
 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

2

Why does Look-ahead work?

Harold Connamacher
*

and Abubaker Abdallah Alguttar
**

Abstract:

This paper examines the behavior of the look-ahead heuristic on

random 3-SAT. A well-known theorem is that DPLL with unit clause

propagation requires exponential time to decide a uniformly random instance

of 3-SAT that has a clause density near the satisfiability threshold. However,

DPLL-based SAT-solvers are using look-ahead to find solutions on instances

with thousands of variables, even at the satisfiability threshold. Slightly away

from the threshold, these look-ahead SAT solvers are finding solutions to

problems with millions of variables. This paper experimentally demonstrates

that look-ahead is exploiting a structure that appears in (relatively) small

instances of random 3-SAT.

Introduction

A well-known property of random 3-SAT, and random k-SAT in

general, is that there exists a phase transition in the clause to variable density.

If the clause density is below what is known as the satisfiability threshold, the

random formula has a satisfiability assignment, with high probability (w.h.p),

but if the density is above the satisfiability threshold the formula w.h.p

unsatisfiability. Let Ωn be a sample space of all problem instances on n

variables, let ɛn be a property, and consider the probability of ɛn in the limit as

n approaches infinity. We say ɛn occurs with high probability (w.h.p.) if

limn→∞ Pr[ɛn] = 1. An equally well-known and rigorously proven property of

random 3-SAT is that simple variation of DPLL will require exponential

*
 Case Western Reserve University, Cleveland, Ohio, United States.

**
 Higher Institute for Science and Technology, Misurata, Libya.

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

3

time, with uniform positive probability (w.u.p.p.)
*
, to decide an uniformly

random formula with a clause density close to the threshold. On the other

hand, state-of-the-art DPLL-based SAT solvers are using technique called

look-ahead, and at densities close to the satisfiability threshold, these look-

ahead algorithms are able to solve uniformly random formulas with

thousands of variables. If we consider formulas with densities slightly away

from the satisfiability threshold, DPLL solves using look-ahead are solving

random 3-SAT problems with millions of variables [1].

 This paper explores the success of look-ahead on random SAT. Look-

ahead is sufficiently different from the DPLL variation about which we are

have theoretical results, and so the theorems are not valid for look-ahead

variants. However, we argue that the intuition behind the DPLL theorems

should still apply to look-ahead, and in particular DPLL with look-ahead

should require exponential time to find a solution for a SAT formula near the

threshold. Our examination of the theory will also reveal a structure that

exists in small instances of random SAT, and we present evidence that look-

ahead is exploiting this structure to run in polynomial time on these small

instances.

 We note that the success of look-ahead for DPLL based SAT solvers

is currently limited to satisfiable formula. Verifying the unsatisfiability of

uniformly random formula with just a few hundred variables is not of reach

for today's state of the art solvers [2].

DPLL [3] is an algorithm framework that forms the basis for most

complete SAT solvers. DPLL iteratively builds an assignment to the SAT

formula by, at each step, choosing an unassigned variable and choosing a

value for the variable. After each variable assignment, DPLL modifies the

SAT instance. If the variable assignment makes literal true, then any clause

containing is now satisfied, and that clause is removed from the instance.

Any clause containing must be satisfied by a different literal in the clause,

*
 We say ɛn occurs with uniform positive probability (w.u.p.p.) if there exists a positive

constant c, independent of n, such that lim infn→∞ Pr[ɛn] = c.

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

4

and that clause is reduced by removing ̅ from the clause. The result of this

modification is a residual formula. If at any iteration of DPLL, the residual

formula contains an empty clause, then all of the literals that were in the

original, unreduced clauses are set to false by DPLL. In this case, we have a

conflict in the partial assignment, and DPLL must backtrack. With DPLL, we

supplement the algorithm framework with heuristics for choosing the next

variable to assign, the value to assign a variable, and how to backtrack once a

conflict is discovered. One common heuristics used with DPLL is unit clause

propagation. If a clause containing a single literal is ever formed, that literal

must be true for the clause to be satisfied, and we gain no benefit if we delay

satisfying this clause propagation, we repeatedly assign variables from unit

clauses remaining in the residual formula.

