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Abstract: 
 

This paper examines the behavior of the look-ahead heuristic on 

random 3-SAT. A well-known theorem is that DPLL with unit clause 

propagation requires exponential time to decide a uniformly random instance 

of 3-SAT that has a clause density near the satisfiability threshold. However, 

DPLL-based SAT-solvers are using look-ahead to find solutions on instances 

with thousands of variables, even at the satisfiability threshold. Slightly away 

from the threshold, these look-ahead SAT solvers are finding solutions to 

problems with millions of variables. This paper experimentally demonstrates 

that look-ahead is exploiting a structure that appears in (relatively) small 

instances of random 3-SAT. 

 

Introduction 
 

A well-known property of random 3-SAT, and random k-SAT in 

general, is that there exists a phase transition in the clause to variable density. 

If the clause density is below what is known as the satisfiability threshold, the 

random formula has a satisfiability assignment, with high probability (w.h.p), 

but if the density is above the satisfiability threshold the formula w.h.p 

unsatisfiability. Let Ωn be a sample space of all problem instances on n 

variables, let ɛn be a property, and consider the probability of ɛn in the limit as 

n approaches infinity. We say ɛn occurs with high probability (w.h.p.) if 

limn→∞ Pr[ɛn] = 1. An equally well-known and rigorously proven property of 

random  3-SAT  is that simple variation of  DPLL  will require exponential  
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time, with uniform positive probability (w.u.p.p.)
*
, to decide an uniformly 

random formula with a clause density close to the threshold. On the other 

hand, state-of-the-art DPLL-based SAT solvers are using technique called 

look-ahead, and at densities close to the satisfiability threshold, these look-

ahead algorithms are able to solve uniformly random formulas with 

thousands of variables. If we consider formulas with densities slightly away 

from the satisfiability threshold, DPLL solves using look-ahead are solving 

random 3-SAT problems with millions of variables [1]. 

 This paper explores the success of look-ahead on random SAT. Look-

ahead is sufficiently different from the DPLL variation about which we are 

have theoretical results, and so the theorems are not valid for look-ahead 

variants. However, we argue that the intuition behind the DPLL theorems 

should still apply to look-ahead, and in particular DPLL with look-ahead 

should require exponential time to find a solution for a SAT formula near the 

threshold. Our examination of the theory will also reveal a structure that 

exists in small instances of random SAT, and we present evidence that look-

ahead is exploiting this structure to run in polynomial time on these small 

instances. 

 We note that the success of look-ahead for DPLL based SAT solvers 

is currently limited to satisfiable formula. Verifying the unsatisfiability of 

uniformly random formula with just a few hundred variables is not of reach 

for today's state of the art solvers [2]. 

DPLL [3] is an algorithm framework that forms the basis for most 

complete SAT solvers. DPLL iteratively builds an assignment to the SAT 

formula by, at each step, choosing an unassigned variable and choosing a 

value for the variable. After each variable assignment, DPLL modifies the 

SAT instance. If the variable assignment makes literal   true, then any clause 

containing   is now satisfied, and that clause is removed from the instance. 

Any  clause  containing   must be satisfied by a different literal in the clause,  
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and that clause is reduced by removing  ̅ from the clause. The result of this 

modification is a residual formula. If at any iteration of DPLL, the residual 

formula contains an empty clause, then all of the literals that were in the 

original, unreduced clauses are set to false by DPLL. In this case, we have a 

conflict in the partial assignment, and DPLL must backtrack. With DPLL, we 

supplement the algorithm framework with heuristics for choosing the next 

variable to assign, the value to assign a variable, and how to backtrack once a 

conflict is discovered. One common heuristics used with DPLL is unit clause 

propagation. If a clause containing a single literal is ever formed, that literal 

must be true for the clause to be satisfied, and we gain no benefit if we delay 

satisfying this clause propagation, we repeatedly assign variables from unit 

clauses remaining in the residual formula. 
 

