

THE

EFFECTIVE
ENGINEER

THE

EFFECTIVE
ENGINEER

How	to	Leverage	Your	Efforts	in	Software	Engineering	to	Make	a	Disproportionate	and	Meaningful
Impact

Edmond	Lau
The	Effective	Bookshelf

Palo	Alto,	CA

THE	EFFECTIVE	ENGINEER.
Copyright	©	2015	by	Edmond	Lau.	All	rights	reserved.
Published	by	The	Effective	Bookshelf,	Palo	Alto,	CA.

Visit	the	website	at:	www.theeffectiveengineer.com.	No	part	of	this	book	may
be	used	or	reproduced	in	any	manner	whatsoever	without	written	permission
except	in	the	case	of	brief	quotations	in	critical	articles	or	reviews.

For	more	information,	please	contact:	support@theeffectiveengineer.com.

Printed	in	the	United	States	of	America.

978-0996128100	(ISBN	13)

http://www.theeffectiveengineer.com
mailto:support@theeffectiveengineer.com

TO	MY	PARENTS
whose	hard	work	and	sacrifices	made	my

opportunities	possible

Contents

Foreword
Introduction
Part	1:	Adopt	the	Right	Mindsets
1.	Focus	on	High-Leverage	Activities
2.	Optimize	for	Learning
3.	Prioritize	Regularly
Part	2:	Execute,	Execute,	Execute
4.	Invest	in	Iteration	Speed
5.	Measure	What	You	Want	to	Improve
6.	Validate	Your	Ideas	Early	and	Often
7.	Improve	Your	Project	Estimation	Skills
Part	3:	Build	Long-Term	Value
8.	Balance	Quality	with	Pragmatism
9.	Minimize	Operational	Burden
10.	Invest	in	Your	Team’s	Growth
Epilogue
Appendix
Acknowledgments
Notes
About	the	Author

Foreword

M Y	 FIRST	 JOB	OUT	OF	 STANFORD’S	COMPUTER	 SCIENCE	 PROGRAM	WAS	AS	A
Product	 Manager	 at	 Google.	 It	 was	 an	 amazing	 first	 job.	 I	 shared
offices	 with	 engineers	 who	 had	 written	 the	 textbooks	 I	 used	 in

college.	I	helped	create	Google	Maps,	which	is	still	my	proudest	achievement
as	a	product	designer	and	engineer.	And	I	learned	how	to	be	effective	on	large
scale	software	projects.	By	the	time	I	 left	Google	 to	start	my	first	company,
FriendFeed,	 I	 had	 worked	 on	 so	 many	 projects	 at	 scale,	 I	 felt	 extremely
confident	I	could	start	one	myself.

However,	 being	 a	 product	manager	 at	 a	 large	 company	 is	 different	 than
founding	 a	 startup.	 For	 one,	 you	 are	 judged	 differently.	 While,	 in	 theory,
product	managers	are	judged	on	the	success	of	the	products	they	work	on,	in
practice,	 large	 companies	 also	 judge	 product	 managers	 on	 their	 ability	 to
manage	 all	 the	 people	 and	 departments	 that	 have	 a	 stake	 in	 a	 product’s
outcome.	Did	you	engage	the	PR	team	enough	time	before	launch?	Did	you
integrate	 your	 product	 with	 the	 CEO’s	 pet	 project?	 Did	 you	 convince	 the
competing	 executive	 of	 your	 product	 direction	 before	 the	 big	 executive
review?	At	software	companies	that	aren’t	as	enlightened	as	Google,	product
managers	 are	 judged	 more	 on	 these	 political	 issues	 than	 they	 are	 on	 any
aspect	of	the	products	they	work	on.

That’s	 why	 so	many	 engineers	 and	 product	 managers	 that	 come	 out	 of
larger	companies	have	trouble	with	the	concept	of	leverage	that	Edmond	Lau
talks	 about	 in	 The	 Effective	 Engineer.	 They	 are	 effectively	 trained	 to	 care
about	low	leverage	activities	because	the	bureaucracy	that	trained	them	values
and	 rewards	 them.	 The	most	 successful	 engineers	 I’ve	 worked	 with	 in	 my
career	 were	 the	 few	 that	 were	 able	 to	 see	 past	 these	 bureaucratic
idiosyncrasies	and	 recognize	 the	one	or	 two	 things	 that	would	 really	 impact
their	product’s	success.	The	engineer	that	taught	me	the	most	about	leverage
is,	without	question,	Paul	Buchheit.

Paul	was	one	of	the	co-founders	of	FriendFeed.	He	had	previously	created
Gmail,	and	while	we	hadn’t	worked	together	much	at	Google,	we	had	enough
mutual	 respect	 to	 join	 forces	 with	 Jim	Norris	 and	 Sanjeev	 Singh	 to	 start	 a
company	together	in	mid-2007.	More	than	any	person	I’ve	ever	met,	Paul	was
willing	 to	 challenge	 conventional	 thinking,	 and	 he	 completely	 changed	my
perspective	on	engineering	and	product	management.

Whenever	we	would	encounter	a	challenging	technical	problem,	I	would
ask	“How	should	we	do	this?”	Paul	would	respond,	often	obnoxiously,	“Why
do	we	need	to	do	it	at	all?”	Instead	of	trying	to	solve	impossible	problems,	he
would	more	often	challenge	the	assumptions	so	we	could	simply	work	around
them.	At	times,	 it	almost	seemed	like	Paul	was	lazy—given	any	sufficiently
hard	 project,	 Paul	 would	 question	 the	 purpose	 of	 the	 project.	 But	 he	 was
almost	 always	 right.	Unless	 the	 project	was	 destined	 to	make	 or	 break	 our
nascent	company,	why	spend	our	precious	engineering	resources	on	it?

Working	with	Paul	proved	to	me	through	experience	that	engineering	was

Working	with	Paul	proved	to	me	through	experience	that	engineering	was
much	more	about	leverage	than	programming	ability,	and	I’ve	tried	to	apply
that	lesson	to	all	my	subsequent	jobs.	When	I	became	the	Chief	Technology
Officer	of	Facebook	after	the	company	acquired	FriendFeed,	I	spent	as	much
time	 canceling	 projects	 as	 creating	 them.	At	 Quip,	 the	 company	 I	 founded
with	Kevin	Gibbs	in	2012,	we	felt	so	strongly	that	effective	engineering	was
not	correlated	with	hours	of	effort	that	we	have	proudly	embraced	a	“nine-to-
five”	culture	unheard	of	at	Silicon	Valley	companies.

I	 love	 the	culture	of	Silicon	Valley.	 I	 love	 that	young	engineers	have	as
much	of	an	impact	on	our	industry	as	veterans,	and	I	 love	how	our	industry
redefines	itself	every	decade.	But	I	also	think	the	culture	of	working	endless
hours	is	unnecessary	and	abused	by	ineffective	managers	around	our	industry.
In	addition	to	being	unnecessary,	that	aspect	of	our	culture	is	one	of	the	main
things	 that	 prevents	 people	 from	 choosing	 long	 term	 careers	 in	 software
engineering—it	 is	 unsustainable	 for	 people	 with	 families,	 and	 it	 creates	 a
homogeneous,	immature	atmosphere	at	the	companies	where	it	is	ubiquitous.

I’m	happy	Edmond	chose	to	write	this	book	because	I	think	Silicon	Valley
would	 be	 a	 much	 better	 place	 for	 both	 managers	 and	 engineers	 if	 people
embraced	 “working	 smart”	 rather	 than	 “working	 hard.”	 It’s	 neither
counterintuitive	 nor	 hard	 in	 practice,	 but	 very	 few	people	 do	 it,	 and	 I	 hope
more	 people	 embrace	 Edmond’s	 philosophy	 and	 techniques	 to	 make	 their
companies	and	careers	more	successful.

—	Bret	Taylor,	CEO	of	Quip

Introduction

M Y	 FIRST	 FEW	 YEARS	 WORKING	 AT	 STARTUPS	 STAND	 OUT	 AS	 SOME	 OF	 THE
longest	 in	my	 career.	 They	were	 a	 relentless	 grind	 punctuated	with
intense	personal	growth	and	countless	emotional	 roller	coasters.	My

team	almost	never	worked	fewer	than	60	hours	each	week,	and	months	would
go	by	where	we	would	toil	away	for	70	to	80	hours.	I’d	start	my	work	day	in
the	office;	 I’d	 regularly	 spend	 lunch	consulting	with	my	 team;	and	 then	 I’d
continue	 to	 work	 from	 home	 after	 dinner—or	 sometimes	 even	 stay	 in	 the
office	 until	midnight.	Even	while	 visiting	 family	 over	 the	 holidays,	 I’d	 still
squeeze	in	time	to	code	and	to	respond	to	emails	on	my	laptop.

After	all,	the	nature	of	startups	meant	that	we	were	the	underdogs	fighting
formidable	 competitors.	 The	 harder	 we	 worked,	 the	 more	 value	 we	 could
produce,	and	 the	more	 likely	 it	was	 that	our	 startup	would	succeed.	Or	so	 I
thought.

A	few	experiences	forced	me	to	reconsider	this	assumption.	There	was	the
custom	 analytics	 module	 that	 I	 spent	 two	 weeks	 building—and	 that	 the
customer	 never	 used.	 There	were	 the	 new	 tools	 to	 improve	 content	 quality
that	we	spent	months	tweaking	and	perfecting	before	launch—and	that	never
got	 the	 user	 adoption	 we	 wanted.	 There	 were	 the	 weekly	 traffic	 spikes—
followed	by	hours	spent	spinning	up	and	winding	down	extra	servers.	There
was	the	time	when	I	was	hiking	up	the	Mauna	Loa	volcano	in	Hawaii—and	I
got	a	 text	message	saying	that	 the	 infrastructure	generating	analytics	reports
for	customers	was	down,	and	could	I	please	take	a	look.

I	worked	the	long	hours	because	I	wanted	to	make	a	meaningful	impact,
but	I	couldn’t	help	but	wonder:	Was	putting	in	70-	to	80-hour	weeks	really	the
most	 effective	 way	 of	 ensuring	 our	 startup’s	 success?	 Our	 intentions	 were
sound,	but	could	we	have	worked	smarter?	Could	we	have	reduced	some	of
that	effort	and	achieved	the	same	impact,	or	possibly	even	more?

In	the	ensuing	years,	I’ve	come	to	learn	that	working	more	hours	isn’t	the
most	effective	way	to	increase	output.	In	fact,	working	too	many	hours	leads
to	 decreased	 productivity	 and	 burnout.	 Output	 may	 even	 turn	 out	 to	 be
negative	when	it’s	necessary	to	repair	the	mistakes	made	by	overworked	and
fatigued	engineers.

To	be	effective	engineers,	we	need	to	be	able	to	identify	which	activities
produce	more	impact	with	smaller	time	investments.	Not	all	work	is	created
equal.	Not	all	efforts,	however	well-intentioned,	translate	into	impact.

What	Makes	an	Effective	Engineer?

How	 do	 you	 measure	 an	 engineer’s	 effectiveness?	 Is	 it	 by	 the	 number	 of
hours	she	works?	The	amount	of	effort	he	applies?	The	number	of	tasks	she
completes?	 At	 the	 end	 of	 the	 day,	 a	 hard-working	 engineer	 who	 pours	 his
energy	 into	 a	 feature	 whose	 schedule	 slips	 and	 that	 no	 one	 uses	 isn’t	 that

effective.	 I’ve	 been	 that	 engineer	 before,	 as	 have	 many	 talented	 people	 I
know.

For	over	a	decade,	I’ve	worked	as	a	software	engineer	at	many	technology
companies,	 including	 Microsoft,	 Google,	 Ooyala,	 Quora,	 and	 Quip.
Throughout	 this	 time,	 the	question	of	what	makes	an	effective	engineer	has
always	been	on	my	mind.	I	wanted	to	increase	my	impact,	but	working	70	to
80	 hours	 per	 week	 to	 do	 it	 wasn’t	 sustainable.	 And	 so	 I	 searched	 for	 an
answer	that	would	let	me	work	less	and	accomplish	more.

Others	have	asked	this	question,	too,	particularly	in	the	context	of	hiring.
I’ve	 had	 the	 good	 fortune	 of	 participating	 in	 various	 aspects	 of	 growing	 an
engineering	 team.	 Through	 that	 experience,	 I’ve	 screened	 thousands	 of
resumes,	 interviewed	over	five	hundred	candidates,	and	debated	 their	merits
in	 hiring	 committees.	 At	 the	 end	 of	 each	 debate,	 we	 ultimately	 needed	 to
decide:	Will	 this	 individual	 grow	 into	 a	 strong	 contributor	 on	 the	 team	 and
effectively	get	things	done?

I’ve	 also	 created	 onboarding	 and	mentoring	 programs	 and	 have	 trained
dozens	of	new	engineering	hires.	The	people	I	mentor	inevitably	ask	me	how
they	 can	 be	more	 effective.	 Understanding	 what	 makes	 one	 engineer	 more
effective	than	another,	to	the	point	where	I	can	then	teach	that	effectiveness	to
others,	has	been	a	holy	grail	of	mine.	In	my	quest	to	find	the	answer,	I’ve	had
conversations	with	dozens	of	engineering	 leaders.	 I	 spent	 the	 last	 few	years
consuming	 shelves	 of	 productivity,	 team-building,	 personal	 psychology,
business,	and	self-help	books.	Even	though	most	of	them	weren’t	targeted	at
engineers,	 I	 found	 ways	 to	 experiment	 with	 and	 apply	 their	 lessons	 in	 an
engineering	context.

There	 will	 always	 be	 more	 effectiveness	 techniques	 to	 learn.	 But	 what
I’ve	developed	on	my	 journey	 is	a	powerful	 framework	 for	 reasoning	about
effectiveness	 that	 can	 be	 applied	 to	 any	 activity.	 I’m	 excited	 to	 share	 this
framework	 with	 you	 in	 The	 Effective	 Engineer.	 This	 book	 examines	 and
describes	 what	 it	 means	 to	 be	 an	 effective	 engineer,	 and	 it	 distills	 the	 key
lessons	 that	 I’ve	 learned.	 More	 importantly,	 it	 supplements	 the	 framework
with	actionable	and	 tested	strategies	 that	you	can	use	 right	away	 to	become
more	effective.

So	what	makes	an	effective	engineer?	Intuitively,	we	have	some	notion	of
which	 engineers	 we	 consider	 to	 be	 effective.	 They’re	 the	 people	 who	 get
things	 done.	 They’re	 the	 ones	 who	 ship	 products	 that	 users	 love,	 launch
features	that	customers	pay	for,	build	tools	that	boost	team	productivity,	and
deploy	 systems	 that	 help	 companies	 scale.	 Effective	 engineers	 produce
results.

But	if	they	took	too	long	to	accomplish	these	tasks,	then	we	might	hesitate
to	 call	 them	effective.	They	might	be	hard-working,	but	we	would	consider
someone	who	produced	the	same	results	in	less	time	and	with	fewer	resources

to	 be	 more	 effective.	 Effective	 engineers,	 therefore,	 also	 get	 things	 done
efficiently.

Efficiency	 alone	 doesn’t	 guarantee	 effectiveness,	 however.	 An	 engineer
who	efficiently	builds	infrastructure	that	can	scale	to	millions	of	requests	for
an	 internal	 tool	 that	 would	 be	 used	 by	 at	 most	 a	 hundred	 people	 isn’t
effective.	Nor	is	someone	who	builds	a	feature	that	only	0.1%	of	users	adopt,
when	other	 features	 could	 reach	10%	adoption—unless	 that	 0.1%	generates
disproportionately	 more	 business	 value.	 Effective	 engineers	 focus	 on	 value
and	impact—they	know	how	to	choose	which	results	to	deliver.

An	effective	engineer,	therefore,	is	defined	by	the	rate	at	which	he	or	she
produces	 value	 per	 unit	 of	 time	 worked.	 This	 is	 exactly	 what	 leverage—a
concept	that	we’ll	 introduce	in	Chapter	1	and	revisit	 throughout	this	book—
captures.

What	You’ll	Learn	from	Reading	This	Book

Despite	being	a	book	for	software	engineers,	you	won’t	find	a	single	line	of
code	 in	 The	 Effective	 Engineer.	 Books	 and	 articles	 abound	 on	 different
technologies,	 programming	 languages,	 software	 frameworks,	 and	 system
architectures.	Technical	knowledge,	however,	represents	only	a	fraction	of	the
skills	that	engineers	need	to	learn	in	order	to	be	effective.

More	important	for	effectiveness,	but	often	overlooked	by	engineers,	are
the	meta-skills.	These	skills	help	you	determine	where	to	focus	your	time	and
energy	 so	 that	 more	 of	 your	 effort	 translates	 into	 impact.	 The	 Effective
Engineer	 teaches	 you	 these	 meta-skills.	 My	 promise	 to	 you	 is	 that	 after
reading	 this	 book,	 you’ll	 have	 a	 useful	 framework,	 called	 leverage,	 for
analyzing	 the	 effectiveness	 of	 different	 activities.	 You’ll	 be	 equipped	 with
actionable	tools	to	increase	your	impact,	and	you’ll	develop	insights	into	the
common	engineering	pitfalls	that	sap	precious	time	and	energy.

I	 learned	 some	 of	 these	 skills	 through	 my	 own	 experiences,	 from
conversations	with	 other	 engineers,	 and	 by	 applying	 lessons	 from	 scientific
research	in	productivity	and	psychology.	But	you’ll	find	much	more	than	just
my	 own	 stories	 in	 this	 book.	 I’ve	 also	 interviewed	 senior	 engineers,
managers,	directors,	and	VPs	at	technology	companies	around	Silicon	Valley
to	distill	their	secrets	for	effectiveness.	You’ll	find	their	stories	about	the	most
valuable	practices	 they’ve	adopted,	as	well	as	 the	costliest	mistakes	 they’ve
made.	 And	 even	 though	 everyone’s	 narrative	 was	 different,	 many	 common
themes	emerged.

In	Chapter	1,	you’ll	learn	why	leverage	is	the	yardstick	for	measuring	an
engineer’s	 effectiveness.	 In	 each	 subsequent	 chapter,	 you’ll	 find	 a	 high-
leverage	 habit—accompanied	 by	 research,	 stories,	 and	 examples—that
effective	 engineers	 use.	 You’ll	 learn	 what	 key	 engineering	 principles

Instagram’s	co-founder	Mike	Krieger	followed	to	enable	a	small	team	of	13	to
scale	 effectively	 and	 support	 a	 product	 with	 over	 40	 million	 users.	 You’ll
learn	about	key	habits	that	former	Facebook	director	Bobby	Johnson	fostered
in	his	 infrastructure	 team	as	 the	social	network	grew	to	over	a	billion	users.
And	 you’ll	 hear	 many	 more	 stories	 from	 people	 at	 Google,	 Facebook,
Dropbox,	Box,	Etsy,	and	other	top	technology	companies,	as	they	share	their
philosophies	on	how	 to	be	more	effective	 individual	 contributors	 as	well	 as
leaders.	 Ignoring	 these	 habits	 often	 led	 to	 hard-learned	 lessons,	 and	 you’ll
find	some	war	stories	here,	as	well.

The	 themes	of	 this	book	are	organized	 into	 three	parts.	Part	 1	describes
the	mindsets	 that	allow	us	to	reason	more	rigorously	about	and	increase	our
effectiveness.	We	begin	by	outlining	the	mindset	of	leverage	(Chapter	1),	and
then	 move	 on	 to	 show	 how	 both	 optimizing	 for	 learning	 (Chapter	 2)	 and
regular	prioritization	(Chapter	3)	 let	 us	 accelerate	 our	 growth	 and	make	 the
most	of	our	time.	Much	of	engineering	revolves	around	execution,	and	Part	2
takes	a	deep	dive	into	the	key	strategies	we	need	to	consistently	execute	and
make	progress	 on	 the	 tasks	we’re	 faced	with:	 iterating	quickly	 (Chapter	 4),
validating	 ideas	 early	 and	 often	 (Chapter	 6),	 measuring	 what	 we	 want	 to
improve	(Chapter	5),	and	developing	our	project	estimation	skills	(Chapter	7).
Effective	 engineers	 aren’t	 short-term	 investors,	 and	 so	 in	Part	 3,	we’ll	 shift
gears	and	look	into	approaches	for	building	long-term	value.	We’ll	learn	how
to	balance	quality	with	pragmatism	(Chapter	8),	minimize	operational	burden
(Chapter	9),	and	invest	in	our	team’s	growth	(Chapter	10).

Whether	 you	want	 to	 increase	 your	 impact	 on	 the	world,	 get	 promoted
more	quickly,	waste	less	time	grinding	away	at	mindless	tasks,	or	work	fewer
hours	without	sacrificing	results,	The	Effective	Engineer	 gives	you	 the	 tools
you	 need.	 This	 book	 is	 not	 a	 comprehensive	 guide	 for	 everything	 that	 can
help	you	grow,	but	it	provides	you	with	a	consistent	framework—leverage—
for	navigating	which	skills	might	be	good	investments	of	your	time.	Teaching
and	 mentoring	 are	 passions	 of	 mine,	 and	 I’m	 excited	 to	 share	 what	 I’ve
learned	with	you.

Part	1:	Adopt	the	Right	Mindsets

I

Focus	on	High-Leverage	Activities

N	 THE	 SPAN	 OF	 THREE	 MONTHS,	 QUORA’S	 ENGINEERING	 TEAM	 DOUBLED.	 OUR
startup	had	an	ambitious	mission:	to	build	a	question-and-answer	platform
that	 would	 share	 and	 grow	 the	 world’s	 knowledge.	 To	 achieve	 that

internet-scale	 Library	 of	 Alexandria,	 we	 needed	 more	 engineers.	 And	 so,
during	the	summer	of	2012,	14	new	engineering	hires	crammed	into	our	small
office	on	 the	second	floor	of	261	Hamilton	Avenue	in	downtown	Palo	Alto,
California.	Even	after	construction	crews	knocked	down	three	sets	of	walls	to
expand	our	office	space,	we	could	still	barely	accommodate	everyone’s	desks.

I	 had	 met	 many	 times	 with	 Charlie	 Cheever,	 one	 of	 Quora’s	 two	 co-
founders,	to	prepare	for	the	influx	of	people.	I	had	volunteered	to	be	directly
responsible	for	onboarding	new	engineering	hires,	and	so	I	needed	to	design
the	team’s	plan	to	ramp	everyone	up	quickly.	How	would	we	ensure	that	the
product	 wouldn’t	 break	 all	 the	 time,	 especially	 since	 we	 deployed	 code	 to
production	multiple	times	a	day?	How	would	we	keep	code	quality	high	with
so	 many	 new	 people	 unfamiliar	 with	 the	 design	 and	 conventions	 in	 the
codebase?	 How	 would	 we	 make	 sure	 new	 hires	 were	 productive	 and	 not
blocked	on	what	to	do	next?	Figuring	out	 these	answers	would	be	a	marked
departure	 from	 my	 regular	 duties	 of	 writing	 software,	 but	 I	 was	 excited
because	I	knew	that	onboarding	the	new	hires	effectively	would	have	a	larger
impact	 than	 any	 code	 I	 could	 produce.	 It	 would	 directly	 affect	 how	 much
work	 half	 of	 the	 engineering	 team	 would	 get	 done	 during	 their	 first	 few
months.

I	researched	onboarding	and	mentoring	programs	at	other	companies	and
talked	 with	 their	 engineers	 to	 learn	 what	 worked	 and	 what	 didn’t.	 With
support	from	the	rest	of	my	team,	I	formalized	a	mentoring	program	at	Quora
for	new	engineering	hires.	Each	new	engineer	was	paired	up	with	a	mentor
for	 two	 to	 three	months,	 and	 the	mentor	was	 responsible	 for	 the	new	hire’s
success.	 Mentoring	 activities	 included	 everything	 from	 reviewing	 code,
outlining	 technical	 skills	 to	 learn,	 and	 pair	 programming,	 to	 discussing
engineering	 tradeoffs,	 explaining	 how	 to	 prioritize	 better,	 and	 offering
guidance	 on	 how	 to	work	well	 with	 different	 team	members.	Mentors	 also

1

planned	 a	 sequence	 of	 starter	 tasks	 and	 projects	 to	 increase	 the	 new	 hires’
mastery	of	our	systems.

To	ensure	that	our	hires	started	on	a	common	foundation,	I	also	created	an
onboarding	program	with	a	series	of	10	recurring	tech	talks	and	10	codelabs.
Codelabs,	 an	 idea	 I	 borrowed	 from	Google,	were	 documents	 that	 explained
why	 we	 designed	 core	 abstractions,	 described	 how	 to	 use	 them,	 walked
through	the	relevant	code,	and	provided	exercises	 to	validate	understanding.
Through	 tech	 talks	 and	 codelabs,	 we	 gave	 our	 hires	 an	 overview	 of	 the
codebase	 and	 the	 engineering	 focus	 areas,	 and	 taught	 them	 how	 to	 use	 our
development	and	debugging	tools.

As	a	 result	of	 these	efforts,	many	of	our	hires	 that	summer	were	able	 to
successfully	deploy	their	first	bug	fix	or	small	product	feature	to	users	by	the
end	 of	 their	 first	 week,	 and	 others	 deployed	 their	 first	 changes	 soon	 after.
During	 those	 months,	 we	 launched	 a	 new	 Android	 application,	 an	 internal
analytics	 system,	 better	 in-product	 recommendations,	 improvements	 to	 our
product’s	news	feed,	and	much	more.	Code	quality	stayed	high,	and	mentors
met	regularly	to	share	thoughts	on	how	to	make	the	onboarding	process	even
smoother.	Even	after	I	moved	on	from	the	company,	dozens	of	new	engineers
have	 continued	 to	 go	 through	 these	 onboarding	 and	mentoring	 programs.	 1
They	 were	 two	 of	 the	 highest-leverage	 investments	 that	 we	 made	 on	 the
engineering	team.

In	 this	 chapter,	 we’ll	 define	 what	 leverage	 is	 and	 explain	 why	 it’s	 the
yardstick	for	measuring	our	effectiveness.	Then	we’ll	go	over	 three	ways	of
reasoning	 about	 how	 to	 increase	 the	 leverage	 of	 our	 activities.	And	 finally,
we’ll	discuss	why	directing	energy	toward	our	leverage	points,	as	opposed	to
easy	wins,	is	key	to	increasing	our	impact.

Use	Leverage	as	Your	Yardstick	for	Effectiveness

Why	 did	 Quora	 engineers	 spend	 so	 much	 energy	 on	 mentoring	 and
onboarding	new	engineers?	We	all	had	hundreds	of	other	things	that	we	could
have	 worked	 on—ideas	 to	 prototype,	 features	 to	 build,	 products	 to	 launch,
bugs	 to	 fix,	and	 teams	 to	 run.	Why	didn’t	we	 focus	on	 these	 instead?	More
generally,	given	the	hundreds	or	more	tasks	that	we	all	could	be	doing	in	our
jobs	 right	now,	how	should	we	decide	what	 to	actually	work	on	 in	order	 to
more	effectively	achieve	our	goals?

The	 key	 to	 answering	 these	 questions	 and	 prioritizing	 these	 different
activities	 is	 assessing	 their	 leverage.	 Leverage	 is	 defined	 by	 a	 simple
equation.	It’s	the	value,	or	impact,	produced	per	time	invested:

Put	 another	 way,	 leverage	 is	 the	 return	 on	 investment	 (ROI)	 for	 the	 effort
that’s	 put	 in.	 Effective	 engineers	 aren’t	 the	 ones	 trying	 to	 get	 more	 things
done	 by	 working	 more	 hours.	 They’re	 the	 ones	 who	 get	 things	 done
efficiently—and	who	 focus	 their	 limited	 time	 on	 the	 tasks	 that	 produce	 the
most	value.	They	try	to	increase	the	numerator	in	that	equation	while	keeping
the	 denominator	 small.	 Leverage,	 therefore,	 is	 the	 yardstick	 for	 measuring
how	effective	your	activities	are.

Leverage	 is	 critical	 because	 time	 is	 your	most	 limited	 resource.	 Unlike
other	 resources,	 time	 cannot	 be	 stored,	 extended,	 or	 replaced.	 2	 The
limitations	of	time	are	inescapable,	regardless	of	your	goals.	You	might	be	a
product	engineer	deciding	what	to	tackle	to	maximize	your	impact	on	users.
Or	you	might	be	an	infrastructure	engineer	figuring	out	what	scaling	issue	to
focus	on	next.	You	might	be	a	workaholic	who	loves	to	code	60	to	70	hours
per	week	at	 the	office.	Or	you	might	be	a	 subscriber	 to	Timothy	Ferris’s	4-
Hour	Work	Week	philosophy	and	only	want	 to	put	 in	 the	minimal	hours	per
week	 required	 to	 sustain	your	 lifestyle	business.	No	matter	who	you	are,	 at
some	 point	 in	 your	 career	 you’ll	 realize	 that	 there’s	more	work	 to	 be	 done
than	time	available,	and	you’ll	need	to	start	prioritizing.

Another	 way	 of	 thinking	 about	 leverage	 is	 the	 commonly-mentioned
Pareto	principle,	or	80–20	rule—the	notion	 that	 for	many	activities,	80%	of
the	 impact	 comes	 from	 20%	 of	 the	work.	 3	 That	 20%	 comprises	 the	 high-
leverage	activities,	activities	that	produce	a	disproportionately	high	impact	for
a	relatively	small	time	investment.

Effective	 engineers	 use	 this	 simple	 equation	 as	 their	 central,	 guiding
metric	 for	 determining	 how	 and	 where	 to	 spend	 their	 time.	 Greek
mathematician	and	engineer	Archimedes	once	declared,	“Give	me	a	place	to
stand,	and	a	lever	long	enough,	and	I	shall	move	the	world.”	4	It	can	be	hard
to	move	a	huge	boulder	by	yourself,	but	with	a	powerful	enough	 lever,	you
can	move	almost	anything.	High-leverage	activities	behave	similarly,	 letting
you	amplify	your	limited	time	and	effort	to	produce	much	more	impact.

Based	 on	 the	 principle	 of	 leverage,	 it’s	 clear	why	 our	 engineering	 team
focused	 on	 mentoring	 and	 training	 new	 engineers.	 Mentoring	 is	 a	 prime
example	 of	 a	 high-ROI	 activity.	 In	 a	 single	 year,	 a	 typical	 engineer	 works
between	1,880	and	2,820	hours.	5	Devoting	even	1	hour	every	day	for	the	first
month	 (20	 hours)	 to	 mentor	 or	 train	 a	 new	 hire	 may	 seem	 like	 a	 large

investment;	yet	it	represents	only	about	1%	of	the	total	time	the	new	hire	will
spend	working	during	her	first	year.	Creating	reusable	resources	like	codelabs
paid	 off	 even	 higher	 dividends	 and	 required	 little	 upkeep	 after	 an	 upfront
investment.

Moreover,	that	1%	time	investment	can	have	an	outsized	influence	on	the
productivity	and	effectiveness	of	the	other	99%	of	work	hours.	Pointing	out	a
useful	UNIX	command	could	save	minutes	or	hours	on	basic	tasks.	Walking
through	debugging	tools	could	drastically	reduce	development	time	for	every
new	 feature.	Reviewing	 code	 early	 and	 thoroughly	 to	 catch	 common	 errors
could	 remove	 the	 need	 to	 re-address	 similar	 issues	 later	 and	 prevent	 bad
habits	from	forming.	Teaching	a	new	hire	how	to	prioritize	different	projects
to	complete	or	skills	to	learn	could	easily	increase	his	productivity.	Planning
good	 starter	 projects	 that	 teach	 core	 abstractions	 and	 fundamental	 concepts
could	 improve	 her	 software	 designs	 and	 reduce	 future	 maintenance
requirements.

Since	 the	 success	 of	 our	 startup	 depended	 more	 on	 the	 success	 of	 the
entire	 team	 than	 on	 what	 any	 one	 engineer	 could	 accomplish,	 investing	 in
programs	to	ramp	up	new	engineers	as	quickly	and	as	seamlessly	as	possible
was	one	of	the	highest-leverage	activities	that	we	could	have	done.

Increase	Your	Leverage	in	Three	Ways

In	 his	 book	High	 Output	 Management,	 Former	 Intel	 CEO	 Andrew	 Grove
explains	 that	by	definition,	your	overall	 leverage—the	amount	of	value	 that
you	produce	per	unit	time—can	only	be	increased	in	three	ways:	6

1.	 By	reducing	the	time	it	takes	to	complete	a	certain	activity.
2.	 By	increasing	the	output	of	a	particular	activity.
3.	 By	shifting	to	higher-leverage	activities.
These	three	ways	naturally	translate	into	three	questions	we	can	ask	ourselves
about	any	activity	we’re	working	on:
1.	 How	can	I	complete	this	activity	in	a	shorter	amount	of	time?
2.	 How	can	I	increase	the	value	produced	by	this	activity?
3.	 Is	there	something	else	that	I	could	spend	my	time	on	that	would	produce

more	value?
Your	 output	 as	 an	 engineer	 is	measured	 in	 a	 variety	 of	ways,	 including	 the
numbers	 of	 products	 launched,	 bugs	 fixed,	 users	 acquired,	 and	 engineers
hired,	 along	 with	 ranking	 quality	 improved,	 revenue	 generated,	 and	 many
other	metrics.	Your	 total	 output	 is	 the	 sum	of	 the	 output	 of	 your	 individual
activities.	 In	 a	 typical	 work	 day,	 these	 activities	 might	 include	 attending
meetings,	 responding	 to	 emails,	 investigating	 bugs,	 refactoring	 old	 code,

developing	new	features,	reviewing	changes,	monitoring	metrics,	maintaining
production	systems,	interviewing	potential	hires,	and	more.

However,	 spending	 your	 work	 day	 going	 through	 the	 motions	 of	 these
different	activities	does	not	necessarily	mean	that	you’re	producing	value	the
entire	 time.	 As	 Figure	 1	 shows,	 each	 individual	 daily	 activity	 has	 its	 own
leverage,	 measured	 by	 the	 activity’s	 output	 divided	 by	 the	 time	 it	 takes	 to
complete	 that	 activity.	 Some	 activities,	 like	 implementing	 a	 feature	 request,
learning	 a	 new	 testing	 framework,	 or	 fixing	 an	 important	 bug,	 have	 high
leverage;	others,	 like	surfing	 the	web	or	 responding	 to	email,	might	 take	up
just	 as	 much	 time	 but	 have	 lower	 leverage	 because	 they	 don’t	 generate	 as
much	value.

Figure	1:	Leverage	of	different	activities	during	a	typical	workday.

To	 increase	 the	 leverage	 of	 each	 activity,	 ask	 yourself	 the	 previous	 three
questions,	 each	 of	 which	 leads	 to	 a	 different	 avenue	 of	 potential

improvements.	For	example,	you	might	have	a	one-hour	meeting	that	you’ve
scheduled	 with	 your	 team	 to	 review	 their	 progress	 on	 a	 project.	 You	 can
increase	the	meeting’s	leverage	by:
1.	 Defaulting	to	a	half-hour	meeting	instead	of	a	one-hour	meeting	to	get	the

same	amount	done	in	less	time.
2.	 Preparing	 an	 agenda	 and	 a	 set	 of	 goals	 for	 the	meeting	 and	 circulating

them	 to	 attendees	 beforehand	 so	 that	 the	 meeting	 is	 focused	 and	 more
productive.

3.	 If	an	 in-person	discussion	isn’t	actually	necessary,	replacing	the	meeting
with	 a	 email	 discussion	 and	 spending	 the	 time	 building	 an	 important
feature	instead.

Or	 perhaps	 you’re	 a	 product	 engineer,	 ready	 to	 start	 working	 on	 a	 new
customer-facing	 feature	 for	 your	 company’s	 flagship	 product.	 You	 might
increase	the	leverage	of	your	development	time	by:
1.	 Automating	parts	of	the	development	or	testing	process	that	have	thus	far

been	done	manually,	so	that	you	can	iterate	more	quickly.
2.	 Prioritizing	 tasks	 based	 on	 how	 critical	 they	 are	 for	 launch	 so	 that	 you

maximize	the	value	of	what	you	finally	ship.
3.	 Talking	 with	 the	 customer	 support	 team	 to	 gain	 insights	 into	 the

customers’	 biggest	 pain	 points,	 and	 using	 that	 knowledge	 to	 understand
whether	 there’s	 another	 feature	 you	 could	 be	 working	 on	 that	 would
produce	even	more	value	with	less	development	effort.

Or	 suppose	 that	 you’re	 a	 performance	 engineer	 identifying	 and	 fixing	 the
bottlenecks	 in	 a	 web	 application.	 The	 application	 might	 slow	 down	 as	 the
product	 teams	launch	new	products	and	features,	and	 it’s	your	 job	 to	ensure
that	 it	 stays	 fast.	 Some	 approaches	 you	 might	 consider	 to	 increase	 your
leverage	include:
1.	 Learning	to	effectively	use	a	profiling	tool	so	that	you	can	reduce	the	time

it	takes	to	identify	each	bottleneck.
2.	 Measuring	both	the	performance	and	visit	frequency	of	each	web	page	so

that	 you	 can	 address	 the	 bottlenecks	 that	 affect	 the	 most	 traffic	 first,
thereby	increasing	the	impact	of	each	fix	you	make.

3.	 Working	 with	 product	 teams	 to	 design	 performant	 software	 from	 the
outset,	so	that	application	speed	is	prioritized	as	a	feature	during	product
development	rather	than	treated	as	a	bug	to	be	fixed.

As	these	examples	illustrate,	for	any	given	activity,	there	are	three	approaches
you	 can	 take	 to	 increase	 the	 leverage	 of	 your	 time	 spent.	 When	 you
successfully	shorten	 the	 time	required	for	an	activity,	 increase	 its	 impact,	or
shift	to	a	higher-leverage	activity,	you	become	a	more	effective	engineer.

Direct	Energy	Toward	Leverage	Points,	Not	Just	Easy
Wins

We	have	a	limited	amount	of	time	and	a	large	number	of	possible	activities.
As	 you	 make	 your	 way	 through	 this	 book,	 constantly	 keep	 one	 lesson	 in
mind:	 focus	 on	 high-leverage	 activities.	 This	 is	 the	 single	 most	 valuable
lesson	that	I’ve	learned	in	my	professional	life.

Don’t	confuse	high-leverage	activities	with	easy	wins,	however.	Just	as	a
lever	lets	you	apply	a	small	amount	of	force	over	a	long	distance	to	generate	a
much	larger	force,	so	too	do	many	high-leverage	activities	require	consistent
applications	of	effort	over	 long	 time	periods	 to	achieve	high	 impact.	Yishan
Wong,	 an	 early	 director	 of	 engineering	 at	 Facebook	 and	 a	 former	 CEO	 of
Reddit,	shared	a	story	with	me	of	his	proudest	accomplishment	at	Facebook
that	underscores	this	point.	7

Facebook	has	a	strong	hiring	culture.	Employees	view	themselves	as	the
guardians	of	high	standards,	and	hiring	is	a	top	priority	for	both	managers	and
engineers.	 But	 it	 wasn’t	 always	 this	 way.	When	Wong	 first	 entered	 into	 a
management	position	at	Facebook	 in	 late	2006,	 engineers	viewed	 recruiting
and	 interviews	 as	 distractions	 from	 getting	 their	 work	 done	 8—an	 attitude
that’s	 common	 to	 engineers	 at	 many	 companies.	 Everyone	 knew	 on	 some
level	 that	 hiring	 was	 important,	 but	 translating	 it	 into	 action	 was	 another
matter.

Wong	had	to	gradually	apply	pressure	to	change	the	prevailing	mindset	to
one	where	people	considered	 the	hiring	process	an	art	 form	 to	be	mastered.
When	 engineers	 asked	 him	how	 the	 company	would	 ensure	 that	 the	 people
being	hired	were	strong	engineers,	Wong	would	tell	 them	that	this	was	 their
job.	And	because	hiring	was	a	top	priority,	engineers	didn’t	skip	interviews	to
do	 other	 work.	 They	 were	 expected	 to	 submit	 feedback	 immediately,	 as
opposed	to	deferring	it	for	hours	or	days.	When	recruiters	needed	to	schedule
interviews	 with	 candidates,	 Wong	 would	 push	 them	 to	 schedule	 the
conversations	 in	 the	 “first	 humanly-possible	 time	 slot.”	 9	 Can’t	 meet	 until
tomorrow?	How	about	8am?	Not	free	until	the	afternoon?	What	about	1pm?
Wong	built	a	culture	where	even	rejected	candidates	would	 leave	 interviews
wanting	 to	work	 at	 Facebook.	And	 over	 his	 four	 years	 at	 the	 company,	 an
obsession	 with	 speed	 and	 quality	 in	 hiring	 became	 one	 of	 Facebook’s
competitive	 advantages.	 While	 slower-moving	 companies	 dilly-dallied,
Facebook	closed	candidates.

Building	a	strong	hiring	culture	wasn’t	a	quick	and	easy	fix;	it	was	a	high-
leverage	activity	that	required	consistent	effort	over	many	years.	Once	strong
people	joined	the	company,	however,	it	became	easier	to	attract	more	strong
people.	It’s	clear	that	Facebook	could	not	have	become	a	massively	successful

$220+	billion	 company	with	over	9,000	employees	without	 its	 emphasis	on
the	hiring	process.	10

Our	 own	 work	 might	 not	 be	 on	 as	 grand	 a	 scale,	 but	 the	 concept	 of
leverage	is	as	powerful	of	a	framework	for	us	as	it	is	for	Facebook.	Moreover,
leverage	is	used	not	just	by	effective	engineers,	but	also	by	the	world’s	most
successful	 people.	 Bill	 Gates,	 for	 example,	 after	 retiring	 as	 the	 CEO	 of
Microsoft,	 started	 focusing	 his	 time	 and	 energy	 on	 how	 to	 best	 invest	 his
billions	 of	 dollars	 in	 philanthropy.	While	 the	 $40.2	 billion	managed	 by	 the
Bill	&	Melinda	Gates	Foundation	may	be	a	lot	of	money,	it’s	still	not	nearly
enough	to	solve	all	of	the	world’s	problems.	11	“[I]n	a	global	economy	worth
tens	of	trillions	of	dollars,	any	philanthropic	effort	is	relatively	small,”	writes
Gates	 in	a	November	2013	Wired	 essay.	“If	you	want	 to	have	a	big	 impact,
you	need	a	leverage	point—a	way	to	put	in	a	dollar	of	funding	or	an	hour	of
effort	 and	 benefit	 society	 by	 a	 hundred	 or	 a	 thousand	 times	 as	much.”	 For
Gates,	 those	 leverage	 points	 include	 funding	measles	 and	malaria	 vaccines
that	cost	less	than	25	cents	each	but	that	save	millions	of	lives.	12

Similarly,	engineering	has	its	own	set	of	leverage	points.	This	book	won’t
be	 a	 substitute	 for	mindful	 reflection,	 but	 it	 can	 help	 shortcut	 your	 path	 to
finding	 these	points.	 In	each	subsequent	chapter,	you’ll	 find	a	high-leverage
habit	 of	 effective	 engineers—reinforced	 by	 scientific	 research,	 stories	 from
industry,	and	concrete	examples.	You’ll	read	about	why	the	leverage	of	each
habit	justifies	its	time	investment,	and	you’ll	also	find	concrete	and	actionable
tips	for	incorporating	each	habit	into	your	own	craft.	Doubling	down	on	these
leverage	points	will	help	you	 transform	the	 time	and	effort	you	spend	as	an
engineer	into	meaningful	impact.

Key	Takeaways

Use	leverage	to	measure	your	engineering	effectiveness.	Focus	on	what
generates	the	highest	return	on	investment	for	your	time	spent.
Systematically	increase	the	leverage	of	your	time.	Find	ways	to	get	an
activity	done	more	quickly,	to	increase	the	impact	of	an	activity,	or	to	shift
to	activities	with	higher	leverage.
Focus	your	effort	on	 leverage	points.	Time	 is	your	most	 limited	asset.
Identify	 the	 habits	 that	 produce	 disproportionately	 high	 impact	 for	 the
time	you	invest.

A

Optimize	for	Learning

TYRANNOSAURUS	 REX	 SKELETON	 STANDS	 GUARD	 OVER	 THE	 GOOGLEPLEX,
Google’s	Silicon	Valley	headquarters.	It’s	right	next	 to	the	company’s
sand	 volleyball	 court	 and	 a	 building	 that	 houses	 a	 replica	 of

SpaceShipOne,	 the	 plane	 that	 completed	 the	 first	 manned,	 private	 flight	 to
space.	 Scattered	 around	 the	 rest	 of	 the	 campus	 are	 foosball	 and	 ping-pong
tables,	video	arcade	machines,	climbing	walls,	tennis	courts,	a	bowling	alley,
and	even	a	brightly	colored	ball	pit.	Carefully	placed	mini-kitchens	 stocked
with	drinks	and	snacks,	and	18	cafes	serving	a	variety	of	cuisines,	all	ensure
that	employees	stay	well-fed.

In	the	summer	of	2006,	right	after	graduating	from	MIT,	I	landed	a	job	at
Google’s	Search	Quality	team	and	found	myself	in	this	corporate	playground.
For	a	curious	and	motivated	22-year-old,	the	fun	didn’t	stop	with	the	amazing
facilities.	Google	turned	out	to	be	an	intellectual	playground	as	well.

Exciting	new	things	to	learn	were	everywhere,	and	I	hungered	to	soak	in
all	 the	 knowledge	 I	 could	 get	 my	 hands	 on.	 I	 raced	 through	 codelabs,	 the
documents	 that	 explained	 why	 core	 software	 abstractions	 like	 Protocol
Buffers,	1	BigTable,	2	and	MapReduce	3	were	developed	and	described	how
they	all	worked.	I	read	internal	wikis	and	design	documents	to	learn	about	the
rationale	 for	 and	 the	 internals	 behind	 Google’s	 state-of-the-art	 search,
indexing,	 and	 storage	 systems.	 I	 studied	 programming	 guides	 for	 C++,
Python,	 and	 JavaScript,	 in	which	veteran	 engineers	 had	distilled	decades	of
collective	 experience	 and	 best	 practices	 into	 easily	 digestible	 forms.	 I	 dug
around	 in	 the	 source	 code	 of	 libraries	written	 by	 early	Google	 legends	 like
Jeff	 Dean	 and	 Sanjay	 Ghemawat.	 I	 attended	 tech	 talks	 given	 by	 renowned
architects	like	Joshua	Bloch,	who	designed	core	Java	libraries,	and	Guido	van
Rossum,	the	creator	of	the	Python	programming	language.

Writing	 software	 at	Google	 proved	 to	 be	 an	 exhilarating	 adventure.	My
two	 teammates	 and	 I	 built	 and	 launched	 query	 suggestions	 on	 google.com,
helping	 tens	 to	hundreds	of	millions	of	people	every	day	 refine	 their	 search
queries	and	find	better	search	results.	Empowered	by	Google’s	massive	data
centers,	we	orchestrated	MapReduce	jobs	over	thousands	of	machines	to	build

2

data	 models.	 One	 night,	 just	 before	 a	 meeting	 with	 then-VP	 of	 Search
Products	Marissa	Mayer,	the	three	of	us	hacked	together	a	working	demo	to
get	 initial	approval	 for	our	 first	experiment	on	 live	 traffic.	Another	surge	of
adrenaline	 rushed	 through	 the	 team	 weeks	 later,	 when	 we	 presented	 our
metrics	and	our	feature	to	Google’s	co-founders,	Larry	Page	and	Sergey	Brin,
for	their	final	approval.	And	for	our	small	team	to	build	and	launch	the	entire
feature	in	just	five	months	made	the	experience	all	the	more	memorable.

The	other	perks	were	hard	 to	beat,	 too.	 In	 addition	 to	 the	 free	 food,	 the
campus	 gym,	 and	 the	 on-site	 massages,	 Google	 engineers	 went	 on	 annual
company	 trips	 to	 places	 like	 Squaw	Valley	 Ski	Resort	 and	Disneyland.	My
search	team	even	received	an	all-expenses-paid	trip	to	Maui.	Life	was	grand.

And	yet,	despite	all	this,	I	left	Google	after	two	years.
I	left	when	I	realized	that	Google	was	no	longer	the	optimal	place	for	me

to	learn.	After	two	years,	my	learning	curve	had	plateaued,	and	I	knew	I	could
be	 learning	 more	 somewhere	 else.	 I	 had	 consumed	 most	 of	 the	 training
materials	and	design	documents	that	I	had	cared	to	read,	and	the	exciting	five-
month	 timeline	 for	 launching	a	new	end-to-end	 feature	 turned	out	 to	be	 the
exception	rather	than	the	rule.	When	I	projected	what	I	could	accomplish	with
an	additional	year	at	the	company,	I	felt	unsatisfied.	I	knew	it	was	time	for	my
next	adventure.

After	Google,	I	spent	my	next	five	years	at	Ooyala	and	Quora,	two	fast-
paced	startups	in	Silicon	Valley.	And	with	each	transition,	I’ve	optimized	for
learning	and	found	myself	growing,	both	professionally	and	personally,	more
than	 I	 could	 ever	 have	 done	 if	 I	 had	 stayed	 within	 the	 comforts	 of	 the
Googleplex.	Google	might	be	one	of	the	few	places	where	you	can	work	on
large-scale	machine	learning,	self-driving	cars,	and	wearable	computers,	and
these	projects	attract	many	 talented	engineers.	But	since	 leaving,	 I’ve	found
unique	opportunities	to	work	with	amazingly	talented	people,	help	grow	great
engineering	 teams,	 shape	 company	 culture,	 and	 build	 products	 used	 by
millions	of	people	 from	the	ground	up—opportunities	 that	would	have	been
much	 harder	 to	 find	 had	 I	 stayed	 at	 Google.	 The	mantra	 of	 optimizing	 for
learning	has	guided	much	of	what	I	do,	and	I’ve	never	regretted	my	decision.

Optimizing	 for	 learning	 is	 a	 high-leverage	 activity	 for	 the	 effective
engineer,	 and	 in	 this	 chapter,	 we’ll	 examine	 why.	We’ll	 walk	 through	 how
adopting	a	growth	mindset	is	a	prerequisite	for	improving	our	abilities.	We’ll
discuss	the	compounding	effects	of	learning	and	why	it’s	important	to	invest
in	 your	 rate	 of	 learning.	 We’ll	 identify	 six	 key	 elements	 about	 a	 work
environment	 that	 you	 should	 consider	 when	 looking	 for	 jobs	 or	 switching
teams.	 We’ll	 cover	 actionable	 tips	 for	 taking	 advantage	 of	 learning
opportunities	on	the	job.	And	finally,	we’ll	close	with	some	strategies	for	how
you	can	always	be	learning,	even	outside	of	the	workplace.

Adopt	a	Growth	Mindset

Several	years	after	graduating,	I	still	mostly	hung	out	with	a	few	close	college
friends.	I’m	an	introvert,	and	even	though	I	would’ve	been	much	happier	with
a	larger	social	circle,	meeting	new	people	and	making	small	talk	weren’t	my
strong	 suits.	 I	much	 preferred	 the	 conversational	 comfort	 of	 people	 I	 knew
well.	I	turned	down	coffee	meetings	with	people	I	didn’t	know,	I	stayed	away
from	big	parties,	 and	 I	passed	on	networking	events,	 all	because	 they	made
me	uncomfortable.	Eventually,	however,	I	realized	that	avoiding	social	events
wasn’t	exactly	conducive	to	meeting	new	people	(what	a	surprise)	and	that	the
situation	wouldn’t	improve	on	its	own.

And	 so	 one	 year,	 like	 Jim	 Carrey’s	 character	 in	 the	 movie	 Yes	 Man,	 I
resolved	to	say	yes	to	every	social	engagement	that	I	was	invited	to	or	came
across.	I	showed	up	to	parties	and	meetups	where	I	didn’t	know	anyone,	and	I
grabbed	coffee	with	people	who	reached	out	to	me	online.	Awkward	silences
and	 forced	 small	 talk	 punctuated	many	 initial	 conversations.	 I	would	 spend
hours	at	some	networking	events	and	leave	with	no	meaningful	connections.
But	 I	 kept	 at	 it.	 If	 I	 botched	 one	 conversation,	 I	would	 think	 about	wittier
responses	I	could	have	given	and	try	to	improve	on	the	next	one.	I	practiced
telling	 better	 stories.	 I	 held	 onto	 the	 belief	 that	 being	 an	 engaging
conversationalist	was	a	learnable	skill	and	that	I	would	get	more	comfortable
with	it	over	time.	That	year	was	a	formative	experience	for	me.	Not	only	did	I
make	 a	 number	 of	 great	 friends	 and	 contacts—people	 I	 wouldn’t	 have
connected	 with	 otherwise—I	 also	 stretched	 the	 limits	 of	 my	 own	 comfort
zone.	I	still	have	ample	space	to	improve,	but	I	learned	that	like	many	other
skills,	engaging	in	dialogue	with	strangers	gets	better	with	effort	and	practice.

This	story	might	not	seem	like	it	has	much	to	do	with	engineering,	but	it
illustrates	 the	 power	 of	 the	 right	mindset	 about	 any	 of	 our	 skills.	 How	we
view	our	own	intelligence,	character,	and	abilities	profoundly	affects	how	we
lead	our	 lives;	 it	 largely	determines	whether	we	remain	stuck	 in	our	current
situations	or	achieve	what	we	value.	That’s	what	Stanford	psychologist	Carol
Dweck	concludes	in	her	book	Mindset,	written	after	20	years	of	researching
people’s	 self-perceptions	 and	 beliefs.	 4	 Dweck’s	 findings	 are	 relevant	 to	 us
engineers,	 because	 how	we	 view	 our	 own	 effectiveness	 impacts	 how	much
effort	we	invest	in	improving	it.

Dweck	found	that	people	adopt	one	of	two	mindsets,	which	in	turn	affects
how	 they	 view	 effort	 and	 failure.	 People	 with	 a	 fixed	mindset	 believe	 that
“human	 qualities	 are	 carved	 in	 stone”	 and	 that	 they’re	 born	 with	 a
predetermined	 amount	 of	 intelligence—either	 they’re	 smart	 or	 they’re	 not.
Failure	 indicates	 they’re	 not,	 so	 they	 stick	 with	 the	 things	 they	 do	 well—
things	 that	validate	 their	 intelligence.	They	 tend	 to	give	up	early	and	easily,
which	enables	them	to	point	to	a	lack	of	effort	rather	than	a	lack	of	ability	as
causing	failure.	On	the	other	hand,	 those	with	a	growth	mindset	believe	 that

they	can	cultivate	and	grow	their	intelligence	and	skills	through	effort.	They
may	 initially	 lack	 aptitude	 in	 certain	 areas,	 but	 they	 view	 challenges	 and
failures	as	opportunities	to	learn.	As	a	result,	they’re	much	less	likely	to	give
up	on	their	paths	to	success.	5

Mindset	 influences	 whether	 people	 take	 advantage	 of	 opportunities	 to
improve	their	skills.	In	one	study	conducted	in	a	Hong	Kong	university	where
all	classes	were	taught	in	English,	Dweck	offered	struggling	English	speakers
the	 chance	 to	 enroll	 in	 a	 remedial	 language	 class.	By	 asking	 if	 they	 agreed
with	statements	like	“You	have	a	certain	amount	of	intelligence,	and	you	can’t
really	 do	 much	 to	 change	 it,”	 she	 distinguished	 between	 the	 students	 with
fixed	and	growth	mindsets.	Tellingly,	73%	of	students	with	a	growth	mindset
enrolled	in	the	class,	compared	with	only	13%	of	the	fixed	mindset	students.	6
This	makes	intuitive	sense—after	all,	if	you	believe	your	level	of	intelligence
to	be	set	and	unchangeable,	why	waste	 time	and	effort	 trying	and	 failing	 to
learn?	Another	study	compared	two	groups	of	7th	graders	in	New	York	City
public	schools.	The	students	who	were	taught	about	the	nature	of	intelligence
and	how	 it	 could	 be	 increased	 through	 experience	 and	 hard	work	 saw	 their
math	grades	improve	over	the	year.	The	math	scores	of	the	control	group,	who
didn’t	receive	the	extra	lesson,	actually	worsened.	7	Several	other	studies	have
confirmed	the	pattern:	those	with	growth	mindsets	are	willing	to	take	steps	to
better	themselves,	whereas	those	with	fixed	mindsets	are	not.	8	9

This	 research	 reminds	 us	 that	 the	 mindset	 we	 adopt	 about	 our
effectiveness	as	engineers	drastically	shapes	whether	we	learn	and	grow	or	let
our	 skills	 plateau	 and	 stagnate.	Do	we	 treat	 our	 abilities	 as	 fixed	 quantities
outside	 of	 our	 control?	 Or	 do	we	 direct	 our	 efforts	 and	 our	 energy	 toward
improving	ourselves?

So	how	do	we	build	a	growth	mindset?	One	piece	of	 advice	 that	Tamar
Bercovici,	an	engineering	manager	at	Box,	offers	 to	new	hires	 is	“own	your
story.”	In	just	two	years,	Bercovici	had	risen	to	become	a	staff	engineer	and
manager	at	a	company	that	helps	over	200,000	businesses	share	and	manage
content	 online.	 But	 prior	 to	 joining	 Box’s	 30-person	 engineering	 team	 in
2011,	Bercovici	hadn’t	even	done	any	full-time	web	development.	She	came
from	 a	 theoretical	 and	 math-heavy	 background	 at	 an	 Israeli	 university.
Engineering	interviewers	assumed	that	she	didn’t	enjoy	coding,	that	her	PhD
provided	 few	 practical	 advantages,	 and	 that	 she	 didn’t	 know	 enough	 about
engineering	to	ramp	up	quickly.

Someone	 with	 a	 fixed	 mindset	 might	 have	 concluded	 from	 those
assessments	that	she	ought	to	stick	with	her	strengths	and	do	more	theoretical
work.	But	rather	than	let	those	preconceptions	define	her,	Bercovici	adopted	a
growth	mindset	and	took	control	of	the	parts	of	her	story	that	were	within	her
sphere	 of	 influence.	 She	 studied	 new	 web	 technologies,	 distilled	 relevant
engineering	 lessons	 from	 her	 PhD,	 and	 practiced	 for	 the	 whiteboard
interviews	 common	 at	 many	 engineering	 companies—and	 she	 got	 the	 job.

“It’s	not	about	apologizing	for	where	your	resume	doesn’t	 line	up	but	rather
telling	your	story—who	you	are,	what	skills	you’ve	built,	what	you’re	excited
about	doing	next	and	why,”	Bercovici	explained	 to	me.	By	writing	her	own
story	 instead	of	 letting	others	define	 it,	 she	ended	up	 leading	 the	distributed
data	 systems	 team	at	one	of	Silicon	Valley’s	hottest	companies,	which	went
public	in	January	2015.

Bercovici’s	story	is	a	great	illustration	of	what	adopting	a	growth	mindset
looks	like.	It	means	accepting	responsibility	for	each	aspect	of	a	situation	that
you	 can	 change—anything	 from	 improving	 your	 conversational	 skills	 to
mastering	 a	 new	 engineering	 focus—rather	 than	 blaming	 failures	 and
shortcomings	on	things	outside	your	control.	It	means	taking	control	of	your
own	 story.	 It	means	optimizing	 for	 experiences	where	you	 learn	 rather	 than
for	 experiences	 where	 you	 effortlessly	 succeed.	 And	 it	 means	 investing	 in
your	rate	of	learning.

Invest	in	Your	Rate	of	Learning

In	school,	we	learn	about	the	power	of	compound	interest.	Once	interest	gets
added	 to	 the	principal	of	a	deposit,	 that	 interest	gets	put	 to	work	generating
future	 interest,	which	 in	 turn	generates	 even	more	 future	 interest.	There	 are
three	important	takeaways	from	that	simple	lesson:
1.	 Compounding	leads	to	an	exponential	growth	curve.	As	Figure	1	shows,

an	exponential	growth	curve	looks	like	a	hockey	stick.	It	grows	slowly	at
first,	 looking	 flat	 and	 almost	 linear;	 but	 then	 suddenly	 it	 transitions	 to
rapid	growth.

Figure	1:	An	exponential	growth	curve	due	to	compounding.

2.	 The	 earlier	 compounding	 starts,	 the	 sooner	 you	 hit	 the	 region	 of	 rapid

2.	 The	 earlier	 compounding	 starts,	 the	 sooner	 you	 hit	 the	 region	 of	 rapid
growth	 and	 the	 faster	 you	 can	 reap	 its	 benefits.	 That’s	 why	 financial
advisors	suggest	investing	in	retirement	accounts	like	401(k)s	as	early	as
possible:	so	you	can	take	advantage	of	additional	years	of	compounding.

3.	 Even	small	deltas	in	the	interest	rate	can	make	massive	differences	in	the
long	 run.	 This	 is	 illustrated	 graphically	 in	 Figure	 2(a),	which	 compares
two	 accounts	 that	 pay	 4%	 and	 5%	 interest	 respectively,	 compounded
daily.	 The	 5%	 account	 produces	 49%	 higher	 returns	 after	 40	 years	 and
82%	after	60.	And	if	you	manage	to	double	the	interest	rate	 to	8%	as	in
Figure	2(b),	you	end	up	with	almost	5x	higher	returns	after	40	years	and
11x	after	60.	10

Figure	2:	Growth	of	value	over	time	in	accounts	that	(a)	pay	4%	and	5%
interest	and	that	(b)	pay	4%	and	8%	interest,	compounded	daily.

Learning,	like	interest,	also	compounds.	Therefore,	the	same	three	takeaways
apply:
1.	 Learning	 follows	 an	 exponential	 growth	 curve.	 Knowledge	 gives	 you	 a

foundation,	 enabling	 you	 to	 gain	 more	 knowledge	 even	 faster.	 For
example,	an	understanding	of	recursion	provides	the	basis	for	many	other
concepts,	 like	 trees	 and	 graph	 searches,	which	 in	 turn	 are	 necessary	 for
understanding	compilers	and	network	topologies.

2.	 The	earlier	that	you	optimize	for	learning,	the	more	time	your	learning	has
to	compound.	A	good	first	job,	for	example,	makes	it	easier	to	get	a	better
second	job,	which	then	affects	future	career	opportunities.

3.	 Due	to	compounding,	even	small	deltas	in	your	own	learning	rate	make	a
big	difference	over	the	long	run.

This	 last	 point	 about	 the	 compounding	 returns	 of	 intelligence	 is	 the	 least

This	 last	 point	 about	 the	 compounding	 returns	 of	 intelligence	 is	 the	 least
intuitive:	we	tend	to	drastically	underestimate	the	impact	of	small	changes	on
our	growth	rate.	But	when	we	spend	our	work	hours	on	unchallenging	tasks,
we’re	not	 just	boring	ourselves	and	missing	out	on	chances	 to	 learn—we’re
also	 paying	 a	 huge	 opportunity	 cost	 in	 terms	 of	 our	 future	 growth	 and
learning.	Stephen	Cohen,	 the	 co-founder	 of	Palantir,	 a	 technology	 company
that	powers	the	infrastructure	of	intelligence	agencies	like	the	CIA,	FBI,	and
MI6,	emphasized	this	point	at	a	Stanford	guest	lecture.	When	companies	pay
you	 for	 cushy	 and	unchallenging	9-to-5	 jobs,	Cohen	 argues,	 “what	 they	 are
actually	doing	is	paying	you	to	accept	a	much	lower	intellectual	growth	rate.
When	 you	 recognize	 that	 intelligence	 is	 compounding,	 the	 cost	 of	 that
missing	long-term	compounding	is	enormous.	They’re	not	giving	you	the	best
opportunity	 of	 your	 life.	 Then	 a	 scary	 thing	 can	 happen:	 …	 [y]ou	 get
complacent	and	stall.”	11

So	 how	 do	we	 avoid	 complacency	 and	 instead	 shift	 ourselves	 toward	 a
growth	 mindset?	 LinkedIn	 co-founder	 Reid	 Hoffman	 suggests	 treating
yourself	 like	 a	 startup.	 In	 his	 book	 The	 Startup	 of	 You,	 he	 explains	 that
startups	initially	prioritize	learning	over	profitability	to	increase	their	chances
of	 success.	 They	 launch	 beta	 versions	 of	 their	 product	 and	 then	 iterate	 and
adapt	as	 they	learn	what	customers	actually	want.	Similarly,	setting	yourself
up	for	long-term	success	requires	thinking	of	yourself	as	a	startup	or	product
in	beta,	a	work-in-progress	that	needs	to	be	invested	in	and	iterated	on	every
single	day.	12

Continuous	iteration	is	also	advocated	by	Zappos	CEO	Tony	Hsieh,	in	his
book	Delivering	Happiness.	13	Pursuing	growth	and	learning	is	one	of	the	ten
core	values	at	the	online	shoes	and	clothing	company,	which	grew	its	revenue
from	zero	 to	over	$1.2	billion	 in	 ten	years.	Hsieh	and	his	CFO,	Alfred	Lin,
gave	 a	 standing	 challenge	 to	 all	 employees:	 “Think	 about	what	 it	means	 to
improve	just	1%	per	day	and	build	upon	that	every	single	day.	Doing	so	has	a
dramatic	effect	and	will	make	us	37x	better,	not	365%	(3.65x)	better,	at	 the
end	of	the	year.”	14	15

What	will	you	learn	today	to	improve	yourself	by	1%?	That	1%	is	a	high-
leverage	investment	 to	develop	the	skills	and	the	knowledge	to	make	use	of
future	 opportunities.	 Mutual	 funds	 and	 bank	 accounts	 build	 your	 financial
capital,	but	learning	builds	your	human	and	career	capital.	You	would	rather
invest	 your	 financial	 assets	 in	 accounts	 that	 pay	high	 interest	 rates,	 not	 low
ones.	 Why	 would	 you	 treat	 your	 time—your	 most	 limited	 asset—any
differently?	Invest	your	time	in	activities	with	the	highest	learning	rate.	In	the
rest	of	the	chapter,	we’ll	give	some	concrete	examples	of	how	we	can	do	that
and	improve	ourselves	by	1%	per	day.

Seek	Work	Environments	Conducive	to	Learning

Because	we	 spend	 so	much	 of	 our	 time	 at	work,	 one	 of	 the	most	 powerful
leverage	 points	 for	 increasing	 our	 learning	 rate	 is	 our	 choice	 of	 work
environment.	When	starting	a	new	job	or	joining	a	new	team,	there’s	a	lot	to
learn	up	front.	We	pick	up	new	programming	languages,	adopt	new	tools	and
frameworks,	 learn	 new	 paradigms	 for	 understanding	 the	 product,	 and	 gain
insight	into	how	the	organization	operates.	But	how	do	we	ensure	that	beyond
the	 initial	 learning	 curve,	 the	work	 environment	 remains	one	where	we	 can
sustainably	learn	new	things	day	after	day?

Some	work	environments	are	more	conducive	than	others	for	supporting	a
high	 personal	 and	 professional	 growth	 rate.	 Here	 are	 six	 major	 factors	 to
consider	when	choosing	a	new	job	or	 team	and	the	questions	you	should	be
asking	for	each	of	them:
1.	 Fast	 growth.	 When	 Sheryl	 Sandberg	 was	 deciding	 whether	 to	 join

Google,	CEO	Eric	Schmidt	gave	her	a	valuable	piece	of	advice:	“If	you’re
offered	 a	 seat	 on	 a	 rocket	 ship,	 you	 don’t	 ask	 what	 seat.	 You	 just	 get
on.”	 16	 That	 advice	 to	 focus	 on	 growth	 served	 her	 well:	 she	 rose	 to
become	 a	 VP	 at	 Google,	 which	 opened	 the	 opportunity	 for	 her	 to	 later
become	 Facebook’s	 COO.	 At	 fast-growing	 teams	 and	 companies,	 the
number	 of	 problems	 to	 solve	 exceeds	 available	 resources,	 providing
ample	 opportunities	 to	 make	 a	 big	 impact	 and	 to	 increase	 your
responsibilities.	 The	 growth	 also	makes	 it	 easier	 to	 attract	 strong	 talent
and	build	a	strong	team,	which	feeds	back	to	generate	even	more	growth.
A	 lack	 of	 growth,	 on	 the	 other	 hand,	 leads	 to	 stagnation	 and	 politics.
Employees	 might	 squabble	 over	 limited	 opportunities,	 and	 it	 becomes
harder	to	find	and	retain	talent.

Questions	to	consider

What	is	the	weekly	or	monthly	growth	rates	of	core	business	metrics	(e.g.,	active	users,
annual	recurring	revenue,	products	sold,	etc.)?
Are	 the	 particular	 initiatives	 that	 you’d	 be	 working	 on	 high	 priorities,	 with	 sufficient
support	and	resources	from	the	company	to	grow?
How	aggressively	has	the	company	or	team	been	hiring	in	the	past	year?
How	quickly	have	the	strongest	team	members	grown	into	positions	of	leadership?

2.	 Training.	Strong	onboarding	programs	demonstrate	that	the	organization
prioritizes	 training	 new	 employees.	 Google,	 for	 example,	 invests
significant	 resources	 in	 its	 engEDU	 program—a	 set	 of	 classes,
professional	seminars,	design	documents,	and	programming	guides	geared
toward	helping	employees	grow	as	engineers	and	leaders.	Facebook	has	a
six-week	 onboarding	 program	 called	 Bootcamp,	 where	 new	 engineers
learn	about	the	company’s	tools	and	focus	areas	and	do	their	initial	hands-
on	development.	17	A	 smaller	 company	won’t	 have	 the	 same	volume	of
resources,	 but	 any	 team	 that	 understands	 the	 value	 of	 ramping	 up	 new
hires	as	quickly	as	possible	will	invest	in	creating	similar	programs—like

our	 team	 did	 at	 Quora.	 Similarly,	 a	 solid	 mentorship	 program	 also
indicates	that	the	team	prioritizes	professional	growth.

Questions	to	consider

Is	 each	new	person	expected	 to	 figure	 things	out	on	his	or	her	own,	or	 is	 there	a	more
formalized	way	of	onboarding	new	engineers?
Is	there	formal	or	informal	mentorship?
What	 steps	 has	 the	 company	 taken	 to	 ensure	 that	 team	members	 continue	 to	 learn	 and
grow?
What	new	things	have	team	members	learned	recently?

3.	 Openness.	 A	 growing	 organization	 isn’t	 going	 to	 figure	 out	 the	 most
effective	product	idea,	engineering	design,	or	organizational	process	on	its
first	 attempt.	 If	 it	 can	 continuously	 learn	 and	 adapt	 from	 past	mistakes,
however,	 then	 it	 stands	 a	 much	 better	 chance	 of	 success.	 That’s	 more
likely	 to	 happen	 if	 employees	 challenge	 each	 others’	 decisions	 and
incorporate	 feedback	 into	 the	 future	 iterations.	 Look	 for	 a	 culture	 of
curiosity,	where	everyone	is	encouraged	to	ask	questions,	coupled	with	a
culture	 of	 openness,	 where	 feedback	 and	 information	 is	 shared
proactively.	 Reflecting	 on	 failed	 projects,	 understanding	 what	 caused
production	 outages,	 and	 reviewing	 the	 returns	 on	 different	 product
investments	all	help	the	right	lessons	get	internalized.

Questions	to	consider

Do	employees	know	what	priorities	different	teams	are	working	on?
Do	teams	meet	to	reflect	on	whether	product	changes	and	feature	launches	were	worth	the
effort?	Do	they	conduct	post-mortems	after	outages?
How	is	knowledge	documented	and	shared	across	the	company?
What	are	examples	of	lessons	that	the	team	has	learned?

4.	 Pace.	A	work	environment	that	iterates	quickly	provides	a	faster	feedback
cycle	 and	 enables	 you	 to	 learn	 at	 a	 faster	 rate.	 Lengthy	 release	 cycles,
formalized	 product	 approvals,	 and	 indecisive	 leadership	 slow	 down
iteration	 speed;	 automation	 tools,	 lightweight	 approval	 processes,	 and	 a
willingness	 to	 experiment	 accelerate	 progress.	 Smaller	 teams	 and
companies	tend	to	have	fewer	bureaucratic	barriers	to	getting	things	done
than	larger	ones.	While	I	was	at	Google,	for	example,	any	visible	change
(even	experimental	ones)	 to	Google	search	had	 to	go	all	 the	way	up	 the
management	chain	to	a	weekly	user	interface	review	with	Marissa	Mayer,
the	VP	of	Search	Products	and	User	Experience,	which	slowed	the	pace	of
experimentation.	 At	 startups,	 the	 aggressive	 risk-taking	 and	 oftentimes
longer	hours	can	contribute	to	an	increased	learning	rate—as	long	as	you
don’t	burn	out.	Do	push	yourself,	but	 also	 find	a	pace	 that’s	 sustainable
for	you	in	the	long	run.

Questions	to	consider

Is	moving	quickly	reflected	in	the	company	or	engineering	values?
What	tools	does	the	team	use	to	increase	iteration	speed?
How	long	does	it	take	to	go	from	an	idea’s	conception	to	launch	approval?
What	 percentage	 of	 time	 is	 spent	 on	maintenance	 versus	 developing	 new	products	 and
features?

5.	 People.	Surrounding	yourself	with	people	who	are	smarter,	more	talented,
and	 more	 creative	 than	 you	 means	 surrounding	 yourself	 with	 potential
teachers	and	mentors.	Who	you	work	with	can	matter	more	than	what	you
actually	 do,	 in	 terms	 of	 your	 career	 growth	 and	 work	 happiness.	 At
smaller	companies,	you	might	be	able	 to	switch	teams	soon	if	you	don’t
gel	 with	 your	 co-workers,	 but	 bigger	 companies	 generally	 recommend
that	 you	 stay	 on	 a	 team	 for	 at	 least	 six	 months	 to	 a	 year	 to	 reduce
switching	costs	and	overhead.	Meet	with	potential	team	members	ahead	of
time	 before	 starting	 a	 new	 position.	 Don’t	 leave	 getting	 assigned	 to	 a
strong	or	subpar	team	to	the	luck	of	the	draw.

Questions	to	consider

Do	the	people	who	interviewed	you	seem	smarter	than	you?
Are	there	skills	they	can	teach	you?
Were	 your	 interviews	 rigorous	 and	 comprehensive?	Would	 you	want	 to	work	with	 the
types	of	people	who	would	do	well	on	them?
Do	 people	 tend	 to	 work	 on	 one-person	 projects,	 or	 are	 teamwork	 and	 cooperation
common	themes?

6.	 Autonomy.	 The	 freedom	 to	 choose	 what	 to	 work	 on	 and	 how	 to	 do	 it
drives	our	ability	to	learn—as	long	as	we	have	the	support	that	we	need	to
use	that	freedom	effectively.	At	established	companies,	employees	tend	to
work	on	specialized	projects,	but	they	also	have	access	to	more	coaching
and	structure.	At	smaller	companies,	you’ll	end	up	wielding	significantly
more	 autonomy	 over	 the	 total	 surface	 area	 of	 product	 features	 and
responsibilities,	but	you’ll	also	need	to	take	more	ownership	of	your	own
learning	 and	 growth.	 In	 my	 three	 years	 at	 Quora,	 for	 example,	 I	 had
opportunities	to	work	on	a	broad	range	of	technical	challenges	(including
experimentation	 tools,	 real-time	 analytics	 frameworks,	 site	 speed,
infrastructure,	 recommendations,	 spam	 detection,	 and	 mobile
development)	 as	 well	 as	 organizational	 challenges	 (including	 training
interviewers,	 creating	 onboarding	 resources,	 building	 the	 mentoring
program,	 and	 coordinating	 the	 internship	 program).	 It	 would	 have	 been
difficult	to	work	on	such	a	diversity	of	projects	at	a	larger	company,	where
the	 problems	 might	 be	 tackled	 by	 specialized	 teams	 and	 where	 the
processes	might	already	be	well-established.

Questions	to	consider

Do	people	 have	 the	 autonomy	 to	 choose	what	 projects	 they	work	 on	 and	 how	 they	 do
them?
How	often	do	individuals	switch	teams	or	projects?
What	breadth	of	 the	codebase	can	an	 individual	expect	 to	work	on	over	 the	course	of	a
year?
Do	 engineers	 participate	 in	 discussions	 on	 product	 design	 and	 influence	 product
direction?

These	six	factors	vary	from	company	to	company	and	from	team	to	team,	and
their	 importance	 to	 you	 will	 also	 change	 during	 the	 course	 of	 your	 career.
Onboarding	 and	 mentoring	 are	 more	 important	 earlier	 in	 your	 career,	 and
autonomy	matters	more	 later	 on.	When	 switching	 teams	or	 jobs,	make	 sure
that	you’re	asking	the	right	questions:	find	out	if	they	are	a	good	fit	and	offer
you	ample	learning	opportunities.

Dedicate	Time	on	the	Job	to	Develop	New	Skills

It’s	 easy	 to	 feel	 overwhelmed	by	how	much	you	need	 to	 get	 done	 at	work.
People	whom	 I’ve	mentored,	 particularly	 ones	who’ve	 recently	 started	 at	 a
new	 job,	 often	 feel	 that	 their	 task	 list	 keeps	 growing	 and	 growing	 and	 that
they’re	falling	further	and	further	behind.	They	spend	all	 their	energy	trying
to	catch	up	and	don’t	devote	enough	time	to	developing	the	skills	that	could
actually	help	them	work	more	effectively.

The	solution	is	to	borrow	a	lesson	from	Google.	Google	pioneered	an	idea
called	“20%	time,”	where	engineers	spend	the	equivalent	of	one	day	a	week
on	 a	 side	 project	 to	 make	 the	 company	 better.	 Initially,	 20%	 time	 was	 a
controversial	 proposal;	 people	 doubted	 it	 would	 improve	 the	 company’s
bottom	line.	In	fact,	the	investment	empowered	engineers	to	create	and	launch
products	like	Gmail,	Google	News,	and	AdSense—which	now	comprise	three
of	 Google’s	 core	 offerings.	 18	 Many	 other	 engineering	 companies	 have
followed	suit,	adopting	similar	innovation	policies.	19	20

To	invest	in	your	own	growth,	you	should	carve	out	your	own	20%	time.
It’s	more	effective	to	take	it	in	one-	or	two-hour	chunks	each	day	rather	than
in	one	 full	 day	 each	week,	 because	you	 can	 then	make	 a	daily	habit	 out	 of
improving	your	skills.	Your	productivity	may	decrease	at	first	(or	it	might	not
change	 much	 if	 you’re	 taking	 time	 away	 from	 web	 surfing	 or	 other
distractions),	 but	 the	 goal	 is	 to	make	 investments	 that	will	make	 you	more
effective	in	the	long	run.

So	what	 should	 you	 do	with	 that	 20%	 time?	You	 can	 develop	 a	 deeper
understanding	of	areas	you’re	already	working	on	and	tools	that	you	already

use.	Or,	you	can	gain	experience	in	what	Steven	Sinofsky,	the	former	head	of
Microsoft’s	Windows	division,	 calls	 “adjacent	disciplines.”	 21	These	are	 the
disciplines	related	to	your	core	role	and	where	increased	familiarity	can	make
you	more	self-sufficient	and	effective.	If	you’re	a	product	engineer,	adjacent
disciplines	 might	 include	 product	 management,	 user	 research,	 or	 even
backend	engineering.	If	you’re	an	infrastructure	engineer,	they	might	include
machine	learning,	database	internals,	or	web	development.	If	you’re	a	growth
engineer,	adjacent	disciplines	might	be	data	science,	marketing,	or	behavioral
psychology.	Knowledge	 in	 adjacent	 disciplines	will	 not	 only	 be	 useful,	 but
you’ll	also	be	more	likely	to	retain	the	information	because	you’ll	be	actively
practicing	it.

