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1.1 Introduction

An important aspect of the analysis and design of structures relates to the deformations 

caused by the loads applied to a structure. Clearly it is important to avoid deformations so 

large that they may prevent the structure from fulfilling the purpose for which it is intended. 

But the analysis of deformations may also help us in the determination of stresses. It is not 

always possible to determine the forces in the members of a structure by applying only the 

principle of statics. This is because statics is based on the assumption of undeformable, 

rigid structures. By considering engineering structures as deformable and analyzing the 

deformations in their various members, it will be possible to compute forces which are 

statically indeterminate. Also the distribution of stresses in a given member is 

indeterminate, even when the force in that member is known. To determine the actual 

distribution of stresses within a member, it is necessary to analyze the deformations which 

take place in that member. This chapter deals with the deformations of a structural 

member such as a rod, bar or a plate under axial loading.  
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1.2 Free body diagram - Revisited 

The first step towards solving an engineering problem is drawing the free body diagram of 

the element/structure considered. 

Removing an existing force or including a wrong force on the free body will badly affect the 

equilibrium conditions, and hence, the analysis. 

In view of this, some important points in drawing the free body diagram are discussed 

below. 

 

Figure 1.1 

At the beginning, a clear decision is to be made by the analyst on the choice of the body to 

be considered for free body diagram. 

Then that body is detached from all of its surrounding members including ground and only 

their forces on the free body are represented. 

The weight of the body and other external body forces like centrifugal, inertia, etc., should 

also be included in the diagram and they are assumed to act at the centre of gravity of the 

body. 

When a structure involving many elements is considered for free body diagram, the forces 

acting in between the elements should not be brought into the diagram. 

The known forces acting on the body should be represented with proper magnitude and 

direction. 

If the direction of unknown forces like reactions can be decided, they should be indicated 

clearly in the diagram. 
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After completing free body diagram, equilibrium equations from statics in terms of forces 

and moments are applied and solved for the unknowns.  
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1.3 Normal, shear and bearing stress 

1.3.1 Normal Stress:  

 

Figure 1.2 

When a structural member is under load, predicting its ability to withstand that load is not 

possible merely from the reaction force in the member. 

It depends upon the internal force, cross sectional area of the element and its material 

properties. 

Thus, a quantity that gives the ratio of the internal force to the cross sectional area will 

define the ability of the material in with standing the loads in a better way. 

That quantity, i.e., the intensity of force distributed over the given area or simply the force 

per unit area is called the stress.  

P
A

σ =  1.1 

 

In SI units, force is expressed in newtons (N) and area in square meters. Consequently, 

the stress has units of newtons per square meter (N/m2) or Pascals (Pa). 

In figure 1.2, the stresses are acting normal to the section XX that is perpendicular to the 

axis of the bar. These stresses are called normal stresses. 

The stress defined in equation 1.1 is obtained by dividing the force by the cross sectional 

area and hence it represents the average value of the stress over the entire cross section. 



 Strength of Materials Prof. M. S. Sivakumar  

 

 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras 

 

Figure 1.3 

Consider a small area ∆A on the cross section with the force acting on it ∆F as shown in 

figure 1.3. Let the area contain a point C. 

Now, the stress at the point C can be defined as, 

A 0

Flim
A∆ →

∆
σ =

∆
 1.2 

 

The average stress values obtained using equation 1.1 and the stress value at a point from 

equation 1.2 may not be the same for all cross sections and for all loading conditions.  

1.3.2 Saint - Venant's Principle:

 

Figure 1.4 
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Consider a slender bar with point loads at its ends as shown in figure 1.4. 

The normal stress distribution across sections located at distances b/4 and b from one and 

of the bar is represented in the figure. 

It is found from figure 1.4 that the stress varies appreciably across the cross section in the 

immediate vicinity of the application of loads. 

The points very near the application of the loads experience a larger stress value whereas, 

the points far away from it on the same section has lower stress value. 

The variation of stress across the cross section is negligible when the section considered 

is far away, about equal to the width of the bar, from the application of point loads. 

Thus, except in the immediate vicinity of the points where the load is applied, the stress 

distribution may be assumed to be uniform and is independent of the mode of application 

of loads. This principle is called Saint-Venant's principle.  

1.3.3 Shear Stress:  

The stresses acting perpendicular to the surfaces considered are normal stresses and 

were discussed in the preceding section. 

Now consider a bolted connection in which two plates are connected by a bolt with cross 

section A as shown in figure 1.5. 

 

Figure 1.5 

The tensile loads applied on the plates will tend to shear the bolt at the section AA. 

Hence, it can be easily concluded from the free body diagram of the bolt that the internal 

resistance force V must act in the plane of the section AA and it should be equal to the 

external load P. 

These internal forces are called shear forces and when they are divided by the 

corresponding section area, we obtain the shear stress on that section. 
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V
A

τ =  1.3 

 

Equation 1.3 defines the average value of the shear stress on the cross section and the 

distribution of them over the area is not uniform. 

In general, the shear stress is found to be maximum at the centre and zero at certain 

locations on the edge. This will be dealt in detail in shear stresses in beams (module 6). 

In figure 1.5, the bolt experiences shear stresses on a single plane in its body and hence it 

is said to be under single shear. 

Figure 1.6 

In figure 1.6, the bolt experiences shear on two sections AA and BB. Hence, the bolt is 

said to be under double shear and the shear stress on each section is  

V P
A 2A

τ = =  1.4 

 

Assuming that the same bolt is used in the assembly as shown in figure 1.5 and 1.6 and 

the same load P is applied on the plates, we can conclude that the shear stress is reduced 

by half in double shear when compared to a single shear. 

Shear stresses are generally found in bolts, pins and rivets that are used to connect 

various structural members and machine components.  

1.3.4 Bearing Stress:

In the bolted connection in figure 1.5, a highly irregular pressure gets developed on the 

contact surface between the bolt and the plates. 

