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ABSTRACT 

A stochastic model is developed to describe the 

growth of a heterogeneous tumor for adjuvant 

chemotherapy. The mathematical model is a 

quasilinear stochastic partial differential equation 

driven by a space-time white noise. The main feature 

of the model is that it takes into account random 

independent interactions between tumor cells, 

effector cells and anticancer drugs. The paper is 

primarily focused on the proofs of the existence, 

comparison theorem and the uniqueness in law of 

weak solutions to the martingale problem associated 

with the model.  

 

PËRMBLEDHJE 

Ndërtohet një model stokastik që përshkruan rritjen 

e një tumori heterogjen per kimioterapinë ndihmëse. 

Modeli stokastik është një ekuacion kuazilinear me 

derivate të pjesshme i drejtuar  nga një zhurmë e 

bardhë në hapësirë-kohë.Veçoria kryesore e modelit 

është se ai merr parasysh bashkëveprimet e pavarura 

të rastit ndërmjet qelizave tumorale, qelizave të 

sistemit imunitar dhe ilaçeve anticancerozë. Studimi 

ynë është përqëndruar kryesisht në vërtetimet e 

ekzistencës së zgjidhjes, teoremës së krahasimit dhe 

unicitetit në kuptimin e ligjit të shpërndarjes të 

zgjidhjeve të dobta të problemit martingal shoqërues 

të modelit të shqyrtuar. 

 

Key words: Tumor growth, stochastic partial 

differential equation, white noise, weak existence, 
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INTRODUCTION 

Cancer is a multi-step process consequent on the 

breakdown of normal cellular interactions and control 

of replication. We recognize that each cancer 

corresponds to a particular genetic pathway and that 

the behavior of cancer cells is characterized by: 

   • an autonomous and unrestrained growth, 

   • an ability to escape immune surveillance, 

   • an invasion into the surrounding tissue, 

   • a metastatic potential, 

   • an acquired or induced resistance to the drugs 

[6,9,10,12]. 

All these features of cancer cell behavior can be 

explained in terms of genetic changes and the 

functional impact of these changes. Mathematical 

models of the tumor growth have been traditionally 

developed in the framework of continuum mechanics, 

which is based upon the diffusion equation involving 

moving boundary effect, but without taking into 

account tumor – host cell interactions. This topic is 

dealt with by several authors. A new methodological 

approach, based on cellular kinetic theory was 

developed in [2] for modeling on the interactions 

between tumor cells and immune system cells. 

Stochastic models of the tumor growth driven by a 

Wiener process have been investigated in many cases 

[6, 13].  

After reviewing a great amount of publications 

concerning stochastic modeling of tumor growth, we 

conclude that the proposed model is probably the first 

model of tumor growth by stochastic partial 

differential equations, driven by a space-time white 

noise. Resistance to chemotherapy represents a well-

organized barrier to the effective treatment of cancer 

patients. Resistance to adjuvant chemotherapy 

depends on the presence of drug resistant tumor cells. 

Recurrent cancer and metastatic disease often results 

from the outgrowth of tumor cells that are resistant to 

chemotherapy [6, 10]. Resistance to anticancer drug is 

a combined characteristic of a specific drug, a specific 

tumor and specific host. The modeling of drug 

resistance is not without some controversy. Coldman 
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and Goldie [3] state that “the sensitive tumor cells 

have a constant probability for division of acquired 

resistance to a particular drug to a particular dose”, 

but Rosen [19] believes that drug resistance is 

independent on dose. We agree with Coldman and 

Goldie. The present paper deals with the development 

of a quasilinear stochastic model of tumor growth in 

the presence of adjuvant chemotherapy. The paper is 

organized in three sections. After this introduction, 

Section 2 deals with the development of the 

mathematical model. Section 3 deals with the 

existence of weak solutions and uniqueness in law. In a 

forthcoming paper we will study with probabilistic 

methods several applications of Theorem 3.1 and 

Theorem 3.3 in adjuvant chemotherapy of cancer. 

MODEL 

The biological system we want to study is constituted, 

at the cellular level, of the following three main 

populations: 

• Tumor cells, characterized by an anomalous 

proliferation and the difficulty to receive inhibitory and 

apoptotic signals. 

• Environment cells, characterized by promoting 

(feeding) influence over tumor cells. 

• Immune cells potentially able to either strongly 

hamper or favor tumor growth. 

We proceed from the following biomedical 

assumptions: 

B1 - All tumor cells behave independently of each other 

[10]. 