Whichever	route	you	decide,	here	are	ten	suggestions	to	take	advantage	of
the	resources	available	to	you	at	work:

Study	code	for	core	abstractions	written	by	the	best	engineers	at	your
company.	Particularly	if	you’re	at	a	big	technology	company	with	a	large,
shared	codebase,	 read	 through	code	 in	some	of	 the	core	 libraries	written
by	early	engineers.	Start	with	ones	that	you’ve	used	before.	Ask	yourself
if	you	would’ve	written	similar	code	and	how	you	might	learn	from	their
examples.	Understand	why	certain	choices	were	made	and	how	they	were
implemented,	and	see	if	earlier	versions	of	code	were	rewritten	to	address
shortcomings.	 You	 can	 also	 do	 the	 same	 with	 any	 well-designed,	 open
source	projects	that	your	company	uses	or	is	considering	using.
Write	more	code.	If	you	feel	that	programming	is	your	weak	point,	shift
time	 away	 from	 other	 activities	 like	 meetings	 and	 product	 design,	 and
spend	more	of	it	building	and	writing	code.	Over	a	decade	of	research	on
learning	 has	 shown	 that	 the	 more	 effort	 you	 expend	 when	 retrieving
knowledge	from	memory,	the	better	you’ll	learn	and	retain	those	ideas.	22
Since	 actively	 programming	 expends	more	 effort	 than	 passively	 reading
code,	 you’ll	 find	 that	 practicing	 the	 craft	 is	 a	 high-leverage	 activity	 for
improving	 your	 programming	 skills.	 Moreover,	 it’s	 easy	 to	 think	 you
understand	 something	 you’ve	 read,	 only	 to	 find	 large	 knowledge	 gaps
when	you	actually	set	out	to	do	it.
Go	 through	 any	 technical,	 educational	material	 available	 internally.
Google,	 for	 instance,	 has	 a	 wide	 array	 of	 codelabs	 that	 teach	 core
abstractions	and	guides	of	best	practices	for	various	languages,	all	written
by	 veteran	 engineers.	 If	 your	 company	 maintains	 design	 documents	 or
holds	tech	talks,	use	them	as	learning	opportunities.
Master	the	programming	languages	that	you	use.	Read	a	good	book	or
two	on	them.	Focus	on	developing	a	solid	grasp	of	the	advanced	concepts
in	that	 language,	and	gain	familiarity	with	core	language	libraries.	Make
sure	 that	 at	 least	 one	 of	 your	 languages	 is	 a	 scripting	 language	 (e.g.,
Python	 or	 Ruby)	 that	 you	 can	 use	 as	 your	 Swiss	 army	 knife	 for	 quick
tasks.

Send	 your	 code	 reviews	 to	 the	 harshest	 critics.	 Optimize	 for	 getting
good,	 thoughtful	 feedback	 rather	 than	 for	 lowering	 the	barrier	 to	getting
your	 work	 checked	 in.	 Ask	 for	 a	 more	 detailed	 review	 on	 those
implementations	you’re	not	as	confident	about.	Discuss	software	designs
with	your	company’s	best	designers	 in	order	 to	avoid	writing	great	code
for	a	design	that	doesn’t	work	well.
Enroll	in	classes	on	areas	where	you	want	to	improve.	These	could	be
courses	offered	on	the	company	campus,	at	nearby	universities,	or	online
through	 educational	 initiatives	 like	 Coursera,	 edX,	 Udemy	 or	 Udacity.
Online	 education	 is	 exploding;	 you	 can	 easily	 sign	 up	 for	 classes	 in
machine	learning,	mobile	development,	computer	networking,	compilers,
and	 more,	 many	 of	 them	 taught	 by	 professors	 from	 world-class
institutions	 like	 Stanford	 or	 MIT.	 Many	 of	 the	 larger	 technology
companies	will	even	pay	for	your	classes.
Participate	 in	 design	 discussions	 of	 projects	 you’re	 interested	 in.
Don’t	wait	for	an	invitation.	Ask	project	leads	if	they’d	mind	you	being	a
silent	observer	or	even	a	participant	 in	a	design	meeting.	 If	mailing	 lists
are	open	internally,	add	yourself	or	read	through	key	conversations	in	the
archives.
Work	 on	 a	 diversity	 of	 projects.	 If	 you	 find	 yourself	 always	 doing
similar	tasks	using	similar	methods,	it’s	going	to	be	hard	to	pick	up	new
skills.	 Interleaving	 different	 projects	 can	 teach	 you	 what	 problems	 are
common	across	projects	and	what	might	 just	be	artifacts	of	your	current
one.	Moreover,	research	on	learning	confirms	that	the	interleaved	practice
of	 different	 skills	 is	more	 effective	 than	 repeated,	massed	 practice	 of	 a
single	skill	at	preparing	people	to	tackle	unfamiliar	problems.	23

Make	sure	you’re	on	a	team	with	at	least	a	few	senior	engineers	whom
you	can	learn	from.	 If	you’re	not,	consider	changing	projects	or	 teams.
This	will	help	increase	your	learning	rate	for	the	remaining	80%	of	your
time.
Jump	fearlessly	into	code	you	don’t	know.	After	years	of	observation,
Bobby	 Johnson,	 a	 former	 engineering	 director	 at	 Facebook,	 concluded
that	 engineering	 success	 was	 highly	 correlated	 with	 “having	 no	 fear	 in
jumping	into	code	they	didn’t	know.”	Fear	of	failure	often	holds	us	back,
causing	us	to	give	up	before	we	even	try.	But	as	Johnson	explains,	“in	the
practice	 of	 digging	 into	 things	 you	 don’t	 know,	 you	 get	 better	 at
coding.”	24

Create	 learning	 opportunities	 out	 of	 your	 20%	 time,	 and	 you’ll	 steadily
improve	your	skills	and	productivity.

Always	Be	Learning

https://www.coursera.org/
https://www.edx.org/
http://www.udemy.com/
https://www.udacity.com/

Learning	opportunities	aren’t	limited	to	the	workplace.	We	should	always	be
asking:	How	can	I	improve?	How	could	I	have	done	this	better?	What	should
I	learn	next	to	best	prepare	me	for	the	future?	These	questions	may	not	have
anything	 to	 do	 with	 engineering—maybe	 you’re	 interested	 in	 music,	 art,
sports,	writing,	or	crafts.	Some	skills	we	learn	could	be	cross-functional	and
help	our	 engineering	work	 (increasing	my	comfort	 level	 in	 conversing	with
strangers,	for	example,	helped	me	when	meeting	and	interviewing	other	great
engineers	 for	 this	 book).	 Other	 skills	 might	 not	 translate	 directly	 into
engineering	 benefits,	 but	 the	 practice	 of	 adopting	 a	 growth	mindset	 toward
them	 still	 makes	 us	 better	 learners	 and	more	willing	 to	 stretch	 beyond	 our
comfort	 zone.	 This	 itself	 is	 a	 high-leverage	 investment.	 Plus,	 there’s	 a	 side
benefit:	 research	 in	 positive	 psychology	 shows	 that	 continual	 learning	 is
inextricably	linked	with	increased	happiness.	25

There	are	many	ways	to	learn	and	grow	in	whatever	you	love	to	do.	Here
are	 ten	 starting	 points	 to	 help	 inspire	 a	 habit	 of	 learning	 outside	 of	 the
workplace:

Learn	new	programming	languages	and	frameworks.	One	of	the	most
exciting	aspects	of	working	 in	software	 is	 that	 the	 technology	 landscape
changes	 so	 rapidly.	 But	 this	 also	means	 that	 if	 you’re	 not	 continuously
learning,	 your	 skills	might	 get	 stale	 and	 outdated.	Moreover,	 new	 skills
can	expand	your	mind	and	teach	you	how	to	think	in	different	ways.	Keep
a	 running	 list	 of	 the	 programming	 languages,	 software	 tools,	 and
frameworks	that	you	want	to	learn,	and	set	goals	to	spend	time	and	master
them.
Invest	 in	 skills	 that	 are	 in	 high	demand.	 If	 you’re	 unsure	 about	what
types	 of	 skills	 you	 should	 be	 learning,	 see	what’s	 being	 included	 in	 job
postings	you	 find	 interesting,	or	evaluate	 the	current	 industry	 trends	and
demand	 for	 skills.	For	example,	as	of	2014,	15%	of	 Internet	 traffic	now
comes	 from	mobile	 devices,	 26	 and	 global	 annual	 smartphone	 sales	 are
triple	 that	 of	 consumer	 PCs.	 27	 As	 these	 trends	 continue,	 honing	 your
expertise	in	mobile	development	can	open	up	many	other	opportunities.
Read	books.	Bill	Gates	reads	a	lot	and	mostly	non-fiction,	using	books	to
discover	how	the	world	works.	28	Books	offer	a	way	for	you	to	learn	from
the	 lessons	 and	 mistakes	 of	 others:	 you	 can	 re-apply	 that	 knowledge
without	 having	 to	 start	 from	 scratch.	 This	 is	 such	 a	 high-leverage
investment	that	I’ve	actually	trained	myself	to	speed	read.	I	can	now	read
2–3x	faster,	sharply	increasing	my	rate	of	learning,	and	I	read	1-2	books	a
week.	You	can	find	a	list	of	non-fiction	books	that	shaped	my	thinking	on
engineering	effectiveness	in	the	Appendix.
Join	 a	 discussion	 group.	 In	 the	 eighteenth	 century,	 politician	 and
inventor	Benjamin	Franklin	organized	a	group	of	 friends	 into	a	“club	of
mutual	improvement.”	The	club	met	every	Friday	evening	to	discuss	and

debate	“morals,	politics,	or	natural	philosophy,”	providing	members	with
a	 structured	 opportunity	 to	 improve	 themselves.	 29	 I’m	 a	 part	 of	 a	 few
book	clubs	and	reading	groups	that	meet	regularly	for	discussion	at	cafes
and	apartments.
Attend	 talks,	 conferences,	 and	 meetups.	 Growing	 technology
companies	often	hold	open	tech	talks,	both	to	share	knowledge	and	to	help
recruit	new	engineers.	Google	even	shares	many	of	its	on-campus	talks	on
YouTube.	30	31	Conferences	 and	meetups	 can	 be	 hit-or-miss	 in	 terms	 of
quality,	 so	 ask	 around	 to	 see	 which	 ones	 are	 worth	 attending.	 Some
conferences,	 like	 TED,	 provide	 high-quality	 recordings	 of	 inspiring
ideas.	32	Attend	 targeted	 conferences	 to	 get	more	 familiar	with	 industry
trends	and	to	meet	people	who	share	your	interests.
Build	and	maintain	a	strong	network	of	relationships.	I	used	to	avoid
coffee	meetings	 and	meetups	with	 people	 I	 didn’t	 know.	But	 I’ve	 since
learned	that	the	more	people	you	meet,	the	more	you’ll	find	serendipitous
opportunities.	Richard	Wiseman	captures	 this	 idea	 in	his	book	The	 Luck
Factor,	 when	 he	 writes,	 “Lucky	 people	 dramatically	 increase	 the
possibility	 of	 a	 lucky	 chance	 encounter	 by	 meeting	 a	 large	 number	 of
people	 in	 their	 daily	 lives.	 The	 more	 people	 they	 meet,	 the	 greater
opportunity	they	have	of	running	into	someone	who	could	have	a	positive
effect	on	their	lives.”	33

Follow	 bloggers	 who	 teach.	 Admittedly,	 social	 media	 and	 technology
journalism	 sites	 can	 be	 online	 sources	 of	 distraction—but	 at	 the	 same
time,	 many	 bloggers	 share	 thoughtful	 and	 useful	 lessons.	 Subscribe	 to
their	 newsletters	 and	 learn	 ways	 to	 shortcut	 around	 the	 mistakes	 that
they’ve	 made.	 You	 can	 find	 a	 starter	 list	 of	 engineering	 blogs	 in	 the
Appendix.
Write	to	teach.	When	you	write	to	teach	other	people,	you	gain	a	deeper
understanding	 of	 ideas	 you’re	 already	 familiar	 with	 and	 pinpoint	 the
details	that	you	didn’t	fully	understand.	That’s	the	technique	that	Physics
Nobel	Prize	winner	Richard	Feynman	used	to	learn	faster.	34	Writing	also
provides	an	opportunity	for	mindful	reflection	on	what	you’ve	learned.	So
start	 a	 blog	 and	 begin	 writing.	 These	 days,	 platforms	 like	 Blogger,
Tumblr,	 Wordpress,	 Medium,	 and	 Quora	 make	 it	 easy.	 Presenting	 at
conferences	can	have	similar	benefits.
Tinker	 on	 side	 projects.	 Side	 projects,	 even	 ones	 not	 related	 to
engineering,	provide	further	opportunities	to	hone	your	skills,	particularly
in	areas	of	 interest	 that	you	don’t	 typically	engage	 in	at	work.	Research
suggests	that	creativity	stems	from	combining	existing	and	often	disparate
ideas	in	new	ways.	35	Projects	in	seemingly	orthogonal	areas	like	drawing
and	 writing	 can	 have	 benefits	 that	 flow	 over	 to	 help	 you	 be	 a	 better
engineer.

Pursue	what	you	love.	Replace	passive	time	spent	aimlessly	surfing	TV
channels	 or	 the	web	with	 time	 actively	 spent	 doing	what	 you	 love.	The
average	American	watches	34	hours	of	TV	per	week,	36	and	psychology
studies	show	that	 the	average	mood	while	watching	TV	highly	 is	mildly
depressed.	37	Spend	time	on	what	you’re	passionate	about	instead,	and	let
that	passion	fuel	your	motivation	to	learn	and	to	grow.

More	 important	 than	 any	 of	 these	 individual	 suggestions,	 however,	 is
embracing	 a	 growth	mindset	 in	 which	 you’re	 motivated	 to	 learn	 about	 the
things	that	excite	you.	Interviewers	often	ask	candidates,	“Where	do	you	see
yourself	five	years	from	now?”	It’s	a	tough	question,	and	most	people	don’t
have	 an	 answer.	 But	 by	 adopting	 a	 growth	 mindset	 and	 optimizing	 for
learning,	you’ll	be	best	prepared	to	make	the	most	of	whatever	opportunities
do	come	your	way.

Key	Takeaways

Own	 your	 story.	 Focus	 on	 changes	 that	 are	 within	 your	 sphere	 of
influence	rather	 than	wasting	energy	on	blaming	 the	parts	 that	you	can’t
control.	View	failures	and	challenges	 through	a	growth	mindset,	and	see
them	as	opportunities	to	learn.
Don’t	 shortchange	 your	 learning	 rate.	 Learning	 compounds	 like
interest.	 The	more	 you	 learn,	 the	 easier	 it	 is	 to	 apply	 prior	 insights	 and
lessons	 to	 learn	 new	 things.	Optimize	 for	 learning,	 particularly	 early	 in
your	 career,	 and	you’ll	 be	 best	 prepared	 for	 the	 opportunities	 that	 come
your	way.
Find	work	environments	 that	can	sustain	your	growth.	 Interview	the
people	 at	 the	 team	 or	 company	 you’re	 considering.	 Find	 out	 what
opportunities	they	provide	for	onboarding	and	mentoring,	how	transparent
they	are	internally,	how	fast	they	move,	what	your	prospective	co-workers
are	like,	and	how	much	autonomy	you’ll	have.
Capitalize	on	opportunities	at	work	to	improve	your	technical	skills.
Learn	from	your	best	co-workers.	Study	their	code	and	their	code	reviews.
Dive	 into	any	available	educational	material	provided	by	your	company,
and	 look	 into	 classes	 or	 books	 that	 your	workplace	might	 be	willing	 to
subsidize.
Locate	 learning	 opportunities	 outside	 of	 the	 workplace.	 Challenge
yourself	to	become	better	by	just	1%	a	day.	Not	all	of	your	learning	will
necessarily	 relate	 to	 engineering	 skills,	 but	 being	 a	 happier	 and	 better
learner	will	help	you	become	a	more	effective	engineer	in	the	long	run.

S

Prioritize	Regularly

USTAINABLE	AND	SCALABLE	STRATEGIES	TO	GROW	A	PRODUCT’S	USER	BASE	ARE
holy	grails	 for	 startups.	More	engaged	users	drive	more	 revenue,	more
venture	capital,	and	higher	startup	valuations,	and	in	recent	years,	teams

dedicated	to	the	art	and	science	of	user	growth	have	proliferated.	These	teams
focus	on	optimizing	how	users	flow	into	and	out	of	a	product.	1	They	live	and
breathe	 data	 and	metrics,	 running	 endless	 user	 experiments	 and	 optimizing
conversion	rates	in	their	mission	to	acquire	users.	They	combine	engineering,
data,	and	product	marketing	to	build	their	strategies,	and	they	can	be	found	at
fast-growing	 companies	 ranging	 from	 Facebook,	 Twitter,	 and	 LinkedIn	 to
Dropbox,	Airbnb,	Square,	Uber,	Lyft,	Path,	and	many	others.

Some	 of	 the	 problems	 that	 user	 growth	 teams	 tackle,	 like	 building
experimentation	 frameworks	 and	 analyzing	metrics,	 are	 similar	 to	 the	 ones
solved	by	traditional	engineering	teams.	What	makes	user	growth	especially
challenging	and	exciting,	however,	 is	 that	 the	 list	of	 ideas	for	driving	 traffic
and	 growth	 is	 extremely	 open-ended	 and	 spans	 virtually	 the	 entire	 product.
Does	the	team:

Optimize	the	conversion	rate	of	the	signup	form	on	the	home	page?
Buy	traffic	through	Google,	Facebook,	or	Twitter	ads?
Improve	application	speed	to	increase	user	engagement?
Attempt	to	create	viral	content	to	spread	through	social	media	and	email?
Increase	search	referral	traffic	by	improving	search	rankings?
Invest	in	making	the	product	simpler	to	learn,	use,	and	adopt?
Iterate	 on	 user	 engagement	 emails	 to	 improve	 open	 and	 click-through
rates?
Encourage	users	to	refer	their	friends	to	the	product?
Optimize	 content	 ranking	 and	 people	 recommendations	 to	 increase	 the
product’s	stickiness?
Improve	the	mobile	experience	and	increase	distribution	through	the	iOS
and	Android	app	stores?
Internationalize	the	product	to	major	languages	and	countries?
Do	something	else	entirely?

The	 right	 focus	 can	 significantly	 accelerate	 a	 product’s	 growth	 rate.	 Even

3

The	 right	 focus	 can	 significantly	 accelerate	 a	 product’s	 growth	 rate.	 Even
small	0.5%	wins	 in	key	areas	can	compound	 like	 interest	and	add	a	million
users	down	the	line.	But	by	the	same	token,	the	opportunity	cost	of	working
on	the	wrong	ideas	can	set	back	growth	by	months	or	years.

I	 was	 the	 first	 engineer	 on	 Quora’s	 user	 growth	 team	 and	 eventually
became	 the	 engineering	 lead	 for	 the	 group.	 Our	 team	 developed	 a	 healthy
cadence	where	we	would	prioritize	ideas	based	on	their	estimated	returns	on
investment,	run	a	batch	of	experiments,	learn	from	the	data	what	worked	and
what	 didn’t,	 and	 rinse	 and	 repeat.	 In	 a	 single	 year,	 our	 team	 grew	Quora’s
monthly	and	daily	active	user	base	by	over	3x.	2	And	I	 learned	through	that
experience	 that	 a	 successful	 user	 growth	 team	 rigorously	 and	 regularly
prioritizes	its	work.

Prioritizing	 isn’t	 only	 relevant	 to	 user	 growth,	 however.	 In	 any
engineering	discipline	(and	in	life),	there	will	always	be	more	tasks	to	do	than
you	 have	 time	 for.	 Working	 on	 one	 task	 means	 not	 working	 on	 another.
Therefore,	 regular	 prioritization	 is	 a	 high-leverage	 activity,	 because	 it
determines	 the	 leverage	 of	 the	 rest	 of	 your	 time.	After	 all,	 if	 you	work	 for
weeks	on	a	project	that	has	little	impact	and	garners	few	lessons,	how	is	that
different	for	your	business	than	not	working	at	all?

Prioritization	 is	hard	work,	and	like	most	skills,	 it	 requires	practice.	The
most	 effective	 engineers	work	 persistently	 on	 improving	 their	 prioritization
skills.	 You’ll	 have	 days	 where	 you	 misallocate	 your	 time,	 but	 as	 long	 as
you’re	 retrospective,	 you’ll	 continuously	 improve.	You’ll	 also	 have	 periods
where	 you	 don’t	 feel	 like	 prioritizing;	 perhaps	 it’s	 your	 leisure	 time	 and
you’re	not	optimizing	for	anything	other	than	curling	up	on	the	couch	with	a
good	book.	That’s	perfectly	fine!	Everyone	needs	time	to	recharge.	But	when
it	comes	to	your	personal	and	professional	goals,	taking	the	time	and	energy
to	prioritize	will	significantly	increase	your	chances	for	success.

In	 this	 chapter,	 we’ll	 walk	 through	 the	 strategies	 used	 to	 prioritize
effectively.	We’ll	start	by	explaining	why	it’s	important	to	track	all	our	to-dos
in	 a	 single	 and	 easily	 accessible	 list.	 From	 that	 list,	 we’ll	 make	 pairwise
comparisons	between	what	we’re	doing	and	what	we	could	be	doing	instead,
in	order	to	iteratively	shift	our	time	toward	higher-leverage	activities.	To	help
us	identify	what’s	high-leverage,	we’ll	discuss	two	simple	heuristics:	focusing
on	 what	 directly	 produces	 value,	 and	 focusing	 on	 the	 important	 and	 non-
urgent.	Identifying	high-priority	tasks	isn’t	enough,	however;	we	also	need	to
execute	 on	 them.	 So	 we’ll	 cover	 how	 you	 can	 accomplish	 your	 priorities:
first,	by	protecting	your	maker’s	schedule,	and	second,	by	limiting	the	amount
of	work	you	have	in	progress.	We’ll	talk	about	creating	if-then	plans	 to	help
fight	 procrastination.	 Finally,	 since	 it’s	 important	 to	 make	 a	 routine	 of
prioritization,	 we’ll	 end	 the	 chapter	 by	 walking	 through	 a	 sample
implementation	 of	 a	 prioritization	 workflow,	 using	 all	 the	 strategies	 we’ve
discussed.

Track	To-Dos	in	a	Single,	Easily	Accessible	List

No	matter	how	much	of	an	expert	you	might	be,	a	well-designed	checklist	can
significantly	 improve	 your	 outcomes.	 In	 The	Checklist	Manifesto,	 Dr.	 Atul
Gawande	shows	how	the	adoption	of	checklists	has	drastically	reduced	errors
in	 field	 after	 field,	 even	 for	 the	most	 seasoned	 experts	 working	 on	 routine
tasks.	Pilots	who	follow	pre-flight	checklists,	surgeons	who	follow	operation
checklists,	 and	 construction	 managers	 who	 follow	 safety	 checklists	 all
eliminate	large	classes	of	avoidable	errors	simply	by	writing	steps	down	and
tracking	what	needs	to	be	done.	3

Engineers	can	benefit	 from	adopting	checklists	as	well.	The	 first	 step	 in
effective	 prioritization	 is	 listing	 every	 task	 that	 you	 might	 need	 to	 do.	 As
David	Allen	explains	in	Getting	Things	Done,	this	is	because	the	human	brain
is	 optimized	 for	 processing	 and	 not	 for	 storage.	 4	 The	 average	 brain	 can
actively	hold	only	7	+/-	2	items—the	number	of	digits	in	a	phone	number—in
its	 working	 memory.	 This	 is	 a	 shockingly	 small	 number,	 and	 yet	 in
experiments,	once	there	are	more	than	7	items,	people	fail	to	repeat	digits	and
words	 back	 in	 the	 correct	 order	 over	 half	 the	 time.	 5	 The	 only	 way	 that
memory	champions	can	memorize	67,890	digits	of	pi	 is	by	expending	 large
amounts	 of	mental	 resources.	 6	 7	 Research	 shows	 that	 expending	 effort	 on
remembering	 things	 reduces	 our	 attention,	 8	 impairs	 our	 decision-making
abilities,	9	and	even	hurts	our	physical	performance.	10	For	you	and	me,	that
brainpower	 is	 much	 better	 spent	 on	 prioritizing	 our	 work	 and	 solving
engineering	problems	than	on	remembering	everything	we	need	to	do.

When	I	started	my	software	engineering	career,	I	smugly	dismissed	to-do
lists.	 I	 didn’t	 think	 I	 needed	 the	 overhead,	 and	 I	 believed	 I	 could	 just	 keep
track	of	 tasks	 in	my	head.	Within	 two	years,	 I	starting	noticing	 tasks	falling
through	 the	 cracks.	 I	 knew	 I	 had	 to	 adopt	 to-do	 lists,	 and	 they’ve	 since
become	 an	 integral	 part	 of	my	workflows.	Given	 the	 vast	 body	 of	 research
proving	the	value	of	to-do	lists,	it’s	a	wonder	I	got	much	done	at	all	before.

To-do	lists	should	have	two	major	properties:	they	should	be	a	canonical
representation	 of	 our	 work,	 and	 they	 should	 be	 easily	 accessible.	 A	 single
master	 list	 is	better	 than	an	assortment	of	 sticky	notes,	 sheets	of	paper,	 and
emails,	because	these	scattered	alternatives	are	easily	misplaced	and	make	it
harder	for	your	brain	to	trust	 that	they’re	comprehensive.	Having	the	master
list	easily	accessible	allows	you	to	quickly	identify	a	task	you	can	complete	if
you	unexpectedly	have	a	block	of	free	time.	Plus,	if	you	think	up	a	new	task,
you	 can	 add	 it	 directly	 to	 your	 list	 even	when	 you’re	 out	 and	 about,	 rather
than	investing	mental	energy	in	trying	to	remember	it.

Your	to-do	list	can	take	many	forms.	It	can	be	a	little	notebook	that	you
carry	 around,	 task	 management	 software	 that	 you	 use	 on	 the	 web,	 an

application	 you	 access	 on	 your	 phone,	 or	 a	 Dropbox	 text	 file	 that	 you
synchronize	between	your	computer	and	your	phone.	When	you	consistently
offload	 to-dos	 to	 your	 list,	 you	 reduce	 the	 number	 of	 tasks	 you	 need	 to
remember	down	to	just	one—to	check	your	single,	master	list—and	you	free
your	mind	 to	 focus	 on	 a	 higher-leverage	 activity:	 actually	 prioritizing	 your
work.

If	you	could	accurately	compute	the	leverage	of	each	task,	then	you	could
just	 sort	 all	 the	 tasks	 by	 leverage	 and	 work	 down	 your	 prioritized	 list.
Unfortunately,	 estimating	both	 the	 time	 required	 and	 the	value	produced	by
each	task	is	incredibly	hard.	When	I	started	working	on	user	growth	at	Quora,
our	team	brainstormed	hundreds	of	ideas	for	how	we	might	increase	product
usage	 and	 engagement.	 Huddled	 around	 a	 conference	 room	 table,	 we
systematically	went	 through	 every	 idea	 and	 estimated	 its	 percentage	 impact
(0.1%,	1%,	10%,	or	100%)	on	our	growth	metrics	as	well	as	the	time	it	would
take	 to	 implement	 (hours,	days,	weeks,	or	months).	Not	only	were	many	of
these	 estimates	 quite	 off	 because	 we	 had	 limited	 data,	 but	 every	 task	 we
tackled	inspired	new	tasks	that	we’d	then	insert	into	our	to-do	list—which	in
turn	meant	that	we	never	got	to	most	of	the	backlogged	items	on	our	ranked
list.	The	net	effect	was	that	much	of	the	estimation	work	we	did	to	build	that
ranked	list	was	wasted.

It’s	 not	 actually	 that	 useful	 to	 know	 that	 the	 100th	 task	 provides	 higher
leverage	 than	 the	 101st	 task.	 It’s	 far	 easier	 and	more	 efficient	 to	 compile	 a
small	number	of	goals	that	are	important	to	complete,	pick	initial	tasks	toward
those	 goals,	 and	 then	 make	 a	 pairwise	 comparison	 between	 what	 you’re
currently	 doing	 and	 what	 else	 is	 on	 your	 to-do	 list.	 Ask	 yourself	 on	 a
recurring	 basis:	 Is	 there	 something	 else	 I	 could	 be	 doing	 that’s	 higher-
leverage?	 If	 not,	 continue	 on	 your	 current	 path.	 If	 yes,	 it’s	 time	 to	 rethink
what	 you’re	 doing.	 The	 goal	 isn’t	 to	 establish	 a	 total	 ordering	 of	 all	 your
priorities,	 since	 any	 ordering	 you	 make	 will	 be	 based	 on	 imperfect
information;	 instead,	 it’s	 to	continuously	 shift	your	 top	priorities	 toward	 the
ones	with	the	highest	leverage,	given	the	information	you	have.

So	how	do	you	determine	if	something	else	has	higher	leverage	than	what
you’re	currently	doing?	The	next	two	sections	present	two	heuristics	that	can
help:	focusing	on	what	directly	produces	value,	and	focusing	on	the	important
and	non-urgent.

Focus	on	What	Directly	Produces	Value

When	 measuring	 the	 leverage	 of	 different	 activities,	 an	 inevitable	 lesson
learned	is	that	the	time	and	effort	expended	do	not	necessarily	correlate	with
the	value	produced.	Yishan	Wong,	based	on	his	4	years	 leading	engineering
teams	at	Facebook,	explains	that	“activity	is	not	necessarily	production”	and
that	many	work	activities	 “do	not	directly	 contribute	 towards	useful	output.

Writing	 status	 reports,	 organizing	 things,	 creating	 organizational	 systems,
recording	 things	 multiple	 times,	 going	 to	 meetings,	 and	 replying	 to	 low-
priority	communications	are	all	examples	of	this.”	11	These	tasks	only	have	a
weak	and	indirect	connection	to	creating	value.

Therefore,	 the	first	heuristic	 for	prioritizing	high-leverage	activities	 is	 to
focus	 on	 what	 directly	 produces	 value.	 At	 the	 end	 of	 the	 day	 (or	 when	 it
comes	 time	 for	 performance	 reviews),	 what	 matters	 is	 how	 much	 value
you’ve	 created.	 That	 value	 is	measured	 in	 terms	 of	 products	 shipped,	 users
acquired,	business	metrics	moved,	or	sales	made,	rather	than	in	terms	of	hours
worked,	 tasks	completed,	 lines	of	code	written,	or	meetings	attended.	Focus
on	 tasks	 that	directly	bring	a	product	closer	 to	 launch;	 that	directly	 increase
the	 number	 of	 users,	 customers	 or	 sales;	 or	 that	 directly	 impact	 the	 core
business	 metric	 your	 team	 is	 responsible	 for.	 Write	 code	 for	 a	 necessary
product	 feature,	 tackle	 roadblocks	or	 secure	necessary	approvals	 that	would
hold	back	a	launch,	ensure	your	team	members	are	working	on	the	right	tasks,
address	high-priority	support	issues,	or	do	anything	else	that	leads	to	results.

Once	you’re	producing	results,	 few	people	will	complain	about	declined
meetings,	 slow	 email	 response	 times,	 or	 even	 non-urgent	 bugs	 not	 being
fixed,	unless	 those	other	 tasks	are	blocking	even	more	valuable	results	from
being	 delivered.	When	 you	 get	 the	 important	 things	 right,	 the	 small	 things
often	don’t	matter.	That’s	true	in	life	as	well.	For	example,	if	you’re	trying	to
save	 money,	 skipping	 the	 $3	 Starbucks	 latte	 doesn’t	 make	 much	 of	 a
budgetary	impact	compared	to	investing	an	hour	or	two	searching	for	cheaper
plane	tickets	and	saving	a	few	hundred	dollars	on	your	next	trip.	Shopping	for
cheap	 tickets	 doesn’t	matter	 as	much	 as	 investing	 a	 few	 extra	 hours	 in	 job
negotiations	to	boost	your	annual	salary	by	a	few	thousand	dollars.	And	in	the
long	run,	even	the	job	negotiations	might	not	be	as	significant	as	adopting	a
healthy	 investment	 portfolio	 that	 can	 earn	 a	 few	more	 percentage	 points	 in
compounding	 returns	 per	 year.	You	may	 still	 decide	 to	 save	money	 on	 that
latte,	of	course.	But	make	sure	that	the	effort	you	invest	is	proportional	to	its
expected	impact.

After	you	ship	a	change	 that	produces	value,	 find	 the	next	 task	 that	will
produce	value.	Prioritize	the	ones	that	produce	the	most	value	with	the	least
amount	of	effort.	Once	you	do	this	a	few	times,	it	becomes	easier	to	recognize
which	 tasks	 are	 the	 most	 valuable.	 As	 our	 user	 growth	 team	 at	 Quora	 ran
more	 product	 experiments,	 we	 became	 significantly	 better	 at	 identifying
which	types	of	changes	we	could	get	done	quickly	and	which	activities	would
have	higher	payoffs.

The	corollary	to	focusing	on	the	activities	that	directly	produce	value	is	to
defer	and	ignore	the	ones	that	don’t.	You	only	have	a	finite	amount	of	time.
When	 a	 co-worker	 schedules	 you	 for	 an	 unnecessary	 meeting,	 a	 manager
assigns	you	a	small	bug,	or	a	product	manager	comes	into	your	office	with	a
shiny	new	prototype,	they’re	oftentimes	not	considering	the	opportunity	cost
of	your	time.	Learn	to	say	no.	Don’t	treat	every	invitation	to	do	something	as

an	obligation.	Explain	how	the	meeting,	bug,	or	project	will	detract	from	your
other	 tasks,	 and	 discuss	 whether	 it	 should	 have	 higher	 priority.	 If	 not,	 you
probably	shouldn’t	be	spending	your	time	on	it.

Don’t	 try	 to	 get	 everything	 done.	 Focus	 on	 what	 matters—and	 what
matters	is	what	produces	value.

Focus	on	the	Important	and	Non-Urgent

We’re	 inundated	 every	 day	 with	 urgent	 requests	 demanding	 our	 attention:
meetings,	 emails,	 phone	 calls,	 bugs,	 pager	 duty	 alerts,	 the	 next	 deadline.
Some	of	these	requests	are	important;	others	aren’t.	If	we’re	not	careful,	our
default	script	 is	 to	 respond	 immediately	 to	whatever	urgent	 issues	come	our
way.	We	 let	 life’s	 daily	 interruptions,	 rather	 than	 our	 priorities,	 dictate	 our
schedules.

Therefore,	 along	 with	 prioritizing	 the	 activities	 that	 directly	 produce
value,	we	also	need	to	prioritize	the	investments	that	increase	our	ability	to	be
more	effective	and	deliver	more	value	in	the	future.	Stated	simply,	the	second
heuristic	is	to	focus	on	important	and	non-urgent	activities.

In	The	7	Habits	of	Highly	Effective	People,	Stephen	Covey	explains	that
urgency	should	not	be	confused	with	importance.	He	advocates	“putting	first
things	first.”	12	Covey	partitions	the	activities	that	we	do	into	four	quadrants,
based	on	whether	they’re	urgent	or	non-urgent	and	important	or	unimportant.
This	is	illustrated	in	Figure	1:

Figure	1:	Partitioning	of	activities	based	on	urgency	and	importance.

When	we	let	the	urgent	activities	in	Quadrant	1	(high-priority	support	issues
or	upcoming	deadlines,	for	example)	and	in	Quadrant	3	(most	of	our	emails,
phone	calls,	and	meetings)	determine	how	we	spend	our	time,	we	neglect	the
non-urgent	 but	 important	 activities	 in	 Quadrant	 2.	 Quadrant	 2	 activities
include	 planning	 our	 career	 goals,	 building	 stronger	 relationships,	 reading
books	 and	 articles	 for	 professional	 development,	 adopting	 new	 productivity
and	efficiency	habits,	building	 tools	 to	 improve	our	workflows,	 investing	 in
useful	abstractions,	ensuring	that	infrastructure	will	continue	to	scale,	learning
new	 programming	 languages,	 speaking	 at	 conferences,	 and	 mentoring	 our
teammates	to	help	them	be	more	productive.

Quadrant	 2	 investments	 don’t	 have	 any	 natural	 deadlines	 and	won’t	 get
prioritized	as	a	result	of	urgency.	But	in	the	long	run,	they	provide	significant
value	 because	 they	 help	 us	 to	 learn	 and	 to	 grow	 both	 personally	 and
professionally.	 It’s	 often	 easy	 to	 feel	 overwhelmed	 by	 the	 sheer	 volume	 of
tasks	that	need	to	get	done,	especially	if	you’re	a	new	college	graduate	or	an
engineer	joining	a	new	company.	One	piece	of	advice	that	I	consistently	give
my	 mentees	 is	 to	 carve	 out	 time	 to	 invest	 in	 skills	 development.	 Their
productivity	 might	 slow	 down	 at	 first,	 but	 with	 time,	 the	 new	 tools	 and
workflows	 that	 they	 learn	 will	 increase	 their	 effectiveness	 and	 easily
compensate	for	the	initial	loss.

When	 I	 discussed	 prioritization	 techniques	 with	 Nimrod	 Hoofien,	 an

When	 I	 discussed	 prioritization	 techniques	 with	 Nimrod	 Hoofien,	 an
engineering	 director	 at	 Facebook	 who’s	 also	 run	 engineering	 teams	 at
Amazon	and	Ooyala,	he	shared	an	exercise	that	he	used	to	do.	He	would	label
everything	on	his	 to-do	 list	 from	1	 through	4,	 based	on	which	quadrant	 the
activity	fell	under.	The	exercise	“worked	really	well	when	what	you’re	trying
to	do	 is	 to	whittle	down	what	you	do	 to	 the	 important	 [and]	not	urgent,”	he
explained.	“It’s	a	really	good	tool	to	get	started.”

Find	 which	 of	 your	 to-dos	 fall	 within	 Quadrant	 2,	 and	 de-prioritize
Quadrant	3	and	4	activities	that	aren’t	important.	Be	wary	if	you’re	spending
too	much	time	on	Quadrant	1’s	important	and	urgent	activities.	A	pager	duty
alert,	a	high-priority	bug,	a	pressing	deadline	for	a	project,	or	any	other	type
of	 firefighting	 all	 may	 be	 important	 and	 urgent,	 but	 assess	 whether	 you’re
simply	addressing	the	symptoms	of	the	problem	and	not	its	underlying	cause.
Oftentimes,	 the	 root	 cause	 is	 an	 underinvestment	 in	 a	 Quadrant	 2	 activity.
Frequent	 pager	 duty	 alerts	 might	 indicate	 a	 need	 for	 automated	 recovery
procedures.	 High-priority	 bugs	 might	 be	 a	 symptom	 of	 low	 test	 coverage.
Constant	deadlines	might	be	caused	by	poor	project	estimation	and	planning.
Investing	in	Quadrant	2	solutions	can	reduce	urgent	tasks	and	their	associated
stress.

The	 act	 of	 prioritization	 is	 itself	 a	 Quadrant	 2	 activity,	 one	 whose
importance	often	gets	overlooked	because	it’s	rarely	urgent.	Prioritize	the	act
of	 prioritization,	 and	 you’ll	 be	 on	 the	 road	 to	 dramatically	 increasing	 your
effectiveness.

Protect	Your	Maker’s	Schedule

By	now,	you’ve	 identified	 some	high-leverage	 tasks	 based	on	what	 directly
produces	value	and	what’s	important	and	non-urgent.	The	next	step	is	to	use
your	time	to	execute	on	those	priorities.

Engineers	 need	 longer	 and	 more	 contiguous	 blocks	 of	 time	 to	 be
productive	 than	 many	 other	 professionals.	 Productivity	 increases	 when	 we
can	 maintain	 periods	 of	 what	 psychologist	 Mihály	 Csíkszentmihályi	 calls
flow,	 described	 by	 people	 who	 experience	 it	 as	 “a	 state	 of	 effortless
concentration	so	deep	that	they	lose	their	sense	of	time,	of	themselves,	of	their
problems.”	Csíkszentmihályi	 studied	 the	 state	of	 flow	 in	painters,	violinists,
chess	masters,	 authors,	 and	 even	motorcycle	 racers,	 and	 he	 called	 flow	 the
“optimal	 experience”	 because	 of	 the	 spontaneous	 joy	 we	 feel	 when	 we’re
deeply	focused.	Flow	requires	focused	attention;	interruptions	break	flow.	13

Unfortunately,	 the	 meeting	 schedules	 at	 many	 companies	 don’t
accommodate	flow	conditions	for	engineers.	In	his	essay	“Maker’s	Schedule,
Manager’s	 Schedule,”	 programmer	 and	 venture	 capitalist	 Paul	 Graham
discusses	how	managers	have	different	schedules	than	the	people	who	create
and	 build	 things.	 Managers	 traditionally	 organize	 their	 time	 into	 one-hour

blocks,	 but	 “people	 who	 make	 things,	 like	 programmers	 and	 writers[,]	 …
generally	prefer	to	use	time	in	units	of	half	a	day	at	least.	You	can’t	write	or
program	well	in	units	of	an	hour.	That’s	barely	enough	time	to	get	started.”	14
Empirical	 research	 highlights	 the	 cost	 of	 breaking	 the	maker’s	 schedule.	A
study	from	Microsoft	Research	found	that	employees	take	an	average	of	10	to
15	 minutes	 to	 return	 to	 focused	 activity	 after	 handling	 email	 and	 instant
messaging	 interruptions;	 15	 a	 study	 from	 UC	 Irvine	 put	 the	 number	 even
higher,	at	23	minutes.	16

When	possible,	preserve	 larger	blocks	of	 focused	 time	 in	your	schedule.
Schedule	necessary	meetings	back-to-back	or	at	the	beginning	or	end	of	your
work	day,	 rather	 than	scattering	 them	 throughout	 the	day.	 If	people	ask	you
for	help	while	you’re	in	the	middle	of	a	focused	activity,	tell	them	that	you’d
be	happy	to	do	it	before	or	after	your	breaks	or	during	smaller	chunks	of	your
free	time.	Block	off	hours	on	your	calendar	(maybe	even	with	a	fake	meeting)
or	schedule	days	like	“No	Meeting	Wednesdays”	to	help	consolidate	chunks
of	time.	Learn	to	say	no	to	unimportant	activities,	such	as	meetings	that	don’t
require	 your	 attendance	 and	 other	 low-priority	 commitments	 that	 might
fragment	your	schedule.	Protect	your	time	and	your	maker’s	schedule.

Limit	the	Amount	of	Work	in	Progress

After	prioritizing	our	tasks	and	blocking	off	contiguous	chunks	of	time,	it	can
be	 tempting	 to	 try	 to	 tackle	 many	 things	 at	 once.	 When	 we	 fragment	 our
attention	too	much,	however,	we	end	up	reducing	our	overall	productivity	and
hindering	our	ability	to	make	substantive	progress	on	any	one	thing.

David	Rock,	in	his	book	Your	Brain	at	Work,	says	that	the	brain’s	working
memory	 is	 like	 a	 stage	 and	 its	 thoughts	 are	 like	 the	 actors.	The	part	 of	 our
brain	called	the	prefrontal	cortex	handles	our	planning,	decision-making,	and
goal-setting,	 as	well	 as	 all	of	our	other	 conscious	 thoughts.	The	 stage	has	a
limited	amount	of	space	(for	7	±	2	actors),	but	in	order	to	make	decisions,	the
prefrontal	 cortex	 needs	 to	 bring	 all	 the	 relevant	 actors	 onto	 the	 stage	 at
once.	17	When	we	work	on	too	many	things	simultaneously,	we	spend	most	of
our	 brain’s	 mental	 energy	 moving	 actors	 on	 and	 off	 the	 stage	 rather	 than
paying	attention	to	their	performance.

I	 learned	this	 lesson	during	my	early	days	of	working	at	Quora.	I	would
find	 two	 or	 three	 major	 projects	 that	 sounded	 interesting	 and	 exciting	 and
ambitiously	volunteer	for	all	of	 them.	I	put	 in	 the	hours	and	alternated	back
and	forth	between	projects.	But	because	the	progress	on	each	project	came	in
fits	 and	 starts,	 it	 was	 hard	 to	 build	 any	 momentum.	 I	 couldn’t	 give	 each
individual	 project	 and	 team	 the	 attention	 they	 deserved,	 so	 I	 didn’t	 do	 an
excellent	job	on	any	of	them.	Moreover,	because	the	timeline	of	each	project
dragged	out,	psychologically,	I	felt	less	productive.

I	 later	 realized	 that	 the	 key—which	 Tonianne	 DeMaria	 Barry	 and	 Jim
Benson	 describe	 in	 their	 book	Personal	 Kanban—is	 to	 limit	 your	 work	 in
progress.	A	 juggler	can	keep	 three	balls	 in	 the	air	with	 little	effort	but	must
concentrate	 significantly	 harder	 to	 keep	 track	 of	 six	 or	 seven.	 In	 the	 same
way,	 there	 is	 a	 limit	 to	 how	many	 things	 we	 can	 work	 on	 at	 once.	 “[T]he
closer	 you	 get	 to	 reaching	 your	 capacity,	 the	 more	 [the]	 stress	 taxes	 your
brain’s	 resources	 and	 impacts	 your	 performance,”	 Barry	 and	 Benson	write.
“[I]ncreasing	 work	 linearly	 increases	 the	 likelihood	 of	 failure
exponentially.”	18	Constant	context	switching	hinders	deep	engagement	in	any
one	activity	and	reduces	our	overall	chance	of	success.

Nowadays,	I’m	much	more	deliberate	about	limiting	my	work	in	progress.
This	 means	 prioritizing	 and	 serializing	 different	 projects	 so	 that	 I	 can
maintain	strong	momentum.	The	same	principle	applies	to	how	teams	tackle
projects	as	well.	When	a	small	group	of	people	fragment	their	efforts	across
too	many	tasks,	they	stop	sharing	the	same	context	for	design	discussions	or
code	 reviews.	Competing	priorities	divide	 the	 team,	 and	momentum	on	any
one	activity	slows	down.

The	number	of	projects	that	you	can	work	on	simultaneously	varies	from
person	to	person.	Use	trial	and	error	to	figure	out	how	many	projects	you	can
work	on	before	quality	and	momentum	drop,	and	resist	 the	urge	 to	work	on
too	many	projects	at	once.

Fight	Procrastination	with	If-Then	Plans

Sometimes,	what	hinders	 focus	 isn’t	 a	 lack	of	 contiguous	 time	or	 too	much
context	switching.	Instead,	many	people	do	not	have	sufficient	motivation	to
summon	the	activation	energy	required	to	start	a	difficult	task.	In	the	1990s,
Psychology	Professor	Peter	Gollwitzer	researched	the	science	of	motivation.
He	 asked	 students	 on	 their	 way	 to	 final	 exams	 if	 they	 would	 volunteer	 to
participate	in	a	study;	as	part	of	the	study,	they	would	have	to	write	an	essay
on	how	they	spent	 their	Christmas	holidays.	Students	who	agreed	were	 told
that	 they	 had	 to	mail	 in	 their	 essays	within	 two	days	 of	Christmas.	Half	 of
these	students	were	also	asked	to	specify	when,	where,	and	how	they	would
write	 the	 essay.	 Of	 the	 students	 who	 articulated	 these	 “implementation
intentions,”	 71%	 of	 them	 mailed	 in	 their	 essays.	 Only	 32%	 of	 the	 other
students	did.	A	minor	tweak	in	behavior	resulted	in	over	twice	the	completion
rate.	19	20

Based	 on	 studies	 like	Gollwitzer’s,	 social	 psychologist	Heidi	Halvorson
lays	out	 a	 simple	practice	 to	 help	us	 overcome	procrastination.	 In	 her	 book
Succeed,	Halvorson	describes	the	if-then	plan,	in	which	we	identify	ahead	of
time	a	situation	where	we	plan	to	do	a	certain	task.	Possible	scenarios	could
be	“if	it’s	after	my	3pm	meeting,	then	I’ll	investigate	this	long-standing	bug,”
or	 “if	 it’s	 right	 after	 dinner,	 then	 I’ll	 watch	 a	 lecture	 on	 Android

development.”	Halvorson	explains	 that	 the	“planning	creates	a	 link	between
the	 situation	 or	 cue	 (the	 if)	 and	 the	 behavior	 that	 you	 should	 follow	 (the
then).”	 When	 the	 cue	 triggers,	 the	 then	 behavior	 “follows	 automatically
without	any	conscious	intent.”	21

Subconscious	 followup	 is	 important	 because	 procrastination	 primarily
stems	from	a	reluctance	to	expend	the	initial	activation	energy	on	a	task.	This
reluctance	 leads	 us	 to	 rationalize	 why	 it	 might	 be	 better	 to	 do	 something
easier	 or	more	 enjoyable,	 even	 if	 it	 has	 lower	 leverage.	When	we’re	 in	 the
moment,	 the	 short-term	 value	 that	 we	 get	 from	 procrastinating	 can	 often
dominate	our	decision-making	process.	But	when	we	make	if-then	plans	and
decide	what	to	do	ahead	of	time,	we’re	more	likely	to	consider	the	long-term
benefits	 associated	with	 a	 task.	 22	 Studies	 have	 shown	 that	 if-then	planning
increases	goal	completion	rates	for	people	like	high	school	students	studying
for	PSATs,	dieters	trying	to	lower	their	fat	intake,	smokers	attempting	to	quit,
people	 wanting	 to	 use	 public	 transportation	 more	 frequently,	 and	 many
others.	 23	 If-then	 planning	 is	 a	 powerful	 tool	 to	 help	 you	 focus	 on	 your
priorities.

The	concept	of	if-then	planning	also	can	help	fill	in	the	small	gaps	in	our
maker’s	schedule.	How	many	times	have	you	had	20	minutes	free	before	your
next	meeting,	spent	10	of	those	minutes	mulling	over	whether	there’s	enough
time	 to	do	anything,	 finally	picked	a	short	 task,	and	 then	realized	you	don’t
have	enough	time	left	after	all?	An	if-then	plan	that	I’ve	found	to	be	effective
is	to	make	an	“if	I	only	have	20	minutes	before	my	next	activity,	then	I	will	do
_____.”	 I	 save	 a	 list	 of	 short	 tasks	 that	 I	 need	 to	 get	 done	 and	 that	 don’t
require	a	big	chunk	of	uninterrupted	time,	and	I	use	them	to	fill	in	the	blank.
Tasks	that	have	worked	well	for	me	include	finishing	a	code	review,	writing
interview	 feedback,	 responding	 to	 emails,	 investigating	 a	 small	 bug,	 or
writing	an	isolated	unit	test.

If-then	 plans	 made	 those	 college	 students	 more	 than	 twice	 as	 likely	 to
complete	their	Christmas	essays.	Think	about	how	much	more	effective	you’d
be	 if	 you	 could	 double	 the	 likelihood	 of	 completing	 something	 important
you’ve	 been	 procrastinating	 on—whether	 it’s	 picking	 up	 a	 new	 language,
reading	that	book	on	your	shelf,	or	something	else.	Make	an	if-then	plan	to	do
it.

Make	a	Routine	of	Prioritization

The	strategies	laid	out	so	far	help	us	to	focus	on	the	right	things:	the	activities
with	 the	 highest	 leverage.	Once	we’re	 knee-deep	working	 on	 those	 tasks,	 a
common	pitfall	for	many	engineers	is	neglecting	to	revisit	those	priorities.	As
time	passes,	our	current	projects	may	no	longer	represent	the	best	use	of	our
time.

Why	 might	 that	 happen?	 Perhaps	 after	 working	 for	 two	 weeks	 on	 an
infrastructure	 change	 that	 you	 initially	 estimated	 would	 take	 a	 month,	 you
discover	technical	challenges	or	increased	project	requirements	that	bump	the
estimate	up	to	three	months.	Is	the	project	still	worth	completing?	Or	perhaps
as	 you	 were	 building	 a	 new	 product	 feature,	 an	 older	 one	 starts	 triggering
scalability	issues	or	pager	duty	alerts	that	you	need	to	spend	an	hour	each	day
addressing.	Would	 it	 be	 higher	 leverage	 to	 pause	 development	 of	 the	 new
feature	 and	 develop	 a	 longer-term	 fix	 for	 the	 old	 one?	 Or	 perhaps	 during
development	 you	 realize	 that	 you’re	 spending	 a	 large	 portion	 of	 your	 time
wrestling	 with	 a	 legacy	 codebase.	Would	 it	 be	 worthwhile	 to	 refactor	 that
code	before	continuing?

The	answers	to	all	these	questions	will	vary	from	case	to	case.	The	key	to
answering	these	questions	correctly	is	being	retrospective	and	making	a	habit
of	revisiting	your	priorities.

Using	 the	 strategies	 presented	 in	 this	 chapter,	 you’re	 ready	 to	 develop
your	 own	 routine	 to	 manage	 and	 execute	 on	 your	 own	 priorities.	 Every
productivity	guru	recommends	a	different	set	of	workflow	mechanics.	David
Allen,	 in	Getting	 Things	Done,	 suggests	 grouping	 to-do	 items	 by	 location-
based	 contexts	 and	 then	 handling	 tasks	 based	 on	 your	 current	 context.	 24
Tonianne	DeMaria	Barry	and	Jim	Benson,	 in	Personal	Kanban,	 recommend
creating	a	backlog	of	your	work,	transitioning	tasks	through	various	columns
on	a	board	(e.g.,	“backlog,”	“ready,”	“in	progress,”	and	“done”),	and	limiting
the	 amount	 of	 work-in-progress	 according	 to	 your	 own	 bandwidth	 as
determined	 by	 trial	 and	 error.	 25	 In	 The	 Pomodoro	 Technique,	 Francesco
Cirillo	uses	a	timer	to	track	25-minute	focused	sessions,	called	pomodoros;	he
works	 on	 a	 single	 task	 during	 each	 session.	 26	 Nick	 Cern,	 author	 of
Todoodlist,	is	an	advocate	of	the	old-fashioned	pencil	and	paper	to	track	what
you	need	to	get	done.	27	The	suggestions	are	endless.

After	experimenting	with	various	systems	and	task	management	software,
I’ve	 come	 to	 realize	 that	 there’s	 no	 “best”	 prioritization	workflow.	 Instead,
take	general	principles,	 like	 the	ones	 laid	out	 in	 this	chapter,	 and	 iteratively
adapt	your	own	system	until	you	find	something	 that	works	well	 for	you.	 If
you	 don’t	 have	 a	 system,	 then	 reading	 productivity	 books	 or	 using	 another
engineer’s	 system	can	help	 provide	 a	 starting	point.	 Just	 remember	 that	 the
actual	mechanics	of	how	you	review	your	priorities	matter	less	than	adopting
the	habit	of	doing	it.

If	 you	 need	 a	 sample	 system	 to	 get	 started,	 however,	 I’ll	 share	 what	 I
currently	do.	As	of	this	writing,	I	use	a	web	product	called	Asana	to	manage
my	to-do	list.	From	my	perspective,	Asana’s	key	features	are	that	it’s	fast,	it
supports	 keyboard	 shortcuts,	 it	 allows	 tasks	 to	 be	 tagged	with	 projects	 and
filtered	 by	 project,	 and	 it	 has	 both	 Android	 and	 iPhone	 apps	 so	 that	 I	 can
update	my	 to-do	 lists	while	 I’m	 on	 the	 go.	 I	maintain	 a	 backlog	 of	 all	my
personal	and	work	tasks	in	Asana.

I	have	a	“Current	Priorities”	project	that	I	use	to	track	the	tasks	that	I	want
to	accomplish	in	the	current	week.	If	it’s	the	beginning	of	the	week,	then	I	add
to	 the	 project	 the	 tasks	 that	 I	want	 to	 accomplish	 during	 that	week,	 pulling
either	from	my	backlog	or	from	any	unfinished	work	from	the	previous	week.
I	 prioritize	 tasks	 that	 directly	 produce	 value	 for	 whatever	 projects	 I’m
working	 on	 and	 also	 some	 longer-term	 investments	 that	 I	 deem	 important.
Because	 optimizing	 for	 learning	 is	 important	 and	 non-urgent,	 I	 generally
include	 some	 tasks	 related	 to	 learning	 something	 new.	 Some	 of	my	 current
priorities	include	writing	one	thousand	words	per	day	on	this	book,	learning
about	 self-publishing,	 and	 making	 daily	 progress	 on	 tutorials	 for	 mobile
development.

Project	 tasks	 can	be	 sub-divided	 into	 sections	 in	Asana.	 In	my	“Current
Priorities”	project,	 I	 borrow	 ideas	 from	Personal	Kanban	 and	have	 sections
for	“This	Week,”	“Today,”	and	“Doing.”	Tasks	start	 the	week	out	under	 the
“This	Week”	 section.	 Every	 morning,	 I	 move	 a	 number	 of	 tasks	 from	 the
“This	Week”	 section	 into	 the	 “Today”	 section,	 based	 on	 their	 sizes	 and	my
availability.	 I	 like	 to	 do	 this	 in	 the	 mornings	 when	 I	 have	 more	 energy,
because	prioritizing	is	important	but	mentally	taxing.	Figure	2	shows	what	a
sample	task	list	under	this	scheme	might	look	like.

Figure	2:	A	sample	snapshot	of	tasks	in	my	prioritized	to-do	list.

I	estimate	and	annotate	each	 task	with	 the	number	of	25-minute	pomodoros
(there’s	no	reason	you	couldn’t	use	a	differently-sized	unit)	that	I	think	each
will	take,	using	a	simple	notation	like	“[4]	Instrument	performance	of	signup
flow	 and	 add	 graphs	 to	 dashboard.”	This	 indicates	 that	 the	 task	will	 take	 4
chunks.	On	a	typical	day,	I	may	have	time	for	10–15	chunks;	the	rest	of	the
day	 tends	 to	 be	 spent	 dealing	with	meetings	 or	 other	 interruptions.	 I	 try	 to
cluster	meetings	together	to	maximize	my	contiguous	blocks	of	time.

An	effective	way	to	ensure	 that	 this	morning	prioritization	happens	 is	 to
make	 it	 part	 of	 your	 daily	 routine.	While	Quora	was	 headquartered	 in	 Palo
Alto,	for	example,	I	incorporated	the	practice	into	my	walk	to	work.	I	would
stop	 at	 a	 coffee	 shop	 along	 the	 way,	 where	 I	 would	 spend	 5–10	 minutes
reviewing	 my	 to-dos	 while	 consuming	 my	 morning	 dose	 of	 caffeine.	 This
helped	 me	 identify	 a	 small	 number	 of	 important	 tasks	 that	 I	 wanted	 to

accomplish	 during	 the	 rest	 of	 the	 day.	 Moreover,	 whenever	 I	 didn’t	 get
something	 done	 that	 I	 had	 previously	 prioritized,	 the	 routine	 gave	 me	 an
opportunity	to	review	why:	had	I	worked	on	something	else	more	important,
misprioritized,	or	simply	procrastinated?

When	 I	 have	 free	 time	 during	my	 day,	 I	 pick	 a	 task,	move	 it	 from	 the
“Today”	to	the	“Doing”	section,	and	work	on	it.	Again,	because	I	know	I	have
more	mental	energy	in	the	mornings,	I	use	if-then	plans	to	note	that	if	it’s	in
the	morning,	then	 I’ll	pick	 tasks	requiring	more	mental	effort	and	creativity.
To	increase	my	focus,	I	block	off	sites	like	Facebook,	Twitter,	etc.	through	my

	file	28	and	use	a	timer	program	called	Focus	Booster	to	time	my
25-minute	sessions.	29	Timing	what	I’m	doing	might	seem	like	overkill	(and
in	fact,	I’ve	only	recently	starting	experimenting	with	it),	but	I’ve	found	that	it
increases	my	awareness	of	how	much	time	I	spend	on	a	given	task	and	makes
me	more	 accountable	when	 distractions	 arise.	 I	 track	 how	many	 25-minute
sessions	 I	 spend	 on	 a	 task,	mainly	 to	 validate	 and	 learn	 about	whether	my
initial	estimates	were	accurate.	In	between	those	25-minute	sessions,	I	take	a
5-minute	break	to	stretch,	check	email,	or	surf	the	web	before	resuming.

When	I	complete	a	task,	I	check	it	off,	and	Asana	takes	care	of	archiving
it	and	hiding	it	from	my	default	project	view.	At	the	end	of	the	day,	I	have	a
fairly	clear	idea	of	whether	I’ve	been	productive	or	not,	based	on	this	system.
I	can	count	up	the	number	of	completed	chunks	and	know	whether	it’s	on	par
with	what	 I’ve	 done	 historically.	 I	 repeat	 this	 process	 throughout	 the	week,
and	 as	 new	 tasks	 and	 ideas	 come	 up,	 I	 add	 them	 to	my	 “Today”	 or	 “This
Week”	section	if	they’re	urgent,	or	to	my	backlog	if	they’re	not.

I’ve	also	found	that	committing	to	an	end-of-the-week	30-minute	planning
session	 helps	 ensure	 that	 I’m	 spending	 time	 on	 the	 right	 activities.	 On	 a
Sunday	 afternoon	 or	 Monday	 morning,	 I	 review	 the	 priorities	 I’ve
accomplished,	 examine	 the	 ones	 I	 had	planned	 to	 finish	 but	 didn’t	 so	 I	 can
understand	why,	 and	 scope	 out	what	 I	 hope	 to	 accomplish	 in	 the	 following
week.	 Asana	makes	 it	 easy	 to	 define	 custom	 views,	 such	 as	 which	 tasks	 I
finished	in	the	past	week,	for	this	purpose.

Whereas	my	daily	prioritization	sessions	 typically	result	 in	small	 tweaks
to	what	I’m	currently	working	on,	my	weekly	sessions	provide	opportunities
to	 make	 larger	 course	 corrections.	 Is	 there	 something	 important	 and	 non-
urgent	 that	 I	 should	 be	 spending	 more	 time	 on?	 Perhaps	 my	 team	 isn’t
iterating	as	quickly	as	it	could	be	and	would	benefit	from	building	better	tools
and	 abstractions.	 Or	 perhaps	 I	 had	 intended	 to	 brush	 up	 on	 mobile
development	 but	 hadn’t	 found	 the	 time	 the	 previous	 week.	 I	 might	 then
resolve	 to	 work	 on	 the	 new	 priorities	 during	 the	 next	 week;	 I	 might	 even
block	off	some	time	for	this	in	my	daily	schedule.	Periodically	(about	once	a
month),	I	do	a	larger	planning	session	around	my	progress	for	the	month	and
think	about	the	things	I’d	like	to	change	for	the	future.

This	system	works	well	for	me	right	now,	although	it’s	likely	that	I’ll	still

This	system	works	well	for	me	right	now,	although	it’s	likely	that	I’ll	still
experiment	with	more	 tweaks	 in	 the	 future.	 The	 system	 that	works	 for	 you
may	look	quite	different.	What’s	important	isn’t	to	follow	my	mechanics,	but
to	 find	some	 system	 that	 helps	 you	 support	 a	 habit	 of	 prioritizing	 regularly.
This	 will	 allow	 you	 to	 reflect	 on	 whether	 you’re	 spending	 time	 on	 your
highest-leverage	activities.

Prioritizing	 is	 difficult.	 It	 consumes	 time	 and	 energy,	 and	 sometimes	 it
doesn’t	 feel	 productive	 because	 you’re	 not	 creating	 anything.	 Perhaps	 you
won’t	want	 to	 do	 it	 during	 your	 downtime	when	 you	want	 to	 relax.	 That’s
okay—you	don’t	have	 to	always	be	prioritizing.	But	when	you	have	certain
personal	 or	 professional	 goals	 that	 you	 want	 to	 achieve,	 you’ll	 find	 that
prioritization	has	very	high	 leverage.	You’ll	 see	 its	outsized	 impact	on	your
ability	to	get	the	right	things	done.	And	as	you	get	more	effective	at	it,	you’ll
feel	incentivized	to	prioritize	more	regularly.

Key	Takeaways

Write	down	and	review	to-dos.	Spend	your	mental	energy	on	prioritizing
and	processing	your	tasks	rather	than	on	trying	to	remember	them.	Treat
your	brain	as	a	processor,	not	as	a	memory	bank.
Work	 on	 what	 directly	 leads	 to	 value.	 Don’t	 try	 to	 do	 everything.
Regularly	ask	yourself	if	there’s	something	higher-leverage	that	you	could
be	doing.
Work	 on	 the	 important	 and	 non-urgent.	 Prioritize	 long-term
investments	 that	 increase	 your	 effectiveness,	 even	 if	 they	 don’t	 have	 a
deadline.
Reduce	context	switches.	Protect	 large	blocks	of	 time	 for	your	creative
output,	and	limit	the	number	of	ongoing	projects	so	that	you	don’t	spend
your	cognitive	energy	actively	juggling	tasks.
Make	if-then	plans	to	combat	procrastination.	Binding	an	intention	to
do	something	to	a	trigger	significantly	increases	the	likelihood	that	you’ll
get	it	done.
Make	prioritization	a	habit.	Experiment	to	figure	out	a	good	workflow.
Prioritize	 regularly,	 and	 it’ll	 get	 easier	 to	 focus	 on	 and	 complete	 your
highest-leverage	activities.

Part	2:	Execute,	Execute,	Execute

O

Invest	in	Iteration	Speed

N	ANY	GIVEN	DAY,	OUR	TEAM	AT	QUORA	MIGHT	RELEASE	NEW	VERSIONS	OF
the	 web	 product	 to	 users	 40	 to	 50	 times.	 1	 Using	 a	 practice	 called
continuous	 deployment,	 we	 automatically	 shipped	 any	 new	 code	 we

committed	to	production	servers.	On	average,	it	took	only	seven	minutes	for
each	change	to	be	vetted	by	thousands	of	tests	and	receive	the	green	light	to
roll	out	to	millions	of	users.	This	happened	throughout	every	day,	all	without
any	human	intervention.	In	contrast,	most	other	software	companies	shipped
new	releases	only	weekly,	monthly,	or	quarterly,	and	 the	mechanics	of	each
release	might	take	hours	or	even	days.

For	 those	who	haven’t	used	 it	before,	continuous	deployment	may	seem
like	a	scary	or	unviable	process.	How	did	we	manage	to	deploy	software	more
frequently—orders	of	magnitude	more	frequently,	 in	fact—than	other	teams,
without	 sacrificing	 quality	 and	 reliability?	 Why	 would	 we	 even	 want	 to
release	software	that	often?	Why	not	hire	or	contract	a	quality	assurance	team
to	sanity	check	each	release?	To	be	honest,	when	I	first	joined	Quora	back	in
August	 2010,	 I	 had	 similar	 concerns.	New	 engineers	 add	 themselves	 to	 the
team	page	as	one	of	their	first	tasks,	and	the	notion	that	the	code	I	wrote	on
my	 first	 day	 would	 so	 easily	 go	 into	 production	 was	 exhilarating—and
frightening.

But	now,	after	having	used	the	process	for	three	years,	it’s	clear	to	me	that
continuous	deployment	played	an	instrumental	role	in	helping	our	team	grow
the	product.	We	increased	new	user	registrations	and	user	engagement	metrics
by	over	3x	during	my	last	year	at	Quora.	Continuous	deployment,	along	with
other	investments	in	iteration	speed,	contributed	in	large	part	to	that	growth.	2

A	 number	 of	 high-leverage	 investments	 in	 our	 infrastructure	 made	 this
rapid	 release	 cycle	 possible.	 We	 built	 tools	 to	 automatically	 version	 and
package	 our	 code.	 We	 developed	 a	 testing	 framework	 that	 parallelized
thousands	of	unit	and	integration	tests	across	a	tier	of	worker	machines.	If	all
the	tests	passed,	our	release	scripts	tested	the	new	build	on	web	servers,	called
canaries,	 to	 further	 validate	 that	 everything	 behaved	 as	 expected,	 and	 then

4

rolled	 out	 the	 software	 to	 production	 tiers.	 We	 invested	 in	 comprehensive
dashboards	and	alerts	that	monitored	our	product’s	health,	and	we	made	tools
to	easily	roll	back	changes	in	the	event	that	some	bad	code	had	fallen	through
the	 cracks.	 Those	 investments	 eliminated	 the	 manual	 overhead	 associated
with	each	deployment	and	gave	us	high	confidence	that	each	deployment	was
just	business	as	usual.

Why	 is	 continuous	 deployment	 such	 a	 powerful	 tool?	 Fundamentally,	 it
allows	engineers	to	make	and	deploy	small,	 incremental	changes	rather	than
the	larger,	batched	changes	typical	at	other	companies.	That	shift	in	approach
eliminates	a	significant	amount	of	overhead	associated	with	traditional	release
processes,	making	it	easier	to	reason	about	changes	and	enabling	engineers	to
iterate	much	more	quickly.

If	 someone	 finds	 a	 bug,	 for	 instance,	 continuous	 deployment	 makes	 it
possible	to	implement	a	fix,	deploy	it	to	production,	and	verify	that	it	works—
all	in	one	sitting.	With	more	traditional	workflows,	those	three	phases	might
be	split	over	multiple	days	or	weeks;	 the	engineer	has	 to	make	 the	fix,	wait
days	for	it	to	be	packaged	up	with	other	bigger	changes	in	the	week’s	release,
and	 then	 validate	 that	 fix	 along	 with	 a	 slew	 of	 other	 orthogonal	 changes.
Much	more	context	switching	and	mental	overhead	are	required.

Or	suppose	you	need	to	migrate	an	in-production	database	table	from	one
schema	to	another.	The	standard	process	to	change	a	live	schema	is:	1)	create
the	new	schema,	2)	deploy	code	to	write	to	both	the	old	and	new	schemas,	3)
copy	 existing	data	over	 from	 the	old	 schema	 to	 the	new	 schema,	 4)	 deploy
code	to	start	reading	from	the	new	schema,	and	5)	remove	the	code	that	writes
to	the	old	schema.	While	each	individual	change	might	be	straightforward,	the
changes	 need	 to	 happen	 sequentially	 over	 4–5	 releases.	 This	 can	 be	 quite
laborious	 if	 each	 release	 takes	 a	 week.	 With	 continuous	 deployment,	 an
engineer	 could	 perform	 the	migration	 by	 deploying	 4–5	 times	within	 a	 few
hours	and	not	have	to	think	about	it	again	in	subsequent	weeks.

Because	 changes	 come	 in	 smaller	 batches,	 it’s	 also	 easier	 to	 debug
problems	 when	 they’re	 identified.	 When	 a	 bug	 surfaces	 or	 when	 a
performance	 or	 business	metric	 drops	 as	 a	 result	 of	 a	 release,	 teams	with	 a
weekly	release	cycle	often	have	to	dig	through	hundreds	of	changes	from	the
past	 week	 in	 an	 attempt	 to	 figure	 out	 what	 went	 wrong.	 With	 continuous
deployment,	on	the	other	hand,	it	generally	is	a	straightforward	task	to	isolate
the	culprit	in	the	handful	of	code	changes	deployed	in	the	past	few	hours.

Just	because	changes	are	deployed	incrementally,	however,	doesn’t	mean
that	 larger	 features	aren’t	possible	or	 that	users	see	half-finished	features.	A
large	 feature	 gets	 gated	behind	 a	 configuration	 flag,	which	 is	 disabled	until
the	 feature	 is	 ready.	 The	 same	 configuration	 flag	 often	 allows	 teams	 to
selectively	 enable	 a	 feature	 for	 internal	 team	members,	 beta	 users,	 or	 some
fraction	of	production	 traffic	until	 the	 feature	 is	 ready.	 In	practice,	 this	 also
means	that	changes	get	merged	incrementally	into	the	master	code	repository.

Teams	 then	 avoid	 the	 intense	 coordination	 and	 “merge	 hell”	 that	 often
accompanies	longer	release	cycles	as	they	scramble	to	integrate	large	chunks
of	new	code	and	get	them	to	work	together	correctly.	3

Focusing	 on	 small,	 incremental	 changes	 also	 opens	 the	 door	 to	 new
development	techniques	that	aren’t	possible	in	traditional	release	workflows.
Suppose	that	in	a	product	discussion,	we’re	debating	whether	we	should	keep
a	certain	feature.	Rather	than	letting	opinions	and	politics	dictate	the	feature’s
importance	or	waiting	for	the	next	release	cycle	to	start	gathering	usage	data,
we	could	simply	log	the	interaction	we	care	about,	deploy	it,	and	start	seeing
the	 initial	 data	 trickle	 in	within	minutes.	Or	 suppose	we	 see	 a	 performance
regression	on	one	of	our	web	pages.	Rather	 than	scanning	 through	 the	code
looking	 for	 regressions,	we	can	spend	a	 few	minutes	deploying	a	change	 to
enable	 logging	 so	 that	we	 can	get	 a	 live	breakdown	of	where	 time	 is	 being
spent.

Our	team	at	Quora	wasn’t	alone	in	our	strong	emphasis	on	the	importance
of	iterating	quickly.	Engineering	teams	at	Etsy,	4	IMVU,	5	Wealthfront,	6	and
GitHub,	 7	 as	well	 as	 other	 companies,	 8	 have	 also	 incorporated	 continuous
deployment	 (or	 a	 variant	 called	 continuous	 delivery,	 where	 engineers
selectively	determine	which	versions	to	deploy)	into	their	workflows.

Effective	engineers	invest	heavily	in	iteration	speed.	In	this	chapter,	we’ll
find	out	why	these	investments	are	so	high-leverage	and	how	we	can	optimize
for	 iteration	 speed.	 First,	we’ll	 discuss	 the	 benefits	 of	 iterating	 quickly:	we
can	build	more	and	learn	faster.	We’ll	then	show	why	it’s	critical	to	invest	in
time-saving	 tools	 and	how	 to	 increase	both	 their	 adoption	and	your	 leeway.
Since	 much	 of	 our	 engineering	 time	 is	 spent	 debugging	 and	 testing,	 we’ll
walk	through	the	benefits	of	shortening	our	debugging	and	validation	loops.
Most	of	our	core	 tools	remain	the	same	throughout	our	career,	so	we’ll	also
review	 habits	 for	 mastering	 our	 programming	 environments.	 And	 lastly,
because	 programming	 is	 but	 one	 element	 in	 the	 software	 development
process,	we’ll	look	at	why	it’s	also	important	to	identify	the	non-engineering
bottlenecks	in	your	work.

Move	Fast	to	Learn	Fast

In	the	hallways	of	Facebook’s	Menlo	Park	headquarters,	posters	proclaim	in
red	caps:	“MOVE	FAST	AND	BREAK	THINGS.”	This	mantra	enabled	 the
social	network	to	grow	exponentially,	acquiring	over	1	billion	users	in	just	8
years.	 9	 New	 employees	 are	 indoctrinated	 into	 the	 culture	 of	 moving	 fast
during	 Bootcamp,	 Facebook’s	 6-week	 onboarding	 program.	 10	 Many	 new
employees,	 including	 those	 who’ve	 never	 before	 used	 PHP,	 the	 website’s
primary	 programming	 language,	 ship	 code	 to	 production	 in	 their	 first	 few
days.	Facebook’s	culture	emphasizes	iterating	quickly	and	focusing	on	impact

rather	than	being	conservative	and	minimizing	mistakes.	The	company	might
not	 use	 continuous	 deployment	 in	 production,	 but	 it	 has	 managed	 to
effectively	 scale	 its	workflow	 so	 that	 over	 a	 thousand	 engineers	 are	 able	 to
deploy	code	to	facebook.com	twice	a	day.	11	That’s	an	impressive	feat.

Facebook’s	 growth	 illustrates	why	 investing	 in	 iteration	 speed	 is	 such	 a
high-leverage	decision.	The	faster	that	you	can	iterate,	the	more	that	you	can
learn	 about	what	works	 and	what	 doesn’t	work.	You	 can	 build	more	 things
and	 try	 out	 more	 ideas.	 Not	 every	 change	 will	 produce	 positive	 value	 and
growth,	 of	 course.	 One	 of	 Facebook’s	 early	 advertising	 products,	 Beacon,
automatically	 broadcasted	 a	 user’s	 activity	 on	 external	 websites	 onto
Facebook.	The	product	caused	an	uproar	and	had	to	be	shut	down.	12	But	with
each	iteration,	you	get	a	better	sense	of	which	changes	will	point	you	in	the
right	direction,	making	your	future	efforts	much	more	effective.

Facebook	CEO	Mark	Zuckerberg	captured	the	importance	of	moving	fast
in	his	letter	that	accompanied	the	company’s	initial	public	offering.	“Moving
fast	enables	us	to	build	more	things	and	learn	faster,”	he	wrote.	“However,	as
most	companies	grow,	they	slow	down	too	much	because	they’re	more	afraid
of	 making	 mistakes	 than	 they	 are	 of	 losing	 opportunities	 by	 moving	 too
slowly	…	 [I]f	 you	 never	 break	 anything,	 you’re	 probably	 not	 moving	 fast
enough.”	 13	 A	 strong	 focus	 on	 maintaining	 a	 high	 iteration	 speed	 is	 a	 key
ingredient	for	how	Facebook	got	to	where	it	is	today.

Moving	 fast	 isn’t	 just	 restricted	 to	 consumer	web	 software,	where	 users
tend	 to	 more	 tolerant	 of	 downtime.	 And	 in	 actuality,	 the	 worst	 outage
Facebook	 ever	 faced	 over	 a	 four-year	 period	 lasted	 only	 2.5	 hours—much
shorter	 than	 outages	 experienced	 by	 larger,	 slower-moving	 companies.	 14
Moving	fast	doesn’t	necessarily	mean	moving	recklessly.

Consider	 Wealthfront,	 a	 financial	 advisory	 service	 whose	 offices	 are
located	 in	 Palo	 Alto,	 CA.	 Wealthfront	 is	 a	 technology	 company	 whose
mission	is	to	provide	access	to	the	financial	advice	offered	by	major	financial
institutions	 and	 private	 wealth	 managers,	 at	 a	 low	 cost.	 They	 do	 this	 by
replacing	 human	 advisors	 with	 software-based	 ones.	 As	 of	 June	 2014,	 the
company	 manages	 over	 a	 billion	 dollars	 in	 customer	 assets.	 15	 Any	 code
breakage	would	be	very	costly—but	despite	this,	Wealthfront	has	invested	in
continuous	deployment	and	uses	 the	 system	 to	 ship	new	code	 to	production
over	30	times	per	day.	16	They’re	able	to	iterate	quickly	despite	operating	in	a
financial	 space	 that’s	 heavily	 regulated	 by	 the	 Securities	 and	 Exchange
Commission	and	other	authorities.	Pascal-Louis	Perez,	Wealthfront’s	 former
CTO,	 explained	 that	 continuous	 deployment’s	 “primary	 advantage	 is	 risk
reduction,”	as	it	lets	the	team	focus	on	small	batches	of	changes	and	“quickly
pinpoint	problems	when	they	occur.”	17

Continuous	 deployment	 is	 but	 one	 of	 many	 powerful	 tools	 at	 your
disposal	 for	 increasing	 iteration	 speed.	 Other	 options	 include	 investing	 in

time-saving	 tools,	 improving	 your	 debugging	 loops,	 mastering	 your
programming	workflows,	and,	more	generally,	removing	any	bottlenecks	that
you	 identify.	We’ll	 spend	 the	 rest	of	 the	 chapter	discussing	actionable	 steps
for	 these	 strategies.	 All	 of	 these	 investments	 accomplish	 the	 same	 goal	 as
continuous	deployment:	they	help	you	move	fast	and	learn	quickly	about	what
works	 and	 what	 doesn’t.	 And	 remember:	 because	 learning	 compounds,	 the
sooner	you	accelerate	your	 iteration	speed,	 the	 faster	your	 learning	 rate	will
be.

Invest	in	Time-Saving	Tools

When	I	ask	engineering	leaders	which	investments	yield	the	highest	returns,
“tools”	 is	 the	 most	 common	 answer.	 Bobby	 Johnson,	 a	 former	 Facebook
Director	 of	 Infrastructure	 Engineering,	 told	me,	 “I’ve	 found	 that	 almost	 all
successful	 people	write	 a	 lot	 of	 tools	…	 [A]	 very	 good	 indicator	 of	 future
success	 [was]	 if	 the	 first	 thing	 someone	 did	 on	 a	 problem	 was	 to	 write	 a
tool.”	 18	 Similarly,	 Raffi	 Krikorian,	 former	 VP	 of	 Platform	 Engineering	 at
Twitter,	shared	with	me	that	he’d	constantly	remind	his	team,	“If	you	have	to
do	 something	 manually	 more	 than	 twice,	 then	 write	 a	 tool	 for	 the	 third
time.”	 19	 There	 are	 only	 a	 finite	 number	 of	 work	 hours	 in	 the	 day,	 so
increasing	your	effort	 as	a	way	 to	 increase	your	 impact	 fails	 to	 scale.	Tools
are	the	multipliers	that	allow	you	to	scale	your	impact	beyond	the	confines	of
the	work	day.