The average intensity of this pressure can be found out by dividing the load P by the 

projected area of the contact surface. This is referred to as the bearing stress. 
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Figure 1.7 

The projected area of the contact surface is calculated as the product of the diameter of 

the bolt and the thickness of the plate. 

Bearing stress, 

b
P P
A t d

σ = =
×

 1.5 

 

  Example 1:  

 

Figure 1.8 
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A rod R is used to hold a sign board with an axial load 50 kN as shown in figure 1.8. The 

end of the rod is 50 mm wide and has a circular hole for fixing the pin which is 20 mm 

diameter. The load from the rod R is transferred to the base plate C through a bracket B 

that is 22mm wide and has a circular hole for the pin. The base plate is 10 mm thick and it 

is connected to the bracket by welding. The base plate C is fixed on to a structure by four 

bolts of each 12 mm diameter. Find the shear stress and bearing stress in the pin and in 

the bolts.  

Solution:

Shear stress in the pin = 
( )

( )

3

pin 2

50 10 / 2V P 79.6 MPa
A 2A 0.02 / 4

×
τ = = = =

π
 

Force acting on the base plate = Pcosθ = 50 cos300 = 43.3 kN  

Shear stress in the bolt, 
( )

( )

3

bolt 2

43.3 10 / 4P
4A 0.012 / 4

×
τ = =

π
 

95.7 MPa=  

Bearing stress between pin and rod, 
( )

( ) ( )

3

b
50 10P

b d 0.05 0.02

×
σ = =

× ×
 

50 MPa=  

Bearing stress between pin and bracket = 
( )

( ) ( )

3

b
50 10 / 2P / 2

b d 0.022 0.02

×
σ = =

× ×
 

= 56.8 MPa 

Bearing stress between plate and bolts = 
( )
( ) ( )

3

b
43.3 10 / 4P / 4

t d 0.01 0.012

×
σ = =

× ×
 

90.2 MPa=  
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1.4 Stress on inclined planes under axial loading:  

When a body is under an axial load, the plane normal to the axis contains only the normal 

stress as discussed in section 1.3.1. 

However, if we consider an oblique plane that forms an angle� with normal plane, it 

consists shear stress in addition to normal stress.  

Consider such an oblique plane in a bar. The resultant force P acting on that plane will 

keep the bar in equilibrium against the external load P' as shown in figure 1.9. 

Figure 1.9 

The resultant force P on the oblique plane can be resolved into two components Fn and Fs 

that are acting normal and tangent to that plane, respectively.  

If A is the area of cross section of the bar, A/cos� is the area of the oblique plane. Normal 

and shear stresses acting on that plane can be obtained as follows. 

Fn= Pcosθ

Fs = -Psinθ (Assuming shear causing clockwise rotation negative).  

2P cos P cos
A / cos A

θ
σ = = θ

θ
 1.6 

Psin P sin cos
A / cos A

θ
τ = − = − θ θ

θ
 1.7 

 

Equations 1.6 and 1.7 define the normal and shear stress values on an inclined plane that 

makes an angle θ with the vertical plane on which the axial load acts. 

From above equations, it is understandable that the normal stress reaches its maximum 

when θ = 0o and becomes zero when θ = 90o.
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But, the shear stress assumes zero value at θ = 0o and θ = 90o and reaches its maximum 

when θ = 45o. 

The magnitude of maximum shear stress occurring at θ = 45o plane is half of the maximum 

normal stress that occurs at θ = 0o for a material under a uniaxial loading. 

max
max

P
2A 2

σ
τ = =  1.8 

 

Now consider a cubic element A in the rod which is represented in two dimension as 

shown in figure 1.10 such that one of its sides makes an angle � with the vertical plane. 

 

Figure 1.10 

To determine the stresses acting on the plane mn, equations 1.6 and 1.7 are used as such 

and to knows the stresses on plane om, θ is replaced by θ + 90o. 

Maximum shear stress occurs on both om and mn planes with equal magnitude and 

opposite signs, when mn forms 45o angle with vertical plane. 

Example 2:  

A prismatic bar of sides 40 mm x 30 mm is axially loaded with a compressive force of 80 

kN. Determine the stresses acting on an element which makes 300 inclination with the 

vertical plane. Also find the maximum shear stress value in the bar. 
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Figure 1.11 

Solution:  

Area of the cross section, A = 40 x 30 x 10-6 = 1.2 x 10-3 m2

Normal stress on 300 inclined plane, 2P cos
A

σ = θ  

3
2 o

3
80 10 cos 30 50 MPa

1.2 10−
− ×

= × = −
×

 

Shear stress on 300 plane,  
3

0 0
3

P 80 10sin cos sin 30 cos30
A 1.2 10−
− ×

τ = θ θ = × ×
×

 

                       = 28.9 MPa [Counter clockwise] 

Normal stress on 1200 plane, 
3

2 0
3

80 10 cos 120 16.67 MPa
1.2 10−
− ×

σ = = −
×

 

Shear stress on 1200 plane, 
3

0 0
3

80 10 sin120 cos120 28.9 MPa
1.2 10−

×
τ = × × = −

×
[Clock wise] 

−
×

τ = =
× ×

±

3

max 3
P 80 10Maximum shear stress in the bar, 

2A 2 1.2 10
                                                               = 33.3 MPa
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1.5 Strain

The structural member and machine components undergo deformation as they are brought 

under loads. 

To ensure that the deformation is within the permissible limits and do not affect the 

performance of the members, a detailed study on the deformation assumes significance. 

A quantity called strain defines the deformation of the members and structures in a better 

way than the deformation itself and is an indication on the state of the material. 

 

Figure 1.12 

Consider a rod of uniform cross section with initial length as shown in figure 1.12. 

Application of a tensile load P at one end of the rod results in elongation of the rod by

0L

δ . 