B2 - The lytic rate of tumor cells due to destructive 

action of effector cells is Michaelian or Lefeverian or 

Kuznetsovian [14-15] 

B3 - The tumor will consist of drug sensitive and drug 

resistant cells. 

B4 - All progeny of resistant tumor cells are assumed to 

be resistant. 

B5 - The drug resistance develops during treatment, 

due to the presence of the drug. 

B6 - No sensitive tumor cell becomes resistant during 

its lifetime. 

B7 - There is no drug building up in the host 

environment. 

B8 - There is no accumulation of dead cells. 

B9 - The rate of sensitive tumor cell lost due to the drug 

will be considered proportional to an increasing 

function of the drug concentration within the tumor 

and an increasing function of the current sensitive 

tumor cells population size [4, 17]. 

Random independent interactions between tumor 

cells, effector cells and anticancer drugs suggest a 

modeling of the tumor growth based on stochastic 

partial differential equations 2.1 and 2.2: 
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The initial and boundary conditions           

     v(0,r,w) =v0(r, w)                for  0;r aÎé ùë û  ,  1wÎW  

     v(t,0,w) = v(t, a, w)=0       for   t R+Î ,       1wÎW  

Les us explain the problems (2.1) and (2.2). 

Let denote θ = (Ω, F, Ft, P) as a filtered probability 

space carrying a set-valued white noise W (t, r) on  

R+ x [0; a]. This means W (t, r) is a random set function 

from B(R+ x [0; a]) into L
2 

(Ω,F,P)  such that 

1. ,A B" ÎB(R+ x [0; a]) with A B=FA B=F (empty set) the 

random variables W(A) and W(B) are independent, and 

W(AUB)= W(A)+ W(B) 

2. C" ÎB([0;a])  the random process (W([0;t] x C))t≥0  is 

an Ft -Brownian motion with covariance function t L(c), 

where L denotes the Lebesgue measure and B(H) 

denotes the Borel sets of topological space H.  

      Since 
2 ( , )W t r

t r

¶

¶ ¶
 is P-almost surely nowhere 

differentiable, the space-time white noise 
rt

rtW

¶¶
¶ ),(2

 

can only be defined in terms of the random Schwartz 

distributions [11, 20]. u(t, r, w) represents the density 

number of drug sensitive tumor cells at time t and  site 

r, the Fickian diffusion term is 
2

2

u
D

r

¶

¶
 one-dimensional 

nearest neighbor migration due to cellular replication 

(more generally, this term included to model cellular 

motion), and 2
D dl@  where λ denotes the replication 

rate of tumor cells and d  is the diameter of a tumor 

cell. 

In the equations above, φ(u) represents the 

proliferative rate of drug sensitive tumor cells, l(u) 
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represents the lytic rate of drug sensitive tumor cells 

due to destructive action of effector cells, d(u) 

represents the rate of drug sensitive tumor cells lost to 

anticancer drug, α=α(t,r,w) represents the mutation 

rate from sensitive to resistant tumor cells according to 

Coldman-Goldie model ( i.e. α is the fraction per unit of 

time of the drug sensitive tumor cells that mutates into 

drug resistant cells), GW represents the driving noise 

term for random independent interactions between 

drug sensitive tumor cells, effector cells and drugs,     

v=(t,r,w) represents the density number of drug 

resistant tumor cells, φ1(v)  represents the proliferative 

rate of drug resistant tumor cells, G1W1  represents the 

driving noise term for random independent 

interactions between drug resistant tumor cells, 

effector cells and drugs, u0  and v0  represent the initial 

density number of drug sensitive and drug resistant 

tumor cells. 

      Under the assumption B1 the variance of tumor 

cells subpopulation variation is proportional to the 

tumor cells density number.  

            uuwrtG @),,,( , and vvwrtG @),,,(1  

Hence, b and b1 are not Lipschitz near zero. Assuming 

that,  

uwrtBuwrtG ),,(),,,( =   or 

)(),,(),,,( ubuwrtBuwrtG -=  

Where B(t,r,w) is the branching rate of sensitive tumor 

cells at time t and site r. 

The following changes of variable: 

t→λt, r r
D

l
® × , (where λ  is the mean value of the 

rate for the cellular replication of the drug sensitive 

tumor cells) reduces (2.1) to dimensionless equation: 
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Where, 
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2 ( , )W t r

t r

¶

¶ ¶
 is another space-time white noise. We 

observe that if W (t, r) is a set-indexed white noise, and 

then ( , )abW at br  is also a set-indexed white noise, 

, 0a b" > constants. The SPDE (2.3) describes a 

continuum limit in space of one-dimensional model of 

the tumor growth for dispersed cells regime. Similarly, 

we find 
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We will use the notation P for the σ-algebra of Ft- 

progressively measurable subsets of R+ x Ω and under 

some mathematical assumptions, we will consider the 

problems (2.3) and (2.4). 

