiler for
facilitating writing of configurable-accuracy programs. The compiler performs auto-
tuning using a genetic algorithm to explore the search-space of possible algorithms and
accuracy-levels for dealing with recursion and sub-calls to other configurable-accuracy
code. Initially, the population of candidate algorithms is maintained which is expanded
using mutators and later pruned to allow more optimal algorithms (i.e. fastest K al-
gorithms for a given accuracy level) to evolve. Thus, the user need to only specify ac-
curacy requirements and does not need to understand algorithm-specific parameters,
while the library writer can write a portable code by simply specifying ways to search
the space of parameter and algorithmic choices. To limit computation time, the num-
ber of tests performed for evaluating possible algorithms needs to be restricted. This,
however, can lead to choice of suboptimal algorithms and errors and hence, the number
of tests performed needs to be carefully chosen. Their experiments show that exposing
algorithmic and accuracy choices to the compiler for autotuning programs is effective
and provides large speedups with bounded loss of accuracy.

3.2. Ensuring quality of approximate computations through output monitoring
We here discuss ACTs which especially focus on ensuring quality by efficiently moni-
toring the application output.

Grigorian and Reinman [2014] note that for several computation-intensive appli-
cations, although finding a solution may incur high overheads, checking the solution
quality may be easy. Based on it, they propose decoupling error analysis of approxi-
mate accelerators from application quality analysis by using application-specific met-
rics called light weight checks (LWCs). For example, Boolean satisfiability problem,
which determines whether a set of variable assignments satisfies a Boolean formula,
is NP-complete. However, checking whether a given solution satisfies the formula is
easy and hence, this forms an example of LWC for satisfiability problem. LWCs are
directly integrated into application which enables compatibility with any ACT. By
virtue of being light-weight, LWCs can be used dynamically for analyzing and adapting
application-level errors. Only when testing with LWCs indicates unacceptable quality
loss, exact computation needs to be performed for recovery. Otherwise, the approx-
imation is considered acceptable. This saves energy without compromising reliabil-
ity. Their approach guarantees bounding worst-case error and obviates the need of
statically-designed error models.

Khudia et al. [2015] note that even when errors due to AC may be small on ‘aver-
age’, the worst-case errors may be high, which may affect the whole user experience. To
address this, they present an output-quality monitoring and management technique
which can ensure meeting a given output quality. Based on the observation that sim-
ple prediction approaches, e.g. linear estimation, moving average and decision tree can
accurately predict approximation errors, they use a low-overhead error detection mod-
ule which tracks predicted errors to find the elements which need correction. Using
this information, the recovery module, which runs in parallel to the detection module,
re-executes the iterations that lead to high-errors. This becomes possible since the ap-
proximable functions or codes are generally those that simply read inputs and produce
outputs without modifying any other state, such as map and stencil patterns. Hence,
these code sections can be safely re-executed without incurring high overhead or side
effects. The recovery module trades-off performance/energy improvements with output
quality and ascertains how many iterations need to be re-executed. They show that
compared to an unchecked approximator, their technique reduces output error signif-
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icantly with only small reduction in energy saving and no reduction in performance
improvement achieved from AC.

Ringenburg et al. [2015] present two offline debugging mechanisms and three online
monitoring mechanisms for approximate programs. Among the offline mechanisms,
the first one identifies correlation between QoR and each approximate operation by
tracking the execution and error frequencies of different code regions over multiple
program executions with varying QoR values. The second mechanism tracks which
approximate operations affect any approximate variable and memory location. This
mechanism is helpful for deciding whether the energy saving from approximation is
large enough to justify the accompanying loss in QoR. The online mechanisms comple-
ment the offline ones and they detect and compensate QoR loss while maintaining the
energy gains of approximation. The first mechanism compares the QoR for precise and
approximate variants of the program for a random subset of executions. This mecha-
nism is useful for programs where QoR can be assessed by sampling a few outputs, but
not for those that require bounding the worst-case errors. The second mechanism uses
programmer-supplied ‘verification functions’ that can check a result with much lower
overhead than computing the result. For example, in video decoding, the similarity
between current and past frames can be used as a check for QoR. The third mecha-
nism stores past inputs and outputs of the checked code and estimates the output for
current execution based on interpolation of the previous executions with similar in-
puts. They show that their offline mechanisms help in effectively identifying the root
of a quality issue instead of merely confirming the existence of an issue and the online
mechanisms help in controlling QoR while maintaining high energy gains.

Mahajan et al. [2015] present a quality-control technique for inexact accelerator-
based platforms. They note that an accelerator may not always provide acceptable
results and hence, blindly invoking the accelerator in all cases leads to quality-loss
and wastage of energy and execution time. They propose a predictor which guesses
whether that invocation of accelerator will lead to unacceptable quality-degradation.
If yes, their technique instead invokes the precise code. The predictor uses only the
information local to a specific accelerator-invocation and hence, does not require main-
taining history information. They study a table-based and an NN-based design for the
predictor and both these designs have a training phase and a runtime phase. For the
table-based design, in the training phase, the index for the table is generated by hash-
ing the accelerator inputs which is used for filling the predictor contents. At runtime,
the prediction table is accessed for a decision and is indexed by hashing the acceler-
ator inputs. Hash collisions are avoided by using a carefully-designed hash function
and employing multiple prediction tables. The neural predictor uses an MLP that is
trained at compile time using a set of representative training input datasets. Using
this, prediction is made at runtime. They show that the neural predictor yields higher
accuracy than the table-based predictor, although both provide similar speedup and
energy saving due to the higher overhead of neural predictor.

3.3. Programming language support for approximate computing
Sampson et al. [2011] propose using type qualifiers for specifying approximate data
and separating precise and approximate portions in the program. For the variables
marked with approximate qualifier, the storage, computing and algorithm constructs
used can all be approximate. Correctness is guaranteed for precise data, while only
“best effort” is promised for the approximate data. Any flow of information from ap-
proximate to precise data needs to be explicitly specified by the programmer. This en-
sures careful handling of approximate data and makes the programming model safe.
It also obviates the need of dynamic checking which reduces the runtime overhead.
For experiments, they assume the programs run on a processor with inexact storage
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and inexact operations, using refresh rate reduction for DRAM main memory, preci-
sion scaling for FP operations and voltage scaling for SRAM data cache, SRAM regis-
ters and functional units. Inexact data are stored in inexact portions of main memory
and cache and in inexact registers and opposite is true for precise data. Also, inexact
functional units perform operations on inexact data. They demonstrate their approach
using an extension to Java and show that it saves large amount of energy with small
accuracy loss.

Yazdanbakhsh et al. [2015a] present annotations for providing suitable syntax and
semantics for approximate HW design and reuse in Verilog. They allow the designer
to specify both critical (precise) and approximable portions of the design. For example,
relax(arg) can be used to implicitly approximate arg while restrict(arg) specifies
that any design element affecting arg must be precise, unless specifically declared re-
laxable by relax annotation. Their approach allows reuse of approximate modules in
different designs having different accuracy requirements without requiring reimple-
mentation. For this, they provide annotations that delineate which outputs have ap-
proximate semantics and which inputs cannot be driven by approximate wires unless
annotated explicitly. They also use relaxability inference analysis (RIA) which provides
formal safety guarantee of accurately identifying approximable circuit elements based
on designer’s annotations. RIA begins with annotated wires and iteratively traverses
the circuit for identifying the wires that must have precise semantics. All the remain-
ing wires can be approximated and the gates that immediately drive these wires can
be approximated in the synthesis. Their approach allows applying approximation in
synthesis process while abstracting away these details from the designer. Their exper-
iments show that concise nature of language annotations and automated RIA enable
their approach to safely approximate even large-scale designs.

Carbin et al. [2013] present a programming language, named Rely, that allows pro-
grammers to reason about quantitative reliability of a program, in contrast with other
approaches (e.g. [Sampson et al. 2011]) that only allow a binary accurate/approximate
distinction for program variables. In the Rely language, quantitative reliability can be
specified for function results, for example, in int<0.99*R(arg)> FUNC(int arg, int
x) code, 0.99*R(arg) specifies that the reliability of return value of FUNC must be at
least 99% of reliability of arg when the function was invoked. Rely programs can run
on a processor with potentially unreliable memory and unreliable logical/arithmetic
operations. The programmer can specify that a variable can be stored in unreliable
memory and/or an unreliable operation (e.g. add) can be performed on the variables.
Integrity of memory access and control flow are maintained by ensuring reliable com-
putations for the corresponding data. By running both error-tolerant programs and
checkable programs (those for which an efficient checker can be used for dynamically
verifying result correctness), they show that Rely allows reasoning about integrity (i.e.
correctness of execution and validity of results) and QoR of the programs.

Misailovic et al. [2014] present a framework for accuracy (defined as difference be-
tween accurate and inexact result) and reliability (defined as probability of obtaining
acceptably accurate result) aware optimization of inexact kernels running on inexact
HW. The user provides accuracy and reliability specifications for the inexact kernels
along with these specifications for individual instructions and memory of the inex-
act HW platform. Their technique models the problem of selecting inexact instructions
and variables allocated in inexact memories using an integer linear program that min-
imizes the energy consumption of the kernel while satisfying reliability/accuracy con-
straints. Their technique finds whether a given instruction can be inexact and whether
a variable can be stored in inexact memory. They also provide a sensitivity profiler
which uses error injection approach to estimate the contribution of a kernel in final
output. They show that by selecting inexact kernel operations for synthesizing inexact
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computations in effective manner, their technique saves significant energy while also
maintaining reliability guarantees.