After elongation, the length of the rod is L. As the cross section of the rod is uniform, it is 

appropriate to assume that the elongation is uniform throughout the volume of the rod. If 

the tensile load is replaced by a compressive load, then the deformation of the rod will be a 

contraction. The deformation per unit length of the rod along its axis is defined as the 

normal strain. It is denoted by  ε

0L L
 
L L

−δ
ε = =  1.9 

 

Though the strain is a dimensionless quantity, units are often given in mm/mm, µm/m. 
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Example 3:

A circular hollow tube made of steel is used to support a compressive load of 500kN. The 

inner and outer diameters of the tube are 90mm and 130mm respectively and its length is 

1000mm. Due to compressive load, the contraction of the rod is 0.5mm. Determine the 

compressive stress and strain in the post. 

Solution

Force,  3P 500 10 N (compressive)= − ×

Area of the tube, ( ) ( )2 2 3 2A 0.13 0.09  = 6.912 10 m
4

−π ⎡ ⎤= − ×⎢ ⎥⎣ ⎦
  

Stress, 
3

3
P 500 10 72.3MPa (compressive)
A 6.912 10−

− ×
σ = = = −

×
 

Strain, 4

0

0.5 5 10 (compressive)
L 1000

−δ −
ε = = = − ×   
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1.6 Mechanical properties of materials 

A tensile test is generally conducted on a standard specimen to obtain the relationship 

between the stress and the strain which is an important characteristic of the material. 

In the test, the uniaxial load is applied to the specimen and increased gradually. The 

corresponding deformations are recorded throughout the loading. 

Stress-strain diagrams of materials vary widely depending upon whether the material is 

ductile or brittle in nature. 

If the material undergoes a large deformation before failure, it is referred to as ductile 

material or else brittle material.  

 

 

 

 

 

 

 

 

 

Figure 1.13 

In figure 1.13, the stress-strain diagram of a structural steel, which is a ductile material, is 

given. 

Initial part of the loading indicates a linear relationship between stress and strain, and the 

deformation is completely recoverable in this region for both ductile and brittle materials. 

This linear relationship, i.e., stress is directly proportional to strain, is popularly known as 

Hooke's law. 

Eσ = ε  1.10 
 

The co-efficient E is called the modulus of elasticity or Young's modulus. 

Most of the engineering structures are designed to function within their linear elastic region 

only. 
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After the stress reaches a critical value, the deformation becomes irrecoverable. The 

corresponding stress is called the yield stress or yield strength of the material beyond 

which the material is said to start yielding. 

In some of the ductile materials like low carbon steels, as the material reaches the yield 

strength it starts yielding continuously even though there is no increment in  external 

load/stress. This flat curve in stress strain diagram is referred as perfectly plastic region. 

The load required to yield the material beyond its yield strength increases appreciably and 

this is referred to strain hardening of the material. 

In other ductile materials like aluminum alloys, the strain hardening occurs immediately 

after the linear elastic region without perfectly elastic region. 

After the stress in the specimen reaches a maximum value, called ultimate strength, upon 

further stretching, the diameter of the specimen starts decreasing fast due to local 

instability and this phenomenon is called necking. 

The load required for further elongation of the material in the necking region decreases 

with decrease in diameter and the stress value at which the material fails is called the 

breaking strength. 

In case of brittle materials like cast iron and concrete, the material experiences smaller 

deformation before rupture and there is no necking.  

 

Figure 1.14 

 

Top 
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1.7 True stress and true strain

In drawing the stress-strain diagram as shown in figure 1.13, the stress was calculated by 

dividing the load P by the initial cross section of the specimen. 

But it is clear that as the specimen elongates its diameter decreases and the decrease in 

cross section is apparent during necking phase. 

Hence, the actual stress which is obtained by dividing the load by the actual cross 

sectional area in the deformed specimen is different from that of the engineering stress 

that is obtained using undeformed cross sectional area as in equation 1.1 

True stress or actual stress, 

act
act

P
A

σ =  1.11 

 

Though the difference between the true stress and the engineering stress is negligible for 

smaller loads, the former is always higher than the latter for larger loads. 

Similarly, if the initial length of the specimen is used to calculate the strain, it is called 

engineering strain as obtained in equation 1.9 

But some engineering applications like metal forming process involve large deformations 

and they require actual or true strains that are obtained using the successive recorded 

lengths to calculate the strain. 

True strain
0

L

0L

dL Lln
L L

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∫   1.12 

 

True strain is also called as actual strain or natural strain and it plays an important role in 

theories of viscosity. 

The difference in using engineering stress-strain and the true stress-strain is noticeable 

after the proportional limit is crossed as shown in figure 1.15.  
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Figure 1.15 
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1.8 Poissons ratio

 

Figure 1.16 

Consider a rod under an axial tensile load P as shown in figure 1.6 such that the material 

is within the elastic limit. The normal stress on x plane is xx
P
A

σ = and the associated 

longitudinal strain in the x direction can be found out from xx
x E

σ
ε = . As the material 

elongates in the x direction due to the load P, it also contracts in the other two mutually 

perpendicular directions, i.e., y and z directions. 

Hence, despite the absence of normal stresses in y and z directions, strains do exist in 

those directions and they are called lateral strains. 

The ratio between the lateral strain and the axial/longitudinal strain for a given material is 

always a constant within the elastic limit and this constant is referred to as Poisson's ratio. 

It is denoted by . ν

lateral strain 
axial strain

ν = −  1.13 

 

Since the axial and lateral strains are opposite in sign, a negative sign is introduced in 

equation 1.13 to make ν  positive. 

Using equation 1.13, the lateral strain in the material can be obtained by 
 

xx
y z x E

σ
ε = ε = −νε = −ν  1.14 

 

Poisson's ratio can be as low as 0.1 for concrete and as high as 0.5 for rubber. 

In general, it varies from 0.25 to 0.35 and for steel it is about 0.3. 
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1.9 Elasticity and Plasticity

If the strain disappears completely after removal of the load, then the material is said to be 

in elastic region. 

The stress-strain relationship in elastic region need not be linear and can be non-linear as 

in rubber like materials. 