 

MATHEMATICAL ASSUMPTIONS 

M1: Both f(t,r,w,z): R+ x [0,a]x Ω x R→R and    

                g(t,r,w,z): R+ x [0,a] x Ω x R→R  

        are ( 0, )P B a RÄ ´é ùë û  measurable functions. 

M2: , 0, ( , )T b C T b" > $ such that   

     
0

sup
t T£ £ 0

sup
r a£ £ 0

sup ( ( , , , ) ( , , . ) ) ( , )
z b

f t r w z g t r w z C T b
£ £

+ £  

       a.s. 

M3: Both f(t,r,w,z) and g(t,r,w,z)  satisfy a linear growth          

condition i.e. 0,T" > ( )K T$  such that 

( , , , ) ( , , , ) ( )(1 )f t r w z g t r w z K T z+ £ + , 0,t T" Îé ùë û , 

0,r aÎé ùë û , z RÎ  and almost all wÎW . 

M4: Both f(t,r,w,z) and g(t,r,w,z) are continuous in       

z RÎ . 

M5: u0=u0(r, w) is a given non-negative  F0 - measurable 

C0[0,a]- valued random  variable  (0≤u0≤b). 

        We state that  f(t,r,w,z) is locally Lipschitz if 

, 0, ( , )T b K T b" > $  is constant such that  

1 2 2 1( , , , ) ( , , , ) ( )( )f t r w z g t r w z K T z z+ £ - , 0,t T" Îé ùë û , 

0,r aÎé ùë û , 1 2,z z RÎ , with   z1 V z2 ≤ b and almost all  

wÎW ; f(t,r,w,z) is globally Lipschitz if K(T,b)  does not 

depend on b. 

        The rigorous meaning of equations (2.3) and (2.4) 

are discussed next. Indeed, we do not expect solutions  

u(t,r,w) and  v(t,r,w) to be differentiable in t or r. We 

regard (2.3) and (2.4) as a shorthand for some integral 

equations. Several authors, including Walsh [20], Da 

Prato and Zabczyk [5], have shown that, under some 

suitable assumptions, equation (2.3) has a unique 

strong solution in the following sense the random field 

u=u(t,r,w) is a strong solution of equation (2.3) on the 

stochastic interval t є [0,τ], where τ=τ(w) is a stopping 

time, if 
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  I. { }t
u t< is ( 0, )P B aÄ é ùë û  measurable, i.e. u(t,r,w) is 

adapted process with filtration Ft, 

 II. u(t,r,w) is continuous in (t,r)є[0,τ]x[0,a]  a.s., and 

III. almost surely 
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It true for every, 2
0( ) 0,r C aj Î é ùë û  and for all   

);,0[ tÎt or equivalently, u( t,r,w) satisfies the integral 

equation, 
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with Dirichlet boundary conditions. 

     The stochastic integral in (2.5) is a particular case of 

an integral with respect to a martingale measure as in 

the theory of Walsh [20]. If  P([τ(w)=∞])=1 then  

u=u(t,r,w,) is a global strong solution. In this context, 

the following result from Donati-Martin and Pardoux 

[7] is needed. 

Theorem 2.1. Under the assumption, M1-M5, if f and g 

are globally Lipschitz, the equation (2.3) admits unique 

strong solution. 

 

3. THE EXISTENCE OF WEAK SOLUTIONS  

We prove the existence of weak solutions to (2.3) via 

an approximation procedure and by a tightness 

argument. 

Theorem 3.1. Under the assumption M1-M5, the 

problem (2.3) admits a weak solution. 

   The proof follows after a representation theorem for 

continuous orthogonal martingale measures. Let 

}{ ( , , ): , 0, ,I t r w t R r a w+Î Î ÎWé ùë û  be a 

[ ]aRBP ,0( ´Ä + ) measurable random field on  R+ x 

[0,a]  carried by a filtered probability space (Ω,F,Ft,P). 

Let L be a linear subspace of the Borel measurable 

functions Ф:[0;a]→R  such that 

        1. L is closed with respect to the multiplication, 

        2.the σ-algebra of the subsets of R+ x [0,a]  

generated by L is B(R+ x [0,a]), and 

        3. 2 2

0 0

( ) ( , , )

T a

r I t r w drdtF <¥òò   a.s. 