Consider	 two	 engineers,	 Mark	 and	 Sarah,	 working	 on	 two	 separate
projects.	 Mark	 dives	 head	 first	 into	 his	 project	 and	 spends	 his	 next	 two
months	 building	 and	 launching	 a	 number	 of	 features.	 Sarah,	 on	 the	 other
hand,	notices	that	her	workflow	isn’t	as	fast	it	could	be.	She	spends	her	first
two	weeks	 fixing	 her	workflow—setting	 up	 incremental	 compilation	 of	 her
code,	 configuring	 her	 web	 server	 to	 automatically	 reload	 newly	 compiled
code,	and	writing	a	 few	automation	scripts	 to	make	 it	easier	 to	set	up	a	 test
user’s	 state	 on	 her	 development	 server.	 These	 improvements	 speed	 up	 her
development	 cycles	 by	 33%.	Mark	was	 able	 to	 get	more	 done	 initially,	 but
after	two	months,	Sarah	catches	up—and	her	remaining	six	weeks’	worth	of
feature	 work	 is	 as	 productive	 as	 Mark’s	 eight	 weeks’.	 Moreover,	 Sarah
continues	 to	move	33%	 faster	 than	Mark	even	 after	 those	 first	 two	months,
producing	significantly	more	work	going	forward.

The	example	 is	 somewhat	 simplified.	 In	 reality,	Sarah	wouldn’t	 actually
front-load	 all	 that	 time	 into	 creating	 tools.	 Instead,	 she	 would	 iteratively
identify	her	biggest	bottlenecks	and	figure	out	what	types	of	tools	would	let
her	iterate	faster.	But	the	principle	still	holds:	time-saving	tools	pay	off	large
dividends.

Two	 additional	 effects	 make	 Sarah’s	 approach	 even	 more	 compelling.
First,	faster	tools	get	used	more	often.	If	the	only	option	for	travel	from	San

Francisco	to	New	York	was	a	week-long	train	ride,	we	wouldn’t	make	the	trip
very	often;	but	since	the	advent	of	passenger	airlines	in	the	1950s,	people	can
now	make	the	trip	multiple	times	per	year.	Similarly,	when	a	tool	halves	the
time	it	takes	to	complete	a	20-minute	activity	that	we	perform	3	times	a	day,
we	save	much	more	than	30	minutes	per	day—because	we	tend	to	use	it	more
often.	 Second,	 faster	 tools	 can	 enable	 new	 development	 workflows	 that
previously	weren’t	 possible.	Together,	 these	 effects	mean	 that	 33%	 actually
might	be	an	underestimate	of	Sarah’s	speed	advantage.

We’ve	 already	 seen	 this	 phenomenon	 illustrated	 by	 continuous
deployment.	A	team	with	a	traditional	weekly	software	release	process	takes
many	 hours	 to	 cut	 a	 new	 release,	 deploy	 the	 new	 version	 to	 a	 staging
environment,	 have	 a	 quality	 assurance	 team	 test	 it,	 fix	 any	 blocking	 issues,
and	launch	it	to	production.	How	much	time	would	streamlining	that	release
process	 save?	Some	might	 say	 a	 few	hours	 each	week,	 at	most.	But,	 as	we
saw	 with	 continuous	 deployment,	 getting	 that	 release	 time	 down	 to	 a	 few
minutes	means	that	the	team	can	actually	deploy	software	updates	much	more
frequently,	perhaps	at	a	rate	of	40–50	times	per	day.	Moreover,	the	team	can
interactively	 investigate	 issues	 in	 production—posing	 a	 question	 and	 and
deploying	a	change	to	answer	it—an	otherwise	difficult	 task.	Thus,	 the	total
time	saved	greatly	exceeds	a	few	hours	per	week.

Or	 consider	 compilation	 speed.	When	 I	 first	 started	 working	 at	 Google
back	 in	 2006,	 compiling	 C++	 code	 for	 the	 Google	 Web	 Server	 and	 its
dependencies	 could	 take	 upwards	 of	 20	 minutes	 or	 more,	 even	 with
distributed	compilation.	20	When	code	 takes	 that	 long	 to	compile,	 engineers
make	a	conscious	decision	not	to	compile	very	often—usually	no	more	than	a
few	 times	a	day.	They	batch	 together	 large	chunks	of	code	 for	 the	compiler
and	try	to	fix	multiple	errors	per	development	cycle.	Since	2006,	Google	has
made	significant	inroads	into	reducing	compilation	times	for	large	programs,
including	some	open	source	software	 that	 shorten	compilation	phases	by	3–
5x.	21

When	compile	times	drop	from	20	minutes	to,	say,	2	minutes,	engineering
workflows	 change	 drastically.	 This	 means	 even	 an	 hour	 or	 two	 of	 time
savings	 per	 day	 is	 a	 big	 underestimate.	 Engineers	 spend	 less	 time	 visually
inspecting	code	for	mistakes	and	errors	and	rely	more	heavily	on	the	compiler
to	 check	 it.	 Faster	 compile	 times	 also	 facilitate	 new	 workflows	 around
iterative	 development,	 as	 it’s	 simpler	 to	 iteratively	 reason	 about,	write,	 and
test	 smaller	 chunks	 of	 code.	 When	 compile	 times	 drop	 to	 seconds,
incremental	 compilation—where	 saving	 a	 file	 automatically	 triggers	 a
background	task	to	start	recompiling	code—allows	engineers	to	see	compiler
warnings	and	errors	as	 they	edit	 files,	and	makes	programming	significantly
more	 interactive	 than	before.	And	 faster	 compile	 times	mean	 that	 engineers
will	compile	fifty	or	even	hundreds	of	times	per	day,	instead	of	ten	or	twenty.
Productivity	skyrockets.

Switching	 to	 languages	with	 interactive	 programming	 environments	 can

Switching	 to	 languages	with	 interactive	 programming	 environments	 can
have	a	similar	effect.	In	Java,	testing	out	a	small	expression	or	function	entails
a	batch	workflow	of	writing,	compiling,	and	running	an	entire	program.	One
advantage	that	languages	like	Scala	or	Clojure,	two	languages	that	run	on	the
Java	 Virtual	 Machine,	 have	 over	 Java	 itself	 is	 their	 ability	 to	 evaluate
expressions	quickly	and	interactively	within	a	read-eval-print	loop,	or	REPL.
This	doesn’t	save	time	just	because	the	read-eval-print	loop	is	faster	than	the
edit-compile-run-debug	 loop;	 it	 also	 saves	 time	 because	 you	 end	 up
interactively	evaluating	and	testing	many	more	small	expressions	or	functions
that	you	wouldn’t	have	done	before.

There	 are	 plenty	 of	 other	 examples	 of	 tools	 that	 compound	 their	 time
savings	 by	 leading	 to	 new	workflows.	Hot	 code	 reloads,	where	 a	 server	 or
application	can	automatically	swap	in	new	versions	of	the	code	without	doing
a	 full	 restart,	 encourages	 a	 workflow	 with	 more	 incremental	 changes.
Continuous	integration,	where	every	commit	fires	off	a	process	to	rebuild	the
codebase	and	run	the	entire	test	suite,	makes	it	easy	to	pinpoint	which	change
broke	the	code	so	that	you	don’t	have	to	waste	time	searching	for	it.

The	time-saving	properties	of	tools	also	scale	with	team	adoption.	A	tool
that	 saves	 you	 one	 hour	 per	 day	 saves	 10	 times	 as	much	when	 you	 get	 10
people	on	your	team	to	use	it.	That’s	why	companies	like	Google,	Facebook,
Dropbox,	 and	 Cloudera	 have	 entire	 teams	 devoted	 to	 improving	 internal
development	 tools;	 reducing	 the	build	 time	by	one	minute,	when	multiplied
over	a	team	of	1,000	engineers	who	build	code	a	dozen	times	a	day,	translates
to	nearly	one	person-year	 in	engineering	 time	saved	every	week!	Therefore,
it’s	not	sufficient	to	find	or	build	a	time-saving	tool.	To	maximize	its	benefits,
you	 also	 need	 to	 increase	 its	 adoption	 across	 your	 team.	 The	 best	 way	 to
accomplish	that	is	by	proving	that	the	tool	actually	saves	time.

When	I	was	working	on	the	Search	Quality	team	at	Google,	most	people
who	wanted	to	prototype	new	user	interfaces	for	Google’s	search	result	pages
would	 write	 them	 in	 C++.	 C++	 was	 a	 great	 language	 choice	 for	 the	 high
performance	needed	in	production,	but	its	slow	compile	cycles	and	verbosity
made	it	a	poor	vehicle	for	prototyping	new	features	and	testing	out	new	user
interactions.

And	 so,	 during	 my	 20%	 time,	 I	 built	 a	 framework	 in	 Python	 that	 let
engineers	prototype	new	search	features.	Once	my	immediate	teammates	and
I	started	churning	out	prototypes	of	feature	after	feature	and	demoing	them	at
meetings,	it	didn’t	take	very	long	for	others	to	realize	that	they	could	also	be
much	more	 productive	 building	 on	 top	 of	 our	 framework,	 even	 if	 it	meant
porting	over	their	existing	work.

Sometimes,	 the	 time-saving	 tool	 that	 you	 built	 might	 be	 objectively
superior	 to	 the	 existing	 one,	 but	 the	 switching	 costs	 discourage	 other
engineers	 from	actually	 changing	 their	workflow	 and	 learning	 your	 tool.	 In
these	 situations,	 it’s	 worth	 investing	 the	 additional	 effort	 to	 lower	 the

switching	cost	and	to	find	a	smoother	way	to	integrate	the	tool	 into	existing
workflows.	 Perhaps	 you	 can	 enable	 other	 engineers	 to	 switch	 to	 the	 new
behavior	with	only	a	small	configuration	change.

When	we	were	building	our	online	video	player	at	Ooyala,	 for	example,
everyone	 on	 the	 team	 used	 an	Eclipse	 plugin	 to	 compile	 their	ActionScript
code,	the	language	used	for	Flash	applications.	Unfortunately,	the	plugin	was
unreliable	and	sometimes	failed	to	recompile	a	change.	Unless	you	carefully
watched	what	was	being	compiled,	you	wouldn’t	discover	that	your	changes
were	missing	until	you	actually	 interacted	with	 the	video	player.	This	 led	 to
frequent	 confusion	 and	 slower	 development.	 I	 ended	 up	 creating	 a	 new
command-line	 based	 build	 system	 that	 would	 produce	 reliable	 builds.
Initially,	because	it	required	changing	their	build	workflow	off	from	Eclipse,
only	a	few	team	members	adopted	my	system.	And	so,	to	increase	adoption,	I
spent	 some	additional	 time	 and	hooked	 the	build	process	 into	Eclipse.	That
reduced	 the	 switching	 costs	 sufficiently	 to	 convince	 others	 on	 the	 team	 to
change	systems.

One	side	benefit	of	proving	 to	people	 that	your	 tool	saves	 time	is	 that	 it
also	 earns	 you	 leeway	 with	 your	 manager	 and	 your	 peers	 to	 explore	 more
ideas	in	the	future.	It	can	be	difficult	to	convince	others	that	an	idea	that	you
believe	 in	 is	 actually	worth	 doing.	Did	 the	 new	 Erlang	 deployment	 system
that	Joe	rewrote	in	one	week	for	fun	actually	produce	any	business	value?	Or
is	 it	 just	 an	 unmaintainable	 liability?	 Compared	 with	 other	 projects,	 time-
saving	tools	provide	measurable	benefits—so	you	can	use	data	to	objectively
prove	that	your	time	investment	garnered	a	positive	return	(or,	conversely,	to
prove	to	yourself	that	your	investment	wasn’t	worth	it).	If	your	team	spends	3
hours	 a	week	 responding	 to	 server	 crashes,	 for	 example,	 and	 you	 spend	 12
hours	 building	 a	 tool	 to	 automatically	 restart	 crashed	 servers,	 it’s	 clear	 that
your	 investment	 will	 break	 even	 after	 a	 month	 and	 pay	 dividends	 going
forward.

At	 work,	 we	 can	 easily	 fall	 into	 an	 endless	 cycle	 of	 hitting	 the	 next
deadline:	getting	the	next	thing	done,	shipping	the	next	new	feature,	clearing
the	next	bug	 in	our	backlog,	 and	 responding	 to	 the	next	 issue	 in	 the	never-
ending	stream	of	customer	requests.	We	might	have	ideas	for	tools	we	could
build	to	make	our	lives	a	bit	easier,	but	the	long-term	value	of	those	tools	is
hard	to	quantify.	On	the	other	hand,	the	short-term	costs	of	a	slipped	deadline
or	a	product	manager	breathing	down	our	necks	and	asking	when	something
will	get	done	are	fairly	concrete.

So	 start	 small.	 Find	 an	 area	where	 a	 tool	 could	 save	 time,	 build	 it,	 and
demonstrate	its	value.	You’ll	earn	leeway	to	explore	more	ambitious	avenues,
and	you’ll	find	the	tools	you	build	empowering	you	to	be	more	effective	on
future	tasks.	Don’t	let	the	pressure	to	constantly	ship	new	features	cause	the
important	 but	 non-urgent	 task	 of	 building	 time-saving	 tools	 to	 fall	 by	 the
wayside.

Shorten	Your	Debugging	and	Validation	Loops

It’s	wishful	thinking	to	believe	that	all	the	code	we	write	will	be	bug-free	and
work	the	first	time.	In	actuality,	much	of	our	engineering	time	is	spent	either
debugging	issues	or	validating	that	what	we’re	building	behaves	as	expected.
The	sooner	we	internalize	this	reality,	the	sooner	we	will	start	to	consciously
invest	in	our	iteration	speed	in	debugging	and	validation	loops.

Creating	 the	 right	 workflows	 in	 this	 area	 can	 be	 just	 as	 important	 as
investing	in	time-saving	tools.	Many	of	us	are	familiar	with	the	concept	of	a
minimal,	reproducible	test	case.	This	refers	to	the	simplest	possible	test	case
that	exercises	a	bug	or	demonstrates	a	problem.	A	minimal,	reproducible	test
case	removes	all	unnecessary	distractions	so	that	more	time	and	energy	can	be
spent	 on	 the	 core	 issue,	 and	 it	 creates	 a	 tight	 feedback	 loop	 so	 that	we	 can
iterate	 quickly.	 Isolating	 that	 test	 case	 might	 involve	 removing	 every
unnecessary	line	of	code	from	a	short	program	or	unit	test,	or	identifying	the
shortest	sequence	of	steps	a	user	must	take	to	reproduce	an	issue.	Few	of	us,
however,	 extend	 this	mentality	more	broadly	and	create	minimal	workflows
while	we’re	iterating	on	a	bug	or	a	feature.

As	engineers,	we	can	shortcut	around	normal	system	behaviors	and	user
interactions	 when	 we’re	 testing	 our	 products.	 With	 some	 effort,	 we	 can
programmatically	 build	 much	 simpler	 custom	 workflows.	 Suppose,	 for
example,	you’re	working	on	a	social	networking	application	for	iOS,	and	you
find	a	bug	 in	 the	 flow	for	 sending	an	 invite	 to	a	 friend.	You	could	navigate
through	 the	 same	 three	 interactions	 that	 every	 normal	 user	 goes	 through:
switching	to	the	friends	tab,	choosing	someone	from	your	contacts,	and	then
crafting	an	invite	message.	Or,	you	could	create	a	much	shorter	workflow	by
spending	a	few	minutes	wiring	up	the	application	so	that	you’re	dropped	into
the	buggy	part	of	the	invitation	flow	every	time	the	application	launches.

Or	 suppose	 you’re	working	 on	 an	 analytics	web	 application	where	 you
need	 to	 iterate	 on	 an	 advanced	 report	 that	 is	multiple	 clicks	 away	 from	 the
home	screen.	Perhaps	you	also	need	to	configure	certain	filters	and	customize
the	date	range	to	pull	the	report	you’re	testing.	Rather	than	going	through	the
normal	 user	 flow,	 you	 can	 shorten	 your	 workflow	 by	 adding	 the	 ability	 to
specify	 the	 configuration	 through	URL	parameters	 so	 that	 you	 immediately
jump	 into	 the	 relevant	 report.	 Or,	 you	 can	 even	 build	 a	 test	 harness	 that
specifically	loads	the	reporting	widget	you	care	about.

As	a	third	example,	perhaps	you’re	building	an	A/B	test	for	a	web	product
that	 shows	 a	 random	 feature	 variant	 to	 users,	 depending	 on	 their	 browser
cookie.	 To	 test	 the	 variants,	 you	might	 hard	 code	 the	 conditional	 statement
that	chooses	between	the	different	variants,	and	keep	changing	what	gets	hard
coded	 to	switch	between	variants.	Depending	on	 the	 language	you’re	using,
this	might	require	recompiling	your	code	each	time.	Or,	you	can	shorten	your

workflow	by	building	an	internal	tool	that	lets	you	set	your	cookie	to	a	value
that	can	reliably	trigger	a	certain	variant	during	testing.

These	optimizations	for	shortening	a	debugging	loop	seem	obvious,	now
that	we’ve	spelled	them	out.	But	these	examples	are	based	on	real	scenarios
that	 engineers	 at	 top	 tech	 companies	 have	 faced—and	 in	 some	 cases,	 they
spent	 months	 using	 the	 slower	 workflow	 before	 realizing	 that	 they	 could
shorten	 it	with	 a	 little	 time	 investment.	When	 they	 finally	made	 the	 change
and	 were	 able	 to	 iterate	 much	 more	 quickly,	 they	 scratched	 their	 heads,
wondering	why	they	didn’t	think	to	do	it	earlier.

When	 you’re	 fully	 engaged	with	 a	 bug	 you’re	 testing	 or	 a	 new	 feature
you’re	 building,	 the	 last	 thing	 you	want	 to	 do	 is	 to	 add	more	work.	When
you’re	already	using	a	workflow	that	works,	albeit	with	a	few	extra	steps,	it’s
easy	to	get	complacent	and	not	expend	the	mental	cycles	on	devising	a	shorter
one.	Don’t	 fall	 into	 this	 trap!	The	 extra	 investment	 in	 setting	 up	 a	minimal
debugging	workflow	can	help	you	fix	an	annoying	bug	sooner	and	with	less
headache.

Effective	 engineers	 know	 that	 debugging	 is	 a	 large	 part	 of	 software
development.	 Almost	 instinctively,	 they	 know	 when	 to	 make	 upfront
investments	 to	 shorten	 their	 debugging	 loops	 rather	 than	 pay	 a	 tax	 on	 their
time	for	every	iteration.	That	instinct	comes	from	being	mindful	of	what	steps
they’re	taking	to	reproduce	issues	and	reflecting	on	which	steps	they	might	be
able	 to	short	circuit.	“Effective	engineers	have	an	obsessive	ability	 to	create
tight	feedback	loops	for	what	they’re	testing,”	Mike	Krieger,	co-founder	and
CTO	of	 the	popular	photo-sharing	application	 Instagram,	 told	me	during	an
interview.	“They’re	the	people	who,	if	they’re	dealing	with	a	bug	in	the	photo
posting	 flow	on	an	 iOS	app	…	have	 the	 instinct	 to	spend	 the	20	minutes	 to
wire	things	up	so	that	they	can	press	a	button	and	get	to	the	exact	state	they
want	in	the	flow	every	time.”

The	 next	 time	 you	 find	 yourself	 repeatedly	 going	 through	 the	 same
motions	 when	 you’re	 fixing	 a	 bug	 or	 iterating	 on	 a	 feature,	 pause.	 Take	 a
moment	 to	 think	 through	whether	 you	might	 be	 able	 to	 tighten	 that	 testing
loop.	It	could	save	you	time	in	the	long	run.

Master	Your	Programming	Environment

Regardless	of	the	types	of	software	we	build	throughout	our	careers,	many	of
the	basic	tools	that	we	need	to	use	on	a	daily	basis	remain	the	same.	We	spend
countless	hours	working	in	text	editors,	integrated	development	environments
(IDEs),	web	 browsers,	 and	mobile	 devices.	We	 use	 version	 control	 and	 the
command	 line.	 Moreover,	 certain	 basic	 skills	 are	 required	 for	 the	 craft	 of
programming,	including	code	navigation,	code	search,	documentation	lookup,
code	 formatting,	 and	many	 others.	 Given	 how	much	 time	we	 spend	 in	 our

programming	 environments,	 the	 more	 efficient	 we	 can	 become,	 the	 more
effective	we	will	be	as	engineers.

I	once	worked	with	an	engineer	at	Google	who	moused	through	the	folder
hierarchy	 of	Mac’s	 Finder	 every	 time	 he	wanted	 to	 navigate	 to	 the	 code	 in
another	file.	Say	it	took	12	seconds	to	find	the	file,	and	say	he	switched	files
60	times	per	day.	That’s	12	minutes	he	spent	navigating	between	files	every
day.	 If	 he	 had	 learned	 some	 text	 editor	 keyboard	 shortcuts	 that	 let	 him
navigate	to	a	file	in	2	seconds	instead	of	12,	then	over	the	course	of	one	day,
he	 would	 have	 saved	 10	minutes.	 That	 translates	 to	 40	 hours,	 or	 an	 entire
work	week,	each	year.

There	 are	 numerous	 other	 examples	 of	 simple,	 common	 tasks	 that	 can
take	a	wide	range	of	times	for	different	people	to	complete.	These	include:

Tracking	changes	in	version	control
Compiling	or	building	code
Running	a	unit	test	or	program
Reloading	a	web	page	on	a	development	server	with	new	changes
Testing	out	the	behavior	of	an	expression
Looking	up	the	documentation	for	a	certain	function
Jumping	to	a	function	definition
Reformatting	code	or	data	in	text	editor
Finding	the	callers	of	a	function
Rearranging	desktop	windows
Navigating	to	a	specific	place	within	a	file

Fine-tuning	the	efficiency	of	simple	actions	and	saving	a	second	here	or	there
may	not	seem	worth	it	at	first	glance.	It	requires	an	upfront	investment,	and
you’ll	 very	 likely	 be	 slower	 the	 first	 few	 times	 you	 try	 out	 a	 new	 and
unfamiliar	workflow.	But	consider	that	you’ll	repeat	those	actions	at	least	tens
of	 thousands	 of	 times	 during	 your	 career:	 minor	 improvements	 easily
compound	over	 time.	Not	 looking	at	 the	keyboard	when	you	first	 learned	to
touch	type	might	have	slowed	you	down	initially,	but	the	massive,	long-term
productivity	gains	made	the	investment	worthwhile.	Similarly,	no	one	masters
these	other	skills	overnight.	Mastery	is	a	process,	not	an	event,	and	as	you	get
more	 comfortable,	 the	 time	 savings	 will	 start	 to	 build.	 The	 key	 is	 to	 be
mindful	 of	 which	 of	 your	 common,	 everyday	 actions	 slow	 you	 down,	 and
then	 figure	 out	 how	 to	 perform	 those	 actions	more	 efficiently.	 Fortunately,
decades	 of	 software	 engineers	 have	 preceded	 us;	 chances	 are,	 others	 have
already	 built	 the	 tools	we	 need	 to	 accelerate	 our	most	 common	workflows.
Often,	all	we	need	to	do	is	to	invest	our	time	to	learn	them	well.

Here	are	some	ways	you	can	get	started	on	mastering	your	programming
fundamentals:

Get	 proficient	 with	 your	 favorite	 text	 editor	 or	 IDE.	 There	 are
countless	 debates	 over	 which	 is	 the	 best	 text	 editor:	 Emacs,	 Vim,
TextMate,	Sublime,	or	something	else.	What’s	most	 important	for	you	is

mastering	 the	 tool	 that	 you	 use	 for	 the	 most	 purposes.	 Run	 a	 Google
search	on	productivity	tips	for	your	programming	environment.	Ask	your
more	effective	friends	and	co-workers	if	they’d	mind	you	watching	them
for	a	bit	while	they’re	coding.	Figure	out	the	workflows	for	efficient	file
navigation,	search	and	replace,	auto-completion,	and	other	common	tasks
for	manipulating	text	and	files.	Learn	and	practice	them.
Learn	 at	 least	 one	 productive,	 high-level	 programming	 language.
Scripting	 languages	work	wonders	 in	comparison	 to	compiled	 languages
when	you	need	to	get	something	done	quickly.	Empirically,	languages	like
C,	C++,	and	Java	tend	to	be	2–3x	more	verbose	in	terms	of	lines	of	code
than	higher-level	languages	like	Python	and	Ruby;	moreover,	the	higher-
level	 languages	 come	with	more	powerful,	 built-in	 primitives,	 including
list	 comprehensions,	 functional	 arguments,	 and	 destructuring
assignment.	22	Once	you	 factor	 in	 the	additional	 time	needed	 to	 recover
from	mistakes	or	bugs,	 the	 absolute	 time	differences	 start	 to	 compound.
Each	minute	spent	writing	boilerplate	code	for	a	less	productive	language
is	a	minute	not	spent	tackling	the	meatier	aspects	of	a	problem.
Get	familiar	with	UNIX	(or	Windows)	shell	commands.	Being	able	to
manipulate	and	process	data	with	basic	UNIX	 tools	 instead	of	writing	a
Python	 or	 Java	 program	 can	 reduce	 the	 time	 to	 complete	 a	 task	 from
minutes	down	to	seconds.	Learn	basic	commands	like	 ,	 ,	 ,	 ,

,	 ,	 ,	and	 ,	 all	 of	which	can	be	piped	 together	 to	 execute
arbitrarily	powerful	transformations.	Read	through	helpful	documentation
in	the	 	pages	for	a	command	if	you’re	not	sure	what	it	does.	Pick	up	or
bookmark	some	useful	one-liners.	23

Prefer	 the	 keyboard	 over	 the	 mouse.	 Seasoned	 programmers	 train
themselves	to	navigate	within	files,	launch	applications,	and	even	browse
the	web	using	their	keyboards	as	much	as	possible,	rather	than	a	mouse	or
trackpad.	 This	 is	 because	 moving	 our	 hands	 back	 and	 forth	 from	 the
keyboard	to	the	mouse	takes	time,	and,	given	how	often	we	do	it,	provides
a	 considerable	 opportunity	 for	 optimization.	 Many	 applications	 offer
keyboard	 shortcuts	 for	 common	 tasks,	 and	 most	 text	 editors	 and	 IDEs
provide	 ways	 to	 bind	 custom	 key	 sequences	 to	 special	 actions	 for	 this
purpose.
Automate	 your	manual	workflows.	 Developing	 the	 skills	 to	 automate
takes	 time,	 whether	 they	 be	 using	 shell	 scripts,	 browser	 extensions,	 or
something	 else.	 But	 the	 cost	 of	 mastering	 these	 skills	 gets	 smaller	 the
more	often	you	do	it	and	the	better	you	get	at	it.	As	a	rule	of	thumb,	once
I’ve	manually	performed	a	task	three	or	more	times,	I	start	thinking	about
whether	 it	 would	 be	 worthwhile	 to	 automate	 it.	 For	 example,	 anyone
working	 on	web	 development	 has	 gone	 through	 the	 flow	 of	 editing	 the
HTML	 or	 CSS	 for	 a	 web	 page,	 switching	 to	 the	 web	 browser,	 and
reloading	the	page	to	see	the	changes.	Wouldn’t	it	be	much	more	efficient

to	 set	 up	 a	 tool	 that	 automatically	 re-renders	 the	web	 page	 in	 real-time
when	you	save	your	changes?	24	25

Test	 out	 ideas	 on	 an	 interactive	 interpreter.	 In	 many	 traditional
languages	 like	 C,	 C++,	 and	 Java,	 testing	 the	 behavior	 of	 even	 a	 small
expression	requires	you	to	compile	a	program	and	run	it.	Languages	like
Python,	 Ruby,	 and	 JavaScript,	 however,	 have	 interpreters	 available
allowing	 you	 to	 evaluate	 and	 test	 out	 expressions.	 Using	 them	 to	 build
confidence	 that	 your	 program	 behaves	 as	 expected	 will	 provide	 a
significant	boost	in	iteration	speed.
Make	 it	 fast	and	easy	 to	run	just	 the	unit	 tests	associated	with	your
current	 changes.	 Use	 testing	 tools	 that	 run	 only	 the	 subset	 of	 tests
affected	by	your	code.	Even	better,	integrate	the	tool	with	your	text	editor
or	IDE	so	that	you	can	invoke	them	with	a	few	keystrokes.	In	general,	the
faster	 that	 you	can	 run	your	 tests,	 both	 in	 terms	of	how	 long	 it	 takes	 to
invoke	the	tests	and	how	long	they	take	to	run,	the	more	you’ll	use	tests	as
a	normal	part	of	your	development—and	the	more	time	you’ll	save.

Given	 how	 much	 time	 we	 spend	 within	 our	 programming	 environments,
mastering	the	basic	tools	that	we	use	multiple	times	per	day	is	a	high-leverage
investment.	 It	 lets	 us	 shift	 our	 limited	 time	 from	 the	 mechanics	 of
programming	to	more	important	problems.

Don’t	Ignore	Your	Non-Engineering	Bottlenecks

The	 best	 strategy	 for	 optimizing	 your	 iteration	 speed	 is	 the	 same	 as	 for
optimizing	 the	performance	of	 any	 system:	 identify	 the	biggest	 bottlenecks,
and	figure	out	how	to	eliminate	them.	What	makes	this	difficult	is	that	while
tools,	 debugging	 workflows,	 and	 programming	 environments	 might	 be	 the
areas	most	directly	under	your	control	as	an	engineer,	sometimes	they’re	not
the	only	bottlenecks	slowing	you	down.

Non-engineering	 constraints	 may	 also	 hinder	 your	 iteration	 speed.
Customer	support	might	be	slow	at	collecting	the	details	for	a	bug	report.	The
company	might	have	service-level	agreements	that	guarantee	their	customers
certain	levels	of	uptime,	and	those	constraints	might	limit	how	frequently	you
can	 release	 new	 software.	 Or	 your	 organization	 might	 have	 particular
processes	that	you	need	to	follow.	Effective	engineers	identify	and	tackle	the
biggest	 bottlenecks,	 even	 if	 those	 bottlenecks	 don’t	 involve	writing	 code	 or
fall	 within	 their	 comfort	 zone.	 They	 proactively	 try	 to	 fix	 processes	 inside
their	sphere	of	influence,	and	they	do	their	best	to	work	around	areas	outside
of	their	control.

One	common	type	of	bottleneck	is	dependency	on	other	people.	A	product
manager	might	be	slow	at	gathering	the	customer	requirements	that	you	need;
a	designer	might	not	be	providing	the	Photoshop	mocks	for	a	key	workflow;

another	engineering	 team	might	not	have	delivered	a	promised	 feature,	 thus
blocking	 your	 own	 development.	 While	 it’s	 possible	 that	 laziness	 or
incompetence	 is	at	play,	oftentimes	 the	cause	 is	a	misalignment	of	priorities
rather	than	negative	intention.	Your	frontend	team	might	be	slated	to	deliver	a
user-facing	feature	this	quarter	that	depends	on	a	piece	of	critical	functionality
from	a	backend	team;	but	the	backend	team	might	have	put	it	at	the	bottom	of
its	 priority	 list,	 under	 a	 slew	 of	 other	 projects	 dealing	 with	 scaling	 and
reliability.	 This	 misalignment	 of	 priorities	 makes	 it	 difficult	 for	 you	 to
succeed.	 The	 sooner	 you	 acknowledge	 that	 you	 need	 to	 personally	 address
this	 bottleneck,	 the	more	 likely	 you’ll	 be	 able	 to	 either	 adapt	 your	 goals	 or
establish	consensus	on	the	functionality’s	priority.

Communication	 is	 critical	 for	 making	 progress	 on	 people-related
bottlenecks.	 Ask	 for	 updates	 and	 commitments	 from	 team	 members	 at
meetings	or	daily	stand-ups.	Periodically	check	in	with	that	product	manager
to	make	 sure	what	 you	need	hasn’t	 gotten	dropped.	Follow	up	with	written
communication	 (email	or	meeting	notes)	on	key	action	 items	and	dates	 that
were	 decided	 in-person.	 Projects	 fail	 from	 under-communicating,	 not	 over-
communicating.	 Even	 if	 resource	 constraints	 preclude	 the	 dependency	 that
you	 want	 from	 being	 delivered	 any	 sooner,	 clarifying	 priorities	 and
expectations	 enables	 you	 to	 plan	 ahead	 and	work	 through	 alternatives.	You
might	decide,	 for	 example,	 to	handle	 the	project	dependency	yourself;	 even
though	it	will	take	additional	time	to	learn	how	to	do	it,	it	will	enable	you	to
launch	 your	 feature	 sooner.	 This	 is	 a	 hard	 decision	 to	 make	 unless	 you’ve
communicated	regularly	with	the	other	party.

Another	 common	 type	 of	 bottleneck	 is	 obtaining	 approval	 from	 a	 key
decision	maker,	typically	an	executive	at	the	company.	While	I	was	at	Google,
for	 example,	 any	 user	 interface	 (UI)	 change	 to	 search	 results	 needed	 to	 be
approved	in	a	weekly	UI	review	meeting	with	then-VP	Marissa	Mayer.	There
was	a	limited	supply	of	review	slots	in	those	weekly	meetings,	coupled	with
high	demand,	and	sometimes	a	change	required	multiple	reviews.

Given	 that	 bottlenecks	 like	 these	 generally	 fall	 outside	 of	 an	 engineer’s
control,	oftentimes	the	best	that	we	can	do	is	to	work	around	them.	Focus	on
securing	buy-in	 as	 soon	 as	 possible.	Mayer	 held	 occasional	 office	 hours,	 26
and	 the	 teams	 who	 got	 things	 done	 were	 the	 ones	 who	 took	 advantage	 of
those	 informal	 meetings	 to	 solicit	 early	 and	 frequent	 feedback.	 Don’t	 wait
until	after	you’ve	invested	massive	amounts	of	engineering	time	to	seek	final
project	approval.	Instead,	prioritize	building	prototypes,	collecting	early	data,
conducting	 user	 studies,	 or	 whatever	 else	 is	 necessary	 to	 get	 preliminary
project	approval.	Explicitly	ask	the	decision	makers	what	they	care	about	the
most,	so	that	you	can	make	sure	to	get	those	details	right.	If	meeting	with	the
decision	makers	isn’t	possible,	 talk	with	the	product	managers,	designers,	or
other	leaders	who	have	worked	closely	with	them	and	who	might	be	able	to
provide	 insight	 into	 their	 thought	 processes.	 I’ve	 heard	 countless	 stories	 of
engineers	 ready	 to	 launch	 their	work,	only	 to	get	 last-minute	 feedback	from

key	decision-makers	that	 they	needed	to	make	significant	changes—changes
which	would	undo	weeks	of	engineering	effort.	Don’t	 let	 that	be	you.	Don’t
defer	 approvals	 until	 the	 end.	We’ll	 revisit	 this	 theme	 of	 early	 feedback	 in
more	depth	in	Chapter	6.

A	 third	 type	 of	 bottleneck	 is	 the	 review	 processes	 that	 accompany	 any
project	launch,	whether	they	be	verification	by	the	quality	assurance	team,	a
scalability	or	 reliability	 review	by	 the	performance	 team,	or	an	audit	by	 the
security	team.	It’s	easy	to	get	so	focused	on	getting	a	feature	to	work	that	you
defer	these	reviews	to	the	last	minute—only	to	realize	that	the	team	that	needs
to	sign	off	on	your	work	hadn’t	been	aware	of	your	launch	plans	and	won’t	be
available	until	two	weeks	from	now.	Plan	ahead.	Expend	slightly	more	effort
in	coordination;	it	could	make	a	significant	dent	in	your	iteration	speed.	Get
the	ball	 rolling	on	 the	requirements	 in	your	 launch	checklist,	and	don’t	wait
until	the	last	minute	to	schedule	necessary	reviews.	Again,	communication	is
key	to	ensure	that	review	processes	don’t	become	bottlenecks.

At	larger	companies,	fixing	the	bottlenecks	might	be	out	of	your	circle	of
influence,	and	the	best	you	can	do	is	work	around	them.	At	smaller	startups,
you	 often	 can	 directly	 address	 the	 bottlenecks	 themselves.	 When	 I	 started
working	on	the	user	growth	team	at	Quora,	for	example,	we	had	to	get	design
approval	for	most	of	our	 live	traffic	experiments.	Approval	meetings	were	a
bottleneck.	 But	 over	 time,	 we	 eliminated	 that	 bottleneck	 by	 building	 up
mutual	 trust;	 the	 founders	knew	 that	our	 team	would	use	our	best	 judgment
and	 solicit	 feedback	 on	 the	 experiments	 that	 might	 be	 controversial.	 Not
having	 to	 explicitly	 secure	 approval	 for	 every	 single	 experiment	meant	 that
our	team	could	iterate	at	a	much	faster	pace	and	try	out	many	more	ideas.

Given	the	different	forms	that	your	bottlenecks	can	take,	Donald	Knuth’s
oft-cited	mantra,	 “premature	 optimization	 is	 the	 root	 of	 all	 evil,”	 is	 a	 good
heuristic	to	use.	Building	continuous	deployment	for	search	interface	changes
at	Google,	 for	example,	wouldn’t	have	made	much	of	an	 impact	 in	 iteration
speed,	given	that	the	weekly	UI	review	was	a	much	bigger	bottleneck.	Time
would	 have	 been	 better	 spent	 figuring	 out	 how	 to	 speed	 up	 the	 approval
process.

Find	out	where	the	biggest	bottlenecks	in	your	iteration	cycle	are,	whether
they’re	 in	 the	 engineering	 tools,	 cross-team	 dependencies,	 approvals	 from
decision-makers,	or	organizational	processes.	Then,	work	to	optimize	them.

Key	Takeaways

The	faster	you	can	iterate,	the	more	you	can	learn.	Conversely,	when
you	move	too	slowly	trying	to	avoid	mistakes,	you	lose	opportunities.
Invest	 in	 tooling.	 Faster	 compile	 times,	 faster	 deployment	 cycles,	 and
faster	 turnaround	 times	for	development	all	provide	 time-saving	benefits

that	compound	the	more	you	use	them.
Optimize	 your	 debugging	 workflow.	 Don’t	 underestimate	 how	 much
time	 gets	 spent	 validating	 that	 your	 code	works.	 Invest	 enough	 time	 to
shorten	those	workflows.
Master	 the	 fundamentals	 of	 your	 craft.	 Get	 comfortable	 and	 efficient
with	the	development	environment	that	you	use	on	a	daily	basis.	This	will
pay	off	dividends	throughout	your	career.
Take	 a	 holistic	 view	 of	 your	 iteration	 loop.	 Don’t	 ignore	 any
organizational	and	team-related	bottlenecks	that	may	be	within	your	circle
of	influence.

S

Measure	What	You	Want	to	Improve

OON	AFTER	I	JOINED	GOOGLE’S	SEARCH	QUALITY	TEAM,	I	BEGAN	WORK	WITH	A
team	 of	 engineers	 focused	 on	 increasing	 user	 happiness.	 Every	 time	 a
user	entered	a	query	into	Google’s	search	box,	sophisticated	algorithms

sifted	 through	 billions	 of	 possible	 web	 pages,	 images,	 and	 videos.	 The
algorithms	 evaluated	 over	 200	 signals—ones	 like	 PageRank,	 anchor	 text
matches,	website	freshness,	proximity	of	keyword	matches,	query	synonyms,
or	 geographic	 location	 1—and	 returned	 the	 top	 10	 results	 in	 a	 few	hundred
milliseconds.	2	But	how	did	we	know	that	users	were	finding	what	they	were
looking	 for,	 and	 that	 they	 were	 happy	 when	 they	 left	 their	 search?	 Our
intuition	may	have	suggested	that	one	user	 interface	was	better	 than	another
or	 that	 one	 particular	 combination	 of	 weights	 for	 signals	 was	 optimal.	 But
without	a	reliable	way	of	measuring	user	happiness,	it	would	have	been	hard
to	 determine	 whether	 a	 given	 change	 to	 the	 search	 results	 page	 actually
resulted	in	forward	progress.

One	 way	 to	 assess	 user	 happiness	 is	 to	 directly	 ask	 users	 about	 their
experiences.	Dan	Russell,	a	tech	lead	responsible	for	search	quality	and	user
happiness	at	Google,	has	done	exactly	that	in	his	field	studies.	He	interviews
people	to	understand	what	makes	them	tick	and	why	they	query	for	what	they
do.	3	 In	his	 talks,	Russell	 explains	 that	 user	happiness	 is	 correlated	 to	 “that
sense	of	delight”	you	get	in	successful	searches,	like	when	you	type	the	query

	 and	 the	 results	 include	 a	 cartoon	 result	 of	 the	 week’s	 forecast,	 or
when	the	query	 	automatically	converts	the	currency	for	you.	4
While	 increasing	 user	 delight	 is	 a	 valuable	 and	 laudable	 notion,	 delight	 is
difficult	to	quantify;	it’s	not	something	that	can	be	collected	and	monitored	as
an	operational	guide	for	day-to-day	decisions.	It’s	much	better	to	use	a	metric
based	on	the	behavior	of	Google’s	100+	million	monthly	active	users.	5

Google	 logs	 a	 treasure	 trove’s	worth	of	 data	when	people	 search—what
gets	clicked	on,	how	people	 refine	 their	queries,	when	 they	click	 through	 to
the	next	page	of	 results	 6	7—and	perhaps	 the	most	 obvious	metric	 to	 guide
search	quality	would	be	result	clicks.	But	click-through	rate	as	a	metric	has	its

5

shortcomings.	 A	 user	 might	 click	 on	 a	 result	 with	 a	 seemingly	 reasonable
snippet	only	to	land	on	a	low-quality	web	page	that	doesn’t	satisfy	her	intent.
And	 she	 might	 even	 have	 to	 pogostick	 and	 bounce	 through	 results	 for
multiple	 queries	 before	 finding	 what	 she’s	 looking	 for	 (or	 perhaps	 even
abandoning	 her	 attempt).	 Clearly,	 click-through	 rate,	 while	 important,	 is
insufficient.

For	 over	 a	 decade,	 Google	 guarded	 what	 key	 metrics	 it	 used	 to	 guide
search	 quality	 experiments.	But	 in	 his	 2011	 book	 In	 the	Plex,	 Steven	 Levy
finally	 shed	 some	 light	 on	 the	 subject:	 he	 revealed	 that	 Google’s	 best
indication	of	user	happiness	 is	 the	 “long	click.”	This	occurs	when	 someone
clicks	 a	 search	 result	 and	doesn’t	 return	 to	 the	 search	 page,	 or	 stays	 on	 the
result	page	for	a	long	time.	A	long	click	means	that	Google	has	successfully
displayed	a	 result	 that	 the	user	has	been	searching	for.	On	 the	other	hand,	a
“short	 click”—occurring	 when	 someone	 follows	 a	 link	 only	 to	 return
immediately	 to	 the	 results	 page	 to	 try	 another	 one—indicates	 unhappiness
with	the	result.	Unhappy	users	also	tend	to	change	their	queries	or	go	to	the
next	page	of	search	results.

One	 set	 of	 results	 leads	 to	 happier	 users	 than	 another	 if	 it	 has	 a	 higher
percentage	of	long	clicks.	8	That	metric,	the	long	click-through	rate,	turns	out
to	be	a	surprisingly	versatile	metric.

One	team,	for	example,	worked	on	a	multi-year	effort	to	produce	a	name
detection	system.	Early	on,	Amit	Singhal,	the	head	of	Google’s	ranking	team,
had	observed	that	the	query	 	would	return	heaps	of	Italian	pages
for	the	actress	Audrey	Hepburn	(fino	means	fine	in	Italian),	but	none	for	the
attorney	Audrey	Fino	based	in	Malta.	Given	that	8%	of	Google’s	queries	were
names,	the	example	revealed	a	huge	problem.	To	help	train	the	classifier,	they
licensed	 the	White	 Pages	with	 its	millions	 of	 names.	 But	 even	 volumes	 of
name	 data	 couldn’t	 answer	 the	 question	 of	 whether	 someone	 searching	 for

	 was	 looking	 for	 a	 Texan	 bread	 baker	 or	 someone	 with	 that
name.	To	do	 that,	 they	 also	needed	 to	use	millions	of	 long	 clicks	 and	 short
clicks	to	determine	which	results	matched	the	user’s	intent	and	which	didn’t.
Through	 this	 mechanism,	 Singhal’s	 team	 successfully	 taught	 the	 name
classifier	 that	 the	user’s	 intent	depended	on	whether	he	was	 searching	 from
Texas.	9

Similarly,	when	engineer	David	Bailey	first	worked	on	universal	search	to
enable	 a	 single	 query	 to	 search	 all	 of	 Google’s	 corpora—images,	 videos,
news,	 locations,	 products,	 etc.—he	 faced	 the	 difficult	 problem	 of	 how	 to
weigh	the	relative	importance	of	different	result	types.	Someone	searching	for

	might	want	to	see	images	and	videos;	someone	searching	for	
	might	want	 news	 results;	 and	 someone	 searching	 for	
	might	want	reviews	and	maps.	Deciding	which	result	type

to	rank	higher	was	akin	to	comparing	apples	and	oranges.	The	solution	again
came	partly	in	the	form	of	analyzing	long	click	data	to	decode	the	intent	of	a

query.	 Have	 users	 who	 searched	 for	 	 historically	 clicked	 and
spent	time	on	more	images	or	more	web	results?	From	long	clicks	and	other
signals,	Bailey’s	 team	was	able	 to	accurately	combine	 results	 from	different
corpora	with	sensible	and	data-driven	rankings.	10	Today,	we	take	for	granted
Google’s	ability	to	search	over	everything,	but	that	wasn’t	the	case	for	more
than	ten	years	after	the	company	was	founded.

My	experience	at	Google	demonstrated	the	power	of	a	well-chosen	metric
and	its	ability	to	tackle	a	wide	range	of	problems.	Google	runs	thousands	of
live	traffic	search	experiments	per	year,	11	and	their	reliance	on	metrics	played
a	key	role	in	ensuring	search	quality	and	building	their	market	share.

In	this	chapter,	we’ll	look	at	why	metrics	are	important	tools	for	effective
engineers,	 to	 not	 only	measure	 progress	 but	 also	 to	 drive	 it.	We’ll	 see	 how
choosing	 which	 key	metrics	 to	 use—and	 not	 use!—can	 completely	 change
what	 work	 gets	 prioritized.	 We’ll	 walk	 through	 the	 importance	 of
instrumenting	our	systems	to	increase	our	understanding	of	what’s	happening.
We’ll	go	over	how	internalizing	some	useful	numbers	can	help	shortcut	many
decisions.	And	lastly,	we’ll	close	by	discussing	why	we	need	to	be	skeptical
of	data	integrity	and	how	we	can	defend	ourselves	against	bad	data.

Use	Metrics	to	Drive	Progress

Measuring	 progress	 and	 performance	 might	 seem	 to	 fall	 within	 your
manager’s	purview,	but	 it’s	 actually	a	powerful	 tool	 for	 assessing	your	own
effectiveness	and	prioritizing	your	work.	As	Peter	Drucker	points	out	in	The
Effective	 Executive,	 “If	 you	 can’t	 measure	 it,	 you	 can’t	 improve	 it.”	 12	 In
product	development,	it’s	not	uncommon	for	a	manager	to	conceive	of	some
new	feature,	for	engineers	to	build	and	ship	it,	and	for	the	team	to	celebrate—
all	 without	 implementing	 any	 mechanism	 to	 measure	 whether	 the	 feature
actually	improved	the	product	experience.

Good	metrics	accomplish	a	number	of	goals.	First,	they	help	you	focus	on
the	right	 things.	They	confirm	that	your	product	changes—and	all	 the	effort
you’ve	put	 into	 them—actually	 achieve	your	objectives.	How	do	you	know
whether	 the	 fancy	new	widget	 that	 you’ve	 added	 to	your	product	 improved
user	 engagement?	 Or	 whether	 a	 speed	 optimization	 fixed	 the	 performance
bottleneck?	 Or	 whether	 a	 new	 recommendations	 algorithm	 produced	 better
suggestions?	 The	 only	 way	 to	 be	 consistently	 confident	 when	 answering
questions	like	these	is	to	define	a	metric	associated	with	your	goal—whether
that	 metric	 is	 weekly	 active	 rate,	 response	 time,	 click-through	 rate,	 or
something	 else—and	 then	 measure	 the	 change’s	 impact.	 Without	 those
measurements,	we’re	 only	 able	 to	 proceed	 based	 on	 intuition;	 and	we	 have
few	avenues	for	understanding	whether	our	intuition	is	correct.

Second,	 when	 visualized	 over	 time,	 good	 metrics	 help	 guard	 against

Second,	 when	 visualized	 over	 time,	 good	 metrics	 help	 guard	 against
future	 regressions.	 Engineers	 know	 the	 value	 of	 writing	 a	 regression	 test
while	fixing	bugs:	it	confirms	that	a	patch	actually	fixes	a	bug	and	detects	if
the	bug	re-surfaces	 in	 the	 future.	Good	metrics	play	a	similar	 role,	but	on	a
system-wide	 scale.	 Say	 your	 signup	 rate	 drops.	 In	 your	 investigation,	 you
might	 find	 that	 a	 recent	 JavaScript	 library	 change	 caused	 a	 bug	 in	 Internet
Explorer,	 a	 browser	 that	 you	 don’t	 test	 frequently.	 Or	 if	 the	 application
latency	 spikes,	 that	might	 tell	 you	 that	 a	newly-added	 feature	 is	 putting	 too
much	load	on	the	database.	Without	a	dashboard	of	signup	rates,	application
latency,	and	other	useful	metrics,	 it	would	be	hard	to	identify	many	of	these
regressions.

Third,	good	metrics	can	drive	forward	progress.	At	Box,	a	company	that
builds	 collaboration	 software	 for	 the	 enterprise	 market,	 the	 engineers	 care
deeply	 about	 their	 application’s	 latency.	 A	 dedicated	 performance	 team
worked	 hard	 over	 three	 months	 to	 shave	 seconds	 off	 of	 their	 main	 page.
However,	 the	 other	 application	 teams	 added	 those	 seconds	 right	 back	when
they	 launched	 new	 features,	 making	 the	 page	 no	 faster	 than	 before.	 In	 a
conversation	 I	 had	 with	 Sam	 Schillace,	 Box’s	 VP	 of	 Engineering,	 he
explained	 a	 technique	 called	 performance	 ratcheting	 that	 they	 now	 use	 to
address	 this	problem	and	apply	downward	pressure	on	performance	metrics.
In	mechanics,	a	ratchet	is	a	device	that	allows	a	wheel	with	many	teeth	along
its	 edge	 to	 rotate	 in	 one	 direction	 while	 preventing	motion	 in	 the	 opposite
direction.	 At	 Box,	 they	 use	 metrics	 to	 set	 a	 threshold	 that	 they	 call	 a
performance	 ratchet.	Any	new	change	 that	would	push	 latency	or	other	key
indicators	 past	 the	 ratchet	 can’t	 get	 deployed	 until	 it’s	 optimized,	 or	 until
some	 other	 feature	 is	 improved	 by	 a	 counterbalancing	 amount.	 Moreover,
every	 time	 the	 performance	 team	makes	 a	 system-level	 improvement,	 they
lower	the	ratchet	further.	The	practice	ensures	that	performance	trends	in	the
right	direction.

Fourth,	a	good	metric	lets	you	measure	your	effectiveness	over	time	and
compare	the	leverage	of	what	you’re	doing	against	other	activities	you	could
be	doing	 instead.	 If	historically	you’ve	been	able	 to	 improve	a	performance
metric	or	a	user	engagement	metric	by	1%	per	week,	that	number	can	be	used
as	a	target	for	establishing	future	goals.	The	metric	also	can	become	a	way	to
prioritize	 ideas	on	 the	 roadmap;	you	can	compare	a	 task’s	estimated	 impact
for	its	expected	time	investment	against	your	historical	rate.	A	task	that	could
improve	metrics	 by	more	 than	 1%	with	 a	week’s	worth	 of	 effort	would	 be
higher-leverage;	a	task	with	lower	estimated	impact	would	get	deprioritized.

Quantifying	goals	with	a	metric	isn’t	always	easy.	An	individual	bug	fix,
for	example,	might	be	visible	in	the	product	but	not	make	much	of	a	dent	in
core	 metrics.	 But	 consistent	 bug	 fixing	 could	 be	 reflected	 somewhere,
whether	 it	be	 in	 reduced	customer	complaints,	higher	user	 ratings	 in	an	app
store,	or	higher	product	quality.	Even	these	seemingly	subjective	notions	can
still	be	quantified	over	time	via	user	surveys.	Moreover,	just	because	it’s	hard

to	measure	a	goal	doesn’t	mean	that	it’s	not	worthwhile	to	do	so.	We’ll	often
be	 faced	with	 tricky	 situations	where	 intuitively	 something	 seems	 valuable,
but	it	is	hard	to	quantify	or	takes	too	much	effort	to	measure.

Even	still,	given	the	benefits	of	good	metrics,	it’s	worth	asking	yourself:
Is	there	some	way	to	measure	the	progress	of	what	I’m	doing?
If	a	task	I’m	working	on	doesn’t	move	a	core	metric,	is	it	worth	doing?	Or
is	there	a	missing	key	metric?

So	how	do	you	actually	pick	good	metrics?	We’ll	look	at	that	next.

Pick	the	Right	Metric	to	Incentivize	the	Behavior	You
Want

Selecting	what	you	measure	is	as	important	as	measuring	itself.	As	engineers,
we	 often	 set	 metrics	 and	 goals	 for	 our	 teams,	 or	 we	 work	 to	 improve	 the
metrics	set	for	us.	We	tend	to	be	good	at	solving	problems	and	optimizing	a
metric	once	it’s	been	set.	However,	it’s	crucial	to	remember	that	the	choice	of
which	metric	to	measure	dramatically	impacts	and	influences	the	type	of	work
that	we	do.	The	right	metric	functions	as	a	North	Star,	aligning	team	efforts
toward	 a	 common	 goal;	 the	 wrong	 metric	 leads	 to	 efforts	 that	 might	 be
ineffective	or	even	counterproductive.

Consider	 a	 few	 examples	 of	 how	 tracking	 different	 metrics	 can	 affect
team	behavior:

Hours	worked	per	week	vs.	productivity	per	week.	During	my	first	five
years	 at	 startups,	 I’ve	 gone	 through	 a	 few	 crunch	 periods	 where
engineering	 managers	 pushed	 for	 70-hour	 work	 weeks	 in	 the	 hopes	 of
shipping	 a	 product	 faster.	 Not	 once	 have	 I	 come	 out	 of	 the	 experience
thinking	 that	 it	 was	 the	 right	 decision	 for	 the	 team.	 The	 marginal
productivity	 of	 each	 additional	work	 hour	 drops	 precipitously	 once	 you
reach	 anywhere	 near	 this	 number.	 Average	 productivity	 per	 hour	 goes
down,	 errors	 and	 bug	 rates	 increase,	 burnout	 and	 turnover—with	 their
own	 difficult-to-measure	 costs—intensify,	 and	 overtime	 is	 typically
followed	by	an	equal	period	of	“undertime”	as	employees	try	to	catch	up
with	their	lives.	13	Ultimately,	attempting	to	increase	output	by	increasing
hours	worked	 per	week	 is	 unsustainable.	 It	 is	much	more	 reasonable	 to
align	your	metric	with	productivity	per	week,	where	productivity	in	your
focus	area	is	measured	by	factors	like	product	quality,	site	speed,	or	user
growth.
Click-through	 rates	 vs.	 long	 click-through	 rates.	 When	 working	 on
ranking	 for	 search	 or	 recommendations,	 a	 common	 approach	 is	 to	 use
click-through	 rates	 to	 measure	 results	 quality.	 However,	 as	 previously
discussed,	 optimizing	 for	 click-through	 rate	 can	 be	 problematic	 when

“short	 clicks”	 (where	 users	 follow	 a	 superficially	 relevant	 link	 only	 to
bounce	 back	 to	 the	 search	 page	 to	 try	 another	 one)	 skew	 the	 results.
Although	 short	 clicks	 appear	 to	 improve	 the	 click-through	 rate	 metric,
they	 actually	 indicate	 that	 the	 page	 was	 irrelevant;	 this	 is	 why	 Google
measures	“long	clicks”	 instead.	Only	“when	someone	 [goes]	 to	a	 search
result,	 ideally	 the	 top	one,	and	[does]	not	return,”	Steven	Levy	writes	 in
his	book	In	the	Plex,	does	it	mean	that	“Google	has	successfully	fulfilled
the	query.”	14

Average	 response	 times	 vs.	 95th	 or	 99th	 percentile	 response	 times.
Numerous	 studies	by	Google,	Yahoo,	Amazon,	 and	Facebook	 show	 that
the	speed	of	website	response	times	matters	to	users.	15	16	17	18	But	how
should	you	measure	speed?	Focusing	on	the	average	response	time	leads
to	 a	 very	 different	 set	 of	 priorities	 than	 focusing	 on	 the	 highest	 95th	 or
99th	percentile	 of	 response	 times.	To	decrease	 the	 average,	 you’ll	 focus
more	 on	 general	 infrastructure	 improvements	 that	 can	 shave	 off
milliseconds	 from	 all	 requests.	The	 average	 is	 the	 right	metric	 to	 use	 if
your	goal	is	to	reduce	server	costs	by	cutting	down	aggregate	computation
time.	To	decrease	the	95th	or	99th	percentile,	however,	you’ll	need	to	hunt
down	the	worst-case	behaviors	in	your	system.	In	this	case,	it’s	important
to	 focus	 on	 the	 slowest	 responses	 because	 they	 tend	 to	 reflect	 the
experiences	of	your	power	users—users	who	have	the	most	data	and	the
most	 activity	 and	 who	 tend	 to	 be	 more	 computationally	 expensive	 to
support.
Bugs	fixed	vs.	bugs	outstanding.	A	friend	who	used	to	work	on	Adobe
quality	 assurance	 shared	 a	 story	 about	 how	 his	 team	 would	 reward
developers	 for	 bugs	 fixed.	 Unfortunately,	 this	 only	 incentivized	 the
developers	 to	be	 less	rigorous	about	 testing	when	building	new	features:
they	were	 giving	 themselves	 the	 opportunity	 to	 fix	 easy	 bugs	 later	 and
rack	up	points.	Tracking	the	number	of	outstanding	bugs	instead	of	bugs
fixed	would	have	de-incentivized	this	behavior.
Registered	 users	 vs.	 weekly	 growth	 rate	 of	 registered	 users.	 When
growing	 a	 product’s	 user	 base,	 it’s	 tempting	 to	 track	 gross	 numbers	 of
total	 registered	users	 and	be	 content	with	 seeing	 those	metrics	move	up
and	 to	 the	 right.	 Unfortunately,	 those	 numbers	 don’t	 indicate	 whether
you’re	sustainably	increasing	growth.	A	good	press	article	might	spark	a
one-time	bump	to	growth	numbers	but	not	have	much	long-term	impact.
On	the	other	hand,	measuring	growth	in	terms	of	your	weekly	growth	rate
(for	 example,	 the	 ratio	 of	 new	 registered	 users	 in	 a	 week	 over	 total
registered	users),	shows	whether	growth	is	slowing	down.
Weekly	 active	 users	 vs.	 weekly	 active	 rate	 by	 age	 of	 cohort.	 When
tracking	 user	 engagement,	 the	 number	 of	 weekly	 active	 users	 doesn’t
provide	 a	 complete	 picture.	 In	 fact,	 that	 number	 might	 increase
temporarily	 even	 if	 product	 changes	 are	 actually	 reducing	 engagement

over	 time.	 Users	 could	 be	 signing	 up	 as	 a	 result	 of	 prior	 momentum,
before	there’s	time	for	the	long-term	effects	of	the	changes	to	be	reflected
in	 the	 gross	 numbers.	 And	 they	 might	 be	 more	 likely	 to	 churn	 and
abandon	the	product	after	signing	up	than	before.	An	alternative	and	more
accurate	metric	would	be	the	weekly	active	rate	by	age	of	cohort.	In	other
words,	measure	the	fraction	of	users	who	are	still	weekly	actives	the	nth
week	after	signing	up,	and	track	how	that	number	changes	over	time.	This
metric	 provides	more	 actionable	 insight	 into	 how	 product	 changes	 have
affected	 the	engagement	of	newer	cohorts	of	users	as	compared	 to	older
ones.

These	 examples	 illustrate	 that	 there	 can	 be	more	 than	 one	way	 to	measure
progress	toward	any	given	goal.	In	addition,	the	magnitude	of	the	goal	for	a
metric	also	matters.	For	example,	if	your	goal	is	to	reduce	website	latency	but
you	don’t	have	a	specific	target,	you	may	be	satisfied	with	small,	incremental
improvements.	 But	 if	 your	 goal	 is	 to	 drastically	 reduce	 latency	 to	 below
400ms	 for	 a	website	 that	 currently	 takes	multiple	 seconds	 to	 render,	 it	may
necessitate	 cutting	 features,	 re-architecting	 the	 system,	 or	 rewriting	 a
bottleneck	to	a	faster	language.	It	no	longer	makes	sense	to	tackle	small	wins
if	you	have	a	more	aggressive	goal.	The	metric	you	choose	 influences	your
decisions	and	behavior.

What	 you	don’t	measure	 is	 important	 as	well.	 In	Delivering	Happiness,
Zappos	 CEO	Tony	Hsieh	 shares	 a	 story	 of	 how	 he	 built	 a	 culture	 of	 great
customer	service	by	making	a	key	decision	about	what	not	to	measure.	Most
call	centers	assess	the	performance	of	customer	service	representatives	using
their	“average	handle	time.”	This	measures	the	average	number	of	minutes	it
takes	an	employee	to	handle	a	customer	call.	Reducing	this	metric	saves	costs
because	employees	handle	more	phone	calls	per	day—but	this	was	something
that	Hsieh	didn’t	actually	want	to	optimize	for.	“This	[metric]	translates	into
reps	 worrying	 about	 how	 quickly	 they	 can	 get	 a	 customer	 off	 the	 phone,
which	 in	our	eyes	 is	not	delivering	great	customer	service,”	Hsieh	explains.
“At	Zappos,	we	don’t	measure	call	times	(our	longest	phone	call	was	almost
six	hours	long!)	…	We	just	care	about	whether	the	rep	goes	above	and	beyond
for	every	customer.”	19	This	decision	enabled	Zappos	 to	distinguish	 itself	 in
customer	service.	As	a	result,	the	company	grew	from	zero	revenues	in	1999
to	 over	 $1	 billion	 in	 annual	 revenue	 by	 the	 time	 that	 it	 was	 acquired	 by
Amazon	in	2009.

Picking	 the	 right	metric	 applies	 to	 your	 personal	 goals	 as	 well	 as	 your
professional	ones.	I	knew	writing	this	book	would	be	a	long	and	challenging
project,	so	I	established	the	habit	of	writing	every	day.	Early	on,	I	set	a	goal	of
writing	for	at	least	three	hours	per	day,	and	I	kept	track	of	my	progress.	What
I	noticed	after	a	few	weeks,	however,	was	that	I	would	spend	much	of	those
three	hours	 re-reading	and	 re-writing	 to	perfect	my	sentences.	 In	 fact,	 some
days	after	editing,	I	actually	would	end	up	with	fewer	words	than	I	had	started
out	with	initially.	Great	writers	like	Stephen	King	and	Mark	Twain	underscore

the	importance	of	revision,	but	I	knew	that	I	was	rewriting	too	much	too	early,
and	that	I	would	be	better	off	drafting	more	chapters.	And	so,	I	changed	my
metric.	 Rather	 than	 focusing	 on	 writing	 three	 hours	 per	 day,	 I	 focused	 on
writing	1,000	words	per	day.	Some	days,	that	took	me	two	hours;	other	days,
it	took	four	or	five.	The	new	metric	incentivized	me	to	focus	on	drafting	new
content	rather	than	focusing	on	sentence	quality—something	I	could	revisit	at
a	later	time.	That	simple	change	was	all	I	needed	to	significantly	increase	my
writing	pace.

The	more	complex	the	product	and	the	goal,	the	more	options	there	are	for
what	to	measure	and	not	to	measure,	and	the	more	flexibility	there	is	to	guide
where	effort	gets	spent	and	what	output	gets	produced.	When	deciding	which
metrics	to	use,	choose	ones	that	1)	maximize	impact,	2)	are	actionable,	and	3)
are	responsive	yet	robust.

Look	 for	a	metric	 that,	when	optimized,	maximizes	 impact	 for	 the	 team.
Jim	Collins,	the	author	of	Good	to	Great,	argues	that	what	differentiates	great
companies	 from	 good	 companies	 is	 that	 they	 align	 all	 employees	 along	 a
single,	 core	 metric	 that	 he	 calls	 the	 economic	 denominator.	 The	 economic
denominator	answers	the	question:	“If	you	could	pick	one	and	only	one	ratio
—profit	per	x	…—to	 systematically	 increase	over	 time,	what	x	would	have
the	greatest	and	most	sustainable	impact	on	your	economic	engine?”	20	In	the
context	 of	 engineering,	 the	 core	 metric	 should	 be	 the	 one	 that,	 when
systematically	 increased	 over	 time,	 leads	 you	 and	 the	 rest	 of	 your	 team	 to
make	 the	 greatest	 and	 most	 sustainable	 impact.	 Having	 a	 single,	 unifying
metric—whether	 it’s	 products	 sold,	 rentals	 booked,	 content	 generated,	 or
something	else—enables	you	to	compare	the	output	of	disparate	projects	and
helps	 your	 team	 decide	 how	 to	 handle	 externalities.	 For	 example,	 should	 a
performance	 team	 cut	 a	 product	 feature	 to	 improve	 page	 load	 times?	 That
decision	might	be	a	yes	 if	 they’re	 just	optimizing	a	site	 speed	metric,	but	 it
will	 be	more	 nuanced	 (and	more	 likely	 aligned	with	 the	 company’s	 desired
impact)	if	they’re	optimizing	a	higher-level	product	metric.

An	actionable	metric	is	one	whose	movements	can	be	causally	explained
by	the	team’s	efforts.	In	contrast,	vanity	metrics,	as	Eric	Ries	explains	in	The
Lean	Startup,	track	gross	numbers	like	page	views	per	month,	total	registered
users,	 or	 total	 paying	 customers.	 Increases	 in	 vanity	 metrics	 may	 imply
forward	product	progress,	but	they	don’t	necessarily	reflect	the	actual	quality
of	 the	 team’s	work.	For	example,	page	views	might	continue	 to	 increase	 (at
least	initially)	after	a	mediocre	product	change,	due	to	prior	press	coverage	or
growth	 in	 organic	 search	 traffic	 from	 the	 momentum	 of	 past	 launches.	 21
Actionable	metrics,	on	the	other	hand,	include	things	like	signup	conversion
rate,	 or	 the	 percentage	 of	 registered	 users	 that	 are	 active	weekly	 over	 time.
Through	A/B	 testing	 (a	 topic	we’ll	 discuss	 in	Chapter	 6),	we	 can	 trace	 the
movement	 of	 actionable	 metrics	 directly	 back	 to	 product	 changes	 on	 the
signup	page	or	to	feature	launches.

A	 responsive	 metric	 updates	 quickly	 enough	 to	 give	 feedback	 about
whether	a	given	change	was	positive	or	negative,	so	that	your	team	can	learn
where	 to	 apply	 future	 efforts.	 It	 is	 a	 leading	 indicator	 of	 how	 your	 team	 is
currently	doing.	A	metric	that	measures	active	users	in	the	past	week	is	more
responsive	than	one	that	tracks	active	users	in	the	past	month,	since	the	latter
requires	 a	month	 after	 any	 change	 to	 fully	 capture	 the	 effects.	 However,	 a
metric	 also	 needs	 to	 be	 robust	 enough	 that	 external	 factors	 outside	 of	 the
team’s	 control	 don’t	 lead	 to	 significant	 noise.	 Trying	 to	 track	 performance
improvements	 with	 per-minute	 response	 time	 metrics	 would	 be	 difficult
because	 of	 their	 high	 variance.	 However,	 tracking	 the	 response	 times
averaged	over	an	hour	or	a	day	would	make	the	metric	more	robust	to	noise
and	 allow	 trends	 to	 be	 detected	 more	 easily.	 Responsiveness	 needs	 to	 be
balanced	with	robustness.

Because	 the	 choice	 of	 metric	 can	 have	 such	 a	 significant	 impact	 on
behavior,	 it’s	 a	 powerful	 leverage	point.	Dedicate	 the	 time	 to	 pick	 the	 right
metric,	whether	it’s	just	for	yourself	or	for	your	team.

Instrument	Everything	to	Understand	What’s	Going	On

When	 establishing	 our	 goals,	 it’s	 important	 to	 choose	 carefully	 what	 core
metrics	to	measure	(or	not	measure)	and	optimize.	When	it	comes	to	day-to-
day	 operations,	 however,	 you	 should	 be	 less	 discriminatory:	 measure	 and
instrument	 as	 much	 as	 possible.	 Although	 these	 two	 principles	 may	 seem
contradictory,	 they	 actually	 complement	 each	 other.	 The	 first	 describes	 a
high-level,	 big-picture	 activity,	whereas	 the	 second	 is	 about	 gaining	 insight
into	what’s	going	on	with	systems	that	we’ve	built.

The	goal	of	airline	pilots	is	to	fly	their	passengers	from	point	A	to	point	B,
as	measured	by	distance	to	their	destination;	but	they	do	not	fly	blind—they
have	sets	of	instruments	to	understand	and	monitor	the	state	of	their	aircraft.
The	 altimeter	 measures	 pressure	 differences	 to	 show	 the	 plane’s	 altitude
above	 sea	 level.	 The	 attitude	 indicator	 shows	 the	 aircraft’s	 relation	 to	 the
horizon	 and	 whether	 the	 wings	 are	 level.	 The	 vertical	 speed	 indicator
measures	 the	rate	of	climb	or	fall.	22	These	and	the	many	hundreds	of	other
cockpit	instruments	empower	pilots	to	understand	the	complexity	of	the	plane
and	cross-check	its	health.	23

If	we’re	not	mindful,	we	will	 fly	blind	when	we’re	building	 software—
and	we	will	pay	the	cost.	Jack	Dorsey,	co-founder	of	Twitter	and	founder	and
CEO	of	 the	mobile	payments	 company	Square,	 reiterated	 this	 in	 a	Stanford
entrepreneurship	lecture.	He	told	us	that	one	of	the	most	valuable	lessons	he
learned	at	Twitter	was	 the	 importance	of	 instrumenting	everything.	“For	 the
first	two	years	of	Twitter’s	life,	we	were	flying	blind,”	Dorsey	explained.	“We
had	no	idea	what	was	going	on	with	the	network.	We	had	no	idea	what	was
going	on	with	the	system,	with	how	people	were	using	it	…	We	were	going

down	 all	 the	 time	 because	 of	 it,	 because	 we	 could	 not	 see	 what	 was
happening.”	 Twitter	 users	 were	 becoming	 accustomed	 to	 seeing	 the	 “Fail
Whale”	 graphic—a	 whale	 held	 up	 by	 a	 flock	 of	 birds—since	 the	 site	 was
overloaded	so	frequently.	Only	after	Twitter	engineers	started	monitoring	and
instrumenting	their	systems	were	they	able	to	identify	problems	and	build	the
much	 more	 reliable	 service	 that	 over	 240	 million	 people	 now	 use	 every
month.

When	we	don’t	have	visibility	into	our	software,	all	we	can	do	is	guess	at
what’s	wrong.	That’s	a	main	reason	why	the	2013	HealthCare.gov	launch	was
such	 an	 abysmal	 failure.	 The	 website	 was	 a	 central	 feature	 of	 the	 United
States’	Affordable	Care	Act	(a.k.a.	Obamacare),	and	government	contractors
had	spent	nearly	$292	million	building	a	site	plagued	with	technical	issues.	24
Estimates	suggest	that	only	1%	of	the	3.7	million	people	who	tried	to	register
in	 the	 first	 week	 were	 actually	 successful;	 the	 rest	 hit	 error	 messages,
timeouts,	 or	 login	 issues	 and	 couldn’t	 load	 the	 site.	 25	 “There’s	 no
sugarcoating,”	 President	Obama	 admitted.	 “The	website	 has	 been	 too	 slow,
people	have	been	getting	stuck	during	the	application	process,	and	I	think	it’s
fair	to	say	that	nobody’s	more	frustrated	by	that	than	I	am.”	26	Even	worse,	as
one	 journalist	 reported,	 the	 contracted	 engineers	 attempted	 to	 fix	 the	 site
“much	as	you	or	I	might	reboot	or	otherwise	play	with	a	laptop	to	see	if	some
shot	in	the	dark	fixes	a	snafu.”	27	They	were	flying	blind	and	guessing	at	fixes
because	they	had	no	instruments.

A	team	of	Silicon	Valley	veterans	finally	flew	into	Washington	to	help	fix
the	site.	The	first	thing	they	did	was	to	instrument	key	parts	of	the	system	and
build	a	dashboard,	one	 that	would	surface	how	many	people	were	using	 the
site,	 the	 response	 times,	 and	where	 traffic	was	 going.	Once	 they	 had	 some
visibility	 into	what	was	 happening,	 they	were	 able	 to	 add	 caching	 to	 bring
down	 load	 times	 from	 8	 seconds	 down	 to	 2,	 fix	 bugs	 to	 reduce	 error	 rates
down	 from	an	 egregious	 6%	 to	 0.5%,	 and	 scale	 the	 site	 up	 so	 that	 it	 could
support	 over	 83k	 simultaneous	 users.	 27	 Six	 weeks	 after	 the	 trauma	 team
arrived	 and	 added	monitoring,	 the	 site	was	 finally	 in	 a	 reasonable	working
condition.	 Because	 of	 their	 efforts,	 over	 8	 million	 Americans	 were	 able	 to
sign	up	for	private	health	insurance.	28

The	stories	from	Twitter	and	Obamacare	 illustrate	 that	when	it	comes	 to
diagnosing	 problems,	 instrumentation	 is	 critical.	 Suppose	 there’s	 a	 spike	 in
the	 number	 of	 user	 login	 errors.	Was	 a	 new	 bug	 was	 introduced?	 Did	 the
authentication	 backend	 hit	 a	 network	 glitch?	 Was	 a	 malicious	 user
programmatically	 guessing	 passwords?	 Was	 it	 something	 else	 entirely?	 To
effectively	answer	these	questions,	we	need	to	know	when	the	errors	started,
the	 time	 of	 the	 latest	 code	 deployment,	 the	 network	 traffic	 of	 the
authentication	 service,	 the	maximum	number	 of	 authentication	 attempts	 per
account	over	various	time	windows,	and	possibly	more	pieces	of	information.

http://www.healthcare.gov/

Without	 these	 metrics,	 we’re	 left	 guessing—and	 we	 might	 end	 up	 wasting
effort	addressing	non-problematic	areas.

Or	suppose	our	web	application	suddenly	fails	to	load	in	production.	Did	a
traffic	spike	from	Reddit	overload	our	servers?	Did	our	Memcached	caching
layer	or	MySQL	database	layer	run	out	of	space	or	start	throwing	errors?	Did
a	 team	accidentally	deploy	a	broken	module?	Dashboards	with	 tables	of	 top
referrers,	 performance	 graphs	 for	 the	 data	 stores,	 and	 error	 graphs	 for	 the
application	all	can	help	narrow	down	the	list	of	possible	hypotheses.

In	 a	 similar	 way,	 effectively	 optimizing	 a	 core	 metric	 requires
systematically	 measuring	 a	 slew	 of	 other	 supporting	 metrics.	 To	 optimize
overall	signup	rate,	you	need	to	start	measuring	signup	rates	by	referral	type
(whether	 the	 user	 came	 from	 Facebook,	 Twitter,	 search,	 direct	 navigation,
email	 campaigns,	 etc.),	 landing	 page,	 and	 many	 other	 dimensions.	 To
optimize	 a	 web	 application’s	 response	 time,	 you	 need	 to	 decompose	 the
metric	and	measure	time	spent	in	the	database	layer,	the	caching	layer,	server-
side	rendering	logic,	data	transfer	over	the	network,	and	client-side	rendering
code.	To	optimize	 search	quality,	 you	need	 to	 start	measuring	click-through
rates,	 the	number	of	 results,	 the	searches	per	session,	 the	 time	 to	 first	 result
click,	 and	 more.	 The	 supporting	 metrics	 explain	 the	 story	 behind	 the	 core
metric.

Adopting	a	mindset	of	 instrumentation	means	ensuring	we	have	a	set	of
dashboards	that	surface	key	health	metrics	and	that	enable	us	to	drill	down	to
the	relevant	data.	However,	many	of	the	questions	we	want	to	answer	tend	to
be	exploratory,	since	we	often	don’t	know	everything	that	we	want	to	measure
ahead	of	time.	Therefore,	we	need	to	build	flexible	tools	and	abstractions	that
make	it	easy	to	track	additional	metrics.

Etsy,	a	company	that	sells	handmade	crafts	online,	does	this	exceptionally
well.	 The	 engineering	 team	 instruments	 their	 web	 application	 according	 to
their	philosophy	of	“measure	anything,	measure	everything.”	29	They	release
code	 and	 application	 configurations	 over	 25	 times	 per	 day,	 and	 they	move
quickly	 by	 investing	 time	 in	 gathering	metrics	 for	 their	 servers,	 application
behavior,	network	performance,	and	the	countless	other	inputs	that	drive	their
platform.	 To	 do	 this	 effectively,	 they	 use	 a	 system	 called	 Graphite	 that
supports	 flexible,	 real-time	 graphing,	 30	 and	 a	 library	 called	 StatsD	 for
aggregating	metrics.	31	A	single	line	of	code	lets	them	define	a	new	counter	or
timer	 on	 the	 fly,	 track	 statistics	 every	 time	 the	 code	 is	 executed,	 and
automatically	 generate	 a	 time	 series	 graph	 that	 can	 be	 transformed	 and
composed	 with	 any	 number	 of	 other	 metrics.	 They	 measure	 everything
including	 “numbers	 of	 new	 registrations,	 shopping	 carts,	 items	 sold,	 image
uploaded,	forum	posts,	and	application	errors.”	32	By	graphically	correlating
these	metrics	with	the	times	of	code	deployments,	they’re	able	to	quickly	spot
when	a	certain	deployment	goes	awry.

Successful	 technology	 companies	 build	 the	 equivalent	 of	 a	 pilot’s	 flight
instruments,	making	it	easy	for	engineers	to	measure,	monitor,	and	visualize
system	behavior.	The	more	quickly	that	 teams	can	identify	the	root	cause	of
certain	 behaviors,	 the	 more	 rapidly	 they	 can	 address	 issues	 and	 make
progress.	At	Google,	site	reliability	engineers	use	a	monitoring	system	called
Borgmon	to	collect,	aggregate,	and	graph	metrics	and	 to	send	alerts	when	it
detects	anomalies.	33	Twitter	built	a	distributed	platform	called	Observability
to	collect,	 store,	and	present	a	volume	of	170	million	 individual	metrics	per
minute.	 34	 LinkedIn	 developed	 a	 graphing	 and	 analytics	 system	 called
inGraphs	that	lets	engineers	view	site	dashboards,	compare	metrics	over	time,
and	set	up	threshold-based	alerts,	all	with	a	few	lines	of	configuration.	35

You	don’t	have	to	be	a	 large	engineering	team	operating	at	scale	 to	start
instrumenting	 your	 systems.	 Open-source	 tools	 like	 Graphite,	 StatsD,
InfluxDB,	Ganglia,	Nagios,	 and	Munin	make	 it	 easy	 to	monitor	 systems	 in
near	real-time.	Teams	who	want	a	managed,	enterprise	solution	have	options
like	 New	 Relic	 or	 AppDynamics	 that	 can	 quickly	 provide	 code-level
performance	visibility	into	many	standard	platforms.	Given	how	much	insight
instrumentation	can	provide,	how	can	you	afford	not	to	prioritize	it?

Internalize	Useful	Numbers

The	company	Percona	provides	MySQL-related	consulting	services.	36	If	you
want	 to	 optimize	 the	 performance	 of	 your	 MySQL	 database,	 Percona
consultants	 can	audit	 everything	 from	your	 configuration,	operating	 system,
and	hardware	to	your	architecture	and	table	design,	and,	within	a	day	or	two,
assess	how	well	your	database	is	performing.	37	They	can	quickly	determine
whether	 any	 queries	 are	 running	 slower	 than	 normal	 and	 how	much	 faster
they	 could	 get;	 whether	 there	 are	 too	 many	 connections;	 how	 much	 more
runway	a	single	master	database	has	before	data	needs	to	be	partitioned	across
multiple	machines;	and	what	 type	of	performance	improvement	might	result
if	you	switched	from	hard	disk	drives	to	solid-state	ones.	Their	expertise	is	in
part	 due	 to	 their	 familiarity	 with	 MySQL	 internals.	 However,	 even	 more
significant	 is	 their	 collective	 experience	 of	 working	 with	 the	 MySQL
installations	of	thousands	of	customers.