 

Figure 1.17 

The maximum stress value below which the strain is fully recoverable is called the elastic 

limit. It is represented by point A in figure 1.17. 

When the stress in the material exceeds the elastic limit, the material enters into plastic 

phase where the strain can no longer be completely removed. 

To ascertain that the material has reached the plastic region, after each load increment, it 

is unloaded and checked for residual strain. 

Presence of residual strain is the indication that the material has entered into plastic 

phase. 

If the material has crossed elastic limit, during unloading it follows a path that is parallel to 

the initial elastic loading path with the same proportionality constant E. 

The strain present in the material after unloading is called the residual strain or plastic 

strain and the strain disappears during unloading is termed as recoverable or elastic strain. 

They are represented by OC and CD, respectively in figure.1.17. 

If the material is reloaded from point C, it will follow the previous unloading path and line 

CB becomes its new elastic region with elastic limit defined by point B. 
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Though the new elastic region CB resembles that of the initial elastic region OA, the 

internal structure of the material in the new state has changed.  

The change in the microstructure of the material is clear from the fact that the ductility of 

the material has come down due to strain hardening. 

When the material is reloaded, it follows the same path as that of a virgin material and fails 

on reaching the ultimate strength which remains unaltered due to the intermediate loading 

and unloading process. 
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1.10 Creep and fatigue

In the preceding section, it was discussed that the plastic deformation of a material 

increases with increasing load once the stress in the material exceeds the elastic limit. 

However, the materials undergo additional plastic deformation with time even though the 

load on the material is unaltered. 

Consider a bar under a constant axial tensile load as shown in figure 1.18. 

 

Figure 1.18 

As soon as the material is loaded beyond its elastic limit, it undergoes an instant plastic 

deformation  at time t = 0. 0ε

Though the material is not brought under additional loads, it experiences further plastic 

deformation with time as shown in the graph in figure 1.18. 

This phenomenon is called creep. 

Creep at high temperature is of more concern and it plays an important role in the design 

of engines, turbines, furnaces, etc. 

However materials like concrete, steel and wood experience creep slightly even at normal 

room temperature that is negligible. 

Analogous to creep, the load required to keep the material under constant strain 

decreases with time and this phenomenon is referred to as stress relaxation. 

It was concluded in section 1.9 that the specimen will not fail when the stress in the 

material is with in the elastic limit. 
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This holds true only for static loading conditions and if the applied load fluctuates or 

reverses then the material will fail far below its yield strength. 

This phenomenon is known as fatigue.  

Designs involving fluctuating loads like traffic in bridges, and reversing loads like 

automobile axles require fatigue analysis. 

Fatigue failure is initiated by a minute crack that develops at a high stress point which may 

be an imperfection in the material or a surface scratch. 

The crack enlarges and propagates through the material due to successive loadings until 

the material fails as the undamaged portion of the material is insufficient to withstand the 

load. 

Hence, a polished surface shaft can take more number of cycles than a shaft with rough or 

corroded surface. 

The number of cycles that can be taken up by a material before it fractures can be found 

out by conducting experiments on material specimens. 

The obtained results are plotted as nσ − curves as given in figure 1.19, which indicates the 

number of cycles that can be safely completed by the material under a given maximum 

stress. 

 

Figure 1.19 

It is learnt from the graph that the number of cycles to failure increases with decrease in 

magnitude of stress. 
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For steels, if the magnitude of stress is reduced to a particular value, it can undergo an 

infinitely large number of cycles without fatigue failure and the corresponding stress is 

known as endurance limit or fatigue limit. 

On the other hand, for non-ferrous metals like aluminum alloys there is no endurance limit, 

and hence, the maximum stress decreases continuously with increase in number of cycles. 

In such cases, the fatigue limit of the material is taken as the stress value that will allow an 

arbitrarily taken number of cycles, say cycles. 810
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1.11 Deformation in axially loaded members

Consider the rod of uniform cross section under tensile load P along its axis as shown in 

figure 1.12. 

Let that the initial length of the rod be L and the deflection due to load be δ . Using 

equations 1.9 and 1.10, 

P
L E A

PL
AE

δ σ
= ε = =

δ =

E  1.15 

 

Equation 1.15 is obtained under the assumption that the material is homogeneous and has 

a uniform cross section.  

Now, consider another rod of varying cross section with the same axial load P as shown in 

figure 1.20. 

 

Figure 1.20 

Let us take an infinitesimal element of length dx in the rod that undergoes a deflection 

d due to load P. The strain in the element is δ d and d  = dx
dx

δ
ε = δ ε  

The deflection of total length of the rod can be obtained by integrating above equation, dxδ = ε∫  

L

0

Pdx
EA(x)

δ = ∫  1.16 
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As the cross sectional area of the rod keeps varying, it is expressed as a function of its 

length. 

If the load is also varying along the length like the weight of the material, it should also be 

expressed as a function of distance, i.e., P(x) in equation 1.16. 

Also, if the structure consists of several components of different materials, then the 

deflection of each component is determined and summed up to get the total deflection of 

the structure. 

When the cross section of the components and the axial loads on them are not varying 

along length, the total deflection of the structure can be determined easily by, 

n
i i

i ii 1

P L
A E=

δ = ∑  1.17 

 

Example 4: 

 

Figure 1.21 

Consider a rod ABC with aluminum part AB and steel part BC having diameters 25mm and 

50 mm respectively as shown figure 1.21. Determine the deflections of points A and B. 
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Solution:  

 

Deflection of part AB = 
3

AB AB
2 9AB AB

P L 10 10 400
A E (0.025) / 4 70 10

× ×
= −

π × × ×
 

         0.1164 mm= −

Deflection of part BC = 
3

BC BC
2 9BC BC

P L 35 10 500
A E (0.05) / 4 200 10

× ×
= −

π × × ×
 

         0.0446 mm= −

Deflection point of B  0.0446 mm= −

Deflection point of A ( )( 0.1164) 0.0446= − + −  

0.161mm= −  
 
 
 
 

Top 
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1.12 Statically indeterminate problems.