Look-ahead is a heuristic used to determine the next variable and 

value assignment for DPLL. Like DPLL, look-ahead is an algorithm 

framework in which there exist many variations. The basic form of the look-

ahead strategy [4] is to take each literal in the current residual formula and 

see what would happen if we made that literal true. In one round of look-

ahead, we compute, for each literal in the formula. The residual formula the 

results from setting the literal true and applying unit clause propagation, and 

we give that residual formula a score based on some metric. The literal 

assignment that produces the residual formula with the best score is chosen as 

the next variable-value pair assigned by DPLL. Common enhancements to 

look-ahead include identifying forced literals (also called frozen variables) 

and learning clauses. A forced literal is a literal that must be true in all 

satisfying assignments. Look-ahead identifies these literals by identifying 

when look-ahead on literal   produces a conflict. If such an event occurs  ̅ 

must be true, and we say that the variable of literal   is frozen. In clause 

learning, If look-ahead on literal   forces literal   to be true then we can add 

the clause ( ̅, ) to be formula. 
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Theoretical Background on DPLL 

 

Much of the theoretical work on random SAT was inspired by a 

number of experimental studies on the behavior 

of DPLL; see e.g. [5,6,7,8,9]. These studies ran DPLL on random 3-SAT 

formulas, and the results suggested both an exact, sharp threshold in the 

satisfiability of random formulas and that random formulas with clause 

density close to the threshold require the most time to decide. Later Friedgut 

[10] proved a sharp threshold exists in k-SAT satisfiability, but neither the 

location of the threshold nor whether the threshold is constant for all problem 

sizes is known.  More recently, Ding, Sly, and Sun [11] gave the exact 

threshold value for large k, but the location for the 3-SAT threshold is still 

open. 

For the rest of the paper, we will let n be the number of variables in 

the SAT formula and cn the number of clauses. To bound the running time of 

DPLL, we separately consider satisfiable and unsatisfiable instances. A well 

known observation, first made in Galil [12], is that the running time of DPLL 

on an unsatisfiable instance of CNF-SAT is lower bounded by the length of 

the shortest resolution proof of unsatisfiability (the resolution complexity). 

Chvátal and Szemerédi [13] proved that a random instance of k-SAT, k ≥ 3, 

with a linear number of clauses has exponential resolution complexity 

(w.h.p.). 

To analyze the behavior on satisfiable instances, we note that 

until the first contradiction is discovered, the behavior of DPLL is completely 

determined by the heuristic DPLL uses to choose the next variable and value 

to assign. Two well-studied heuristics for DPLL on random SAT are denoted 

Unit Clause (UC) and Generalized Unit Clause (GUC). UC is a variation of 

unit clause propagation where, if no unit clause exists, the next variable and 

its value is chosen uniformly randomly. GUC denote a variation of the 

generalized unit clause or shortest clause heuristics where a clause and a 

variable in the clause are chosen uniformly randomly from the shortest 

clauses in the formula and the variable is assigned the value that satisfies the 

clause. 
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We will use DPLL+UC and DPLL+GUC to denote the DPLL 

variations that use these heuristics.  In two early studies,  Chao  and  Franco  

[14]  found  that if c < 
 

 
, then UC finds a satisfying assignment (w.u.p.p.), 

and Frieze and Suen [15] found that if c < 3.003 . . . . ., GUC finds a 

satisfying assignment (w.u.p.p.). UC and GUC are from a class of algorithms 

called myopic algorithms in [16]. The key property of myopic algorithms that 

permit precise mathematical analysis is that these heuristics only examine 

local information and the residual formula produced after each application of 

the heuristic is still uniformly random, conditional on the number of clauses 

of each size. 

The techniques of [14] and [15], simplified in Achlioptas [17], let us 

trace the behavior of DPLL+UC and DPLL+GUC, until the first backtrack 

occurs, through the space of random SAT instances with a mixture of clause 

sizes (w.h.p.). If the trajectory stays in the region of the random formula 

space where the 2-clause density is below 1, then the unit clauses can be 

handled as soon as they appear (w.u.p.p.).  If the trajectory ever leaves this 

region, the unit clauses will accumulate, increasing the probability of both ( ) 

and ( ̅) appearing together as unit clauses. We use (2+p)-SAT [18] to denote 

a SAT instance with a mixture of 2- and 3-clauses.  This model allows us to 

ignore the unit clauses in the trajectory analysis. 

Using this trajectory technique, Achlioptas, Beame and Molloy [19] 

provided the proof that DPLL requires exponential time (w.u.p.p.) to solve 

satisfiable instances that have a clause density below the conjectured 

satisfiability threshold. [19] Proves that a uniformly random instance with (1-

ϵ)n 2-clauses and a rn 3-clauses has exponential resolution complexity, for 

any positive constant r. If we let r be the least value such that a uniformly 

random (2+p)-SAT instance with (1-ϵ) n 2-clauses and rn  3-clauses does not 

have  a solution  (w.h.p.), 

[19] Traces the behavior of DPLL+UC and DPLL+GUC backward to find 

the original random 3-SAT clause density that will produce this residual 

formula.  The current best bound for r is (1+ϵ) from Achlioptas and 

Menchaca-Mendez [20]. Therefore, DPLL+UC takes exponential time to find 

a satisfying assignment for a 3-SAT formula with n variables, cn clauses with 
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c ≥ 2.71 (w.u.p.p.).  DPLL+GUC takes exponential time if c ≥ 3.1.  In both 