“We’ve	generally	seen	just	about	everything	people	 throw	at	databases,”
explains	Percona	consultant	Baron	Schwartz.	“Tagging,	friends,	queues,	click
tracking,	 search,	 paginated	 displays—we’ve	 seen	 these	 and	 dozens	 of	 other
common	 patterns	 done	 a	 hundred	 different	 ways.”	 38	 As	 a	 result,	 they’ve
internalized	 useful	 numbers	 that	 they	 can	 use	 to	 benchmark	 a	 particular
system’s	performance.	They	might	 not	 know	exactly	 how	much	better	 your
system	 might	 behave	 with	 a	 certain	 change,	 but	 they	 can	 compare	 your
performance	with	expected	numbers	and	let	you	know	what’s	going	well	and

what	 has	 ample	 room	 for	 improvement.	 In	 contrast,	 someone	 less
knowledgeable	 would	 need	 to	 test	 various	 MySQL	 configurations	 or
architectures	and	measure	what	difference	(if	any)	the	changes	made.	This,	of
course,	would	take	significantly	more	time.	The	knowledge	of	useful	numbers
provides	a	valuable	shortcut	for	knowing	where	to	invest	effort	to	maximize
gains.

We’ve	 seen	 that	 measuring	 the	 goals	 you	 want	 to	 achieve	 and
instrumenting	 the	 systems	 that	 you	 want	 to	 understand	 are	 high-leverage
activities.	They	both	take	some	upfront	work,	but	their	long-term	payoffs	are
high.	 Oftentimes,	 however,	 you	 don’t	 need	 accurate	 numbers	 to	 make
effective	decisions;	you	just	need	ones	that	are	in	the	right	ballpark.	Ensuring
you	have	access	 to	a	 few	useful	numbers	 to	approximate	your	progress	and
benchmark	your	performance	is	a	high-leverage	investment:	they	provide	the
benefits	of	metrics	at	a	much	lower	cost.

The	numbers	 that	matter	 to	you	will	 vary	based	on	your	 focus	 area	 and
your	product.	When	it	comes	to	building	software	systems,	for	example,	Jeff
Dean—a	long-time	Googler	who	has	been	 instrumental	 in	building	many	of
the	 company’s	 core	 abstractions	 like	 Protocol	 Buffers,	 MapReduce,	 and
BigTable,	 as	 well	 as	 key	 systems	 like	 search,	 indexing,	 advertising,	 and
language	translation	39—has	shared	a	list	of	13	numbers	that	every	engineer
ought	to	know.	40	41	These	numbers	are	illustrated	in	Table	1.

Access	Type Latency

L1	cache	reference 0.5	ns

Branch	mispredict 5	ns

L2	cache	reference 7	ns

Mutex	lock/unlock 100	ns

Main	memory	reference 100	ns

Compress	1K	bytes	with	Snappy 10,000	ns	=	10	μs

Send	2K	bytes	over	1	Gbps	network 20,000	ns	=	20	μs

Read	1	MB	sequentially	from	memory 250,000	ns	=	250	μs

Round	trip	within	same	datacenter 500,000	ns	=	500	μs

Disk	seek 10,000,000	ns	=	10	ms

Read	1	MB	sequentially	from	network 10,000,000	ns	=	10	ms

Read	1	MB	sequentially	from	disk 30,000,000	ns	=	30	ms

Send	packet	CA	→	Netherlands	→	CA 150,000,000	ns	=	150	ms

Table	1:	Common	latency	numbers.

These	numbers	 tell	us	 the	 latencies	associated	with	common	operations	and
let	 us	 compare	 their	 relative	 orders	 of	 magnitude.	 For	 example,	 accessing
1MB	worth	of	data	from	memory	is	120x	faster	than	accessing	the	same	data
from	disk,	and	40x	faster	than	reading	it	over	a	1	Gbps	network.	Also,	a	cheap
compression	algorithm	like	Snappy	that	can	compress	data	by,	say,	a	factor	of
2,	can	halve	your	network	traffic	while	adding	only	50%	more	latency.	42

Knowing	useful	numbers	like	these	enables	you,	with	a	few	back-of-the-
envelope	 calculations,	 to	 quickly	 estimate	 the	 performance	 properties	 of	 a
design	 without	 actually	 having	 to	 build	 it.	 Suppose	 you’re	 building	 a	 data
storage	system,	a	messaging	system,	or	some	other	application	with	persistent
storage	where	performance	 is	 important.	 In	 these	systems,	writes	need	to	be
persisted	 to	 disk,	 but	 data	 is	 often	 cached	 in	 memory	 to	 improve	 read
performance.	What	 kind	 of	 read	 and	write	 throughput	 can	we	 expect?	You
might	reason	that:

Your	writes	will	go	to	disk,	and	since	each	disk	seek	takes	10	ms,	you	can
do	at	most	100	writes	per	second.

Your	 reads	 hit	 the	 in-memory	 cache,	 and	 since	 it	 takes	 250	 μs	 to	 read

Your	 reads	 hit	 the	 in-memory	 cache,	 and	 since	 it	 takes	 250	 μs	 to	 read
1MB	from	memory,	you	can	read	4GB	per	second.
If	your	in-memory	objects	are	no	more	than	1MB	in	size,	you	can	read	at
least	4,000	objects	per	second	from	memory.

That	means	 that	 in	 this	 standard	 design,	 you	 can	 handle	 reads	 roughly	 40x
faster	than	you	can	handle	writes.	Writes	tend	to	be	the	bottleneck	for	many
systems,	and	if	that’s	the	case	for	your	system,	then	designing	the	system	to
scale	 the	 writes	 might	 mean	 parallelizing	 them	 across	 more	 machines	 or
batching	multiple	writes	to	disk.

Internalizing	 useful	 numbers	 can	 also	 help	 you	 spot	 anomalies	 in	 data
measurements.	 For	 example,	 suppose	 you’re	 an	 engineer	 building	 web
applications	on	top	of	a	standard	software	stack	like	Ruby	on	Rails.	Numbers
that	you	care	 about	might	 include	 the	 time	 it	 takes	 to	 fetch	a	database	 row,
perform	an	aggregation	query,	join	two	database	tables,	or	look	up	data	from
the	caching	layer.	If	your	development	web	server	is	taking	a	slow	400ms	to
load	a	simple,	static	page,	 that	might	suggest	 that	all	 the	static	assets—your
images,	CSS,	and	JavaScript—are	being	served	from	disk	and	not	from	cache.
If	a	dynamic	page	is	taking	too	long	to	load	and	you	find	that	the	time	spent	in
the	database	is	over	a	second,	perhaps	some	code	in	your	application’s	model
is	doing	an	expensive	table	join	that	you	didn’t	expect.	These	are,	of	course,
just	 possible	 hypotheses,	 but	 it’s	 easy	 to	 formulate	 them	 quickly	when	 you
have	ready	access	to	baseline	numbers	regarding	normal	performance.

Lastly,	knowledge	of	useful	numbers	can	clarify	both	the	areas	and	scope
for	improvement.	Suppose	you’re	an	engineer	responsible	for	improving	user
engagement	for	a	social	product.	If	the	product	sends	out	email	campaigns	to
users,	knowing	your	 industry’s	 average	open	and	click-through	 rates	 can	be
very	illuminating.	The	email	marketing	service	MailChimp,	for	example,	has
published	delivery	data	from	hundreds	of	millions	emails	and	computed	open
and	 click-through	 rates	 by	 industry.	 Emails	 to	 social	 networks	 or	 online
communities	get	roughly	22%	open	rates	and	3.9%	click-through	rates.	These
numbers	can	give	you	a	sense	of	whether	your	own	emails	are	doing	poorly,
satisfactorily,	 or	 extremely	 well.	 43	 If	 your	 emails	 perform	 poorly,	 then
investments	to	improve	them	can	potentially	be	high-leverage	and	have	huge
payoffs.	 Similarly,	 knowing	 typical	 conversion	 rates	 for	 landing	 pages,	 the
acceptance	rates	for	invite	emails,	and	the	types	of	daily,	weekly,	and	monthly
active	rates	seen	by	similar	products	can	highlight	other	underinvested	areas.

Taken	all	 together,	 these	numbers	help	you	to	build	more	intuition	about
where	 to	direct	effort	 to	maximize	your	 leverage.	They	allow	you	 to	do	 the
mental	 math	 and	 back-of-the-envelope	 calculations	 necessary	 to	 quickly
reason	about	decisions.	Other	numbers	that	might	be	useful	to	internalize	or	at
least	have	readily	at	hand	include:

the	number	of	registered	users,	weekly	active	users,	and	monthly	users
the	number	of	requests	per	second

the	amount	and	total	capacity	of	data	stored
the	amount	of	data	written	and	accessed	daily
the	number	of	servers	needed	to	support	a	given	service
the	throughput	of	different	services	or	endpoints
the	growth	rate	of	traffic
the	average	page	load	time
the	distribution	of	traffic	across	different	parts	of	a	product
the	 distribution	 of	 traffic	 across	 web	 browsers,	 mobile	 devices,	 and
operating	system	versions

The	small	amount	of	upfront	work	it	takes	to	accumulate	all	this	information
gives	you	valuable	rules	of	thumb	that	you	can	apply	in	the	future.	To	obtain
performance-related	numbers,	you	can	write	small	benchmarks	to	gather	data
you	 need.	 For	 example,	 write	 a	 small	 program	 that	 profiles	 the	 common
operations	 you	 do	 on	 your	 key	 building	 blocks	 and	 subsystems.	 Other
numbers	may	require	more	research,	like	talking	with	teams	(possibly	at	other
companies)	 that	 have	 worked	 in	 similar	 focus	 areas,	 digging	 through	 your
own	historical	data,	or	measuring	parts	of	the	data	yourself.

When	 you	 find	 yourself	 wondering	 which	 of	 several	 designs	 might	 be
more	performant,	whether	a	number	is	in	the	right	ballpark,	how	much	better
a	feature	could	be	doing,	or	whether	a	metric	is	behaving	normally,	pause	for
a	moment.	 Think	 about	 whether	 these	 are	 recurring	 questions	 and	 whether
some	useful	numbers	or	benchmarks	might	be	helpful	for	answering	them.	If
so,	spend	some	time	gathering	and	internalizing	that	data.

Be	Skeptical	about	Data	Integrity

Using	data	to	support	your	arguments	is	powerful.	The	right	metric	can	slice
through	office	politics,	philosophical	biases,	and	product	arguments,	quickly
resolving	discussions.	Unfortunately,	the	wrong	metric	can	do	the	same	thing
—with	disastrous	results.	And	that	means	we	have	to	be	careful	how	we	use
data.

Sam	Schillace,	who	 ran	 engineering	 for	Google	Apps	 before	 his	 role	 at
Box,	warned,	 “One	 of	my	 counter-intuitive	 lessons	 from	Google	 is	 that	 all
data	can	be	abused	…	People	interpret	data	the	way	they	want	to	interpret	it.”
Sometimes,	we	 pick	 easy-to-measure	 or	 slightly	 irrelevant	metrics,	 and	 use
them	to	tell	a	false	narrative	about	what’s	happening.	Other	times,	we	confuse
correlation	with	causality.	We	might	see	users	spending	more	time	on	a	newly
redesigned	 feature	 and	optimistically	 attribute	 it	 to	 increased	 engagement—
when	 in	 reality,	 they	 are	 struggling	 to	 understand	 a	 confusing	 interface.	Or
perhaps	we’ve	made	a	change	 to	 improve	search	results	and	celebrate	when
we	 see	 that	 ad	 click-through	 rates	 are	 increasing—but	 users	 actually	 are
clicking	 on	 ads	 because	 the	 search	 quality	 dropped.	 Or	 maybe	 we	 see	 a
sustained	spike	in	page	views	and	celebrate	the	organic	growth—but	a	large

fraction	of	the	new	requests	had	really	just	come	from	a	single	user	who	had
deployed	a	bot	to	automatically	scrape	product	data.

When	 I	 asked	Schillace	 how	 to	 protect	 ourselves	 against	 data	 abuse,	 he
argued	 that	 our	 best	 defense	 is	 skepticism.	 Schillace,	who	was	 trained	 as	 a
mathematician,	 tries	 to	 run	 the	 numbers	 whenever	 he’s	 analyzing	 data.	 He
explains,	“Bad	math	students—they	get	to	the	end	of	the	problem,	and	they’re
just	 done.	Good	math	 students	 get	 to	 the	 end	 of	 the	 problem,	 look	 at	 their
answer,	and	say,	‘Does	that	roughly	make	sense?’”	When	it	comes	to	metrics,
compare	the	numbers	with	your	intuition	to	see	if	they	align.	Try	to	arrive	at
the	 same	 data	 from	 a	 different	 direction	 and	 see	 if	 the	 metrics	 still	 make
sense.	 If	 a	 metric	 implies	 some	 other	 property,	 try	 to	 measure	 the	 other
property	 to	 make	 sure	 the	 conclusions	 are	 consistent.	 The	 useful	 numbers
described	 in	 the	 previous	 section	 come	 in	 handy	 for	 many	 of	 these	 sanity
checks.

Other	times,	data	can	simply	be	flat-out	wrong	or	misinterpreted,	leading
us	to	derive	the	wrong	conclusions.	Engineers	learn	quickly	that	writing	unit
tests	 can	 help	 ensure	 code	 correctness;	 in	 contrast,	 the	 learning	 curve	 for
carefully	validating	data	 correctness	 tends	 to	be	much	higher.	 In	 a	 common
scenario,	 a	 team	 launches	 a	 product	 or	 an	 experiment	 and	 logs	 user
interactions	to	collect	different	metrics.	The	data	initially	appears	acceptable
(or	 the	 team	 doesn’t	 even	 bother	 to	 check),	 and	 the	 team	 focuses	 their
attention	elsewhere.	A	week	or	two	later,	when	they	start	to	analyze	the	data,
they	realize	that	it	had	been	logged	incorrectly	or	that	some	critical	behavior
isn’t	 tracked.	 By	 the	 time	 they	 get	 around	 to	 fix	 the	 logging,	 weeks	 of
iteration	time	have	been	wasted—all	because	they	didn’t	proactively	invest	in
data	accuracy.

Untrustworthy	data	that	gets	incorporated	into	decision-making	processes
provides	negative	leverage.	It	may	lead	teams	to	make	the	wrong	decision	or
waste	cognitive	cycles	second-guessing	themselves.	Unfortunately,	it’s	all	too
common	for	engineers	to	underinvest	in	data	integrity,	for	a	few	reasons:
1.	 Since	 engineers	 often	 work	 against	 tight	 deadlines,	 metrics—whose

importance	only	shows	up	after	launch—can	get	deprioritized.
2.	 When	 building	 a	 new	 product	 or	 feature,	 it’s	 much	 easier	 to	 test	 and

validate	their	interactions	than	to	verify	whether	some	seemingly	plausible
metric	(like	page	views)	is	actually	accurate.

3.	 Engineers	 reason	 that	 because	 their	 metrics-related	 code	was	 well	 unit-
tested,	the	metrics	themselves	also	should	be	accurate,	even	though	there
could	be	system-level	errors	or	incorrect	assumptions.

The	net	result	is	that	metrics-related	code	tends	to	be	less	robust	than	code	for
other	 features.	Errors	 can	get	 introduced	 anywhere	 in	 the	 data	 collection	or
processing	 pipeline.	 It’s	 easy	 to	 forget	 to	measure	 a	 particular	 code	 path	 if
there	 are	 multiple	 entry	 points.	 Data	 can	 get	 dropped	 when	 sent	 over	 the

network,	 leading	 to	 inaccurate	 ground	 truth	 data.	When	 data	 from	multiple
sources	 get	merged,	 not	 paying	 attention	 to	 how	different	 teams	 interpreted
the	 definitions,	 units,	 or	 standards	 for	what	 ought	 to	 have	 been	 logged	 can
introduce	inconsistencies.	Bugs	crop	up	in	data	processing	and	transformation
pipelines.	Data	visualization	is	hard	to	unit	test,	so	errors	can	often	appear	in	a
dashboard.	As	we	can	see,	there	are	a	myriad	of	reasons	why	it’s	hard	to	tell
from	 visual	 inspection	 whether	 a	 metric	 that	 claims	 1,024	 views	 or	 a
conversion	rate	of	3.1%	is	accurate.

Given	 the	 importance	of	metrics,	 investing	 the	effort	 to	ensure	 that	your
data	is	accurate	is	high-leverage.	Here	are	some	strategies	that	you	can	use	to
increase	confidence	in	your	data	integrity:

Log	 data	 liberally,	 in	 case	 it	 turns	 out	 to	 be	 useful	 later	 on.	 Eric
Colson,	former	VP	of	Data	Science	and	Engineering	at	Netflix,	explained
that	Netflix	throws	reams	of	semi-structured	logs	into	a	scalable	data	store
called	Cassandra,	and	decides	later	on	whether	 that	data	might	be	useful
for	analysis.	44

Build	 tools	 to	 iterate	 on	 data	 accuracy	 sooner.	 Real-time	 analytics
address	 this	 issue,	 as	 do	 tools	 that	 visualize	 collected	 data	 during
development.	 When	 I	 worked	 on	 the	 experiment	 and	 analytics
frameworks	 at	 Quora,	 we	 built	 tools	 to	 easily	 inspect	 what	 was	 being
logged	by	each	interaction.	45	This	paid	off	huge	dividends.
Write	 end-to-end	 integration	 tests	 to	 validate	 your	 entire	 analytics
pipeline.	 These	 tests	 may	 be	 time-consuming	 to	 write.	 Ultimately,
however,	they	will	help	increase	confidence	in	your	data	integrity	and	also
protect	against	future	changes	that	might	introduce	inaccuracies.
Examine	 collected	 data	 sooner.	 Even	 if	 you	 need	 to	 wait	 weeks	 or
months	 to	 have	 enough	 data	 for	 a	 meaningful	 analysis,	 check	 the	 data
sooner	to	ensure	that	a	sufficient	amount	was	logged	correctly.	Treat	data
measurement	and	analysis	as	parts	of	the	product	development	workflow
rather	than	as	activities	to	be	bolted	on	afterwards.
Cross-validate	 data	 accuracy	 by	 computing	 the	 same	 metric	 in
multiple	ways.	This	is	a	great	way	to	sanity	check	that	the	number	is	in
the	right	ballpark.
When	 a	 number	 does	 look	 off,	 dig	 in	 to	 it	 early.	 Understand	 what’s
going	 on.	 Figure	 out	 whether	 the	 discrepancy	 is	 due	 to	 a	 bug,	 a
misinterpretation,	or	something	else.

Make	sure	your	data	is	reliable.	The	only	thing	worse	than	having	no	data	is
the	illusion	of	having	the	right	data.

Key	Takeaways

Measure	 your	 progress.	 It’s	 hard	 to	 improve	what	 you	 don’t	measure.
How	would	you	know	what	types	of	effort	are	well	spent?
Carefully	 choose	 your	 top-level	 metric.	 Different	 metrics	 incentivize
different	behaviors.	Figure	out	which	behaviors	you	want.
Instrument	your	system.	The	higher	your	system’s	complexity,	the	more
you	need	instrumentation	to	ensure	that	you’re	not	flying	blind.	The	easier
it	is	to	instrument	more	metrics,	the	more	often	you’ll	do	it.
Know	your	numbers.	Memorize	or	have	easy	access	to	numbers	that	can
benchmark	your	progress	or	help	with	back-of-the-envelope	calculations.
Prioritize	data	integrity.	Having	bad	data	is	worse	than	having	no	data,
because	you’ll	make	the	wrong	decisions	thinking	that	you’re	right.

J

Validate	Your	Ideas	Early	and	Often

OSHUA	LEVY	HAD	BARELY	SLEPT	FOR	DAYS.	HE	AND	HIS	20-PERSON	TEAM	HAD
just	unveiled	Cuil	 (pronounced	“cool”),	 the	 stealth	 search	engine	highly
anticipated	as	a	potential	Google-killer.	1	With	over	120	billion	pages	 in

its	web	index,	Cuil	claimed	to	have	crawled	an	index	that	was	three	times	the
size	of	Google’s,	on	infrastructure	that	was	only	a	tenth	of	the	cost.	2	3	And	on
July	28,	2008,	millions	of	users	finally	got	to	try	out	what	Levy	and	his	team
had	been	cooking	up	for	 the	past	 few	years.	4	But	 rather	 than	popping	open
champagne	bottles,	the	Director	of	Engineering	was	scrambling	to	fight	fires
and	keep	everything	running	under	a	brutal	onslaught	of	traffic.

The	crawling,	 indexing,	and	serving	 infrastructure	 running	across	over	a
thousand	machines	was	aflame	under	the	heavy	load.	5	And	because	Cuil	had
built	out	its	own	computing	hardware	in	an	era	before	Amazon	Web	Services
had	 popularized	 cloud	 computing,	 the	 engineering	 team	 didn’t	 have	 many
extra	machines	with	 idle	capacity.	Users	were	 typing	 in	distinct	queries	 like
their	 own	 names,	 and	 the	 diversity	 of	 searches	 was	 overwhelming	 the	 in-
memory	 cache	 of	 common	 query	 results	 and	 slowing	 down	 the	 search
engine.	6	Shards	of	 the	 index	were	crashing	and	 leaving	gaping	holes	 in	 the
search	results,	and	massive	computations	over	petabytes	of	data	were	hitting
hard-to-track	bugs.	It	was	very	hard	to	keep	things	stable,	let	alone	do	fixes	or
upgrades.	 “It	 felt	 like	 being	 in	 a	 car	 knowing	 you’re	 going	 off	 a	 cliff,	 and
thinking,	 ‘Well,	maybe	 if	we	hit	 on	 the	gas,	we	can	make	 it	 across,’”	Levy
recounts.

To	top	all	it	off,	it	was	clear	that	users	weren’t	happy	with	the	service.	An
editor	from	PC	Magazine	called	Cuil	“buggy,”	“slow,”	and	“pathetic.”	7	CNet
characterized	 its	 search	 results	 as	 “incomplete,	weird,	 and	missing.”	 8	Time
Magazine	called	it	“lackluster,”	9	and	the	Huffington	Post	called	it	“stupid.”	10
Users	criticized	 the	poor	quality	of	 the	 search	 results	and	complained	about
how	 the	 search	 engine	 lacked	 rudimentary	 features	 like	 spelling	 correction.
Most	 damningly,	 they	 pointed	 out	 that	 for	 the	 majority	 of	 queries,	 Cuil

6

returned	fewer	results	than	Google,	despite	its	larger	index.	The	launch	was	a
public	relations	disaster.

Ultimately,	Cuil	was	a	failed	experiment—one	that	cost	over	$33	million
in	venture	capital	and	decades	of	engineering	person-years.	“It	definitely	was
a	frustrating	and	humbling	experience	to	work	on	something	so	hard	and	then
see	 it	all	come	 to	naught,”	 reflected	Levy.	Levy	had	 joined	Cuil	as	an	early
engineer	 and	 bought	 into	 the	 founders’	 game-changing	 vision	 of	 building	 a
better	Google.	“The	company	had	a	very	solid	set	of	engineers,”	he	told	me,
and	two	of	 the	founders	even	came	with	decorated	pedigrees	from	Google’s
own	 search	 team.	So	what	went	wrong?	How	could	Cuil	 have	missed	 such
obvious	shortcomings	in	a	product	that	so	many	tech	bloggers	wrote	about?

When	I	asked	Levy	what	key	lessons	he	learned	from	this	experience,	the
one	 that	 stood	 out	 was	 the	 importance	 of	 validating	 the	 product	 sooner.
Because	Cuil	had	wanted	 to	make	a	big	splash	at	 launch	and	feared	 leaking
details	to	the	press,	they	hadn’t	hired	any	alpha	testers	to	play	around	with	the
product.	Prior	to	launch,	there	was	no	external	feedback	to	point	out	that	the
search	 quality	wasn’t	 there,	 that	 the	 search	 engine	wasn’t	 returning	 enough
results,	 and	 that	 users	 didn’t	 care	 about	 the	 size	 of	 the	 index	 if	 it	 didn’t
actually	lead	to	higher	quality	results.	Cuil	didn’t	even	have	anyone	working
full-time	on	 spam,	whereas	Google	 had	 a	whole	 team	of	 engineers	 fighting
web	spam	and	an	entire	organization	focused	on	search	quality.	Not	validating
their	product	early	led	Cuil	to	overinvest	efforts	in	cost-efficient	indexing	and
to	underinvest	in	quality.	This	was	a	harsh	lesson	learned.

When	 Levy	 left	 Cuil	 to	 be	 the	 second	 hire	 at	 his	 next	 startup,
BloomReach,	he	took	that	 lesson	with	him.	BloomReach	builds	a	marketing
platform	to	help	e-commerce	sites	optimize	their	search	traffic	and	maximize
their	 online	 revenue.	 There	 were	 many	 unknowns	 about	 what	 the	 product
would	look	like	and	what	would	and	wouldn’t	work.	Rather	than	repeat	Cuil’s
fatal	mistake	of	spending	years	building	a	product	that	nobody	wanted,	Levy
and	his	team	took	a	drastically	different	approach.	They	built	a	very	minimal
but	 functional	 system	 and	 released	 it	 to	 their	 beta	 customers	 within	 four
months.	Those	customers	shared	thoughts	on	what	they	liked	and	didn’t	like
and	what	they	cared	about,	and	that	feedback	helped	the	team	prioritize	what
to	build	next.

Optimizing	 for	 feedback	 as	 soon	 as	 possible—in	 other	 words,
understanding	 what	 customers	 actually	 want	 and	 then	 iterating	 on	 that
feedback—has	 been	 critical	 for	 BloomReach’s	 growth.	 The	 company	 now
employs	 over	 135	 people,	 and	 counts	 top	 brands	 like	 Nieman	Marcus	 and
Crate	 &	 Barrel	 in	 its	 portfolio	 of	 customers.	 On	 average,	 it	 helps	 online
brands	generate	80%	more	non-branded	search	traffic,	significantly	increasing
their	 revenue.	 11	 12	 “Don’t	 delay	 …	 Get	 feedback.	 Figure	 out	 what’s
working,”	 Levy,	 who	 eventually	 became	 the	 head	 of	 operations	 at
BloomReach,	told	me.	“That’s	by	far	better	than	trying	to	…	build	something

and	then	trust	that	you	got	everything	right—because	you	can’t	get	everything
right.”

In	Chapter	 4,	 we	 learned	 that	 investing	 in	 iteration	 speed	 helps	 us	 get
more	 things	done.	 In	 this	chapter,	we’ll	 learn	how	validating	our	 ideas	both
early	 and	 often	 helps	 us	 get	 the	 right	 things	 done.	 We’ll	 discuss	 the
importance	of	finding	low-effort	and	iterative	ways	to	validate	that	we’re	on
the	right	track	and	to	reduce	wasted	effort.	We’ll	learn	how	to	use	A/B	testing
to	continuously	validate	our	product	changes	with	quantitative	data,	and	we’ll
see	how	much	impact	that	kind	of	testing	can	have.	We’ll	examine	a	common
anti-pattern—the	one-person	team—that	sometimes	hinders	our	ability	to	get
feedback,	and	we’ll	address	ways	of	dealing	with	that	situation.	Finally,	we’ll
see	how	the	theme	of	building	feedback	and	validation	loops	applies	to	every
decision	we	make.

Find	Low-Effort	Ways	to	Validate	Your	Work

During	my	junior	year	at	MIT,	three	friends	and	I	participated	in	the	MASLab
robotics	 competition.	We	had	 to	 build	 a	 one-foot-tall	 self-driving	 robot	 that
could	navigate	around	a	field	and	gather	red	balls.	13	The	first	skill	we	taught
our	 robot	 was	 how	 to	 drive	 forward	 toward	 a	 target.	 Simple	 enough,	 we
thought.	Our	 initial	program	scanned	for	a	 red	ball	with	 the	 robot’s	camera,
turned	 the	 robot	 toward	 the	 target,	 and	 sent	 power	 to	 the	 motors	 until	 the
robot	 reached	 its	 destination.	 Unfortunately,	 minor	 variations	 in	 the	 motor
speed	 of	 the	 front	 and	 rear	 axles,	 differences	 in	 the	 tread	 of	 the	 tires,	 and
slight	bumps	on	the	field	surface	all	caused	our	simple-minded	robot	to	drift
off	at	an	angle.	The	longer	the	path,	the	more	these	little	errors	compounded,
and	the	less	likely	the	robot	was	to	reach	the	ball.	We	quickly	realized	that	a
more	reliable	approach	was	for	the	robot	to	move	forward	just	a	little	bit,	then
re-check	 the	 camera	 and	 re-adjust	 the	motors	 for	 errors	 in	 orientation,	 and
repeat	until	it	reached	the	target.

Our	 little	 robot’s	 process	 for	 forward	 motion	 is	 not	 that	 different	 from
how	we	should	be	moving	forward	in	our	work.	Iterative	approaches	lead	to
fewer	costly	errors	and	give	us	opportunities	between	each	iteration	to	collect
data	and	correct	our	course.	The	shorter	each	iteration	cycle,	the	more	quickly
we	can	learn	from	our	mistakes.	Conversely,	the	longer	the	iteration	cycle,	the
more	likely	it	is	that	incorrect	assumptions	and	errors	will	compound.	These
cause	us	to	veer	off	course	and	waste	our	time	and	effort.	This	is	a	key	reason
why	the	investments	in	iteration	speed	(discussed	in	Chapter	4)	are	so	critical.

Oftentimes	when	we	 build	 products	 and	 set	 goals,	we	 embark	 on	 paths
that	aren’t	 clear-cut.	We	may	have	a	general	 idea	of	where	we’re	going	but
don’t	know	the	best	way	to	get	there.	Or	we	may	lack	sufficient	data	to	make
an	 informed	 decision.	 The	 sooner	 that	 we	 gain	 a	 better	 understanding	 of	 a
risky	 issue	 that	 impedes	our	progress,	 the	earlier	we	can	either	address	 it	 to

increase	 our	 chances	 of	 success,	 or	 change	 course	 to	 a	 more	 promising
avenue.	Zach	Brock,	an	engineering	manager	at	Square,	frequently	advises	his
team,	“What’s	the	scariest	part	of	 this	project?	That’s	 the	part	with	the	most
unknowns	and	the	most	risk.	Do	that	part	first.”	14	Demystifying	the	riskiest
areas	first	lets	you	proactively	update	your	plan	and	avoid	nasty	surprises	that
might	 invalidate	 your	 efforts	 later.	We’ll	 revisit	 this	 theme	 of	 reducing	 risk
early	 when	 we	 discuss	 how	 to	 improve	 our	 project	 estimation	 skills	 in
Chapter	7.

When	working	on	projects,	in	particular	large	ones,	we	should	continually
ask	ourselves:	Can	I	expend	a	small	fraction	of	the	total	effort	to	collect	some
data	 and	 validate	 that	what	 I’m	 doing	will	work?	We	 often	 hesitate	 to	 add
even	 10%	 extra	 overhead	 because	 we’re	 in	 a	 hurry	 to	 get	 things	 done	 or
because	we’re	overly	confident	about	our	implementation	plans.	It’s	true	that
this	10%	might	not	end	up	contributing	any	useful	 insight	or	reusable	work.
On	the	other	hand,	 it	could	save	us	the	remaining	90%	of	wasted	effort	 if	 it
surfaces	a	large	flaw	in	our	plans.

Startup	entrepreneurs	 and	engineers	 think	 through	 these	questions	often,
particularly	when	they’re	building	what’s	called	a	“minimum	viable	product”
(MVP).	 Eric	 Ries,	 author	 of	 The	 Lean	 Startup,	 defines	 the	 MVP	 as	 “that
version	of	a	new	product	which	allows	a	team	to	collect	the	maximum	amount
of	 validated	 learning	 about	 customers	with	 the	 least	 effort.”	 15	 If	 you	 think
that	definition	resembles	our	definition	of	leverage,	you’d	be	spot	on.	When
building	 an	 MVP,	 you	 want	 to	 focus	 on	 high-leverage	 activities	 that	 can
validate	hypotheses	about	your	users	as	much	as	possible,	using	as	little	effort
as	possible,	to	maximize	the	chances	that	the	product	will	succeed.

Sometimes,	 building	 an	 MVP	 requires	 being	 creative.	 When	 Drew
Houston	first	started	building	Dropbox,	an	easy-to-use	file-sharing	tool,	there
were	already	countless	other	file-sharing	applications	on	the	market.	Houston
believed	 that	 users	 would	 prefer	 the	 seamless	 user	 experience	 his	 product
could	 provide—but	 how	 could	 he	 validate	 this	 belief?	 His	 solution	 was	 to
make	 a	 short	 4-minute	 video	 as	 his	MVP.	 16	 17	 Houston	 demoed	 a	 limited
version	of	his	product,	showing	files	synchronizing	seamlessly	across	a	Mac,
a	Windows	 PC,	 and	 the	 web.	 Overnight,	 Dropbox’s	 beta	 mailing	 list	 grew
from	5k	 to	75k	users,	and	Houston	knew	he	was	on	 to	something.	Dropbox
used	the	MVP	to	build	confidence	and	validate	its	premise,	without	having	to
invest	 too	much	work.	As	of	February	2014,	Dropbox	has	over	200	million
users	and	is	valued	at	$10	billion,	18	and	it	still	continues	to	grow.

We	 might	 not	 all	 be	 working	 on	 startup	 products,	 but	 the	 principle	 of
validating	 our	 work	 with	 small	 efforts	 holds	 true	 for	 many	 engineering
projects.	 Suppose	 you’re	 considering	 migrating	 from	 one	 software
architecture	to	another.	Perhaps	your	product	is	hitting	the	scalability	limits	of
a	 MySQL	 database,	 and	 you’re	 considering	 switching	 to	 a	 newer	 NoSQL
architecture	 that	 claims	 to	 be	more	 scalable.	Or	 perhaps	 you’re	 rewriting	 a

service	 from	 one	 language	 to	 another	 with	 the	 goal	 of	 simplifying	 code
maintenance,	improving	performance,	or	increasing	your	iteration	speed.	The
migration	 would	 require	 a	 significant	 amount	 of	 effort,	 so	 how	 can	 you
increase	your	confidence	that	completing	it	won’t	be	a	waste	of	time	and	that
it	will	actually	help	achieve	your	goals?

One	 way	 to	 validate	 your	 idea	 would	 be	 to	 spend	 10%	 of	 your	 effort
building	a	small,	informative	prototype.	Depending	on	your	project	goals,	you
can	 use	 your	 prototype	 for	 anything	 from	 measuring	 performance	 on	 a
representative	workload,	 to	comparing	 the	code	footprint	of	 the	module	you
rewrote	 against	 the	 original	 module,	 to	 assessing	 the	 ease	 of	 adding	 new
features.	The	cost	of	building	a	quick	prototype	doesn’t	 amount	 to	much	 in
the	scheme	of	the	larger	project,	but	the	data	that	it	produces	can	save	you	a
significant	 amount	 of	 pain	 and	 effort	 if	 it	 surfaces	 problems	 early,	 or
convinces	you	that	the	larger	migration	wouldn’t	be	worthwhile.

Or	suppose	 that	you’re	 redesigning	 the	user	 interface	of	your	product	 to
make	 it	 speedier	 and	more	 user-friendly.	How	 can	 you	 increase	 confidence
that	your	UI	will	boost	user	metrics	without	investing	all	the	effort	associated
with	 a	 full	 redesign?	 42Floors,	 a	 company	 that	 builds	 a	 search	 engine	 for
office	 space	 rentals	 and	 commercial	 real	 estate	 listings,	 ran	 into	 this
problem.	19	When	users	searched	for	office	space	on	their	product,	they	were
shown	 all	 available	 listings	 via	 a	 Google	Maps	 interface.	 Unfortunately,	 if
there	were	many	results,	it	could	take	upwards	of	12	seconds	to	load	them	all.
In	their	first	attempt	at	a	fix,	42Floors	engineers	spent	three	months	building	a
faster	view	of	office	 listings	with	big	photos,	 infinite	 scrolling,	 and	 a	mini-
map.	They	expected	the	conversion	rate	of	visitors	who	would	request	office
tours	 to	go	up.	However,	none	of	 their	metrics	moved	even	a	 little	bit	 after
they	deployed	the	project.

The	 team	had	other	 ideas	 for	what	 they	could	do,	but	no	one	wanted	 to
invest	so	much	effort	 into	another	redesign	and	have	it	fail.	How	could	they
validate	 those	 ideas	 in	 less	 time?	The	 team	came	up	with	a	 clever	 solution:
they	 decided	 to	 fake	 their	 redesign.	 They	 designed	 8	 Photoshop	 mockups,
contracted	 a	 team	 to	 convert	 them	 to	 HTML,	 and	 ran	 a	 Google	 AdWords
campaign	that	sent	some	users	who	searched	for	“new	york	office	space”	to
these	 fake	pages.	The	pages	were	pre-populated	with	 static	data	and	 looked
real	 to	 first-time	 visitors.	 Then,	 they	 measured	 what	 fraction	 of	 visitors
requested	 tours.	With	 a	 fraction	 of	 the	 effort	 they	 had	 invested	 in	 the	 first
redesign,	the	team	was	able	to	use	the	conversion	rates	to	validate	8	potential
redesigns.	They	implemented	the	winning	variation,	shipped	it	to	production,
and	finally	got	the	conversion	wins	that	they	had	been	looking	for.

The	 strategy	 of	 faking	 the	 full	 implementation	 of	 an	 idea	 to	 validate
whether	it	will	work	is	extremely	powerful.	At	one	point,	Asana,	a	company
that	 builds	 collaboration	 and	 task	 management	 software,	 was	 considering
whether	to	implement	a	new	Google	Signup	button	on	its	home	page.	Its	goal
was	 to	 increase	 signups.	 Rather	 than	 building	 the	 entire	 signup	 flow,	 they

validated	 the	 idea	by	adding	a	 fake	signup	button:	when	visitors	clicked	 the
button,	a	pop-up	message	appeared,	 reading,	“Thanks	 for	your	 interest—the
feature	 is	 coming	 soon.”	Asana	 engineers	measured	 the	 click-through	 rates
over	a	few	days,	and	only	built	out	the	full	flow	after	the	data	confirmed	that
it	would	help	with	signups.	20

The	list	of	scenarios	in	which	small	validations	can	save	you	time	goes	on
and	on.	Maybe	you	have	an	idea	for	a	scoring	algorithm	that	you	believe	will
improve	 ranking	 for	 a	 news	 feed.	 Rather	 than	 spending	 weeks	 building	 a
production-quality	system	and	running	it	over	all	the	data,	you	can	assess	the
new	 scoring	 metric	 on	 a	 small	 subset	 of	 data.	 You	 might	 have	 a	 brilliant
product	design	idea;	rather	than	building	it	 in	code,	you	can	hack	together	a
paper	prototype	or	low-fidelity	mock	to	show	your	teammates	or	participants
in	user	studies.	Or	say	you’re	asked	if	you’d	be	able	to	ship	a	new	feature	on
an	 aggressive	 10-week	 schedule.	 You	 can	 sketch	 out	 a	 timeline,	 validate
whether	 you’re	 on	 track	 after	 a	 week,	 and	 incorporate	 that	 data	 into	 your
evaluation	of	whether	the	original	schedule	is	even	feasible.	Or	maybe	you’re
contemplating	tackling	a	gnarly	bug.	Before	investing	time	into	fixing	it,	you
can	 use	 data	 from	 logs	 to	 validate	 whether	 the	 bug	 actually	 is	 affecting	 a
sufficient	numbers	of	users	to	justify	spending	your	resources.

All	 these	 examples	 share	 a	 common	 takeaway	 lesson:	 Invest	 a	 small
amount	of	work	to	gather	data	to	validate	your	project	assumptions	and	goals.
In	the	long	run,	you’ll	save	yourself	a	lot	of	wasted	effort.

Continuously	Validate	Product	Changes	with	A/B
Testing

In	 June	 2012,	 President	 Barack	 Obama’s	 re-election	 campaign	 desperately
needed	more	money.	Obama’s	digital	team	decided	to	email	his	donor	mailing
list	and	explain	that	unless	his	supporters	rallied	together	and	raised	support,
Obama	 was	 at	 risk	 of	 being	 outspent	 by	 his	 opponent	 Mitt	 Romney.	 The
email’s	 proposed	 subject	 line,	 “Deadline:	 Join	 Michelle	 and	 me,”	 was
perfectly	 reasonable.	But	 then	 the	 team	began	brainstorming	other	 potential
lines,	ranging	from	“Change”	to	“Do	this	for	Michelle”	to	“If	you	believe	in
what	we’re	doing,”	to	better	catch	donor	attention.	21

Ultimately,	 the	 email	 sent	 to	 4.4	 million	 subscribers’	 inboxes	 had	 an
entirely	different	subject	line:	“I	will	be	outspent.”	This	line	was	deliberately
engineered.	 The	 team	 had	 tested	 17	 sample	 subjects	 on	 small	 sets	 of
subscribers	 and	 found	 that	 this	 particular	 wording	would	 raise	 about	 6x	 as
much	 as	 some	 other	 subject	 lines—over	 $2	million	more.	And	 in	 fact,	 that
single	 campaign	 email	 raised	 an	 astounding	 $2.6	 million	 dollars.	 That’s	 a
huge	payoff	for	tweaking	a	few	words	of	copy.

Obama’s	 campaign	 email	 test	 is	 a	 prime	 example	 of	 how	 using	 data	 to

Obama’s	 campaign	 email	 test	 is	 a	 prime	 example	 of	 how	 using	 data	 to
validate	 your	 ideas,	 even	 ones	 that	 seem	 perfectly	 reasonable,	 can	 be
extremely	 high-leverage.	More	 importantly,	 the	 email	 wasn’t	 just	 a	 one-off
test.	It	was	part	of	a	systematic	process	that	the	team	established	so	that	they
could	validate	and	optimize	every	single	email	campaign	with	 real	data	and
not	just	their	intuition.	They	found	the	tests	to	be	so	effective	that	they	hired
an	 engineering	 team	 to	 build	 tools	 for	 measuring	 and	 improving	 email
effectiveness,	and	a	staff	of	20	writers	whose	sole	job	was	to	brainstorm	and
draft	email	variations.	22

In	 2012,	 the	 team	 sent	 over	 400	 national	 fundraising	 emails	 and	 tested
10,000	 different	 variations	 of	 subject	 lines,	 email	 copy,	 donation	 amounts,
formatting,	 highlighting,	 font	 size,	 and	 buttons.	 23	 Each	 email	 from	 the
Obama	campaign	was	 tested	on	as	many	as	18	smaller	groups,	and	 the	best
variations	often	raised	5	to	7x	as	many	donations	as	the	worst	one.	24	Over	the
course	of	20	months,	the	heavily-tested	fundraising	emails	raised	the	majority
of	 the	Obama	campaign’s	$690	million	via	online	donations,	well	worth	 the
investment	of	the	team’s	time.	25	26

The	 concept	 of	 testing	 ideas	 with	 data	 doesn’t	 just	 apply	 to	 emails;	 it
applies	to	product	development	as	well.	Even	a	well-tested,	cleanly	designed,
and	 scalable	 software	 product	 doesn’t	 deliver	 much	 value	 if	 users	 don’t
engage	with	 it	 or	 customers	 don’t	 buy	 it.	One	 problem	 that	 typically	 arises
with	product	 changes	 is	 that	 the	 team	observes	 a	 shift	 in	metrics	 (you	have
picked	the	right	metric	for	your	goal,	right?)	but	can’t	be	confident	how	much
of	 the	 lift	 (or	drop)	can	be	attributed	 to	 the	product	 launch.	Was	any	of	 the
movement	 due	 to	 traffic	 fluctuations	 from	 the	 day	 of	 the	 week,	 press
coverage,	ongoing	product	changes,	performance	issues,	outstanding	bugs,	or
anything	else	on	 the	 laundry	 list	of	 factors?	A	powerful	 tool	 to	 isolate	 these
effects	and	validate	whether	something	is	working	is	an	experiment	called	an
A/B	test.

In	an	A/B	test,	a	random	subset	of	users	sees	a	change	or	a	new	feature;
everyone	 else	 in	 the	 control	 group	 doesn’t.	 An	 A/B	 testing	 framework
typically	assigns	users	to	buckets	based	on	their	browser	cookie,	user	ID,	or	a
random	number,	and	the	bucket	determines	the	product	variant	that	they	see.
Assuming	there’s	no	bias	in	bucket	assignment,	each	bucket	gets	affected	by
traffic	fluctuations	in	the	same	way.	Therefore,	by	comparing	metrics	across
the	 experimental	 and	 control	 groups,	 any	 statistically	 significant	 differences
can	then	be	attributed	solely	to	differences	in	the	change’s	variant.	A/B	tests
provide	 a	 scientific	 way	 of	 measuring	 the	 effects	 of	 the	 change	 while
controlling	 for	 other	 variations,	 letting	 us	 assess	 the	 product’s	 impact	 if	 it’s
launched	to	all	users.

An	A/B	test	doesn’t	just	help	you	decide	which	variation	to	launch.	Even
if	 you	 were	 absolutely	 convinced	 that	 a	 certain	 change	 would	 improve
metrics,	 an	 A/B	 test	 tells	 you	 how	 much	 better	 that	 variation	 actually	 is.

Quantifying	 that	 improvement	 informs	 whether	 it	 makes	 sense	 to	 keep
investing	in	the	same	area.	For	instance,	a	large	product	investment	that	only
yields	a	1%	lift	in	retention	rates	means	that	you’d	likely	find	more	leverage
elsewhere,	whereas	you	might	decide	to	double	down	on	the	same	area	had	it
yielded	 a	 10%	 improvement.	 You	 won’t	 know	 which	 situation	 you’re	 in
unless	you	measure	your	impact.

A/B	tests	also	encourage	an	iterative	approach	to	product	development,	in
which	teams	validate	their	theories	and	iterate	toward	changes	that	work.	The
metrics-driven	 culture	 at	 Etsy,	 the	 online	 marketplace	 for	 handmade	 crafts
that	we	discussed	in	Chapter	5,	prompted	them	to	build	their	own	A/B	testing
framework.	This	enabled	them	to	continuously	experiment	with	their	product
and	measure	 the	effects	of	 those	experiments.	Marc	Hedlund,	Etsy’s	 former
Senior	 VP	 of	 Product	 Development	 and	 Engineering,	 told	 me	 the	 story	 of
when	 his	 team	 redesigned	 the	 product	 listing	 page	 for	 a	 seller’s	 item.	 This
particular	 page	 displays	 a	 large	 photo	 of	 the	 product,	 product	 details,	 seller
information,	and	a	button	to	add	the	item	to	the	shopping	cart.	Listing	pages
for	 the	 handmade	 and	 vintage	 products	 in	Etsy’s	marketplace	 get	 nearly	 15
million	views	per	day	and	are	often	a	visitor’s	first	impression.	27	Before	the
redesign,	 nearly	 22%	 of	 visitors	 entered	 the	 site	 through	 the	 listing	 page,
usually	by	clicking	on	a	Google	search	result,	but	53%	of	them	would	bounce
and	 leave	 immediately.	28	As	part	of	 the	redesign,	Etsy	engineers	wanted	 to
reduce	 bounce	 rates,	 clarify	 to	 shoppers	 that	 they	 were	 purchasing	 from
independent	designers,	makers,	and	curators,	and	make	it	easier	for	customers
to	shop	and	check	out	quickly.

This	 is	 where	 Etsy	 took	 a	 non-traditional	 approach.	 Many	 other
engineering	and	product	teams	design	and	fully	build	out	a	product	or	feature
before	 launching	 them	 to	 users.	 They	might	 then	 discover,	 after	months	 of
work,	that	what	they	built	didn’t	actually	move	core	metrics	as	much	as	they
had	hoped.	The	Etsy	listing	page	team	approached	their	redesign	much	more
incrementally.	 They	would	 articulate	 a	 hypothesis,	 construct	 an	A/B	 test	 to
validate	 the	 hypothesis,	 and	 then	 iterate	 based	 on	 what	 they	 learned.	 For
example,	 they	hypothesized	 that	“showing	a	visitor	more	marketplace	 items
would	 decrease	 bounce	 rate,”	 ran	 an	 experiment	 to	 show	 images	 of	 similar
products	 at	 the	 top	 of	 the	 listing	 page,	 and	 analyzed	 whether	 the	 metrics
supported	or	rejected	the	hypothesis	(in	fact,	it	reduced	bounce	rate	by	nearly
10%).	 Based	 on	 that	 experiment,	 the	 team	 learned	 that	 they	 should
incorporate	images	of	more	marketplace	products	into	their	final	design.

Like	 the	 team	 that	 worked	 on	 Obama’s	 emails,	 the	 engineers	 at	 Etsy
repeatedly	tested	different	hypotheses	using	a	feedback	loop	until	they	had	a
data-informed	intuition	of	what	would	and	would	not	work	in	the	final	design.
“They	did	this	redesign,	and	it	took	like	eight	months	or	so.	And	it	was	very
rigorously	driven	by	[A/B]	testing,”	Hedlund	explained.	“It	came	out,	and	it
had	just	ridiculously	good	numbers—far	and	away	the	single	best	project	that
we	shipped	in	terms	of	performance.	And	it	was	quantifiable.	We	knew	what

the	 effect	 was	 going	 be.”	 In	 2013,	 Etsy	 topped	 $1	 billion	 in	 sales.	 29	 Its
experiment-driven	culture	played	a	large	role	in	that	growth.

Similarly,	one	of	the	highest-leverage	investments	that	we	made	at	Quora
was	 constructing	 our	 in-house	 A/B	 testing	 framework.	 We	 built	 a	 simple
abstraction	 for	 defining	 experiments,	 wrote	 tools	 to	 help	 us	 verify	 the
different	 variants	 during	 development,	 enabled	 push-button	 deployments	 of
tests,	and	automated	the	collection	of	real-time	analytics—all	of	which	helped
to	optimize	our	iteration	loop	for	getting	new	ideas	in	front	of	live	traffic.	30
The	 framework	 enabled	 us	 to	 run	 hundreds	 of	 user	 experiments.	 It	 also
allowed	 us	 to	 measure	 the	 effects	 of	 changes	 resulting	 from	 a	 new	 signup
flow,	 new	 interface	 features,	 and	 behind-the-scenes	 ranking	 adjustments.
Without	 our	 A/B	 testing	 framework,	 we	 would’ve	 been	 guessing	 at	 what
would	 improve	 our	 product	 rather	 than	 approaching	 the	 question
scientifically.

Building	 your	 own	 A/B	 testing	 framework	 might	 seem	 daunting.
Fortunately,	 there	 are	 many	 existing	 tools	 that	 you	 can	 use	 to	 test	 your
product	 hypotheses.	 Free	 or	 open	 source	 A/B	 testing	 frameworks	 include
Etsy’s	 feature-flagging	 API,	 31	 Vanity,	 32	 Genetify,	 33	 and	 Google	 Content
Experiments.	34	If	you	want	more	tooling	and	support,	you	can	pay	a	monthly
fee	 for	 software	 like	Optimizely,	 35	Apptimize,	 36	 Unbounce,	 37	 and	Visual
Website	Optimizer.	 38	Given	 how	much	 you	 can	 learn	 through	A/B	testing,
it’s	well	worth	the	investment.

When	deciding	what	to	A/B	test,	time	is	your	limiting	resource.	Hone	into
differences	 that	 are	 high-leverage	 and	 practically	 significant,	 the	 ones	 that
actually	matter	for	your	particular	scale.	Google	can	afford	to	run	tests	on	tiny
details.	For	example,	 they	analyzed	which	of	41	shades	of	blue	 they	should
use	 for	 a	 search	 result	 link,	 and	 picking	 the	 right	 shade	 netted	 the	 search
company	an	additional	$200M	in	ad	revenue	per	year.	39	Google,	of	course,
has	enough	traffic	to	achieve	statistical	significance	in	a	reasonable	amount	of
time;	and,	more	to	the	point,	even	an	ostensibly	minute	0.01%	improvement
in	revenue	represents	$3.1M	to	a	company	with	an	annual	revenue	of	$31B.	40
For	 most	 other	 companies,	 however,	 such	 a	 test	 would	 be	 prohibitively
expensive	in	terms	of	time	and	traffic;	the	gains,	even	if	we	could	detect	them,
would	not	be	meaningful.	Initially,	it’s	tricky	to	determine	what’s	practically
significant,	but	as	you	run	more	experiments,	you’ll	be	able	to	prioritize	better
and	determine	which	tests	might	give	large	payoffs.

Performed	correctly,	A/B	testing	enables	us	to	validate	our	product	ideas
and	 transform	 an	 otherwise-baffling	 black	 box	 of	 user	 behavior	 data	 into
understandable	and	actionable	knowledge.	It	enables	us	to	iteratively	validate
our	product	changes,	and	it	assures	us	that	our	time	and	effort	are	well-spent
and	that	we’re	achieving	our	goals.	Even	when	the	luxury	of	quantitative	data
through	A/B	 testing	 isn’t	 available,	however,	we	can	 still	validate	our	 ideas

through	 qualitative	 feedback.	 We’ll	 spend	 the	 remaining	 two	 sections
discussing	how.

Beware	the	One-Person	Team

Given	the	importance	of	validating	early	and	often,	a	common	anti-pattern	to
watch	out	for	is	the	one-person	team.	An	iconic	Silicon	Valley	story	features
the	 engineer	 who	 designs	 and	 builds	 an	 ambitious	 system	 all	 on	 his	 own.
Expecting	 to	 launch	 his	 project	 soon,	 he	 sends	 a	 large	 code	 review	 to	 a
teammate—only	 to	 learn	 about	 a	major	 design	 flaw	he’d	missed,	 and	 to	 be
informed	that	he	should	have	built	his	system	in	a	completely	different	way.

One	summer,	while	I	was	interning	at	Google,	I	built	a	search	feature	for
Orkut	(one	of	Google’s	early	social	networking	sites).	I	worked	diligently	on
the	project,	 tweaking	 the	 indexing,	 ranking,	 and	 filtering	of	 user	 profiles	 in
search	 results.	 I	 sanity-checked	my	 initial	 design	 with	 other	 engineers,	 but
because	I	got	more	and	more	pieces	working	every	day	and	didn’t	have	much
experience	with	code	reviews,	I	figured	I	didn’t	really	need	to	show	my	actual
code	around.	The	last	week	of	my	internship,	I	packaged	my	summer’s	work
into	a	multi-thousand-line	code	review.	Google	classifies	code	commits	based
on	the	number	of	lines	of	code	changed.	Sitting	in	my	mentor’s	inbox	was	an
email	labeled:	“Edmond	sent	you	a	ginormous	code	review.”

Over	lunch,	I	casually	mentioned	my	code	bomb	to	some	other	interns.	I
was	feeling	rather	smug	about	what	I’d	accomplished	that	summer,	but	 they
were	 horrified.	 “You	 what?!?	What	 if	 your	 mentor	 found	 a	 glaring	 design
issue?	Will	 your	mentor	 even	 have	 time	 to	 review	 everything?	Would	 you
even	 have	 time	 to	 fix	 all	 the	 issues	 if	 he	 did	 find	 something?	What	 if	 he
doesn’t	 let	 you	 check	 in	 your	 ginormous	 code	 commit?”	 My	 heart	 sank.
Would	my	entire	summer’s	work	be	wasted?	I	spent	my	last	week	at	Google
worrying	about	how	events	would	unfold.

Fortunately,	 my	mentor	 was	 accommodating	 and	 offered	 to	 handle	 any
issues	 that	surfaced	after	my	internship.	I	was	able	 to	commit	my	code,	and
the	feature	 launched	within	a	 few	months	of	me	 leaving.	But	 too	much	was
left	 up	 to	 chance,	 and	 my	 whole	 project	 could	 have	 been	 scrapped.	 In
hindsight,	it’s	clear	that	if	I	had	just	committed	my	code	more	iteratively	and
in	chunks,	my	work	wouldn’t	have	existed	in	isolation	for	so	long	and	I	would
have	eliminated	a	 large	amount	of	risk.	My	mentor	would	have	had	a	much
easier	time	reviewing	my	code,	and	I	would	have	received	valuable	feedback
along	the	way	that	I	could	have	applied	to	future	code.	In	the	end,	I	got	lucky:
I	learned	a	lesson	about	solo	projects	early	in	my	career	and	with	little	cost.

There	 are	 many	 situations	 where	 you	 have	 to	 work	 on	 a	 project	 by
yourself.	Sometimes,	in	an	attempt	to	get	rid	of	the	communication	overhead,
managers	 or	 technical	 leads	 staff	 single-person	projects.	Other	 times,	 teams
split	themselves	up	into	one-person	subteams	so	they	can	tackle	smaller	tasks

independently	 and	make	 coordination	 easier.	Some	organizations	 emphasize
in	their	promotion	processes	that	an	engineer	has	to	demonstrate	ownership	in
a	project;	that	can	incentivize	engineers	to	work	on	their	own	in	the	hopes	of
maximizing	 their	 chances	 for	 promotion.	 Some	 engineers	 simply	 prefer	 to
work	more	independently.

While	there	isn’t	anything	inherently	wrong	with	working	on	a	one-person
project,	 it	 does	 introduce	 additional	 risks	 that,	 if	 not	 addressed,	 can	 reduce
your	chance	of	success.	First	and	foremost,	 it	adds	friction	to	the	process	of
getting	 feedback—and	you	 need	 feedback	 to	 help	 validate	 that	what	 you’re
doing	will	work.	It’s	hard	to	get	good	feedback	on	a	code	review,	for	instance,
unless	 the	 reviewer	works	on	your	 team	and	 shares	 your	 project	 context.	 If
you’re	not	mindful	of	setting	up	a	feedback	loop,	it	can	be	tempting	to	defer
getting	feedback	on	something	until	you	think	it’s	nearly	perfect.	And	if	you
don’t	 find	out	 until	 the	 end	 that	 you’ve	gone	 in	 the	wrong	direction,	 you’ll
waste	a	lot	of	effort.

There	are	other	risks	of	one-person	projects	as	well.	The	lows	of	a	project
are	 more	 demoralizing	 when	 you’re	 working	 alone.	 Sand	 traps	 that	 you
struggle	to	get	out	of,	monotonous	work	that	you	need	to	grind	through,	and
bugs	 that	 seem	 to	 defy	 all	 understanding	 become	 less	 draining	 and	 more
bearable	when	 there’s	 someone	 there	 to	 share	 your	 pain.	A	 single	 stall	 can
grind	the	project	to	a	halt,	causing	deadlines	to	slip	(we’ll	see	how	to	address
this	in	Chapter	7).	I’ve	been	in	that	situation,	and	I’ve	seen	it	happen	to	other
engineers	as	well.	When	there’s	at	least	one	additional	person	on	the	project,
however,	the	team	can	still	maintain	overall	momentum	and	preserve	morale
even	if	someone	gets	stuck.

Similarly,	 the	 highs	 can	 be	 less	motivating	when	 you’re	working	 alone.
Celebrating	an	achievement	with	teammates	is	a	great	way	to	boost	morale.	If
you	work	alone,	who’s	going	to	give	you	a	high-five	when	you	finally	fix	that
frustrating	data	corruption	bug?	In	addition,	knowing	that	your	teammates	are
depending	on	you	 increases	your	sense	of	accountability.	The	desire	 to	help
your	 team	 succeed	 can	 override	 the	 dips	 in	 motivation	 that	 everyone
occasionally	feels.

Even	 if	 you	 find	 yourself	 working	 a	 one-person	 project,	 don’t	 despair.
These	risks	are	surmountable.	Steve	Wozniak	invented	the	Apple	I	and	Apple
II	 computers,	 designing	 the	 hardware	 and	 the	 software	 by	 himself	 at	 home
and	later	 in	Steve	Jobs’s	garage.	How	were	his	 inventions	transformed	from
hobbyist	 toys	 for	 the	Homebrew	Computer	Club	 into	pillars	of	 the	personal
computer	revolution?	One	key	factor	for	Wozniak	was	that	Jobs	provided	him
with	 a	 counterbalance	 and	 a	 feedback	 loop	 to	 validate	 his	 ideas.	 Although
Wozniak	 was	 an	 introvert	 and	 ostensibly	 doing	 his	 own	 thing,	 he	 did	 not
isolate	himself	 and	work	 in	 a	vacuum—and	 spurred	on	by	 Jobs’	vision	 and
ambition,	the	two	men	eventually	created	Apple.	41

Like	 Wozniak,	 we	 can	 also	 set	 up	 the	 necessary	 feedback	 channels	 to

Like	 Wozniak,	 we	 can	 also	 set	 up	 the	 necessary	 feedback	 channels	 to
increase	the	chances	of	our	projects	succeeding.	Here	are	some	strategies:

Be	 open	 and	 receptive	 to	 feedback.	 If	 you	 adopt	 a	 defensive	mindset
about	 your	work,	 it	 will	 be	 difficult	 for	 you	 to	 listen	 to	 feedback—and
people	will	be	 less	willing	 to	offer	 it	 in	 the	 future.	 Instead,	optimize	 for
learning.	 View	 feedback	 and	 criticism	 not	 as	 personal	 attacks	 but	 as
opportunities	for	improvement.
Commit	code	early	and	often.	Large	 code	 changes	 are	 hard	 to	 review,
take	 longer	 to	 get	 feedback,	 and	 are	 a	 big	waste	 of	 time	 and	work	 if	 it
turns	out	 that	 there’s	 a	design	 flaw.	Focus	on	making	 iterative	progress,
and	 use	 those	 iterative	 commits	 as	 forcing	 functions	 for	 soliciting
feedback.	Don’t	be	the	person	who	sends	out	the	ginormous	code	review.
Request	code	reviews	from	thorough	critics.	There	is	a	large	variance	in
the	rigor	with	which	different	engineers	review	code.	If	you’re	in	a	hurry
to	ship	something,	you	might	be	tempted	to	send	your	code	review	to	the
engineer	who	skims	and	approves.	But	if	you’re	optimizing	for	quality	or
if	 you	want	 to	make	 sure	 your	 approach	works,	 you’ll	 find	much	more
leverage	 asking	 for	 a	 code	 review	 from	 someone	who	 gives	 thoughtful
criticism.	It’s	better	to	get	harsh	feedback	from	a	teammate	early	on	than
to	get	it	from	users	later	when	something	doesn’t	work.
Ask	to	bounce	ideas	off	your	teammates.	The	most	direct	path	to	getting
feedback	is	to	request	it.	Ask	a	teammate	who’s	lounging	around	the	water
cooler	if	you	might	have	a	few	minutes	of	her	time	to	talk	through	some
ideas	on	a	whiteboard.	Research	shows	that	explaining	an	idea	to	another
person	is	one	of	 the	best	ways	of	 learning	 it	yourself;	42	moreover,	your
explanation	might	 reveal	holes	 in	your	own	understanding.	Most	people
want	to	be	helpful	and	appreciate	a	quick	break	to	grapple	with	a	different
and	 possibly	 interesting	 problem.	 That	 said,	 if	 you	 want	 to	 keep	 the
feedback	 channel	 open	 in	 the	 future,	 be	 respectful	 of	 your	 co-workers’
time.	Prepare	beforehand.	Make	sure	that	you	can	articulate	the	problem
that	you’re	 trying	 to	 solve	and	 the	approaches	 that	you’ve	already	 tried.
After	the	discussion,	reciprocate	with	an	offer	to	be	a	sounding	board	for
their	ideas.
Design	the	interface	or	API	of	a	new	system	first.	After	your	interface
is	designed,	prototype	what	the	client	code	would	look	like	if	your	feature
were	built.	Creating	a	concrete	picture	of	the	interactions	will	surface	poor
assumptions	or	missing	requirements,	saving	you	time	in	the	long	run.
Send	 out	 a	 design	 document	 before	 devoting	 your	 energy	 to	 your
code.	While	it	might	seem	like	it	adds	extra	overhead,	this	is	an	example
of	investing	10%	of	your	effort	to	validate	the	other	90%	of	work	that	you
plan	to	do.	The	document	doesn’t	have	to	be	particularly	formal—it	could
just	be	a	detailed	email—but	it	should	be	comprehensive	enough	for	your

reader	to	understand	what	you’re	trying	to	do	and	be	able	to	ask	clarifying
questions.
If	 possible,	 structure	 ongoing	 projects	 so	 that	 there	 is	 some	 shared
context	with	your	teammates.	Rather	than	working	on	a	separate	project
in	parallel	with	your	 teammates,	 consider	working	 together	on	 the	 same
project	 and	 tackling	 the	 other	 project	 together	 afterwards.	 Or,	 consider
working	in	the	same	focus	area	as	your	teammates.	This	creates	a	shared
context	that,	in	turn,	reduces	the	friction	in	discussions	and	code	reviews.
Serializing	team	projects	to	increase	collaboration	rather	than	doing	them
independently	and	in	parallel	can	provide	learning	benefits	as	well:	each
project	 takes	a	shorter	amount	of	calendar	 time	 to	complete,	so	within	a
given	timeframe,	you	can	be	exposed	to	a	larger	diversity	of	project	areas.
Solicit	 buy-in	 for	 controversial	 features	 before	 investing	 too	 much
time.	This	might	mean	 floating	 the	 idea	 in	conversations	and	building	a
prototype	 to	 help	 convince	 relevant	 stakeholders.	 Sometimes,	 engineers
misconstrue	 or	 dismiss	 this	 type	 of	 selling	 and	 marketing	 as	 office
politics,	but	it’s	a	fairly	logical	decision	from	the	viewpoint	of	leverage.	If
a	 conversation	 to	 get	 feedback	 only	 takes	 a	 few	 hours	 but	 an
implementation	 takes	 weeks,	 the	 shorter	 path	 to	 earlier	 feedback	 is
extremely	valuable.	Failing	to	get	buy-in	from	those	who	understand	the
domain	might	mean	you’re	on	the	wrong	path.	However,	even	if	you	think
they’re	wrong,	the	conversations	will	at	least	surface	the	issues	that	others
care	about	and	that	you	should	address	if	you	decide	to	proceed.

The	 goal	 of	 all	 these	 strategies	 is	 to	 overcome	 the	 friction	 of	 collecting
feedback	 when	 you’re	 working	 alone	 so	 that	 you	 can	 validate	 your	 ideas
earlier	and	more	often.	They’re	particularly	important	if	you’re	working	on	a
one-person	project,	where	the	default	behavior,	unless	you’re	proactive,	is	to
work	in	isolation.	But	the	same	strategies	can	be	equally	valuable	even	when
you’re	working	on	a	 team.	Brian	Fitzpatrick	and	Ben	Collins-Sussman,	 two
Googlers	who	 started	 the	Chicago	 engineering	 office,	 capture	 the	mentality
well	 when	 they	 write	 in	 Team	 Geek,	 “[S]oftware	 development	 is	 a	 team
sport.”	43	Even	if	you	prefer	to	work	independently,	you’ll	be	more	effective
if	you	conceptualize	your	work	as	a	team	activity	and	build	in	feedback	loops.

Build	Feedback	Loops	for	Your	Decisions

Whether	 you’re	 working	 on	 large	 implementation	 efforts,	 developing
products,	 or	 working	 on	 teams,	 it’s	 important	 to	 build	 feedback	 loops	 to
validate	 your	 ideas.	 But	 even	 more	 broadly,	 the	 principle	 of	 validation
generalizes	to	any	decision	you	make.

Sometimes,	validation	 is	difficult.	There	might	not	be	many	data	points,
or	there	may	only	be	qualitative	data	available.	Which	programming	language

should	 you	 use	 to	write	 a	 new	 service?	What	 should	 the	 abstraction	 or	 the
interface	look	like?	Is	the	design	simple	enough	for	what	you’re	trying	to	do?
Is	it	worth	the	engineering	effort	to	invest	in	more	scaling	right	now?

Moreover,	the	more	senior	of	an	engineer	you	become	(and	particularly	if
you	 enter	 into	 management),	 the	 tougher	 and	 the	 more	 nebulous	 your
decisions	become.	How	should	you	coordinate	your	 team’s	work?	Can	your
team	afford	 to	pause	(or	not	pause)	 feature	development	 to	 reduce	 technical
debt?	 Should	 performance	 reviews	 and	 feedback	 be	 given	 anonymously,
directly,	 or	 in	 an	 open	 setting?	 How	 should	 you	 arrange	 compensation
structure	to	improve	recruiting	and	retention?

When	 I	 interviewed	 Nimrod	 Hoofien,	 a	 Director	 of	 Engineering	 at
Facebook,	he	said	that	creating	a	feedback	loop	is	necessary	for	all	aspects	of
a	job.	“It	applies	to	recruiting.	It	applies	to	team	design.	It	applies	to	how	you
build	 your	 culture.	 It	 applies	 to	 your	 compensation	 structure,”	 Hoofien
explained.	 “Any	 decision	 you	make	…	 should	 have	 a	 feedback	 loop	 for	 it.
Otherwise,	you’re	just	…	guessing.”

Previously,	when	Hoofien	was	the	Senior	VP	of	Engineering	at	Ooyala,	he
experimented	 with	 various	 aspects	 of	 building	 effective	 engineering	 teams,
and	built	feedback	loops	to	learn	from	those	experiments.	For	example,	when
figuring	out	the	optimal	number	of	team	members	to	maximize	effectiveness,
Hoofien	 varied	 the	 size	 of	 the	 team	 and	 looked	 for	 obvious	 dysfunctions.
“The	most	 common	 [dysfunction]	 is	 that	 the	 team	 starts	 behaving	 like	 two
teams,”	observed	Hoofien,	“and	 these	 two	groups	will	only	work	 [on	 tasks]
on	their	side	of	the	board.”	Another	experiment	was	tightly	tying	bonuses	to
engineering-wide	 metrics	 like	 reliability.	 It	 launched	 to	 an	 overwhelming
positively	sentiment	because	 the	bonus	equation	was	clear-cut,	but	 then	was
rolled	 back	 after	 a	 quarter	 because	 engineers	 became	 upset	 that	 they	 didn’t
have	enough	control	over	the	metrics.

Hoofien	 has	 run	 similar	 experiments	 when	 researching	 fundamental
questions	 in	 effective	 team	 structure	 at	 Ooyala:	 should	 tech	 leads	 also	 be
managers	(yes);	should	positions	like	site	reliability	engineers,	designers,	and
product	 managers	 be	 embedded	 in	 development	 teams	 (yes	 for	 product
managers);	and	under	which	situations	should	teams	adopt	methodologies	like
Scrum	 (it	 varied).	 Hoofien	 deployed	 many	 of	 these	 experiments	 for	 a	 few
weeks	 and	 then	 gathered	 data—sometimes	 by	 just	 talking	 to	 people—to
understand	what	worked	and	what	didn’t.	Other	ideas,	however,	like	a	radical
proposal	 for	 doubling	 the	 salary	 of	 the	 best	 engineers	 to	 create	 a	 superstar
team,	were	run	as	thought	experiments.	Hoofien	gathered	the	engineering	tech
leads	 and	 discussed	 possible	 consequences	 (they	 predicted	 that	 non-top
performers	would	quit	in	droves	and	that	it	would	take	too	long	to	find	great
people	to	replace	them).

The	 principle	 of	 validation	 shows	 us	 that	 many	 of	 our	 work	 decisions,
which	we	might	 take	for	granted	or	adopt	blindly	from	other	people,	 in	fact

are	testable	hypotheses.	How	to	discover	what	works	best	varies	based	on	the
situation	 and	 the	 people	 involved,	 and	 Hoofien’s	 learnings	 on	 team	 setup
might	 vary	 from	 your	 own.	 But	 regardless	 of	 whether	 we	 engineers	 are
writing	code,	creating	a	product,	or	managing	teams,	the	methodology	of	how
to	make	decisions	 remains	 the	 same.	And	at	 its	 core,	 the	willingness	 to	 run
experiments	demonstrates	the	scientific	method	at	work.

Validation	 means	 formulating	 a	 hypothesis	 about	 what	 might	 work,
designing	 an	 experiment	 to	 test	 it,	 understanding	 what	 good	 and	 bad
outcomes	 look	 like,	 running	 the	 experiment,	 and	 learning	 from	 the	 results.
You	may	not	be	able	to	 test	an	idea	as	rigorously	as	you	could	with	an	A/B
test	and	ample	amounts	of	traffic,	but	you	can	still	transform	what	otherwise
would	be	guesswork	into	informed	decision-making.	Given	the	right	mindset
—a	 willingness	 to	 test	 your	 ideas—there’s	 little	 that	 you	 can’t	 validate	 by
building	feedback	loops.

Key	Takeaways

Approach	a	problem	iteratively	to	reduce	wasted	effort.	Each	iteration
provides	 opportunities	 to	 validate	 new	 ideas.	 Iterate	 quickly	 to	 learn
quickly.
Reduce	the	risk	of	 large	implementations	by	using	small	validations.
Invest	 a	 little	 extra	 effort	 to	 figure	 out	 if	 the	 rest	 of	 your	 plan	 is	worth
doing.
Use	A/B	testing	to	continuously	validate	your	product	hypotheses.	By
incrementally	developing	a	product	and	identifying	what	does	and	doesn’t
work,	you	increase	the	probability	that	your	efforts	are	aligned	with	what
users	actually	want.
When	 working	 on	 a	 solo	 project,	 find	 ways	 of	 soliciting	 regular
feedback.	It	may	be	easy	and	comfortable	to	keep	working	in	a	silo,	but
you	 run	 the	 huge	 risk	 of	 overlooking	 something	 that,	 if	 spotted	 early,
could	save	you	lots	of	wasted	effort.
Adopt	a	willingness	to	validate	your	decisions.	Rather	 than	making	an
important	decision	and	moving	on,	set	up	feedback	loops	that	enable	you
to	collect	data	and	assess	your	work’s	value	and	effectiveness.

I

Improve	Your	Project	Estimation	Skills

N	AUGUST	2008,	TWO	MONTHS	AFTER	I	HAD	JOINED	OOYALA,	THE	ENGINEERING
team	embarked	on	a	mission	to	completely	rewrite	our	Flash-based	video
player.	Ooyala,	an	online	video	startup,	helped	customers	like	TV	Guide,

the	 Association	 of	 Tennis	 Professionals,	 Armani,	 and	 TechCrunch	 manage
and	 serve	 the	 thousands	 of	 videos	 on	 their	 websites.	We	 offered	 a	 content
management	system,	video	transcoding	services,	and	a	player	that	customers
embedded	on	their	web	pages	to	deliver	videos	to	their	viewers.

Our	 top-tier	 customers	 cared	 about	 video	 performance:	 they	 wanted	 a
player	that	would	load	faster,	quickly	adjust	a	viewer’s	video	quality	based	on
available	network	bandwidth,	and	support	additional	custom	integrations.	We
wanted	to	make	our	customers	happy.	But	because	a	large	amount	of	technical
debt	 had	 accumulated	 in	 the	 player	 codebase	 in	 the	 18	 months	 since	 the
company	 had	 been	 founded,	 developing	 new	 features	 was	 slow	 and	 error-
prone.	There	were	no	automated	tests	to	ensure	that	changes	wouldn’t	cause
regressions.	We	knew	we	wouldn’t	be	able	to	ship	these	and	future	customer
requirements	quickly	enough	without	a	more	reliable	foundation.	And	so	we
decided	to	rewrite	the	player	to	make	it	more	modular	and	performant,	and	to
build	a	cleaner	and	better-tested	codebase.

During	 one	 of	 our	weekly	meetings,	 the	CTO	 and	 the	 product	manager
unveiled	 the	 rewrite	 plan	 and	 schedule	 to	 the	 8-person	 engineering	 team.
Gantt	 charts	 broke	 down	 the	work	 assignments,	 showed	 how	 long	 different
tasks	would	 take,	 and	mapped	 out	 the	 dependencies	 between	 various	 parts.
We	were	slated	to	work	in	parallel	on	the	video	playback,	analytics,	ads,	user
interface,	and	other	modules,	and	then	to	spend	a	week	at	the	end	integrating
everything	 together.	A	 team	of	3	 senior	engineers	estimated	 it	would	 take	4
months	 for	 the	 entire	 team	 to	 complete	 the	 project,	 right	 in	 time	 for	 the
Christmas	holidays.	New	feature	development	would	pause	for	the	next	four
months,	and	account	managers	had	been	instructed	to	push	back	on	customer
requests	during	that	time.

It	 was	 an	 ambitious	 project,	 and	 I	 was	 looking	 forward	 to	 it.	 I	 was
impressed	 by	 how	much	 the	 team	had	 accomplished	 in	 the	 past	 year	 and	 a

7

half.	However,	the	sprint	to	build	a	product	quickly	had	left	the	codebase	in	a
tattered	state.	I	was	used	to	building	on	top	of	Google’s	well-tested	codebase
that	allowed	quick	feature	development,	and	I	viewed	Ooyala’s	rewrite	as	an
opportunity	 to	bring	us	closer	 toward	 that	state.	 I	 raised	an	eyebrow	when	I
noticed	 the	 schedule	 overlaps	 and	 the	 aggressive	 assignment	 of	 the	 same
engineer	 to	 two	projects	at	once.	But	since	we	couldn’t	afford	 to	delay	new
feature	development	for	much	longer	than	4	months,	I	brushed	off	the	worry
and	hoped	that	we’d	finish	some	pieces	earlier	than	expected.

A	few	hiccups	surfaced	along	the	way	that,	with	more	experience,	I	would
have	recognized	as	red	flags.	We	wanted	to	make	the	analytics	module	more
extensible	by	encoding	analytics	data	in	Thrift,	a	new	protocol	that	Facebook
had	open	sourced,	but	we	had	only	dedicated	a	few	days	to	this	endeavor.	And
because	 Thrift	 didn’t	 support	 ActionScript,	 the	 programming	 language	 for
Flash,	I	had	to	write	a	C++	compiler	extension	for	Thrift	to	auto-generate	the
ActionScript	code	we	needed;	 that	 in	 itself	 took	over	a	week.	We	wanted	to
integrate	 some	 new	 third-party	 ad	 modules	 into	 the	 new	 player,	 but	 they
turned	 out	 to	 be	 buggy;	 one,	 under	 some	 fairly	 normal	 conditions,	 even
caused	 the	 video	 player	 to	 screech	 painfully.	 While	 building	 the	 video
playback	module,	a	teammate	discovered	that	one	of	Adobe’s	core,	low-level
interfaces	that	we	wanted	to	use	for	better	performance	didn’t	reliably	report
whether	the	video	was	buffering	or	playing.	We	had	to	painstakingly	develop
heuristics	to	understand	what	was	happening.

As	 we	 approached	 the	 December	 deadline,	 we	 knew	 we	 were	 falling
behind.	We	plowed	ahead	anyway,	mentioning	to	the	release	manager	that,	if
we	weren’t	careful,	our	launch	might	be	pushed	back	into	January.	Even	then,
I	 don’t	 think	 anyone	 on	 the	 team	 had	 an	 inkling	 of	 how	 much	 we	 would
actually	slip.

The	new	player—ironically	named	“Swift”—fully	shipped	5	months	later
in	May	2009,	nearly	9	months	after	the	project	initially	started.	1	Our	journey
—while	formative	and	eye-opening—was	anything	but	swift.	Had	we	known
that	 the	 project	 would	 have	 taken	 9	 months	 instead	 of	 4,	 we	 would’ve
thoroughly	explored	other	alternatives	like	scoping	down	the	project,	doing	a
more	 incremental	 rewrite,	 or	 cutting	 back	 on	 other	 customer	 obligations.
Instead,	I	worried	with	every	passing	month	whether	our	small	startup	would
survive	 the	 late	 schedule.	 We	 were	 in	 the	 middle	 of	 the	 2009	 recession;
customers	 had	 tight	 budgets	 and	 venture	 capitalists	 were	 loathe	 to	 fund.
Fortunately,	our	company	stayed	afloat,	and	the	launch	opened	up	many	other
business	opportunities.	Today,	Ooyala	delivers	over	1	billion	videos	to	nearly
200	million	unique	viewers	across	the	globe	every	month.	2

I’ve	 since	 learned,	both	 from	my	own	experiences	and	 from	discussions
with	other	engineers,	 that	 the	Ooyala	story	 isn’t	all	 that	out	of	 the	ordinary.
Windows	Vista	slipped	behind	by	over	3	years.	3	4	Netscape	5.0	slipped	by	2
years,	and	the	browser	saw	its	market	share	plummet	from	80%	to	20%.	5	6

The	 game	 Daikatana,	 aggressively	 slated	 to	 launch	 in	 7	 months,	 slipped
multiple	 times;	 it	 didn’t	 launch	 until	 two	 and	 half	 years	 past	 the	 original
delivery	date,	went	millions	of	dollars	overbudget,	and	 led	 to	 the	demise	of
the	 company.	 In	 2009,	 after	 studying	 over	 50,000	 software	 projects,	 the
Standish	Group	concluded	that	44%	of	projects	are	delivered	late,	overbudget,
or	 missing	 requirements;	 24%	 fail	 to	 complete;	 and	 the	 average	 slipped
project	overruns	its	time	budget	by	79%.	7

Project	 estimation	 is	 one	 of	 the	 hardest	 skills	 that	 an	 effective	 engineer
needs	to	learn.	But	it’s	crucial	to	master:	businesses	need	accurate	estimates	to
make	long-term	plans	for	their	products.	They	need	to	know	when	resources
might	free	up	to	work	on	upcoming	features	or	when	they	can	promise	feature
requests	to	customers.	And	even	when	we	don’t	have	pressure	to	ship	against
a	deadline,	how	long	we	think	a	project	will	take	affects	our	decisions	of	what
to	work	on.