Members for which reaction forces and internal forces can be found out from static 

equilibrium equations alone are called statically determinate members or structures. 

Problems requiring deformation equations in addition to static equilibrium equations to 

solve for unknown forces are called statically indeterminate problems. 

 

Figure 1.22 

The reaction force at the support for the bar ABC in figure 1.22 can be determined 

considering equilibrium equation in the vertical direction. 

yF 0;   R - P = 0=∑  

Now, consider the right side bar MNO in figure 1.22 which is rigidly fixed at both the ends. 

From static equilibrium, we get only one equation with two unknown reaction forces R1 and 

R2.

1 2- P + R + R = 0  1.18 
 

Hence, this equilibrium equation should be supplemented with a deflection equation which 

was discussed in the preceding section to solve for unknowns. 

If the bar MNO is separated from its supports and applied the forces , then 

these forces cause the bar to undergo a deflection 

1 2R ,R  and P

MOδ  that must be equal to zero. 



 Strength of Materials Prof. M. S. Sivakumar  

 

 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras 

MO MN NO0δ = ⇒ δ + δ = 0  1.19 

MN NO and δ δ are the deflections of parts MN and NO respectively in the bar MNO. 

Individually these deflections are not zero, but their sum must make it to be zero.  

Equation 1.19 is called compatibility equation, which insists that the change in length of the 

bar must be compatible with the boundary conditions. 

Deflection of parts MN and NO due to load P can be obtained by assuming that the 

material is within the elastic limit, 1 1 2 2
MN NO

1 2

R l R l
 and  

A E A E
δ = δ = . 

Substituting these deflections in equation 1.19, 
1 1 2 2

1 2

R l R l
- 0

A E A E
=  1.20 

Combining equations 1.18 and 1.20, one can get, 

1 2
1

1 2 2 1

2 1
2

1 2 2 1

PA l
R

l A l A
PA l

R
l A l A

=
+

=
+

 1.21 

 

From these reaction forces, the stresses acting on any section in the bar can be easily 

determined.  

 

Example 5:

 

Figure 1.23 
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A rectangular column of sides 0.4m 0.35m× , made of concrete, is used to support a 

compressive load of 1.5MN. Four steel rods of each 24mm diameter are passing through 

the concrete as shown in figure 1.23. If the length of the column is 3m, determine the 

normal stress in the steel and the concrete. Take steel concreteE 200 GPa and E 29 GPa.= =  

Solution:

Ps = Load on each steel rod 

Pc = Load on concrete 

From equilibrium equation, 

c s
3

c s

P 4P P

P 4P 1.5 10 ..........(a)

+ =

+ = ×
 

Deflection in steel rod and concrete are the same. 

concrete steelδ = δ  

( )
c s

9 2 9

c s

P 3 P 3

0.4 (0.35) 29 10 (0.024) 200 10
4

P 44.87P ................(b)

× ×
=

π× × × × × ×

=

 

Combining equations (a) and (b), 

s

c

P 30.7kN
P 1378kN

=

=
 

Normal stress on concrete=
6

c

c

P 1.378 10 9.84MPa
A (0.4)(0.35)

×
= =   

Normal stress on steel=
3

s
2s

P 30.7 10 67.86MPa
A (0.024)

4

×
= =

π
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1.13 Thermal effect 

When a material undergoes a change in temperature, it either elongates or contracts 

depending upon whether heat is added to or removed from the material. 

If the elongation or contraction is not restricted, then the material does not experience any 

stress despite the fact that it undergoes a strain. 

The strain due to temperature change is called thermal strain and is expressed as 

T ( T)ε = α ∆  1.22 
 

where αis a material property known as coefficient of thermal expansion and ∆T indicates 

the change in temperature. 

Since strain is a dimensionless quantity and ∆T is expressed in K or 0C, α has a unit that is 

reciprocal of K or 0C. 

The free expansion or contraction of materials, when restrained induces stress in the 

material and it is referred to as thermal stress. 

Thermal stress produces the same effect in the material similar to that of mechanical 

stress and it can be determined as follows. 

 

Figure 1.24 

Consider a rod AB of length L which is fixed at both ends as shown in figure 1.24.  

Let the temperature of the rod be raised by ∆T and as the expansion is restricted, the 

material develops a compressive stress.  
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In this problem, static equilibrium equations alone are not sufficient to solve for unknowns 

and hence is called statically indeterminate problem. 

To determine the stress due to ∆T, assume that the support at the end B is removed and 

the material is allowed to expand freely. 

Increase in the length of the rod Tδ due to free expansion can be found out using equation 

1.22 

T TL ( T)δ = ε = α ∆ L  1.23 
 

Now, apply a compressive load P at the end B to bring it back to its initial position and the 

deflection due to mechanical load from equation 1.15, 

T
PL
AE

δ =  1.24 

 

As the magnitude of and δ are equal and their signs differ, Tδ

T
PL( T)L
AE

δ = −δ

α ∆ = −
 

T
PThermal stress, ( T)E
A

σ = = −α ∆  1.25 

 

Minus sign in the equation indicates a compressive stress in the material and with 

decrease in temperature, the stress developed is tensile stress as ∆T becomes negative.  

It is to be noted that the equation 1.25 was obtained on the assumption that the material is 

homogeneous and the area of the cross section is uniform. 

Thermoplastic analysis assumes significance for structures and components that are 

experiencing high temperature variations. 
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Example 6:

 

Figure 1.25 

A rod consists of two parts that are made of steel and aluminum as shown in figure 1.25. 

The elastic modulus and coefficient of thermal expansion for steel are 200GPa and 11.7 x 

10-6 per 0C respectively and for aluminum 70GPa and 21.6 x 10-6 per 0C respectively. If the 

temperature of the rod is raised by 500C, determine the forces and stresses acting on the 

rod.  