Look-ahead is a heuristic used to determine the next variable and

value assignment for DPLL. Like DPLL, look-ahead is an algorithm

framework in which there exist many variations. The basic form of the look-

ahead strategy [4] is to take each literal in the current residual formula and

see what would happen if we made that literal true. In one round of look-

ahead, we compute, for each literal in the formula. The residual formula the

results from setting the literal true and applying unit clause propagation, and

we give that residual formula a score based on some metric. The literal

assignment that produces the residual formula with the best score is chosen as

the next variable-value pair assigned by DPLL. Common enhancements to

look-ahead include identifying forced literals (also called frozen variables)

and learning clauses. A forced literal is a literal that must be true in all

satisfying assignments. Look-ahead identifies these literals by identifying

when look-ahead on literal produces a conflict. If such an event occurs ̅

must be true, and we say that the variable of literal is frozen. In clause

learning, If look-ahead on literal forces literal to be true then we can add

the clause (̅,) to be formula.

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

5

Theoretical Background on DPLL

Much of the theoretical work on random SAT was inspired by a

number of experimental studies on the behavior

of DPLL; see e.g. [5,6,7,8,9]. These studies ran DPLL on random 3-SAT

formulas, and the results suggested both an exact, sharp threshold in the

satisfiability of random formulas and that random formulas with clause

density close to the threshold require the most time to decide. Later Friedgut

[10] proved a sharp threshold exists in k-SAT satisfiability, but neither the

location of the threshold nor whether the threshold is constant for all problem

sizes is known. More recently, Ding, Sly, and Sun [11] gave the exact

threshold value for large k, but the location for the 3-SAT threshold is still

open.

For the rest of the paper, we will let n be the number of variables in

the SAT formula and cn the number of clauses. To bound the running time of

DPLL, we separately consider satisfiable and unsatisfiable instances. A well

known observation, first made in Galil [12], is that the running time of DPLL

on an unsatisfiable instance of CNF-SAT is lower bounded by the length of

the shortest resolution proof of unsatisfiability (the resolution complexity).

Chvátal and Szemerédi [13] proved that a random instance of k-SAT, k ≥ 3,

with a linear number of clauses has exponential resolution complexity

(w.h.p.).

To analyze the behavior on satisfiable instances, we note that

until the first contradiction is discovered, the behavior of DPLL is completely

determined by the heuristic DPLL uses to choose the next variable and value

to assign. Two well-studied heuristics for DPLL on random SAT are denoted

Unit Clause (UC) and Generalized Unit Clause (GUC). UC is a variation of

unit clause propagation where, if no unit clause exists, the next variable and

its value is chosen uniformly randomly. GUC denote a variation of the

generalized unit clause or shortest clause heuristics where a clause and a

variable in the clause are chosen uniformly randomly from the shortest

clauses in the formula and the variable is assigned the value that satisfies the

clause.

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

6

We will use DPLL+UC and DPLL+GUC to denote the DPLL

variations that use these heuristics. In two early studies, Chao and Franco

[14] found that if c <

, then UC finds a satisfying assignment (w.u.p.p.),

and Frieze and Suen [15] found that if c < 3.003, GUC finds a

satisfying assignment (w.u.p.p.). UC and GUC are from a class of algorithms

called myopic algorithms in [16]. The key property of myopic algorithms that

permit precise mathematical analysis is that these heuristics only examine

local information and the residual formula produced after each application of

the heuristic is still uniformly random, conditional on the number of clauses

of each size.

The techniques of [14] and [15], simplified in Achlioptas [17], let us

trace the behavior of DPLL+UC and DPLL+GUC, until the first backtrack

occurs, through the space of random SAT instances with a mixture of clause

sizes (w.h.p.). If the trajectory stays in the region of the random formula

space where the 2-clause density is below 1, then the unit clauses can be

handled as soon as they appear (w.u.p.p.). If the trajectory ever leaves this

region, the unit clauses will accumulate, increasing the probability of both ()

and (̅) appearing together as unit clauses. We use (2+p)-SAT [18] to denote

a SAT instance with a mixture of 2- and 3-clauses. This model allows us to

ignore the unit clauses in the trajectory analysis.