Ringenburg et al. [2014] present a SW tool for prototyping, profiling and autotun-
ing the quality of programs designed to run on approximate HW. Their tool has three
layers. The “approximation layer” simulates an approximate HW with customizable
energy cost and approximation model. The user can annotate precise and approximate
code regions. Approximation is allowed only in arithmetic operations, comparisons,
and loads from data arrays and not in control flow and memory allocation operations.
The “profiling layer” monitors both efficiency gain from approximation and quality loss,
based on an application-specific QoR-measurement function. The “autotuning layer”
explores the search space of possible approximate/precise decompositions of user code
blocks by using strategies such as selectively marking an approximate code-region in
original code as precise (but never making precise code into approximate code). By pro-
filing alternative configurations, it finds Pareto-optimal frontier of efficiency-quality
tradeoffs. They demonstrate their approach by building a prototype tool in OCaml lan-
guage.

3.4. Using OpenMP-style directives for marking approximable portions
Rahimi et al. [2013] note that timing errors due to static and dynamic variations
(e.g. process variation and voltage variation) necessitate recovery which incurs large
overhead in FP pipelines. They design accuracy-configurable and variation-resilient
FPUs for detecting and correcting online timing errors. They quantify variability of
FP pipeline in terms of the fraction of cycles in which the pipeline sees a timing er-
ror. A SW scheduler ranks the FPUs based on their variability to find the most suit-
able FPUs for the target accuracy. Using OpenMP #pragma directives, approximable
program regions are annotated. At design-time, acceptable error significance and er-
ror rate are identified by profiling program regions. At runtime, based on accurate
or approximate directives, the FPUs are promoted/demoted to accurate/approximate
mode to match program region requirements. In approximate mode, timing errors on
least significant K bits of the fraction are ignored, while in accurate mode, all timing
errors are detected and corrected. This approach avoids the cost of timing error cor-
rection for inexact program regions if the error rate is below an application-specific
threshold. They show that their technique maintains acceptable quality loss in error-
tolerant applications and reduces recovery overhead in error-intolerant applications,
while providing significant energy saving in both types of applications.

Vassiliadis et al. [2015] present a programming model and runtime system for AC.
In their technique, depending on the impact of a task on the final output quality, a pro-
grammer can express its significance using #pragma compiler directives. The program-
mer can also optionally provide a low-overhead inexact version of a task. Further, the
acceptable quality loss is specified in terms of fraction of tasks to be executed precisely.
Based on it, the runtime system employs inexact versions of less-important tasks or
drops them completely. They show that their technique provides significant energy
and performance gains compared to both fully-accurate execution and loop perforation
techniques.

4. STRATEGIES FOR APPROXIMATION
Once approximable variables and operations have been identified, they can be approx-
imated using a variety of strategies, such as reducing their precision, skipping tasks,
memory accesses or some iterations of a loop, performing an operation on inexact hard-
ware, etc. Table IV summarizes the strategies used for approximation. Note that the
ideas used in these strategies are not mutually exclusive. We now discuss these strate-
gies, in context of the ACTs where they are used.
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Table IV. Some approximation strategies used in different works

Classification References
Precision scaling [Anam et al. 2013; Chippa et al. 2013, 2014; Düben et al. 2015; Hsiao et al. 2013;

Keramidas et al. 2015; Lopes et al. 2009; Raha et al. 2015; Rahimi et al. 2013;
Sampson et al. 2011; Shim et al. 2004; Tian et al. 2015; Venkataramani et al.
2013; Yeh et al. 2007; Zhang et al. 2015]

Loop perforation [Baek and Chilimbi 2010; Chippa et al. 2013, 2014; Samadi and Mahlke 2014; Shi
et al. 2015; Sidiroglou et al. 2011]

Load value ap-
proximation

[Miguel et al. 2014; Sutherland et al. 2015; Yazdanbakhsh et al. 2015b]

Memoization [Alvarez et al. 2005; Keramidas et al. 2015; Rahimi et al. 2013, 2015; Ringenburg
et al. 2015; Samadi et al. 2014; Yeh et al. 2007]

Task drop-
ping/skipping

[Byna et al. 2010; Chakradhar and Raghunathan 2010; Goiri et al. 2015; Raha
et al. 2015; Samadi et al. 2013; Sidiroglou et al. 2011; Vassiliadis et al. 2015]

Memory access
skipping

[Samadi et al. 2013; Yazdanbakhsh et al. 2015b; Zhang et al. 2015]

Data sampling [Ansel et al. 2011; Goiri et al. 2015; Samadi et al. 2014]
Using program
versions of differ-
ent accuracy

[Ansel et al. 2011; Baek and Chilimbi 2010; Goiri et al. 2015; Vassiliadis et al.
2015]

Using inexact or
faulty HW

[Carbin et al. 2013; Chakradhar and Raghunathan 2010; Chippa et al. 2013; Du
et al. 2014; Ganapathy et al. 2015; Gupta et al. 2011; Hegde and Shanbhag 1999;
Kahng and Kang 2012; Kulkarni et al. 2011; Misailovic et al. 2014; Rahimi et al.
2013; Sampson et al. 2011; Shoushtari et al. 2015; Varatkar and Shanbhag 2008;
Xu and Huang 2015; Yeh et al. 2007; Yetim et al. 2013; Zhang et al. 2014, 2015]

Voltage scaling [Chippa et al. 2014; Esmaeilzadeh et al. 2012a; Gupta et al. 2011; Hegde and
Shanbhag 1999; Rahimi et al. 2015; Sampson et al. 2011; Shim et al. 2004;
Shoushtari et al. 2015; Varatkar and Shanbhag 2008; Venkataramani et al. 2013]

Refresh rate re-
duction

[Cho et al. 2014; Liu et al. 2012]

Inexact
reads/writes

[Fang et al. 2012; Ranjan et al. 2015]

Reducing diver-
gence in GPU

[Grigorian and Reinman 2015; Sartori and Kumar 2013]

Lossy compres-
sion

[Samadi et al. 2013; Yetim et al. 2013]

Use of neural net-
work

[Amant et al. 2014; Du et al. 2014; Eldridge et al. 2014; Esmaeilzadeh et al. 2012b;
Grigorian et al. 2015; Grigorian and Reinman 2014, 2015; Khudia et al. 2015; Li
et al. 2015; Mahajan et al. 2015; McAfee and Olukotun 2015; Moreau et al. 2015;
Sampson et al. 2015; Venkataramani et al. 2015, 2014; Zhang et al. 2015]

.

4.1. Using precision scaling
Several ACTs work by changing the precision (bit-width) of input or intermediate
operands to reduce storage/computing requirements.

Yeh et al. [2007] propose dynamic precision scaling for improving efficiency of
physics-based animation. Their technique finds the minimum precision required by
performing profiling at the design time. At runtime, the energy difference between
consecutive simulation steps is measured and compared with a threshold to detect
whether the simulation is becoming unstable. In case of instability, the precision is
restored to the maximum and as simulation stabilizes, the precision is progressively
reduced until it reaches the minimum value. They show that precision reduction pro-
vides three optimization opportunities. First, it can turn an FP operation into a trivial
operation (e.g. multiplication by one), which would not require use of an FPU. Second,
it increases the locality between similar items in similar scenes and between itera-
tions during constraint relaxation. Thus, precision reduction combines close values to
a single value which increases the coverage of memoization technique and even allows
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using lookup table for performing FP multiply and add operations. Third, precision
scaling allows use of smaller and faster FPUs for several computations. Based on this,
they propose a hierarchical FPU architecture where a simple core-local FPU is used
at L1 level and full precision FPUs are shared at L2 level to save area for allowing
more cores to be added. An operation which requires higher precision than that pro-
vided by L1 FPU is executed in the L2 FPU. They show that their technique improves
performance and energy efficiency compared to a baseline without FPU sharing.

Tian et al. [2015] present a technique for scaling precision of off-chip data accesses
for saving energy. They apply their technique to mixed-model based clustering prob-
lem, which requires accessing large amount of off-chip data. They note that in a clus-
tering algorithm, a functional error happens only when a sample is assigned to a wrong
cluster. Based on it, the precision can be lowered as long as the relative distances be-
tween clusters and samples are still in correct order, so that no functional error hap-
pens. Further, since clustering algorithm works in iterative manner, samples can be
relabeled in later iterations and thus, by using higher precision in those iterations,
correctness can be ensured. Based on it, their technique selects the precision in each
iteration depending on when a functional error will begin manifesting and how many
functional errors can be tolerated by the application. Based on the precision, the mem-
ory controller decides the bit-width of data to be fetched from off-chip memory. Since
use of approximation can lead to fluctuation in membership, on detecting such a sit-
uation, their technique increases the precision of data. To facilitate fetching the most
significant bits, the data in off-chip memory is organized in a manner that the bits of
same significance in different words are placed together. They show that compared to
fully precise off-chip access, their technique saves significant energy with negligible
loss in accuracy.