Solution:

Deflection of the rod under free expansion, 

( ) (
T

6 6

( T)L

11.7 10 50 500 21.6 10 50 750

1.1025 mm

− −

δ = α ∆

= × × × + × × ×

=

)  

Restrained deflection of rod = 1.1025 - 0.4 = 0.7025 mm 

Let the force required to make their elongation vanish be R which is the reaction force at 

the ends. 
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[ ]

[ ]

steel Al

2 3 2

2 3 2

3 9 3

RL RL
AE AE

Area of steel rod = 0.05 1.9635 10 m
4

Area of aluminium rod = 0.03 0.7069 10 m
4

500 7500.7025 R
1.9635 10 200 10 0.7069 10 70 10

Compressive force on the r

−

−

− −

⎛ ⎞ ⎛ ⎞−δ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

π
= ×

π
= ×

⎡ ⎤
− = +⎢ ⎥

× × × × × ×⎣ ⎦9

3

3

3

3

od, R =  42.076 kN

P 42.76 10Compressive stress on steel, = 21.8MPa
A 1.9635 10
P 42.76 10Compressive stress on steel, = 60.5MPa
A 0.7069 10

−

−

−

− ×
σ = = −

×

− ×
σ = = −

×
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1.14. Design considerations: 

A good design of a structural element or machine component should ensure that the 

developed product will function safely and economically during its estimated life time. 

The stress developed in the material should always be less than the maximum stress it 

can withstand which is known as ultimate strength as discussed in section 1.6. 

During normal operating conditions, the stress experienced by the material is referred to as 

working stress or allowable stress or design stress. 

The ratio of ultimate strength to allowable stress is defined as factor of safety. 

             
UltimatestressFactor of safety

Allowablestress
=  1.26 

 
Factor of safety can also be expressed in terms of load as, 

 

   Ultimate loadFactor of safety
Allowable load

=              1.27 

 

Equations 1.26 and 1.27 are identical when a linear relationship exists between the load 

and the stress. 

This is not true for many materials and equation 1.26 is widely used in design analysis. 

Factor of safety take care of the uncertainties in predicting the exact loadings, variation in 

material properties, environmental effects and the accuracy of methods of analysis. 

If the factor of safety is less, then the risk of failure is more and on the other hand, when 

the factor of safety is very high the structure becomes unacceptable or uncompetitive. 

 

Hence, depending upon the applications the factor of safety varies. It is common to see 

that the factor of safety is taken between 2 and 3. 

Stresses developed in the material when subjected to loads can be considered to be 

uniform at sections located far away from the point of application of loads. 

This observation is called Saint Venant’s principle and was discussed in section 1.3. 

But, when the element has holes, grooves, notches, key ways, threads and other                      

abrupt changes in geometry, the stress on those cross-sections will not be uniform. 
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These discontinuities in geometry cause high stresses concentrations in small regions of 

the material and are called stress raisers. 

Experimentally it was found that the stress concentrations are independent of the material 

size and its properties, and they depend only on the geometric parameters. 

 

 
Figure 1.26 

 
Consider a rectangular flat plate with a circular hole as shown in figure 1.26. 

The stress distribution on the section passing through the centre of the hole indicates that 

the maximum stress occurs at the ends of the holes and it is much higher than the average 

stress. 

Since the designer, in general, is more interested in knowing the maximum stress rather 

than  the actual stress distribution, a simple relationship between the   in 

terms of geometric parameters will be of  practical importance. 

max aveandσ σ

Many experiments were conducted on samples with various discontinuities and the 

relationship between the stress concentration factor and the geometrical parameters are 

established, where 

 

Stress concentration factor, max

ave
K

σ
=

σ
                1.28 
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Hence, simply by calculating the average stress, ave
P
A

σ = , in the critical section of a 

discontinuity,  can be easily found and by multiplying maxσ aveσ  with K. 

The variation of K in terms of r/d for the rectangular plate with a circular hole is given in 

figure 1.26. 

It is to be noted that the expression in equation 1.28 can be used as long as is within 

the proportional limit of the material. 

maxσ

 
Example 7: 

 

 
Figure 1.27 

A rectangular link AB made of steel is used to support a load W through a rod CD as 

shown in figure 1.27. If the link AB is 30mm wide, determine its thickness for a factor of 

safety 2.5. The ultimate strength of steel may be assumed to be 450 MPa. 

Solution: 

Drawing free body diagram of the link and the rod, 

 
 

 
 

Taking moment about C, 
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0
BA

BA

BA

6

a

3
6

25 550 F sin 60 500 0
F 31.75 kN

Tension along link AB,  F 31.75 kN.
UltimatestressF.O.S
allowablestress

450 10Allowablestress in link AB, 180MPa
2.5

Tensile forceStress in link AB,
Area

31.75 10180 10
0.03

× − × =
=

=

=

×
σ = =

σ =

×
× =

t
Thickness of link AB, t 5.88

t 6mm

×
=

≈
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1.15. Strain energy: 

Strain energy is an important concept in mechanics and is used to study the response of 

materials and structures under static and dynamic loads. 

Within the elastic limit, the work done by the external forces on a material is stored as 

deformation or strain that is recoverable. 

On removal of load, the deformation or strain disappears and the stored energy is 

released. This recoverable energy stored in the material in the form of strain is called 

elastic strain energy. 

           
 

Figure 1.28 

Consider a rod of uniform cross section with length L as shown in figure 1.28. 

An axial tensile load P is applied on the material gradually from zero to maximum 

magnitude and the corresponding maximum deformation is δ. 

Area under the load-displacement curve shown in figure 1.28 indicates the work done on 

the material by the external load that is stored as strain energy in the material. 

Let dW be the work done by the load P due to increment in deflection dδ. The 

corresponding increase in strain energy is dU. 