cases, the DPLL execution will produce a uniformly random residual formula 

with (1-ϵ)n' 2-clause and (1+ϵ)n' 3-clauses where n' = Θ(n) (w.u.p.p.), this 

residual formula is unsatisfiable (w.h.p.), and DPLL+UC will require 

exponential time to recognize this and backtrack out (w.h.p.). 

The conjecture [21,22] is that r=
 

 
 is the correct threshold separating 

satisfiable random (2+p)-SAT instances from unsatisfiable instances. If true, 

this will make the bounds of [14] and [15] the threshold between polynomial 

and exponential running time for DPLL+UC and DPLL+GUC. 

 
Comparing Look-Ahead with the Theory 
 

The techniques we use in the results above require that the residual 

formula produced in each round of DPLL is uniformly random.  Because of 

this restriction, our proofs are currently limited to DPLL variants in which, at 

each step of DPLL, we do not expose much of the formula. We do not have 

this limited exposure with look-ahead because a single round of the look-

ahead procedure will expose all of the clauses of the formula. 

Despite this limitation, we argue that above theory results still suggest 

that look-ahead variants of DPLL will need exponential time to solve random 

SAT instances. The theory states that DPLL+UC and DPLL+GUC makes 

poor initial choices in the assignments that leads DPL to an unsatisfiable 

(2+p)-SAT residual formula. These myopic heuristics are making decisions 

based on local information. For look-ahead, even though look-ahead is 

testing the result of assigning each variable in the formula, it is still only 

examining the local changes those assignments make. We argue below that 

for large n the unit clause propagation will only extend a constant distance 

from the initial literal. Long range correlations are not being found, and the 

current hypothesis is that long range correlations must be examined in order 

to avoid the unsatisfiable residual formula that the theory states will require 

an exponentially large resolution refutation (w.h.p.). This hypothesis about 

long range correlations is not verified for 3-SAT, but it is proven for k-SAT, 

k ≥8 [23]. 
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Our hypothesis is that an unsatisfiable (2+p)-SAT instance will have a 

short proof of unsatisfiability if n is small, and even n=1,000,000 is small. 

While look-ahead comes in many variants, we hypothesize that the primary 

reason for its success is that it is doing a branching process that is able to 

identify this short proof of unsatisfiability and prevent DPLL from exploring 

the unsatisfiable residual formula. We hypothesize that look-ahead will not 

demonstrate speedup over vanilla DPLL when n is large enough that 

unsatisfiable random (2+p)-SAT instances require exponential size 

refutations (w.h.p.). 

There is a theoretical result that may explain the results we are seeing 

with look-ahead solvers. The seminal paper Bollobás, Borgs, Chayes, Kim, 

and Wilson [24] characterizes the satisfiability threshold for finite instances 

random 2-SAT by exploring how assignments to variables propagate through 

the clause structure of the formula. A well-known property of 2-SAT is that 

we can create a directed graph that has for each clause (   ) of the 2-SAT 

formula, the directed edges     and  ̅   . We state that  1  k if there 

exists a directed path      ,                  . If    ̅ then literal   

must be false in any satisfying assignment to the formula, and the variable of 

  is frozen. A famous theorem is that a 2-SAT instance is unsatisfiable if and 

only there exists a conflict, a literal   with    ̅  . Bollobás, et al. [24] track 

the growth in frozen variables, in the 2-SAT formula as the density of the 

formula crosses the satisfiability threshold. Actually examines the spine, The 

spine is the number of literals where if we add the literal as a unit clause to 

some satisfiable sub formula, the result is unsatisfiable. If the 2-SAT formula 

is satisfiable, the size of the spine is exactly the number of frozen variables. 