4.2. Using loop perforation
Some techniques use loop perforation approach which works by skipping some itera-
tions of a loop to reduce computational overhead.

Sidiroglou et al. [2011] identify several global computational patterns which work
well with loop perforation, such as Monte Carlo simulation, iterative refinement and
search space enumeration. For example, in search space enumeration, perforated com-
putation skips some items and returns one of the remaining items from the search
space. For exploring performance vs. accuracy tradeoff, they study two algorithms.
The first algorithm exhaustively explores all combinations of tunable loops (those loops
whose perforation produces efficient and still acceptable computations) at given per-
foration rates (i.e. fraction of iterations to skip) on all training inputs. The combina-
tions producing error are discarded and those which are Pareto-optimal in performance
and accuracy are selected. The second algorithm works on a greedy strategy. It uses
a heuristic metric for prioritizing loop/perforation rate pairs and seeks to maximize
performance within an accuracy loss bound. They show the performance advantage
of their technique, along with its capability to allow performance-accuracy tradeoff
exploration.

4.3. Using load value approximation
On a load miss in a cache, the data must be fetched from the next level cache or main
memory which incurs large latency. Load value approximation (LVA) leverages ap-
proximable nature of applications to estimate load values and thus, allow processor to
progress without stalling for a response. This hides the cache miss latency. We now
discuss some LVA-based techniques.

Miguel et al. [2014] present an LVA technique for graphics applications. Compared to
the traditional load value predictors, where a block needs to be fetched on every cache
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miss to confirm correctness of prediction, their technique fetches the blocks occasion-
ally just to train the approximator. Thus, fetching a cache block on each cache miss is
not required and this reduces the memory accesses significantly. Further, since graph-
ics applications can tolerate errors, if the values estimated by LVA does not match
the exact value, rollbacks are not required. Their technique uses confidence estima-
tion to make approximations only when the accuracy of approximator is reasonably
high. Also, the error-tolerance property allows approximating for higher number of
loads than that in traditional predictors. They show that with negligible degradation
in output quality, their technique provides significant speedup and energy saving.

Yazdanbakhsh et al. [2015b] present an ACT for offsetting both latency and BW
constraints in GPUs and CPUs. Based on programmer’s code annotations, loads that
do not deal with memory accesses and control flow are identified. Of these, the loads
that cause largest fraction of misses are selected. By individually approximating each
of these loads, their impact on quality is measured and the loads leading to smaller
degradation than a threshold are selected for approximation. When these loads miss
in the cache, the requested values are predicted. However, no check for misprediction
or recovery is performed which avoids pipeline flush overheads. Also, a fraction of cache
misses are dropped for mitigating BW bottleneck, which is especially helpful in GPUs.
Removal of the cache-missing loads from critical program path avoids long memory
stalls and by controlling the drop rate, a balance between quality and efficiency is
obtained. Every data request in a GPU is a SIMD load which produces values for
multiple concurrent threads. Since predicting value for each thread separately incurs
large overhead, they leverage the value similarity across accesses in adjacent threads
to design a multi-value predictor that has only two parallel specialized predictors, one
for threads 0 to 15 and another for threads 16 to 31. Use of special strategies for GPU
environment such as use of a multi-value predictor distinguishes their technique from
that of Miguel et al. [2014]. They show that their technique improves performance and
energy efficiency with bounded QoR loss in both GPU and CPU.

Sutherland et al. [2015] use LVA strategy to reduce the memory stalls in GPUs.
Their ACT uses the texture HW to generate inexact values which obviates the need
of fetching exact values from global memory. The texture fetch units lying between
threads and texture cache (TC) are capable of interpolating between multiple neigh-
boring cache entries. Using this interpolation feature, their technique uses FP data as
indices for TC. Based on the observation that spatially or temporally correlated data
also shows strong value locality, they use the difference (delta) between two succes-
sively read global memory values for making approximation. Thus, the approximate
value is obtained as the sum of last exact value and delta approximation retrieved from
TC. The delta approximations are pre-loaded in TC based on analysis of data access
patterns of every thread in the training dataset. For generating these delta values with
training set, they store last K values read from global memory in a buffer. On a mem-
ory access, they record the delta between two most recent elements in the buffer, along
with the delta between the most recent buffer entry and the value returned from the
memory access. They show that their technique improves performance with negligible
quality loss and is suited for a wide range of data-intensive applications.

4.4. Using memoization
Memoization approach works by storing the results of functions for later reuse with
identical function/input. By reusing the results for similar functions/inputs, the scope
of memoization can be enhanced at the cost of possible approximation. This approach
is used by several ACTs.

Rahimi et al. [2013] note that SIMD architecture exposes the value locality of a
parallel program to all its lanes. Based on this, they propose a technique which reuses
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the result of an instruction across different parallel lanes of the SIMD architecture to
reduce their high timing error recovery overhead. Thus, their technique uses spatial
memoization, as opposed to temporal memoization exploited by other techniques. Their
technique memoizes the result of an error-free execution on a data item and reuses
the memoized result to correct, either precisely or approximately, an errant execution
on same or adjacent data items. Precise correction happens when the inputs of the
instructions being compared match bit-by-bit, while approximate correction happens
when inputs match only after masking a certain number of least significant fraction
bits. Their SIMD architecture consists of a single strong lane and multiple weak lanes.
The result of an exact FP instruction on a strong lane is memoized and is reused in case
any weak lane sees an error. Thus, by leveraging instruction reuse, their technique
avoids timing recovery for a large fraction of errant instructions, while keeping the
quality loss due to approximation within bounds.

Keramidas et al. [2015] note that modern graphics applications perform high-
precision computations and hence, memoizing the outcomes of a few instructions does
not provide sufficient opportunities of value reuse. They propose using “approximate”
value reuse for increasing the amount of successful value reuses. For this, a value
cache is used which performs partial matches by reducing the accuracy of input pa-
rameters. They use approximation in fragment shaders which compute the final color
value of the pixel using arithmetic operations and texture fetches. They note that re-
laxing the precision of arithmetic operations leads to negligible effect on perceptual
quality, while doing this in texture fetches leads to significance impact on output since
texture coordinates are indices into an array. For this reason, the precision of arith-
metic operations can be reduced more aggressively than that of texture fetches (e.g
dropping 12 bits vs 4 bits). To maximize value reuse at runtime, they propose policies
that reduce the precision of value cache progressively and monitor the resulting error.
If a predefined number of errors have been detected, the precision of value cache is
increased again. They show that their technique reduces the operations executed with
negligible perceptual quality loss.

4.5. Skipping tasks and memory accesses
Several ACTs selectively skip memory references, tasks or input portions to achieve
efficiency with bounded QoR loss.

Samadi et al. [2014] present a SW-based ACT which works by identifying common
patterns in data-parallel programs and using a specific approximation strategy for
each pattern. They study approximation in six patterns which are suitable for execu-
tion on multi/many-core architectures, (e.g. CPU and GPU) and are found in a wide
range of applications. For scatter/gather and map patterns, they use memoization
whereby computations are substituted by memory accesses. For reduction patterns,
sampling is used whereby output is computed by applying reduction on a subset of
data. For scan patterns, the actual scan is performed on only a subset of input array
based on which the result is predicted for the remaining array. For stencil and parti-
tion patterns, neighboring locations in input array generally have similar values and
based on this, an approximate version of array is constructed by replicating a subset of
values in the array. Based on a data-parallel kernel implemented in CUDA or OpenCL,
their technique creates an approximate kernel version that is tuned at runtime to ex-
ercise a tradeoff between performance and quality based on user’s QoR specification.
Thus, their technique enables the user to write programs once and run them on multi-
ple hardware platforms without manual code optimization. They show that compared
to precise execution, their technique achieves significant performance gains with ac-
ceptable quality loss.
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Goiri et al. [2015] present general mechanisms for approximating MapReduce
framework. They use approximation strategies that are applicable for several MapRe-
duce applications, viz. input data sampling (i.e. processing only subset of data), task
dropping (i.e. executing a fraction of tasks) and utilizing user-supplied approximate
task code. They also use statistical theories to bound errors when approximating ap-
plications that employ aggregation reduce and extreme value reduce operations. They
show the implementation of their technique in Hadoop framework. They provide ap-
proximate classes which can be used by the programmer in place of regular Hadoop
classes. These classes perform approximation, collect information for error estimation,
perform reduce operation, predict final values and their confidence intervals and out-
put the results. As the job runs, their technique decides task dropping and/or data
sampling ratios to meet user-specified error bounds at a particular confidence level.
Alternatively, the user can specify these ratios himself and then, their technique com-
putes the error bounds. They show that their technique allows trading accuracy for
improving performance and energy saving.

4.6. Using multiple inexact program versions
We now discuss some ACTs which utilize multiple versions of application code with
different tradeoff between accuracy and overhead.