When the material is within the elastic limit, the work done due to dδ, 

                              dW dU Pd= = δ
 

The total work done or total elastic strain energy of the material, 

             

  
0

W U Pd
δ

= = δ∫              1.29 
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Equation 1.29 holds for both linear elastic and non-linear elastic materials. 

If the material is linear elastic, then the load-displacement diagram will become as shown 

in figure 1.29. 

 
 

 
Figure 1.29 

 
The elastic strain energy stored in the material is determined from the area of triangle 

OAB.       

                

1 1
1U P
2

= δ                1.30 

   
1

1
P Lwhere
AE

δ = . 

 
Since the load-displacement curve is a straight line here, the load can be expressed in 

terms of stiffness and deflection as

1P

1P k 1= δ . Then equation 1.30 turns out to be,   

                         

2
1

1U k
2

= δ                1.31 

    
Work done and strain energy are expressed in N-m or joules (J). 

Strain energy defined in equation 1.29 depends on the material dimensions. 

In order to eliminate the material dimensions from the strain energy equation, strain energy 

density is often used. 

Strain energy stored per unit volume of the material is referred to as strain energy density. 

Dividing equation 1.29 by volume, 
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Strain energy density,  
0

u d
ε

= σ ε∫                1.32 

 
Equation 1.32 indicates the expression of strain energy in terms of stress and strain, which 

are more convenient quantities to use rather than load and displacement. 

 

 

 
Figure 1.30 

Area under the stress strain curve indicates the strain energy density of the material. 

For linear elastic materials within proportional limit, equation 1.32 gets simplified as, 

 

        Strain energy density, 1 1
1u
2

= σ ε  1.33 

 

Using Hook’s law, 1
1 E

σ
ε = , strain energy density is expressed in terms of stress,               

                          
2

1u
2E
σ

=      1.34 

 
When the stress in the material reaches the yield stress yσ , the strain energy density 

attains its maximum value and is called the modulus of resilience. 

 

      Modulus of resilience, 
2

Y
Ru

2E
σ

=  1.35 
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Modulus of resilience is a measure of energy that can be absorbed by the material due to 

impact loading without undergoing any plastic deformation. 

 

 
Figure 1.31 

 
If the material exceeds the elastic limit during loading, all the work done is not stored in the 

material as strain energy. 

This is due to the fact that part of the energy is spent on deforming the material 

permanently and that energy is dissipated out as heat. 

The area under the entire stress strain diagram is called modulus of toughness, which is a 

measure of energy that can be absorbed by the material due to impact loading before it 

fractures. 

Hence, materials with higher modulus of toughness are used to make components and 

structures that will be exposed to sudden and impact loads. 

 

Example 8:

 

 
Figure 1.32 
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A 25 kN load is applied gradually on a steel rod ABC as shown in figure 1.32. Taking 

E=200 GPa, determine the strain energy stored in the entire rod and the strain energy 

density in parts AB and BC. If the yield strength of the material is σy=320MPa, find the 

maximum energy that can be absorbed by the rod without undergoing permanent 

deformation. 

Solution: 

 

  
( )

2
AB

AB

2
3

AB 9 2

3

Strain energy density in part AB, u
2E

1 25 10u
2 200 10 0.024

4
        = 7.63 kJ/m

σ
=

⎡ ⎤
⎢ ⎥×

= ⎢ ⎥π× × ⎢ ⎥
⎣ ⎦

 

( )

2
BC

BC

2
3

BC 9 2

3

Strain energy density in part BC, u
2E

1 25 10u
2 200 10 0.016

4
        = 38.65 kJ/m

σ
=

⎡ ⎤
⎢ ⎥×

= ⎢ ⎥π× × ⎢ ⎥
⎣ ⎦

 

 
Strain energy in the entire rod, 
 

( ) ( )

AB AB BC BC

2 23 3

U u V u V

7.63 10 0.024 1 38.65 10 0.016 0.8
4 4

U 9.67J

= +

Π Π⎡ ⎤ ⎡= × × × + × × ×⎢ ⎥ ⎢⎣ ⎦ ⎣
=

⎤
⎥⎦

 

 

The load that will produce yield stress in the material, 

( )26
y BCP A 320 10 0.016

4
P 64.3kN

Π
= σ = × ×

=
 

 

Maximum energy that can be stored in the rod, 
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( )
( ) ( )

22

AB BC
AB BC

2
BCAB

AB BC

23

9 2 2

1 P PU V V
2E A A

LLP
2E A A

64.3 10 1 0.8
2 200 10 0.024 0.016

4 4
63.97J

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= × + ×⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
⎡ ⎤

× ⎢ ⎥
= +⎢ ⎥Π Π× × ⎢ ⎥

⎣ ⎦
=
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1.16 Impact loading 

A static loading is applied very slowly so that the external load and the internal force are 

always in equilibrium. Hence, the vibrational and dynamic effects are negligible in static 

loading. 

Dynamic loading may take many forms like fluctuating loads where the loads are varying 

with time and impact loads where the loads are applied suddenly and may be removed 

immediately or later. 

Collision of two bodies and objects freely falling onto a structure are some of the examples 

of impact loading. 

Consider a collar of mass M at a height h from the flange that is rigidly fixed at the end of a 

bar as shown in figure 1.33. 

As the collar freely falls onto the flange, the bar begins to elongate causing axial stresses 

and strain within the bar. 

 

 
Figure 1.33 

After the flange reaching its maximum position during downward motion, it moves up due 

to shortening of the bar. 

The bar vibrates in the axial direction with the collar and the flange till the vibration dies out 

completely due to damping effects. 

To simplify the complex impact loading analysis, the following assumptions are made. 
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The kinetic energy of the collar at the time of striking is completely transformed into strain 

energy and stored in the bar. 

But in practice, not all the kinetic energy is stored in the material as some of the energy is 

dissipated out as heat and waves. 

Hence, this assumption is conservative in the sense that the stress and deflection 

predicted by this way are higher than the actual values. 

The second assumption is that after striking the flange, the collar and the flange move 

downward together without any bouncing. 