To do so, they use a branching process to calculate the number of literals 

forced by a single literal. The forced component of literal   is the set 

{      . [24] divides the satisfiability threshold into three regions. Given a 

2-SAT instance with n variables, if we have (1-ϵ)n 2-clauses, for any ϵ>0, we 

are below the satisfiability threshold, there are Θ(1)$ frozen variables, and 

the forced components for each literal have size Θ(1) (w.h.p.). If we increase 

the number of 2-clauses to (1 - ϵ0n
-1/3

)n, we will be inside the satisfiability 

threshold, and here the probability that the formula is satisfiable is bounded 
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away from both 0 and 1. Initially, if we have just enough clauses to enter the 

satisfiability threshold region, there will be Ω(1) literals that have forced 

components with size Θ(n
2/3

) (w.u.p.p.). As we add additional 2-clauses, 

adding Θ(n
2/3

) clauses at a time, the probability of satisfiability will transition 

from 1 to 0. At first, the additional Θ(n
2/3

) 2-clauses will connect different 

forced components into a few giant components.  If we then add Θ(n
2/3

) more 

2-clauses, w.u.p.p. we will add some clause ( ̅  ̅) where   and   are in the 

same 

giant component. Adding this clause causes all the common parents of   and 

  in the component to be frozen, and w.u.p.p. this will introduce Θ(n
2/3

) 

frozen variables. When we have (1+ϵ)n 2-clauses, we are above the 

satisfiability threshold, there are be Θ(n) frozen variables and there will be a 

conflict (w.h.p.). 

In its basic form, look-ahead sets a literal true and propagates that 

assignment. If we consider look-ahead on 2-SAT, this behavior is exactly 

modeled by the branching process technique used by [24]. The branching 

process of [24] to compute the forced component of a literal in random 2-

SAT is as follows. Initially, the forced component consists of only the literal, 

and the literal is in the frontier of the component. At each round, we choose a 

literal   from the frontier, and for each pair consisting of   and any literal   

not in the forced component, we flip a coin and with probability p2, ( ̅  ) is a 

clause of the formula and   is added to the forced component.  Once all such 

pairs    have been explored,   is removed from the frontier though it stays in 

the forced component. The process stops when the frontier becomes empty. If 

the 2-SAT formula has c2n clauses, then  

p2 = 
   

 (
 

 
)
 

  

  
. 

The number of literals added to the frontier at round t of the process, also 

known as the birthrate of the process, is (2n - s(t))p2, where s(t) is the size of 

the forced component at round t, and until s grows sufficiently large, the 

birthrate is approximately c2. 

We can expand this process for formulas that also contain c3n 3-

clauses.  Besides testing each pair   , we test each triple     where   is a 
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non-frontier member of the forced component. With probability p3, ( ̅  ̅  ) is 

a 3-clause of the formula, and   is added to the frontier. If the formula has 

c3n 3-clauses, p3 = 
   

 (
 

 
)
   

   

   . On round t of the branching process, the non-

frontier part of the forced component will have size t-1, and the probability 

that a literal y is added to the frontier is p2 + (t-1)p3 – O(tn
-3

). The birthrate of 

the process is (2n-s(t))(p2 + (t-1)p3 - O(tn
-3

)), and until s grows sufficiently 

large this is approximately 

c2 + 
      

  
 c3. 

To model look-ahead on a literal as a branching process with birthrate 

(1), we require that the residual formula is uniformly random. Consider a 

situation where we run DPLL using a myopic heuristic, stopping when we 

the 2-clause density is 1-ϵ for any positive ϵ>0, and then apply look-ahead. If 

we stopped DPLL after r iterations, the residual formula will have n-r 

variables, (1-ϵ)(n-r) 2-clauses and c3(r)(n-r) 3-clauses for some constant 

c3(r). If run the branching process at this point, (1) becomes 1-ϵ + 
      

      
c3(r). 

In the limit as n tends to infinity, the birthrate is 1-ϵ. From [24], the branching 

process will terminate after a constant number of steps, will not find a 

conflict, and will find only a constant number of frozen variables (w.h.p.). 

However, if n is small enough and if the constant sized branching process 

lasts for a large enough constant t such that  
 

 
        

      

   
, then the 

process will be effectively replaced by a new process with birthrate 1+ . In 

[24], such a process will produce a conflict (w.h.p.).  
 

If instead,  
 

 
 c3 (r) > 

                  

   
 then,  

 

the birthrate will be similar to the branching process of [24] where the 

process does not explode, but forced components grow large enough to 

discover Θ(n
2/3

) frozen variables, and assigning these frozen variables will 

allow us to learn Θ(n
2/3

) new 2-clauses. As detailed in [24], adding Θ(n
2/3

) 

random 2-clauses will be enough to generate a conflict. 
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The Experimental Evidence 

 

To test our hypothesis, we generated random (2+p)-SAT formulas 

around the (2+p)-SAT threshold, and we looked for small proofs of 

unsatisfiability (i.e. conflicts) that could be discovered using a branching 

process. 