Samadi et al. [2013] present an ACT for GPUs which allows trading off perfor-
mance with accuracy based on the user-specified metric. Their technique works in two
phases. In offline compilation phase, a static compiler is used to create multiple ver-
sions of CUDA kernels with varying accuracy levels. In the run-time kernel manage-
ment phase, a greedy algorithm is used to adjust parameters of approximate kernels
for finding configurations that provide high performance and quality to meet the de-
sired quality target. Use of greedy algorithm avoids evaluation of all the kernels and
thus, reduces the cost. To create approximate kernels, their technique uses three GPU-
hardware specific optimization approaches. In the first optimization, those atomic op-
erations (used in kernels that write to a shared variable) are selectively skipped which
cause frequent conflicts and hence, lead to poor performance on thread serialization.
Thus, atomic operations that lead to mostly serial execution are eliminated and those
with little or no conflicts are left untouched. In the second optimization, number of bits
used to store input arrays are decreased to reduce the number of high-latency mem-
ory operations. In the third optimization, thread computations are selectively avoided
by fusing adjacent threads into one and replicating one thread’s output. Only threads
that do not share data are candidates for fusion. To account for the runtime change
in behavior of approximate kernels, periodic calibration is performed by running both
the exact and approximate kernels on the GPU. Based on the output quality and per-
formance, the kernel configuration is updated to maintain a desired level of quality.

Baek and Chilimbi [2010] present a programming model framework which approxi-
mates functions and loops in a program and provides statistical guarantees of meeting
user-specified QoS target. The user provides one or more approximate versions of the
function and the loops are approximated using loop perforation. Loss in QoS is mea-
sured by either a user-provided function or measuring difference in return value of the
precise and approximate function versions. In training phase, their technique uses the
training input dataset to build a model for correlating performance and energy effi-
ciency improvement from approximation to the resultant QoS loss. In the operational
phase, approximation decisions are made based on this model and the user-specified
QoS target. Since the difference in training inputs and actual inputs affects the accu-
racy of the model, their technique periodically measures the QoS loss seen at runtime
and updates the approximation decision logic in order to provide statistical guarantees
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for meeting the QoS target. They show that their technique provides performance and
energy gains with small and bounded QoS loss.

4.7. Using inexact or faulty hardware
In this section, we first discuss design of a few inexact circuits and then discuss some
ACTs which allow use of inexact/faulty circuits at architecture level.

Kahng and Kang [2012] present the design of an inexact adder. For an N -bit inexact
adder, (N/k - 1) sub-adders (each of which is a 2k-bit adder) are used to perform partial
summations. The inexact adder avoids the carry chain to reduce critical-path delay and
this can be used to improve performance and/or energy efficiency. When a carry input
needs to be propagated to the result, the output of all (except the last) sub-adders
becomes incorrect. With increasing k value, the probability of correct result increases
but the dynamic power consumption and minimum clock period of the inexact adder
also increase. Thus, by changing the value of k, the accuracy of the inexact adder can
be controlled.

Kulkarni et al. [2011] present the design of an inexact 2x2 multiplier which repre-
sents the multiplication of 310 ∗ 310 with 710, instead of 910. In other words, 112 ∗ 112
is represented with 1112 instead of 10012 which uses three bits instead of four. For
remaining 15 input combinations, the multiplier provides correct output. Thus, while
still providing a correct output for 15 out of 16 input combinations, their inexact mul-
tiplier reduces the area by half compared to the exact multiplier, and leads to shorter
and faster critical path. By adding the shifted partial products from 2x2 block, arbitrar-
ily large multipliers can be built. By choosing between accurate and inexact versions
of 2x2 block in a large multiplier, a tradeoff between error rate and power saving can
be achieved. Further, for error-intolerant applications, they enhance their multiplier
to detect the error magnitude and add it to the inexact output to produce the correct
output.

Venkataramani et al. [2012] present an approach for designing general inexact cir-
cuits based on register transfer level (RTL) specification of the circuit and QoR met-
ric (such as relative error). Their technique uses a quality function which determines
whether a circuit meets the QoR requirement. Based on this, the input values can be
found for which the quality function is insensitive to an output of inexact circuit. By
leveraging these approximation don’t cares, logic which generates that output can be
simplified using conventional don’t care based synthesis approaches. Their technique
iteratively performs such analysis for each output bit of inexact circuit and after each
iteration, the inexact circuit setup is updated to account for latest changes. They also
discuss strategies for speeding up their technique which allows its use for large cir-
cuits. They show that their technique can approximate both simple (e.g., adders, mul-
tipliers) and complex (e.g., discrete cosine transform, butterfly structure, FIR filter)
circuits while providing area and energy advantages.

Ganapathy et al. [2015] present a technique for minimizing the magnitude of er-
rors when using unreliable memories, which is in contrast to the ECC technique that
actually corrects the errors. On each write, the data-word is circularly shifted for stor-
ing the least-significant-bits in the faulty cells of the memory. This skews the errors
towards low order bits which reduces the magnitude of output error. To strike a bal-
ance between quality and performance/energy/area, their technique allows adapting
the granularity of bit-shuffling. They show that compared to using ECC, their tech-
nique achieves significant improvement in latency, power and area. Also, use of their
technique allows tolerating limited number of faults, which reduces the manufacturing
cost compared to the conventional zero-failure yield constraint.

Yetim et al. [2013] study the minimum error protection required from microarchi-
tecture for mitigating control, memory-addressing and I/O access faults for enabling
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approximate execution on a faulty processor. They use a macro instruction sequencer
(MIS), a memory fence unit (MFU) and streamed I/O approach and all these seek to
constrain execution depending on profiling information from the application. Based on
the observation that a single-threaded streaming application can be logically divided
into coarse-grained chunks of computations, MIS constrains the control flow by lim-
iting the allowed number of operations per chunk and by storing information about
possible or legal series of chunks. The MFU checks whether accesses lie within the
legal address range prescribed for a given chunk or instruction. For an out-of-range
read/write access, MFU either skips the memory instruction or references a dummy
location to silence the fault. For an out-of-range fetch from instruction memory, silenc-
ing the instruction does not work since it can advance the program counter to a yet
another illegal instruction. Instead, for such faults, MFU indicates the MIS to end the
current chunk and start recovery from a known point. Streamed I/O approach allows
only fixed-size streamed read/write operations and also limits the I/O operation count
allowed per chunk or file. Bounding I/O to sequential access in this manner restricts
the error-prone processor from accessing arbitrary addresses or data structures in the
file system. They show that even with reasonably frequent errors in video and audio
applications, their technique still provides good output quality and avoids crashes and
hangs.

4.8. Using voltage scaling
Voltage scaling reduces energy consumption of circuits at the cost of possible errors
[Mittal 2015; Mittal and Vetter 2015]. For example, reducing SRAM supply voltage
saves leakage energy but also increases probability of read upset (flipping of a bit
during read operation) and write failure (writing a wrong bit) [Sampson et al. 2011].
Several ACTs use voltage scaling while accounting for these tradeoffs.

Chippa et al. [2014] present an ACT that uses approximation at multiple levels of
abstraction. For example, for k-means clustering, at algorithm level, early termination
and convergence-based pruning are used. The former strategy, instead of terminating
on full convergence, stops when the number of points changing clusters in successive
iterations falls below a threshold. The latter strategy considers the points, that have
not changed their clusters for a predefined number of iterations, as converged and
eliminates them from further computations. At architecture level, both input and in-
termediate variables are represented and operated upon with scaled precision. This
leaves some bit slices in the data path unutilized which are power-gated for saving
energy. Alternatively, multiple data can be packed in the same word and a single HW
can process them simultaneously. At circuit level, voltage overscaling is used, with-
out scaling the clock frequency. The adder circuit is segmented into adders of smaller
bit-width. Based on voltage scaling, carry propagation across segmentation points is
adaptively controlled and errors due to ignored carry values are reduced by using a
low-cost correction circuit. They show that their approach provides significant energy
saving with minor QoR loss and using approximation across the levels provides much
larger improvement than using approximation only at a single level.

Rahimi et al. [2015] present an ACT for saving energy in GPUs. With each FPU in
the GPU, they use a storage module composed of a ternary content addressable mem-
ory (TCAM) and a ReRAM block. Based on profiling, frequent redundant computations
are identified in the GPU kernels and these are stored in the module. Reusing these
values avoids later re-execution by FPU and thus, this module performs a part of the
functionality of the FPU. Further, under voltage overscaling, the error pattern of the
module remains controllable, for instance, on reducing the voltage from 1V to 0.725V,
the Hamming distance between an input (query) item and a computation stored in
the module still remains 0, 1 or 2. For error-resilient GPU applications, this approach
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saves energy while still providing acceptable quality. Further, error-free storage of sign
and exponent bits can be ensured by always using high voltage for them.

4.9. Reducing branch divergence in SIMD architectures
On SIMD architectures, multiple threads executing the same set of instructions can di-
verge on a branch instruction (e.g., ‘if-else’, ‘for/while loops’). Some works seek to limit
or avoid such divergence which improves performance but introduces approximation.

Grigorian and Reinman [2015] present a technique for addressing branch diver-
gence issue on SIMD architectures. By characterizing the data-dependent control flow
present in application, they identify the kernels responsible for highest performance
loss due to branch divergence. Then, NNs are trained in offline manner to approximate
these kernels. Afterwards, the NNs are injected into the code itself by substituting
the kernels. This entirely avoids the divergence problem by removing the control-flow
based code, at the cost of quality loss. Direct code modification obviates the need of
costly HW modifications. They also provide a software framework for automating the
entire technique and optimizations specific to different divergence patterns. Their ex-
periments over GPU using several divergent applications show that their technique
provides energy and performance gains with minor quality loss.