Using this trajectory technique, Achlioptas, Beame and Molloy [19]

provided the proof that DPLL requires exponential time (w.u.p.p.) to solve

satisfiable instances that have a clause density below the conjectured

satisfiability threshold. [19] Proves that a uniformly random instance with (1-

ϵ)n 2-clauses and a rn 3-clauses has exponential resolution complexity, for

any positive constant r. If we let r be the least value such that a uniformly

random (2+p)-SAT instance with (1-ϵ) n 2-clauses and rn 3-clauses does not

have a solution (w.h.p.),

[19] Traces the behavior of DPLL+UC and DPLL+GUC backward to find

the original random 3-SAT clause density that will produce this residual

formula. The current best bound for r is (1+ϵ) from Achlioptas and

Menchaca-Mendez [20]. Therefore, DPLL+UC takes exponential time to find

a satisfying assignment for a 3-SAT formula with n variables, cn clauses with

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

7

c ≥ 2.71 (w.u.p.p.). DPLL+GUC takes exponential time if c ≥ 3.1. In both

cases, the DPLL execution will produce a uniformly random residual formula

with (1-ϵ)n' 2-clause and (1+ϵ)n' 3-clauses where n' = Θ(n) (w.u.p.p.), this

residual formula is unsatisfiable (w.h.p.), and DPLL+UC will require

exponential time to recognize this and backtrack out (w.h.p.).

The conjecture [21,22] is that r=

 is the correct threshold separating

satisfiable random (2+p)-SAT instances from unsatisfiable instances. If true,

this will make the bounds of [14] and [15] the threshold between polynomial

and exponential running time for DPLL+UC and DPLL+GUC.

Comparing Look-Ahead with the Theory

The techniques we use in the results above require that the residual

formula produced in each round of DPLL is uniformly random. Because of

this restriction, our proofs are currently limited to DPLL variants in which, at

each step of DPLL, we do not expose much of the formula. We do not have

this limited exposure with look-ahead because a single round of the look-

ahead procedure will expose all of the clauses of the formula.

Despite this limitation, we argue that above theory results still suggest

that look-ahead variants of DPLL will need exponential time to solve random

SAT instances. The theory states that DPLL+UC and DPLL+GUC makes

poor initial choices in the assignments that leads DPL to an unsatisfiable

(2+p)-SAT residual formula. These myopic heuristics are making decisions

based on local information. For look-ahead, even though look-ahead is

testing the result of assigning each variable in the formula, it is still only

examining the local changes those assignments make. We argue below that

for large n the unit clause propagation will only extend a constant distance

from the initial literal. Long range correlations are not being found, and the

current hypothesis is that long range correlations must be examined in order

to avoid the unsatisfiable residual formula that the theory states will require

an exponentially large resolution refutation (w.h.p.). This hypothesis about

long range correlations is not verified for 3-SAT, but it is proven for k-SAT,

k ≥8 [23].

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

8

Our hypothesis is that an unsatisfiable (2+p)-SAT instance will have a

short proof of unsatisfiability if n is small, and even n=1,000,000 is small.

While look-ahead comes in many variants, we hypothesize that the primary

reason for its success is that it is doing a branching process that is able to

identify this short proof of unsatisfiability and prevent DPLL from exploring

the unsatisfiable residual formula. We hypothesize that look-ahead will not

demonstrate speedup over vanilla DPLL when n is large enough that

unsatisfiable random (2+p)-SAT instances require exponential size

refutations (w.h.p.).

There is a theoretical result that may explain the results we are seeing

with look-ahead solvers. The seminal paper Bollobás, Borgs, Chayes, Kim,

and Wilson [24] characterizes the satisfiability threshold for finite instances

random 2-SAT by exploring how assignments to variables propagate through

the clause structure of the formula. A well-known property of 2-SAT is that

we can create a directed graph that has for each clause () of the 2-SAT

formula, the directed edges and ̅ . We state that 1 k if there

exists a directed path , . If ̅ then literal

must be false in any satisfying assignment to the formula, and the variable of

 is frozen. A famous theorem is that a 2-SAT instance is unsatisfiable if and

only there exists a conflict, a literal with ̅ . Bollobás, et al. [24] track

the growth in frozen variables, in the 2-SAT formula as the density of the

formula crosses the satisfiability threshold. Actually examines the spine, The

spine is the number of literals where if we add the literal as a unit clause to

some satisfiable sub formula, the result is unsatisfiable. If the 2-SAT formula

is satisfiable, the size of the spine is exactly the number of frozen variables.