We use a b to denote the property that literal a forces literal b. 

Consider the following four rules. 

 (1) if (   )    is a clause and    ̅ then    . 

 (2a) if (     ) is a clause and    ̅        ̅ then    . 

 (2b) if (     ) is a clause and             then  ̅  . 

 (2c) if (     ) is a clause and    ̅      ̅   then  ̅  . 

To determine all the structural information that can be learned from a 

branching process, for each instance we computed a transitive closure using 

various combinations of these rules. The transitive closure was calculated 

using rule (1) alone (to identify instances where the 2-clauses alone were 

unsatisfiable), using rules (1) and (2a) (to simulate running standard look-

ahead with unit clause propagation from each literal in the formula), using 

rules (1), (2a), and (2c) (to simulate look-ahead plus clause learning), and 

using all four rules (to simulate the maximum a branching process could 

discover). We include rule (2b) because (2b) is the contrapositive of (2a), and 

it is possible to construct conflict examples that require rule (2b) to discover. 

If a conflict was found in the transitive closure, that conflict was the proof of 

unsatisfiability, but for instances where applying all four rules could not find 

a conflict, we started with a partial assignment made up of the frozen literals 

discovered in the transitive closure search and we used DPLL with 

generalized unit clause and restarts to search for a satisfying assignment.  

For the experiment, we generated random (2+p)-SAT instances on 

1000 variables with clause densities around the conjectured (2+p) 

satisfiability threshold. These samples will roughly correspond to the residual 

formula produced by running DPLL on an 3-SAT instance with between 

1100 and 1500 variables. While these instances are several orders of 
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magnitude smaller than the satisfiable instances SAT solvers handle in 

practice, we chose 1000 variables because we were testing a large number of 

instances on standard Apple and Linux desktop machines, and we wanted the 

experiment to complete in a few weeks. It was important for our study that 

we decide each of the random instances because the most interesting cases 

would be those that challenged our hypothesis: formulas that were 

unsatisfiable but for which there was no conflict in the transitive closure. 

Significantly larger instances were not practical given these computational 

limitations.  However, 1000 variables is not a trivial study. We note that at 

the recent International SAT Competition, no SAT solver was able to solve 

all of the satisfiable random 3-SAT instances with fewer than 10,000 

variables [1], and we note that 1000 variables is an order of magnitude larger 

than the largest unsatisfiable instances modern solvers can prove 

unsatisfiable [2]. The program was written in C and the random formulas 

were generated using the random() function of stdlib.h. 

We generated instances that had between 800 and 1200 2-clauses and 

between 600 and 1200 3-clauses. We used a large range of clause densities in 

order to test instances on both sides of the conjectured (2+p)-SAT threshold, 

since we are dealing with finite instances and 2-SAT has a fairly wide scaling 

window [24], we do not expect the point where there is 50% satisfiability to 

fall right at the conjectured threshold. Figure below plots the satisfiable and 

unsatisfiable instances and demonstrates that our tests did capture both sides 

of the threshold. 

If our hypothesis is correct, with 1000 variables, we should be able to 

find conflicts using the transitive closure in most of the unsatisfiable 

instances. In addition, we should find unsatisfiable instances where rules (1) 

and (2a) would be sufficient to identify the conflict, and unsatisfiable 

instances where we must use rules (1), (2a), and (2c). This is exactly what we 

did find. The results of the experiment are as follows. Of the 25,010 instances 

in the experiment, 11,525 had conflicts found by the computing the transitive 

closure using all four rules. Of those, 4,407 had a conflict in the 2-clauses 

alone while the other 7,118 unsatisfiable instances did not. Most importantly, 
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in each of the 13,485 instances that did not have a conflict in the transitive 

closure, the instance was satisfiable.  

 

 
Using rules (1), (2a), and (2c), we found a conflict in all but two 

unsatisfiable instances. Using only rules (1) and (2a) failed to find conflicts 

in 1,308 unsatisfiable instances. The next questions for the research are: for 

what size n can we no longer find conflicts using a branching process, how 

does look-ahead perform on these sizes, and can we further exploit this 

structure to improve our algorithms on ”small” random formula? 

The Figure Conflicts in (2+p)-SAT. Each dot corresponds to 10 

instances of (2+p)-SAT on 1000 variables. The horizontal axis is the number 

of 3-clauses and the vertical axis is the number of 2-clauses.  The hue of the 

dot indicates the percentage of instances that have conflicts. blue = 0%, green 

= 50%, red = 100%. 
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