Sartori and Kumar [2013] present two techniques, namely data herding and branch
herding for reducing memory and control divergence in error-resilient GPU applica-
tions. In GPUs, a load instruction for a warp that creates requests for multiple mem-
ory regions leads to memory divergence. Memory coalescing finds the unique memory
requests for satisfying individual scalar loads of a vector load instruction and multiple
scalar loads in a warp are coalesced into one request only if they access consecutive
addresses. Un-coalesced loads lead to divergence and BW wastage. To address this,
their data herding technique finds the most popular memory block to which the major-
ity of loads are mapped and then, maps all loads to that block. For implementing this,
the number of loads coalescing into every potential memory request are compared and
then, except the most popular block, requests for all other blocks are discarded. Con-
trol divergence happens when different threads of a warp have different outcome while
evaluating Boolean condition for a branch. Branch herding addresses this by finding
the outcome of majority of threads and then forcing all the threads to follow this out-
come. They also propose a compiler framework and static analysis for avoiding data
and control errors. They show that their techniques improve performance significantly
with acceptable and controlled quality loss.

4.10. Use of neural network based accelerators
Neural networks (NNs) expose significant parallelism and they can be efficiently ac-
celerated by dedicated hardware (NPU) to gain performance/energy benefits. We now
discuss ACTs which work by mapping approximable code regions to NNs.

Esmaeilzadeh et al. [2012b] present an ACT which works by learning how an ap-
proximable code region works. In their programming model, programmers identify ap-
proximable imperative code regions. Then, an algorithmic program transformation is
used which selects and trains an NN to mimic such code regions. Based on this learned
model, the compiler replaces the original code with an invocation of low-power NPU.
Their technique adds ISA extensions to configure and invoke the NPU. By virtue of
automatically discovering and training NNs which are effective in approximating im-
perative codes, their technique extends applicability of NNs to a broad range of appli-
cations. Their experimental results confirm the performance and energy advantage of
their technique.

McAfee and Olukotun [2015] present a SW-only approach for emulating and accel-
erating applications using NNs. Based on the programming language of Ansel et al.
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[2011], their technique generates hierarchical application structure, e.g., an 8×8 ma-
trix can be decomposed into multiple 4×4 or 2×2 matrices. During compilation, their
technique searches the subtask space of the application and generates a set of hierar-
chical task graphs which represents application’s functionality at varying resolution
levels. Then, using a greedy approach, their technique chooses the subtasks to approx-
imate along with the granularity of approximation, such that performance is maxi-
mized with minimal error. The emulation model is constantly updated using denoising
autoencoders, so that the model may suit the current input well. Instead of modeling
the entire application with a single complex NN, their technique emulates the appli-
cation using multiple 2-layer linear NNs. NNs benefit greatly from highly-optimized
vector libraries and facilitate learning the model instead of requiring explicit program-
ming by the user, which reduces the design cost. They show that with bounded error,
their technique achieves large speedup over precise computation.

Eldridge et al. [2014] propose MLP NN-based accelerators for approximating FP
transcendental functions, viz. cos, sin, exp, log and pow. They use a 3-stage inter-
nal neuron pipeline for multiplication of weight-inputs and accumulation. They train
NN-based accelerator on limited input range (e.g. [0, π/4] for sin function) and then
use mathematical identities to compute function value for any input value. They show
that compared to the conventional glibc (GNU C library) implementation, their im-
plementation provides two orders of magnitude improvement in energy-delay-product
with negligible loss in accuracy. They also build a SW library for invoking these accel-
erators from any application and show its use for PARSEC benchmark suite.

Amant et al. [2014] present a technique for accelerating approximable code regions
using limited-precision analog hardware through NN approach. Using an algorith-
mic transformation, their technique automatically converts approximable code regions
from a von Neumann representation to an ‘analog’ neural representation. Use of ana-
log approach requires addressing challenges related to noise, circuit imprecision, lim-
ited accuracy of computation, limited range of encoded values, limitations on feasible
NN topologies, etc. To address these, they propose solutions at different layers of com-
puting stack. At circuit-level, a mixed-signal neural HW is used for multilayer percep-
trons. The programmer marks approximable code regions using code annotations. The
compiler mimics approximable code regions with an NN that can be executed on the
mixed-signal neural HW. The error due to limited analog range is reduced by using a
continuous-discrete learning method. Also, analog execution is kept limited to a single
neuron and communication between neurons happens in digital domain. Limited ana-
log range also restricts the bit weights used by neurons and number of inputs to them.
To reduce errors due to topology restrictions, a resilient backpropagation training al-
gorithm is used, instead of conventional backpropagation algorithm. They show that
their technique leads to improved performance and energy efficiency.

Li et al. [2015] propose a framework which uses ReRAM-based AC unit (ACU) to
accelerate approximate computations. The ACU is based on HW implementation of
a 3-layer NN. Conceptually, the NN approximator performs matrix-vector multiplica-
tion of network weights and input variations and sigmoid activation function. Of these,
they map matrix-vector multiplication to ReRAM crossbar array and realize the sig-
moid function using an NMOS/PMOS circuit [Li et al. 2015]. Several such ACUs are
used together to perform algebraic calculus and achieve high performance. Digital sig-
nals are converted into analog signals for processing by ACUs and their outputs are
again converted into digital format for further processing. For each task, these ACUs
need to be trained and this is achieved by adjusting the network weights. Then, these
weights are mapped to suitable conductance states of ReRAM devices in the crossbar
arrays and the ReRAM devices are programmed to these states. They note that several
complex tasks that require thousands of cycles in x86-64 architecture can be performed
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in few cycles using the ACU. They experiments show that their framework improves
performance and power efficiency with acceptable quality loss.

4.11. Approximating neural networks
Based on the observation that NNs are typically used in error-tolerant applications
and are resilient to many of their constituent computations, some researchers propose
techniques to approximate them.

Venkataramani et al. [2014] present a technique for transforming a given NN into
approximate NN (AxNN) for allowing energy-efficient implementation. They use back-
propagation technique, which is used for training NNs, to quantify the impact of ap-
proximating any neuron to the overall quality. Afterwards, the neurons which have
least impact on network quality are replaced by their approximate versions to create
an AxNN. By modulating the input-precision and neuron-weights, different approxi-
mate versions are created which allow trading-off energy for accuracy. Since training
is by itself an error-healing process, after creating AxNN, they progressively retrain
the network while using approximations to recover the quality loss due to AC. Thus,
retraining allows further approximation for the same output quality. They also pro-
pose a neuromorphic processing engine for executing AxNNs with any weights, topolo-
gies and degrees of approximation. This programmable hardware platform uses neural
computation units and activation function units to together execute AxNNs and exer-
cise precision-energy tradeoff at runtime.

Zhang et al. [2015] present a technique for approximating NNs. They define a neu-
ron as critical (or resilient, respectively) if small perturbation on its computation leads
to large (or small) degradation in final output quality. They present a theoretical ap-
proach for finding criticality factor of neurons in each output and hidden layer after the
weights have been found in the training phase. The least critical neurons are candi-
dates for approximation. However, due to the tight inter-connection between neurons,
the criticality ranking changes after approximation of each neuron. Hence, they use
an iterative procedure, whereby the neurons for approximation are selected based on
the quality budget. With successive iterations (i.e. moving towards convergence), the
quality budget reduces and hence, the number of neurons selected in each iteration
also reduces. In addition to finding the number of neurons, their technique also finds
the amount of approximation performed (using three strategies viz. precision scaling,
memory access skipping and approximate multiplier circuits), by selecting a configu-
ration which provides largest energy saving for a given quality loss.

Du et al. [2014] propose design of an inexact HW NN accelerator based on the ob-
servation that NNs allow re-training using which the impact of neurons producing the
largest amount of error can be suppressed. They assume a 2-layer feed-forward NN
composed primarily of circuits for multiplying synaptic weight and neuron output and
for adding the neuron inputs. Given the large number of possible ways of approximat-
ing NNs, they consider strategies for finding fruitful inexact configurations. Given the
small HW cost of adders, approximating them only yields marginal returns and hence,
they introduce approximation in synaptic weight multipliers only. Further, the output
layer of an NN generally has small number of neurons and since there is no synaptic
weight after these neurons, lowering the errors in these neurons through retraining
is difficult. Hence, they introduce approximation in synaptic weight multipliers of the
hidden layers only. They show that for applications that use HW NN accelerators, us-
ing their inexact NN accelerator provides significant saving in area, delay and energy.

5. APPROXIMATE COMPUTING IN VARIOUS DEVICES AND COMPONENTS
Different memory technologies, processor components and processing units offer dif-
ferent tradeoffs, and design of effective ACTs requires accounting for their properties
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and tradeoffs. Hence, Table V classifies different ACTs based on these factors. This ta-
ble also organizes the ACTs based on their optimization target, which highlights that
AC allows a designer to optimize multiple metrics of interest at the cost of a small loss
in QoR. A few techniques perform power-gating of non-critical or faulty HW for saving
energy and this has also been highlighted in Table V.