To do so, they use a branching process to calculate the number of literals

forced by a single literal. The forced component of literal is the set

{ . [24] divides the satisfiability threshold into three regions. Given a

2-SAT instance with n variables, if we have (1-ϵ)n 2-clauses, for any ϵ>0, we

are below the satisfiability threshold, there are Θ(1)$ frozen variables, and

the forced components for each literal have size Θ(1) (w.h.p.). If we increase

the number of 2-clauses to (1 - ϵ0n
-1/3

)n, we will be inside the satisfiability

threshold, and here the probability that the formula is satisfiable is bounded

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

01

away from both 0 and 1. Initially, if we have just enough clauses to enter the

satisfiability threshold region, there will be Ω(1) literals that have forced

components with size Θ(n
2/3

) (w.u.p.p.). As we add additional 2-clauses,

adding Θ(n
2/3

) clauses at a time, the probability of satisfiability will transition

from 1 to 0. At first, the additional Θ(n
2/3

) 2-clauses will connect different

forced components into a few giant components. If we then add Θ(n
2/3

) more

2-clauses, w.u.p.p. we will add some clause (̅ ̅) where and are in the

same

giant component. Adding this clause causes all the common parents of and

 in the component to be frozen, and w.u.p.p. this will introduce Θ(n
2/3

)

frozen variables. When we have (1+ϵ)n 2-clauses, we are above the

satisfiability threshold, there are be Θ(n) frozen variables and there will be a

conflict (w.h.p.).

In its basic form, look-ahead sets a literal true and propagates that

assignment. If we consider look-ahead on 2-SAT, this behavior is exactly

modeled by the branching process technique used by [24]. The branching

process of [24] to compute the forced component of a literal in random 2-

SAT is as follows. Initially, the forced component consists of only the literal,

and the literal is in the frontier of the component. At each round, we choose a

literal from the frontier, and for each pair consisting of and any literal

not in the forced component, we flip a coin and with probability p2, (̅) is a

clause of the formula and is added to the forced component. Once all such

pairs have been explored, is removed from the frontier though it stays in

the forced component. The process stops when the frontier becomes empty. If

the 2-SAT formula has c2n clauses, then

p2 =

 (

)

.

The number of literals added to the frontier at round t of the process, also

known as the birthrate of the process, is (2n - s(t))p2, where s(t) is the size of

the forced component at round t, and until s grows sufficiently large, the

birthrate is approximately c2.

We can expand this process for formulas that also contain c3n 3-

clauses. Besides testing each pair , we test each triple where is a

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

00

non-frontier member of the forced component. With probability p3, (̅ ̅) is

a 3-clause of the formula, and is added to the frontier. If the formula has

c3n 3-clauses, p3 =

 (

)

 . On round t of the branching process, the non-

frontier part of the forced component will have size t-1, and the probability

that a literal y is added to the frontier is p2 + (t-1)p3 – O(tn
-3

). The birthrate of

the process is (2n-s(t))(p2 + (t-1)p3 - O(tn
-3

)), and until s grows sufficiently

large this is approximately

c2 +

 c3.

To model look-ahead on a literal as a branching process with birthrate

(1), we require that the residual formula is uniformly random. Consider a

situation where we run DPLL using a myopic heuristic, stopping when we

the 2-clause density is 1-ϵ for any positive ϵ>0, and then apply look-ahead. If

we stopped DPLL after r iterations, the residual formula will have n-r

variables, (1-ϵ)(n-r) 2-clauses and c3(r)(n-r) 3-clauses for some constant

c3(r). If run the branching process at this point, (1) becomes 1-ϵ +

c3(r).

In the limit as n tends to infinity, the birthrate is 1-ϵ. From [24], the branching

process will terminate after a constant number of steps, will not find a

conflict, and will find only a constant number of frozen variables (w.h.p.).

However, if n is small enough and if the constant sized branching process

lasts for a large enough constant t such that

, then the

process will be effectively replaced by a new process with birthrate 1+ . In

[24], such a process will produce a conflict (w.h.p.).

If instead,

 c3 (r) >

 then,

the birthrate will be similar to the branching process of [24] where the

process does not explode, but forced components grow large enough to

discover Θ(n
2/3

) frozen variables, and assigning these frozen variables will

allow us to learn Θ(n
2/3

) new 2-clauses. As detailed in [24], adding Θ(n
2/3

)

random 2-clauses will be enough to generate a conflict.

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

01

The Experimental Evidence

To test our hypothesis, we generated random (2+p)-SAT formulas

around the (2+p)-SAT threshold, and we looked for small proofs of

unsatisfiability (i.e. conflicts) that could be discovered using a branching

process.

We use a b to denote the property that literal a forces literal b.

Consider the following four rules.