The family of random variables 

}{ ( , , ): 0, , ,M M t r t T w L= F Î ÎW FÎé ùë û  is called a 

continuous orthogonal martingale measure on 

[0,T]x[0,a] with intensity I
2
(t, r, w) if  L"FÎ  the 

random process  (M(t ,r, Ф))0≤t≤T is a continuous Ft-local 

martingale, such that almost surely 

   <M(Ф),M(Ψ)>t=
2

0 0

( ) ( ) ( , , )

t a

r r I s r w drdsF Yòò , 0,t T" Îé ùë û , 

for every , LF YÎ , (see [15,17]). 

The filtered probability space θ = (Ω, F, Ft , P) is reached 

if it can carry a set-indexed space time white noise  

W(t, r) on [0,T] x [0,a] which is independent of M. 

      We need the following representation theorem 

(see [8]). 

Theorem 3.2. If  M  is a continuous orthogonal 

martingale measure on [0,T]x[0,a] with intensity 

I
2
(t,r,w) carried by a reach filtered probability space q , 

then there exist a set-indexed space-time white noise 

W(t,r) on R+x[0,a], such that,   

  

0 0

( , , ) ( ) ( ) ( , , ) ( , )

t a

M t w r r I s r w W ds drF = F Yòò , 0,t T" Îé ùë û . 

Proof of theorem 3.1. Let fn=fn(t,r,w,z) and 

gn=gn(t,r,w,z)  be two sequences of Lipschitz functions 

converging uniformly to f=f(t,r,w,z) and  g=g(t,r,w,z)   

respectively for z є R. Also assume that both fn and gn 

satisfy M3 with a constant K (T) independent on n. For 

example, ( , , , / ) ( ) ( )n
R

f f t r w z x n x d xr= -ò and 

( , , , / )( ) ( ),ng g t r w z x n x d x= -  where  

ρ: R→R+ is a smooth kernel supported on [0,a], such 

that ( ) ( ) 1.
R

x d xr =ò  Then according Theorem 2.1 there 

exist a unique strong solution of  the equation (2.3) 

with fn and  gn, for each n≥1. Using the same argument 

as in Walsh [20] or Da Prato and Zabczyk [5], one can 

check the moment condition:  

for each T>0,  E |un (t, r)-un(s, ρ)|
σ
≤ C(|t-r|

2
+|r-ρ|

2
)

2+є 

for some constants C>0, ε>0 ,σ≥1 and all t, r є [0,T];  

r, ρ є [0,a], with C not depending on n.    Now we can 

apply Kolmogorov’s test to the sequence of random 

fields      {un (t, r ),W( t, r): t є[0.T],r є[0,a]} , and we find 
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a sequence of random fields ' '
ˆˆ( , )

n n
u W  on a filtered 

probability space for a sequence n
’
→∞ such that the 

finite dimensional distributions of  ' '
ˆˆ( , )

n n
u W  coincide 

with the finite dimensional distributions of  '( , )
n

u W  

for each n
’
, and ' '

ˆˆ( , )
n n

u W  converges almost surely to a 

random field (û, Ŵ) in C([0,T]x[0,a];R
2
).  

     We choose  2
0 0,L C a= é ùë û  and find that  

                     

0,

0

0 0

ˆ ˆ ˆ ˆ( ( ), ) ( , ) [( ( ) ( )) ( ( ( )), )]

ˆˆ( , , ( , )) ( ) ( , ) . .

t

n
n n n n n

t a

n n n

u t u u s r f u s ds

g s r u s r r W ds dr a s

ü
ïF = F + F + F +
ï
ï
ý
ï

+ F ï
ïþ

ò

ò ò
                  (3.1) 

for all  0,t T" Îé ùë û , ,L"FÎ and for every n=n
’
 (we can 

write n instead of  n
’
 only for notational convenience). 

Choosing a sequence which converges in distribution 

(i.e. n→∞) we obtain a solution û to the equation  

                   

0

0

ˆ ˆ ˆ ˆ( ( ), ) ( , ) [( ( ), ( )) ( ( ( ), ( ))] ( , ),

t

n
u t u u s r f u s r ds M tF = F + F + F + Fò

            (3.2) 

 Where, ( , ): 0,M t t TF Îé ùë û , 2
0 0,L C aFÎ = é ùë û  is the 

almost surely limit in C([0,T]) of the random processes 

                             

0 0

ˆˆ( , ) ( , , ( , )) ( ) ( , ).