Table V. A classification based on processing unit, processor component, memory technology and optimization
objective

Classification References
Memory technology

NVM Flash [Xu and Huang 2015], PCM [Fang et al. 2012; Sampson et al. 2013], STT-
RAM [Ranjan et al. 2015], ReRAM [Li et al. 2015; Rahimi et al. 2015]

DRAM/eDRAM [Cho et al. 2014; Liu et al. 2012; Sampson et al. 2011]
SRAM [Esmaeilzadeh et al. 2012a; Ganapathy et al. 2015; Sampson et al. 2011;

Shoushtari et al. 2015]
Processor Component

Cache [Düben et al. 2015; Esmaeilzadeh et al. 2012a; Keramidas et al. 2015; Misailovic
et al. 2014; Sampson et al. 2011; Shoushtari et al. 2015; Sutherland et al. 2015]

Main memory [Carbin et al. 2013; Düben et al. 2015; Liu et al. 2012; Misailovic et al. 2014; Samp-
son et al. 2011, 2013]

Secondary storage [Sampson et al. 2013; Xu and Huang 2015]
Functional unit [Carbin et al. 2013; Esmaeilzadeh et al. 2012a; Misailovic et al. 2014; Ringenburg

et al. 2014; Sampson et al. 2011]
Floating point unit [Rahimi et al. 2013; Yeh et al. 2007]
Scratchpad [Ranjan et al. 2015]

Processing unit or accelerator
GPU [Byna et al. 2010; Grigorian and Reinman 2015; Hsiao et al. 2013; Keramidas et al.

2015; Rahimi et al. 2013, 2015; Samadi et al. 2014, 2013; Samadi and Mahlke 2014;
Sartori and Kumar 2013; Sutherland et al. 2015; Yazdanbakhsh et al. 2015b; Zhang
et al. 2014]

FPGA [Lopes et al. 2009; Moreau et al. 2015; Sampson et al. 2015]
ASIC [Grigorian et al. 2015]
CPU Nearly all others

Study/optimization objective and approach
Energy saving [Amant et al. 2014; Anam et al. 2013; Baek and Chilimbi 2010; Chakradhar and

Raghunathan 2010; Chippa et al. 2014; Du et al. 2014; Düben et al. 2015; El-
dridge et al. 2014; Esmaeilzadeh et al. 2012a,b; Fang et al. 2012; Ganapathy et al.
2015; Goiri et al. 2015; Grigorian and Reinman 2015; Gupta et al. 2011; Hegde
and Shanbhag 1999; Hsiao et al. 2013; Kahng and Kang 2012; Khudia et al. 2015;
Kulkarni et al. 2011; Li et al. 2015; Liu et al. 2012; Mahajan et al. 2015; Miguel
et al. 2014; Moreau et al. 2015; Raha et al. 2015; Rahimi et al. 2015, 2013; Ranjan
et al. 2015; Ringenburg et al. 2015; Sampson et al. 2015, 2011, 2013; Shim et al.
2004; Shoushtari et al. 2015; Tian et al. 2015; Varatkar and Shanbhag 2008; Vas-
siliadis et al. 2015; Venkataramani et al. 2013, 2015, 2014, 2012; Xu and Huang
2015; Yazdanbakhsh et al. 2015a,b; Yeh et al. 2007; Zhang et al. 2014, 2015]

Performance [Amant et al. 2014; Anam et al. 2013; Ansel et al. 2011; Baek and Chilimbi 2010;
Byna et al. 2010; Chakradhar and Raghunathan 2010; Du et al. 2014; Eldridge
et al. 2014; Esmaeilzadeh et al. 2012b; Ganapathy et al. 2015; Goiri et al. 2015;
Grigorian and Reinman 2015; Kahng and Kang 2012; Li et al. 2015; Mahajan et al.
2015; McAfee and Olukotun 2015; Miguel et al. 2014; Moreau et al. 2015; Rahimi
et al. 2013; Samadi et al. 2014, 2013; Sampson et al. 2015, 2013; Sartori and Kumar
2013; Shi et al. 2015; Sidiroglou et al. 2011; Sutherland et al. 2015; Vassiliadis et al.
2015; Xu and Huang 2015; Yazdanbakhsh et al. 2015b; Yeh et al. 2007]

NVM lifetime [Fang et al. 2012; Sampson et al. 2013]
Lowering error cor-
rection overhead

[Ganapathy et al. 2015; Rahimi et al. 2013; Shi et al. 2015; Xu and Huang 2015]

Power/clock-gating [Chippa et al. 2014; Esmaeilzadeh et al. 2012a; Shoushtari et al. 2015; Venkatara-
mani et al. 2013]
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It is also noteworthy that different research works have used different evaluation
platforms/approaches, such as simulators (e.g. [Miguel et al. 2014; Sampson et al.
2013]), analytical models [Düben et al. 2015], actual CPU [Sampson et al. 2015], GPU
[Samadi et al. 2013] and FPGA [Moreau et al. 2015; Sampson et al. 2015]. Further,
as for search/optimization heuristics, researchers have used greedy algorithm [McAfee
and Olukotun 2015; Ringenburg et al. 2014; Samadi et al. 2013; Sidiroglou et al. 2011;
Zhang et al. 2015], divide and conquer [Venkataramani et al. 2012], gradient descent
search [Ranjan et al. 2015], genetic algorithm [Ansel et al. 2011] and integer linear
programming [Misailovic et al. 2014]. In what follows, we briefly discuss several ACTs.

Different memory technologies have different limitations, e.g., SRAM and (e)DRAM
consume high leakage and refresh power, respectively and NVMs have high write en-
ergy/latency and low write endurance [Mittal et al. 2015; Vetter and Mittal 2015]. To
reduce energy consumption of these memories and improve lifetime of NVMs, approx-
imate storage techniques sacrifice data integrity, by reducing supply voltage in SRAM
(Section 5.1) and refresh rate in (e)DRAM (Section 5.2) and by relaxing read/write
operation in NVMs (Section 5.3).

5.1. Approximating SRAM memory
Shoushtari et al. [2015] present an ACT for saving cache energy in error-tolerant appli-
cations. They assume that in a cache, some ways are fault-free (due to use of suitable
voltage and ECC), while other ways (called relaxed ways) may have faults due to use of
lower supply voltage (Vdd). A cache block with more than a threshold (say K) number
of faulty-bits is disabled and power-gated. Thus, the values of Vdd and K together de-
cide the active portion of the cache and by selecting their values, a designer can relax
guard-bands for most of the cache ways while bounding the overall application error.
They assume that the software programmer identifies non-critical data structures us-
ing suitable annotations and the virtual addresses for them are kept in a table. On a
cache miss, if the missed data block is non-critical, a victim block is selected from the
relaxed ways. A critical data-item is always stored in a fault-free block. Thus, voltage
scaling and power-gating lead to leakage energy saving and quality loss is kept small
by approximating only the non-critical data.

5.2. Approximating eDRAM and DRAM memories
Cho et al. [2014] present a technique for saving refresh energy in eDRAM-based frame
buffers in video applications. They note that a change in higher-order bits of video data
is more easily detected by the human eye than the change in lower-order bits, although
completely discarding the lower-order bits makes the video lossy. Based on this, their
technique trades off pixel data accuracy for saving energy in frame buffers. The mem-
ory array is divided into different segments, each of which can be refreshed at different
periods. The pixel bits are arranged at a sub-pixel granularity and the highest-order
bits of a pixel are allocated to the most reliable memory segment. Further, based on
application characteristics and user preference, the number of segments and their re-
fresh rates can be changed. They show that their technique saves significant refresh
power, without incurring loss in visual perception quality of the video.

Liu et al. [2012] use a SW-based ACT for saving refresh power in DRAM memo-
ries. In their technique, the programmer identifies critical and non-critical data. At
runtime, these data are allocated in different memory modules. The critical data are
refreshed at regular rates, while the non-critical data are refreshed at much lower
rate. Their results show that their technique saves significant refresh energy and by
virtue of introducing errors in only non-critical data, the degradation in application
quality is kept small.
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5.3. Approximating non-volatile memories
Ranjan et al. [2015] present a technique for exploring quality-energy tradeoff in STT-
RAM, which introduces small probability of errors in read/write operations for gaining
large improvements in energy efficiency. They use three mechanisms for approxima-
tion, (1) lowering the current used to sense (read) the bit-cells which increases prob-
ability of erroneous reads (2) lowering the sensing duration and simultaneously in-
creasing the read current which increases odds of flipping the bit-cells on a read and
(3) lowering either write duration or write current or both which may lead to occa-
sional unsuccessful writes. Using these mechanisms, they design an adaptive-quality
memory array where reads/writes can be performed at different quality-levels using
additional peripheral circuits that can adjust the read/write duration and current mag-
nitude. To control the numerical significance of errors, along with error probability,
their technique allows specifying error-probability for different groups of bits. Using a
device-level simulator, they study the trade-off between quality and bit-cell level en-
ergy consumption. Further, they evaluate this memory array as a scratchpad for a
vector processor [Venkataramani et al. 2013] (refer Section 5.4) and utilize gradient
descent search for determining minimum quality for each load/store instruction such
that overall energy is minimized for a given output quality.