We’ll	 always	operate	under	 imperfect	 information.	Therefore,	 successful
project	planning	requires	increasing	the	accuracy	of	our	project	estimates	and
increasing	our	ability	to	adapt	to	changing	requirements.	These	two	goals	are
particularly	important	for	larger	projects.	Short	projects	don’t	tend	to	slip	too
much	in	absolute	terms.	A	project	estimated	to	take	a	few	hours	might	slip	to
a	few	days,	and	one	estimated	for	a	few	days	might	slip	by	a	week	or	two.	We
sometimes	don’t	 even	notice	 these	 little	 blips.	But	 then	 there	 are	 the	multi-
week	and	multi-month	projects	that	slip	by	months,	or	sometimes	even	years.
These	become	the	war	stories.

In	 this	chapter,	we’ll	arm	you	with	 the	 tools	 to	 take	charge	of	your	own
project	plans	and	push	back	against	unrealistic	schedules.	We’ll	look	at	ways
of	 decomposing	 project	 estimates	 to	 increase	 accuracy.	We’ll	 walk	 through
how	we	can	do	a	better	 job	of	budgeting	 for	 the	unknown.	We’ll	 talk	about
how	to	clearly	define	a	project’s	scope	and	establish	measurable	milestones,
and	 then	we’ll	cover	how	 to	 reduce	 risk	as	early	as	possible	 so	 that	we	can
adapt	sooner.	And	finally,	we’ll	close	with	a	discussion	of	why	we	need	to	be
careful	not	 to	use	overtime	 to	 sprint	 toward	a	deadline	 if	we	 find	ourselves
falling	behind:	we	may	actually	still	be	in	the	middle	of	a	marathon.

Use	Accurate	Estimates	to	Drive	Project	Planning

“How	long	do	you	think	it	will	take	to	finish	this	project?”	We’re	often	asked
this	 question	 on	 software	 projects,	 and	 our	 estimates,	 even	 if	 they’re
inaccurate,	feed	into	other	business	decisions.	Poor	estimates	can	be	costly,	so
how	do	we	do	better?

Steve	McConnell,	 in	 his	 book	 Software	 Estimation,	 lays	 out	 a	 working
definition	of	 a	good	estimate.	 “A	good	estimate,”	he	writes,	 “is	 an	 estimate
that	provides	a	 clear	 enough	view	of	 the	project	 reality	 to	 allow	 the	project

leadership	to	make	good	decisions	about	how	to	control	the	project	to	hit	its
targets.”	 8	 His	 definition	 distinguishes	 the	 notion	 of	 an	 estimate,	 which
reflects	our	best	guess	about	how	long	or	how	much	work	a	project	will	take,
from	 a	 target,	 which	 captures	 a	 desired	 business	 goal.	 Engineers	 create
estimates,	 and	 managers	 and	 business	 leaders	 specify	 targets.	 How	 to
effectively	handle	gaps	between	the	estimates	and	targets	is	the	focus	of	this
chapter.

Project	 schedules	 often	 slip	 because	 we	 allow	 the	 target	 to	 alter	 the
estimate.	 Business	 leaders	 set	 a	 particular	 deadline	 for	 a	 project—say	 3
months	 out.	 Engineers	 estimate	 that	 the	 feature	 requirements	 will	 take	 4
months	 to	 build.	 After	 a	 heated	 discussion	 about	 how	 the	 deadline	 is
immovable,	perhaps	because	the	sales	team	has	already	promised	the	project
to	 a	 customer,	 engineers	 then	 massage	 their	 estimates	 to	 shoehorn	 the
necessary	 work	 into	 an	 unrealistic	 3-month	 project	 plan.	 Reality	 sinks	 in
when	 the	 deadline	 approaches,	 and	 the	 team	must	 then	 readjust	 their	 prior
commitments.

A	 more	 productive	 approach	 is	 to	 use	 the	 estimates	 to	 inform	 project
planning,	 rather	 than	 the	 other	 way	 around.	 Given	 that	 it’s	 not	 possible	 to
deliver	 all	 features	 by	 the	 target	 date,	 is	 it	more	 important	 to	 hold	 the	 date
constant	and	deliver	what	 is	possible,	or	to	hold	the	feature	set	constant	and
push	back	the	date	until	all	the	features	can	be	delivered?	Understanding	your
business	priorities	fosters	more	productive	conversations,	letting	you	devise	a
better	project	plan.	Doing	so	requires	accurate	estimates.

So	how	do	we	produce	accurate	estimates	 that	provide	us	 the	 flexibility
we	need?	Here	are	some	concrete	strategies:

Decompose	 the	 project	 into	 granular	 tasks.	When	 estimating	 a	 large
project,	decompose	it	into	small	tasks	and	estimate	each	one	of	them.	If	a
task	will	take	more	than	two	days,	decompose	it	further.	A	long	estimate	is
a	hiding	place	for	nasty	surprises.	Treat	 it	as	a	warning	 that	you	haven’t
thought	 through	 the	 task	 thoroughly	 enough	 to	 understand	 what’s
involved.	 The	more	 granular	 a	 task’s	 breakdown,	 the	 less	 likely	 that	 an
unconsidered	subtask	will	sneak	up	later.
Estimate	based	on	how	long	tasks	will	 take,	not	on	how	long	you	or
someone	 else	 wants	 them	 to	 take.	 It’s	 natural	 for	 managers	 to	 adopt
some	version	of	Parkinson’s	law,	which	argues	that	“work	expands	so	as
to	 fill	 the	 time	 available	 for	 its	 completion.”	 9	 Managers	 challenge
estimates,	pushing	for	tasks	to	be	completed	sooner.	If	you’ve	made	your
estimates	 granular,	 however,	 you	 can	 defend	 them	 more	 easily.	 One
compromise	that	I’ve	seen	is	to	use	the	estimates	to	set	a	public	goal	and
the	manager’s	demands	to	set	an	internal	stretch	goal.
Think	 of	 estimates	 as	 probability	 distributions,	 not	 best-case
scenarios.	 Tom	 DeMarco,	 in	 his	 book	 Controlling	 Software	 Projects,

writes	 that	we	often	 treat	 an	 estimate	 as	 “the	most	 optimistic	 prediction
that	 has	 a	 non-zero	 probability	 of	 coming	 true.”	 Estimation	 becomes	 a
game	of	“what’s	the	earliest	date	by	which	you	can’t	prove	you	won’t	be
finished?”	10	Because	we	operate	with	imperfect	information,	we	instead
should	consider	our	estimates	as	probability	distributions	over	a	range	of
outcomes,	 spanning	 the	 best-case	 and	 worst-case	 scenarios.	 Instead	 of
telling	a	product	manager	or	other	stakeholder	that	we’ll	finish	a	feature	in
6	weeks,	we	might	 instead	 tell	 them,	“There’s	a	50%	likelihood	 that	we
can	deliver	the	feature	4	weeks	from	now,	and	a	90%	chance	that	we	can
deliver	it	within	8	weeks.”
Let	 the	person	doing	 the	actual	 task	make	 the	estimate.	 People	 have
different	skill	sets	and	levels	of	familiarity	with	the	codebase.	Therefore,
what	takes	you	one	hour	to	complete	might	take	someone	else	three	hours.
As	much	 as	 possible,	 have	 the	 person	who	will	 work	 on	 a	 task	 do	 the
actual	 estimation.	 Part	 of	 what	 made	 the	 estimates	 for	 Ooyala’s	 player
rewrite	project	unrealistic	is	that	a	small	set	of	people	estimated	the	work
for	 the	 entire	 team.	Divvying	up	 the	 estimation	work	 also	 enables	more
team	members	to	practice	estimation	skills	and	builds	team-wide	visibility
into	 how	 different	 members	 over-	 or	 underestimate	 their	 work	 (most
people	underestimate).	When	I	now	need	 to	set	project	goals,	 I	schedule
sessions	with	my	team	where	we	dedicate	time	to	estimate	work.
Beware	 of	 anchoring	 bias.	 Dan	 Ariely,	 a	 Duke	 professor	 who	 studies
behavioral	economics,	conducted	an	experiment	where	he	asked	students
to	write	down	the	last	two	digits	of	their	social	security	number	and	then
estimate	the	price	of	a	bottle	of	wine.	Students	with	higher	social	security
number	 digits	 estimated	 significantly	 higher	 prices	 for	 the	 wine,
sometimes	 more	 than	 twice	 as	 high.	 The	 arbitrary	 numbers	 had
subconsciously	anchored	and	affected	 their	estimates.	11	A	 similar	 effect
often	happens	in	software	projects	where	a	manager	might	casually	guess
at	 the	 amount	 of	 work	 (again,	 usually	 an	 underestimate)	 required	 for	 a
project	or	ask	you	for	a	quick	ballpark	estimate.	Avoid	committing	to	an
initial	 number	 before	 actually	 outlining	 the	 tasks	 involved,	 as	 a	 low
estimate	 can	 set	 an	 initial	 anchor	 that	makes	 it	 hard	 to	 establish	 a	more
accurate	estimate	later	on.
Use	 multiple	 approaches	 to	 estimate	 the	 same	 task.	 This	 can	 help
increase	 confidence	 that	 your	 approach	 is	 sound.	 For	 example,	 suppose
you’re	 building	 a	 new	 feature.	 You	 can	 1)	 decompose	 the	 project	 into
granular	 tasks,	 estimate	 each	 individual	 task,	 and	 create	 a	 bottom-up
estimate;	2)	gather	historical	data	on	how	long	it	took	to	build	something
similar;	 and	 3)	 count	 the	 number	 of	 subsystems	 you	 have	 to	 build	 and
estimate	the	average	time	required	for	each	one.
Beware	 the	 mythical	 man-month.	 In	 engineering,	 project	 durations
typically	 get	 measured	 in	 terms	 of	 person-hours,	 person-days,	 person-

weeks,	 or	 person-months—i.e.	 the	 number	 of	 hours,	 days,	 weeks,	 or
months	of	work	 that	 it	 takes	 an	 average	 engineer	 to	 complete	 a	 project.
Unfortunately,	 this	 type	of	accounting	 leads	 to	 the	myth	 that	people	and
time	are	interchangeable.	But	just	because	one	woman	can	give	birth	to	a
baby	 in	 nine	months	 doesn’t	mean	 that	 nine	women	 can	 give	 birth	 to	 a
baby	in	one	month.	As	Frederick	Brooks	explains	in	The	Mythical	Man-
Month,	 as	 additional	 members	 join,	 the	 communication	 overhead	 from
meetings,	emails,	one-on-ones,	discussions,	etc.,	grows	quadratically	with
the	size	of	 the	team.	12	13	Moreover,	new	team	members	 require	 time	 to
ramp	 up	 on	 a	 project	 before	 they’re	 productive,	 so	 don’t	 assume	 that
adding	more	people	will	shorten	a	project	timeline.
Validate	estimates	against	historical	data.	Joel	Spolsky,	the	co-founder
of	 Stack	 Exchange,	 argues	 for	 using	 data-driven	 estimates	 backed	 by
historical	 evidence.	 14	 If	 you	 know	 that	 historically,	 you’ve	 tended	 to
underestimate	by	20%,	then	you’ll	know	that	 it’s	worthwhile	 to	scale	up
your	 overall	 estimate	 by	 25%.	 Or,	 you	 might	 argue	 that	 because	 you
increased	 the	 growth	 rate	 of	 users	 or	 revenue	 by	 25%	 last	 quarter,	 you
might	expect	to	do	something	similar	this	quarter.
Use	 timeboxing	 to	 constrain	 tasks	 that	 can	 grow	 in	 scope.	 You	 can
always	spend	more	time	researching	which	database	technology	or	which
JavaScript	 library	to	use	for	a	new	feature,	but	there	will	be	diminishing
returns	 on	 the	 time	 invested	 and	 growing	 costs	 on	 the	 schedule.	 Plan
instead	 to	allocate	a	 fixed	amount	of	 time,	or	a	 time	box,	 to	open-ended
activities.	Rather	 than	 estimating	 that	 the	 research	will	 likely	 take	 three
days,	 commit	 to	 making	 the	 best	 possible	 decision	 you	 can,	 given	 the
available	data	after	three	days.
Allow	 others	 to	 challenge	 estimates.	 Because	 estimation	 is	 hard,	 we
have	 a	 tendency	 to	 cut	 corners	 or	 eyeball	 numbers.	 By	 reviewing
estimates	at	a	 team	meeting,	we	can	 increase	accuracy	and	buy-in	at	 the
cost	 of	 some	 additional	 overhead.	 Others	 may	 have	 knowledge	 or
experience	that	can	help	highlight	poor	or	incomplete	estimates.

In	Chapter	6,	we	 learned	 that	 iteratively	validating	our	 ideas	 can	 lead	us	 to
better	 engineering	 outcomes.	 In	 the	 same	 way,	 iteratively	 revising	 our
estimates	 can	 lead	 us	 to	 better	 project	 outcomes.	 Estimates	 contain	 more
uncertainty	 at	 the	 beginning	 of	 a	 project,	 but	 the	 variance	 decreases	 as	 we
flesh	out	 the	details.	Use	 incoming	data	 to	 revise	 existing	 estimates	 and,	 in
turn,	the	project	plan;	otherwise,	it	will	remain	based	on	stale	information.

Measuring	 the	 actual	 time	 it	 takes	 to	 perform	 a	 task	 and	 comparing	 it
against	 the	 estimated	 time	 helps	 reduce	 the	 error	 bounds	 both	 when	 we’re
revising	past	estimates	or	making	future	ones.	Over	time,	the	evidence	teaches
us	whether	we	tend	to	underestimate	or	overestimate,	or	 if	we’re	usually	on
target.	 From	 that	 data,	 we	 may,	 for	 instance,	 adopt	 a	 rule	 of	 thumb	 of
multiplying	our	engineering	estimates	by	a	factor	of	2	to	capture	unestimated

tasks.	 As	 discussed	 in	 Chapter	 5,	 we	 should	 measure	 what	 we	 want	 to
improve,	which	in	this	case,	is	our	project	estimation	skills.	When	schedules
slip	for	small	tasks,	pause	to	consider	whether	future	tasks	will	be	affected	as
well.

A	little	measurement	can	go	a	long	way.	For	one	project	where	a	team	had
to	port	a	Python	application	to	Scala,	I	set	up	a	simple	spreadsheet	for	team
members	to	track	how	many	hours	they	estimated	a	task	would	take	and	how
long	it	actually	took.	Most	team	members	initially	underestimated,	often	by	a
factor	 of	 two.	Within	 a	week	 or	 two,	 the	 visibility	 enabled	 people	 to	 get	 a
more	accurate	sense	of	how	many	lines	of	code	they	could	migrate	in	a	week.
This	 paid	 off	 later	 when	 it	 helped	 them	 make	 more	 accurate	 estimates	 of
timeframes	for	future	milestones.

Discovering	 that	 certain	 tasks	 take	 much	 longer	 than	 expected	 lets	 us
know	 sooner	 if	 we’re	 falling	 behind.	 This,	 in	 turn,	 allows	 us	 to	 adjust	 the
schedule	 or	 cut	 lower-priority	 features	 sooner.	 Those	 adjustments	 aren’t
possible	if	we’re	not	aware	how	behind	we	are.

Budget	for	the	Unknown

Many	 software	 projects	 miss	 their	 deadlines	 for	 multiple	 reasons,	 and	 it’s
usually	 not	 due	 to	 a	 lack	 of	 hard	 work.	 The	 engineering	 team	 at	 Ooyala
certainly	didn’t	lack	talent	or	motivation.	It	was	just	as	strong—if	not	stronger
—than	the	typical	team	I	worked	with	at	Google.	Most	people	pulled	70–80-
hour	weeks	 for	months,	 and	many	of	 us,	 trying	 to	 finish	 the	 project,	 coded
away	even	as	we	visited	family	over	the	holidays.

But	try	as	we	might,	we	just	could	not	deliver	the	player	rewrite	on	time.
We	had	underestimated	the	timeframes	for	individual	tasks,	and	that	mistake
alone	 might	 have	 been	 salvageable.	 What	 caused	 the	 schedule	 to	 slip
excessively	were	all	the	unknown	projects	and	issues	that	we	hadn’t	estimated
or	accounted	for	at	all.	These	included:

Developing	a	unit	 testing	harness	for	our	new	codebase,	and	writing	our
own	mocking	and	assertion	libraries	for	testing.	These	were	tasks	that	we
wanted	to	start	doing	as	a	best	practice,	but	they	hadn’t	been	included	in
the	original	estimates.
Realizing	 that	 a	 set	 of	 style	 guidelines	 could	 improve	 long-term	 code
quality	 and	 that	 we	 should	 develop	 those	 guidelines	 before	 writing	 so
much	code.
Getting	interrupted	by	a	few	high-priority	customer	deals,	each	of	which
pulled	a	few	engineers	off	the	team	for	a	week	or	two.
Debugging	video	corruption	 issues	 that	would	crash	Adobe’s	player	 if	 a
user	 jumped	 to	 video	 frames	 in	 certain,	 difficult-to-reproduce	 ways	 on

Internet	Explorer.
Firefighting	 scalability	 problems	 in	 the	 product	 as	 our	 customers’	 video
libraries	 grew	 larger	 and	we	 needed	 to	 process	more	 analytics	 data	 per
day.
Losing	an	early	engineer	to	another	company	mid-project,	necessitating	a
large	amount	of	knowledge	transfer	and	work	redistribution.
Resuming	 new	 product	 development	 after	 4	 months,	 since	 the
organization	couldn’t	afford	to	postpone	it	further.
Rewriting	 user	 interface	 components	 from	 scratch	 instead	 of	 using	 the
third-party	rendering	libraries	we	had	previously	used,	to	meet	the	goal	of
reducing	the	size	of	the	player’s	binary.
Migrating	our	Subversion	 repository	 to	Git	 to	 improve	our	development
speed.

Each	 of	 these	 would	 have	 been	 surmountable	 in	 isolation.	 But	 the
compounded	effects	of	each	event	wreaked	havoc	with	our	schedule.

In	his	book	The	Mythical	Man-Month,	Frederick	Brooks	explains	that	my
particular	 project	 experience	 actually	 reflects	 a	 general	 pattern	 in	 slipped
software	projects.	He	writes,	“When	one	hears	of	disastrous	schedule	slippage
in	a	project,	he	imagines	that	a	series	of	major	calamities	must	have	befallen
it.	Usually,	however,	 the	disaster	 is	due	 to	 termites,	not	 tornadoes.”	15	Little
decisions	and	unknowns	caused	the	Ooyala	schedule	to	slip	slowly,	one	day	at
a	time.

We	 can	 better	 deal	 with	 unknowns	 by	 acknowledging	 that	 the	 longer	 a
project	is,	the	more	likely	that	an	unexpected	problem	will	arise.	The	first	step
in	 dealing	with	 this	 is	 to	 separate	 estimated	work	 time	 from	 calendar	 time.
Deadlines	often	catch	us	by	surprise	because	we	conflate	statements	like	“this
project	 will	 take	 one	 month	 of	 engineering	 work	 to	 complete”	 with	 “this
project	 will	 be	 completed	 in	 one	 calendar	 month.”	 Our	 estimates	 more
naturally	 revolve	around	 the	 time	 required	 to	complete	work,	but	managers,
customers,	and	marketers	think	in	terms	of	delivery	dates.	The	problem	is	that
a	month	of	estimated	work	takes	longer	than	one	calendar	month	to	complete.

As	 engineers,	 our	 jobs	 typically	 require	 us	 to	 fix	 outstanding	 bugs,
conduct	 interviews,	 attend	 team	 meetings,	 hold	 one-on-ones	 with	 our
managers,	 participate	 in	 pager	 duty	 rotations,	 train	 new	 engineers	who	 join
the	team,	respond	to	email,	and	tackle	many	other	recurring	duties.	Once	you
factor	in	these	details,	an	8-hour	workday	doesn’t	actually	provide	8	hours	of
working	time	on	a	project.

One-off	 interruptions	 happen	 as	 well.	 Engineering	 organizations	 may
schedule	 bug	 fixing	 days,	 hackathons,	 off-sites,	 or	 performance	 reviews.
Operations	 teams	 may	 schedule	 mandatory	 downtime	 of	 core	 developer
services	 for	upgrades,	maintenance,	or	data	migrations.	The	sales	 team	may

urgently	 need	 some	 custom	 work	 to	 be	 done	 to	 close	 a	 deal.	 Unexpected
outages	or	high-priority	security	bugs	may	need	to	be	fixed.	A	sudden	drop	in
a	key	business	metric	may	require	investigation.	Team	members	may	fall	sick,
get	 called	 for	 jury	 duty,	 or	 head	 out	 on	 vacation.	 In	 any	 given	 week,	 the
probability	that	any	one	of	these	interruptions	happens	may	be	predictable	or
low.	But	the	larger	and	longer	a	project,	 the	more	likely	that	some	subset	of
these	factors	will	affect	some	members	of	the	team	and	throw	off	the	schedule
in	a	significant	way.

The	 effect	 of	 these	 interruptions	 is	 further	 compounded	when	 schedules
slip.	Suppose	that	after	missing	a	deadline,	a	team	estimates	that	there	is	still
one	more	month	of	work	 remaining.	That	month	 is	 likely	 to	expand	 for	 the
exact	same	reasons	as	before.	Moreover,	 there	may	be	a	buildup	of	demand
for	engineering	time	immediately	after	the	original	delivery	date.	Teammates
may	have	scheduled	their	vacations	for	a	week	after	the	original	deadline.	If
the	 project	was	 slated	 to	 finish	 before	 some	holiday,	 the	 holiday	 delays	 the
delivery	date	 even	 further.	Tasks	 that	 have	been	postponed	until	 the	project
was	finished	may	be	deemed	undelayable	for	any	longer.	Because	our	team	at
Ooyala	had	deferred	new	feature	development	for	4	months,	when	that	 time
budget	expired,	we	suddenly	 found	ourselves	hurrying	 to	both	complete	 the
player	 rewrite	 and	 address	 the	 requests	 that	 customers	 had	 been	 patiently
waiting	for.	The	net	result	was	that	our	development	speed	slowed	down	even
more	after	we	missed	the	original	delivery	date.

When	 setting	 schedules,	 build	 in	 buffer	 time	 for	 the	 unexpected
interruptions.	 Some	 combination	 of	 them	 will	 occur	 with	 reasonable
probability	 during	 long	 projects.	 Be	 explicit	 about	 how	much	 time	 per	 day
each	 member	 of	 the	 team	 will	 realistically	 spend	 on	 a	 given	 project.	 For
example,	 Jack	 Heart,	 an	 engineering	 manager	 at	 Asana,	 explained	 that	 the
team	maps	 each	 ideal	 engineering	 day	 to	 2	 workdays	 to	 account	 for	 daily
interruptions.	16

If	someone	is	staffed	on	large	projects,	be	clear	that	a	certain	schedule	is
contingent	on	that	person	spending	a	certain	amount	of	time	each	week	on	the
project.	 Factor	 in	 competing	 time	 investments,	 and	 leave	 buffer	 room	 for
unknowns.	Alex	Allain,	who	leads	the	internal	platforms	and	libraries	teams
at	 Dropbox,	 sometimes	 lays	 out	 the	 week-by-week	 project	 schedule	 in	 a
spreadsheet,	annotates	it	with	who’s	working	on	what	each	week,	and	blocks
off	 the	holidays	and	vacations.	17	The	 lightweight	exercise	provides	a	quick
sanity	check.

Explicitly	 track	 the	 time	 spent	 on	 tasks	 not	 initially	 part	 of	 the	 project
plan,	in	order	to	build	awareness.	By	doing	so,	you	can	reduce	the	chance	that
these	distractions	will	catch	your	project	plan	by	surprise.

Define	Specific	Project	Goals	and	Measurable

Milestones

While	we	were	 rewriting	 the	analytics	module	 in	Ooyala’s	video	player,	we
knew	 that	we	would	eventually	 switch	 to	a	more	extensible	 logging	 format.
So	why	rebuild	the	module	on	top	of	the	old	format,	given	that	it	would	soon
be	 replaced?	 It	would	 be	 less	work	 in	 the	 long	 run	 to	make	 the	 change	 up
front,	 or	 so	 the	 argument	 went.	 Unfortunately,	 a	 series	 of	 well-intentioned
decisions	like	this	one	created	costly	delays	for	our	project.	What	frequently
causes	a	project	to	slip	is	a	fuzzy	understanding	of	what	constitutes	success—
in	Ooyala’s	case,	reducing	total	work	vs.	shipping	a	working	product	earlier—
which,	 in	 turn,	 makes	 it	 difficult	 to	 make	 effective	 tradeoffs	 and	 assess
whether	a	project	is	actually	on	track.

Define	specific	goals	for	a	project	based	on	the	problem	you’re	working
to	solve,	and	then	use	milestones	to	measure	progress	on	those	goals.	Tamar
Bercovici	 used	 these	 techniques	 to	 successfully	 manage	 one	 of	 her	 large
infrastructure	 projects	 at	 Box,	 the	 cloud	 storage	 company.	 In	 late	 2012,
Bercovici’s	team	faced	a	critical	scaling	challenge.	For	the	previous	7	years,
their	 entire	 application	 database	 had	 resided	 on	 a	 single	 MySQL	 database
instance,	and	the	simple	arrangement	had	sufficed.	But	now,	database	traffic
had	grown	to	nearly	1.7	billion	queries	per	day,	and	even	though	the	team	had
replicated	the	database	to	other	servers,	most	of	the	traffic	still	needed	to	go
through	a	single,	primary	master	database.	Key	tables	that	stored	folders	and
files	had	grown	to	 tens	and	hundreds	of	millions	of	rows,	 respectively;	 they
were	 increasingly	 difficult	 to	 manage	 and	 update.	 The	 team	 anticipated
aggressive	 customer	 growth,	 and	 they	 knew	 that	 they	 would	 outgrow	 their
architecture’s	capacity	in	a	few	months.	18

After	researching	potential	scaling	options,	Bercovici	and	her	team	kicked
off	 a	 project	 to	 shard	 the	 massive	 folder	 and	 file	 tables.	 The	 goal	 was	 to
horizontally	partition	the	two	tables	so	that	they	could	store	the	partitions,	or
shards,	 on	 different	 databases.	When	 the	web	 application	 needed	 to	 access
any	data,	it	would	first	check	a	lookup	table	to	see	which	shard	contained	the
data,	 and	 then	 query	 the	 appropriate	 database	 storing	 that	 shard.	 Under	 a
sharded	 architecture,	 they	 could	 accommodate	 future	 growth	 simply	 by
splitting	 the	 data	 into	 more	 shards,	 moving	 them	 to	 additional	 database
machines,	and	updating	the	lookup	table.	The	tricky	part	was	doing	it	without
any	downtime.

The	 project	 was	 time-sensitive	 and	 involved	modifying	 large	 swaths	 of
their	800K-line	codebase.	Every	code	path	that	queried	one	of	the	two	tables
needed	to	be	modified	and	tested.	Bercovici	described	it	as	“a	project	where
you’re	 going	 to	 be	 touching	 everything	…	 [and]	 literally	 changing	 the	way
that	the	basic	data	components	are	fetched.”	It	was	also	a	risky	project.	It	had
the	potential	 to	grow	in	scope	and	slip	behind	schedule,	much	like	Ooyala’s

player	 rewrite,	 and	 failing	 to	 complete	 the	 transition	 before	 their	 data	 and
traffic	exceeded	capacity	could	spell	disaster	for	Box.

Bercovici	 used	 a	 key	 strategy	 for	 reducing	 risk:	 she	 articulated	 a	 clear
goal	 for	 her	 project	 based	 on	 a	 clear	 problem.	 The	 problem	 was	 that	 Box
would	soon	be	unable	to	support	its	growing	traffic	on	a	single	database.	Her
goal	was	to	migrate	to	a	sharded	architecture	as	soon	as	possible	without	any
downtime.

The	 simple	 exercise	 of	 setting	 a	 project	 goal	 produces	 two	 concrete
benefits.	First,	a	well-defined	goal	provides	an	important	filter	for	separating
the	must-haves	from	the	nice-to-haves	in	the	task	list.	It	helps	defend	against
feature	creep	when	someone	inevitably	asks,	“Wouldn’t	it	be	great	to	take	this
opportunity	 to	also	do	X?	We’ve	always	wanted	 to	do	 that!”	 In	 fact,	during
Box’s	architecture	migration,	Bercovici	initially	pushed	for	rewriting	the	data
access	layer	so	that	engineers	couldn’t	pass	in	arbitrary	SQL	snippets	to	filter
results.	Arbitrary	filtering	made	sharding	more	complicated	because	they	had
to	 parse	 the	 SQL	 snippets	 to	 determine	 whether	 they	 touched	 the	 file	 and
folder	 tables;	plus,	 removing	it	would	also	provide	other	benefits	 like	easier
performance	optimizations	in	the	future.	But	when	they	considered	their	goal,
the	engineers	agreed	that	the	rewrite	would	make	the	project	a	lot	longer,	and
they	could	work	around	 it	 in	other	ways.	 “[B]eing	very,	very	explicit	 about
what	exactly	…	we	were	trying	to	solve	helped	us	to	determine	what	was	in
scope	and	what	was	out	of	scope,”	Bercovici	emphasized.

The	more	specific	the	goal,	the	more	it	can	help	us	discriminate	between
features.	Some	examples	of	specific	project	goals	are:

To	reduce	the	95th	percentile	of	user	latency	for	the	home	page	to	under
500	milliseconds.
To	launch	a	new	search	feature	that	lets	users	filter	their	results	by	content
type.
To	port	a	service	from	Ruby	to	C++	to	improve	performance.
To	 redesign	 a	web	 application	 to	 request	 configuration	 parameters	 from
the	server.
To	 build	 offline	 support	 for	 a	 mobile	 application	 so	 that	 content	 is
accessible	even	when	there	is	no	cell	connection.
To	A/B	test	the	product	checkout	flow	to	increase	sales	per	customer.
To	develop	a	new	analytics	report	that	segments	key	metrics	by	country.

The	 second	benefit	of	defining	 specific	project	goals	 is	 that	 it	builds	clarity
and	 alignment	 across	 key	 stakeholders.	 “[I]t’s	 very,	 very	 important	 to
understand	 what	 the	 goal	 is,	 what	 your	 constraints	 are,	 and	 to	 call	 out	 the
assumptions	that	you’re	making,”	Bercovici	explained.	“[M]ake	sure	that	you
build	 alignment	 on	 that	…	with	 any	 other	 stakeholders	 you	might	 have	 in
your	project.”	Skipping	this	step	makes	it	easy	to	over-optimize	for	what	you
believe	to	be	the	main	concerns—only	to	have	a	manager	ask,	right	as	you’re

about	 to	 ship,	 “What	 about	 these	 key	X,	 Y,	 and	 Z	 features	 that	 you	 didn’t
address?”

Building	 alignment	 also	 helps	 team	 members	 be	 more	 accountable	 for
local	 tradeoffs	 that	might	hurt	global	goals.	 In	 the	middle	of	a	 long	project,
it’s	easy	 for	 someone	 to	disappear	down	a	 rabbit	hole	 for	a	week,	 rewriting
some	code	library	or	building	a	partially-related	feature.	From	the	perspective
of	 each	 individual	 engineer,	 taking	 a	 small	 detour	won’t	 slow	 the	 schedule
down	 that	much,	 and	 tasks	 like	 cleaning	 up	 the	 codebase	may	 even	 reduce
work	in	the	long-term.	Many	of	the	benefits	from	local	engineering	tradeoffs,
however,	don’t	materialize	until	after	the	project	finishes,	whereas	increasing
the	total	work	inside	a	project’s	time	window	introduces	delays.	The	costs	of
these	delays	depend	on	the	project,	and	building	alignment	helps	ensure	that
team	 members	 internalize	 those	 costs	 and	 make	 consistent	 tradeoffs.
Otherwise,	what	 ensues	 is	 a	 classic	 tragedy	of	 the	commons,	 19	where	each
individual	tradeoff	is	rational	but	translates	into	an	unacceptable	delay	in	the
aggregate.	A	well-defined	scope	makes	 it	easier	 for	 team	members	 to	check
on	each	other	and	ask,	“Does	what	you’re	doing	contribute	to	the	main	goal?”

In	retrospect,	defining	a	more	specific	goal	than	“Rewrite	Ooyala’s	player
in	 4	months”	would	 have	 been	 an	 effective	way	 of	 shortening	 the	 project’s
timeline.	 For	 example,	 we	 could	 have	 chosen	 as	 our	 goal,	 “As	 soon	 as
possible,	 build	 a	 drop-in	 replacement	 for	 the	 video	 player	 that	 supports
dynamically	 loadable	 modules,	 is	 unit	 tested,	 and	 can	 later	 be	 extended	 to
support	 additional	 ad	 integrations,	 analytics	 reports,	 and	 video	 controls.”
Doing	so	would	have	enabled	us	to	build	alignment	around	the	required	tasks
and	the	ones	that	could	be	deferred	and	incrementally	added	later.

Even	more	effective	 than	defining	specific	goals	 is	outlining	measurable
milestones	 to	achieve	 them.	This	 is	 the	 second	complementary	 strategy	 that
Bercovici’s	team	used	to	reduce	risk.	When	asked	about	the	status	of	a	certain
task	 or	 project,	 our	 answer	 is	 frequently,	 “Almost	 done,”	 or	 “90%	 code
complete,”	partly	again	because	we’re	poor	at	estimating	our	status	and	how
much	work	is	left.	A	concrete	milestone,	with	a	specified	set	of	features	X,	Y,
and	 Z	 and	 preferably	 accompanied	 by	 a	 target	 completion	 date,	 keeps	 us
honest	 and	 lets	 us	 more	 accurately	 measure	 whether	 we’re	 on	 track	 or	 far
behind.

For	the	sharding	project,	the	milestones	included:
1.	 Refactor	 the	code	so	that	file	and	folder	queries	can	be	sharded,	e.g.,	by

converting	single-database	MySQL	joins	 into	application-level	 joins	 that
can	work	across	multiple	databases.

2.	 Logically	 shard	 the	 application	 so	 that	 it	 goes	 through	 the	 motions	 of
looking	up	a	shard’s	location	but	still	accesses	data	from	a	single	database.

3.	 Move	a	single	shard	to	another	database.
4.	 Completely	shard	all	file	and	folder	data	for	all	accounts.

“Each	milestone	was	a	very	clear	point	where	we	had	introduced	some	value

“Each	milestone	was	a	very	clear	point	where	we	had	introduced	some	value
that	 we	 didn’t	 have	 before,”	 Bercovici	 explained.	 In	 other	 words,	 the
milestones	were	measurable;	either	the	system	met	the	criteria	and	behaved	as
promised	or	 it	didn’t.	The	measurable	quality	enabled	her	 team	to	scrutinize
every	single	task	and	ask,	“Is	this	task	a	prerequisite	for	this	milestone?”	This
lens	allowed	them	to	aggressively	prioritize	the	right	things	to	work	on.

If	scoping	a	project	with	specific	goals	is	like	laying	down	the	racetrack	to
the	finish	line,	outlining	measurable	milestones	is	like	putting	down	the	mile
markers	 so	 that	we	can	periodically	check	 that	we’re	 still	on	pace	 to	 finish.
Milestones	act	as	checkpoints	for	evaluating	the	progress	of	a	project	and	as
channels	 for	 communicating	 the	 team’s	 progress	 to	 the	 rest	 of	 the
organization.	 If	we’ve	 fallen	behind,	a	milestone	provides	an	opportunity	 to
revise	our	plan,	either	by	extending	the	deadline	or	by	cutting	tasks.

Months	later,	Bercovici	and	her	team	at	Box	had	successfully	migrated	to
a	 sharded	 architecture,	 and	 grew	 to	 support	 billions	 of	 files	 across	 tens	 of
shards.	 20	 Bugs	 certainly	 were	 introduced	 along	 the	 way—including	 one
where	 the	 application	 would	 show	 duplicate	 folders	 as	 a	 shard	 was	 being
copied	 from	 one	 database	 to	 another—but	 the	 team	 managed	 to	 avoid	 an
overly	long	and	drawn-out	project	by	sticking	to	their	goals	and	milestones.

We	can	benefit	from	the	same	techniques.	Define	specific	goals	to	reduce
risk	 and	 efficiently	 allocate	 time,	 and	 outline	 milestones	 to	 track	 progress.
This	 allows	 us	 to	 build	 alignment	 around	 what	 tasks	 can	 be	 deferred	 and
decreases	the	chance	that	a	project	inadvertently	grows	in	scope.

Reduce	Risk	Early

As	engineers,	we	like	to	build	things.	Seeing	things	work	and	getting	things
done	 fire	 off	 endorphins	 in	 our	 brains	 and	 get	 us	 excited	 in	 a	 way	 that
planning	 and	 attending	meetings	 do	 not.	 This	 tendency	 can	 bias	 us	 toward
making	 visible	 progress	 on	 the	 easier	 parts	 of	 a	 project	 that	we	 understand
well.	We	then	convince	ourselves	that	we’re	right	on	track,	because	the	cost
of	 riskier	 areas	 hasn’t	 yet	 materialized.	 Unfortunately,	 this	 only	 provides	 a
false	sense	of	security.

Effectively	 executing	 on	 a	 project	 means	 minimizing	 the	 risk	 that	 a
deadline	 might	 slip	 and	 surfacing	 unexpected	 issues	 as	 early	 as	 possible.
Others	 may	 depend	 on	 the	 initial	 projected	 timeline,	 and	 the	 later	 they
discover	 the	slippage,	 the	higher	 the	cost	of	 failure.	Therefore,	 if	a	problem
turns	out	to	be	harder	than	expected,	it’s	better	to	find	out	and	adjust	the	target
date	sooner	rather	than	later.

Tackling	 the	 riskiest	 areas	 first	 helps	 us	 identify	 any	 estimation	 errors
associated	 with	 them.	 The	 techniques	 to	 validate	 our	 ideas	 early	 and	 often
(outlined	 in	Chapter	6)	also	can	defuse	 the	 risks	associated	with	projects.	 If

we’re	 switching	 to	 a	 new	 technology,	 building	 a	 small-scale	 end-to-end
prototype	 can	 surface	many	 issues	 that	 might	 arise.	 If	 we’re	 adopting	 new
backend	 infrastructure,	 gaining	 an	 early	 systematic	 understanding	 of	 its
performance	and	failure	characteristics	can	provide	insight	into	what’s	needed
to	make	 it	 robust.	 If	we’re	considering	a	new	design	 to	 improve	application
performance,	benchmarking	core	pieces	of	code	can	increase	confidence	that
it	 meets	 performance	 goals.	 The	 goal	 from	 the	 beginning	 should	 be	 to
maximize	learning	and	minimize	risk,	so	that	we	can	adjust	our	project	plan	if
necessary.

In	addition	to	the	specific	risks	associated	with	a	project,	a	risk	common
to	 all	 large	 projects	 comes	 during	 system	 integration,	which	 almost	 always
takes	 longer	 than	 planned.	 Unexpected	 interactions	 between	 subsystems,
differing	 expectations	 of	 how	 components	 behave	 under	 edge	 cases,	 and
previously	unconsidered	design	problems	all	 surface	 their	nasty	heads	when
we	 put	 different	 pieces	 of	 software	 together.	 Code	 complexity	 grows	 as	 a
function	of	 the	number	of	 interactions	 between	 lines	of	 code	more	 than	 the
actual	 number	 of	 lines,	 so	 we	 get	 surprised	 when	 subsystems	 interact	 in
complex	ways.	Moreover,	 it’s	extremely	hard	 to	decompose	 integration	 into
granular	tasks	during	the	early	estimation	phases	of	a	project,	when	you’re	not
sure	what	the	end	state	will	look	like.	For	example,	in	one	project,	we	realized
only	 at	 integration	 time	 that	 a	 number	 of	 comments	 with	 to-dos	 were	 still
scattered	throughout	the	codebase.	The	time	to	finish	the	punted	tasks	wasn’t
included	 in	 the	 budget	 for	 integration	 testing,	 so	 teams	 had	 to	 scramble	 to
meet	the	deadline.

How	 can	 we	 reduce	 integration	 risk?	 One	 effective	 strategy	 is	 to	 build
end-to-end	 scaffolding	 and	 do	 system	 testing	 earlier.	 Stub	 out	 incomplete
functions	 and	 modules,	 and	 assemble	 an	 end-to-end	 system	 as	 soon	 as
possible,	even	if	it’s	only	partly	functional.	Front-loading	the	integration	work
provides	 a	 number	 of	 benefits.	 First,	 it	 forces	 you	 to	 think	more	 about	 the
necessary	glue	between	different	pieces	and	how	they	interact,	which	can	help
refine	the	integration	estimates	and	reduce	project	risk.	Second,	if	something
breaks	the	end-to-end	system	during	development,	you	can	identify	and	fix	it
along	 the	 way,	 while	 dealing	 with	 much	 less	 code	 complexity,	 rather	 than
scrambling	 to	 tackle	 it	 at	 the	end.	Third,	 it	 amortizes	 the	cost	of	 integration
throughout	the	development	process,	which	helps	build	a	stronger	awareness
of	how	much	integration	work	is	actually	left.

Our	 initial	 project	 estimates	 will	 exhibit	 high	 variance	 because	 we’re
operating	 under	 uncertainty	 and	 imperfect	 information.	 As	 we	 gain	 more
information	 and	 revise	 our	 estimates,	 the	 variance	 narrows.	By	 shifting	 the
work	that	can	take	highly	variable	amounts	of	time	to	earlier	in	the	process,
we	 reduce	 risk	 and	 give	 ourselves	 more	 time	 and	 information	 to	 make
effective	project	plans.

Approach	Rewrite	Projects	with	Extreme	Caution

A	very	common	characteristic	of	 software	engineers	 is	our	desire	 to	 rewrite
something	 from	 scratch.	 Perhaps	 the	 original	 codebase	 is	 littered	 with
technical	debt	or	 covered	with	monkey	patches	 accumulated	over	 time,	 and
we	think,	Wouldn’t	it	be	nice	to	redesign	it	and	make	it	cleaner?	Or	perhaps
the	original	design	was	too	simple	and	lacked	features—Wouldn’t	it	be	great	if
we	could	do	X	and	Y?

Unfortunately,	rewrite	projects	are	also	some	of	the	riskiest	projects.	My
Ooyala	story	gives	one	example	of	how	the	timeline	for	a	rewrite	project	can
spiral	 out	 of	 control	 and	 put	 a	 business	 in	 jeopardy.	 When	 I	 asked	 Sam
Schillace,	who	ran	Gmail	and	Google	Apps	for	four	years,	about	the	costliest
mistake	he’s	seen	engineers	make,	his	response	was,	“Trying	to	rewrite	stuff
from	scratch—that’s	the	cardinal	sin.”

Rewrite	projects	are	particularly	troublesome	for	a	few	reasons:
They	share	the	same	project	planning	and	estimation	difficulties	as	other
software	projects.
Because	 we	 tend	 to	 be	 familiar	 with	 the	 original	 version,	 we	 typically
underestimate	 rewrite	 projects	 more	 drastically	 than	 we	 would	 an
undertaking	in	a	new	area.
It	is	easy	and	tempting	to	bundle	additional	improvements	into	a	rewrite.
Why	 not	 refactor	 the	 code	 to	 reduce	 some	 technical	 debt,	 use	 a	 more
performant	 algorithm,	 or	 redesign	 this	 subsystem	while	we’re	 rewriting
the	code?
When	a	rewrite	is	ongoing,	any	new	features	or	improvements	must	either
be	added	to	 the	rewritten	version	(in	which	case	 they	won’t	 launch	until
the	 rewrite	 completes)	 or	 they	 must	 be	 duplicated	 across	 the	 existing
version	and	 the	new	version	 (in	order	 to	get	 the	 feature	or	 improvement
out	 sooner).	 The	 cost	 of	 either	 option	 grows	 with	 the	 timeline	 of	 the
project.

Frederick	 Brooks	 coined	 the	 term	 “second-system	 effect”	 to	 describe	 the
difficulties	involved	in	rewrites.	When	we	build	something	for	the	first	time,
we	don’t	know	what	we’re	doing,	and	we	 tend	 to	proceed	with	caution.	We
punt	on	improvements	and	try	to	keep	things	simple.	But	the	second	system,
Brooks	 warns,	 is	 “the	 most	 dangerous	 system	 a	 man	 ever	 designs	…	 The
general	 tendency	is	 to	overdesign	the	second	system,	using	all	 the	ideas	and
frills	that	were	cautiously	sidetracked	on	the	first	one.”	We	see	opportunities
for	improvement,	and	in	tackling	them,	we	increase	the	project’s	complexity.
Second	systems	are	particularly	susceptible	 to	schedule	delays	as	a	result	of
over-confidence.

Engineers	who	successfully	rewrite	systems	tend	to	do	so	by	converting	a

Engineers	who	successfully	rewrite	systems	tend	to	do	so	by	converting	a
large	rewrite	project	into	a	series	of	smaller	projects.	They	rewrite	a	software
system	incrementally,	in	more	controlled	phases.	They	adopt	the	mindset	that
Martin	 Fowler	 advocates	 in	 Refactoring:	 engineers	 should	 use	 a	 series	 of
incremental,	behavior-preserving	transformations	to	refactor	code.	“By	doing
them	in	small	steps	you	reduce	the	risk	of	introducing	errors,”	Fowler	advises.
“You	 also	 avoid	 having	 the	 system	 broken	 while	 you	 are	 carrying	 out	 the
restructuring—which	 allows	 you	 to	 gradually	 refactor	 a	 system	 over	 an
extended	period	of	time.”	21

Rewriting	a	 system	 incrementally	 is	 a	high-leverage	activity.	 It	provides
additional	flexibility	at	each	step	to	shift	to	other	work	that	might	be	higher-
leverage,	whether	 it’s	 because	 the	 project	 is	 taking	 longer	 than	 expected	 or
because	 something	 unexpected	 comes	 up.	 Using	 an	 incremental	 approach
may	increase	the	overall	amount	of	work,	but	the	dramatically	reduced	risk	is
often	 worth	 it.	 After	 the	 player	 rewrite,	 Phil	 Crosby,	 a	 fellow	 tech	 lead	 at
Ooyala,	 led	 a	 project	 to	 migrate	 a	 large	 Flash-based	 content	 management
system	over	 to	HTML5	 to	 increase	 future	 iteration	 speed.	Attempting	a	 full
rewrite	all	at	once,	however,	carried	a	large	risk:	if	the	schedule	slipped,	new
feature	development	would	have	 to	happen	 in	both	Flash	and	HTML5	until
the	rewrite	launched.	Instead,	Crosby’s	team	took	a	different	approach.	They
invested	 some	 time	 up	 front	 building	 infrastructure	 to	 support	 a	 hybrid
version	 of	 the	 application,	 one	 that	 allowed	 them	 to	 embed	 HTML5
components	within	the	Flash	application.	This	allowed	them	to	incrementally
port	 and	 launch	HTML5	 components	 one	 at	 a	 time,	while	 also	 opening	 the
doors	 for	 new	 features	 to	 be	written	 solely	 in	HTML5.	 The	 approach	 took
more	work	overall,	but	it	increased	the	team’s	flexibility	and	also	significantly
reduced	the	time	pressure	of	the	project.

Harry	 Zhang	 took	 a	 similar	 approach	 when	 rewriting	 the	 software	 that
powers	 the	API	at	Lob.	Zhang’s	 team	builds	 an	API	 for	 companies	 to	print
and	 mail	 documents	 and	 products.	 Their	 codebase	 had	 become	 messy	 and
difficult	 to	 work	 with,	 and	 they	 decided	 to	 rewrite	 their	 API	 services	 in
Node.js.	Rather	than	doing	it	all	at	once,	they	built	a	proxy	server	that	would
selectively	route	traffic	for	different	API	endpoints	between	the	old	and	new
API	servers.	As	long	as	they	preserved	the	interface,	they	could	incrementally
deploy	 their	 servers	 to	 handle	 new	 endpoints	 and	 also	 switch	 back	 if	 they
encountered	 errors	 or	 issues.	 The	 incremental	 approach	 gave	 them
significantly	more	 leeway	 to	complete	 the	 rewrite	while	addressing	ongoing
customers	issues.

Sometimes,	doing	an	incremental	rewrite	might	not	be	possible—perhaps
there’s	no	way	to	simultaneously	deploy	the	old	and	new	versions	to	different
slices	 of	 traffic.	 The	 next	 best	 approach	 is	 to	 break	 the	 rewrite	 down	 into
separate,	 targeted	 phases.	 Schillace’s	 startup	 Upstartle	 had	 built	 an	 online
documents	product	called	Writely	 that	went	viral	and	grew	to	half	a	million
users	 before	 it	 was	 acquired	 by	 Google	 (and	 subsequently	 became	 Google

Docs).	 His	 four-person	 team	 had	 written	Writely	 in	 C#,	 but	 Google	 didn’t
support	the	language	in	its	data	centers.	Thousands	of	users	continued	to	sign
up	 every	 day,	 and	 the	 team	was	 expending	 too	much	 energy	 patching	 up	 a
codebase	that	they	knew	wouldn’t	scale.

Their	 first	 task,	 therefore,	was	 to	 translate	 the	original	C#	codebase	 into
Java	so	that	it	could	leverage	Google’s	infrastructure.	One	of	Schillace’s	co-
founders	 argued	 that	 they	 ought	 to	 rewrite	 the	 parts	 of	 the	 codebase	 they
didn’t	like	at	the	same	time.	After	all,	why	rewrite	the	codebase	to	Java	only
to	have	to	immediately	throw	parts	away?	Schillace	fought	hard	against	 that
logic,	 saying,	 “We’re	 not	 doing	 that	 because	 we’ll	 get	 lost.	 Step	 one	 is
translate	 to	 Java	 and	 get	 it	 stood	 back	 up	 on	 its	 feet	 again	…	 [O]nce	 it’s
working	 again	 in	 Java,	 step	 two	 is	 …	 go	 refactor	 and	 rewrite	 stuff	 that’s
bugging	you.”	In	the	end,	he	convinced	the	team	to	set	a	very	clear	goal	for
their	rewrite:	to	take	the	shortest	possible	path	toward	getting	the	site	up	and
running	 in	Google’s	 data	 centers.	Even	 that	 alone	was	painfully	hard.	They
had	 to	 learn	 and	 integrate	 12	 different	 internal	Google	 technologies	 for	 the
product’s	new	infrastructure.	They	spent	a	week	running	the	codebase	through
a	 series	of	 regular	 expressions	 to	 convert	 large	batches	of	 code	 to	 Java	 and
then	painstakingly	fixed	up	tens	to	hundreds	of	thousands	of	compile	errors.
But	as	a	result	of	their	disciplined	two-step	approach,	their	four-person	team
completed	the	rewrite	in	just	12	weeks,	setting	the	record	for	the	fastest	team
to	port	into	Google	infrastructure	as	an	acquisition	and	paving	the	way	for	the
growth	of	Google	Docs.	22

In	hindsight,	pursuing	a	similar	two-phase	approach	with	Ooyala’s	player
rewrite	is	likely	the	single,	most	effective	change	that	we	could	have	made	to
maximize	our	 chances	of	delivering	 a	working	product	 in	 time.	Had	we	 set
our	 goal	 as	 deploying	 a	 new,	 modularized	 player	 with	 feature	 and
performance	parity	as	soon	as	possible,	we	would	have	aggressively	deferred
anything	unnecessary	(like	migrating	to	Thrift	for	analytics,	 integrating	with
additional	 ad	 modules,	 designing	 a	 sleeker	 player	 skin,	 or	 improving
performance	beyond	what	was	minimally	viable).	Subsequent	improvements
could	 then	 have	 been	 prioritized	 against	 other	 tasks	 on	 our	 roadmap	 and
tackled	incrementally,	after	the	initial	version	had	launched.	That	would	have
meant	 fewer	70–80	hour	weeks,	 fewer	 features	 that	we	 subsequently	had	 to
duplicate	 between	 the	 old	 and	 new	 players,	 and	 increased	 flexibility	 to
respond	to	unexpected	issues.

Convincing	 yourself	 and	 team	members	 to	 do	 a	 phased	 rewrite	 can	 be
difficult.	 It’s	 discouraging	 to	 write	 code	 for	 earlier	 phases,	 knowing	 that
you’ll	 soon	 be	 throwing	 the	 intermediate	 code	 away.	But	 it	would	 be	 even
more	demoralizing	to	miss	the	target	date	by	a	wide	margin,	delay	the	launch
of	 new	 features,	 or	 be	 forced	 to	 build	 urgent	 functionality	 twice.	 For	 large
rewrite	 projects,	 an	 incremental	 or	 phased	 approach	 is	 a	much	 safer	 bet.	 It
avoids	 the	 risks—and	 associated	 costs—of	 slipping	 and	 offers	 valuable
flexibility	to	address	new	issues	that	arise.

Don’t	Sprint	in	the	Middle	of	a	Marathon

I’ve	 been	 involved	 in	 two	major,	multi-month	 projects	where	 an	 ambitious
and	well-intentioned	engineering	manager	pushed	the	team	to	work	overtime
in	a	sprint	to	the	end.	Both	teams	consisted	of	talented	and	dedicated	people
trying	to	hit	an	aggressive	deadline,	convinced	that	a	project	slip	would	break
the	business.	We	 increased	working	hours	 from	60	 to	 roughly	70	hours	 per
week.	 And	 in	 each	 case,	 after	 several	 months	 of	 sprinting,	 the	 project	 still
wasn’t	finished.	It	turned	out	that	we	weren’t	actually	in	the	home	stretch	of	a
marathon.	We	had	started	sprinting	somewhere	in	the	middle,	and	our	efforts
weren’t	sustainable.

Despite	 our	 best	 efforts,	we’ll	 still	 sometimes	 find	 ourselves	 in	 projects
with	slipping	deadlines.	How	we	deal	with	these	situations	is	as	important	as
making	 accurate	 estimates	 in	 the	 first	 place.	 Suppose	 with	 two	 months
remaining	until	a	deadline,	a	manager	 realizes	 that	 the	project	 is	 two	weeks
behind	schedule.	She	probably	thinks	something	along	these	lines:	The	team
needs	to	put	in	25%	more	hours—working	50	hours	per	week	instead	of	40—
for	the	next	two	months,	in	order	to	hit	the	deadline.	Unfortunately,	the	actual
math	 is	 not	 that	 simple.	There	 are	 a	 number	 of	 reasons	why	working	more
hours	doesn’t	necessarily	mean	hitting	the	launch	date:

Hourly	productivity	decreases	with	additional	hours	worked.	Over	 a
century	 of	 research	 shows	 that	 long	 hours	 actually	 can	 decrease
productivity.	23	Employers	 in	 the	1890s	achieved	higher	 total	output	per
worker	 when	 they	 experimented	 with	 8-hour	 work	 days.	 24	 In	 1909,
Sidney	 Chapman	 found	 that	 productivity	 during	 overtime	 declines
rapidly;	 fatigued	 workers	 start	 making	 mistakes,	 and	 the	 short-term
increase	 in	 output	 comes	 at	 the	 expense	 of	 subsequent	 days’	 output.	 25
Henry	 Ford	 instituted	 a	 40-hour	 work	 week	 in	 1922	 because	 years	 of
experiments	 showed	him	 that	 it	 increased	 total	worker	output.	 26	27	 The
decrease	 in	 marginal	 productivity	 during	 overtime	 hours	 means	 that	 a
team	won’t	increase	output	by	25%	by	working	25%	more	hours.	A	boost
in	 total	weekly	 output	may,	 in	 fact,	 not	materialize	 at	 all.	A	1980	 study
found	that	in	situations	“[w]here	a	work	schedule	of	60	or	more	hours	per
week	is	continued	longer	than	about	two	months,	the	cumulative	effect	of
decreased	productivity	will	cause	a	delay	 in	 the	completion	date	beyond
that	which	could	have	been	realized	…	on	a	40-hour	week.”	28

You’re	probably	more	behind	 schedule	 than	you	 think.	The	 fact	 that
your	 schedule	 has	 slipped	means	 that	 the	work	 in	 previous	months	was
underestimated.	 This,	 in	 turn,	 likely	 means	 that	 the	 entire	 project	 was
underestimated,	 including	the	remaining	two	months.	Moreover,	we	tend
to	 be	much	better	 at	 estimating	 the	 beginnings	 of	 projects,	where	we’re
working	on	 concrete	 development	 tasks	 that	we	understand.	 In	 contrast,

estimating	 the	 ends	 of	 projects	 is	 more	 difficult;	 teams	 often
underestimate	how	long	integration	takes,	and	each	unexpected	issue	can
throw	schedules	off	by	a	week	or	more.
Additional	 hours	 can	 burn	 out	 team	members.	 Those	 extra	 overtime
hours	 come	 from	 somewhere—people	 are	 sacrificing	 time	 that	 would
otherwise	be	spent	with	friends	or	family,	exercising,	resting,	or	sleeping.
That	 recovery	 time	 is	 being	 traded	 for	 stressful	 work	 hours,	 with	 the
attendant	 (if	 hard-to-quantify)	 risk	 of	 burning	 out.	 In	 their	 book
Peopleware,	Tom	DeMarco	and	Timothy	Lister	document	a	phenomenon
they	call	 “undertime.”	They	have	 found	 that	overtime	 is	“almost	always
followed	 by	 an	 equal	 period	 of	 compensatory	 undertime	 while	 the
workers	catch	up	with	their	lives.”	29	Furthermore,	they	add,	“the	positive
potential	of	working	extra	hours	 is	 far	exaggerated,	and	that	 its	negative
impact	 …	 can	 be	 substantial:	 error,	 burnout,	 [and]	 accelerated
turnover.”	30

Working	 extra	 hours	 can	 hurt	 team	 dynamics.	 Not	 everyone	 on	 the
team	will	have	the	flexibility	to	pitch	in	the	extra	hours.	Perhaps	one	team
member	 has	 children	 at	 home	 whom	 he	 has	 to	 take	 care	 of.	 Maybe
someone	else	has	a	2-week	trip	planned	in	 the	upcoming	months,	or	she
has	to	commute	a	long	distance	and	can’t	work	as	many	hours.	Whereas
once	 the	 team	 jelled	 together	 and	 everyone	 worked	 fairly	 and	 equally,
now	those	who	work	more	hours	have	 to	carry	 the	weight	of	 those	who
can’t	 or	 don’t.	 The	 result	 can	 be	 bitterness	 or	 resentment	 between
members	of	a	formerly-happy	team.
Communication	overhead	increases	as	the	deadline	looms.	A	frenzy	of
activity	 often	 accompanies	 the	 days	 or	 weeks	 leading	 up	 to	 the	 launch
date.	 The	 team	 holds	 more	 meetings	 and	 shares	 more	 frequent	 status
updates	to	ensure	everyone’s	working	on	the	right	things.	The	additional
coordination	 requirements	mean	 that	 people	 have	 less	 time	 to	 devote	 to
the	remaining	work.
The	 sprint	 toward	 the	 deadline	 incentivizes	 technical	 debt.	When	 a
team	works	overtime	to	hit	a	deadline,	it’s	almost	unavoidable	that	they’ll
cut	corners	to	hit	milestones.	After	the	project	finishes,	they’re	left	with	a
pile	of	technical	debt	that	they	have	to	pay	off.	Maybe	they’ll	make	a	note
to	revisit	 the	hacks	after	the	project	is	over,	but	they’ll	have	to	prioritize
code	cleanup	against	the	next	critical	project	that	comes	up.

Overtime,	therefore,	is	not	a	panacea	for	poor	project	planning,	and	it	comes
with	 high	 long-term	 risks	 and	 costs.	 Unless	 there	 is	 a	 realistic	 plan	 for
actually	hitting	 the	 launch	date	by	working	extra	hours,	 the	best	 strategy	 in
the	long	run	is	either	to	redefine	the	launch	to	encompass	what	the	team	can
deliver	 by	 the	 target	 date,	 or	 to	 postpone	 the	 deadline	 to	 something	 more
realistic.

Having	 said	 this,	 at	 times	you’ll	 still	 be	 in	 situations	where	you	 think	a
small	dose	of	overtime	is	necessary	to	hit	a	key	deadline.	Perhaps	everyone	in
the	 organization	 has	 been	 expecting	 the	 launch	 for	 a	 while.	 Perhaps	 the
project	is	so	critical	that	your	manager	believes	the	business	will	fail	if	it	gets
delayed.	 Or	 perhaps	 you	 fear	 what	 would	 happen	 if	 your	 team	misses	 the
deadline.	 And	 so	 sometimes,	 despite	 the	 long-term	 costs,	 you	 make	 the
decision	that	it	is	necessary.	In	this	case,	secure	buy-in	from	everyone	on	the
team.	 Increase	 the	 probability	 that	 overtime	 will	 actually	 accomplish	 your
goals	by:

Making	 sure	 everyone	 understands	 the	 primary	 causes	 for	why	 the
timeline	 has	 slipped	 thus	 far.	 Is	 momentum	 slowing	 down	 because
people	are	slacking	off,	or	have	parts	of	the	project	turned	out	to	be	more
complex	 and	 time-consuming	 than	 expected?	 Are	 you	 sure	 those	 same
problems	will	not	persist	going	forward?
Developing	 a	 realistic	 and	 revised	 version	 of	 the	 project	 plan	 and
timeline.	Explain	how	and	why	working	more	hours	will	 actually	mean
hitting	 the	 launch	 date.	Define	measurable	milestones	 to	 detect	whether
the	new	and	revised	project	plan	falls	behind.
Being	ready	 to	abandon	 the	 sprint	 if	you	 slip	even	 further	 from	 the
revised	timeline.	Accept	that	you	might	have	sprinted	in	the	middle	of	a
marathon	 and	 that	 the	 finish	 line	 is	 farther	 away	 than	 you	 thought.	Cut
your	losses.	It’s	unlikely	that	working	even	harder	will	fix	things.

Don’t	 rely	 on	 the	 possibility	 of	 overtime	 as	 a	 crutch	 for	 not	 making	 a
contingency	 plan.	 When	 you’re	 backed	 into	 a	 corner	 and	 have	 no	 other
options,	 you’re	 more	 likely	 to	 panic	 and	 scramble	 as	 the	 deadline	 looms
closer.	An	effective	engineer	knows	to	plan	ahead.

Project	estimation	and	project	planning	are	extremely	difficult	to	get	right,
and	many	 engineers	 (myself	 included)	 have	 learned	 this	 the	 hard	way.	 The
only	way	 to	get	better	 is	by	practicing	 these	concepts,	especially	on	smaller
projects	where	 the	 cost	of	poor	 estimations	 is	 lower.	The	 larger	 the	project,
the	 higher	 the	 risks,	 and	 the	more	 leverage	 that	 good	 project	 planning	 and
estimation	skills	will	have	on	your	success.

Key	Takeaways

Incorporate	estimates	into	the	project	plan.	These	estimates	should	be
used	as	an	input	to	decide	whether	delivering	a	set	of	features	by	a	certain
date	 is	 feasible.	 If	 it	 is	 not,	 they	 should	 lead	 to	 a	 conversation	 about
whether	to	change	the	feature	set	or	the	delivery	date.	Don’t	let	a	desired
target	dictate	the	estimates.
Allow	buffer	room	for	the	unknown	in	the	schedule.	Take	into	account
competing	work	obligations,	holidays,	illnesses,	etc.	The	longer	a	project,

the	higher	the	probability	that	some	of	these	will	occur.
Define	 measurable	 milestones.	 Clear	 milestones	 can	 alert	 you	 as	 to
whether	 you’re	 on	 track	or	 falling	 behind.	Use	 them	as	 opportunities	 to
revise	your	estimates.
Do	the	riskiest	tasks	first.	Reduce	variance	in	your	estimates	and	risk	in
your	project	by	exploring	the	unknown	early	on.	Don’t	give	yourself	the
illusion	of	progress	by	focusing	first	on	what’s	easy	to	do.
Know	 the	 limits	 of	 overtime.	Many	 teams	 burn	 out	 because	 they	 start
sprinting	 before	 they’re	 even	 close	 to	 the	 finish	 line.	 Don’t	 sprint	 just
because	 you’re	 behind	 and	 don’t	 know	what	 else	 to	 do.	Work	 overtime
only	if	you’re	confident	that	it	will	enable	you	to	finish	on	time.

Part	3:	Build	Long-Term	Value

G

Balance	Quality	with	Pragmatism

OOGLE	HAS	EXCEPTIONALLY	HIGH	CODING	 STANDARDS.	 PROGRAMMING	 STYLE
guides	dictate	conventions	for	C++,	Java,	Python,	JavaScript,	and	other
languages	 used	within	 the	 company.	 They	 spell	 out	mundane	 details

like	 whitespace	 and	 variable	 naming,	 and	 they	 dictate	 which	 language
features	 and	 programming	 idioms	 are	 allowed	within	 Google’s	 codebase.	 1
Before	any	code	change	can	be	checked	in,	another	engineer	must	review	it
and	verify	that	the	change	adheres	to	style	conventions,	has	adequate	unit	test
coverage,	and	meets	Google’s	high	standards.	2

Google	even	requires	engineers	 to	formally	pass	a	readability	review	for
each	 programming	 language	 that	 they	 use	 at	 the	 company.	 Engineers	 must
submit	a	code	sample	to	an	internal	committee	and	demonstrate	that	they	have
read	 and	 internalized	 all	 the	 documented	 style	 guidelines.	 Without	 the
committee’s	stamp	of	approval,	another	engineer	who	has	passed	the	review
must	approve	each	and	every	code	change.

This	high	bar	for	code	quality	has	enabled	an	organization	of	over	45,000
employees	distributed	across	offices	 in	over	60	countries	 to	scale	 incredibly
effectively.	 3	 4	 Google	 had	 the	 fourth	 highest	 market	 capitalization	 of	 any
publicly	 traded	company	 in	 the	world	at	 the	end	of	2013,	 further	validating
that	 its	 approach	 to	 scaling	 engineering	 can	 build	 a	 massively	 successful
business.	5	 Its	 code	 remains	 comparatively	 easy	 to	 both	 read	 and	maintain,
especially	 relative	 to	many	 other	 organizations.	 The	 code	 quality	 also	 self-
propagates;	new	engineers	model	their	own	code	based	on	the	excellent	code
that	 they	 see,	 creating	 a	 positive	 feedback	 loop.	 When	 I	 joined	 Google’s
Search	 Quality	 Team	 right	 out	 of	 college,	 I	 picked	 up	 best	 practices	 for
programming	and	software	engineering	much	faster	than	I	could	have	at	many
other	places.

But	this	upside	comes	with	a	cost.	Since	every	code	change,	regardless	of
whether	it’s	designed	for	100	users	or	10	million,	is	held	to	the	same	standard,
the	 overhead	 associated	 with	 experimental	 code	 is	 extremely	 high.	 If	 an
experiment	 fails—and,	 by	 definition,	most	 do—much	 of	 the	 effort	 spent	 in

8

writing	high	quality,	performant,	and	scalable	code	gets	wasted.	As	a	result,
it’s	 harder	 to	 nimbly	 prototype	 and	 validate	 new	 products	 within	 the
organization.	Many	impatient	engineers,	longing	to	build	new	products	more
quickly,	end	up	leaving	for	startups	or	smaller	companies	that	trade	off	some
of	 Google’s	 stringent	 code	 and	 product	 requirements	 for	 higher	 iteration
speed.

The	 engineering	 practices	 that	 work	 for	 Google	 would	 be	 overkill	 at	 a
startup	 or	 a	 small	 company.	 Requiring	 new	 engineers	 to	 read	 and	 pass	 a
readability	 review	would	 add	 unnecessary	 overhead	 to	 getting	 things	 done.
Imposing	strict	coding	standards	on	prototypes	or	experiments	that	might	get
thrown	away	would	stifle	new	ideas.	Writing	tests	and	thoroughly	reviewing
prototype	 code	 might	 make	 sense,	 but	 blanket	 requirements	 don’t.	 It’s
possible	 to	 over-invest	 in	 quality,	 to	 the	 point	 where	 there	 are	 diminishing
returns	for	time	spent.

Ultimately,	 software	 quality	 boils	 down	 to	 a	 matter	 of	 tradeoffs,	 and
there’s	no	one	universal	rule	for	how	to	do	things.	In	fact,	Bobby	Johnson,	a
former	Director	of	Engineering	at	Facebook,	claims	that	“[Thinking	in	terms
of]	right	and	wrong	…	isn’t	a	very	accurate	or	useful	framework	for	viewing
the	world	…	Instead	of	right	and	wrong,	I	prefer	to	look	at	things	in	terms	of
works	 and	 doesn’t	 work.	 It	 brings	 more	 clarity	 and	 is	 more	 effective	 for
making	decisions.”	6	Rigidly	adhering	to	a	notion	of	building	something	“the
right	way”	can	paralyze	discussions	about	tradeoffs	and	other	viable	options.
Pragmatism—thinking	in	terms	of	what	does	and	doesn’t	work	for	achieving
our	goals—is	a	more	effective	lens	through	which	to	reason	about	quality.

High	software	quality	enables	organizations	to	scale	and	increases	the	rate
at	 which	 engineers	 can	 produce	 value,	 and	 underinvesting	 in	 quality	 can
hamper	your	ability	to	move	quickly.	On	the	other	hand,	it’s	also	possible	to
be	overly	dogmatic	about	code	reviews,	standardization,	and	test	coverage—
to	 the	point	where	 the	processes	provide	diminishing	 returns	on	quality	and
actually	reduce	your	effectiveness.	“[Y]ou	must	move	quickly	to	build	quality
software	 (if	 you	 don’t,	 you	 can’t	 react	 properly	 when	 things—or	 your
understanding	of	things—change	…),”	writes	early	Facebook	engineer	Evan
Priestley.	 “[A]nd	 you	 must	 build	 quality	 software	 to	 move	 quickly	 (if	 you
don’t,	…	you	lose	more	time	dealing	with	it	than	you	ever	gained	by	building
it	poorly	…).”	7	Where	is	time	better	spent?	On	increasing	unit	test	coverage
or	prototyping	more	product	ideas?	On	reviewing	code	or	writing	more	code?
Given	 the	 benefits	 of	 high	 code	 quality,	 finding	 a	 pragmatic	 balance	 for
yourself	and	for	your	team	can	be	extremely	high-leverage.

In	this	chapter,	we’ll	examine	several	strategies	for	building	a	high-quality
codebase	 and	 consider	 the	 tradeoffs	 involved:	 the	 pros,	 the	 cons,	 and	 the
pragmatic	 approaches	 for	 implementing	 them.	We’ll	 cover	both	 the	benefits
and	 the	 costs	 of	 code	 reviews,	 and	we’ll	 lay	out	 some	ways	 that	 teams	can
review	code	without	unduly	compromising	iteration	speed.	We’ll	look	at	how

building	the	right	abstraction	can	manage	complexity	and	amplify	engineering
output—and	how	generalizing	code	too	soon	can	slow	us	down.	We’ll	show
how	extensive	and	automated	testing	makes	fast	iteration	speed	possible,	and
why	 some	 tests	 have	 higher	 leverage	 than	 others.	 And	 lastly,	 we’ll	 discuss
when	it	makes	sense	to	accumulate	technical	debt	and	when	we	should	repay
it.

Establish	a	Sustainable	Code	Review	Process

Engineering	teams	differ	in	their	attitudes	toward	code	reviews.	Code	reviews
are	so	ingrained	in	some	team	cultures	that	engineers	can’t	imagine	working
in	 an	 environment	 without	 them.	 At	 Google,	 for	 instance,	 software	 checks
prevent	 engineers	 from	 committing	 code	 into	 the	 repository	without	 a	 code
review,	and	every	commit	needs	to	be	reviewed	by	at	least	one	other	person.

To	 these	 engineers,	 the	 benefits	 of	 code	 reviews	 are	 obvious.	 They
include:

Catching	 bugs	 or	 design	 shortcomings	 early.	 It	 takes	 less	 time	 and
energy	 to	 address	 problems	 earlier	 in	 the	 development	 process;	 it	 costs
significantly	 more	 after	 they’ve	 been	 deployed	 to	 production.	 A	 2008
study	 of	 software	 quality	 across	 12,500	 projects	 from	 650	 companies
found	that	a	pass	of	design	and	code	reviews	remove,	on	average,	85%	of
remaining	bugs.	8

Increasing	accountability	for	code	changes.	You’re	much	less	likely	to
add	a	quick	 and	dirty	monkey	patch	 to	 the	 code	 and	 leave	 the	mess	 for
another	person	to	fix	if	you	know	that	someone	else	on	your	team	will	be
reviewing	your	code.
Positive	modeling	of	how	to	write	good	code.	Code	reviews	provide	an
avenue	for	sharing	best	practices,	and	engineers	can	learn	from	their	own
code	reviews	as	well	as	from	others’.	Moreover,	engineers	pattern-match
based	on	the	code	that	 they	see.	Seeing	better	code	means	writing	better
code.
Sharing	working	knowledge	 of	 the	 codebase.	When	 someone	 reviews
your	code,	this	ensures	that	at	least	one	other	person	is	familiar	with	your
work	and	can	address	high-priority	bugs	or	other	issues	in	your	absence.
Increasing	long-term	agility.	Higher-quality	code	is	easier	to	understand,
quicker	to	modify,	and	less	susceptible	to	bugs.	These	all	translate	directly
into	faster	iteration	speed	for	the	engineering	team.

Although	 they	 usually	 acknowledge	 that	 code	 reviews	 can	 improve	 quality,
engineers	who	don’t	 do	 them	often	 cite	 their	 concern	 about	 their	 impact	 on
iteration	 speed.	 They	 argue	 that	 the	 time	 and	 effort	 associated	 with	 code
reviews	is	better	spent	on	other	aspects	of	product	development.	For	example,

Dropbox,	a	file	sharing	service	founded	in	2007,	didn’t	formally	require	code
reviews	for	its	first	four	years.	9	Despite	that,	the	company	was	able	to	build	a
strong	 engineering	 team	 and	 a	 compelling	 product	 with	 tens	 of	 million	 of
users,	before	they	had	to	institute	code	reviews	to	help	scale	code	quality.	10	11

Fundamentally,	there’s	a	tradeoff	between	the	additional	quality	that	code
reviews	can	provide	and	 the	short-term	productivity	win	from	spending	 that
time	 to	 add	 value	 in	 other	 ways.	 Teams	 that	 don’t	 do	 code	 reviews	 may
experience	 increasing	 pressure	 to	 do	 them	 as	 they	 grow.	 Newly	 hired
engineers	may	reason	incorrectly	about	code,	pattern-match	from	bad	code,	or
start	 re-solving	 similar	 problems	 in	 different	 ways,	 all	 because	 they	 don’t
have	access	to	the	senior	engineers’	institutionalized	knowledge.

Given	 these	 tradeoffs,	 does	 it	 make	 sense	 to	 do	 code	 reviews?
Successfully	navigating	this	question	requires	a	key	insight:	deciding	on	code
reviews	doesn’t	need	to	be	a	binary	choice,	where	all	code	is	either	reviewed
or	not	reviewed.	Rather,	think	of	code	reviews	as	being	on	a	continuum.	They
can	 be	 structured	 in	 different	 ways	 to	 reduce	 their	 overhead	 while	 still
maintaining	their	benefits.

At	 one	 extreme,	 there’s	 Google,	 which	 requires	 all	 code	 changes	 to	 be
reviewed.	12	At	 the	 other	 end	of	 the	 spectrum,	 smaller	 teams	 employ	much
nimbler	 code	 review	 processes.	 In	 the	 early	 days	 of	 Instagram,	 engineers
often	 did	 over-the-shoulder	 code	 reviews	 where	 one	 person	 would	 walk
through	another’s	code	on	a	shared	monitor.	13	Square	and	Twitter	often	use
pair	programming	in	place	of	code	reviews.	14	15	When	we	 introduced	code
reviews	at	Ooyala,	we	started	off	with	comments	over	email	cc’ed	to	the	team
and	 only	 reviewed	 the	 trickier	 pieces	 of	 core	 functionality;	 to	 move	 more
quickly,	we	also	reviewed	code	post-commit,	after	it	had	already	been	pushed
to	the	master	branch.

At	 Quora,	 we	 only	 required	 reviews	 of	 model	 and	 controller	 code	 for
business	logic;	view	code	that	rendered	the	web	interface	to	users	didn’t	need
to	be	reviewed.	We	reviewed	most	code	after	it	was	pushed	to	production;	we
didn’t	want	to	slow	down	iteration	speed,	but	at	the	same	time,	we	wanted	to
ensure	that	we	were	investing	in	a	high-quality	codebase	for	the	future.	Code
that	 touched	 hairy	 infrastructure	 internals	 tended	 to	 be	 riskier,	 so	 we
frequently	reviewed	those	types	of	changes	before	they	were	committed.	The
more	 recent	 the	 employee,	 the	more	valuable	 reviews	 are	 for	 bringing	 their
code	quality	and	style	up	to	the	team’s	standard,	and	so	we	would	also	review
new	hires’	code	sooner	and	with	more	attention.	These	examples	illustrate	that
code	review	processes	can	be	tuned	to	reduce	friction	while	still	retaining	the
benefits.

In	addition,	code	review	tools	have	improved	dramatically	in	the	past	few
years,	 significantly	 reducing	 overhead.	 When	 I	 first	 started	 working	 at
Google,	 engineers	 sent	 reviews	 over	 email,	 manually	 referencing	 line

numbers	in	their	comments.	Reviews	at	other	companies	meant	teams	sitting
in	conference	rooms	reading	code	on	projectors.	Today,	code	review	tools	like
GitHub	and	Phabricator	provide	lightweight	web	interfaces.	When	engineers
mention	a	teammate’s	name	in	a	commit	message,	facilities	like	git	hooks	can
automatically	send	a	code	review	request	to	that	person.	Reviewers	can	make
inline	comments	right	in	a	web	interface,	easily	seeing	what	changed	since	the
last	 round	 of	 feedback.	 Lint	 checkers	 can	 automatically	 identify	 deviations
from	style	guidelines,	boosting	consistency.	16	17	These	tools	all	help	reduce
code	 review	 friction	 and	 focus	 engineering	 time	 on	 what	 matters:	 getting
valuable	feedback	to	the	implementer.

Experiment	 to	 find	 the	right	balance	of	code	reviews	 that	works	for	you
and	your	team.	In	the	early	days	of	Ooyala,	our	team	operated	without	code
reviews.	But	because	lower	quality	code	interfered	with	product	development,
we	 eventually	 introduced	 reviews	 as	 a	way	 to	 increase	 quality.	 Later,	 some
teammates	 even	 built	 an	 open	 source	 code	 review	 tool	 called	 Barkeep	 to
further	streamline	the	process.	18

Manage	Complexity	through	Abstraction

At	Google,	I	could	write	a	simple	C++	MapReduce	program	to	compute	the
frequency	of	every	single	word	across	the	billions	of	web	pages	in	its	search
index—with	 just	 half	 an	 hour	 of	 effort.	 The	 MapReduce	 programming
framework	allowed	engineers	without	any	expertise	in	distributed	processing,
networking,	 or	 building	 fault-tolerant	 systems	 to	 easily	 define	 parallelized
computations	 over	 a	 large,	 distributed	 cluster	 of	 machines.	 I	 could	 use
MapReduce	to	orchestrate	thousands	of	machines	in	Google’s	data	centers	to
do	my	bidding.	Other	engineers	used	 it	 for	web	 indexing,	 ranking,	machine
learning,	 graph	 computations,	 data	 analysis,	 large	 database	 joins,	 and	many
other	complex	tasks.	19

In	 contrast,	 my	 experience	 prototyping	 a	 distributed	 database	 for	 my
Master’s	 thesis	at	MIT	back	 in	2005	was	much	more	painful.	 I	spent	weeks
writing	 thousands	 of	 lines	 of	 code	 to	 define	 distributed	 query	 trees,	 collect
and	 organize	 computational	 output,	 start	 and	 stop	 services	 on	 machines,
define	my	 own	 communication	 protocol,	 set	 up	 a	 data	 serialization	 format,
and	gracefully	recover	from	failures.	The	net	 result	of	all	 this	work:	I	could
run	a	query	on	my	distributed	database	…	of	4	machines.	20	Admittedly,	this
was	not	quite	at	Google’s	scale.