 (1) if () is a clause and ̅ then .

 (2a) if () is a clause and ̅ ̅ then .

 (2b) if () is a clause and then ̅ .

 (2c) if () is a clause and ̅ ̅ then ̅ .

To determine all the structural information that can be learned from a

branching process, for each instance we computed a transitive closure using

various combinations of these rules. The transitive closure was calculated

using rule (1) alone (to identify instances where the 2-clauses alone were

unsatisfiable), using rules (1) and (2a) (to simulate running standard look-

ahead with unit clause propagation from each literal in the formula), using

rules (1), (2a), and (2c) (to simulate look-ahead plus clause learning), and

using all four rules (to simulate the maximum a branching process could

discover). We include rule (2b) because (2b) is the contrapositive of (2a), and

it is possible to construct conflict examples that require rule (2b) to discover.

If a conflict was found in the transitive closure, that conflict was the proof of

unsatisfiability, but for instances where applying all four rules could not find

a conflict, we started with a partial assignment made up of the frozen literals

discovered in the transitive closure search and we used DPLL with

generalized unit clause and restarts to search for a satisfying assignment.

For the experiment, we generated random (2+p)-SAT instances on

1000 variables with clause densities around the conjectured (2+p)

satisfiability threshold. These samples will roughly correspond to the residual

formula produced by running DPLL on an 3-SAT instance with between

1100 and 1500 variables. While these instances are several orders of

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

02

magnitude smaller than the satisfiable instances SAT solvers handle in

practice, we chose 1000 variables because we were testing a large number of

instances on standard Apple and Linux desktop machines, and we wanted the

experiment to complete in a few weeks. It was important for our study that

we decide each of the random instances because the most interesting cases

would be those that challenged our hypothesis: formulas that were

unsatisfiable but for which there was no conflict in the transitive closure.

Significantly larger instances were not practical given these computational

limitations. However, 1000 variables is not a trivial study. We note that at

the recent International SAT Competition, no SAT solver was able to solve

all of the satisfiable random 3-SAT instances with fewer than 10,000

variables [1], and we note that 1000 variables is an order of magnitude larger

than the largest unsatisfiable instances modern solvers can prove

unsatisfiable [2]. The program was written in C and the random formulas

were generated using the random() function of stdlib.h.

We generated instances that had between 800 and 1200 2-clauses and

between 600 and 1200 3-clauses. We used a large range of clause densities in

order to test instances on both sides of the conjectured (2+p)-SAT threshold,

since we are dealing with finite instances and 2-SAT has a fairly wide scaling

window [24], we do not expect the point where there is 50% satisfiability to

fall right at the conjectured threshold. Figure below plots the satisfiable and

unsatisfiable instances and demonstrates that our tests did capture both sides

of the threshold.

If our hypothesis is correct, with 1000 variables, we should be able to

find conflicts using the transitive closure in most of the unsatisfiable

instances. In addition, we should find unsatisfiable instances where rules (1)

and (2a) would be sufficient to identify the conflict, and unsatisfiable

instances where we must use rules (1), (2a), and (2c). This is exactly what we

did find. The results of the experiment are as follows. Of the 25,010 instances

in the experiment, 11,525 had conflicts found by the computing the transitive

closure using all four rules. Of those, 4,407 had a conflict in the 2-clauses

alone while the other 7,118 unsatisfiable instances did not. Most importantly,

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

03

in each of the 13,485 instances that did not have a conflict in the transitive

closure, the instance was satisfiable.

Using rules (1), (2a), and (2c), we found a conflict in all but two

unsatisfiable instances. Using only rules (1) and (2a) failed to find conflicts

in 1,308 unsatisfiable instances. The next questions for the research are: for

what size n can we no longer find conflicts using a branching process, how

does look-ahead perform on these sizes, and can we further exploit this

structure to improve our algorithms on ”small” random formula?

The Figure Conflicts in (2+p)-SAT. Each dot corresponds to 10

instances of (2+p)-SAT on 1000 variables. The horizontal axis is the number

of 3-clauses and the vertical axis is the number of 2-clauses. The hue of the

dot indicates the percentage of instances that have conflicts. blue = 0%, green

= 50%, red = 100%.

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

04

References

[1] SAT Competition 2014 -Sequential, Random SAT track Experiment, May

2014. url: satcompetition.org/edacc/sc14/experiment/24/.