Sampson et al. [2013] present two ACTs for improving lifetime, density and per-
formance of NVMs in error-tolerant applications. The density of MLC NVM increases
with rising number of levels, although this also reduces the access speed of the memory
due to the need of iterative programming. Their first technique reduces the number of
programming pulses used to write the MLC memory. This can improve performance
and energy efficiency for a given MLC memory at the cost of approximate writes. Alter-
natively, this can be used to improve density for a fixed power budget or performance
target. Their second technique improves memory lifetime by storing approximate data
in those blocks that have exhausted their hardware error correction resources. Also,
for reducing the effect of failed bits on final result, higher priority is given to correction
of higher-order bits, compared to lower-order bits. They show that approximate writes
in MLC PCM are much faster than precise writes and using faulty blocks improves the
lifetime with bounded quality loss.

Fang et al. [2012] propose a technique for reducing number of writes to PCM by
utilizing error-tolerance property of video applications. When the new data to be writ-
ten are same as the existing stored data, their technique cancels the write operation
and takes the existing data themselves as the new data. While incurring only negligi-
ble reduction in video quality, their technique provides significant energy saving and
lifetime improvement of the PCM-based memory.

We now discuss ACTs designed for different processor components (Section 5.4) and
processing units, such as GPU (Section 5.5) and FPGA (Section 5.6), which take into
account their architecture, operation characteristics and criticality.

5.4. Using approximation in various processor components
In general-purpose cores, control units such as instruction fetch, decode, retire, etc.
consume a large fraction of energy and since control operations are not easily ap-
proximable, general-purpose cores present limited opportunity of approximation. To
address this, Venkataramani et al. [2013] present a quality-programmable processor
(QPP), which allows specifying the desired quality (or accuracy) in the ISA itself and
thus, allows AC to be applied to larger portions of the application. The microarchi-
tecture of QPP leverages instruction-level quality specification for saving energy. Fur-
ther, the actual error incurred in every instruction execution is exposed to the soft-
ware, based on which quality specification for upcoming instructions is modulated.
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Their QPP features three different types of processing elements viz. APE, MAPE and
CAPE, which refers to approximate-, mixed accuracy- and completely accurate- pro-
cessing elements, respectively. APEs perform vector-vector reduction operations which
are commonly found in error-tolerant applications. MAPEs perform both control and
arithmetic operations and CAPEs perform operations related to control flow. These
3 elements provide different levels of quality vs. energy trade-offs by using precision
scaling with error monitoring and compensation. They show that QPP saves signifi-
cant amount of energy while incurring little loss in accuracy.

Esmaeilzadeh et al. [2012a] present extensions to ISA and corresponding microar-
chitecture for mapping AC to hardware. Their ISA provides approximate versions of
all FP and integer arithmetic and bitwise operation instructions provided by the orig-
inal ISA. These instructions do not provide formal guarantee of accuracy, but only
carry informal expectation of inexact adherence to the behavior of original instruction.
They also define approximation granularity for setting the precision of cache memory.
They logically divide the microarchitectural components into two groups: data move-
ment/processing components (e.g. cache, register file, functional unit, load-store queue
etc.) and instruction control components (those dealing with fetching, decoding etc. of
instructions). The data-movement components are approximated only for approximate
instructions, using lower supply voltage for such memory structures (e.g. cache) and
logic, which saves energy at the cost of timing errors. By comparison, instruction con-
trol components are supplied with normal supply voltage for precise operation which
avoids catastrophic events (e.g. crashes) due to control flow violation. Their experi-
ments show that their approach provides larger energy savings in in-order cores than
in out-of-order cores, which is due to the fact that instruction control components con-
tribute a much larger fraction of total energy in out-of-order cores than in in-order
cores and their approach saves energy in only data movement components.

5.5. Approximate computing techniques for GPUs
Hsiao et al. [2013] note that reducing the precision of FP representation and using the
fixed-point representation are two commonly used strategies for reducing energy con-
sumption of a GPU shader. Of these, reduced-precision FP provides wider numerical
range but also consumes higher latency and energy and opposite is true for fixed-point
representation. They propose an automatic technique which intelligently chooses be-
tween these two strategies. Their technique performs runtime profiling to record preci-
sion information and determine feasible precisions for both fragment and vertex shad-
ing. Then both the above mentioned rendering strategies are evaluated with selected
precisions to find the more energy efficient strategy for the current application. Finally,
the winning strategy with its precision is used for the successive frames, except that
memory access related and other critical operations are executed in full-precision FP.
They show that their technique provides higher energy saving and quality than using
either strategy alone.

Zhang et al. [2014] note that FPU and special function units are used only in
arithmetic operations (and not in control/memory operations) and they contribute a
large fraction of GPU power consumption. Thus, using inexact HW for them can pro-
vide large energy saving at bounded quality loss without affecting correctness. Based
on this, their technique uses linear approximation within reduced range for func-
tions such as square root, reciprocal, log, FP multiplication and division, for exam-
ple, y = 1/

√
x is approximated as y = 2.08 − 1.1911x in the range x ∈ [0.5, 1]. They

build the functional models of inexact HW and import them in a GPU simulator which
can also model GPU power consumption. In the simulator, each inexact HW unit can
be activated or deactivated and their parameters can be tuned. They first obtain the
reference (exact) output and then run a functional simulation with inexact units to
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obtain the inexact output. By comparing the reference and inexact output using an ap-
plication specific metric, the quality loss is estimated. If the loss exceeds a threshold,
then either an inexact unit is disabled or its parameters are adjusted, depending on
the program-specific error sensitivity characterization. The simulation is performed
again with updated configuration and this process is repeated until the quality loss
becomes lower than the threshold. They show that their technique allows exercising
tradeoff between quality and system power and provides large power savings for sev-
eral compute-intensive GPU programs.

Byna et al. [2010] present an ACT for accelerating supervised semantic indexing
(SSI) algorithm which is used for organizing unstructured text repositories. Due to
the data dependencies between the iterations of SSI, parallelism can only be exploited
within individual iterations and hence, for small datasets, GPU implementation of SSI
does not fully utilize the GPU HW resources. They note that SSI is an error-tolerant
algorithm and the spatial locality of writes between different iterations of SSI is low,
(i.e. these iterations rarely update the same part of the model). Also, after some initial
iterations, only few iterations perform any updates. Using these properties, dependen-
cies between iterations can be intelligently relaxed, and then multiple iterations can
be run in parallel. Also, non-critical computation is avoided, e.g. processing of common
words, such as “a”, “of”, “the” etc. are avoided since it does not affect the accuracy.
They show that their technique improves performance compared to both a baseline
GPU implementation and a multi-core CPU implementation.

5.6. Approximate computing techniques for FPGAs
Moreau et al. [2015] present a technique for neural acceleration of approximable codes
on a programmable SoC (system on chip), viz. an FPGA. Their technique can be used
as either high-level mechanism where approximable codes are offloaded to FPGA us-
ing compiler, or at low-level where experienced programmers can exercise fine-grained
control using instruction-level interface. Since use of programmable logic such as an
FPGA faces the challenges of large communication latency between CPU and FPGA
and large differences in their speeds, they propose ‘throughput-oriented’ operation of
an FPGA-based accelerator, such that invocations of NNs are grouped and sent to-
gether to the FPGA-based accelerator. Thus, the accelerator does not block program
execution since numerous invocations keep the accelerator busy and individual in-
vocations need not complete immediately. While other works (e.g. [Amant et al. 2014;
Esmaeilzadeh et al. 2012b]) implement NPU in fully custom logic and integrate it with
host CPU pipeline, their technique implements NPU in an off-the-shelf FPGA, with-
out closely integrating it with CPU. This avoids changes to ISA of the processor and
enables using neural acceleration in devices which are already available commercially.
Instead of configuring the programmable logic (FPGA), their technique configures the
NN topology and weights themselves. Thus, while requiring expertise much lower than
that required for programming FPGAs and even using high-level synthesis tools, their
technique can accelerate a broad range of applications. Their experiments show that
their approach provides speedup and energy saving with bounded degradation of QoR.

Lopes et al. [2009] note that for achieving a desired final QoR with iterative solvers,
a user can lower the precision of intermediate computations and run more iterations
or vice versa, as opposed to direct solvers, where final QoR depends only on the preci-
sion of intermediate computations. On FPGA, for a fixed area constraint, lowering the
precision of iterative solver allows greater parallelism. Based on this, they present an
ACT for accelerating solution of a system of linear equations on an FPGA. They plot
the variation of computation time and iteration-count (for convergence) with different
mantissa widths. From these two plots, the optimum mantissa-width (i.e. precision)
which minimizes the computation time for a desired QoR is found. Thus, by balancing
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the operation precision and iteration count, they achieve large performance improve-
ment over a double-precision implementation, while achieving the same final QoR.

5.7. Using scalable effort design for approximate computing
In several cases, the level of effort required for performing different tasks of an appli-
cation may be different. Several ACTs use this feature to tune the effort expended on
a per-task basis.

Grigorian et al. [2015] present a technique which uses both precise and NN-based
approximate accelerators, while enforcing accuracy constraints using error analysis.
The execution starts with computationally-easier approximations, continues onto more
complex ones and ends with a precise computation. After each stage (except the last
one), application-specific light-weight checks (LWCs) (refer Section 3.2) are performed
to measure output quality. The tasks with acceptable output quality are committed
and only remaining tasks go to the next stage. Most tasks are expected to be commit-
ted in early stages, and this reduces the overall overhead. Further, by choosing the
LWCs suitably, user-specified accuracy can be achieved at runtime. NN models allow
training for different functionality without the need to modify topology which obviates
the need of design flexibility provided by FPGAs, and hence, they implement all the ac-
celerators in digital ASIC technology. They show that compared to using either precise
accelerators alone or software-based computation, their technique provides significant
energy and performance advantage.