If	every	engineer	at	Google	had	to	spend	weeks	like	I	did	to	assemble	all
the	plumbing	needed	for	distributed	computations,	it	would	take	much	longer
and	 significantly	 more	 code	 to	 get	 things	 done.	 Instead,	 MapReduce
abstracted	away	the	complexity	and	let	engineers	focus	on	what	they	actually
cared	 about:	 the	 application	 logic.	 Most	 engineers	 using	 the	 MapReduce

abstraction	 didn’t	 have	 to	 know	 about	 the	 abstraction’s	 internals,	 and	 small
teams	 could	 easily	 parallelize	 computations	 over	 massive	 amounts	 of	 data
without	 specialized	knowledge.	Within	4	years	of	 its	 internal	 release	within
Google,	engineers	had	written	over	10,000	unique	MapReduce	applications	21
—a	 testament	 that	 the	 right	 abstraction	 makes	 a	 huge	 difference.	 Later
abstractions,	 like	Sawzall,	even	made	 it	possible	 to	write	simple	scripts	 that
could	 be	 compiled	 into	 MapReduce	 programs,	 requiring	 tenfold	 less	 code
than	equivalent	C++	programs.	22	Google’s	MapReduce	inspired	the	popular
open-source	 Hadoop	 MapReduce	 framework,	 which	 has	 enabled	 other
companies	to	reap	the	same	benefits.

MapReduce	illustrates	how	the	right	abstraction	can	dramatically	amplify
an	 engineer’s	 output.	 In	 his	 book	 Software	 Abstractions,	 MIT	 Professor
Daniel	 Jackson	 explains	 just	 how	 important	 it	 is	 to	 choose	 the	 right
abstractions.	“Pick	the	right	ones,	and	programming	will	flow	naturally	from
design;	modules	will	have	small	and	simple	interfaces;	and	new	functionality
will	 more	 likely	 fit	 in	 without	 extensive	 reorganization,”	 Jackson	 writes.
“Pick	 the	wrong	ones,	 and	programming	will	be	a	 series	of	nasty	 surprises:
interfaces	 will	 become	 baroque	 and	 clumsy	 as	 they	 are	 forced	 to
accommodate	 unanticipated	 interactions,	 and	 even	 the	 simplest	 of	 changes
will	be	hard	to	make.”	23

Jackson’s	 short	 quote	 touches	 on	 how	 the	 right	 abstraction	 increases
engineering	productivity:

It	 reduces	 the	 complexity	 of	 the	 original	 problem	 into	 easier-to-
understand	primitives.	Rather	than	having	to	reason	about	reliability	and
fault	 tolerance,	engineers	using	MapReduce	deal	with	 two	much	simpler
concepts:	 a	Map	 function	 to	 transform	 inputs	 from	one	 form	 to	another,
and	a	Reduce	function	to	combine	intermediate	data	and	produce	output.
Many	complex	problems	can	be	expressed	using	a	sequence	of	Map	and
Reduce	transformations.
It	 reduces	 future	 application	 maintenance	 and	 makes	 it	 easier	 to
apply	 future	 improvements.	My	 simple	MapReduce	 program	 to	 count
words	was	no	more	than	20	lines	of	custom	code.	The	thousands	of	lines
of	 plumbing	 code	 that	 I	 needed	 to	write	 for	my	 distributed	 database	 at
MIT	were	 unnecessary	 at	Google	 because	MapReduce	 already	 provided
all	 the	plumbing—in	other	words,	 these	were	 thousands	of	 lines	of	code
that	didn’t	have	to	be	written,	maintained,	or	modified	later.
It	solves	the	hard	problems	once	and	enables	the	solutions	to	be	used
multiple	times.	A	simple	application	of	the	Don’t	Repeat	Yourself	(DRY)
principle,	 24	 a	 good	 abstraction	 consolidates	 all	 of	 the	 shared	 and
oftentimes-complex	details	into	one	place.	The	hard	problems	are	tackled
and	solved	once,	and	the	solution	pays	off	with	every	additional	use.

Similar	to	the	time-saving	tools	we	studied	in	Chapter	4,	the	right	abstraction

Similar	to	the	time-saving	tools	we	studied	in	Chapter	4,	the	right	abstraction
can	 increase	 engineering	 productivity	 by	 an	 order	 of	 magnitude.	 Strong
engineering	 teams	 invest	 heavily	 in	 these	 abstractions.	 In	 addition	 to
MapReduce,	 Google	 built	 Protocol	 Buffers	 to	 encode	 structured	 data	 in	 an
extensible	way,	25	Sawzall	to	simplify	distributed	logs	processing,	22	BigTable
to	store	and	manage	petabytes	of	structured	data,	26	and	many	other	programs
to	 increase	 productivity.	 Facebook	 built	 Thrift	 to	 support	 cross-language
service	 development,	 27	 Hive	 to	 support	 relational	 queries	 over	 semi-
structured	 data,	 28	 and	 Tao	 to	 simplify	 graph	 queries	 on	 top	 of	 a	 MySQL
database.	29	At	Quora,	we	created	abstractions	 like	WebNode	and	LiveNode
that	made	it	easy	to	add	real-time	updates	to	any	feature	we	built	in	our	web
framework.	 30	 In	 many	 cases,	 these	 tools	 reduce	 the	 time	 to	 build	 new
features	from	weeks	or	months	down	to	hours	or	days.

But	like	many	other	aspects	of	code	quality,	building	an	abstraction	for	a
problem	 comes	 with	 tradeoffs.	 Building	 a	 generalized	 solution	 takes	 more
time	 than	building	one	specific	 to	a	given	problem.	To	break	even,	 the	 time
saved	 by	 the	 abstraction	 for	 future	 engineers	 needs	 to	 outweigh	 the	 time
invested.	That’s	more	likely	to	happen	with	software	the	team	relies	heavily
on—such	 as	 logging	 or	 user	 authentication	 libraries—than	 with	 peripheral
parts	of	the	codebase,	so	focus	more	energy	on	making	the	core	abstractions
great.

Even	with	core	abstractions,	however,	 it’s	possible	to	overinvest	 in	them
up	 front.	 Asana,	 a	 startup	 that	 builds	 a	 task	 and	 project	 management	 tool,
spent	 nearly	 the	 entire	 first	 year	 of	 its	 existence	 developing	 Luna,	 a	 new
framework	for	building	web	applications.	The	team	even	developed	their	own
accompanying	 programming	 language	 called	 Lunascript.	 31	 Jack	 Heart,	 an
engineering	 manager	 at	 Asana,	 explained	 the	 team’s	 early	 reasoning,	 “The
opinion	of	Asana	is	that	the	power	of	the	abstraction	granted	by	Lunascript	is
so	great	that,	eventually,	it	will	have	been	faster	to	write	Lunascript	and	then
write	a	webapp	on	the	scale	of	Asana	than	to	write	a	webapp	on	the	scale	of
Asana	 without	 writing	 Lunascript.”	 32	 The	 engineering	 investment	 brought
with	it	a	massive	opportunity	cost:	the	team	didn’t	have	a	product	to	publicly
demo	until	two	years	after	the	company’s	inception.	Ultimately,	the	team	had
to	abandon	 their	ambitious	goals	with	 the	Lunascript	compiler	 (though	 they
were	 still	 able	 to	 reuse	 parts	 of	 the	 framework)	 and	 revert	 back	 to	 using
JavaScript.	 There	 were	 too	 many	 unsolved	 research-level	 problems	 for
generating	performant	code	and	insufficient	tool	support	for	the	language,	and
both	 detracted	 the	 team’s	 time	 and	 energy	 away	 from	 actually	 building	 the
product.

Just	as	overinvesting	in	an	abstraction	can	be	costly,	so	too	can	building	a
poor	 abstraction.	When	we’re	 looking	 for	 the	 right	 tool	 for	 the	 job	 and	we
find	 it	 easier	 to	 build	 something	 from	 scratch	 rather	 than	 incorporate	 an
existing	 abstraction	 intended	 for	 our	 use	 case,	 that’s	 a	 signal	 that	 the

abstraction	might	be	ill-designed.	Create	an	abstraction	too	early,	before	you
have	a	firm	handle	on	 the	general	problem	you’re	solving,	and	 the	resulting
design	can	be	overfitted	to	the	available	use	cases.	Other	engineers	(or	even
you)	 might	 haphazardly	 bolt	 on	 modifications,	 tip-toe	 around	 the
shortcomings	of	the	abstraction,	or	avoid	the	abstraction	entirely	because	it’s
too	 hard	 to	 use.	 Bad	 abstractions	 aren’t	 just	 wasted	 effort;	 they’re	 also
liabilities	that	slow	down	future	development.

So	what	makes	 an	 abstraction	 good?	Years	 ago,	 I	 attended	 a	 lecture	 by
Joshua	Bloch,	 the	 architect	 behind	many	of	 Java’s	 core	 libraries	 and,	 at	 the
time,	 a	 principal	 software	 engineer	 at	 Google.	 He	 talked	 about	 “How	 to
Design	 a	 Good	 API	 and	Why	 it	Matters,”	 discussing	 the	 characteristics	 of
good	 software	 interfaces,	 and	 showing	 how	 those	 same	 properties	 apply	 to
good	abstractions	as	well.	33	Good	abstractions	should	be:	34

easy	to	learn
easy	to	use	even	without	documentation
hard	to	misuse
sufficiently	powerful	to	satisfy	requirements
easy	to	extend
appropriate	to	the	audience

Moreover,	good	abstractions	disentwine	complex	concepts	into	simpler	ones.
Rich	Hickey,	the	author	of	the	programming	language	Clojure,	explains	in	his
talk	“Simple	Made	Easy”	that	simple	things	take	on	one	role,	fulfill	one	task,
accomplish	 one	 objective,	 or	 deal	with	 one	 concept.	 35	 Simple	 abstractions
avoid	 interweaving	 multiple	 concepts,	 so	 that	 you	 can	 reason	 about	 them
independently	rather	than	being	forced	to	consider	them	together.	Techniques
such	 as	 avoiding	 mutable	 state,	 using	 functional	 rather	 than	 imperative
programming,	 preferring	 composition	 over	 inheritance,	 and	 expressing	 data
manipulations	declaratively	rather	than	imperatively	are	just	a	few	examples
of	how	to	reduce	incidental	complexity	when	building	software.

Designing	good	abstractions	take	work.	Study	other	people’s	abstractions
to	 learn	 how	 to	 build	 good	 ones	 yourself.	 Because	 the	 adoption	 of	 an
abstraction	scales	with	its	ease	of	use	and	its	payoffs,	an	abstraction’s	usage
and	 popularity	 provides	 a	 reasonable	 proxy	 for	 its	 quality.	 Here	 are	 some
ideas	to	get	you	started:

Find	popular	 abstractions	 in	your	 codebase	 at	work	or	 from	 repositories
on	GitHub.	Read	 through	 their	 documentation,	 dig	 through	 their	 source
code,	and	try	extending	them.
Look	 through	 the	 open	 source	 projects	 at	 technology	 companies	 like
Google,	 Facebook,	 LinkedIn,	 and	 Twitter.	 Learn	 why	 abstractions	 like
Protocol	Buffers,	Thrift,	Hive,	 and	MapReduce	have	been	 indispensable
to	their	growth.

Study	the	interfaces	of	popular	APIs	developed	by	Parse,	Stripe,	Dropbox,

Study	the	interfaces	of	popular	APIs	developed	by	Parse,	Stripe,	Dropbox,
Facebook,	 and	Amazon	Web	 Services,	 and	 figure	 out	what	makes	 it	 so
easy	for	developers	to	build	on	top	of	their	platforms.	Also	reflect	on	APIs
that	 you	 or	 the	 rest	 of	 community	 don’t	 like,	 and	 understand	what	 you
don’t	like	about	them.

Automate	Testing

Unit	 test	 coverage	 and	 some	 degree	 of	 integration	 test	 coverage	 provide	 a
scalable	 way	 of	 managing	 a	 growing	 codebase	 with	 a	 large	 team	 without
constantly	 breaking	 the	 build	 or	 the	 product.	 In	 the	 absence	 of	 rigorous
automated	 testing,	 the	 time	 required	 to	 thoroughly	 do	 manual	 testing	 can
become	 prohibitive.	Many	 bugs	 get	 detected	 through	 production	 usage	 and
external	bug	reports.	Each	major	feature	release	and	each	refactor	of	existing
code	 become	 a	 risk,	 resulting	 in	 a	 spike	 to	 the	 error	 rate	 that	 gradually
recovers	as	bugs	get	reported	and	fixed.	This	leads	to	software	error	rates	like
the	solid	line	in	the	graph	shown	in	Figure	1:	36

Figure	1:	Error	rates	over	time,	with	and	without	automated	testing.

A	suite	of	extensive	and	automated	tests	can	smooth	out	the	spikes	and	reduce

A	suite	of	extensive	and	automated	tests	can	smooth	out	the	spikes	and	reduce
overall	error	rates	by	validating	the	quality	of	new	code	and	by	safeguarding
changes	 of	 old	 code	 against	 regressions.	 This	 leads	 to	 the	 improved	 dotted
line	in	the	graph.	In	fact,	before	modifying	a	piece	of	untested	code,	first	add
missing	 tests	 to	ensure	 that	your	changes	don’t	cause	 regressions.	Similarly,
when	fixing	a	bug,	first	add	a	test	that	the	bug	breaks.	This	way,	when	you	get
the	test	to	pass,	you’re	more	confident	that	you’ve	actually	addressed	the	bug.

Automated	testing	doesn’t	 just	 reduce	bugs;	 it	provides	other	benefits	as
well.	The	most	immediate	payoff	comes	from	decreasing	repetitive	work	that
we’d	 otherwise	 need	 to	 do	 by	 hand.	 Rather	 than	 manually	 triggering
variations	 from	 different	 code	 branches,	 we	 can	 programmatically—and
quickly—run	 through	 large	 numbers	 of	 branches	 to	 verify	 correctness.
Moreover,	the	more	closely	the	tests	mirror	actual	conditions	in	a	production
environment	 and	 the	 easier	 it	 is	 for	 engineers	 to	 run	 those	 tests,	 the	 more
likely	 it	 is	 that	 engineers	 will	 incorporate	 testing	 into	 their	 development
workflow	to	automate	checks.	This,	in	turn,	leads	engineers	to	be	much	more
accountable	for	the	quality	of	their	own	work.

Tests	also	allow	engineers	to	make	changes,	especially	large	refactorings,
with	 significantly	 higher	 confidence.	 When	 I	 perform	 multi-thousand-line
refactors	 to	 improve	 code	 quality	 or	 to	 implement	 a	 new	 abstraction,	 I’m
extremely	grateful	for	the	protection	afforded	by	unit	tests.	This	protection	is
particularly	 important	 when	 the	 person	 or	 team	 modifying	 the	 code	 didn’t
write	 the	original	code	 (a	common	scenario)	and	 isn’t	aware	of	all	 the	edge
cases.	Automated	tests	mitigate	against	a	culture	in	which	people	are	fearful
of	modifying	and	improving	a	piece	of	code	just	because	it	might	break.	They
make	it	easier	to	do	future	code	transformations.

When	code	does	break,	automated	tests	help	to	efficiently	identify	who’s
accountable.	Without	an	automated	test	failure,	a	problem	takes	longer	to	be
discovered	and	often	gets	misrouted	 to	whoever	owns	 the	feature	 that	broke
rather	 than	 whoever	 authored	 the	 change.	 Alex	 Allain,	 an	 engineering
manager	 at	 Dropbox,	 recalls	 a	 time	 when	 certain	 user	 flows	 for	 business
customers	mysteriously	stopped	working.	Multiple	 teams,	 including	his,	had
to	 scramble	 and	 investigate	 what	 went	 wrong	 before	 they	 finally	 traced	 it
back	 to	 a	 seemingly	 harmless	 change	 from	 the	 data	 team.	An	 engineer	 had
tweaked	how	object	caching	worked	 in	 the	database	 layer	and	 inadvertently
modified	 the	 behavior	 of	 the	 internal	 database	API—and	Allain’s	 team	had
depended	 on	 the	 old	 behavior.	Had	 his	 team	written	 an	 automated	 test	 that
exercised	 the	 API	 dependencies	 (or	 had	 the	 data	 engineer	 written	 tests	 to
catch	the	discrepancy	between	the	old	and	new	APIs),	the	right	person	might
have	been	looking	at	the	bug	from	the	start,	saving	his	team	the	wasted	effort.

Finally,	 tests	 offer	 executable	 documentation	 of	 what	 cases	 the	 original
author	 considered	 and	 how	 to	 invoke	 the	 code.	 Average	 familiarity	 with	 a
codebase	decreases	as	both	the	code	and	the	team	grow,	making	it	difficult	to
make	 future	 modifications	 without	 sufficient	 tests.	 And,	 just	 like

documentation,	writing	tests	is	done	more	easily	by	the	original	authors	when
their	 code	 is	 fresh	 in	 their	minds,	 rather	 than	by	 those	who	 try	 to	modify	 it
months	or	years	later.

Just	because	automated	 testing	 is	beneficial,	however,	doesn’t	mean	 that
building	 automated	 tests	 for	 everything	 is	 always	 a	 good	 idea.	 100%	 code
coverage	is	difficult	to	achieve.	Some	code	is	harder	to	test	automatically	than
others.	Moreover,	unless	you’re	working	on	mission-critical	or	safety-critical
pieces	 of	 software,	 dogmatically	 requiring	 test	 coverage	 for	 all	 code	 is
unlikely	 to	 be	 the	 best	 use	 of	 your	 time.	 The	 extent	 to	 which	 you	 should
automate	 testing	 again	 boils	 down	 to	 a	matter	 of	 tradeoffs.	 Small	 unit	 tests
tend	 to	 be	 easy	 to	 write,	 and	 while	 each	 one	 might	 only	 provide	 a	 small
benefit,	a	large	library	of	them	quickly	builds	confidence	in	code	correctness.
Integration	tests	are	harder	to	write	and	maintain,	but	creating	just	a	few	is	a
high-leverage	investment.

Despite	 its	 benefits,	 it	 can	 be	 difficult	 to	 foster	 a	 culture	 of	 automated
testing.	There	may	be	organizational	inertia:	people	may	believe	writing	unit
tests	will	 reduce	 their	 iteration	speed.	Perhaps	historically,	parts	of	 the	code
have	been	untested	because	 tests	were	hard	 to	write.	Or	 it	may	not	be	clear
whether	 the	 code	 currently	 being	 written	 actually	 will	 get	 shipped	 to
production—and	people	have	little	 incentive	to	write	 tests	for	a	product	 that
may	not	even	ship.

This	 is	 the	 dilemma	 that	 Kartik	 Ayyar	 found	 himself	 in	 when	 he	 was
leading	 the	 development	 of	 Cityville,	 a	 social	 online	 game	 at	 Zynga.	 37	 In
Cityville,	players	grow	a	virtual	city	from	a	small	development	into	a	bustling
metropolis	by	building	houses,	laying	out	roads,	and	running	businesses.	The
game	 skyrocketed	 to	 over	 61	 million	 monthly	 users	 within	 50	 days	 of	 its
launch;	at	one	point,	it	had	the	highest	number	of	monthly	active	users	of	any
Facebook	 application.	 38	 Ayyar	 joined	 the	 Cityville	 team	 as	 an	 individual
contributor	when	it	was	still	a	handful	of	engineers,	but	he	soon	became	the
engineering	director	of	the	50-person	team.

Before	 Cityville	 became	 a	 hit,	 Ayyar	 told	 me,	 many	 of	 the	 gameplay
iterations	didn’t	make	 it	 into	 the	 launched	product.	This	made	 it	difficult	 to
justify	 investing	 in	 testing.	 “How	 much	 do	 we	 invest	 in	 testing	 if	 you’re
actually	 throwing	 away	 so	much	 of	 this	 gameplay?”	 he	 had	 asked	 himself.
Moreover,	 even	after	 the	game	had	 launched,	 the	need	 to	 continuously	 ship
new	content	 to	 sustain	 its	growth	 trumped	other	needs.	Content	 creation,	 in
the	 form	 of	 adding	 new	 types	 of	 buildings,	 was	 the	 top	 priority.	 Teams	 of
artists,	product	managers,	and	engineers	collaborated	 to	aggressively	release
new	content	almost	three	times	a	day.	There	was	little	time	left	over	to	build
automated	tests,	and	the	value	they	could	provide	was	unclear.

Moreover,	 achieving	 high	 test	 coverage	 was	 extremely	 daunting.	 The
constructor	 for	 a	 class	 that	 represented	 an	 item	 in	 the	 game’s	 city	 map
contained	around	3,000	 lines	of	code,	and	a	single	city	building	might	have

50–100	 lines	 of	 textual	 configuration	 specifying	 the	 look-and-feel	 and	 the
dependencies	 of	 the	 building.	 Testing	 that	 many	 permutations	 was
intimidating.

The	inflection	point	came	when	a	simple	unit	 test	visibly	started	to	save
them	 time.	 Because	 the	 dependencies	 for	 a	 building	 were	 so	 complex,
deployments	 often	 ran	 into	 problems:	 engineers	 would	 accidentally	 drop
dependencies	when	 they	merged	 in	 feature	code	 for	a	 release.	One	engineer
finally	wrote	a	basic	automated	test	for	a	city	building,	ensuring	that	an	image
asset	 referenced	 by	 a	 building’s	 configuration	was	 actually	 in	 the	 codebase
and	 not	 deleted	 mistakenly	 during	 a	 code	 merge.	 That	 simple	 test	 started
catching	a	lot	of	bugs	in	Cityville’s	deployments,	paying	for	itself	many	times
over	in	terms	of	time	saved.	When	the	time	savings	became	obvious,	people
looked	 for	 other	 strategic	 tests	 to	 help	 them	 iterate	 faster.	 “Well,	 we’re
checking	this	image,	so	why	can’t	we	check	other	parts	of	the	configuration
file?”	Kartik	 explained.	 “Once	people	 really	 started	 running	 those	unit	 tests
and	[integrated	them]	into	the	build,	they	really	started	seeing	how	much	time
it	saved.”

Writing	the	first	test	is	often	the	hardest.	An	effective	way	to	initiate	the
habit	 of	 testing,	 particularly	when	working	with	 a	 large	 codebase	with	 few
automated	tests,	is	to	focus	on	high-leverage	tests—ones	that	can	save	you	a
disproportionate	amount	of	time	relative	to	how	long	they	take	to	write.	Once
you	have	a	 few	good	 tests,	 testing	patterns,	and	 libraries	 in	place,	 the	effort
required	to	write	future	tests	drops.	That	tips	the	balance	in	favor	of	writing
more	tests,	creating	a	virtuous	feedback	cycle	and	saving	more	development
time.	Start	with	the	most	valuable	tests,	and	go	from	there.

Repay	Technical	Debt

Sometimes,	we	build	 things	in	a	way	that	makes	sense	in	 the	short-term	but
that	 can	 be	 costly	 in	 the	 long-term.	 We	 work	 around	 design	 guidelines
because	 it’s	 faster	 and	 easier	 than	 following	 them.	We	 punt	 on	writing	 test
cases	 for	 a	 new	 feature	 because	 there’s	 too	much	work	 to	 finish	 before	 the
deadline.	We	copy,	paste,	and	tweak	small	chunks	of	existing	code	instead	of
refactoring	 it	 to	 support	 our	 use	 cases.	 Each	 of	 these	 tradeoffs,	 whether
they’re	made	from	laziness	or	out	of	a	conscious	decision	to	ship	sooner,	can
increase	the	amount	of	technical	debt	in	our	codebase.

Technical	debt	refers	to	all	the	deferred	work	that’s	necessary	to	improve
the	 health	 and	 quality	 of	 the	 codebase	 and	 that	would	 slow	us	 down	 if	 left
unaddressed.	Ward	Cunningham,	the	inventor	of	the	wiki,	coined	the	term	in	a
1992	conference	paper:	 “Shipping	 first	 time	code	 is	 like	going	 into	debt.	A
little	 debt	 speeds	 development	 so	 long	 as	 it	 is	 paid	 back	 promptly	 with	 a
rewrite	…	The	danger	occurs	when	the	debt	is	not	repaid.	Every	minute	spent
on	not-quite-right	code	counts	as	interest	on	that	debt.”	39	Just	like	financial

debt,	failure	to	repay	the	principal	on	our	technical	debt	means	that	increasing
amounts	of	time	and	energy	get	devoted	to	repaying	the	accumulating	interest
rather	than	to	building	value.

Past	 some	 point,	 too	 much	 debt	 impedes	 our	 ability	 to	 make	 progress.
Debt-ridden	 code	 is	 hard	 to	understand	 and	 even	harder	 to	modify,	 slowing
down	iteration	speed.	It’s	easier	to	inadvertently	introduce	bugs,	which	further
compounds	 the	 time	 needed	 to	 successfully	 make	 changes.	 As	 a	 result,
engineers	actively	avoid	debt-ridden	code,	even	if	work	in	that	area	might	be
high-leverage.	Many	decide	to	write	roundabout	solutions	simply	to	dodge	the
painful	area.

Technical	 debt	 doesn’t	 just	 accumulate	 when	 we	 make	 quick	 and	 dirty
workarounds.	Whenever	we	write	 software	without	 fully	 understanding	 the
problem	space,	our	first	version	will	likely	end	up	being	less	cleanly	designed
than	we’d	like.	Over	time,	we	develop	new	insights	into	better	ways	of	doing
things.	Since	our	initial	understanding	of	problems	always	will	be	incomplete,
incurring	a	little	debt	is	unavoidable;	it’s	just	part	of	getting	things	done.

The	key	to	being	a	more	effective	engineer	is	to	incur	technical	debt	when
it’s	 necessary	 to	 get	 things	 done	 for	 a	 deadline,	 but	 to	 pay	 off	 that	 debt
periodically.	As	Martin	 Fowler,	 author	 of	 the	 book	Refactoring,	 points	 out,
“The	all	too	common	problem	is	that	development	organizations	let	their	debt
get	out	of	control	and	spend	most	of	 their	 future	development	effort	paying
crippling	interest	payments.”	40	Different	organizations	use	various	strategies
to	manage	technical	debt.	Asana,	a	startup	that	builds	an	online	productivity
tool,	schedules	a	Polish	and	Grease	Week	at	 the	end	of	every	quarter	 to	pay
off	any	UI	and	 internal	 tools	debt	 that	 they	might	have	accumulated.	Quora
devotes	 a	 day	 after	 every	 week-long	 hackathon	 to	 do	 cleanup	work.	 Some
companies	 explicitly	 schedule	 rewrite	 projects	 (with	 their	 attendant	 risks)
when	 their	 technical	 debt	 gets	 too	 high,	 evidenced	 by	 slow	 development
speed	visibly	taxing	the	team’s	ability	to	execute.	Google	holds	Fixit	days	like
Docs	 Fixit,	 Customer	 Happiness	 Fixit,	 or	 Internationalization	 Fixit—where
engineers	 are	 encouraged	 to	 tackle	 specific	 themes—as	 a	 lightweight
mechanism	to	pay	off	technical	debt.	41	LinkedIn,	for	example,	paused	feature
development	for	two	whole	months	after	the	company	went	public.	They	used
the	 downtime	 to	 fix	 a	 broken	 process—engineers	 were	 taking	 a	 month	 to
deploy	new	features—and	then	resumed	development	at	a	much	faster	rate.	42

At	 many	 other	 companies,	 however,	 it’s	 up	 to	 individual	 engineers	 to
schedule	 and	 prioritize	 repayment	 of	 technical	 debt	 against	 other	 work.	 It
might	even	be	up	to	you	to	argue	for	and	justify	the	time	spent.	Unfortunately,
technical	debt	often	is	hard	to	quantify.	The	less	confident	you	are	about	how
long	a	rewrite	will	take	or	how	much	time	it	will	save,	the	better	off	you	are
starting	 small	 and	 approaching	 the	 problem	 incrementally.	 This	 reduces	 the
risk	 of	 your	 fix	 becoming	 too	 complex,	 and	 it	 gives	 you	 opportunities	 to
prove	to	yourself	and	others	that	the	technical	debt	is	worth	repaying.	I	once

organized	a	Code	Purge	Day	where	a	group	of	teammates	and	I	deleted	code
that	was	no	longer	being	used	from	the	codebase.	It	was	a	small	but	focused
effort	with	little	risk	of	failure—plus,	who	doesn’t	like	the	feeling	of	getting
rid	of	unused	code?	We	purged	about	3%	of	our	application-level	code,	and	it
was	easy	 to	 justify	because	 it	 saved	other	engineers	wasted	 time	navigating
around	stale	and	irrelevant	parts	of	the	codebase.

Like	the	other	tradeoffs	we’ve	talked	about,	not	all	technical	debt	is	worth
repaying.	You	only	have	a	 finite	amount	of	 time,	and	 time	spent	paying	off
technical	 debt	 is	 time	 not	 spent	 building	 other	 sources	 of	 value.	Moreover,
interest	payments	on	some	technical	code	debt	is	higher	than	others.	The	more
frequently	a	part	of	 the	codebase	 is	 read,	 invoked,	and	modified,	 the	higher
the	 interest	 payments	 for	 any	 technical	 debt	 in	 that	 code.	 Code	 that’s
peripheral	 to	 a	 product	 or	 that	 rarely	 gets	 read	 and	modified	 doesn’t	 affect
overall	development	speed	as	much,	even	if	it’s	laden	with	technical	debt.

Rather	 than	 blindly	 repaying	 technical	 debt	 wherever	 they	 find	 it,
effective	engineers	spend	their	finite	time	repaying	the	debt	with	the	highest
leverage—code	in	highly-trafficked	parts	of	the	codebase	that	takes	the	least
time	 to	 fix	 up.	 These	 improvements	 generate	 the	 highest	 impact	 for	 your
effort.

Key	Takeaways

Establish	a	culture	of	reviewing	code.	Code	 reviews	 facilitate	 positive
modeling	of	good	coding	practices.	Find	 the	right	balance	between	code
reviews	and	tooling	to	trade	off	code	quality	and	development	speed.
Invest	 in	 good	 software	 abstractions	 to	 simplify	 difficult	 problems.
Good	abstractions	solve	a	hard	problem	once	and	for	all,	and	significantly
increase	 the	 productivity	 of	 those	 who	 use	 it.	 But	 if	 you	 try	 to	 build
abstractions	 when	 you	 have	 incomplete	 information	 about	 use	 cases,
you’ll	end	up	with	something	clunky	and	unusable.
Scale	 code	 quality	 with	 automated	 testing.	 A	 suite	 of	 unit	 and
integration	 tests	 can	 help	 alleviate	 the	 fear	 of	 modifying	 what	 might
otherwise	be	brittle	code.	Focus	on	ones	that	save	the	most	time	first.
Manage	your	technical	debt.	If	you	spend	all	your	resources	paying	off
interest	 on	your	debt,	 you	won’t	 have	 enough	 time	 left	 to	work	on	new
things.	Focus	on	the	debt	that	incurs	the	most	interest.

W

Minimize	Operational	Burden

ITH	ONE	SMALL	TAP,	 I	APPLIED	THE	NASHVILLE	FILTER	TO	MY	OTHERWISE-
mundane	 iPhone	 photo	 and	 transformed	 it	 into	 a	 stylistic	 and	 retro
Polaroid	 shot.	 This	 was	 the	 magic	 of	 Instagram,	 a	 photo-sharing

mobile	 app	 that	 promised	 people	 a	 “fast,	 beautiful,	 and	 fun	 way	 to	 share
moments	 with	 friends	 and	 family”	 1	 and	 that	 turned	 millions	 of	 amateur
photographers—myself	included—into	budding	artists.	I	could	follow	friends,
celebrities,	and	even	professional	photographers;	their	artwork	would	fill	my
Instagram	feed,	inspiring	me	to	share	more.

Instagram	 grew	 like	 magic	 as	 well.	 They	 launched	 to	 the	 public	 via
Apple’s	App	Store	on	October	6,	2010.	2	Within	hours,	Instagram’s	app	had
already	 been	 downloaded	 over	 10,000	 times,	 and	 usage	 exploded	 in	 the
coming	 months.	 3	 A	 year	 and	 a	 half	 later,	 when	 Facebook	 acquired	 the
company	 for	 over	 $1	 billion,	 Instagram’s	 user	 base	 had	 skyrocketed	 to	 40
million.	4

Few	other	mobile	apps	have	grown	at	Instagram’s	pace.	Scaling	a	product
to	 support	 that	 much	 growth	 in	 such	 a	 short	 period	 of	 time	 would	 be
extremely	challenging	for	any	team.	What’s	surprising,	however,	is	that	when
Instagram	was	acquired	in	April	2012,	it	had	only	13	employees.	Its	ratio	of
users	to	employees	was	over	3	million	to	one—much	higher	than	most	other
companies.	5	This	was	a	testament	to	just	how	effective	each	member	of	that
small	team	was.

How	did	Instagram’s	engineers	manage	such	a	feat?	What	high-leverage
principles	enabled	them	to	support	so	many	users,	given	their	limited	time	and
resources?	I	sat	down	with	Mike	Krieger,	Instagram’s	co-founder	and	CTO,	to
find	out.

During	 Instagram’s	 early	years,	Krieger	 explained,	 its	 team	consisted	of
no	more	than	five	engineers.	That	scarcity	led	to	focus.	They	couldn’t	afford
to	 engineer	 any	 solutions	 that	 would	 break	 frequently	 or	 require	 constant
maintenance.	 Far	 and	 away,	 the	 most	 valuable	 lesson	 they	 learned	 was	 to

9

minimize	operational	burden.	Krieger	operated	 like	 the	chief	of	 a	 small	 fire
department:	he	knew	that	each	additional	feature	and	new	system	represented
an	 extra	 house	 that	 the	 team	 needed	 to	 support—and	 possibly	 firefight.
Development	costs	didn’t	stop	accruing	at	launch	time;	in	fact,	they	were	just
starting	to	accumulate.

Keeping	a	system	up	and	running,	scaling	a	feature	to	support	more	users,
fixing	the	bugs	that	surface,	transferring	an	ever-growing	body	of	institutional
knowledge	 to	 new	 engineers—all	 of	 these	 costs	 continue	 to	 tax	 a	 team’s
resources,	 even	 after	 a	 feature	 or	 system	 ships.	 When	 a	 team	 is	 small,
minimizing	that	tax	is	critical.

Unfortunately,	 it	 is	 tough	to	fully	 internalize	this	cost.	Even	the	smartest
and	 most	 talented	 engineers	 can	 become	 enamored	 with	 the	 hottest	 new
technologies	and	dream	of	ways	of	incorporating	them	into	their	next	project.
They’ll	try	out	a	new	system	that’s	yet	to	find	major	adoption,	a	new	language
that	 few	 team	members	know,	or	 some	experimental	piece	of	 infrastructure,
all	without	factoring	in	the	future	maintenance	costs.	These	decisions	impose
an	ongoing	cost	on	their	time	and	reduce	their	engineering	efficiency.

This	 is	why	minimizing	 operational	 burden	 is	 so	 critical.	 The	 recurring
costs	of	operating	a	system	or	product	require	time	and	energy	that	could	be
spent	on	higher-leverage	activities.	How	much	time	do	you	spend	each	day	or
week	 on	maintaining	 systems	 and	 fixing	 bugs,	 rather	 than	 on	 building	 new
things?	 How	 often	 do	 you	 find	 yourself	 interrupted	 by	 operational	 and
product	 issues	 and	 switching	 contexts	 to	 address	 them,	 rather	 than	making
progress	on	tasks	that	you’ve	prioritized?	Shaving	time	off	of	recurring	costs
frees	you	to	focus	on	what	matters	most.

Whenever	 they	 could,	 the	 Instagram	 team	 picked	 proven	 and	 solid
technologies	 instead	 of	 shiny	 or	 sexy	 new	 ones.	 “Every	 single,	 additional
[technology]	you	add,”	Krieger	cautions,	“is	guaranteed	mathematically	over
time	to	go	wrong,	and	at	some	point,	you’ll	have	consumed	your	entire	team
with	operations.”	And	so,	whereas	many	other	startup	 teams	adopted	 trendy
NoSQL	 data	 stores	 and	 then	 struggled	 to	 manage	 and	 operate	 them,	 the
Instagram	 team	 stuck	 with	 tried	 and	 true	 options	 like	 PostgreSQL,
Memcache,	 and	 Redis	 that	 were	 stable,	 easy	 to	 manage,	 and	 simple	 to
understand.	6	7	They	avoided	re-inventing	the	wheel	and	writing	unnecessary
custom	software	 that	 they	would	have	 to	maintain.	These	decisions	made	 it
significantly	easier	for	the	small	team	to	operate	and	scale	their	popular	app.

In	 this	 chapter,	 we’ll	 examine	 strategies	 for	 minimizing	 operational
burden.	We’ll	analyze	Instagram’s	core	mantra—do	the	simple	thing	first—to
learn	 why	 we	 should	 embrace	 operational	 simplicity.	 We’ll	 show	 how
building	 systems	 to	 fail	 fast	 makes	 them	 easier	 to	 maintain.	 We’ll	 walk
through	 the	 importance	 of	 relentlessly	 automating	 mechanical	 tasks.	 We’ll
talk	about	how	making	automation	 idempotent	 reduces	 recurring	costs.	And

we’ll	 close	with	why	we	 should	practice	 and	develop	our	 ability	 to	 recover
quickly.

Embrace	Operational	Simplicity

Effective	 engineers	 focus	 on	 simplicity.	 Simple	 solutions	 impose	 a	 lower
operational	 burden	 because	 they’re	 easier	 to	 understand,	 maintain,	 and
modify.	 At	 Instagram,	 simplicity	 was	 a	 key	 principle	 enabling	 the	 team	 to
scale.	 “One	 of	 the	 core	 engineering	 tenets	 is	 to	 do	 the	 simple	 thing	 first,”
Krieger	 explained.	 “We	 apply	 that	 to	 product.	We	 apply	 that	 to	 hiring.	We
apply	it	to	engineering.	We	have	posters	that	say	it.”	In	reviewing	each	other’s
designs,	the	team	would	ask,	“Is	this	the	simplest	thing?”	or,	“Is	the	simplest
thing	to	create	an	entirely	new	system	for	this	one	feature	you’re	writing?”	If
the	answer	was	no,	then	they	reconsidered	their	approach.

As	 a	 product	 grows,	 software	 complexity	 tends	 to	 grow	 along	 with	 it.
New	 features	may	 require	 engineers	 to	 build	 new	 systems	 to	 support	 them.
Increased	traffic	may	require	additional	infrastructure	to	successfully	scale	the
product	 and	maintain	 its	 speed	 and	 quality.	A	 newly-open-sourced	 piece	 of
architecture	or	a	new	programming	language	may	promise	attractive	benefits,
luring	 engineers	 into	 trying	 them	 out	 on	 problems	 they’re	 facing.	 Or,
engineers	may	 decide	 to	 build	 a	 new	 feature	with	 a	 non-standard	 toolchain
because	it	has	slightly	better	performance	characteristics	or	features	than	what
other	team	members	use.	The	additional	complexity	may	be	a	necessary	evil
—but	oftentimes,	it’s	not.

When	 asked	 what	 he’d	 learned	 from	 designing	 the	 iPod,	 Steve	 Jobs
responded,	 “When	 you	 first	 start	 off	 trying	 to	 solve	 a	 problem,	 the	 first
solutions	 you	 come	 up	with	 are	 very	 complex,	 and	most	 people	 stop	 there.
But	if	you	keep	going,	and	live	with	the	problem	and	peel	more	layers	of	the
onion	 off,	 you	 can	 oftentimes	 arrive	 at	 some	 very	 elegant	 and	 simple
solutions.	Most	people	just	don’t	put	in	the	time	or	energy	to	get	there.”	8

Simplicity	 has	 been	 a	 value	 and	 characteristic	 of	 Instagram	 from	 the
beginning.	When	Krieger	and	his	co-founder,	Kevin	Systrom,	first	embarked
on	 their	 venture,	 they	were	 working	 on	 a	 location-based	 social	 networking
application	called	Burbn.	Tackling	the	same	crowded	space	as	other	startups
like	 Foursquare	 and	 Gowalla,	 Burbn	 would	 award	 points	 to	 its	 users	 for
checking	 into	 locations,	 hanging	 out	 with	 friends,	 and	 posting	 pictures.
Krieger	 and	 Systrom	 spent	 over	 a	 year	 building	 an	 iPhone	 app—and	 then
decided	that	it	was	too	complex.	“We	actually	got	an	entire	version	of	Burbn
done	as	an	iPhone	app,	but	it	felt	cluttered,	and	overrun	with	features,”	writes
Systrom.	So	the	two	of	them	shed	all	of	Burbn’s	complexity	and	honed	in	on
the	one	activity	that	users	flocked	to	the	most:	sharing	photos.	“It	was	really
difficult	to	decide	to	start	from	scratch,	but	we	…	basically	cut	everything	in

the	Burbn	app	except	for	its	photo,	comment,	and	‘like’	capabilities,”	Systrom
continues.	“What	remained	was	Instagram.”	9

When	engineering	teams	don’t	focus	on	doing	the	simple	thing	first,	they
either	end	up	being	less	effective	over	time	because	their	energy	is	spent	on	a
high	upkeep	cost,	or	they	reach	a	point	where	the	operational	burden	gets	so
high	that	they’re	forced	to	simplify	their	architecture.	In	fact,	the	engineering
team	 at	 Pinterest—the	 popular	 online	 pinboard	 where	 users	 collect	 and
organize	 things	 from	 around	 the	web—made	 this	mistake	 in	 its	 early	 days.
Over	the	course	of	two	years,	Pinterest	grew	rapidly	from	0	to	10s	of	billions
of	 page	 views	 per	 month.	 In	 a	 talk	 entitled	 “Scaling	 Pinterest,”	 engineers
Yashwanth	 Nelapati	 and	 Marty	 Weiner	 describe	 how	 the	 team	 initially
introduced	more	 and	more	 complexity	 into	 their	 infrastructure	 to	 overcome
the	 scaling	 problems	 they	 encountered.	 10	 At	 one	 point,	 their	 database	 and
caching	 layers	 alone	 involved	 a	 mixture	 of	 seven	 different	 technologies:
MySQL,	 Cassandra,	 Membase,	 Memcache,	 Redis,	 Elastic	 Search,	 and
MongoDB.	11	This	was	much	more	complexity	 than	 their	 small	engineering
team	(3	people	at	that	time)	could	handle.

Having	 too	complex	of	 an	architecture	 imposes	 a	maintenance	cost	 in	 a
few	ways:

Engineering	 expertise	 gets	 splintered	 across	multiple	 systems.	 Every
system	has	its	own	unique	set	of	properties	and	failure	modes	that	must	be
discovered,	 understood,	 and	 mastered.	 The	 more	 systems	 there	 are,	 the
longer	this	process	takes.
Increased	 complexity	 introduces	 more	 potential	 single	 points	 of
failure.	Too	much	 surface	 area	 in	 the	 system	architecture,	 coupled	with
too	few	engineering	resources,	means	it’s	harder	to	ensure	that	at	least	two
people	 can	 cover	 any	 given	 area.	What	 happens	 when	 the	 only	 person
familiar	with	a	critical	component	gets	sick	or	goes	on	vacation?
New	 engineers	 face	 a	 steeper	 learning	 curve	 when	 learning	 and
understanding	 the	 new	 systems.	 Ramp	 up	 time	 increases,	 since	 every
engineer	must	internalize	a	larger	body	of	knowledge	to	be	productive.	In
comparison,	an	architecture	with	a	smaller	set	of	reusable	abstractions	and
tools	is	easier	to	learn.
Effort	 towards	 improving	 abstractions,	 libraries,	 and	 tools	 gets
diluted	 across	 the	 different	 systems.	 As	 a	 result,	 no	 one	 system	 is	 as
well-supported	 as	 it	 could	 be	 if	 engineering	 resources	 were	 pooled
together	and	focused	on	a	smaller	set	of	building	blocks.

When	system	complexity	grows	faster	 than	the	engineering	team’s	ability	to
maintain	 the	 system,	 productivity	 and	 progress	 suffer.	More	 and	more	 time
gets	 diverted	 towards	 maintenance	 and	 figuring	 out	 how	 things	 work;	 less
time	is	spent	finding	new	ways	to	build	value.

Eventually,	 the	Pinterest	 team	realized	 that	 they	needed	 to	simplify	 their
architecture	 to	 reduce	 their	 operational	 burden.	 They	 learned	 the	 hard	 way
that	a	well-designed	architecture	supports	additional	growth	by	adding	more
of	the	same	types	of	components,	not	by	introducing	more	complex	systems.
By	 January	 2012,	 they	 had	 substantially	 simplified	 their	 data	 and	 caching
architecture	to	just	MySQL,	Memcache,	Redis,	and	Solr.	Since	then,	they’ve
grown	 more	 than	 4x	 by	 just	 scaling	 up	 the	 number	 of	 machines	 in	 each
service	rather	than	introducing	any	new	services.	12

Instagram	 and	 Pinterest	 demonstrate	 that	 the	 discipline	 to	 focus	 on
simplicity	 provides	 high	 leverage.	 That	 lesson	 applies	 to	 a	 variety	 of
scenarios:

It’s	fine	to	experiment	with	a	new	programming	language	for	a	prototype
or	a	toy	project,	but	think	hard	before	using	it	in	a	new	production	system.
Do	other	team	members	have	experience	with	the	language?	Is	it	easy	to
pick	up?	Will	it	be	hard	to	hire	engineers	fluent	in	it?
Proponents	 of	 new	 data	 stores	 promise	 that	 their	 systems	 solve	 the
problems	 in	 battle-tested	 relational	 databases	 like	 MySQL	 and
PostgreSQL.	 Before	 using	 these	 new	 storage	 systems	 in	 production,
however,	do	your	research.	Find	out	if	other	teams	have	successfully	used
them	for	projects	of	a	similar	scope	and	whether	they	have	actually	been
able	to	maintain	and	scale	them	with	lower	operational	burden	than	more
standard	solutions.
When	tackling	a	new	problem,	consider	whether	repurposing	an	existing
abstraction	or	 tool	would	be	 simpler	 than	developing	a	custom	solution.
People	 often	 say,	 “Use	 the	 right	 tool	 for	 the	 job”—but	 that	 can	 also
increase	the	number	of	moving	parts.	Does	the	complexity	of	having	more
parts	outweigh	the	benefits	of	simplicity	through	standardization?
If	you’re	processing	 large	amounts	of	data,	 consider	whether	 the	data	 is
actually	large	enough	such	that	you	need	a	distributed	cluster,	or	whether
a	 single,	 beefy	machine	will	 suffice.	Clusters	 are	 harder	 to	manage	 and
debug	than	single	machines.

Remember:	 do	 the	 simple	 thing	 first.	 Always	 ask,	 “What’s	 the	 simplest
solution	that	can	get	the	job	done	while	also	reducing	our	future	operational
burden?”	Revisit	 sources	of	complexity,	and	 find	opportunities	 to	 trim	 them
away.

Build	Systems	to	Fail	Fast

Many	 engineers	 associate	 robustness	 and	 reliability	 with	 an	 absence	 of
crashes.	They	spend	their	energy	adding	workarounds	to	automatically	handle
software	errors	so	that	their	programs	can	continue	to	function.	Workarounds

may	include	setting	misconfigured	parameters	to	default	values,	adding	catch-
all	 exception	 handlers	 to	 deal	 with	 unexpected	 issues,	 and	 swallowing
unexpected	return	values.

These	 techniques	 cause	 software	 to	 fail	 slowly.	 The	 software	 may
continue	 to	 run	 after	 an	 error,	 but	 this	 is	 often	 in	 exchange	 for	 less
decipherable	bugs	further	down	the	road.	Suppose	we	introduce	 logic	 into	a
web	 server	 so	 that	 if	 it	 reads	 in	 a	 misspelled	 configuration	 parameter	 for

,	it	defaults	the	parameter	to	5.	The	program	might
start	 and	 run	 as	 usual,	 but	 once	 deployed	 to	 production,	we’ll	 be	 searching
everywhere	trying	to	understand	why	database	queries	are	slower	than	usual.
Or	 suppose	 our	 application	 silently	 fails	 to	 save	 a	 user’s	 state	 to	 a	 data
structure	or	database,	so	that	it	can	keep	running	for	longer.	Later	on,	when	it
doesn’t	 read	 back	 the	 expected	 data,	 the	 program	might	 be	 so	 far	 removed
from	 the	 failure	 that	 it’s	 difficult	 to	 pinpoint	 the	 root	 cause.	Or	 suppose	 an
analytics	program	that	processes	log	files	simply	skips	over	all	corrupted	data
that	 it	encounters.	It’ll	be	able	to	continue	generating	reports,	but	days	later,
when	 customers	 complain	 that	 their	 numbers	 are	 inconsistent,	 we’ll	 be
scratching	our	heads	and	struggling	to	find	the	cause.

Slowly	 failing	 systems	 muddy	 the	 sources	 of	 code	 errors,	 making	 it
difficult	for	us	to	discover	what	went	wrong.	As	we	discussed	in	Chapter	4,
debugging	 is	an	 integral	part	of	software	development.	 Inevitably,	bugs	will
arise	 and	 software	 will	 be	 misconfigured,	 and	 we	 will	 need	 to	 spend	 time
reproducing	 the	 issues	 and	 pinpointing	 the	 sources	 of	 errors.	 The	 more
directly	we	can	 link	 the	 feedback	 to	a	source,	 the	more	quickly	 that	we	can
reproduce	the	problem	and	address	the	issue.

A	valuable	 technique	 for	 shortening	 that	 feedback	 loop	 is	 to	make	 your
software	 fail	 fast.	 Jim	 Shore	 explains	 the	 technique	 in	 his	 IEEE	 Software
article	“Fail	Fast”:	“[In]	a	system	that	fails	fast	…,	when	a	problem	occurs,	it
fails	immediately	and	visibly.	Failing	fast	is	a	nonintuitive	technique:	‘failing
immediately	 and	 visibly’	 sounds	 like	 it	 would	 make	 your	 software	 more
fragile,	but	it	actually	makes	it	more	robust.	Bugs	are	easier	to	find	and	fix,	so
fewer	 go	 into	 production.”	 13	 By	 failing	 fast,	 we	 can	 more	 quickly	 and
effectively	surface	and	address	issues.

Examples	of	failing	fast	include:
Crashing	at	startup	time	when	encountering	configuration	errors
Validating	 software	 inputs,	 particularly	 if	 they	won’t	 be	 consumed	 until
much	later
Bubbling	up	an	error	from	an	external	service	that	you	don’t	know	how	to
handle,	rather	than	swallowing	it
Throwing	an	exception	as	soon	as	possible	when	certain	modifications	to
a	data	structure,	like	a	collection,	would	render	dependent	data	structures,
like	an	iterator,	unusable

Throwing	an	exception	 if	key	data	structures	have	been	corrupted	rather
than	propagating	that	corruption	further	within	the	system
Asserting	that	key	invariants	hold	before	or	after	complex	logic	flows	and
attaching	sufficiently	descriptive	failure	messages
Alerting	engineers	about	any	invalid	or	inconsistent	program	state	as	early
as	possible

The	 more	 complex	 the	 system,	 the	 more	 time	 that	 fail-fast	 techniques	 can
save.	 My	 team	 once	 encountered	 a	 nasty	 data	 corruption	 bug	 on	 a	 web
application:	reads	from	the	data	store	generally	worked	fine,	but	a	few	times	a
day,	 they	would	 return	 completely	 unrelated	 data.	 Code	would	 request	 one
type	of	data	and	get	back	another,	or	it	would	ask	for	a	single	value	and	get
back	a	list	of	objects	of	a	completely	different	type.	We	suspected	everything
from	 data	 corruption	 in	 our	 application-level	 caching	 layers,	 to	 bugs	 in	 the
open	source	caching	services	themselves,	to	threads	overwriting	each	other’s
data.	It	took	multiple	team	members	over	a	week	to	resolve	the	problem.

It	 turned	 out	 that	 when	 a	 web	 request	 timed	 out,	 the	 application	 didn’t
properly	 reset	 the	MySQL	 connection	 that	was	 part	 of	 a	 shared	 connection
pool.	When	the	next	unsuspecting	web	request	came	in	and	reused	the	same
connection,	its	first	query	would	get	the	response	intended	for	the	timed-out
request.	 The	 erroneous	 response	 would	 propagate	 throughout	 the	 caching
layer.	Because	 the	web	 application	was	 under	more	 intense	 load	 that	week,
the	latent	bug	surfaced	more	frequently	than	usual.	Failing	fast	by	killing	the
connection	on	timeout	or	by	asserting	that	a	connection	was	clean	at	the	start
of	a	web	request	would	have	saved	us	many	collective	hours	of	grief.

Another	 time,	 I	was	working	with	Memcached,	 a	high-performance	 and
distributed	 in-memory	 caching	 system.	 Engineering	 teams	 at	 many	 web
companies	 cache	 values	 retrieved	 from	 their	 databases	 in	 Memcached	 to
improve	read	performance	and	reduce	database	load.	Memcached	essentially
behaves	 like	 a	 big	 hash	 table;	 clients	 write	 key-value	 pairs	 and	 then	 later
retrieve	 the	data	by	key	very	quickly.	Clients	also	can	specify	an	expiration
time	 on	 a	 key	 to	 expire	 stale	 data	 and	 manage	 the	 amount	 of	 memory
consumed	by	it.

To	 reduce	 the	 load	on	our	database,	 I	decided	 to	 increase	 the	 expiration
time	 (from	 10	 days	 to	 40)	 for	 a	 key	 that	 cached	 the	 results	 of	 certain
expensive	 database	 queries.	 After	 deploying	 the	 change	 to	 production,
however,	alerts	on	our	database	started	firing;	the	load	on	the	database	spiked
and	 was	 even	 higher	 than	 before.	 I	 quickly	 reverted	 the	 change,	 trying	 to
understand	 how	 increasing	 the	 expiration	 time	 could	 have	 increased	 load.
After	much	investigation,	it	turned	out	that	a	Memcached	expiration	time	was
expressed	in	seconds,	but	only	up	to	30	days.	Any	number	larger	than	30	days
(2,592,000	seconds)	was	 interpreted	as	a	UNIX	timestamp.	Memcached	had
treated	what	 I	 thought	was	40	days	as	a	 timestamp	from	1970,	even	 though

that	made	little	sense.	14	As	a	result,	values	expired	immediately	after	being
set,	as	if	they	weren’t	being	cached	at	all.	If	Memcached’s	interface	had	failed
fast	and	returned	a	more	sensible	error	rather	than	just	using	my	invalid	input
(or	if	the	interface	had	been	more	intuitive),	the	error	would	have	easily	been
caught	during	development	and	would	never	have	made	 it	 to	production.	 In
both	 of	 these	 cases,	 failing	 fast	 would	 have	 made	 errors	 more	 easily
detectable,	helping	to	reduce	the	frequency	and	duration	of	production	issues.

Failing	 fast	 doesn’t	 necessarily	mean	 crashing	 your	 programs	 for	 users.
You	 can	 take	 a	 hybrid	 approach:	 use	 fail-fast	 techniques	 to	 surface	 issues
immediately	 and	 as	 close	 to	 the	 actual	 source	 of	 error	 as	 possible;	 and
complement	 them	with	 a	 global	 exception	 handler	 that	 reports	 the	 error	 to
engineers	 while	 failing	 gracefully	 to	 the	 end	 user.	 For	 example,	 suppose
you’re	 working	 on	 a	 complex	 web	 application	 where	 the	 rendering	 engine
produces	hundreds	of	components	on	a	page.	Each	component	might	fail	fast
if	 it	 encounters	 an	 error,	 but	 a	 global	 exception	 handler	 could	 catch	 the
exception,	log	it,	and	then	fail	more	gracefully	for	the	user	by	not	rendering
that	 particular	 component.	 Or	 the	 global	 exception	 handler	 might	 show	 a
notification	 requesting	 the	 user	 to	 reload	 the	 page.	 What’s	 more,	 you	 can
build	 automated	 pipelines	 to	 aggregate	 the	 logged	 errors	 and	 sort	 them	 by
frequency	 in	 a	 dashboard,	 so	 that	 engineers	 can	 address	 them	 in	 order	 of
importance.	In	contrast	to	a	situation	where	components	simply	overlook	the
error	and	proceed	as	usual,	failing	fast	allows	you	to	capture	the	specific	error.

Building	systems	to	fail	fast	can	be	a	very	high-leverage	activity.	It	helps
reduce	the	time	you	spend	maintaining	and	debugging	software	by	surfacing
problematic	issues	sooner	and	more	directly.

Relentlessly	Automate	Mechanical	Tasks

Launching	 new	products	 and	 features	 is	 a	 big	 rush.	However,	 every	 launch
typically	brings	with	 it	 the	dreaded—but	necessary—responsibility	of	pager
duty,	a	job	that	I’ve	become	intimately	familiar	with	throughout	my	software
engineering	career.	Somebody	has	to	keep	everything	up	and	running.	During
pager	 duty	 rotation,	 on-call	 engineers	 take	 turns	 at	 being	 the	 first	 line	 of
defense	against	any	and	all	production	issues.	Being	on-call	means	traveling
with	your	laptop	and	a	wireless	data	card	so	that	no	matter	where	you	are,	you
can	 quickly	 hop	 online	 if	 you	 get	 an	 alert.	 It	 creates	 an	 unpredictable
schedule:	 you	might	 get	 called	 away	 at	 any	moment,	 sometimes	 to	 address
nerve-wracking	 and	 time-sensitive	 outages	 that	 legitimately	 require	 your
attention,	 but	 other	 times	 to	 deal	 with	 trifling	 issues.	 It’s	 particularly
frustrating	 to	get	woken	up	at	3AM	only	 to	 find	out	 that	you	need	 to	 run	a
series	of	5	commands	that	a	machine	could	have	done	for	you.	And	yet,	 it’s
surprisingly	easy	to	forge	ahead	with	other	work	the	next	day,	particularly	if
there’s	deadline	pressure,	instead	of	creating	a	long-term	fix.

Time	 is	 our	 most	 valuable	 resource.	 Pushing	 relentlessly	 toward
automation	 to	 reduce	 avoidable	 situations	 like	 3AM	 wake-up	 calls	 is	 one
high-leverage	way	 to	 free	up	our	 time	and	energy	so	we	can	focus	on	other
activities.	Applying	a	quick	manual	band-aid	to	address	a	problem	might	take
less	 time	 than	 building	 a	 sustainable	 fix.	 But	 in	 the	 long	 run,	 automating
solutions	 and	 scripting	 repetitive	 tasks	 reduce	 our	 operational	 burden,
providing	powerful	ways	to	scale	our	impact.

When	deciding	whether	 to	 automate,	 the	 judgment	 call	 that	 an	 engineer
must	make	is:	Will	 I	save	more	 time	overall	by	manually	doing	a	particular
task	 or	 by	 paying	 the	 upfront	 cost	 of	 automating	 the	 process?	 When	 the
manual	 labor	 required	 is	 obviously	 high,	 the	 decision	 to	 automate	 seems
simple	 enough.	 Unfortunately,	 situations	 are	 rarely	 that	 black	 and	 white.
Engineers	automate	less	frequently	than	they	should,	for	a	few	reasons:

They	 don’t	 have	 the	 time	 right	 now.	 Upcoming	 deadlines	 and
managerial	 pressure	 often	 prompt	 engineers	 to	 sacrifice	 the	 long-term
benefits	 of	 automation	 for	 the	 short-term	 benefit	 of	 shipping	 a	 product
sooner.	 Launching	 the	 product	 in	 a	 timely	 fashion	 may	 very	 well	 be
important	 right	 now,	 but	 consistently	 deferring	 the	 decision	 to	 automate
will	eventually	erode	engineering	productivity.
They	suffer	from	the	tragedy	of	the	commons,	in	which	individuals	act
rationally	according	to	their	own	self-interest	but	contrary	to	the	group’s
best	long-term	interests.	15	When	manual	work	 is	spread	across	multiple
engineers	and	teams,	it	reduces	the	incentive	of	any	individual	engineer	to
spend	the	time	to	automate.	This	happens	often	with	those	weekly	pager
duty	rotations,	for	example.	As	teams	get	bigger,	each	individual	rotation
occurs	less	frequently—and	it’s	tempting	to	apply	quick	manual	fixes	that
last	just	long	enough	for	you	to	punt	the	responsibility	to	the	next	on-call
engineer.
They	lack	familiarity	with	automation	tools.	Many	types	of	automation
rely	on	systems	skills	that	non-systems	engineers	are	not	as	familiar	with.
It	 takes	 time	 to	 learn	 how	 to	 quickly	 assemble	 command-line	 scripts,
combine	UNIX	primitives,	and	hack	together	different	services.	Like	most
skills,	however,	automation	gets	easier	with	practice.
They	underestimate	the	future	frequency	of	the	task.	Even	when	you
think	a	manual	task	might	only	need	to	be	completed	once,	requirements
sometimes	 change	 and	mistakes	 get	 made.	 It’s	 fairly	 straightforward	 to
update	a	script,	but	manually	redoing	the	entire	task	over	and	over	again	is
time-consuming.
They	 don’t	 internalize	 the	 time	 savings	 over	 a	 long	 time	 horizon.
Saving	 10	 seconds	 per	 task	 might	 not	 seem	 like	 a	 big	 deal,	 even	 if	 it
happens	10	times	a	day.	But	over	the	the	course	of	year,	that’s	almost	an
entire	workday	saved.

Every	time	you	do	something	that	a	machine	can	do,	ask	yourself	whether	it’s
worthwhile	to	automate	it.	Don’t	let	your	willingness	to	work	hard	and	grind
through	manual	tasks	cause	you	to	throw	hours	at	a	problem,	if	what’s	really
needed	is	a	little	cleverness.	Activities	where	automation	can	help	include:

Validating	 that	 a	 piece	 of	 code,	 an	 interaction,	 or	 a	 system	 behaves	 as
expected
Extracting,	transforming,	and	summarizing	data
Detecting	spikes	in	the	error	rate
Building	and	deploying	software	to	new	machines
Capturing	and	restoring	database	snapshots
Periodically	running	batch	computations
Restarting	a	web	service
Checking	code	to	ensure	it	conforms	to	style	guidelines
Training	a	machine	learning	model
Managing	user	accounts	or	user	data
Adding	or	removing	a	server	to	or	from	a	group	of	services

The	cost	of	automating	(including	learning	how	to	automate)	may	initially	be
higher	 than	 the	 cost	 of	 doing	 the	 job	manually.	However,	 if	 the	 experience
increases	the	efficiency	with	which	you	can	automate	in	the	future,	that	skill
will	compound	and	pay	 for	 itself	as	you	use	automation	 for	more	and	more
problems.

Do	 certain	 activities	 make	more	 sense	 to	 automate	 than	 others?	 Bobby
Johnson,	 a	 former	 Director	 of	 Engineering	 at	 Facebook	 who	 ran	 the
infrastructure	 team,	 provided	 valuable	 insight	 into	 this	 question.	 Facebook
runs	one	of	the	largest	MySQL	database	installations	in	the	world,	with	many
thousands	 of	 servers	 across	 multiple	 data	 centers.	 Each	 Facebook	 user’s
profile	is	assigned	to	one	of	many	thousands	of	partitions,	called	shards,	and
each	 database	 server	 contains	multiple	 shards.	 If	 a	 server	 fails	 (and	 tens	 or
hundreds	 might	 fail	 on	 a	 given	 day)	 or	 a	 shard	 gets	 too	 big,	 one	 or	 more
shards	need	to	be	redistributed	to	another	database	server.	16

Given	the	complexity	of	their	MySQL	configuration,	one	would	imagine
that	 Facebook	 must	 have	 built	 systems	 to	 automagically	 handle	 MySQL
failovers	 and	 load	 balancing	 early	 on	 in	 their	 history.	 Not	 so,	 according	 to
Johnson.	“I	was	at	a	conference,	and	all	these	people	were	talking	to	me	about
these	crazy	things	they	had	for	magically	failing	over	on	MySQL	and	doing
magical	load	balancing,”	Johnson	explained.	“We	actually	still	just	had	a	guy
who	did	that.”	Engineers	at	companies	managing	just	20	servers	were	writing
scripts	 that	 tried	 to	 get	 the	 system	 to	 automatically	 heal	 and	 correct	 itself
when	 things	went	wrong.	But	 at	 Facebook,	 an	 engineer	was	manually	 load
balancing	their	massive	database	cluster.

That	doesn’t	mean	that	automation	wasn’t	important;	it	would	have	been
impossible	 for	 one	 person	 to	 manage	 thousands	 of	 machines	 without
automated	 tools.	 Johnson,	 however,	 distinguished	 between	 two	 types	 of

automation:	 automating	 mechanics	 and	 automating	 decision-making.
Automating	the	mechanics	of	a	sequence	of	steps	tends	to	be	straightforward
and	 testable.	 Automating	 the	 right	 decisions	 to	 make,	 particularly	 in	 the
context	of	building	systems	that	can	heal	and	repair	themselves	when	things
go	wrong,	turns	out	to	be	much	more	challenging.	“[T]he	problem	when	you
do	build	 those	 systems	 is	 that	 they	 tend	 to	 run	 amok,”	 Johnson	 added.	 “So
many	of	the	worst	outages	we	ever	had	were	because	those	things	went	crazy.
They	 rarely	 get	 tested	 well,	 because	 by	 definition	 they	 run	 in	 unusual
circumstances.”

For	 example,	 consider	 a	 simple	 automated	 rule	 for	 a	 load	 balancer	 that
handles	a	failed	server	by	routing	traffic	destined	to	that	server	to	others	in	the
group.	This	policy	works	great	when	one	server	goes	down,	but	what	happens
if	half	the	servers	fail?	The	policy	routes	all	the	traffic	destined	to	those	failed
servers	 to	 the	 other	 half.	And	 if	 the	 servers	 had	 gone	 down	because	 of	 too
much	load,	then	the	automation	would	end	up	taking	down	the	entire	cluster.
That’s	a	much	worse	situation	than	just	dropping	half	of	the	requests	to	shed
load.

And	 so,	 for	 a	 long	 time,	 to	 balance	 database	 shards	 at	 Facebook,	 an
engineer	ran	a	script	 to	look	for	the	most	overloaded	machines	and	then	ran
another	script	to	move	some	shards	off	of	those	machines.	The	mechanics	of
moving	a	shard	from	one	database	server	to	another	was	heavily	automated,
but	a	human	decided	which	of	thousands	of	shards	to	move	where.	It	would
be	many	years	before	Facebook	reached	the	point	in	their	development	where
it	 was	 worthwhile	 to	 tackle	 the	 harder	 task	 of	 decision	 automation.	 They
ultimately	 deployed	 a	 system	 called	MySQL	Pool	 Scanner	 to	 automatically
rebalance	shards.

Automation	 can	 produce	 diminishing	 returns	 as	 you	 move	 from
automating	mechanics	to	automating	decision-making.	Given	your	finite	time,
focus	 first	 on	 automating	 mechanics.	 Simplify	 a	 complicated	 chain	 of	 12
commands	into	a	single	script	that	unambiguously	does	what	you	want.	Only
after	 you’ve	 picked	 all	 the	 low-hanging	 fruit	 should	 you	 try	 to	 address	 the
much	harder	problem	of	automating	smart	decisions.

Make	Batch	Processes	Idempotent

As	 you	 automate	 more	 operations,	 your	 time’s	 leverage	 increases—but	 so
does	the	probability	that	some	of	your	automation	will	fail.	Scripts	executing
a	 sequence	 of	 actions	 without	 human	 intervention	 (also	 known	 as	 batch
processes)	that	you	schedule	to	run	periodically,	will	hit	network	timeouts	or
unexpected	 hiccups.	 Scripts	 processing	 large	 amounts	 of	 data,	 increasingly
common	as	data	analytics	become	key	to	more	businesses,	work	most	of	the
time,	but	they	take	a	long	time	to	retry	or	recover	when	they	fail.	If	you’re	not

careful,	the	time	required	to	maintain	your	automation	will	climb.	Therefore,
minimizing	that	burden	is	a	high-leverage	activity.

One	 technique	 to	 make	 batch	 processes	 easier	 to	 maintain	 and	 more
resilient	 to	 failure	 is	 to	 make	 them	 idempotent.	 An	 idempotent	 process
produces	 the	 same	 results	 regardless	 of	 whether	 it’s	 run	 once	 or	 multiple
times.	It	therefore	can	be	retried	as	often	as	necessary	without	unintended	side
effects.	 For	 example,	 imagine	 that	 you’re	 processing	 the	 day’s	 application
logs	 to	 update	 the	weekly	 database	 counts	 of	 different	 user	 actions.	A	non-
idempotent	 approach	 might	 iterate	 over	 each	 log	 line	 and	 increment	 the
appropriate	 counter.	 If	 the	 script	 ever	 crashed	 and	 needed	 to	 be	 re-run,
however,	you	could	 inadvertently	 increment	some	counters	 twice	and	others
once.	A	more	robust,	idempotent	approach	would	keep	track	of	the	counts	of
each	 user	 action	 by	 day.	 It	 would	 read	 through	 the	 logs	 to	 compute	 the
counters	for	the	current	day,	and	only	after	that’s	successful,	would	it	derive
the	weekly	 totals	 by	 summing	 the	 daily	 counters	 for	 that	week.	Retrying	 a
failed	 process	 in	 the	 idempotent	 approach	 simply	 overwrites	 the	 daily
counters	 and	 re-derives	 the	weekly	 count,	 so	 there’s	 no	 double	 counting.	A
day’s	 counters	 could	 similarly	 be	 derived	 from	 separate	 hourly	 counters	 if
there’s	too	much	data.

When	idempotence	isn’t	possible,	structuring	a	batch	process	so	that	it’s	at
least	retryable	or	reentrant	can	still	help.	A	retryable	or	reentrant	process	 is
able	 to	 complete	 successfully	 after	 a	 previous	 interrupted	 call.	 A	 process
that’s	 not	 reentrant	 typically	 leaves	 side	 effects	 on	 some	 global	 state	 that
prevents	 it	 from	 successfully	 completing	 on	 a	 retry.	 For	 instance,	 a	 failed
process	 might	 still	 be	 holding	 onto	 a	 global	 lock	 or	 have	 emitted	 partial
output;	 designing	 the	 process	 so	 that	 it	 knows	 how	 to	 handle	 these
inconsistent	 states	 can	 reduce	 the	 amount	 of	 manual	 handholding	 required
later.	Make	each	process	either	fail	entirely	or	succeed	entirely.

Idempotence	also	offers	another	benefit	that	many	effective	engineers	take
advantage	of:	 the	ability	 to	 run	 infrequent	processes	at	a	more	 frequent	 rate
than	strictly	necessary,	to	expose	problems	sooner.	Suppose	you	have	a	script
that	 runs	 once	 a	 month.	 Perhaps	 it	 generates	 a	 monthly	 analytics	 report,
produces	a	new	search	index,	or	archives	stale	user	data.	Much	can	change	in
a	 month.	 Initially	 valid	 assumptions	 about	 the	 data	 size,	 codebase,	 or
architecture	may	no	longer	be	true.	If	these	false	assumptions	break	the	script,
this	 can	 cause	 a	 monthly	 scramble	 to	 figure	 out	 the	 cause,	 perhaps	 under
extreme	 time	 pressure.	 One	 powerful	 technique	 made	 possible	 by	 a
idempotent	script	is	to	convert	infrequent	workflows	into	more	common	ones
by	scheduling	dry	runs	every	day	or	week;	this	way,	you	get	quicker	feedback
when	something	breaks.	If	a	dry	run	fails	in	the	middle	of	the	month,	there’s
still	 ample	 time	 to	 figure	 out	 what	 went	 wrong;	 moreover,	 the	 window	 of
potential	causes	is	much	narrower.	Rajiv	Eranki,	a	former	Dropbox	engineer
responsible	 for	 scaling	 infrastructure	 from	 4K	 to	 40M	 users,	 even	 suggests

scheduling	scripts	intended	only	for	manual	invocation	(like	scripts	to	fix	user
state	or	to	run	diagnostics)	to	be	run	regularly	to	detect	errors.	17

Running	 batch	 processes	 more	 frequently	 also	 allows	 you	 to	 handle
assorted	 glitches	 transparently.	 A	 system	 check	 that	 runs	 every	 5	 to	 10
minutes	 might	 raise	 spurious	 alarms	 because	 a	 temporary	 network	 glitch
causes	it	to	fail,	but	running	the	check	every	60	seconds	and	only	raising	an
alarm	 on	 consecutive	 failures	 dramatically	 decreases	 the	 chances	 of	 false
positives.	Many	temporary	failures	might	resolve	themselves	within	a	minute,
reducing	the	need	for	manual	intervention.

Idempotence	 and	 reentrancy	 can	 reduce	 some	 of	 the	 complexity	 and
recurring	costs	involved	in	maintaining	automated	and	batch	processes.	They
make	automation	cheaper,	freeing	you	to	work	on	other	things.

Hone	Your	Ability	to	Respond	and	Recover	Quickly

At	 Netflix,	 engineers	 did	 something	 counterintuitive:	 they	 built	 a	 system
called	Chaos	Monkey	that	randomly	kills	services	in	its	own	infrastructure.	18
Rather	 than	 spending	 energy	 keeping	 services	 alive,	 they	 actively	 wreak
havoc	on	their	own	system.	It	turns	out	that	this	strategy	actually	makes	their
infrastructure	more	robust	and	reduces	the	pain	of	pager	duty.	By	configuring
Chaos	 Monkey	 to	 kill	 services	 on	 weekdays	 during	 regular	 work	 hours,
engineers	 can	 identify	 architectural	 weaknesses	 while	 they’re	 in	 the	 office
rather	than	having	to	deal	with	unexpected	and	untimely	emergencies	on	the
weekends	or	in	the	middle	of	the	night.	As	they	note	on	their	blog,	“The	best
defense	against	major	unexpected	failures	is	to	fail	often.”	19	When	Amazon
Web	Services,	which	Netflix	depends	on	for	its	cloud	services,	suffered	major
outages,	Netflix	was	able	to	escape	with	little	service	disruption—while	other
companies	 like	 Airbnb,	 Reddit,	 Foursquare,	 Hootsuite,	 and	 Quora	 suffered
multiple	hours	of	downtime.	20

Netflix’s	approach	illustrates	a	powerful	strategy	for	reducing	operational
burden:	developing	 the	ability	 to	 recover	quickly.	Regardless	of	what	we’re
working	 on,	 things	 will	 go	 wrong	 some	 of	 the	 time.	 If	 we’re	 building	 a
product	 that	 depends	 on	 the	 web,	 some	 downtime	 is	 inevitable.	 If	 we’re
building	 desktop	 software,	 some	bugs	will	 pass	 through	undetected	 and	 get
released	to	users.	Even	if	we’re	doing	something	as	fundamental	as	checking
in	 code,	we’ll	 occasionally	 break	 the	 build	 or	 the	 test	 suite,	 no	matter	 how
careful	we	 are.	 It’s	 important	 to	 focus	 on	 uptime	 and	 quality,	 but	 as	we	 go
down	the	list	of	probable	failure	modes	or	known	bugs,	we	will	find	that	our
time	investments	produce	diminishing	returns.	No	matter	how	careful	we	are,
unexpected	failures	will	always	occur.

Therefore,	how	we	handle	failures	plays	a	large	role	in	our	effectiveness.
And	at	some	point,	it	becomes	higher	leverage	to	focus	our	time	and	energy

on	our	ability	to	recover	quickly	than	on	preventing	failures	in	the	first	place.
The	better	our	 tools	and	processes	 for	 recovering	quickly	from	failures,	and
the	more	we	practice	using	them,	the	higher	our	confidence	and	the	lower	our
stress	levels.	This	allows	us	to	move	forward	much	more	quickly.

However,	even	though	the	cost	of	failure	can	be	very	high,	we	often	don’t
devote	 enough	 resources	 to	 developing	 strategies	 that	 address	 failure
scenarios.	Simulating	failures	accurately	is	difficult,	and	because	they	happen
infrequently,	the	payoff	for	handling	them	better	seems	lower	than	working	on
more	 pressing	 product	 issues.	Recovery	 processes	 to	 handle	 server	 failures,
database	failovers,	and	other	failure	modes	therefore	tend	to	be	inadequate	at
best.	 When	 we	 do	 need	 the	 processes,	 we	 bumble	 around	 trying	 to	 figure
things	 out	 when	 stress	 levels	 are	 at	 their	 highest,	 leading	 to	 subpar
performance.

One	 strategy	 for	 fixing	 this	 imbalance	 comes	 from	 Bill	 Walsh,	 former
coach	of	 the	San	Francisco	49ers.	 In	The	Score	Takes	Care	 of	 Itself,	Walsh
discusses	a	strategy	called	“scripting	for	success.”	21	Walsh	wrote	scripts,	or
contingency	plans,	for	how	to	respond	to	all	types	of	game	scenarios.	He	had
a	plan	for	what	to	do	if	the	team	was	behind	by	two	or	more	touchdowns	after
the	first	quarter;	a	plan	for	what	to	do	if	a	key	player	got	injured;	a	plan	for
what	to	do	if	the	team	had	25	yards	to	go,	one	play	remaining,	and	needed	a
touchdown.	 Walsh	 realized	 that	 it’s	 tough	 to	 clear	 your	 mind	 and	 make
effective	 decisions	 during	 critical	 points	 of	 the	 game,	 especially	 when
thousands	of	fans	are	roaring,	hecklers	are	throwing	hot	dogs	and	beer	cups	at
you,	 and	 the	 timer	 is	 ticking	 precious	 seconds	 away.	 Scripting	 moved	 the
decision-making	process	 away	 from	 the	 distracting	 and	 intense	 emotions	 of
the	 game.	 In	 fact,	 the	 first	 20	 to	 25	 plays	 of	 every	 49ers	 game	 eventually
became	scripted,	a	tree	of	if-then	rules	that	codified	what	the	team	would	do
in	different	scenarios.	By	scripting	for	success,	Walsh	led	the	49ers	to	3	Super
Bowl	victories	and	was	twice	named	NFL	Coach	of	the	Year.	22

Like	Walsh,	we	 too	can	script	 for	success	and	shift	our	decision-making
away	from	high-stakes	and	high-pressure	situations	and	into	more	controlled
environments.	 We	 can	 reduce	 the	 frequency	 of	 situations	 where	 emotions
cloud	 our	 judgments	 and	 where	 time	 pressure	 compounds	 our	 stress.	 As
engineers,	we	can	even	programmatically	script	our	responses	and	test	 them
to	ensure	that	they’re	robust.	This	is	particularly	important	as	an	engineering
organization	grows	and	any	infrastructure	that	can	fail	will	begin	to	fail.