t a

n n n nM t g s r u s r r W ds drF = Fòò  

 It is clear that the limit limn→∞Mn(t,Ф)=M(t,Ф) exist 

(because all the other terms in (3.1) have the 

corresponding limits in (3.2)) and ,n N" Î  ,L"FÎ the 

random process (Mn(t,Ф))tє[0,T] 

   is a continuous martingale with quadratic variation 

                    

2 2

0 0

ˆ( , ) ( , , ( , )) ( ) .

t a

n t nn
M t g s r u s r r dsdr< F > = Fòò  

Hence, (M(t,Ф))tє[0,T] is a continuous martingale with 

quadratic variation  

  
2 2

0 0

ˆ( , ) ( , , ( , )) ( ) .

t a

tM t g s r u s r r dsdr< F > = Fòò                      

(3.3) 

and { ( , ): 0,M M t t T= F Îé ùë û , }LFÎ  is a continuous 

orthogonal martingale measure with intensity, 
22 ˆ( , ) ( , , ( , ))I s r g s r u s r=  

Thus, we  prove the existence of the solution of the 

martingale problem (3.2)-(3.3) corresponding to (2.3) 

and consequently apply Theorem 3.2 representing M 

as,  

                         

0 0

ˆ( , ) ( , , ( , )) ( , ),

t a

M t g s r u s r W ds drF = òò  

Where W(t,r) is a set-indexed white noise on 

[0,T]x[0,a]. We assume that the filtered probability 

space q  is reach. Otherwise, we can take an extension 

of  q . 

We also use the assumption 

    M6:The random field  f2=f2(t,r, w): tєR+, rє[0,a]  ,ωєΩ, 

is  ( 0, )P B aÄ é ùë û , measurable and there exists a 

deterministic function 1( ) ( )locF t L R+Î such that  

                           2
2

0

( , , ) ( ),

a

f t r w dr F t£ò    0,t" ³    a.s. 

    Remark 1.Theorem 3.1 still holds even if           

f(t,r,w,z) is replaced by f(t,r,w,z) + f2(t,r,w,) 

Where f2 satisfies M6. The proof is similar to the proof 

of Theorem 3.1. 

    Uniqueness for weak solutions to (2.3) is important 

for justifying that the mathematical model is viable and 

is a useful step in showing the numerical 

approximating solutions converges. Using the moment 

duality method developed by S. Athreya and R. Tribe 

[1] we can prove the uniqueness in law (weak 

uniqueness) for some special cases. 

     Theorem 3.3. Assume that ( , , )W uq is a bounded 

weak solution to (2.3) 

                 0 u b£ £   for all  t > 0, 0,r aÎé ùë û ,  P - a.s, 

f(u) and g
2
(u) are analytic functions with respective 

power series representation  

                 

0

( ) k kf u f u

¥

=å ,   
2

0

( ) ( ) k ku g u us s
¥

= =å  

Assume that the power series of f and g
2
are convergent 

in the interval [-R,R] for some R>b Assume that there is 

x>b such that   

            
1

1

1

k
k

k

f f x
-

¹

< -å    and    
2

2

2

k
k

k

xs s -

¹

< -å . 

Under these assumptions, there is a unique probability 

measure μ  on the space temC
+

 so that u=u(t,r,w) has 

law μ  whenever ( , , )W uq   is a weak solution to (2.3) on 

some filtered probability space (Ω, F, Ft, P). If f=0  then 
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the parts of the hypotheses that refer to  f may be 

removed. 

   The proof is omitted since it is standard (see [1]). 

Girsanov’s theorem can sometimes be used to alter 

the drift term  

( ) ( ) ( )f u f u f u
+ -= -  to ˆ( ) ( ) ( ) .f u f u f b u

+ -= -   

However, many drift terms cannot be treated by this 

method. The linear scaling defined by the formula  

v=v(t,r,w)=Bu(C1t,C2r,w), where, B ≠ 0, C1 > 0 and C2 > 0   

does not change our ability to establish uniqueness in 

law for the weak solutions to (2.3), using Theorem 3.3. 

   

CONCLUSION  

We believe in the effectiveness of stochastic partial 

differential equations and martingale approach in 

modeling of the tumor growth after curative resection 

of a tumor, as well as at the early stages of tumor 

growth. The multiplicative space-time white noise term 

for random independent interactions between tumor 

cells, immune system cells and anticancer drugs is 

introduced in this paper. We prove the weak existence 

and uniqueness in law for the continuous random field 

u(t,r,w) which represents the density number of drug 

sensitive tumor cells. The obtained theoretical results 

and computer simulations should lead to the better 

understanding of the key parameters in which the final 

disease is depended.  
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