Venkataramani et al. [2015] present a technique for improving energy efficiency of
supervised machine learning classifiers. They note that in real-world datasets, differ-
ent inputs demand different classification efforts and only a small fraction of inputs
need full computational capability of the classifier. Using this, their technique allows
dynamically tuning the computational efforts based on difficulty of input data. They
use a chain of classifiers with increasing complexity and classification accuracy. Each
stage in the chain has multiple biased classifiers which can detect a single class with
high precision. Depending on the consensus between outputs of different classifiers,
confidence in a classification is judged, based on which the decision to terminate at a
stage is taken. Thus, only hard inputs go through multiple stages, while simpler inputs
get processed in only few stages. Classifiers of different complexity and accuracy are
created by modulating their algorithm parameters, e.g. neuron and layer count in an
NN, etc. Their technique also allows trading off the number of states, their complex-
ity and input-fraction classified at every stage to optimize the overall classification
efforts. They show that their technique reduces number of operations per input and
energy consumption of the classification process.

5.8. Reducing error-correction overhead using approximate computing
Conventional error-correction mechanisms such as redundant execution and use of
ECC incur high overhead [Mittal and Vetter 2015]. Some ACTs leverage error-
tolerance property of applications to reduce this overhead.

Shi et al. [2015] present a technique for trading application accuracy with soft-error
resilience overhead, while achieving 100% soft-error coverage. The programmer iden-
tifies the non-critical code such as perforable loops and based on this, redundant ex-
ecution for soft-error protection is applied only to the critical code. When redundant
execution is turned off for the non-critical code, low-overhead resilience mechanisms,
such as checking of store instructions by HW-level redundant address calculation, are
used for ensuring application correctness. Due to soft-errors, results of certain itera-
tions in a perforable loop may have to be dropped in the worst case, this, however, only
affects accuracy and not correctness. For a multicore processor, resilience is indepen-
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dently modulated for each core. They show that their technique reduces the perfor-
mance overhead of resilience.

Xu and Huang [2015] leverage error-tolerance capability of data-centric applications
for reducing ECC overhead in Flash-based SSDs. Using error-injection experiments,
they show that different data have different impact on output quality and their appli-
cations can tolerate much higher error rate than that targeted by Flash SSDs. They
design a framework for monitoring and estimating soft error rates of Flash SSD at
runtime. Based on the error rate of the SSD obtained from this framework and the
error-rate which can be tolerated by the application, their technique dynamically low-
ers the ECC protection or avoids using ECC altogether. They show that their approach
provides significant performance and energy efficiency gains with acceptable QoR.

6. APPLICATION AREAS OF APPROXIMATE COMPUTING
To show the spectrum of application of AC, Table VI roughly classifies the tech-
niques based on their application/workload domain. Note that these categories are not
mutually-exclusive and may include others as subcategories. Of the benchmark suites,
PARSEC (e.g. [Sidiroglou et al. 2011]), SciMark (e.g. [Sampson et al. 2011]), Medi-
aBench (e.g. [Liu et al. 2012]), PhysicsBench (e.g. [Yeh et al. 2007]), UCI machine-
learning repository (e.g. [Du et al. 2014]), Caltech 101 computer vision dataset (e.g.
[Rahimi et al. 2015]), SPEC benchmark (e.g. [Roy et al. 2014]), MiBench (e.g. [Roy
et al. 2014]), etc. have been frequently utilized. These domains and benchmark suites
find application in or represent many other real-life problems also, such as robotics, ar-
tificial intelligence, fluid dynamics etc., and this clearly shows the growing importance
of AC.

7. CONCLUSION AND FUTURE CHALLENGES
In this paper, we surveyed the techniques proposed for approximate computing. We
highlighted the opportunities and obstacles in use of AC and then organized the tech-
niques in several groups to provide a bird’s eye view of the research field. We conclude
this paper with a brief mention of challenges that lie ahead in this field.

Most existing ACTs have focused on multimedia applications and iterative algo-
rithms. However, these error-resilient workloads comprise only a fraction of the com-
putational workloads. As these ‘low-hanging fruits’ gradually vanish, researchers will
now have to turn their attention to general-purpose applications and thus, extend the
scope of AC to entire spectrum of computing applications.

Several large-scale software of today have been written in conventional languages
which assume precise operations and storage. Facilitating development of code that
fully exploits the inexact hardware and approximation strategies while also meeting
quality expectations requires a powerful and yet, intuitive and simple programming
language. Significant work is required to transform today’s research-stage program-
ming frameworks for AC into mature and robust code development platforms of to-
morrow.

Using approximation in a single processor component alone can have unforeseen ef-
fect on the operation of other components and is likely to lead to erroneous or myopic
conclusions. Going forward, a comprehensive evaluation of effect of AC on entire sys-
tem and use of AC in multiple components is definitely required. Further, since exist-
ing systems use several management schemes such as data compression, prefetching,
dynamic voltage/frequency scaling, etc., ensuring synergy of ACTs with these schemes
is important for smooth integration of AC in commercial systems.

As the quest for performance confronts the resource constraints, major break-
throughs in computing efficiency are expected to come from unconventional ap-
proaches. We hope for a promising near future where approximate computing helps
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Table VI. A classification based on research fields, frameworks or applications where AC is used

Classification References
Image process-
ing or multime-
dia

[Amant et al. 2014; Ansel et al. 2011; Baek and Chilimbi 2010; Chippa et al. 2013;
Cho et al. 2014; Esmaeilzadeh et al. 2012a,b; Fang et al. 2012; Goiri et al. 2015;
Grigorian et al. 2015; Grigorian and Reinman 2014, 2015; Gupta et al. 2011; Hsiao
et al. 2013; Keramidas et al. 2015; Khudia et al. 2015; Kulkarni et al. 2011; Li et al.
2015; Liu et al. 2012; Mahajan et al. 2015; McAfee and Olukotun 2015; Miguel et al.
2014; Misailovic et al. 2014; Mishra et al. 2014; Moreau et al. 2015; Raha et al. 2015;
Rahimi et al. 2013, 2015, 2013; Ringenburg et al. 2015, 2014; Roy et al. 2014; Samadi
et al. 2014, 2013; Samadi and Mahlke 2014; Sampson et al. 2011, 2013; Sartori and
Kumar 2013; Shoushtari et al. 2015; Sidiroglou et al. 2011; Sutherland et al. 2015;
Vassiliadis et al. 2015; Xu and Huang 2015; Yazdanbakhsh et al. 2015a; Yeh et al.
2007; Yetim et al. 2013; Zhang et al. 2014]

Signal process-
ing

[Amant et al. 2014; Esmaeilzadeh et al. 2012a,b; Grigorian and Reinman 2014; Gupta
et al. 2011; Hegde and Shanbhag 1999; Li et al. 2015; McAfee and Olukotun 2015;
Samadi et al. 2014; Varatkar and Shanbhag 2008; Venkataramani et al. 2012; Yaz-
danbakhsh et al. 2015a]

Machine learn-
ing

[Amant et al. 2014; Ansel et al. 2011; Baek and Chilimbi 2010; Chakradhar and
Raghunathan 2010; Chippa et al. 2014; Du et al. 2014; Esmaeilzadeh et al. 2012b;
Goiri et al. 2015; Khudia et al. 2015; Li et al. 2015; Moreau et al. 2015; Raha et al.
2015; Ranjan et al. 2015; Samadi et al. 2014, 2013; Shi et al. 2015; Tian et al. 2015;
Vassiliadis et al. 2015; Venkataramani et al. 2013, 2014; Xu and Huang 2015; Zhang
et al. 2015]

Scientific com-
puting

[Carbin et al. 2013; Eldridge et al. 2014; Esmaeilzadeh et al. 2012a; Grigorian et al.
2015; Grigorian and Reinman 2015; Khudia et al. 2015; McAfee and Olukotun 2015;
Misailovic et al. 2014; Moreau et al. 2015; Ringenburg et al. 2015; Roy et al. 2014;
Sampson et al. 2011, 2013; Xu and Huang 2015; Yazdanbakhsh et al. 2015a]

Financial anal-
ysis

[Amant et al. 2014; Baek and Chilimbi 2010; Grigorian and Reinman 2014, 2015;
Khudia et al. 2015; Mahajan et al. 2015; Miguel et al. 2014; Misailovic et al. 2014;
Moreau et al. 2015; Ringenburg et al. 2015; Samadi et al. 2014; Shi et al. 2015;
Sidiroglou et al. 2011; Zhang et al. 2015]

Database
search

[Baek and Chilimbi 2010; Byna et al. 2010; Chippa et al. 2013; Düben et al. 2015;
Miguel et al. 2014; Sidiroglou et al. 2011; Venkataramani et al. 2013]

MapReduce [Goiri et al. 2015; Xu and Huang 2015]

in continuing the historic trends of performance scaling and becomes the mainstream
computing approach for all classes of processors.
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