Like	Netflix,	other	companies	have	also	adopted	strategies	for	simulating
failures	and	disasters,	preparing	themselves	for	the	unexpected:

Google	runs	annual,	multi-day	Disaster	Recovery	Testing	(DiRT)	events.
They	simulate	disasters,	like	earthquakes	or	hurricanes,	that	cut	the	power
for	 entire	 data	 centers	 and	 offices.	 They	 then	 verify	 that	 teams,
communications,	and	critical	systems	continue	to	function.	The	exercises
surface	single	points	of	 failure,	unreliable	 failovers,	outdated	emergency

plans,	and	other	unexpected	errors,	allowing	teams	to	deal	with	them	in	a
controlled	setting.	23

At	Dropbox,	the	engineering	team	often	simulates	additional	load	for	their
production	 systems.	 Doing	 so	 enables	 them	 to	 artificially	 trigger	 issues
sooner;	when	 they	hit	 a	 system	 limit	 that	 causes	errors,	 they	disable	 the
simulated	load	and	have	ample	time	to	investigate	the	issue.	This	is	much
less	stressful	than	firefighting	the	same	issues	when	they	have	to	deal	with
real	traffic	that	they	can’t	just	turn	off.	24

Netflix,	 Google,	 and	 Dropbox	 all	 assume	 that	 the	 unexpected	 and	 the
undesired	will	happen.	They	practice	their	failure	scenarios	to	strengthen	their
ability	to	recover	quickly.	They	believe	that	it’s	better	to	proactively	plan	and
script	 for	 those	 scenarios	 when	 things	 are	 calm,	 rather	 than	 scramble	 for
solutions	during	circumstances	outside	of	 their	control.	While	we	might	not
necessarily	work	at	the	same	scale	or	have	the	same	scope	of	responsibility	as
the	engineers	at	these	companies,	it’s	just	as	important	for	us	to	be	prepared
for	 whatever	 failure	 scenarios	 we	 experience.	 Ask	 “what	 if”	 questions	 and
work	through	contingency	plans	for	handling	different	situations:

What	if	a	critical	bug	gets	deployed	as	part	of	a	release?	How	quickly	can
we	roll	it	back	or	respond	with	a	fix,	and	can	we	shorten	that	window?
What	if	a	database	server	fails?	How	do	we	fail	over	to	another	machine
and	recover	any	lost	data?
What	 if	our	servers	get	overloaded?	How	can	we	scale	up	 to	handle	 the
increased	traffic	or	shed	load	so	that	we	respond	correctly	to	at	least	some
of	the	requests?
What	if	our	testing	or	staging	environments	get	corrupted?	How	would	we
bring	up	a	new	one?
What	 if	 a	 customer	 reports	 an	 urgent	 issue?	 How	 long	 would	 it	 take
customer	 support	 to	 notify	 engineering?	 How	 long	 for	 engineering	 to
follow	up	with	a	fix?

Practicing	our	failure	scenarios	so	 that	we	can	recover	quickly	applies	more
generally	to	other	aspects	of	software	engineering,	as	well:

What	 if	 a	manager	or	other	 stakeholder	at	an	 infrequent	 review	meeting
raises	objections	about	the	product	plan?	What	questions	might	they	ask,
and	how	might	we	respond?
What	if	a	critical	 team	member	gets	sick	or	 injured,	or	 leaves?	How	can
we	share	knowledge	so	that	the	team	continues	to	function?
What	 if	 users	 revolt	 over	 a	 new	 and	 controversial	 feature?	What	 is	 our
stance	and	how	quickly	can	we	respond?
What	 if	a	project	slips	past	a	promised	deadline?	How	might	we	predict
the	slippage	early,	recover,	and	respond?

Just	 like	 service	 downtime,	 it’s	 hard—indeed,	 sometimes	 impossible—to
prevent	these	failure	modes.	The	best	that	we	can	do	is	to	“script	for	success,”
practice	failure	scenarios,	and	work	on	our	ability	to	recover	quickly.

All	the	strategies	in	this	chapter	focus	on	minimizing	the	time	and	energy
spent	 operating	 and	maintaining	what	we	 build.	 Instagram	grew	 and	 scaled
successfully	in	part	because	the	team	didn’t	spend	all	their	time	keeping	their
app	up	and	running.	Minimizing	our	own	operational	burden	means	that	we,
too,	can	invest	our	time	in	more	meaningful	ways	of	driving	impact.

Key	Takeaways

Do	 the	 simple	 thing	 first.	 Simpler	 systems	 are	 easier	 to	 understand,
extend,	and	maintain.
Fail	fast	to	pinpoint	the	source	of	errors.	Make	debugging	easier	by	not
masking	your	errors	and	by	not	deferring	failures	until	later.
Automate	 mechanics	 over	 decision-making.	 Aggressively	 automate
manual	tasks	to	save	yourself	time.	At	the	same	time,	think	twice	before
trying	to	automate	decision-making,	which	tends	to	be	hard	to	get	correct.
Aim	 for	 idempotence	 and	 reentrancy.	 These	 properties	make	 it	 easier
for	you	to	retry	actions	in	the	face	of	failure.
Plan	and	practice	failure	modes.	Building	confidence	in	your	ability	to
recover	lets	you	proceed	more	boldly.

“S

Invest	in	Your	Team’s	Growth

INK	OR	SWIM.”	THESE	WEREN’T	THE	MOST	ENCOURAGING	WORDS	THAT	SEAN
Knapp,	my	new	CTO,	could	have	said	 to	me	as	 I	was	ramping	up,
but	 they	did	 set	 the	 tone	 for	my	onboarding	 experience	 at	Ooyala,

my	 first	 foray	 into	 the	 startup	world.	No	 life	 preserver	was	 coming—I	 had
better	figure	out	how	to	stay	afloat,	fast.

Knapp	 and	 his	 two	 other	 co-founders	 had	 brought	 along	much	 of	 their
Google	spirit	to	Ooyala.	They	envisioned	using	superior	technology	to	disrupt
the	 online	 video	 space,	 just	 as	Google	 had	 disrupted	 the	 online	 search	 and
advertising	 spaces.	 Greens,	 yellows,	 reds,	 and	 blues—traditional	 Google
colors—were	splashed	throughout	the	open-floor	office	layout,	giving	visitors
the	impression	that	Ooyala	could	actually	be	a	small	Google	offshoot.	But	the
founders	 also	 shared	 a	 Red	 Bull-chugging	 intensity	 that	 I	 hadn’t	 seen	 in
Google’s	laid-back	culture,	an	environment	where	I	hadn’t	experienced	many
urgent	deadlines	or	panics.

My	 first	 assignment	 at	 Ooyala	 was	 to	 build	 and	 launch	 an	 already-
promised	 feature	 that	would	 allow	 video	 publishers	 to	 schedule	when	 their
online	videos	would	go	on	the	air.	1	I	had	two	weeks.	On	my	first	day,	I	found
myself	 wading	 through	 a	 confusing	 codebase	 laced	 with	 technical	 debt—
accumulated	in	the	team’s	sprint	to	build	a	working	product—and	lacking	any
documentation	or	unit	tests.	Most	of	the	code	was	also	written	in	a	Java-like
language	 called	 ActionScript	 that	 I	 wasn’t	 familiar	 with.	 I	 needed	 to	 learn
ActionScript,	 get	 comfortable	 with	 Ruby	 on	 Rails,	 and	 familiarize	 myself
with	 Flash	 video	 and	 graphics	 libraries	 before	 I	 could	 even	 get	 started
building	 the	 feature.	 My	 eyes	 glued	 to	 my	 monitor,	 I	 traced	 through	 code
littered	with	obscure	variable	names	like	 	and	questionable	function	names
like	 	and	 .

That	 “sink-or-swim”	 onboarding	 program	 created	 one	 of	 the	most	 tense
and	 intimidating	 experiences	 of	 my	 career.	 I	 ended	 up	 pulling	 two	 nerve-
wracking	80-hour	weeks	to	ship	my	first	feature	on	schedule,	wondering	the
whole	 time	whether	 leaving	 the	 comforts	 of	Google	 and	 joining	 the	 startup

10

world	 had	 been	 the	 right	 choice.	 Eventually,	 I	 acclimated	 to	 the	 new
environment,	 and	 over	 time,	 the	 team	 supplanted	 the	 untested	 and	 cryptic
code	with	a	much	stronger	foundation.	But	sending	me	flailing	into	the	water
induced	 unnecessary	 stress	 and	 was	 not	 an	 effective	 use	 of	 my	 time	 and
energy.	 Moreover,	 for	 a	 long	 time,	 subsequent	 new	 hires	 had	 to	 struggle
through	a	similar	experience.

One	 of	 the	 biggest	 lessons	 I	 learned	 from	Ooyala	 is	 that	 investing	 in	 a
positive,	 smooth	 onboarding	 experience	 is	 extremely	 valuable.	 That	 lesson
was	 re-emphasized	when	I	 joined	 the	12-person	 team	at	Quora.	Onboarding
wasn’t	 well-structured;	 it	 mainly	 consisted	 of	 haphazard	 and	 ad	 hoc
discussions.	 Neither	 company	 was	 opposed	 to	 having	 a	 higher	 quality
onboarding	process,	but	creating	one	also	hadn’t	been	prioritized.	My	desire
for	 something	 better	motivated	 and	 informed	my	 subsequent	work	 building
Quora’s	onboarding	program,	discussed	later	in	this	chapter.

Investing	in	onboarding	is	 just	one	way	to	 invest	 in	your	 team’s	growth.
Up	until	 now,	most	 of	what	 you’ve	 read	have	been	 lessons	on	how	 to	be	 a
more	effective	individual	contributor.	So	how	did	a	chapter	on	team-building
find	 its	 way	 into	 a	 book	 about	 becoming	 a	 more	 effective	 engineer?	 It’s
because	the	people	and	the	team	that	you	work	with	have	a	significant	impact
on	your	own	effectiveness—and	you	don’t	have	to	be	a	manager	or	a	senior
engineer	 to	 influence	 your	 team’s	 direction.	 For	 some	 people,	 developing	 a
team	 may	 be	 less	 enjoyable	 than	 developing	 software.	 But	 if	 you	 want	 to
increase	your	effectiveness,	it’s	important	to	recognize	that	building	a	strong
team	and	a	positive	culture	has	a	considerable	amount	of	leverage.

The	 higher	 you	 climb	 up	 the	 engineering	 ladder,	 the	 more	 your
effectiveness	 will	 be	measured	 not	 by	 your	 individual	 contributions	 but	 by
your	 impact	 on	 the	 people	 around	 you.	 Companies	 like	Google,	 Facebook,
and	 others	 all	 have	 similar	 criteria	 for	 senior	 engineers,	 staff	 engineers,
principal	 engineers,	 distinguished	 engineers,	 and	 their	 equivalent	 positions:
the	 higher	 the	 level,	 the	 higher	 the	 expected	 impact.	 Marc	 Hedlund,	 the
former	Senior	VP	of	Product	Development	and	Engineering	at	Etsy	and	now
the	VP	of	Engineering	at	Stripe,	offered	a	succinct	description	of	the	different
positions.	“You’re	a	staff	engineer	if	you’re	making	a	whole	team	better	than
it	would	be	otherwise.	You’re	a	principal	engineer	if	you’re	making	the	whole
company	 better	 than	 it	 would	 be	 otherwise.	 And	 you’re	 distinguished	 if
you’re	improving	the	industry.”	2	Thinking	early	in	your	career	about	how	to
help	your	co-workers	succeed	instills	the	right	habits	that	in	turn	will	lead	to
your	own	success.

Investing	 in	 other	 people’s	 success	 is	 important	 for	 another	 reason:	 you
can	get	swept	up	the	ladder	with	them.	Yishan	Wong,	based	on	his	decade	of
experience	 leading	 teams	 in	Silicon	Valley,	 argues	 this	point	with	a	 thought
experiment.	“Imagine	that	you	have	a	magic	wand,	and	by	waving	this	magic
wand,	you	can	make	every	single	person	in	your	company	succeed	at	their	job
[by]	 120%.	 What	 would	 happen?”	 Wong	 answers	 his	 own	 question:	 “[I]f

everyone	knocked	their	job	out	of	the	park,	the	company	would	probably	be	a
huge	success	and	even	 if	you	did	nothing	else,	you’d	be	swept	along	 in	 the
tide	of	success	of	everyone	around	you.”	3	Wong	firmly	believes	the	secret	to
your	own	career	 success	 is	 to	 “focus	primarily	on	making	 everyone	 around
you	succeed.”

And	he	is	not	the	only	one	giving	that	advice.	Andy	Rachleff	co-founded
Benchmark	 Capital,	 a	 venture	 capital	 firm	 that’s	 invested	 in	 over	 250
companies	 and	 manages	 nearly	 $3	 billion	 in	 capital.	 He’s	 accumulated
decades	of	experience	in	growing	companies.	4	Rachleff	 tells	students	 in	his
Stanford	 class,	 “You	 get	 more	 credit	 than	 you	 deserve	 for	 being	 part	 of	 a
successful	 company,	 and	 less	 credit	 than	 you	 deserve	 for	 being	 part	 of	 an
unsuccessful	company.”	5	The	message	is	clear:	your	career	success	depends
largely	 on	 your	 company	 and	 team’s	 success,	 and	 the	 success	 of	 your
company	 or	 team	 depends	 on	more	 than	 just	 your	 individual	 contributions.
You’ll	accomplish	much	more	if	those	around	you	are	aligned	with	you	rather
than	against	you,	and	you	can	do	that	by	investing	in	their	success.

In	 this	 chapter,	we’ll	 go	over	 techniques	 to	 invest	 in	different	phases	of
your	 team’s	growth.	We’ll	 start	by	walking	 through	why	strong	engineering
companies	make	 hiring	 a	 top	 priority,	 and	what	 your	 role	 should	 be	 in	 the
hiring	process.	We’ll	talk	about	why	designing	a	good	onboarding	process	for
new	members	of	your	team	is	a	high-leverage	activity	and	how	to	do	it.	We’ll
discuss	 how,	 once	 you’ve	 assembled	 your	 team,	 sharing	 ownership	 of	 code
makes	 your	 team	 stronger.	We’ll	 go	 over	 how	 using	 post-mortems	 to	 build
collective	wisdom	leads	to	long-term	value.	And	we’ll	close	with	a	discussion
of	how	to	build	a	great	engineering	culture.

Make	Hiring	Everyone’s	Responsibility

Interviewing	 new	 engineering	 candidates	 can	 feel	 bothersome.	 It	 interrupts
productivity	and	breaks	up	our	day,	and	it’s	time-consuming	to	write	feedback
on	candidates	and	debrief	with	the	team.	If	the	recruiting	pipeline	is	not	set	up
well,	interviews	can	feel	like	hit-or-miss	sessions	with	unqualified	candidates
who	 bomb	 our	 questions.	We	 can	 leave	 interviews	 feeling	 like	 we	 weren’t
able	to	get	sufficient	signal	on	a	prospective	hire.	And	since	it’s	hard	to	recruit
the	 best	 talent,	 the	 majority	 of	 interviews	 don’t	 actually	 result	 in	 accepted
offers.	As	a	 result,	 individual	 interviews	might	not	appear	 to	be	particularly
good	time	investments.

It’s	only	when	we	 look	at	 interviews	 in	 the	aggregate	do	we	realize	 that
hiring	is	an	extremely	high-leverage	activity.	The	smaller	the	company—and
the	more	likely	that	the	person	you	interview	will	be	an	immediate	co-worker
—the	greater	the	leverage	of	those	interviews.	When	Quora’s	team	was	only
about	30	people,	I	had	a	20-day	stretch	where	I	interviewed	one	engineer	per

day.	On	 average,	 I	 spent	 two	 hours	 of	 every	 day	 that	month	 talking	with	 a
candidate,	writing	up	feedback,	and	debriefing	on	whether	to	make	an	offer.	It
was	exhausting.	But	if	those	40	hours	resulted	in	even	just	one	additional	hire,
the	 2,000+	 hours	 of	 output	 that	 he	 or	 she	would	 contribute	 per	 year	would
more	 than	 justify	 the	 cost.	And,	 in	 fact,	we	 struck	 gold	with	 that	 particular
batch;	we	ended	up	hiring	five	full-time	engineers	and	one	intern.

I’m	not	alone	in	adopting	a	mindset	that	hiring	ought	to	be	a	top	priority.
Albert	Ni,	 one	 of	 the	 first	 ten	 engineers	 at	 the	 popular	 file	 synchronization
service	 Dropbox,	 also	 realized	 that	 building	 a	 great	 team	 can	 be	 higher-
leverage	than	working	on	“traditional”	software	engineering.	Ni	built	out	the
original	analytics	and	payments	code	at	Dropbox	during	his	first	few	years	at
the	 company.	He	 loved	 the	work,	 but	 in	October	 2011,	when	 the	 company
consisted	 of	 30	 engineers,	 he	 switched	 his	 focus	 to	 recruiting.	 “I	 became
responsible	for	the	engineering	hiring	problem	that	we	had	here,”	Ni	told	me.
“We	were	really	struggling	to	hire	engineers	at	 the	time.”	A	core	part	of	 the
problem	was	that	engineers	simply	weren’t	spending	enough	time	on	hiring.
There	 was	 no	 standardization	 across	 interviews,	 no	 organized	 process	 for
sourcing	new	candidates,	and	no	formalized	campus	recruiting	efforts.	6

Focusing	on	recruiting	instead	of	writing	code	was	difficult.	“I’d	be	lying
if	I	said	I	was	super	excited	to	do	it	at	the	time,	because	I	really	enjoyed	the
work	I	was	doing,”	Ni	explained.	But	he	also	knew	that	there	weren’t	enough
engineering	 resources	 to	 execute	 on	 everything	 the	 team	 wanted	 to	 do,	 so
improving	the	hiring	process	would	have	a	huge	impact.	Ni	immersed	himself
in	 the	problem.	He	 started	 reviewing	all	 the	 inbound	 resumes,	 screening	all
the	 interview	 feedback,	 and	 attending	 the	 debriefs	 for	 every	 engineering
candidate.	He	did	the	actual	interview	scheduling	and	talked	with	candidates
to	 understand	 their	 perspectives	 on	 the	 process.	 Over	 the	 years,	 Ni’s	 work
paid	 off.	 Slowly,	 interviews	 became	 more	 standardized,	 and	 the	 company
built	 a	 culture	 where	 interviewing	 was	 everyone’s	 responsibility.	 By	 early
2014,	 the	 engineering	 team	 at	 Dropbox	 had	 grown	 to	 over	 150	 members,
more	than	5x	its	size	when	Ni	began	focusing	on	recruiting.

So	 how	do	we	 design	 an	 effective	 interview	process?	A	good	 interview
process	achieves	two	goals.	First,	it	screens	for	the	type	of	people	likely	to	do
well	on	the	team.	And	second,	it	gets	candidates	excited	about	the	team,	the
mission,	 and	 the	 culture.	 Ideally,	 even	 if	 a	 candidate	 goes	home	without	 an
offer,	 they	 still	 leave	 with	 a	 good	 impression	 of	 the	 team	 and	 refer	 their
friends	 to	 interview	 with	 the	 company.	 One	 of	 your	 primary	 levers	 as	 an
interviewer	 is	 therefore	 making	 the	 interview	 experience	 both	 fun	 and
rigorous.

As	an	interviewer,	your	goal	is	to	optimize	for	questions	with	high	signal-
to-noise	 ratios—questions	 that	 reveal	 a	 large	 amount	 of	 useful	 information
(signal)	about	the	candidate	per	minute	spent,	with	little	irrelevant	or	useless
data	 (noise).	Good,	well-executed	questions	 let	you	confidently	differentiate

among	candidates	of	varying	abilities;	bad,	poorly	managed	questions	 leave
you	unsure	whether	to	hire	the	candidate.

The	 types	 of	 questions	 that	 generate	 the	 most	 signal	 depend	 on	 the
qualities	most	correlated	with	success	on	your	team.	Traditionally,	many	large
technology	 companies	 like	 Google,	 Microsoft,	 Facebook,	 and	 Amazon
require	engineering	candidates	to	answer	algorithm	and	coding	questions	on	a
whiteboard.	These	 textbook-style	 questions	 evaluate	 a	 candidate’s	 computer
science	 knowledge,	 but	 they	 can	 often	 fall	 short	 in	 gauging	 whether	 an
engineer	actually	gets	things	done	in	a	work	environment.

An	 increasing	number	of	 companies	have	 shifted	 toward	 interviews	 that
include	 a	 hands-on	 programming	 component.	 At	 Quora,	 for	 example,	 we
augmented	our	suite	of	whiteboard	interviews	with	a	practical	coding	exercise
on	 a	 laptop.	Candidates	 navigated	 around,	 debugged,	 and	 extended	 a	 large,
open-source	 codebase	 in	 their	 favorite	 text	 editors,	 and	 they	 used	 Google,
Stack	Overflow,	 or	 other	 online	 resources	 as	 needed.	The	 exercise	 revealed
whether	 someone	 could	 effectively	 use	 a	 terminal,	 invoke	 basic	 UNIX
commands,	dive	into	unfamiliar	libraries,	set	up	a	tight	development	loop,	and
write	clean	code—all	of	which	were	valuable	signals	not	well	captured	by	the
traditional	whiteboard	interview.

At	 the	 payments	 startup	 Stripe,	 the	 team	 similarly	 designed	 its	 on-site
interviews	to	simulate	the	work	that	their	engineers	do	on	a	day-to-day	basis.
Problems	 included	 designing	 and	 implementing	 a	 small	 end-to-end	 system,
squashing	 bugs	 in	 a	 popular	 open-source	 codebase,	 refactoring	 a	 poorly
organized	 application,	 and	 pair	 programming	 on	 a	 self-contained	 project.	 7
Ooyala	tasked	candidates	with	implementing	and	demoing	a	functional	Tetris
game	to	test	their	ability	to	manage	a	project	and	trade	off	different	technical
choices	 under	 time	 constraints.	 Dropbox,	 Airbnb,	 Uber,	 Square,	 and	 many
other	 companies	 have	 also	 incorporated	 hands-on	 or	 even	 take-home
programming	exercises	into	their	 interviews.	8	These	 interview	questions	do
require	a	larger	upfront	investment	to	design	and	calibrate,	but	their	growing
adoption	indicates	that	many	teams	find	the	payoffs	to	be	well	worth	it.

Ample	 literature	 exists	 to	 help	 you	 get	 started	 on	 designing	 questions.
Gayle	 Laakmann	 McDowell’s	 book	 Cracking	 the	 Code	 Interview,	 for
example,	 covers	 standard	 interview	 patterns	 and	 questions	 at	 some	 of	 the
larger	technology	companies.	9	Beware,	however,	that	your	interviewees	have
access	to	the	same	question	banks.

Perhaps	trickier	than	the	choice	of	questions	is	how	to	continuously	iterate
on	 improving	 your	 interview	 process.	 Based	 on	 my	 experience	 conducting
over	 500	 interviews,	 here	 are	 a	 few	 higher-leverage	 strategies	 to	 keep	 in
mind:

Take	 time	 with	 your	 team	 to	 identify	 which	 qualities	 in	 a	 potential
teammate	 you	 care	 about	 the	 most:	 coding	 aptitude,	 mastery	 of

programming	 languages,	 algorithms,	 data	 structures,	 product	 skills,
debugging,	 communication	 skills,	 culture	 fit,	 or	 something	 else.
Coordinate	to	ensure	that	all	the	key	areas	get	covered	during	an	interview
loop.
Periodically	 meet	 to	 discuss	 how	 effective	 the	 current	 recruiting	 and
interview	 processes	 are	 at	 finding	 new	 hires	 who	 succeed	 on	 the	 team.
Keep	on	 iterating	until	you	 find	ways	 to	accurately	assess	 the	skills	and
qualities	that	your	team	values.
Design	interview	problems	with	multiple	layers	of	difficulty	that	you	can
tailor	 to	 the	 candidate’s	 ability	 by	 adding	 or	 removing	 variables	 and
constraints.	 Building	 a	 fast	 search	 interface	 can,	 for	 instance,	 be	 made
harder	 by	 requiring	 the	 search	 query	 to	 be	 distributed	 across	 multiple
machines.	Or,	it	can	be	made	simpler	by	assuming	size	constraints	on	the
items	to	be	indexed.	Layered	problems	tend	to	provide	more	fine-grained
signals	about	a	candidate’s	ability	 than	binary	ones,	where	 the	candidate
either	gets	the	answer	or	he	doesn’t.
Control	the	interview	pace	to	maintain	a	high	signal-to-noise	ratio.	Don’t
let	 interviewees	 ramble,	 get	 stumped,	 or	 get	 sidetracked	 for	 too	 long.
Either	guide	the	interviewee	along	with	hints,	or	wrap	up	and	move	on	to
a	different	question.
Scan	for	red	flags	by	rapidly	firing	short-answer	questions	to	probe	a	wide
surface	 area.	 Questions	 like	 how	 parameter	 passing	 works	 in	 a
programming	language	or	how	a	core	library	works	might	take	a	qualified
candidate	 no	 more	 than	 a	 few	 seconds	 or	 a	 minute	 to	 answer,	 but	 can
surface	any	warning	areas	that	you	might	want	to	further	address.
Periodically	shadow	or	pair	with	another	team	member	during	interviews.
These	 sessions	 help	 calibrate	 ratings	 across	 interviewers	 and	 provide
opportunities	 to	 give	 each	 other	 feedback	 on	 improving	 the	 interview
process.
Don’t	be	afraid	 to	use	unconventional	 interview	approaches	 if	 they	help
you	identify	the	signals	that	your	team	cares	about.	Airbnb,	for	example,
devotes	at	least	two	of	its	interviews	to	evaluating	a	candidate’s	culture	fit
because	 they	attribute	much	of	 their	 success	 to	everyone’s	alignment	on
the	company’s	core	values.

As	 with	 all	 skills,	 the	 only	 way	 that	 you	 can	 become	 more	 effective	 in
interviewing	 and	 hiring	 is	 through	 iteration	 and	 practice.	But	 it’s	worth	 the
effort:	 the	additional	output	 from	adding	a	 strong	engineer	 to	your	 team	far
exceeds	the	output	of	many	other	investments	that	you	could	make.

Design	a	Good	Onboarding	Process

Despite	my	sink-or-swim	experience	at	Ooyala	and	my	ad	hoc	ramping	up	at
Quora,	 I	 was	 convinced	 that	 onboarding	 could	 be	more	 organized	 and	 less
stressful.	Sure,	I	had	survived	both	initiation	processes,	but	they	left	much	to
be	desired	 if	we	wanted	 to	successfully	scale	our	engineering	organizations.
In	a	small	 team,	 there	aren’t	many	places	 to	 look	or	people	 to	consult	when
you’re	trying	to	figure	out	what’s	most	important.	As	the	team	grows	and	the
surface	area	of	new	things	to	explore	increases,	it	becomes	harder	and	harder
for	 a	 recent	 hire	 to	 figure	 out	 what	 to	 learn	 first	 without	 any	 guidance.
Employees	lay	out	different	subsets	of	concepts	to	new	people,	and	it’s	easy
for	 useful	 information	 to	 be	 omitted	 among	 the	 scattered	 explanations.	 An
engineer	might	 not	 learn	 a	 key	 abstraction	 because	 his	 initial	 projects	 deal
with	 peripheral	 features	 that	 don’t	 touch	 core	 parts	 of	 the	 codebase.	 Or,	 if
expectations	 aren’t	 communicated	 clearly,	 a	 new	 engineer	 might	 spend	 too
much	 time	 reading	 through	 design	 documents	 or	 programming	 language
guides	and	not	enough	time	fixing	bugs	and	building	features.	And	so,	when
we	 were	 growing	 the	 engineering	 team	 at	 Quora,	 I	 volunteered	 to	 lead	 an
effort	to	build	an	onboarding	program	for	new	engineers.

I’d	 never	 done	 anything	 like	 this	 before—it	 was	 way	 outside	 of	 my
normal	 software-building	 comfort	 zone.	 So	 I	 researched	Google’s	 EngEDU
training	program	and	Facebook’s	6-week	Bootcamp	onboarding	program,	and
I	reached	out	to	engineers	at	different	companies	to	learn	what	had	and	hadn’t
worked	 for	 them.	 Based	 on	 my	 research,	 I	 formally	 defined	 the	 role	 of
engineering	 mentorship	 at	 Quora	 and	 organized	 a	 recurring	 series	 of
onboarding	 talks.	Over	 time,	 I	 took	 on	 responsibilities	 for	 coordinating	 the
creation	 of	 training	 materials,	 holding	 mentor-training	 workshops,	 and
mentoring	many	of	the	new	hires	on	the	team.

I	was	motivated	by	my	realization	that	a	quality	onboarding	process	is	a
powerful	 leverage	point	 for	 increasing	 team	effectiveness.	First	 impressions
matter.	A	good	 initial	 experience	 influences	 an	 engineer’s	 perception	 of	 the
engineering	culture,	shapes	her	ability	to	deliver	future	impact,	and	directs	her
learning	and	activities	according	 to	 team	priorities.	Training	a	new	engineer
for	 an	 hour	 or	 two	 a	 day	 during	 her	 first	 month	 generates	 much	 more
organizational	 impact	 than	 spending	 those	 same	 hours	 working	 on	 the
product.	Moreover,	the	initial	time	investment	to	create	onboarding	resources
continues	to	pay	dividends	with	each	additional	team	member.

Onboarding	 benefits	 the	 team	 and	 the	 company,	 but	 if	 you’ve	 already
ramped	 up	 and	 become	 a	 productive	 contributor,	 you	 might	 wonder	 how
helping	 new	 hires	 acclimate	 benefits	 you	 personally.	 Why	 take	 time	 away
from	your	own	work?	Remember:	investing	in	your	team’s	success	means	that
you	 are	 more	 likely	 to	 succeed	 as	 well.	 Effectively	 ramping	 up	 new	 team
members	 ultimately	 gives	 you	 more	 flexibility	 to	 choose	 higher-leverage
activities.	A	stronger	and	larger	team	means	easier	code	reviews,	more	people
available	 to	 fix	 bugs,	 increased	 resources	 for	 on-call	 rotations	 and	 support,
and	greater	opportunities	to	tackle	more	ambitious	projects.

As	 an	 example,	 one	 component	 of	Quora’s	 new	 onboarding	 program	 is
pairing	each	hire	with	a	mentor.	Mentors	assign	small	features	or	bugs	from
their	task	lists	to	do	as	starter	projects.	These	are	great	learning	opportunities
for	new	hires,	since	the	mentors	have	context	for	each	project	and	can	provide
guidance	 and	 answer	 questions.	 It	 also	 frees	mentors	 to	 shift	 their	 attention
from	 less-interesting	 tasks	 to	 higher-leverage	 projects	 that	 they	 are	 better
suited	 to	 tackle.	 Onboarding	 is	 a	 win-win	 situation;	 the	 new	 hires	 receive
valuable	training,	and	the	mentors	get	more	things	done.

Conversely,	a	poor	onboarding	experience	reduces	a	team’s	effectiveness.
Productive	output	gets	lost	when	a	recent	hire	takes	longer	to	ramp	up.	Code
quality	suffers	if	new	team	members	use	abstractions	or	tools	incorrectly,	or	if
they	 aren’t	 familiar	 with	 team	 conventions	 or	 expectations.	 Insufficient
training	 means	 it’s	 harder	 to	 accurately	 identify	 low	 performers—are	 they
doing	poorly	because	they	were	bad	hires,	or	do	they	just	need	more	time	to
acclimate?	 Moreover,	 good	 engineers	 undergo	 unnecessary	 stress	 and	 may
even	 get	weeded	 out	 because	 of	weak	 guidance.	The	 impact	 of	 low-quality
onboarding	is	far-reaching.

Regardless	 of	 your	 seniority,	 you	 can	 contribute	 meaningfully	 to
onboarding.	 If	you’re	a	new	engineer	and	have	 just	experienced	 the	process
yourself,	 you	 can	 provide	 the	most	 direct	 feedback	 about	what	worked	 and
what	didn’t.	If	there	are	wikis	or	internal	documents	that	you	used,	see	if	you
can	 directly	 update	 and	 improve	 them.	 If	 you’re	 a	 more	 senior	 engineer,
observe	what	new	team	members	pick	up	well	and	what	 they	struggle	with,
and	use	that	knowledge	to	improve	onboarding	for	future	employees.

So	 how	 do	 you	 create	 a	 good	 onboarding	 process	 for	 your	 team?	 First,
identify	the	goals	that	your	team	wants	to	achieve.	Second,	construct	a	set	of
mechanisms	to	accomplish	these	goals.	When	designing	Quora’s	onboarding
program,	I	outlined	four	goals	that	I	thought	the	process	should	achieve:
1.	 Ramp	 up	 new	 engineers	 as	 quickly	 as	 possible.	 Onboarding	 does

require	a	short-term	productivity	hit	for	those	leading	it.	The	sooner	new
employees	 get	 ramped	 up,	 however,	 the	 sooner	 they’ll	 produce
meaningful	output—enabling	the	team	to	get	more	done	in	the	long	run.

2.	 Impart	 the	team’s	culture	and	values.	While	new	engineers	may	have
glimpsed	parts	of	the	culture	through	recruiting,	marketing	materials,	and
interviews,	the	onboarding	process	helps	ensure	that	they	learn	the	values
that	 the	 team	 shares.	 Those	 values	 might	 include	 getting	 things	 done,
being	data-driven,	working	well	as	a	team,	building	high	quality	products
and	services,	or	something	else.

3.	 Expose	 new	 engineers	 to	 the	 breadth	 of	 fundamentals	 needed	 to
succeed.	What	are	the	key	things	that	every	engineer	should	know?	What
valuable	 tips	 and	 tricks	have	you	 learned	 since	 joining	 the	 team?	A	key
part	of	a	good	onboarding	program	is	ensuring	 that	everyone	starts	on	a
consistent,	solid	foundation.

4.	 Socially	 integrate	 new	 engineers	 onto	 the	 team.	 This	 means	 creating

4.	 Socially	 integrate	 new	 engineers	 onto	 the	 team.	 This	 means	 creating
opportunities	 for	 them	 to	 meet	 and	 develop	 working	 relationships	 with
other	teammates.	The	sooner	that	new	engineers	become	full-fledged	parts
of	the	team	rather	than	isolated	silos,	the	more	effective	they	will	be.

Depending	 on	 your	 team,	 your	 own	 goals	 may	 vary.	 What’s	 important	 is
understanding	what	 you	want	 to	 achieve	 so	 that	 you	 can	 focus	 your	 efforts
appropriately.	 Using	 these	 goals,	 we	 developed	 the	 four	 main	 pillars	 for
Quora’s	onboarding	program:
1.	 Codelabs.	 We	 borrowed	 Google’s	 concept	 of	 codelabs	 to	 introduce

abstractions	 and	 tools	 at	 Quora.	 A	 codelab	 is	 a	 document	 that	 explains
why	 a	 core	 abstraction	 was	 designed	 and	 how	 it’s	 used,	 walks	 through
relevant	parts	of	its	code	internals,	and	supplies	programming	exercises	to
validate	 understanding.	 We	 created	 codelabs	 for	 our	 web	 framework
WebNode,	 our	 real-time	 updating	 system	 LiveNode,	 our	 caching	 layer
DataBox,	 and	 our	 debugging	 tools,	 in	 order	 to	 teach	 new	 engineers	 the
fundamentals	of	how	we	built	Quora.	10

I	invested	extra	effort	to	create	the	first	codelab	that	others	could	use
as	 a	model;	 I	 then	 scaled	 the	 effort	 by	 recruiting	 teammates	 to	pitch	 in.
These	 investments	 primarily	 involved	 an	 upfront,	 one-time	 cost	 of
creating	reusable	resources,	followed	by	a	small	recurring	cost	of	updating
any	 stale	 materials.	 The	 codelabs	 clarified	 what	 abstractions	 were
important	 to	 master	 early	 on	 and	 recommended	 a	 particular	 order	 for
learning	them.	They	enabled	new	engineers	to	ramp	up	more	quickly	and
make	product	changes	sooner.

2.	 Onboarding	talks.	We	organized	 a	 series	 of	 ten	 onboarding	 talks	 to	 be
delivered	 during	 a	 new	 hire’s	 first	 three	 weeks.	 These	 talks,	 given	 by
senior	 engineers	 on	 the	 team,	 introduced	 the	 codebase	 and	 site
architecture,	 explained	 and	 demoed	 our	 different	 development	 tools,
covered	 engineering	 expectations	 and	 values	 around	 topics	 like	 unit
testing,	and	 introduced	Quora’s	key	focus	areas—the	 things	we	believed
were	the	most	important	for	new	hires	to	learn.	They	also	provided	a	great
opportunity	for	everyone	on	the	team	to	get	to	know	each	other.	The	most
critical	 talks,	 like	 “Introduction	 to	 the	 Codebase,”	 were	 scheduled	 each
time	a	new	hire	started;	others	were	batched	together	and	given	once	there
were	 several	 new	 people.	 Together,	 the	 onboarding	 talks	 and	 codelabs
helped	ensure	that	new	hires	learned	the	fundamentals.

3.	 Mentorship.	 Because	 each	 new	 hire’s	 background	 is	 different,
onboarding	 programs	 can’t	 be	 one-size-fits-all.	 Quora	 paired	 each	 new
hire	with	a	mentor	to	provide	more	personalized	training	during	their	first
few	months.	Mentors	checked	in	daily	with	their	mentees	during	the	first
week,	and	then	met	for	weekly	1:1s.	Responsibilities	included	everything
from	 reviewing	 code,	 discussing	 design	 tradeoffs,	 and	 planning	 work
priorities,	 to	 introducing	 new	 hires	 to	 the	 right	 people	 on	 the	 team	 and

helping	 them	 acclimate	 to	 the	 fast	 pace	 of	 a	 startup.	 Quora	 also	 held
mentoring	 workshops	 and	 meetings	 to	 exchange	 tips	 and	 help	 mentors
improve.

As	a	 team,	we	built	 a	 shared	understanding	 that	 it	was	 acceptable—
and,	 in	fact,	strongly	encouraged—for	mentors	 to	spend	time	away	from
their	 regular	 work	 to	 train	 new	 employees.	 On	 their	 first	 day,	 I	 would
explicitly	tell	my	mentees	that	getting	them	ramped	up	had	higher	priority
than	 getting	 my	 other	 work	 done.	 We	 even	 took	 physical	 space	 into
consideration;	we	placed	mentees	close	to	their	mentors	so	it	was	easy	for
them	 to	 ask	 questions.	 All	 of	 this	 helped	 establish	 the	 shared	 goal	 of
ramping	up	new	hires	as	quickly	as	possible,	and	set	the	expectation	that
they	shouldn’t	hesitate	to	seek	guidance.

4.	 Starter	tasks.	New	engineers	pushed	 commits	 to	 add	 themselves	 to	 the
team	page	on	their	first	day,	and	we	aimed	for	each	of	them	to	complete	a
starter	task—whether	it	be	deploying	a	bug	fix,	a	small	new	feature,	or	a
new	 experiment—by	 the	 end	 of	 the	 first	 week.	 This	 aggressive	 target
conveyed	the	value	of	getting	things	done	and	moving	fast.	It	also	meant
that	the	team	needed	to	remove	enough	onboarding	friction	for	new	hires
to	 build	 momentum	 quickly.	 For	 example,	 we	 had	 to	 reduce	 overhead
sufficiently	 for	 them	 to	 be	 able	 to	 set	 up	 a	 development	 environment,
make	a	simple	change,	run	tests,	commit	the	code,	and	deploy	it—all	on
their	first	day.

Mentors	 were	 responsible	 for	 identifying	 starter	 tasks	 of	 increasing
complexity	 for	 their	 mentees.	 These	 tasks	 could	 be	 bugs,	 features,	 or
experiments	 that	 the	 mentors	 needed	 to	 get	 done	 and	 that	 provided	 a
valuable	 learning	 opportunity.	 I	 generally	 advised	 mentors	 to	 pick	 a
project	 that	would	 take	 them	a	day	 to	 finish,	 so	 that	even	 if	 ramping	up
took	 longer	 than	expected	and	 the	project	 slipped,	 there	would	still	be	a
high	probability	that	the	new	hire	could	ship	it	in	the	first	week.

These	goals	and	implementations	are	just	some	examples	of	what	to	consider
when	designing	the	onboarding	process	for	your	own	team.	It’s	important	to
realize	 that	 building	 a	 good	 onboarding	 program	 is	 an	 iterative	 process.
Maybe	 you	 simply	 start	 with	 a	 document	 on	 how	 to	 set	 up	 a	 development
environment,	with	the	goal	of	getting	a	new	engineer	ready	to	write	code	on
day	one.	Perhaps	you	realize	later	that	not	all	starter	projects	provide	the	same
ramp-up	benefit,	and	decide	to	articulate	a	set	of	guiding	principles	for	how	to
pick	good	ones.	Maybe	you	notice	 that	you’re	giving	 the	 same	codebase	or
architecture	 walkthrough	 over	 and	 over	 again,	 and	 realize	 that	 it	 would	 be
more	efficient	to	prepare	a	talk	or	even	record	a	video	on	the	topic.

Wherever	you	are	 in	designing	an	onboarding	process,	 think	about	your
own	experience	and	survey	others	on	the	team	to	get	a	sense	of	what	worked
well	 and	 what	 could	 use	 some	 improvement.	 Reflect	 on	 where	 new	 hires
struggled	 and	what	 things	 you	 can	 do	 to	 help	 them	 ramp	 up	more	 quickly.

Enumerate	 key	 concepts,	 tools,	 and	 values	 that	 you	 wish	 you	 had	 learned
earlier.	 Implement	your	most	valuable	 ideas,	and	 then	survey	new	hires	and
their	mentors	to	see	if	the	changes	helped.	Rinse	and	repeat.

Share	Ownership	of	Code

The	entire	engineering	team	at	Ooyala	had	been	sprinting	to	launch	a	rewrite
of	 our	 video	 player.	 We	 had	 pulled	 70-hour	 weeks	 for	 months,	 and	 I	 was
exhausted.	But	finally,	I	was	able	to	take	a	much-needed	vacation	in	Hawaii.
One	day,	I	was	hiking	the	Crater	Rim	Trail	on	Mauna	Loa,	the	world’s	largest
volcano,	enjoying	the	welcome	respite	from	my	office	routine.	Suddenly,	my
phone	buzzed.	 I	 pulled	 it	 out	of	my	pocket	 and	 read	 the	 text	message	 from
Ooyala’s	CTO:	“Logs	processor	down.”

The	logs	processor.	I	had	inherited	this	particular	piece	of	software	when
we	were	still	growing	Ooyala’s	analytics	team.	It	ingested	all	the	raw	data	we
collected	 from	millions	 of	 online	 video	 viewers	 and	 crunched	 out	 analytics
reports	for	our	business	customers.	The	continuously-updated	reports	showed
customers	 how	 their	 viewers	 engaged	 with	 online	 videos	 and	 provided
detailed	metrics	segmented	by	viewer	demographics.	And	at	that	moment	on
Mauna	Loa,	I	was	the	sole	person	who	knew	how	to	run	it.

Since	my	CTO	had	paged	me,	I	knew	that	the	problem	was	non-trivial.	I
also	knew	that	no	one	else	at	the	office	understood	the	system	well	enough	to
debug	 the	 issue.	 Unfortunately,	 since	 neither	 my	 laptop	 nor	 Wi-Fi	 were
readily	accessible,	all	I	could	do	was	reply,	“Hiking	on	a	volcano.	Can’t	look
at	it	until	tonight.”	The	problem	loomed	over	my	head	for	the	rest	of	the	day.

When	 I	 finally	 got	 back	 to	 my	 hotel,	 I	 investigated	 the	 problem	 and
revived	 the	 logs	 processor.	 But	 it	 was	 clear	 that	 our	 process	 was	 far	 from
ideal.	The	situation	wasn’t	great	for	me;	my	vacation	was	disrupted.	It	wasn’t
great	 for	 my	 team;	 they	 depended	 on	 me,	 and	 I	 wasn’t	 available.	 And	 it
wasn’t	great	for	our	customers;	they	didn’t	have	access	to	any	new	analytics
reports	for	almost	an	entire	day.

There’s	a	common	misconception	that	being	the	sole	engineer	responsible
for	a	project	 increases	your	value.	After	all,	 if	 fewer	people	know	what	you
know,	then	the	scarcity	of	your	knowledge	translates	into	higher	demand	and
value,	 right?	 What	 I’ve	 learned,	 however,	 is	 that	 sharing	 code	 ownership
benefits	 not	 only	 yourself	 but	 your	 entire	 team	 as	well.	As	 you	 increase	 in
seniority,	 your	 responsibilities	 as	 an	 engineer	 also	 grow.	 You	 become	 the
point-person	 for	more	 projects,	 and	 other	 engineers	 consult	 with	 you	more
frequently.	While	that	can	feel	good	and	may	even	increase	your	job	security,
it	also	comes	with	a	cost.

When	you’re	the	bottleneck	for	a	project,	you	lose	your	flexibility	to	work
on	other	things.	High-priority	bugs	get	routed	to	you	more	frequently	because

your	expertise	enables	you	to	fix	them	faster.	When	you’re	the	only	one	with
complete	knowledge	of	a	working	system	and	it	goes	down,	you	find	yourself
as	 the	 first	 (or	 only!)	 line	 of	 defense.	When	 a	 good	 chunk	 of	 your	 time	 is
spent	 responding	 to	 issues,	 performing	 maintenance,	 tweaking	 features,	 or
fixing	 bugs	 in	 a	 system	 simply	 because	 you’re	 the	 most	 knowledgeable
person,	 it’s	 harder	 for	 you	 to	 find	 free	 time	 to	 learn	 and	 build	 new	 things.
Identifying	others	on	your	team	who	can	relieve	some	of	those	demands	gives
you	 more	 freedom	 to	 focus	 on	 other	 high-leverage	 activities.	 That’s	 a	 key
reason	why	 investing	 in	 your	 team,	particularly	 by	 teaching	 and	mentoring,
helps	you	in	the	long	run.

From	a	company’s	perspective,	sharing	ownership	increases	the	bus	factor
to	more	 than	one.	The	quirky	 term	 refers	 to	 the	number	of	key	people	who
can	be	incapacitated	(for	example,	by	getting	hit	by	a	bus)	before	the	rest	of
the	 team	is	no	 longer	able	 to	keep	 the	project	going.	11	A	bus	 factor	of	one
means	that	if	any	member	of	the	team	gets	sick,	goes	on	vacation,	or	leaves
the	 company,	 the	 rest	 of	 the	 team	 suffers.	 It	 also	means	 that	 it’s	 harder	 for
engineers	on	the	team	to	be	fungible.	When	engineers	are	fungible,	“nobody
is	uniquely	positioned	to	do	one	thing,”	explains	Nimrod	Hoofien,	Director	of
Engineering	 at	 Facebook.	 “Any	 one	 thing	 can	 be	 done	 by	multiple	 people,
and	 that	 allows	 you	 more	 degrees	 of	 freedom,	 more	 flexibility	 in
development,	 and	 fewer	 constraints	 for	 on-call	 and	 support.”	 12	 Shared
ownership	eliminates	isolated	silos	of	information	and	enables	an	engineer	to
step	 in	 for	 another	 teammate,	 so	 that	 everyone	 can	 focus	 on	 whatever
produces	 the	 most	 impact.	 Moreover,	 since	 engineering	 often	 involves
grinding	 through	 unpleasant	 tasks,	 shared	 ownership	 also	 means	 that
everyone	participates	in	maintenance	duties	and	one	person	doesn’t	carry	the
entire	burden.

To	increase	shared	ownership,	reduce	the	friction	that	other	team	members
might	encounter	while	browsing,	understanding,	and	modifying	code	that	you
write	or	tools	that	you	build.	Here	are	some	strategies:

Avoid	one-person	teams.
Review	each	other’s	code	and	software	designs.
Rotate	different	types	of	tasks	and	responsibilities	across	the	team.
Keep	code	readable	and	code	quality	high.
Present	tech	talks	on	software	decisions	and	architecture.
Document	your	 software,	 either	 through	high-level	design	documents	or
in	code-level	comments.
Document	the	complex	workflows	or	non-obvious	workarounds	necessary
for	you	to	get	things	done.
Invest	time	in	teaching	and	mentoring	other	team	members.

The	engineering	organization	at	Ooyala	has	adopted	an	increasingly	stronger
emphasis	on	shared	code	ownership.	Anyone	on	a	given	team	can	be	on-call
and	 responsible	 for	 issues	 that	 arise.	 This	 gives	 senior	 engineers	more	 free

time	to	work	on	other	projects	and	junior	engineers	an	opportunity	to	ramp	up
on	the	infrastructure	and	the	codebase.	Share	ownership	and	remove	yourself
from	the	critical	path	to	give	yourself	more	opportunities	to	grow.

Build	Collective	Wisdom	through	Post-Mortems

In	our	haste	to	get	things	done,	we	often	move	from	task	to	task	and	project	to
project	 without	 pausing	 to	 reflect	 on	 how	 effectively	we	 spent	 our	 time	 or
what	 we	 could	 have	 done	 better.	 Developing	 the	 habit	 of	 regular
prioritization,	 covered	 in	 Chapter	 3,	 provides	 one	 opportunity	 for
retrospection.	 Another	 valuable	 opportunity	 comes	 from	 debriefing	 after
incidents	and	projects	and	sharing	lessons	more	widely	across	other	teams.

After	a	site	outage,	a	high-priority	bug,	or	some	other	infrastructure	issue,
effective	 teams	meet	 and	conduct	 a	detailed	post-mortem.	They	discuss	 and
analyze	 the	 event,	 and	 they	 write	 up	 what	 happened,	 how	 and	 why	 it
happened,	and	what	 they	can	do	 to	prevent	 it	 from	happening	 in	 the	 future.
The	 goal	 of	 the	 post-mortem	 is	 not	 to	 assign	 blame,	 which	 can	 be
counterproductive	 to	 the	 discussion,	 but	 to	 work	 together	 to	 identify	 better
solutions.	If	the	situation	is	not	preventable,	the	post-mortem	may	prompt	the
team	 to	 build	 new	 tools	 to	make	 recovery	 easier	 or	 compile	 a	 step-by-step
document	that	explains	how	to	deal	with	similar	situations.	The	post-mortem
write-up	 generally	 gets	 shared	 across	 teams,	 since	 many	 people	 in	 the
organization	want	to	know	what	happened.

It’s	 less	 common	 to	 dedicate	 the	 same	 healthy	 retrospection	 to	 projects
and	launches.	Your	team	might	launch	a	feature	to	a	favorable	press	write-up.
You	 clink	 champagne	 glasses	 to	 celebrate	 a	 job	well	 done,	 and	 then	move
onto	 the	 next	 project.	 But	 how	 effectively	 did	 your	 feature	 actually
accomplish	 your	 team’s	 goals?	Or	 say	 your	 team	 rewrites	 the	 infrastructure
code,	making	it	5%	faster	after	a	few	months	of	work.	Was	that	actually	the
best	use	of	your	team’s	time?	Without	pausing	to	debrief	and	review	the	data,
it’s	 hard	 to	know.	Moreover,	 even	when	post-mortems	do	get	 conducted	on
projects,	their	results	often	are	not	widely	distributed,	and	every	team	has	to
re-learn	the	same	lessons	on	their	own.

There’s	 some	 friction	 to	 doing	 this	 better.	 If	 your	 team	hasn’t	 defined	 a
clear	 goal	 or	metric	 for	 a	 launch,	 it’s	 difficult	 to	 assess	 its	 success.	 If	 your
team	 doesn’t	 want	 to	 publicly	 declare	 months	 of	 work	 to	 be	 a	 failure,	 it’s
tempting	 to	 close	 discussions.	 Or	 if	 your	 team	 is	 overwhelmed	 with	 new
projects,	 it’s	 hard	 to	make	 time	 for	 reflection.	As	 a	 result,	 opportunities	 for
building	collective	wisdom	get	lost.	Lessons	might	not	get	learned;	or	if	they
do,	 they	 are	 isolated	 in	 a	 few	people’s	 heads.	Costly	mistakes	 are	 repeated.
And	when	people	leave,	collective	wisdom	decreases.

Contrast	 this	 typical	 experience	 with	 how	 knowledge	 is	 collected	 at
NASA.	 NASA	 astronauts	 debrief	 with	 their	 supporting	 teams	 after	 every

simulation	 and	 every	mission	 to	 extract	 all	 the	 lessons	 they	 can	 about	what
went	wrong	and	what	they	could	do	better.	Debriefs	are	intense.	Experts	fire
barrages	of	questions,	and	every	decision	and	action	is	dissected	carefully.	A
4-hour	simulation	might	be	followed	by	a	1-hour	debrief.	A	space	flight	might
be	 followed	 by	 a	 month	 or	 more	 of	 all-day	 debriefs.	 Participants	 have	 to
steady	themselves	for	critical	feedback,	keeping	in	mind	that	the	goal	is	not	to
levy	blame	but	to	maximize	collective	wisdom.

The	 mission	 debriefs	 are	 time-consuming	 but	 invaluable,	 and	 the
cumulative	 lessons	 from	 200+	 space	 flights	 are	 captured	 in	 NASA’s
comprehensive	 tome,	Flight	Rules.	Chris	Hadfield	describes	Flight	Rules	 in
his	 book	An	Astronaut’s	Guide	 to	 Life	 on	 Earth,	 writing,	 “NASA	 has	 been
capturing	 our	missteps,	 disasters	 and	 solutions	 since	 the	 early	 1960s,	when
Mercury-era	 ground	 teams	 first	 started	 gathering	 ‘lessons	 learned’	 into	 a
compendium	that	now	lists	thousands	of	problematic	situations,	from	engine
failure	to	busted	hatch	handles	to	computer	glitches,	and	their	solutions.”

The	 compendium	 describes	 in	minute	 detail	 what	 to	 do	 in	 a	myriad	 of
different	 circumstances—and	why	you	 should	 do	 it.	Have	 a	 cooling	 system
failure?	Flight	Rules	 tell	you	how	to	fix	it,	step	by	step,	supplementing	with
the	rationale	for	each	step.	Fuel	cell	issue?	Flight	Rules	tell	you	whether	the
launch	 needs	 to	 be	 postponed.	 The	 playbook	 contains	 “extremely	 detailed,
scenario-specific	standard	operating	procedures,”	all	the	lessons	ever	learned
and	distilled	from	past	missions.	Mission	control	consults	Flight	Rules	every
time	they	run	into	an	unexpected	issue;	they	add	to	it	whenever	they	tackle	a
new	problem.	Given	that	each	space	shuttle	launch	costs	$450	million,	13	it’s
not	 hard	 to	 understand	why	NASA	 spends	 so	much	 time	 preparing	 for	 and
debriefing	after	missions.

Most	 of	 us	 aren’t	 launching	 spacecraft	 or	 coordinating	moonwalks,	 but
NASA’s	 practice	 of	 conducting	 project	 post-mortems	 to	 build	 the	 team’s
collective	wisdom	is	still	extremely	valuable	for	our	work.	We	certainly	can
compile	 step-by-step	 operational	 guides	 like	 NASA’s	 Flight	 Rules	 for
different	procedures.	MySQL	database	 failure?	Flight	Rules	 tell	you	how	 to
fail	 over	 from	 the	 master	 to	 the	 slave.	 Servers	 overloaded	 from	 traffic
overload?	 The	 playbook	 tells	 you	 which	 scripts	 to	 run	 to	 bring	 up	 extra
capacity.

These	 lessons	 and	 rules	 also	 apply	 at	 the	 project	 level.	 Project	 falling
behind	 schedule?	 Flight	 Rules	 tells	 you	 what	 happened	 in	 the	 past	 when
different	project	teams	worked	overtime,	what	those	teams	believed	were	the
main	 contributors	 to	 their	 eventual	 success	 or	 failure,	 and	 whether	 team
members	burned	out.	Have	an	idea	for	a	new	ranking	algorithm?	Flight	Rules
contains	a	compilation	of	all	past	A/B	tests,	what	their	hypotheses	were,	and
whether	the	experiments	confirmed	or	rejected	those	hypotheses.

To	build	 their	own	version	of	Flight	Rules,	 companies	 like	Amazon	and
Asana	use	methodologies	 like	Toyota’s	 “Five	Whys”	 to	understand	 the	 root

cause	of	operational	issues.	14	15	For	instance,	when	the	site	goes	down,	they
might	ask,	“Why	did	the	site	crash?”	Because	some	servers	were	overloaded.
“Why	were	 they	overloaded?”	Because	a	disproportionately	high	fraction	of
traffic	 was	 hitting	 a	 few	 servers.	 “Why	 wasn’t	 traffic	 more	 randomly
distributed?”	Because	the	requests	were	all	coming	from	the	same	customer,
and	their	data	is	only	hosted	on	those	machines.	By	the	time	the	fifth	why	is
asked,	 they’ve	 moved	 from	 the	 symptom	 to	 the	 root	 cause.	 A	 similar
methodology	can	be	used	to	facilitate	productive	discussion	about	a	project’s
success	or	failure.

Ultimately,	 compiling	 team	 lessons	 is	 predicated	 upon	 honest
conversation—and	 holding	 an	 honest	 conversation	 about	 a	 project	 can	 be
uncomfortable.	 It	 requires	 acknowledging	 that	 months	 of	 effort	 may	 have
resulted	 in	 failure,	 and	 viewing	 the	 failure	 as	 an	 opportunity	 for	 growth.	 It
requires	 aligning	behind	 a	 common	goal	 of	 improving	 the	 product	 or	 team,
and	 not	 focusing	 on	 where	 to	 assign	 blame.	 It	 requires	 being	 open	 and
receptive	 to	 feedback,	 with	 the	 goal	 of	 building	 collective	 wisdom	 around
what	went	wrong	and	what	could’ve	been	done	better.	But	if	a	difficult	hour-
long	 conversation	 can	 increase	 the	 chances	 that	 your	 next	month-long	 team
project	 succeeds,	 it’s	 high-leverage	 and	 well	 worth	 both	 the	 time	 and	 the
emotional	investment.

It’s	 difficult	 to	 instill	 a	 culture	 of	 collective	 learning	 into	 an	 entire
organization.	However,	 consistent	 applications	 of	 effort	 can	 go	 a	 long	way.
Start	with	small	projects	 that	you’re	working	on	with	your	 immediate	 team;
gradually	establish	the	practice	of	doing	post-mortems	after	larger	projects	as
well.	The	more	you	learn	from	each	experience,	the	more	you’ll	take	with	you
into	your	next	project,	and	 the	more	you’ll	 succeed.	Optimize	 for	collective
learning.

Build	a	Great	Engineering	Culture

Throughout	my	career,	 I’ve	reviewed	 thousands	of	 resumes	and	 interviewed
over	 five	 hundred	 candidates.	 Many	 of	 them	 were	 engineers	 from	 top
technology	 companies	 like	 Facebook,	 Google,	 Amazon,	 Dropbox,	 Palantir,
and	 Apple.	 Interviewers	 tend	 to	 develop	 a	 set	 of	 questions	 that	 they’ve
calibrated	against	multiple	candidates.	For	example,	I	always	asked,	“What	is
one	 thing	 that	you	 like	and	one	 thing	 that	you	dislike	about	 the	engineering
culture	at	__________?”	I’d	fill	 in	 the	blank	with	 the	name	of	 the	company
the	engineer	was	leaving	or,	 if	 the	candidate	was	a	fresh	college	graduate,	a
company	where	she	had	previously	interned.

Initially,	 I	 just	 wanted	 to	 make	 sure	 that	 a	 candidate	 shared	 good
engineering	hygiene	for	best	practices.	But	I	kept	tallies	of	the	responses,	and,
over	 time,	 they	 painted	 evocative	 pictures	 of	 different	 engineering	 cultures.
Some	 responses	 illustrated	 toxic	 culture—the	 elements	 that	 pushed	 some	of

the	 best	 engineers	 to	 leave	 their	 teams.	 Others	 revealed	 great	 culture—the
characteristics	 engineers	 actually	 look	 for	 when	 deciding	whether	 to	 join	 a
new	organization.	 I	 used	my	 tallies	 to	 visualize	what	 our	 own	 team	culture
should	look	like.

Engineering	 culture	 consists	 of	 the	 set	 of	 values	 and	 habits	 shared	 by
people	 on	 the	 team,	 and	 a	 great	 culture	 provides	 a	 number	 of	 benefits.
Engineers	feel	empowered	to	get	things	done,	which	makes	them	happier	and
more	productive.	Happy	and	productive	engineers	 in	 turn	 translate	 to	higher
employee	 retention.	The	culture	provides	a	 shared	context	and	a	 framework
for	 making	 decisions,	 which	 helps	 teams	 and	 organizations	 adapt	 more
quickly	to	problems	they	encounter.	And	because	the	best	engineers	look	for	a
strong	 engineering	 culture,	 it	 becomes	 a	 useful	 tool	 for	 recruiting	 talent.
Hiring	 those	 engineers	 further	 strengthens	 the	 culture	 and	creates	 a	positive
feedback	loop.

So	what	do	the	best	engineers	look	for	in	a	prospective	company?	Based
on	 my	 hundreds	 of	 interviews	 and	 conversations,	 I’ve	 found	 that	 great
engineering	cultures:
1.	 Optimize	for	iteration	speed.
2.	 Push	relentlessly	towards	automation.
3.	 Build	the	right	software	abstractions.
4.	 Focus	on	high	code	quality	by	using	code	reviews.
5.	 Maintain	a	respectful	work	environment.
6.	 Build	shared	ownership	of	code.
7.	 Invest	in	automated	testing.
8.	 Allot	experimentation	time,	either	through	20%	time	or	hackathons.
9.	 Foster	a	culture	of	learning	and	continuous	improvement.
10.	 Hire	the	best.
You’ll	notice	that	most	of	these	topics	have	already	been	covered	in	this	book.
This	 shouldn’t	 be	 a	 surprise.	 The	 best	 engineers	 enjoy	 getting	 things	 done,
and	 the	 high-leverage	 investments	we’ve	been	discussing	 empower	 them	 to
get	things	done	faster.	The	best	engineers	want	to	build	on	top	of	high-quality
and	well-tested	 codebases.	They	want	 to	 have	 short	 iteration	 and	validation
cycles	 so	 that	 they	 learn	 quickly	 and	 aren’t	wasting	 effort.	 They	 believe	 in
relentlessly	 automating	 processes	 to	 relieve	 their	 operational	 burden	 so	 that
they	 can	 keep	 learning	 and	 building	 new	 things.	 They	 know	 the	 value	 of
leverage,	and	they	want	to	work	at	places	where	they	can	create	meaningful
impact.

A	great	engineering	culture	isn’t	built	 in	a	day;	nor	is	 it	already	in	place
when	 a	 company	 first	 starts.	 It	 begins	 with	 the	 values	 of	 the	 initial	 team
members,	 and	 it’s	 a	 continual	work-in-progress	 that	 every	engineer	helps	 to
shape.	 It	 evolves	over	 time	with	 the	decisions	we	make,	 the	 stories	we	 tell,
and	 the	 habits	 we	 adopt.	 It	 helps	 us	 make	 better	 decisions,	 adapt	 more
quickly,	 and	 attract	 stronger	 talent.	 And	 when	 we	 focus	 on	 high-leverage

activities,	 we	 not	 only	 become	 more	 effective	 engineers,	 we	 also	 lay	 the
groundwork	for	a	more	effective	engineering	culture.

Key	Takeaways

Help	 the	 people	 around	 you	 be	 successful.	 The	 high	 rungs	 of	 an
engineering	 ladder	 are	 reserved	 for	 those	 who	 make	 their	 co-workers
more	effective.	Moreover,	the	success	of	those	around	you	will	also	carry
you	along.
Make	hiring	a	priority.	Keep	a	high	hiring	bar	and	play	an	active	role	in
growing	your	team.
Invest	 in	onboarding	and	mentoring.	The	more	quickly	you	can	 ramp
up	new	 team	members,	 the	more	effective	your	 team	will	be.	The	more
effective	 your	 team,	 the	 more	 freedom	 you	 have	 to	 tackle	 different
projects.
Build	shared	ownership	of	code.	 Increase	your	bus	factor	 to	be	greater
than	one	so	 that	you’re	not	a	bottleneck	for	development.	This	will	give
you	the	flexibility	to	focus	on	other	high-leverage	activities.
Debrief	and	document	collective	wisdom.	Reflect	on	projects	with	team
members,	 learn	 what	 worked	 and	what	 didn’t	 work,	 and	 document	 and
share	the	lessons	so	that	valuable	wisdom	doesn’t	get	lost.
Create	 a	 great	 engineering	 culture.	 This	 will	 help	 you	 be	 more
productive,	 streamline	decisions,	and	 recruit	other	 strong	engineers.	You
build	a	great	culture	by	fostering	the	same	habits	you	need	to	effectively
deliver	impact.

Epilogue

I BEGAN	THIS	BOOK	WITH	A	 SEARCH.	HOW	COULD	 I	CREATE	MEANINGFUL	 IMPACT
without	 pulling	 the	 70-	 to	 80-hour	work	weeks	 characterizing	my	 early
startup	days?	How	could	I	cut	out	the	hours	building	products	and	features

that	 customers	didn’t	use,	 the	hours	maintaining	 infrastructure	 that	 software
could	 automate,	 and	 the	 hours	 stuck	 on	 tasks	 where	 I	 was	 the	 bottleneck?
How	could	I	have	worked	less	and	accomplished	more?

In	 this	 book,	 I’ve	 shared	 what	 I	 learned	 in	 my	 journey	 to	 be	 a	 more
effective	engineer.	We’ve	covered	a	broad	range	of	topics	and	lessons.	At	the
same	 time,	we’ve	only	barely	scratched	 the	surface	of	 the	problems	 that	we
face	as	engineers.	When	should	we	use	one	technology	over	another?	Which
programming	 languages	 or	 paradigms	 are	 worthwhile	 to	 learn?	 Should	 we
work	 on	 side	 projects	 or	 focus	 on	 skills	 directly	 relevant	 to	 our	 jobs?	How
much	 time	 should	 we	 spend	 improving	 our	 communication	 or	 presentation
techniques?	The	 list	of	questions	could	go	on	and	on,	and	distilling	 the	best
advice	 to	 tackle	 each	 one	 would	 take	 volumes.	Moreover,	 the	 best	 answer
varies	based	on	our	circumstances,	our	personal	preferences,	and	our	goals.

The	 good	 news	 is	 that	 the	 same	 operating	 principle—leverage—that
we’ve	 used	 throughout	 The	 Effective	 Engineer	 can	 help	 us	 navigate	 these
waters.	 If	 there’s	one	 idea	 that	 I	want	you	 to	 take	away	 from	 this	book,	 it’s
this:	Time	 is	 our	most	 finite	 asset,	 and	 leverage—the	 value	we	 produce
per	unit	 time—allows	us	 to	 direct	 our	 time	 toward	what	matters	most.
We	should	always	ask	ourselves:	Does	the	work	I’m	doing	provide	the	highest
leverage	for	my	current	goal?	If	not,	why	am	I	doing	it?	Moreover,	when	we
make	 the	wrong	 choice—which	 is	 bound	 to	 happen	 over	 the	 course	 of	 our
careers—a	growth	mindset	allows	us	to	view	each	failure	as	an	opportunity	to
learn	and	do	better	next	time.

Leverage	 is	 the	 lens	 through	 which	 effective	 engineers	 view	 their
activities.	And,	as	you	might	have	 realized,	most	of	 the	advice	 in	 this	book
applies	beyond	engineering.	The	limitations	of	time	apply	just	as	much	in	life
as	 it	does	 in	work.	The	principle	of	 leverage	can	guide	us	 toward	 those	 life
activities	that	provide	the	highest	impact	for	our	efforts.

When	we’re	 planning	 our	 finances,	we	 should	 spend	 significantly	more
time	 on	 negotiating	 our	 salaries	 and	 setting	 up	 our	 investment	 asset
allocations—both	 of	 which	 could	 lead	 to	 tens	 or	 hundreds	 of	 thousands	 of
dollars	 down	 the	 line—than	 on	 agonizing	 over	 the	 tens	 of	 dollars	 that	 we
might	 save	 by	 changing	 a	 coffee	 habit.	When	 planning	 trips	 or	 events,	 we
should	focus	on	the	parts	that	matter	most	to	us—whether	it’s	the	location,	the
food,	 the	 activities,	 the	 invitees,	 or	 something	 else—before	 sweating	 the
smaller	details.	We	should	make	similar	calculations	about	the	best	use	of	our
time	when	we’re	debating	whether	to	hire	a	virtual	assistant,	outsource	a	task
to	 a	 remote	 team,	 or	 call	 Uber	 or	 Lyft	 instead	 of	 waiting	 for	 public
transportation.	Even	when	I	was	writing	this	book,	I	needed	to	overcome	the
risks	of	a	one-person	team	and	consciously	remind	myself	that	an	hour	spent

collecting	 feedback	would	 frequently	 provide	 higher	 leverage	 than	 a	 siloed
hour	spent	writing	and	editing.

Does	this	perspective	mean	that	we	should	be	pursuing	only	high-leverage
activities?	No;	that	would	be	exhausting.	We	enjoy	plenty	of	leisure	activities
like	 traveling,	 hiking,	 salsa	 dancing,	 and	 spending	 time	 with	 family	 and
friends	 without	 giving	 any	 thought	 to	 whether	 they’re	 high-impact	 or
represent	the	optimal	use	of	our	time—and	that’s	how	it	should	be.	But	when
it	 comes	 to	 achieving	 our	 work	 and	 life	 goals,	 leverage	 is	 a	 powerful
framework	for	helping	us	focus	on	the	right	things.

Appendix

M ANY	RESOURCES	HAVE	GUIDED	AND	 INSPIRED	MY	 JOURNEY.	THE	FOLLOWING
books	 have	 significantly	 shaped	my	 way	 of	 thinking	 about	 what	 it
means	 to	 be	 an	 effective	 engineer.	 In	 addition,	 you	 may	 wish	 to

follow	the	listed	blogs	to	continue	your	own	learning.

10	Books	Every	Effective	Engineer	Should	Read

Peopleware:	Productive	Projects	and	Teams	by	software	consultants	Tom
DeMarco	and	Timothy	Lister.	First	published	in	1987,	this	book	discusses
the	many	dynamics	within	projects	and	teams,	presenting	ideas	backed	up
by	 actual	 research.	 Though	 somewhat	 dated,	 the	 book	 provides	 many
pearls	of	wisdom,	like	how	imposing	overtime	can	destroy	a	team’s	ability
to	gel	and	how	listening	 to	music	while	programming	can	 interfere	with
our	ability	 to	 focus.	Peopleware	 started	me	on	my	path	 toward	 thinking
about	 how	 to	 build	 effective	 engineering	 teams	 and	 great	 engineering
cultures.
Team	Geek:	A	Software	Developer’s	Guide	 to	Working	Well	with	Others
by	 Brian	 W.	 Fitzpatrick	 and	 Ben	 Collins-Sussman.	 In	 this	 book,	 two
Googlers	who	founded	Google’s	Chicago	engineering	office	share	stories
and	insights	about	how	to	work	well	with	your	fellow	engineers.	Covering
strategies	on	how	to	deal	with	managers	or	poisonous	team	members,	and
discussing	 both	 patterns	 and	 anti-patterns	 on	 how	 to	 lead	 teams,	 it’s	 a
worthwhile	book	for	any	growing	engineer	to	read.
High	Output	Management	by	Andrew	S.	Grove.	Grove,	 the	former	CEO
of	Intel,	introduced	me	to	the	language	of	leverage	and	provided	me	with
the	 lens	 that	 I	 now	use	 to	 allocate	my	 time.	Don’t	 be	 turned	 off	 by	 the
word	 “management”	 in	 the	 title.	 His	 advice	 on	 how	 to	 increase	 your
output	 is	 relevant	 to	 both	 people	managers	 as	 well	 as	 to	 those	 he	 calls
“know-how	managers”—people	 like	senior	engineers	who	hold	much	of
the	valued	knowledge	within	an	organization.
Getting	Things	Done:	The	Art	of	Stress-Free	Productivity	by	David	Allen.
This	 book	 thoroughly	 describes	 a	 concrete	 implementation	 of	 how	 to
manage	 to-dos	 and	 task	 lists.	While	 I	 don’t	 subscribe	 to	 all	 of	 Allen’s
ideas,	it	was	eye-opening	to	read	about	one	possible	way	of	doing	things.
If	 you	 don’t	 have	 a	 good	 workflow	 for	 prioritizing	 and	 getting	 things
done,	this	book	can	provide	you	with	a	baseline.
The	 4-Hour	 Workweek:	 Escape	 9-5,	 Live	 Anywhere,	 and	 Join	 the	 New
Rich	 by	 Timothy	 Ferriss.	 Regardless	 of	whether	 you	 actually	 choose	 to
subscribe	to	the	type	of	extreme	lifestyle	that	Ferriss	advocates,	this	book
will	 teach	 you	 two	 things.	 First,	 it	 shows	 what’s	 possible	 if	 you
relentlessly	 prioritize	 your	 work	 and	 focus	 on	 the	 10%	 of	 effort	 that
produces	most	 of	 your	 gains.	 Second,	 it	 drives	 home	 the	 importance	 of

http://www.amazon.com/gp/product/0321934113?ie=UTF8&camp=1789&creativeASIN=0321934113&linkCode=xm2&tag=effectiveeng-20
http://www.amazon.com/gp/product/1449302440?ie=UTF8&camp=1789&creativeASIN=1449302440&linkCode=xm2&tag=effectiveeng-20
http://www.amazon.com/gp/product/0679762884?ie=UTF8&camp=1789&creativeASIN=0679762884&linkCode=xm2&tag=effectiveeng-20
http://www.amazon.com/gp/product/0142000280?ie=UTF8&camp=1789&creativeASIN=0142000280&linkCode=xm2&tag=effectiveeng-20
http://www.amazon.com/gp/product/0307465357?ie=UTF8&camp=1789&creativeASIN=0307465357&linkCode=xm2&tag=effectiveeng-20

creating	sustainable	systems	with	low	maintenance.	That’s	a	lesson	that’s
often	underemphasized	in	engineering,	where	our	inclination	to	build	new
features	 with	 the	 latest	 sexy	 technologies	 doesn’t	 necessarily	 take	 into
account	the	cost	of	future	maintenance.
The	 7	Habits	 of	Highly	Effective	People:	Powerful	 Lessons	 in	Personal
Change	by	Stephen	R.	Covey.	 I’m	not	actually	a	 fan	of	Covey’s	writing
style—much	of	it	is	a	little	too	abstract	and	fluffy—but	the	lasting	impact
of	 the	 ideas	 in	 the	book	 compensate	 for	 it.	 From	Covey’s	 third	habit	 of
“putting	first	things	first,”	I	learned	that	people	tend	to	neglect	important
but	non-urgent	 activities	 and	 spend	a	 lot	 of	 time	dealing	with	 tasks	 like
emails,	 phone	 calls,	 and	 meetings	 that	 may	 be	 urgent	 but	 ultimately
unimportant.	A	key	takeaway	from	this	habit	 is	 to	explicitly	budget	time
to	 invest	 in	 yourself,	 whether	 it’s	 by	 learning	 new	 skills,	 maintaining
relationships,	reading,	etc.
Conscious	 Business:	 How	 to	 Build	 Value	 Through	 Values	 by	 Fred
Kofman.	Kofman	taught	leadership	seminars	at	companies	like	Facebook
and	 Google,	 and	 his	 book	 transformed	 how	 I	 approach	 difficult
conversations	with	others.	Through	simple	language	and	well-constructed
hypotheticals,	Kofman	demonstrates	that	we	often	conflate	the	facts	of	a
situation	 and	 our	 own	 interpretations,	 resulting	 in	 unproductive
conversations.	Only	 by	 separating	 fact	 from	 story	 can	we	 actually	 have
those	difficult	conversations	where	we	achieve	our	goals.
Your	 Brain	 at	 Work:	 Strategies	 for	 Overcoming	 Distraction,	 Regaining
Focus,	and	Working	Smarter	All	Day	Long	by	David	Rock.	In	this	easy-
to-read	 book,	 Rock	 combines	 research	 on	 the	 brain’s	 functions	 with
actionable	 advice	 on	 how	 to	 work	 more	 effectively	 around	 the	 brain’s
limitations.	For	instance,	this	book	taught	me	that	because	prioritization	is
a	 difficult	 but	 high-leverage	 activity	 that	 requires	 substantial	 cognitive
effort,	it’s	best	done	at	the	beginning	of	the	day.
Flow:	 The	 Psychology	 of	 Optimal	 Experience	 by	 Mihály
Csíkszentmihályi.	 In	 this	book,	Csíkszentmihályi,	 a	Hungarian	professor
and	 the	 world’s	 leading	 researcher	 on	 positive	 psychology,	 summarizes
years	of	 research	on	what’s	 required	 to	make	someone	 feel	 fulfilled	and
motivated.	Criteria	include	a	quick	feedback	loop,	an	appropriate	level	of
challenge,	 and	 an	 absence	 of	 interruptions.	 Given	 how	 much	 time	 we
spend	working,	being	conscious	of	these	requirements	as	we	go	from	job
to	job	and	from	project	to	project	is	very	valuable.
Succeed:	 How	 We	 Can	 Reach	 Our	 Goals	 by	 Heidi	 Grant	 Halvorson.
Halvorson	 discusses	 different	 frameworks	 for	 thinking	 about	 goals	 and
how	 to	best	 frame	a	goal	 to	 increase	our	chances	of	 success.	When	 is	 it
helpful	 to	be	optimistic	versus	pessimistic	 in	a	goal?	Is	 it	better	 to	 think
about	why	you	want	to	achieve	a	certain	goal,	or	to	think	about	what	steps
are	 necessary	 to	 achieve	 it?	 Should	 you	 visualize	 what	 you	might	 gain

http://www.amazon.com/gp/product/0743269519?ie=UTF8&camp=1789&creativeASIN=0743269519&linkCode=xm2&tag=effectiveeng-20
http://www.amazon.com/Conscious-Business-Build-Through-Values/dp/1591795176
http://www.amazon.com/Your-Brain-Work-Strategies-Distraction/dp/0061771295?tag=effectiveeng-20
http://www.amazon.com/Flow-The-Psychology-Optimal-Experience/dp/0061339202?tag=effectiveeng-20
http://www.amazon.com/Succeed-How-Can-Reach-Goals/dp/0452297710?tag=effectiveeng-20

from	achieving	a	goal	or	what	you	might	lose	by	failing	to	achieve	it?	It
turns	out	 that	depending	on	 the	 type	of	goal,	different	ways	of	mentally
framing	the	goal	can	significantly	affect	your	chances	for	success.

Recommended	Blogs	To	Follow

http://www.theeffectiveengineer.com/.	 The	 Effective	 Engineer	 is	 my
personal	 blog,	where	 I	write	 about	 engineering	 habits,	 productivity	 tips,
leadership,	and	culture.
http://www.kalzumeus.com/.	 Patrick	 McKenzie	 runs	 his	 own	 software
business	 and	 has	 written	 many	 excellent	 long-form	 articles	 on	 career
advice,	consulting,	SEO,	and	software	sales.
http://katemats.com/.	 Kate	 Matsudaira,	 who	 has	 worked	 at	 large
companies	 like	 Microsoft	 and	 Amazon	 as	 well	 as	 at	 startups,	 shares
advice	about	tech,	leadership,	and	life	on	her	blog.
http://randsinrepose.com/.	Michael	 Lopp	 has	 worked	 for	 many	 years	 in
leadership	positions	at	Netscape,	Apple,	Palantir,	and	Pinterest,	and	writes
about	tech	life	and	engineering	management.
http://softwareleadweekly.com/.	 Oren	 Ellenbogen	 curates	 a	 high-quality
weekly	newsletter	on	engineering	leadership	and	culture.
http://calnewport.com/.	Cal	Newport,	 an	 assistant	 professor	 of	 computer
science	at	Georgetown,	 focuses	on	evidence-based	advice	 for	building	a
successful	and	fulfilling	life.
http://www.joelonsoftware.com/.	 Joel	 Spolsky,	 the	 co-founder	 of	 Stack
Exchange,	 provides	 all	 sorts	 of	 programming	 pearls	 of	 wisdom	 on	 his
blog.
http://martinfowler.com/.	Martin	Fowler,	author	of	 the	book	Refactoring,
writes	 about	 how	 to	 maximize	 the	 productivity	 of	 software	 teams	 and
provides	detailed	write-ups	of	common	programming	patterns.
http://pgbovine.net/.	Philip	Guo,	a	computer	science	professor,	has	written
extensively	and	openly	about	his	graduate	school	and	work	experiences.

http://www.theeffectiveengineer.com/
http://www.kalzumeus.com/
http://katemats.com/
http://randsinrepose.com/
http://softwareleadweekly.com/
http://calnewport.com/
http://www.joelonsoftware.com/
http://martinfowler.com/
http://pgbovine.net/

Acknowledgments

I AM	GRATEFUL	TO	THE	MANY	PEOPLE	WHO	HELPED	MAKE	WRITING	AND	PUBLISHING
The	Effective	Engineer	possible.
A	huge	thank	you	to	my	wife,	Chen	Xiao,	for	her	patience	and	support	as	I

took	a	personal	sabbatical	away	from	work	to	follow	my	dream	of	writing	a
book.	She	beta	tested	many	of	my	early	book	drafts	and	really	helped	me	to
figure	out	a	unifying	structure	for	the	book.