[2] A. Balint, A. Belov, M. J. H. Heule, and M. Jarvisalo. Generating the uniform

random benchmarks for SAT competition 2013. In Proceedings of SAT

Competition 2013: Solver and Benchmark Descriptions, pages 97-98, 2013.

[3] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem

proving. Communications of the ACM, 5(7):394-397, 1962.

[4] M. J. H. Heule and H. van Maaren. Look-ahead based SAT solvers. In A.

Biere, M. Heule, H. van Maaren, and T.Walsh, editors, Handbook of

Satisfiability, volume 185 of Frontiers in Artificial Intelligence and

Applications, pages 155-184. IOS Press, 2009.

[5] P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems

are. In Proceedings of the 12th International Joint Conference on Artificial

Intelligence -Volume 1, IJCAI'91, pages 331-337, 1991.

[6] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random

boolean expressions. Science, 264(5163):1297-1232, 1994.

[7] B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfiability

problems. Artificial Intelligence, 81(1-2):17-29, 1996.

[8] J. M. Crawford and L. D. Auton. Experimental results on the crossover point

in random 3-SAT. Artificial Intelligence, 81(1-2):31-57, 1996.

[9] S. Cocco and R. Monasson. Trajectories in phase diagrams, growth processes,

and computational complexity: How search algorithms solve the 3-

satisfiability problem. Physical Review Letters, 86(8):1654-1657, 2001.

[10] E. Friedgut. Sharp thresholds of graph properties, and the k-SAT problem.

Journal of the American Mathematical Society, 12(4):1017-1054, 1999.

[11] J. Ding, A. Sly, and N. Sun. Proof of the satisfiability conjecture for large k.

In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of

Computing, STOC '15, pages 59-68, 2015.

[12] Z. Galil. On the complexity of regular resolution and the Davis-Putnam

procedure. Theoretical Computer Science, 4(1):23-46, 1977.

[13] V. Chvatal and E. Szemeredi. Many hard examples for resolution. Journal of

the ACM, 35(4):759-768, 1988.

 Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 7, Mar. 2017

Published on Web 01/3/2017

 م1027 يوليو, السابعـــ العدد الاولليبيا, المجمد ,المجمة العممية لكمية التربية, جامعة مصراتة

05

[14] M.-T. Chao and J. Franco. Probabilistic analysis of a generalization of the unit

clause literal selection heuristic for the k-satisfiability problem. Information

Science, 51(3):289-314, 1990.

[15] A. Frieze and S. Suen. Analysis of two simple heuristics on a random instance

of k-SAT. Journal of Algorithms, 20(2):312-355, 1996.

[16] D. Achlioptas and G. B. Sorkin. Optimal myopic algorithms for random 3-sat.

In Proceedings of the 41th Annual IEEE Symposium on Foundations of

Computer Science, pages 590-600, 2000.

[17] D. Achlioptas. A survey of lower bounds for random 3-SAT via differential

equations. Theoretical Computer Science, 256(1-2):159-185, 2001.

[18] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky.

Phase transitions and search cost in the 2+p-SAT problem. In 4th Workshop

on Physics and Computation, 1996.

[19] D. Achlioptas, P. Beame, and M. Molloy. Exponential bounds for DPLL

below the satisfiability threshold. In Proceedings of the Fifteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 132-133, 2004.

[20] D. Achlioptas and R. Menchaca-Mendez. Exponential lower bounds for

DPLL algorithms on satisfiable random 3-SAT formulas. In Theory and

Applications of Satisfiability Testing - SAT 2012, Lecture Notes in Computer

Science, pages 327-340. Springer, 2012.

[21] D. Achlioptas, L. M. Kirousis, E. Kranakis, and D. Krizanc. Rigorous results

for random (2+p)-SAT. Theoretical Computer Science, 265(1-2):109-129,

2001.

[22] G. Birioli, R. Monasson, and M. Weight. A variational description of the

ground state structure in random satisfiability problems. European Physical

Journal B, 14:551-568, 2000.

[23] D. Achlioptas and F. Ricci-Tersenghi. On the solution-space geometry of

random constraint satisfaction problems. In Proceedings of the 38th Annual

ACM Symposium on Theory of Computing, pages 130-139, 2006.

[24] B. Bollobas, C. Borgs, J. T. Chayes, J. H. Kim, and D. B. Wilson. The scaling

window of the 2-SAT transition. Random Structures and Algorithms,

18(3):201-256, 2001.