My	 editor,	 Emily	 M.	 Robinson,	 brought	 the	 quality	 of	 my	 writing	 to
another	level,	and	it	was	a	joy	to	iterate	with	her	on	the	drafts	on	Quip.	As	a
first-time	author,	I	couldn’t	have	hoped	for	a	better	editor.

Many	thanks	to	Philip	Guo,	Leo	Polovets,	Phil	Crosby,	Zach	Brock,	Xiao
Yu,	Alex	Allain,	Ilya	Sukhar,	Daniel	Peng,	Raffi	Krikorian,	Mike	Curtis,	Jack
Heart,	Tamar	Bercovici,	Tracy	Chou,	Yiren	Lu,	 Jess	Lin,	Annie	Ding,	Ellis
Lau,	 and	 Jessica	Lau	 for	 reading	 drafts	 of	 the	 book	 and	providing	 valuable
feedback.

Many	people	contributed	 to	 the	stories	 in	 the	book:	Mike	Krieger,	Marc
Hedlund,	 Sam	 Schillace,	 Tamar	 Bercovici,	 Bobby	 Johnson,	 Albert	 Ni,
Nimrod	Hoofien,	Kartik	Ayyar,	Yishan	Wong,	Jack	Heart,	 Joshua	Levy,	and
Dan	McKinley.	Thank	you	all	for	taking	the	time	to	sit	down	for	interviews.
The	stories	and	lessons	you	shared	were	invaluable.

Thanks	 to	Bret	Taylor	 for	 taking	 the	 time	 to	write	 the	 foreword	and	 for
starting	a	company	around	a	product	that	made	the	collaborative	writing	and
project	management	aspects	of	this	book	so	much	more	enjoyable.

Thank	 you	 to	 the	 team	 at	 Quora	 for	 building	 a	 knowledge-sharing
platform	 that	 re-inspired	my	passion	 for	writing,	 and	particularly	 to	Charlie
Cheever,	who	empowered	me	to	create	meaningful	impact	at	the	company.

Notes

Chapter	1:	Focus	on	High-Leverage	Activities

1.	 Kah	Keng	 Tay,	 “The	 Intern	 Experience	 at	 Quora,”	Quora,	 November	 4,
2013,	https://blog.quora.com/The-Intern-Experience-at-Quora.
2.	Peter	F.	Drucker,	The	Effective	Executive	(HarperBusiness	2006).
3.	 “Pareto	 principle,”	 Wikipedia,
http://en.wikipedia.org/wiki/Pareto_principle.
4.	“Archimedes,”	Wikipedia,	http://en.wikiquote.org/wiki/Archimedes.
5.	Assuming	 a	 40–60	 hour	work	week,	 2	weeks	 of	 federal	 holidays,	 and	 3
weeks	of	personal	vacation.
6.	Andrew	S.	Grove,	High	Output	Management	(Vintage	1995),	p53–54.
7.	Yishan	Wong,	interview	with	the	author,	March	14,	2013.
8.	Yishan	Wong,	“Engineering	Management,”	October	22,	2009,	http://algeri-
wong.com/yishan/engineering-management.html.
9.	 Yishan	 Wong,	 “Engineering	 Management	 -	 Hiring,”	 October	 23,	 2009,
http://algeri-wong.com/yishan/engineering-management-hiring.html.
10.	 “Company	 Info	 |	 Facebook	 Newsroom,”
http://newsroom.fb.com/company-info/.
11.	 Bill	 &	 Melinda	 Gates	 Foundation,	 “Foundation	 Fact	 Sheet,”
http://www.gatesfoundation.org/Who-We-Are/General-
Information/Foundation-Factsheet.
12.	 Bill	 Gates,	 “Bill	 Gates:	 Here’s	 My	 Plan	 to	 Improve	 Our	World—And
How	 You	 Can	 Help,”	 Wired,	 November	 12,	 2013,
http://www.wired.com/business/2013/11/bill-gates-wired-essay/.

https://blog.quora.com/The-Intern-Experience-at-Quora
http://en.wikipedia.org/wiki/Pareto_principle
http://en.wikiquote.org/wiki/Archimedes
http://algeri-wong.com/yishan/engineering-management.html
http://algeri-wong.com/yishan/engineering-management-hiring.html
http://newsroom.fb.com/company-info/
http://www.gatesfoundation.org/Who-We-Are/General-Information/Foundation-Factsheet
http://www.wired.com/business/2013/11/bill-gates-wired-essay/

Chapter	2:	Optimize	for	Learning

1.	 “Protocol	 Buffers:	 Developer	 Guide,”
https://developers.google.com/protocol-buffers/docs/overview.
2.	Fay	Chang	et	al.,	 “Bigtable:	A	Distributed	Storage	System	for	Structured
Data,”	 Operating	 Systems	 Design	 and	 Implementation,	 2006,
http://research.google.com/archive/bigtable-osdi06.pdf.
3.	 Jeffrey	 Dean	 and	 Sanjay	 Ghemawat,	 “MapReduce:	 Simplified	 Data
Processing	 on	 Large	 Clusters,”	 Operating	 Systems	 Design	 and
Implementation,	 2004,	 http://research.google.com/archive/mapreduce-
osdi04.pdf.
4.	Carol	Dweck,	Mindset:	The	New	Psychology	of	Success	(Ballantine	Books
2007),	p6.
5.	Dweck,	Mindset,	p6–7.
6.	Dweck,	Mindset,	p17–18.
7.	Dweck,	Mindset,	p218–224.
8.	Dweck,	Mindset,	p23.
9.	Dweck,	Mindset,	p57.
10.	The	formula	for	compounding	interest	is	V	=	P(1+r/n)^nt,	where	V	=	the
future	value	of	 the	 investment,	P	=	 the	principal	 investment	amount,	 r	=	 the
annual	interest	rate,	n	=	the	number	of	times	that	interest	is	compounded	per
year,	and	t	=	the	number	of	years	the	money	is	invested	for.
11.	 Blake	 Masters,	 “Peter	 Thiel’s	 CS183:	 Startup	 -	 Class	 5	 Notes	 Essay,”
April	 20,	 2012,	 http://blakemasters.tumblr.com/post/21437840885/peter-
thiels-cs183-startup-class-5-notes-essay.
12.	 Reid	 Hoffman	 and	 Ben	 Casnocha,	 The	 Start-up	 of	 You:	 Adapt	 to	 the
Future,	 Invest	 in	 Yourself,	 and	 Transform	 Your	 Career	 (Crown	 Business
2012).
13.	 Tony	 Hsieh,	 Delivering	 Happiness:	 A	 Path	 to	 Profits,	 Passion,	 and
Purpose	(Business	Plus	2010),	p173–175.
14.	1.01^365	=	37.78.
15.	Hsieh,	Delivering	Happiness,	p163–165.
16.	 Sheryl	 Sandberg,	Lean	 In:	Women,	Work,	 and	 the	Will	 to	 Lead	 (Knopf
2013),	p58.
17.	Andrew	Bosworth,	“Facebook	Engineering	Bootcamp,”	Facebook	Notes,
November	 19,	 2009,	 https://www.facebook.com/notes/facebook-

https://developers.google.com/protocol-buffers/docs/overview
http://research.google.com/archive/bigtable-osdi06.pdf
http://research.google.com/archive/mapreduce-osdi04.pdf
http://blakemasters.tumblr.com/post/21437840885/peter-thiels-cs183-startup-class-5-notes-essay
https://www.facebook.com/notes/facebook-engineering/facebook-engineering-bootcamp/177577963919

engineering/facebook-engineering-bootcamp/177577963919.
18.	Ryan	Tate,	“Google	Couldn’t	Kill	20	Percent	Time	Even	if	It	Wanted	To,”
Wired,	 August	 21,	 2013,	 http://www.wired.com/2013/08/20-percent-time-
will-never-die/.
19.	Ryan	Tate,	 “LinkedIn	Gone	Wild:	 ’20	 Percent	 Time’	 to	Tinker	 Spreads
Beyond	 Google,”	 Wired,	 December	 6,	 2012,
http://www.wired.com/2012/12/llinkedin-20-percent-time/.
20.	 John	 Rotenstein,	 “Atlassian’s	 20%	 Time	 now	 out	 of	 Beta,”	 Atlassian
Blogs,	 March	 23,	 2009,
http://blogs.atlassian.com/2009/03/atlassians_20_time_now_out_of_beta/.
21.	 Steven	 Sinofsky,	 “The	 path	 to	 GM	 –	 some	 thoughts	 on	 becoming	 a
general	manager,”	Steven	Sinofsky’s	Microsoft	TechTalk,	September	19,	2005,
http://blogs.msdn.com/b/techtalk/archive/2005/09/18/471121.aspx.
22.	 Peter	 Brown	 et	 al.,	Make	 It	 Stick:	 The	 Science	 of	 Successful	 Learning
(The	Belknap	Press	of	Harvard	University	Press	2014),	p19.
23.	 Peter	 Brown	 et	 al.,	Make	 It	 Stick:	 The	 Science	 of	 Successful	 Learning
(The	Belknap	Press	of	Harvard	University	Press	2014),	p46–66.
24.	Bobby	Johnson,	interview	with	the	author,	December	17,	2013.
25.	 Philip	Moeller,	 “Why	 Learning	 Leads	 To	Happiness,”	Huffington	 Post,
April	 10,	 2012,	 http://www.huffingtonpost.com/2012/04/10/learning-
happiness_n_1415568.html.
26.	 Aden	 Hepburn,	 “Infographic:	 2013	 Mobile	 Growth	 Statistics,”	Digital
Buzz,	 October	 2013,	 http://www.digitalbuzzblog.com/infographic-2013-
mobile-growth-statistics/.
27.	 Benedict	 Evans,	 “Mobile	 is	 Eating	 the	 World,”	 Slideshare,	 November
2013,	http://www.slideshare.net/bge20/2013-11-mobile-eating-the-world.
28.	Bill	Gates,	“The	Best	Books	I	Read	in	2013,”	gatesnotes,	December	12,
2013,	http://www.thegatesnotes.com/Personal/Best-Books-2013.
29.	“Junto	(club),”	Wikipedia,	http://en.wikipedia.org/wiki/Junto_(club).
30.	 “Google	 Tech	 Talks,”	 YouTube,
http://www.youtube.com/user/GoogleTechTalks/videos.
31.	 “Talks	 at	 Google,”	 YouTube,
http://www.youtube.com/user/AtGoogleTalks/featured.
32.	“TED:	Ideas	Worth	Spreading,”	https://www.ted.com/.
33.	 Richard	 Wiseman,	 The	 Luck	 Factor:	 The	 Four	 Essential	 Principles
(Miramax	2004),	p38.
34.	 Scott	 H.	 Young,	 “Learn	 Faster	 with	 the	 Feynman	 Technique,”	 Scott	 H
Young	Blog,	http://www.scotthyoung.com/blog/2011/09/01/learn-faster/.

http://www.wired.com/2013/08/20-percent-time-will-never-die/
http://www.wired.com/2012/12/llinkedin-20-percent-time/
http://blogs.atlassian.com/2009/03/atlassians_20_time_now_out_of_beta/
http://blogs.msdn.com/b/techtalk/archive/2005/09/18/471121.aspx
http://www.huffingtonpost.com/2012/04/10/learning-happiness_n_1415568.html
http://www.digitalbuzzblog.com/infographic-2013-mobile-growth-statistics/
http://www.slideshare.net/bge20/2013-11-mobile-eating-the-world
http://www.thegatesnotes.com/Personal/Best-Books-2013
http://en.wikipedia.org/wiki/Junto_(club)
http://www.youtube.com/user/GoogleTechTalks/videos
http://www.youtube.com/user/AtGoogleTalks/featured
https://www.ted.com/
http://www.scotthyoung.com/blog/2011/09/01/learn-faster/

35.	 Karlyn	 Adams,	 “The	 Sources	 of	 Innovation	 and	 Creativity,”	 National
Center	on	Education	and	the	Economy	(NCEE)	Research	Summary	and	Final
Report,	 July	 2005,	 p4,	 http://www.ncee.org/wp-
content/uploads/2010/04/Sources-of-Innovation-Creativity.pdf.
36.	“State	of	the	Media	Trends	in	TV	Viewing—2011	TV	Upfronts,”	Nielsen,
2001,
http://www.nielsen.com/content/dam/corporate/us/en/newswire/uploads/2011/04/State-
of-the-Media-2011-TV-Upfronts.pdf.
37.	 Martin	 E.	 P.	 Seligman,	 Authentic	 Happiness:	 Using	 the	 New	 Positive
Psychology	 to	 Realize	 Your	 Potential	 for	 Lasting	 Fulfillment	 (Free	 Press
2002),	p176.

http://www.ncee.org/wp-content/uploads/2010/04/Sources-of-Innovation-Creativity.pdf
http://www.nielsen.com/content/dam/corporate/us/en/newswire/uploads/2011/04/State-of-the-Media-2011-TV-Upfronts.pdf

Chapter	3:	Prioritize	Regularly

1.	Greg	Buckner,	“Andy	Johns’	‘The	Case	for	User	Growth	Teams’,”	Quibb,
2012,	http://quibb.com/links/andy-johns-the-case-for-user-growth-teams.
2.	Alexia	 Tsotsis,	 “Quora	Grew	More	 Than	 3X	Across	All	Metrics	 In	 The
Past	 Year,”	 TechCrunch,	 May	 28,	 2013,
http://techcrunch.com/2013/05/28/quora-grows-more-than-3x-across-all-
metrics-in-the-past-year/.
3.	Atul	Gawande,	The	Checklist	Manifesto:	How	to	Get	Things	Right	(Picador
2011).
4.	 David	 Allen,	Getting	 Things	 Done:	 The	 Art	 of	 Stress-Free	 Productivity
(Penguin	Books	2002).
5.	George	Miller,	 “The	Magical	Number	 Seven,	 Plus	 or	Minus	Two:	 Some
Limits	 on	 Our	 Capacity	 for	 Processing	 Information,”	 The	 Psychological
Review,	1956,	vol.	63,	.81–97,	http://www.musanim.com/miller1956/.
6.	 “Pi	 World	 Ranking	 List,”	 http://pi-world-ranking-
list.com/lists/memo/index.html.
7.	Joshua	Foer,	Moonwalking	with	Einstein	(Penguin	Books	2012).
8.	 Daniel	 Kahneman,	 Thinking,	 Fast	 and	 Slow	 (Farrar,	 Straus	 and	 Giroux
2011).
9.	 Baba	 Shiv	 and	 Alexander	 Fedorikh,	 “Heart	 and	 Mind	 in	 Conflict:	 The
Interplay	of	Affect	and	Cognition	in	Consumer	Decision	Making,”	Journal	of
Consumer	Research,	December	1999,	Vol.	26,	https://5aeed477-a-62cb3a1a-
s-sites.googlegroups.com/site/xiaoliangtushuguanfenguan3/gm934xing-wei-
jue-ce-zhi-ding/Shiv%26Fedorikhin1999.pdf.
10.	 Samuele	 M.	 Marcora,	 Walter	 Staiano,	 and	 Victoria	 Manning,	 “Mental
fatigue	impairs	physical	performance,”	Journal	of	Applied	Physiology,	2009,
106:	857–864,	http://jap.physiology.org/content/106/3/857.full.pdf.
11.	 Yishan	 Wong,	 “What	 are	 some	 ways	 to	 ‘work	 smart’	 rather	 than	 just
working	 hard?,”	 Quora,	 June	 30,	 2010,	 https://www.quora.com/What-are-
some-ways-to-work-smart-rather-than-just-working-hard/answer/Yishan-
Wong.
12.	 Stephen.	 R.	 Covey,	 7	 Habits	 of	 Highly	 Effective	 People	 (Simon	 &
Schuster	2013).
13.	Mihály	Csíkszentmihályi,	Flow:	The	Psychology	of	Optimal	Experience
(Harper	Perennial	Modern	Classics	2008).

14.	 Paul	 Graham,	 “Maker’s	 Schedule,	 Manager’s	 Schedule,”	 July	 2009,

http://quibb.com/links/andy-johns-the-case-for-user-growth-teams
http://techcrunch.com/2013/05/28/quora-grows-more-than-3x-across-all-metrics-in-the-past-year/
http://www.musanim.com/miller1956/
http://pi-world-ranking-list.com/lists/memo/index.html
https://5aeed477-a-62cb3a1a-s-sites.googlegroups.com/site/xiaoliangtushuguanfenguan3/gm934xing-wei-jue-ce-zhi-ding/Shiv%26Fedorikhin1999.pdf
http://jap.physiology.org/content/106/3/857.full.pdf
https://www.quora.com/What-are-some-ways-to-work-smart-rather-than-just-working-hard/answer/Yishan-Wong

14.	 Paul	 Graham,	 “Maker’s	 Schedule,	 Manager’s	 Schedule,”	 July	 2009,
http://www.paulgraham.com/makersschedule.html.
15.	 Shamsi	 T.	 Iqbal	 and	 Eric	 Horvitz,	 “Disruption	 and	 Recovery	 of
Computing	 Tasks:	 Field	 Study,	 Analysis,	 and	 Directions,”	 ACM	 CHI
Conference,	 2007,	 http://research.microsoft.com/en-
us/um/people/horvitz/chi_2007_iqbal_horvitz.pdf.
16.	 Jennifer	Robison,	 “Too	Many	 Interruptions	 at	Work?,”	Gallup	 Business
Journal,	 June	 8,	 2006,	 http://businessjournal.gallup.com/content/23146/too-
many-interruptions-work.aspx#1.
17.	David	Rock,	Your	Brain	at	Work	(HarperCollins	Publishers	2009).
18.	 Tonianne	DeMaria	 Barry	 and	 Jim	Benson,	Personal	 Kanban:	 Mapping
Work	|	Navigating	Life	(Modus	Cooperandi	Press	2011).
19.	Frank	Wieber	and	Peter	Gollwitzer,	Overcoming	Procrastination	through
Planning	in	C.	Andreou,	M.	D.	White	(Eds.),	The	Thief	of	Time.	Philosophical
Essays	on	Procrastination	(New	York:	Oxford	University	Press	2010),	p	185–
205.
20.	Elizabeth	 J.	Parks-Stamm,	Peter	M.	Gollwitzer,	 and	Gabriele	Oettingen,
“Action	Control	by	 Implementation	 Intentions:	Effective	Cue	Detection	and
Efficient	Response	Initiation,”	Social	Cognition,	2007,	Vol.	25,	No.	2,	.	248–
266,	 http://webapp7.rrz.uni-
hamburg.de/files/u130/Action_Control_by_Implementation__Intentions.pdf.
21.	Heidi	Grant	Halvorson,	Succeed:	How	we	can	reach	our	goals,	p177–180.
22.	Halvorson,	Succeed,	p14–20.
23.	Halvorson,	Succeed,	p175–177.
24.	Allen,	Getting	Things	Done.
25.	Tonianne	DeMaria	Barry	and	Jim	Benson,	Personal	Kanban.
26.	 Francesco	 Cirillo,	 “The	 Pomodoro	 Technique,”	 2007,
http://pomodorotechnique.com/book/.
27.	Nick	Cernis,	todoodlist.
28.	 On	 any	 Linux-based	 system	 (like	 a	 Mac),	 you	 can	 add	 a	 line	 like

	 to	 route	 network	 requests	 to	 that	 domain	 to
localhost,	effectively	blocking	the	site.
29.	“focus	booster,”	http://www.focusboosterapp.com/.

http://www.paulgraham.com/makersschedule.html
http://research.microsoft.com/en-us/um/people/horvitz/chi_2007_iqbal_horvitz.pdf
http://businessjournal.gallup.com/content/23146/too-many-interruptions-work.aspx#1
http://webapp7.rrz.uni-hamburg.de/files/u130/Action_Control_by_Implementation__Intentions.pdf
http://pomodorotechnique.com/book/
http://www.focusboosterapp.com/

Chapter	4:	Invest	in	Iteration	Speed

1.	 Martin	 Michelsen,	 “Continuous	 Deployment	 at	 Quora,”	 Quora,
https://engineering.quora.com/Continuous-Deployment-at-Quora.
2.	Alexia	 Tsotsis,	 “Quora	Grew	More	 Than	 3X	Across	All	Metrics	 In	 The
Past	 Year,”	 TechCrunch,	 May	 28,	 2013,
http://techcrunch.com/2013/05/28/quora-grows-more-than-3x-across-all-
metrics-in-the-past-year/.
3.	George	Neville-Neil,	 “Merge	Early,	Merge	Often,”	ACM	Queue,	October
29,	2009,	vol.	7,	no.	9,	http://queue.acm.org/detail.cfm?id=1643030.
4.	Erik	Kastner,	 “Quantum	of	Deployment,”	Code	as	Craft,	May	 20,	 2010,
http://codeascraft.com/2010/05/20/quantum-of-deployment/.
5.	 Timothy	 Fitz,	 “Continuous	Deployment	 at	 IMVU:	Doing	 the	 impossible
fifty	 times	 a	 day,”	 February	 10,	 2009,
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-
impossible-fifty-times-a-day/.
6.	David	Fortunato,	“Deployment	Infrastructure	for	Continuous	Deployment,”
Wealthfront	 Engineering	 Blog,	 May	 2,	 2010,
http://eng.wealthfront.com/2010/05/deployment-infrastructure-for.html.
7.	 Jake	 Douglas,	 “Deploying	 at	 GitHub,”	 https://github.com/blog/1241-
deploying-at-github.
8.	 Brett	 G.	 Durrett	 et	 al.,	 “What	 are	 best	 examples	 of	 companies	 using
continuous	 deployment?,”	 Quora,	 https://www.quora.com/What-are-best-
examples-of-companies-using-continuous-deployment.
9.	Haydn	Shaughnessy,	 “Facebook’s	 1	Billion	Users:	Why	The	Sky	 Is	 Still
The	 Limit,”	 Forbes,	 October	 4,	 2012,
http://www.forbes.com/sites/haydnshaughnessy/2012/10/04/facebooks-1-
billion-users-why-the-sky-is-still-the-limit/.
10.	 Andrew	 Bosworth,	 “How	 does	 Facebook	 Engineering’s	 ‘Bootcamp’
program	 work?,”	 Quora,	 October	 11,	 2011,	 https://www.quora.com/How-
does-Facebook-Engineerings-Bootcamp-program-work/answer/Andrew-Boz-
Bosworth.
11.	 Chuck	 Rossi,	 “Ship	 early	 and	 ship	 twice	 as	 often,”	 Facebook	 Notes,
August	3,	2012,	https://www.facebook.com/notes/facebook-engineering/ship-
early-and-ship-twice-as-often/10150985860363920.
12.	 “Facebook	 Beacon,”	 Wikipedia,
http://en.wikipedia.org/wiki/Facebook_Beacon.

13.	 Josh	 Constine,	 “Facebook’s	 S-1	 Letter	 From	 Zuckerberg	 Urges

https://engineering.quora.com/Continuous-Deployment-at-Quora
http://techcrunch.com/2013/05/28/quora-grows-more-than-3x-across-all-metrics-in-the-past-year/
http://queue.acm.org/detail.cfm?id=1643030
http://codeascraft.com/2010/05/20/quantum-of-deployment/
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://eng.wealthfront.com/2010/05/deployment-infrastructure-for.html
https://github.com/blog/1241-deploying-at-github
https://www.quora.com/What-are-best-examples-of-companies-using-continuous-deployment
http://www.forbes.com/sites/haydnshaughnessy/2012/10/04/facebooks-1-billion-users-why-the-sky-is-still-the-limit/
https://www.quora.com/How-does-Facebook-Engineerings-Bootcamp-program-work/answer/Andrew-Boz-Bosworth
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
http://en.wikipedia.org/wiki/Facebook_Beacon

13.	 Josh	 Constine,	 “Facebook’s	 S-1	 Letter	 From	 Zuckerberg	 Urges
Understanding	 Before	 Investment,”	 TechCrunch,	 February	 2012,
http://techcrunch.com/2012/02/01/facebook-ipo-letter/.
14.	 Robert	 Johnson,	 “More	 Details	 on	 Today’s	 Outage,”	 Facebook	 Notes,
September	 23,	 2010,	 https://www.facebook.com/notes/facebook-
engineering/more-details-on-todays-outage/431441338919.
15.	 “$1	 Billion.	 Two	 and	 a	 Half	 Years.,”	 Wealthfront,
https://www.wealthfront.com/one-billion.
16.	 David	 Fortunato,	 “Deployment	 Infrastructure	 for	 Continuous
Deployment,”	 Wealthfront	 Engineering	 Blog,	 May	 2,	 2010,
http://eng.wealthfront.com/2010/05/deployment-infrastructure-for.html.
17.	 Pascal-Louis	 Perez,	 “Continuous	 Deployment	 in	 an	 SEC-Regulated
Environment,”	 Wealthfront	 Engineering	 Blog,	 May	 25,	 2011,
http://eng.wealthfront.com/2011/05/continuous-deployment-in-sec-
regulated.html.
18.	Bobby	Johnson,	interview	with	the	author.
19.	Raffi	Krikorian,	conversation	with	the	author.
20.	 Nils	 Klarlund,	 “distcc’s	 pump	 mode:	 A	 New	 Design	 for	 Distributed
C/C++	 Compilation,”	 Google	 Open	 Source	 Blog,	 http://google-
opensource.blogspot.com/2008/08/distccs-pump-mode-new-design-for.html.
21.	 Ian	 Lance	 Taylor,	 “gold:	 Google	 Releases	 New	 and	 Improved	 GCC
Linker,”	 Google	 Open	 Source	 Blog,	 http://google-
opensource.blogspot.com/2008/08/distccs-pump-mode-new-design-for.html.
22.	Research	by	Prechelt	that	compares	80	implementations	of	the	same	set	of
requirements	across	7	different	languages	shows	that	solutions	written	in	C.
23.	 Joshua	Levy,	 et	 al.,	 “What	 are	 the	most	 useful	 ‘Swiss	 army	knife’	 one-
liners	 on	 Unix?,”	Quora,	 https://www.quora.com/What-are-the-most-useful-
Swiss-army-knife-one-liners-on-Unix.
24.	 Phil	 Crosby,	 “Live	 CSS	 -	 Making	 the	 browser	 dance	 to	 your	 CSS,”
GitHub,	https://github.com/ooyala/livecss.
25.	“LiveReload,”	http://livereload.com/.
26.	 Nicholas	 Carlson,	 “The	 Truth	 About	Marissa	Mayer:	 An	 Unauthorized
Biography,”	 Business	 Insider,	 August	 24,	 2013,
http://www.businessinsider.com/marissa-mayer-biography-2013-8.

http://techcrunch.com/2012/02/01/facebook-ipo-letter/
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://www.wealthfront.com/one-billion
http://eng.wealthfront.com/2010/05/deployment-infrastructure-for.html
http://eng.wealthfront.com/2011/05/continuous-deployment-in-sec-regulated.html
http://google-opensource.blogspot.com/2008/08/distccs-pump-mode-new-design-for.html
http://google-opensource.blogspot.com/2008/08/distccs-pump-mode-new-design-for.html
https://www.quora.com/What-are-the-most-useful-Swiss-army-knife-one-liners-on-Unix
https://github.com/ooyala/livecss
http://livereload.com/
http://www.businessinsider.com/marissa-mayer-biography-2013-8

Chapter	5:	Measure	What	You	Want	to	Improve

1.	Steven	Levy,	“Exclusive:	How	Google’s	Algorithm	Rules	the	Web,”	Wired,
February	22,	2010,	http://www.wired.com/2010/02/ff_google_algorithm/all/1.
2.	 “Algorithms	 -	 Inside	 Search	 -	 Google,”
http://www.google.com/intl/en_us/insidesearch/howsearchworks/algorithms.html
3.	 Daniel	 Russell,	 “Daniel	 Russell’s	 Home	 Page,”
https://sites.google.com/site/dmrussell/.
4.	Eric	Savitz,	“Google’s	User	Happiness	Problem,”	Forbes,	April	12,	2011,
http://www.forbes.com/sites/ciocentral/2011/04/12/googles-user-happiness-
problem/.
5.	Emil	Protalinski,	“comScore:	Google	is	once	again	the	most-trafficked	US
desktop	 site,	 ends	 Yahoo’s	 seven-month	 streak,”	 TheNextWeb,	 March	 25,
2014,	 http://thenextweb.com/google/2014/03/25/comscore-google-breaks-
yahoos-seven-month-streak-trafficked-us-desktop-site/.
6.	Steven	Levy,	“Exclusive:	How	Google’s	Algorithm	Rules	the	Web,”	Wired,
February	22,	2010,	http://www.wired.com/2010/02/ff_google_algorithm/all/1.
7.	 Peter	 Fleischer,	 “Why	 does	 Google	 remember	 information	 about
searches?,”	 Google	 Official	 Blog,	 May	 11,	 2007,
http://googleblog.blogspot.com/2007/05/why-does-google-remember-
information.html.
8.	 Steven	Levy,	 In	 The	 Plex:	How	Google	 Thinks,	Works,	 and	 Shapes	Our
Lives	(Simon	&	Schuster	2011),	p47.
9.	Levy,	In	the	Plex,	p49.
10.	Levy,	In	the	Plex,	p57–59.
11.	 “Algorithms	 -	 Inside	 Search	 -	 Google,”
http://www.google.com/intl/en_us/insidesearch/howsearchworks/algorithms.html
12.	Peter	F.	Drucker,	The	Effective	Executive.
13.	Tom	DeMarco	and	Timothy	Lister,	Peopleware:	Productive	Projects	and
Teams.
14.	Steven	Levy,	In	The	Plex.
15.	 Jake	 Brutlag,	 “Speed	Matters,”	Google	 Research	 Blog,	 June	 23,	 2009,
http://googleresearch.blogspot.com/2009/06/speed-matters.html.
16.	 Stoyan	 Stefanov,	 “YSlow	 2.0,”	 CSDN	 Software	 Development	 2.0
Conference,	 December	 6,	 2008,	 http://www.slideshare.net/stoyan/yslow-20-
presentation.

http://www.wired.com/2010/02/ff_google_algorithm/all/1
http://www.google.com/intl/en_us/insidesearch/howsearchworks/algorithms.html
https://sites.google.com/site/dmrussell/
http://www.forbes.com/sites/ciocentral/2011/04/12/googles-user-happiness-problem/
http://thenextweb.com/google/2014/03/25/comscore-google-breaks-yahoos-seven-month-streak-trafficked-us-desktop-site/
http://www.wired.com/2010/02/ff_google_algorithm/all/1
http://googleblog.blogspot.com/2007/05/why-does-google-remember-information.html
http://www.google.com/intl/en_us/insidesearch/howsearchworks/algorithms.html
http://googleresearch.blogspot.com/2009/06/speed-matters.html
http://www.slideshare.net/stoyan/yslow-20-presentation

17.	Zizhuang	Yang,	“Every	Millisecond	Counts,”	Facebook	Notes,	August	28,
2009,	https://www.facebook.com/note.php?note_id=122869103919.
18.	Kit	Eaton,	“How	One	Second	Could	Cost	Amazon	$1.6	Billion	in	Sales,”
Fast	Company,	March	15,	2012,	http://www.fastcompany.com/1825005/how-
one-second-could-cost-amazon-16-billion-sales.
19.	Tony	Hsieh,	Delivering	Happiness,	p145–146.
20.	Jim	Collins,	Good	to	Great:	Why	Some	Companies	Make	the	Leap…	And
Others	Don’t	(HarperBusiness	2001),	p104–105.
21.	Eric	Ries,	The	Lean	Startup:	How	Today’s	Entrepreneurs	Use	Continuous
Innovation	to	Create	Radically	Successful	Businesses	(Crown	Business	2011),
p128–143.
22.	 “Flight	 Instruments,”	 Wikipedia,
http://en.wikipedia.org/wiki/Flight_instruments.
23.	 Paul	 Mulwitz,	 “What	 do	 all	 the	 controls	 in	 an	 airplane	 cockpit	 do?,”
Quora,	 March	 6,	 2012,	 https://www.quora.com/What-do-all-the-controls-in-
an-airplane-cockpit-do/answer/Paul-Mulwitz.
24.	Sharon	Begley,	“Insight	 -	As	Obamacare	 tech	woes	mounted,	contractor
payments	 soared,”	 Reuters,	 October	 17,	 2013,
http://uk.reuters.com/article/2013/10/17/uk-usa-healthcare-technology-
insight-idUKBRE99G06120131017.
25.	 Paul	 Ford,	 “The	 Obamacare	Website	 Didn’t	 Have	 to	 Fail.	 How	 to	 Do
Better	 Next	 Time,”	 Businessweek,	 October	 16,	 2013,
http://www.businessweek.com/articles/2013-10-16/open-source-everything-
the-moral-of-the-healthcare-dot-gov-debacle.
26.	Adrianne	 Jeffries,	 “Obama	defends	Healthcare.gov	despite	massive	 tech
problems:	 ‘there’s	 no	 sugarcoating	 it’,”	 The	 Verge,	 October	 21,	 2013,
http://www.theverge.com/2013/10/21/4862090/obama-defends-healthcare-
gov-despite-massive-tech-problems-theres-no.
27.	 Steven	 Brill,	 “Obama’s	 Trauma	 Team,”	 Time,	 February	 27,	 2014,
http://time.com/10228/obamas-trauma-team/.
28.	 Jeffrey	 Young,	 “Obamacare	 Sign-Ups	 Hit	 8	 Million	 In	 Remarkable
Turnaround,”	 Huffington	 Post,	 April	 17,	 2014,
http://www.huffingtonpost.com/2014/04/17/obamacare-sign-
ups_n_5167080.html.
29.	 Ian	Malpass,	 “Measure	Anything,	Measure	Everything,”	Code	as	Craft,
February	 15,	 2011,	 http://codeascraft.com/2011/02/15/measure-anything-
measure-everything/.
30.	“Graphite	Documentation,”	http://graphite.readthedocs.org/en/latest/.
31.	“StatsD,”	GitHub,	https://github.com/etsy/statsd/.

https://www.facebook.com/note.php?note_id=122869103919
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://en.wikipedia.org/wiki/Flight_instruments
https://www.quora.com/What-do-all-the-controls-in-an-airplane-cockpit-do/answer/Paul-Mulwitz
http://uk.reuters.com/article/2013/10/17/uk-usa-healthcare-technology-insight-idUKBRE99G06120131017
http://www.businessweek.com/articles/2013-10-16/open-source-everything-the-moral-of-the-healthcare-dot-gov-debacle
http://www.theverge.com/2013/10/21/4862090/obama-defends-healthcare-gov-despite-massive-tech-problems-theres-no
http://time.com/10228/obamas-trauma-team/
http://www.huffingtonpost.com/2014/04/17/obamacare-sign-ups_n_5167080.html
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://graphite.readthedocs.org/en/latest/
https://github.com/etsy/statsd/

32.	Mike	 Brittain,	 “Tracking	 Every	 Release,”	Code	 as	 Craft,	 December	 8,
2010,	http://codeascraft.com/2010/12/08/track-every-release/.
33.	 “We	 are	 the	Google	 Site	 Reliability	 team.	We	make	Google’s	websites
work.	 Ask	 us	 Anything!,”	 Reddit,	 January	 24,	 2013,
http://www.reddit.com/r/IAmA/comments/177267/we_are_the_google_site_reliability_team_we_make/c82y43e
34.	 Cory	 G.	Watson,	 “Observability	 at	 Twitter,”	 Twitter	 Engineering	 Blog,
September	9,	2013,	https://blog.twitter.com/2013/observability-at-twitter.
35.	 Greg	 Leffler,	 “A	 crash	 course	 in	 LinkedIn’s	 global	 site	 operations,”
LinkedIn	 Engineering	 Blog,	 September	 18,	 2013,
http://engineering.linkedin.com/day-life/crash-course-linkedins-global-site-
operations.
36.	“Percona,”	http://www.percona.com/.
37.	“MySQL	Performance	Audits,”	http://www.percona.com/products/mysql-
consulting/performance-audit.
38.	 Baron	 Schwarz,	 “How	 Percona	 does	 a	 MySQL	 Performance	 Audit,”
MySQL	 Performance	 Blog,	 December	 24,	 2008,
http://www.mysqlperformanceblog.com/2008/11/24/how-percona-does-a-
mysql-performance-audit/.
39.	Jeffrey	Dean,	“Google	Research	Scientists	and	Engineers:	Jeffrey	Dean,”
http://research.google.com/people/jeff/.
40.	 Jeffrey	 Dean,	 “Building	 Software	 Systems	 At	 Google	 and	 Lessons
Learned,”	 Stanford	 EE380:	 Computer	 Systems	 Colloquium,	 November	 10,
2010,	https://www.youtube.com/watch?v=modXC5IWTJI.
41.	 Jeffrey	Dean,	“Software	Engineering	Advice	 from	Building	Large-Scale
Distributed	 Systems,”
http://static.googleusercontent.com/media/research.google.com/en/us/people/jeff/stanford-
295-talk.pdf.
42.	 “Snappy,	 a	 fast	 compressor/decompressor.,”	 Google	 Project	 Hosting,
https://code.google.com/p/snappy/source/browse/trunk/README.
43.	“Average	Email	Campaign	Stats	of	MailChimp	Customers	by	 Industry,”
MailChimp,	 http://mailchimp.com/resources/research/email-marketing-
benchmarks/.
44.	 Eric	 Colson,	 “Growing	 to	 Large	 Scale	 at	 Netflix,”	 Extremely	 Large
Databases	 Conference,	 October	 18,	 2011,	 http://www-
conf.slac.stanford.edu/xldb2011/program.asp.
45.	 Edmond	 Lau,	 “What	 A/B	 testing	 platform	 does	 Quora	 use?,”	 Quora,
November	 10,	 2012,	 https://www.quora.com/What-A-B-testing-platform-
does-Quora-use/answer/Edmond-Lau.

http://codeascraft.com/2010/12/08/track-every-release/
http://www.reddit.com/r/IAmA/comments/177267/we_are_the_google_site_reliability_team_we_make/c82y43e
https://blog.twitter.com/2013/observability-at-twitter
http://engineering.linkedin.com/day-life/crash-course-linkedins-global-site-operations
http://www.percona.com/
http://www.percona.com/products/mysql-consulting/performance-audit
http://www.mysqlperformanceblog.com/2008/11/24/how-percona-does-a-mysql-performance-audit/
http://research.google.com/people/jeff/
https://www.youtube.com/watch?v=modXC5IWTJI
http://static.googleusercontent.com/media/research.google.com/en/us/people/jeff/stanford-295-talk.pdf
https://code.google.com/p/snappy/source/browse/trunk/README
http://mailchimp.com/resources/research/email-marketing-benchmarks/
http://www-conf.slac.stanford.edu/xldb2011/program.asp
https://www.quora.com/What-A-B-testing-platform-does-Quora-use/answer/Edmond-Lau

Chapter	6:	Validate	Your	Ideas	Early	and	Often

1.	Anthony	Ha,	“Cuil	might	just	be	cool	enough	to	become	the	Google-killer
in	 search,”	 VentureBeat,	 July	 27,	 2008,
http://venturebeat.com/2008/07/27/cuil-might-just-be-cool-enough-to-
become-the-google-killer-in-search/.
2.	 Michael	 Arrington,	 “Cuill:	 Super	 Stealth	 Search	 Engine;	 Google	 Has
Definitely	 Noticed,”	 TechCrunch,	 September	 4,	 2007,
http://techcrunch.com/2007/09/04/cuill-super-stealth-search-engine-google-
has-definitely-noticed/.
3.	Anthony	Ha,	“Cuil	might	just	be	cool	enough	to	become	the	Google-killer
in	 search,”	 VentureBeat,	 July	 27,	 2008,
http://venturebeat.com/2008/07/27/cuil-might-just-be-cool-enough-to-
become-the-google-killer-in-search/.
4.	Joseph	Tartakoff,	“‘Google	Killer’	Cuil	Looks	To	Make	Money—Perhaps
Via	 Google,”	 GigaOm,	 June	 24,	 2009,	 http://gigaom.com/2009/06/24/419-
google-killer-cuil-looks-to-make-money-perhaps-via-google/.
5.	Danny	Sullivan,	 “Cuil	Launches—Can	This	Search	Start-Up	Really	Best
Google?,”	 Search	 Engine	 Land,	 June	 28,	 2008,
http://searchengineland.com/cuil-launches-can-this-search-start-up-really-
best-google-14459.
6.	 Saul	Hansell,	 “No	Bull,	 Cuil	Had	 Problems,”	The	New	 York	 Times	 Bits,
June	 29,	 2008,	 http://bits.blogs.nytimes.com/2008/07/29/no-bull-cuil-had-
problems/.
7.	John	C.	Dvorak,	“The	New	Cuil	Search	Engine	Sucks,”	PC	Magazine,	July
28,	2008,	http://www.pcmag.com/article2/0,2817,2326643,00.asp.
8.	 Rafe	 Needleman,	 “Cuil	 shows	 us	 how	 not	 to	 launch	 a	 search	 engine,”
CNET,	 July	 28,	 2008,	 http://www.cnet.com/news/cuil-shows-us-how-not-to-
launch-a-search-engine/.
9.	Anita	Hamilton,	“Why	Cuil	Is	No	Threat	to	Google,”	Time,	July	28,	2008,
http://content.time.com/time/business/article/0,8599,1827331,00.html.
10.	 Dave	 Burdick,	 “Cuil	 Review:	 Really?	No	Dave	 Burdicks?	 This	 Search
Engine	 Is	 Stupid,”	 Huffington	 Post,	 August	 5,	 2008,
http://www.huffingtonpost.com/dave-burdick/cuil-review-really-no-
dav_b_115413.html.
11.	“BloomReach	Customers,”	http://bloomreach.com/customers/.
12.	John	Constine,	“BloomReach	Crunches	Big	Data	To	Deliver	The	Future
Of	 SEO	 and	 SEM,”	 February	 22,	 2012,

http://venturebeat.com/2008/07/27/cuil-might-just-be-cool-enough-to-become-the-google-killer-in-search/
http://techcrunch.com/2007/09/04/cuill-super-stealth-search-engine-google-has-definitely-noticed/
http://venturebeat.com/2008/07/27/cuil-might-just-be-cool-enough-to-become-the-google-killer-in-search/
http://gigaom.com/2009/06/24/419-google-killer-cuil-looks-to-make-money-perhaps-via-google/
http://searchengineland.com/cuil-launches-can-this-search-start-up-really-best-google-14459
http://bits.blogs.nytimes.com/2008/07/29/no-bull-cuil-had-problems/
http://www.pcmag.com/article2/0,2817,2326643,00.asp
http://www.cnet.com/news/cuil-shows-us-how-not-to-launch-a-search-engine/
http://content.time.com/time/business/article/0,8599,1827331,00.html
http://www.huffingtonpost.com/dave-burdick/cuil-review-really-no-dav_b_115413.html
http://bloomreach.com/customers/

http://techcrunch.com/2012/02/22/bloomreach/.
13.	MASLab	stood	for	Mobile	Autonomous	Systems	Laboratory.
14.	Zach	Brock,	conversation	with	the	author.
15.	Eric	Ries,	“Minimum	Viable	Product:	a	guide,”	Startup	Lessons	Learned,
August	 3,	 2009,	 http://www.startuplessonslearned.com/2009/08/minimum-
viable-product-guide.html.
16.	Eric	Ries,	“The	Lean	Startup,”	p98.
17.	 Drew	 Houston,	 “DropBox	 Demo,”	 YouTube,	 September	 15,	 2008,
http://www.youtube.com/watch?v=7QmCUDHpNzE.
18.	 Alex	 Wilhelm,	 “Dropbox	 Could	 Be	 A	 Bargain	 At	 An	 $8	 Billion
Valuation,”	 TechCrunch,	 November	 18,	 2013,
http://techcrunch.com/2013/11/18/dropbox-could-be-a-bargain-at-an-8-
billion-valuation/.
19.	 Darren	 Nix,	 “How	 we	 test	 fake	 sites	 on	 live	 traffic,”	 42Floors	 Blog,
November	 4,	 2013,	 http://blog.42floors.com/we-test-fake-versions-of-our-
site/.
20.	 Jackie	Bavaro,	 “Have	you	 tried	 a	 fake	buy	button	 test,	 as	mentioned	 in
Lean	 UX,	 on	 your	 website?,”	 Quora,	 August	 30,	 2013,
https://www.quora.com/Product-Management/Have-you-tried-a-fake-buy-
button-test-as-mentioned-in-Lean-UX-on-your-website-How-did-it-turn-out-
Were-your-customers-unhappy?share=1.
21.	 Joshua	Green,	 “The	Science	Behind	Those	Obama	Campaign	E-Mails,”
Businessweek,	 November	 29,	 2012,
http://www.businessweek.com/articles/2012-11-29/the-science-behind-those-
obama-campaign-e-mails.
22.	 Adam	 Sutton,	 “Email	 Testing:	 How	 the	 Obama	 campaign	 generated
approximately	 $500	 million	 in	 donations	 from	 email	 marketing,”
MarketingSherpa,	 May	 7,	 2013,
http://www.marketingsherpa.com/article/case-study/obama-email-campaign-
testing.
23.	 “Inside	 the	 Cave:	 An	 In-Depth	 Look	 at	 the	 Digital,	 Technology,	 and
Analytics	 Operations	 of	 Obama	 for	 America,”	 engage	 Research,
http://engagedc.com/download/Inside%20the%20Cave.pdf.
24.	 Alexis	 C.	Madrigal,	 “When	 the	 Nerds	 Go	Marching	 In,”	 The	 Atlantic,
November	 16,	 2012,
http://www.theatlantic.com/technology/archive/2012/11/when-the-nerds-go-
marching-in/265325/?single_page=true.
25.	 Jeremy	 Ashkenas,	 et	 al.,	 “The	 2012	 Money	 Race:	 Compare	 the
Candidates,”	 The	 New	 York	 Times,	 2012,
http://elections.nytimes.com/2012/campaign-finance.

http://techcrunch.com/2012/02/22/bloomreach/
http://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html
http://www.youtube.com/watch?v=7QmCUDHpNzE
http://techcrunch.com/2013/11/18/dropbox-could-be-a-bargain-at-an-8-billion-valuation/
http://blog.42floors.com/we-test-fake-versions-of-our-site/
https://www.quora.com/Product-Management/Have-you-tried-a-fake-buy-button-test-as-mentioned-in-Lean-UX-on-your-website-How-did-it-turn-out-Were-your-customers-unhappy?share=1
http://www.businessweek.com/articles/2012-11-29/the-science-behind-those-obama-campaign-e-mails
http://www.marketingsherpa.com/article/case-study/obama-email-campaign-testing
http://engagedc.com/download/Inside%20the%20Cave.pdf
http://www.theatlantic.com/technology/archive/2012/11/when-the-nerds-go-marching-in/265325/?single_page=true
http://elections.nytimes.com/2012/campaign-finance

26.	 Alexis	 C.	Madrigal,	 “Hey,	 I	 Need	 to	 Talk	 to	 You	About	 This	 Brilliant
Obama	 Email	 Scheme,”	 The	 Atlantic,	 November	 9,	 2012,
http://www.theatlantic.com/technology/archive/2012/11/hey-i-need-to-talk-to-
you-about-this-brilliant-obama-email-scheme/265725/.
27.	Jaclyn	Fu,	“The	New	Listing	Page:	Better	Shopping,	More	Personality,”
Etsy	 News	 Blog,	 July	 24,	 2013,	 https://blog.etsy.com/news/2013/the-new-
listing-page-better-shopping-more-personality/.
28.	 Frank	 Harris	 and	 Nellwyn	 Thomas,	 “Etsy’s	 Product	 Development	 with
Continuous	 Experimentation,”	 QCon,	 November	 8,	 2012,
http://www.infoq.com/presentations/Etsy-Deployment.
29.	Sarah	Frier,	“Etsy	Tops	$1	Billion	in	2013	Product	Sales	on	Mobile	Lift,”
Bloomberg,	 November	 12,	 2013,	 http://www.bloomberg.com/news/2013-11-
12/etsy-tops-1-billion-in-2013-product-sales-on-mobile-lift.html.
30.	 Edmond	 Lau,	 “What	 A/B	 testing	 platform	 does	 Quora	 use?,”	 Quora,
November	 10,	 2012,	 https://www.quora.com/Quora-company/What-A-B-
testing-platform-does-Quora-use/answer/Edmond-Lau?share=1.
31.	“Feature	API,”	GitHub,	https://github.com/etsy/feature.
32.	 “Vanity:	 Experiment	 Driven	 Development,”
http://vanity.labnotes.org/metrics.html.
33.	 “Welcome	 to	 the	 home	 of	 genetify,”	 GitHub,
https://github.com/gregdingle/genetify/wiki.
34.	 “Benefits	 of	 Experiments	 -	 Analytics	 Help,”
https://support.google.com/analytics/answer/1745147?hl=en.
35.	“Optimizely,”	https://www.optimizely.com/.
36.	“Apptimize,”	http://apptimize.com/.
37.	“Unbounce,”	http://unbounce.com/.
38.	“Visual	Website	Optimizer,”	http://visualwebsiteoptimizer.com/.
39.	 Alex	 Hern,	 “Why	 Google	 has	 200m	 reasons	 to	 put	 engineers	 over
designers,”	 The	 Guardian,	 February	 5,	 2014,
http://www.theguardian.com/technology/2014/feb/05/why-google-engineers-
designers.
40.	 Laura	 M.	 Holson,	 “Putting	 a	 Bolder	 Face	 on	 Google,”	 The	 New	 York
Times,	 February	 28,	 2009,
http://www.nytimes.com/2009/03/01/business/01marissa.html?_r=0.
41.	“Steve	Wozniak,”	Wikipedia,	http://en.wikipedia.org/wiki/Steve_Wozniak.
42.	research	on	teaching	for	learning.

43.	 Brian	 Fitzpatrick	 and	 Ben	 Collins-Sussman,	 Team	 Geek:	 A	 Software

http://www.theatlantic.com/technology/archive/2012/11/hey-i-need-to-talk-to-you-about-this-brilliant-obama-email-scheme/265725/
https://blog.etsy.com/news/2013/the-new-listing-page-better-shopping-more-personality/
http://www.infoq.com/presentations/Etsy-Deployment
http://www.bloomberg.com/news/2013-11-12/etsy-tops-1-billion-in-2013-product-sales-on-mobile-lift.html
https://www.quora.com/Quora-company/What-A-B-testing-platform-does-Quora-use/answer/Edmond-Lau?share=1
https://github.com/etsy/feature
http://vanity.labnotes.org/metrics.html
https://github.com/gregdingle/genetify/wiki
https://support.google.com/analytics/answer/1745147?hl=en
https://www.optimizely.com/
http://apptimize.com/
http://unbounce.com/
http://visualwebsiteoptimizer.com/
http://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers
http://www.nytimes.com/2009/03/01/business/01marissa.html?_r=0
http://en.wikipedia.org/wiki/Steve_Wozniak

43.	 Brian	 Fitzpatrick	 and	 Ben	 Collins-Sussman,	 Team	 Geek:	 A	 Software
Developer’s	Guide	to	Working	Well	with	Others	(O’Reilly	Media	2012).

Chapter	7:	Improve	Your	Project	Estimation	Skills

1.	 “Ooyala	 Launches	 ‘Swift,’	 Version	 2.0	 of	 the	 Ooyala	 Player,”
http://www.ooyala.com/about/press/ooyala-launches-swift-version-20-ooyala-
player.
2.	 “Ooyala	 Video	 Technology,”	 http://www.ooyala.com/resources/video-
technology.
3.	Philip	Su,	“Broken	Windows	Theory,”	The	World	As	Best	As	I	Remember
It,	 June	 14,	 2006,
http://blogs.msdn.com/b/philipsu/archive/2006/06/14/631438.aspx.
4.	“Windows	Vista,”	Wikipedia,	http://en.wikipedia.org/wiki/Windows_Vista.
5.	Joel	Spolsky,	“Painless	Software	Schedules,”	Joel	on	Software,	March	29,
2000,	http://www.joelonsoftware.com/articles/fog0000000245.html.
6.	 Jamie	 Zawinski,	 “resignation	 and	 postmortem,”	 March	 31,	 2009,
http://www.jwz.org/gruntle/nomo.html.
7.	 “CHAOS	 Summary	 2009,”	 The	 Standish	 Group,	 2009,
http://emphasysbrokeroffice.com/files/2013/04/Standish-Group-CHAOS-
Summary-2009.pdf.
8.	 Steve	 McConnell,	 “Software	 Estimation:	 Demystifying	 the	 Black	 Art,”
Microsoft	Press,	2006.
9.	Cyril	Northcote	Parkinson,	“Parkinson’s	Law,”	The	Economist,	November
19,	1955.
10.	 Tom	 DeMarco	 (1982),	 Controlling	 Software	 Projects:	 Management,
Measurement,	and	Estimates	(Prentice	Hall	1986).
11.	“Anchoring,”	Wikipedia,	http://en.wikipedia.org/wiki/Anchoring.
12.	 Frederick	 Brooks,	 The	 Mythical	 Man-Month:	 Essays	 on	 Software
Engineering,	p20.
13.	 Quadratic	 growth	 is	 proportional	 to	 the	 square	 of	 the	 input.	 With
communication	 the	 number	 of	 distinct	 channels	 of	 pairwise	 communication
among	N	people	is	described	by	N	choose	2	=	N	(N	+	1)	/	2	=	O(N^2).
14.	 Joel	 Spolsky,	 “Evidence	Based	 Scheduling,”	 Joel	 on	 Software,	 October
26,	2007,	http://www.joelonsoftware.com/items/2007/10/26.html.
15.	Frederick	Brooks,	The	Mythical	Man-Month,	p154.
16.	Jack	Heart,	interview	with	the	author,	March	21,	2014.
17.	Alex	Allain,	conversation	with	the	author,	October	15,	2014.

http://www.ooyala.com/about/press/ooyala-launches-swift-version-20-ooyala-player
http://www.ooyala.com/resources/video-technology
http://blogs.msdn.com/b/philipsu/archive/2006/06/14/631438.aspx
http://en.wikipedia.org/wiki/Windows_Vista
http://www.joelonsoftware.com/articles/fog0000000245.html
http://www.jwz.org/gruntle/nomo.html
http://emphasysbrokeroffice.com/files/2013/04/Standish-Group-CHAOS-Summary-2009.pdf
http://en.wikipedia.org/wiki/Anchoring
http://www.joelonsoftware.com/items/2007/10/26.html

18.	 Tamar	 Bercovici	 and	 Florian	 Jourda,	 “One	 to	 Many:	 The	 Story	 of
Sharding	 at	 Box,”	 Percona	 Live	 MySQL	 Conference	 &	 Expo,	 2012,
http://www.percona.com/files/presentations/percona-
live/PLMCE2012/PLMCE2012-Sharding_At_Box.pdf.
19.	 The	 “tragedy	 of	 the	 commons”	 is	 an	 economic	 term	 describing	 the
situation	where	 individuals	acting	 independently	and	 rationally	according	 to
their	 own	 self-interest	 deplete	 a	 shared	 resource	 despite	 knowing	 that	 the
depletion	is	contrary	to	the	group’s	long-term	interests.
20.	Tamar	Bercovici,	“Scaling	MySQL	for	 the	Web,”	MySQL	Conference	&
Expo,	 2013,	 http://www.percona.com/live/mysql-conference-
2013/sites/default/files/slides/Scaling%20MySQL.pdf.
21.	Martin	Fowler	et	al.,	Refactoring:	Improving	the	Design	of	Existing	Code
(Addison-Wesley	Professional	1999).
22.	Sam	Schillace,	interview	with	the	author,	April	8,	2014.
23.	Sara	Robinson,	“Bring	back	the	40-hour	week,”	Salon,	March	14,	2012,
http://www.salon.com/2012/03/14/bring_back_the_40_hour_work_week/.
24.	 Evan	 Robinson,	 “Why	 Crunch	 Modes	 Doesn’t	 Work:	 Six	 Lessons,”
International	Game	Developers	Association,	2005,	http://www.igda.org/why-
crunch-modes-doesnt-work-six-lessons.
25.	 “Sidney	 Chapman,”	 Wikipedia,
http://en.wikipedia.org/wiki/Sydney_Chapman_(economist).
26.	Samuel	Crowther,	“Henry	Ford:	Why	I	Favor	Five	Days’	Work	With	Six
Days’	 Pay,”	 World’s	 Work,	 October	 1926,	 p613–616,
http://web.archive.org/web/20040826063314/http://www.worklessparty.org/timework/ford.htm
27.	 “Ford	 factory	 workers	 get	 40-hour	 week,”	 History,
http://www.history.com/this-day-in-history/ford-factory-workers-get-40-hour-
week.
28.	 Roundtable	 Report,	 “Scheduled	 Overtime	 Effect	 on	 Construction
Projects,”	 Business	 Roundtable,	 1980,	 http://trid.trb.org/view.aspx?
id=206774.
29.	Tom	DeMarco	and	Timothy	Lister,	Peopleware,	p15.
30.	Tom	DeMarco	and	Timothy	Lister,	Peopleware,	p179.

http://www.percona.com/files/presentations/percona-live/PLMCE2012/PLMCE2012-Sharding_At_Box.pdf
http://www.percona.com/live/mysql-conference-2013/sites/default/files/slides/Scaling%20MySQL.pdf
http://www.salon.com/2012/03/14/bring_back_the_40_hour_work_week/
http://www.igda.org/why-crunch-modes-doesnt-work-six-lessons
http://en.wikipedia.org/wiki/Sydney_Chapman_(economist)
http://web.archive.org/web/20040826063314/http://www.worklessparty.org/timework/ford.htm
http://www.history.com/this-day-in-history/ford-factory-workers-get-40-hour-week
http://trid.trb.org/view.aspx?id=206774

Chapter	8:	Balance	Quality	with	Pragmatism

1.	 “Style	 guides	 for	 Google-originated	 open-source	 projects,”
https://code.google.com/p/google-styleguide/.
2.	Ben	Maurer	and	Kevin	X.	Chang,	“What	is	Google’s	internal	code	review
policy/process?,”	 Quora,	 June	 7,	 2010,	 https://www.quora.com/What-is-
Googles-internal-code-review-policy-process.
3.	 “2014	 Financial	 Tables,”	 Google	 Financial	 Tables,
https://investor.google.com/financial/tables.html.
4.	 “Ten	 things	 we	 know	 to	 be	 true,”	 Google,
http://www.google.com/about/company/philosophy/.
5.	 “List	 of	 public	 corporations	 by	 market	 capitalization,”	 Wikipedia,
http://en.wikipedia.org/wiki/List_of_public_corporations_by_market_capitalization
6.	 Robert	 Johnson,	 “Right	 and	Wrong,”	Facebook	Notes,	 October	 9,	 2009,
https://www.facebook.com/notes/robert-johnson/right-and-
wrong/148275708485.
7.	 Evan	 Priestley,	 “How	 did	 Evan	 Priestley	 learn	 to	 program?,”	 Quora,
November	 20,	 2013,	 https://www.quora.com/How-did-Evan-Priestley-learn-
to-program/answer/Evan-Priestley.
8.	Capers	Jones,	“Software	Quality	in	2008:	A	Survey	of	the	State	of	the	Art,”
Software	 Productivity	 Research	 LLC,	 January	 30,	 2008,	 p52,
http://www.jasst.jp/archives/jasst08e/pdf/A1.pdf.
9.	Albert	Ni,	interview	with	the	author,	October	9,	2013.
10.	 Josh	Zelman,	“(Founder	Stories)	How	Dropbox	Got	 Its	First	10	Million
Users,”	 TechCrunch,	 January	 2011,
http://techcrunch.com/2011/11/01/founder-storie-how-dropbox-got-its-first-
10-million-users/.
11.	Victoria	Barret,	 “Dropbox:	The	 Inside	Story	Of	Tech’s	Hottest	Startup,”
Forbes,	 October	 18,	 2011,
http://www.forbes.com/sites/victoriabarret/2011/10/18/dropbox-the-inside-
story-of-techs-hottest-startup/.
12.	There’s	 a	 small	 exception.	Experimental	 code	 checked	 in	within	 certain
directories	don’t	need	to	be	reviewed.
13.	Mike	Krieger,	interview	with	the	author,	October	2,	2013.
14.	 Allen	 Cheung,	 “Why	 We	 Pair	 Interview,”	 The	 Corner	 -	 Square
Engineering	Blog,	October	5,	2011,	http://corner.squareup.com/2011/10/why-
we-pair-interview.html.

https://code.google.com/p/google-styleguide/
https://www.quora.com/What-is-Googles-internal-code-review-policy-process
https://investor.google.com/financial/tables.html
http://www.google.com/about/company/philosophy/
http://en.wikipedia.org/wiki/List_of_public_corporations_by_market_capitalization
https://www.facebook.com/notes/robert-johnson/right-and-wrong/148275708485
https://www.quora.com/How-did-Evan-Priestley-learn-to-program/answer/Evan-Priestley
http://www.jasst.jp/archives/jasst08e/pdf/A1.pdf
http://techcrunch.com/2011/11/01/founder-storie-how-dropbox-got-its-first-10-million-users/
http://www.forbes.com/sites/victoriabarret/2011/10/18/dropbox-the-inside-story-of-techs-hottest-startup/
http://corner.squareup.com/2011/10/why-we-pair-interview.html

15.	Raffi	Krikorian,	conversation	with	the	author.
16.	“Pylint	-	code	analysis	for	Python,”	http://www.pylint.org/.
17.	 “cpplint.py,”	 https://code.google.com/p/google-
styleguide/source/browse/trunk/cpplint/cpplint.py.
18.	“Barkeep	-	the	friendly	code	review	system,”	http://getbarkeep.org/.
19.	 Jeffrey	 Dean	 and	 Sanjay	 Ghemawat,	 “MapReduce:	 Simplified	 Data
Processing	 on	 Large	 Clusters,”	 OSDI,	 2004,
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/archive/mapreduce-
osdi04.pdf.
20.	Edmond	Lau,	“HARBOR	:	an	 integrated	approach	 to	 recovery	and	high
availability	 in	 an	 updatable,	 distributed	 data	 warehouse,”	 Massachusetts
Institute	 of	 Technology,	 2006,
http://dspace.mit.edu/bitstream/handle/1721.1/36800/79653535.pdf?
sequence=1.
21.	 Jeffrey	 Dean	 and	 Sanjay	 Ghemawat,	 “MapReduce:	 Simplified	 Data
Processing	on	Large	Clusters,”	Communications	of	 the	ACM,	 January	2008,
Vol.	51,	No.	1,	107–113,	https://files.ifi.uzh.ch/dbtg/sdbs13/T10.0.pdf.
22.	Rob	Pike	et	al.,	 “Interpreting	 the	Data:	Parallel	Analysis	with	Sawzall,”
Scientific	 Programming	 Journal,	 13:4,	 .	 227–298,
http://research.google.com/archive/sawzall.html.
23.	 Daniel	 Jackson,	 Software	 Abstractions:	 Logic,	 Language,	 and	 Analysis
(The	MIT	Press	2012).
24.	 “Don’t	 repeat	 yourself,”	 Wikipedia,
http://en.wikipedia.org/wiki/Don’t_repeat_yourself.
25.	 “Protocol	 Buffers	 -	 Google’s	 data	 interchange	 format,”	 GitHub,
https://github.com/google/protobuf/.
26.	Fay	Chang	et	al.,	“Bigtable:	A	Distributed	Storage	System	for	Structured
Data,”	OSDI,	2006,	http://research.google.com/archive/bigtable.html.
27.	“Apache	Thrift,”	http://thrift.apache.org/.
28.	“Apache	Hive,”	http://hive.apache.org/.
29.	Mark	Marchukov,	“TAO:	The	power	of	the	graph,”	Facebook	Notes,	June
25,	 2013,	 http://www.facebook.com/notes/facebook-engineering/tao-the-
power-of-the-graph/10151525983993920.
30.	 Shreyes	Shesasai,	 “Tech	Talk	 -	webnode2	 and	LiveNode,”	Quora,	May
25,	 2011,	 https://www.quora.com/Shreyes-Seshasai/Posts/Tech-Talk-
webnode2-and-LiveNode.
31.	Justin	Rosenstein,	“Asana	Demo	&	Vision	Talk,”	YouTube,	February	15,
2011,	34:38,	https://www.youtube.com/watch?v=jkXGEgTnUXk&t=34m38s.

http://www.pylint.org/
https://code.google.com/p/google-styleguide/source/browse/trunk/cpplint/cpplint.py
http://getbarkeep.org/
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/36800/79653535.pdf?sequence=1
https://files.ifi.uzh.ch/dbtg/sdbs13/T10.0.pdf
http://research.google.com/archive/sawzall.html
http://en.wikipedia.org/wiki/Don't_repeat_yourself
https://github.com/google/protobuf/
http://research.google.com/archive/bigtable.html
http://thrift.apache.org/
http://hive.apache.org/
http://www.facebook.com/notes/facebook-engineering/tao-the-power-of-the-graph/10151525983993920
https://www.quora.com/Shreyes-Seshasai/Posts/Tech-Talk-webnode2-and-LiveNode
https://www.youtube.com/watch?v=jkXGEgTnUXk&t=34m38s

32.	Jack	Heart,	“Why	is	Asana	developing	their	own	programming	language
(Lunascript)?,”	Quora,	 December	 9,	 2010,	 https://www.quora.com/Why-is-
Asana-developing-their-own-programming-language-Lunascript/answer/Jack-
Lion-Heart?share=1.
33.	 Joshua	 Bloch,	 “How	 To	 Design	 A	 Good	 API	 and	 Why	 it	 Matters,”
YouTube,	 January	 24,	 2007,	 http://www.youtube.com/watch?
v=aAb7hSCtvGw.
34.	 Joshua	 Bloch,	 “How	 To	 Design	 A	 Good	 API	 and	 Why	 it	 Matters,”
Library-Centric	 Software	 Design,	 2005,
http://lcsd05.cs.tamu.edu/slides/keynote.pdf.
35.	 Rich	 Hickey,	 “Simple	 Made	 Easy,”	 InfoQ,	 October	 20,	 2011,
http://www.infoq.com/presentations/Simple-Made-Easy.
36.	Jiantao	Pan,	“Software	Reliability,”	Carnegie	Mellon	University	18-849b
Dependable	 Embedded	 Systems,	 1999,
http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/.
37.	Kartik	Ayyar,	interview	with	the	author,	October	28,	2013.
38.	“Cityville,”	Wikipedia,	http://en.wikipedia.org/wiki/CityVille.
39.	 Ward	 Cunningham,	 “The	 WyCash	 Portfolio	 Management	 System,”
OOPSLA,	1992,	http://c2.com/doc/oopsla92.html.
40.	 Martin	 Fowler,	 “Technical	 Debt,”	 October	 2003,
http://martinfowler.com/bliki/TechnicalDebt.html.
41.	 Matt	 Cutts,	 “Engineering	 grouplets	 at	 Google,”	 Matt	 Cutts:	 Gadgets,
Google,	 and	 SEO,	 October	 22,	 2007,
http://www.mattcutts.com/blog/engineering-grouplets-at-google/.
42.	 Ryan	 Tate,	 “The	 Software	 Revolution	 Behind	 LinkedIn’s	 Gushing
Profits,”	 Wired,	 April	 10,	 2013,
http://www.wired.com/business/2013/04/linkedin-software-revolution/.

https://www.quora.com/Why-is-Asana-developing-their-own-programming-language-Lunascript/answer/Jack-Lion-Heart?share=1
http://www.youtube.com/watch?v=aAb7hSCtvGw
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://www.infoq.com/presentations/Simple-Made-Easy
http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/
http://en.wikipedia.org/wiki/CityVille
http://c2.com/doc/oopsla92.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://www.mattcutts.com/blog/engineering-grouplets-at-google/
http://www.wired.com/business/2013/04/linkedin-software-revolution/

Chapter	9:	Minimize	Operational	Burden

1.	“Instagram,”	http://www.instagram.com/.
2.	 MG	 Siegler,	 “Instagram	 Launches	 With	 the	 Hope	 of	 Igniting
Communication	 Through	 Images,”	 TechCrunch,	 October	 6,	 2010,
http://techcrunch.com/2010/10/06/instagram-launch/.
3.	Christine	Lagorio-Chafkin,	“Kevin	Systrom	and	Mike	Krieger,	Founders	of
Instagram,”	 Inc.,	April	9,	2012,	http://www.inc.com/30under30/2011/profile-
kevin-systrom-mike-krieger-founders-instagram.html.
4.	Kim-Mai	Cutler,	“From	0	To	$1	Billion	In	Two	Years:	Instagram’s	Rose-
Tinted	 Ride	 To	 Glory,”	 TechCrunch,	 April	 9,	 2012,
http://techcrunch.com/2012/04/09/instagram-story-facebook-acquisition/.
5.	 “Pinterest	 beats	 Facebook	 in	 number	 of	 users	 per	 employee,”	Pingdom,
February	 26,	 2013,	 http://royal.pingdom.com/2013/02/26/pinterest-users-per-
employee/.
6.	 “What	 Powers	 Instagram:	 Hundreds	 of	 Instances,	 Dozens	 of
Technologies,”	 Instagram	 Engineering	 Blog,	 2012,	 http://instagram-
engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-
of-instances-dozens-of.
7.	 Instagram	 recently	 switched	 over	 to	 using	 Cassandra	 after	 they	 hired
someone	who	had	actually	worked	on	Cassandra	internals.
8.	Steven	Levy,	“Good	for	the	Soul,”	Alt+Tabs	of	an	Open	Mind,	October	16,
2006,	https://ashim.wordpress.com/2006/10/16/49/.
9.	Kevin	Systrom,	“What	 is	 the	genesis	of	 Instagram?,”	Quora,	 January	11,
2011,	 https://www.quora.com/Instagram/What-is-the-genesis-of-
Instagram/answer/Kevin-Systrom?share=1.
10.	Todd	Hoff,	“Scaling	Pinterest	-	From	0	To	10s	Of	Billions	Of	Page	Views
A	 Month	 In	 Two	 Years,”	 High	 Scalability,	 April	 15,	 2013,
http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-
billions-of-page-views-a.html.
11.	Yashwanth	Nelapati	and	Marty	Weiner,	“Scaling	Pinterest,”	QCon,	2012,
http://www.infoq.com/presentations/Pinterest.
12.	Yashwanth	Nelapati	and	Marty	Weiner,	“Scaling	Pinterest,”	QCon,	2012,
5:56,	http://www.infoq.com/presentations/Pinterest.
13.	 Jim	 Shore,	 “Fail	 Fast,”	 IEEE	 Computer	 Society,	 2004,	 p21–25,
http://martinfowler.com/ieeeSoftware/failFast.pdf.

14.	 “Memcached,”

http://www.instagram.com/
http://techcrunch.com/2010/10/06/instagram-launch/
http://www.inc.com/30under30/2011/profile-kevin-systrom-mike-krieger-founders-instagram.html
http://techcrunch.com/2012/04/09/instagram-story-facebook-acquisition/
http://royal.pingdom.com/2013/02/26/pinterest-users-per-employee/
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances-dozens-of
https://ashim.wordpress.com/2006/10/16/49/
https://www.quora.com/Instagram/What-is-the-genesis-of-Instagram/answer/Kevin-Systrom?share=1
http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html
http://www.infoq.com/presentations/Pinterest
http://www.infoq.com/presentations/Pinterest
http://martinfowler.com/ieeeSoftware/failFast.pdf

14.	 “Memcached,”
https://code.google.com/p/memcached/wiki/NewProgramming#Expiration.
15.	 “Tragedy	 of	 the	 commons,”	 Wikipedia,
http://en.wikipedia.org/wiki/Tragedy_of_the_commons.
16.	 Shlomo	 Priymak,	 “Under	 the	 hood:	 MySQL	 Pool	 Scanner	 (MPS),”
Facebook	 Notes,	 October	 22,	 2013,
https://www.facebook.com/notes/facebook-engineering/under-the-hood-
mysql-pool-scanner-mps/10151750529723920.
17.	Rajiv	Eranki,	“Scaling	lessons	learned	at	Dropbox,	part	1,”	Rajiv’s	blog,
July	 12,	 2012,	 http://eranki.tumblr.com/post/27076431887/scaling-lessons-
learned-at-dropbox-part-1.
18.	John	Ciancutti,	“5	Lessons	We’ve	Learned	Using	AWS,”	The	Netflix	Tech
Blog,	 December	 16,	 2010,	 http://techblog.netflix.com/2010/12/5-lessons-
weve-learned-using-aws.html.
19.	Cory	Bennett	and	Ariel	Tseitlin,	“Chaos	Monkey	Released	into	the	Wild,”
The	 Netflix	 Tech	 Blog,	 July	 30,	 2012,
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html.
20.	Adrian	Cockroft,	Cory	Hicks,	and	Greg	Orzell,	“Lessons	Netflix	Learned
from	 the	 AWS	 Outage,”	 The	 Netflix	 Tech	 Blog,	 April	 29,	 2011,
http://techblog.netflix.com/2011/04/lessons-netflix-learned-from-aws-
outage.html.
21.	Bill	Walsh,	The	Score	Takes	Care	of	Itself:	My	Philosophy	of	Leadership
(Portfolio	Trade	2010),	p51.
22.	 “Bill	 Walsh	 (American	 football	 coach),”	 Wikipedia,
http://en.wikipedia.org/wiki/Bill_Walsh_(American_football_coach).
23.	 Kripa	 Krishan,	 “Weathering	 the	 Unexpected,”	ACM	 Queue,	 September
16,	2012,	http://queue.acm.org/detail.cfm?id=2371516.
24.	 Rajiv	 Eranki,	 “Scaling	 lessons	 learned	 at	 Dropbox	 -	 part	 1,”
http://eranki.tumblr.com/post/27076431887/scaling-lessons-learned-at-
dropbox-part-1.

https://code.google.com/p/memcached/wiki/NewProgramming#Expiration
http://en.wikipedia.org/wiki/Tragedy_of_the_commons
https://www.facebook.com/notes/facebook-engineering/under-the-hood-mysql-pool-scanner-mps/10151750529723920
http://eranki.tumblr.com/post/27076431887/scaling-lessons-learned-at-dropbox-part-1
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2011/04/lessons-netflix-learned-from-aws-outage.html
http://en.wikipedia.org/wiki/Bill_Walsh_(American_football_coach)
http://queue.acm.org/detail.cfm?id=2371516
http://eranki.tumblr.com/post/27076431887/scaling-lessons-learned-at-dropbox-part-1

Chapter	10:	Invest	in	Your	Team’s	Growth

1.	 Mark	 R.	 Robertson,	 “Ooyala	 Video	 Scheduling	 –	 New	 Flight	 Time
Feature,”	 ReelSEO,	 June	 29,	 2008,	 http://www.reelseo.com/ooyala-video-
scheduling/.
2.	Marc	Hedlund,	interview	with	the	author,	October	9,	2013.
3.	Yishan	Wong,	“The	Secret	to	Career	Success,”	April	23,	2009,	http://algeri-
wong.com/yishan/the-secret-to-career-success.html.
4.	 “Benchmark	 (venture	 capital	 firm),”	 Wikipedia,
http://en.wikipedia.org/wiki/Benchmark_(venture_capital_firm).
5.	Andy	Rachleff,	“48	Hot	Tech	Companies	To	Build	A	Career,”	Wealthfront
Knowledge	Center,	 October	 25,	 2012,	 https://blog.wealthfront.com/hot-mid-
size-silicon-valley-companies/.
6.	Albert	Ni,	interview	with	the	author,	October	9,	2013.
7.	 Greg	 Brockman,	 “What	 is	 the	 engineering	 interview	 process	 like	 at
Stripe?,”	 Quora,	 August	 27,	 2013,	 https://www.quora.com/What-is-the-
engineering-interview-process-like-at-Stripe/answer/Greg-Brockman?
share=1.
8.	 Parth	 Upadhyay,	 “Pair	 Programming	 Interviews,”	 The	 Corner:	 Square
Engineering	 Blog,	 September	 11,	 2013,
http://corner.squareup.com/2013/09/pair-programming-interviews.html.
9.	 Gayle	 Laakmann	 McDowell,	 Cracking	 the	 Coding	 Interview:	 150
Programming	Questions	and	Solutions	(CareerCup	2011).
10.	Tommy	MacWilliam,	“What	is	the	on-boarding	process	for	new	engineers
at	Quora?,”	Quora,	November	5,	 2013,	 https://www.quora.com/What-is-the-
on-boarding-process-for-new-engineers-at-Quora/answer/Tommy-
MacWilliam?share=1.
11.	“Bus	Factor,”	Wikipedia,	http://en.wikipedia.org/wiki/Bus_factor.
12.	Nimrod	Hoofien,	interview	with	the	author,	October	29,	2013.
13.	 “Kennedy	 Space	 Center	 FAQ,”	 NASA,
http://www.nasa.gov/centers/kennedy/about/information/shuttle_faq.html#10.
14.	Pete	Abilla,	“Jeff	Bezos	and	Root	Cause	Analysis,”	Shmula.com,	January
23,	 2009,	 http://www.shmula.com/jeff-bezos-5-why-exercise-root-cause-
analysis-cause-and-effect-ishikawa-lean-thinking-six-sigma/987/.
15.	Sara	Himeles	and	Joey	Dello	Russo,	“5	powerful	tactics	we	use	to	achieve
great	 teamwork,”	 Asana	 Blog,	 December	 16,	 2013,
http://blog.asana.com/2013/12/culture-practices/.

http://www.reelseo.com/ooyala-video-scheduling/
http://algeri-wong.com/yishan/the-secret-to-career-success.html
http://en.wikipedia.org/wiki/Benchmark_(venture_capital_firm)
https://blog.wealthfront.com/hot-mid-size-silicon-valley-companies/
https://www.quora.com/What-is-the-engineering-interview-process-like-at-Stripe/answer/Greg-Brockman?share=1
http://corner.squareup.com/2013/09/pair-programming-interviews.html
https://www.quora.com/What-is-the-on-boarding-process-for-new-engineers-at-Quora/answer/Tommy-MacWilliam?share=1
http://en.wikipedia.org/wiki/Bus_factor
http://www.nasa.gov/centers/kennedy/about/information/shuttle_faq.html#10
http://www.shmula.com/jeff-bezos-5-why-exercise-root-cause-analysis-cause-and-effect-ishikawa-lean-thinking-six-sigma/987/
http://blog.asana.com/2013/12/culture-practices/

About	the	Author

E DMOND	LAU	IS	AN	ENGINEER	AT	QUIP,	WHERE	HE’S	BUILDING	A	PRODUCTIVITY
suite	to	make	teams	more	effective.

Previously,	 he	 was	 an	 early	 engineer	 at	 Quora,	 where	 he	 led	 the
engineering	 team	 on	 user	 growth	 and	 built	 the	 onboarding	 and	 mentoring
programs	 for	 new	 engineers.	 Before	 Quora,	 he	 worked	 as	 the	 tech	 lead	 of
analytics	at	Ooyala	and	as	an	engineer	on	search	quality	at	Google.	He	earned
his	Bachelor’s	and	Master’s	Degree	in	Computer	Science	at	MIT.

He	 lives	 in	 Palo	 Alto,	 CA.	 Visit	 him	 at	 www.theeffectiveengineer.com,
where	he	shares	more	 lessons,	 stories,	and	habits	 to	help	engineers	be	more
productive	and	effective.

He’s	 passionate	 about	 helping	 engineering	 teams	 build	 strong	 cultures,
and	his	writing	has	been	featured	on	Forbes,	Slate,	Fortune,	Inc.,	and	Times.
He’s	guest	lectured	at	MIT	and	Stanford,	and	he	also	speaks	at	startups	about
building	great	engineering	culture.

The	Effective	Engineer	 is	 his	 first	 book.	He’d	 love	 to	 get	 your	 thoughts
and	 feedback	 over	 Twitter	 (@edmondlau)	 or	 over	 email
(edmond@theeffectiveengineer.com).

http://www.theeffectiveengineer.com/
http://twitter.com/edmondlau
mailto:edmond@theeffectiveengineer.com

	Half Title
	Title Page
	Copyright
	Dedication
	Foreword
	Introduction
	Part 1: Adopt the Right Mindsets
	1. Focus on High-Leverage Activities
	2. Optimize for Learning
	3. Prioritize Regularly
	Part 2: Execute, Execute, Execute
	4. Invest in Iteration Speed
	5. Measure What You Want to Improve
	6. Validate Your Ideas Early and Often
	7. Improve Your Project Estimation Skills
	Part 3: Build Long-Term Value
	8. Balance Quality with Pragmatism
	9. Minimize Operational Burden
	10. Invest in Your Team’s Growth
	Epilogue
	Appendix
	Acknowledgments
	Notes
	About the Author