This assumption is reasonable provided the weight of the collar is much larger than that of 

the bar. 

The third assumption is that the stresses in the bar remain within linear elastic range and 

the stress distribution is uniform within the bar. 

But, in reality, the stress distribution is not uniform since the stress waves generated due 

to impact loading travel through the bar. 

Using the principle of conservation of energy, the kinetic energy of the collar is equated to 

the strain energy of the bar. 

Assuming the height of fall h is much larger than the deformation of rod, and using 

equation 1.34, 

 
2

2 max1  
2 2

VMv
E

σ
=  1.36 

 
where v is the velocity of the collar at strike ( 2ghv = ) and V is the volume of the material. 

The maximum stress in the bar due to the impact load of mass M, 
 

2

max
Mv E

V
σ =  1.37 

 
From above equation, it becomes clear that by increasing the volume of material, the effect 

of impact loading can be minimized. 

Expressing strain energy in terms of deflection in equation 1.36,  

2
2 max1  

2 2
EAMv

L
δ

=  
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2

max
Mv L

EA
δ =  1.38 

 
If the load of the collar is applied gradually on the bar i.e., under static loading, the static 

deflection δst will be, 

st
MgL
EA

δ =  

 
Substituting this in equation 1.38, relationship between the static deflection δst and the 

impact deflection δmax is obtained. 

 

max st2hδ = δ  1.39 

 
To represent the magnification of deflection due to impact load compared to that of static 

deflection for the same load, impact factor is used. 

 

max

st
Impact factor δ

=
δ

 1.40 

 

Alternately, the impact factor can be obtained from the ratio max

st

σ
σ

. 

The relationship between the stress stσ  developed in the bar due to static loading and the 

impact loading stress  is determined as follows. maxσ

 
st

st st

max
max max

max st

E
 = E  = 

L
E

 = E  = 
L

E = 2h
L

δ
σ ε

δ
σ ε

σ δ

 

 

st
max

2hE
 = 

L
σ

σ  1.41 

 
Now, the effect of suddenly applied loads on materials or structures that forms a special 

case of impact loading is discussed. 
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In figure 1.33, if the collar is brought into contact on the top of the flange and released 

immediately, it is referred to as suddenly applied load. 

The maximum stress produced in the bar due to suddenly applied load can be determined 

by replacing h by δmax in equation 1.41 

max st= 2σ σ   1.42 

 
Hence, the stress developed in a material due to suddenly applied load is twice as large as 

that of gradually applied load. 

 
Example 9: 
 

 
Figure 1.34 

A 50 kg collar is sliding on a cable as shown in figure 1.34 from a height h = 1m. Its free 

fall is restrained by a stopper at the end of the cable. The effective cross-sectional area 

and the elastic modulus of the cable are taken to be 60 mm2 and 150GPa respectively. If 

the maximum allowable stress in the cable due to impact load is 450MPa, calculate the 

minimum permissible length for the cable and the corresponding maximum deflection. Also 

find the impact factor. 

Solution: 

Maximum stress due to impact load, 
2

max
M = v E

V
σ  
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    Velocity, v = 2gh  = 2 9.81 1 = 4.43 m/s× ×  
 

      
( )
( )

2 9
6

6

50 4.43 150 10
450 10  = 

60 10 L−

× × ×
×

× ×
 

 
Minimum permissible length for the cable, L = 12.1 m 
 

   Static deflection, st
MgL
EA

δ =  

9 6
50 9.81 12.1

150 10 60 10−
× ×

=
× × ×

 

 
= 0.656 mm 

    Maximum deflection, max st2hδ = δ  
 

2 1000 0.656
36mm

= × ×
=

 

Impact factor, max

st

36
0.656

δ
= =

δ
 

 
= 55 
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Stresses 
 

Stress at a point 

Stress Tensor 

Equations of Equilibrium 

Different states of stress 

Transformation of plane stress 

Principal stresses and maximum shear stress 

Mohr's circle for plane stress 
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Introduction 

2.1 stress at a point  

 

 
Figure 2.1 

 
Consider a body in equilibrium under point and traction loads as shown in figure 2.1. 

After cutting the body along section AA, take an infinitesimal area ∆A lying on the surface 

consisting a point C. 

The interaction force between the cut sections 1 & 2, through ∆A is ∆F. Stress at the point 

C can be defined, 

A 0

Flim
A∆ →

∆
σ =

∆
 2.1 

∆F is resolved into ∆Fn and ∆Fs that are acting normal and tangent to ∆A.  

Normal stress, n
n

A 0

Flim  
A∆ →

∆
σ =

∆
 2.2 

Shear Stress, 
∆ →

∆
σ =

∆
s

s A 0

Flim  
A

 2.3 
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2.2 stress Tensor 
 

 
 

Figure 2.2 

Consider the free body diagram of an infinitesimally small cube inside the continuum as 

shown in figure 2.2. 

Stress on an arbitrary plane can be resolved into two shear stress components parallel to 

the plane and one normal stress component perpendicular to the plane. 

Thus, stresses acting on the cube can be represented as a second order tensor with nine 

components. 

xx xy xz

yx yy yz

zx zy zz

⎡ ⎤σ σ σ
⎢ ⎥

σ = σ σ σ⎢ ⎥
⎢ ⎥
σ σ σ⎢ ⎥⎣ ⎦

 2.4 

 
Is stress tensor symmetric?  

 
 

Figure 2.3 
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Consider a body under equilibrium with simple shear as shown in figure 2.3.  

Taking moment about z axis, 

( ) ( )z yx x z y xy y z xM d d d d d d= τ − τ = 0  

 
xy yxτ = τ  

 
Similarly, . xz zx yz zyandτ = τ τ = τ

Hence, the stress tensor is symmetric and it can be represented with six 

components, , instead of nine components.  xx yy zz xy xz yz, , , ,  and σ σ σ τ τ τ

xx xy xz xx xy xz

yx yy yz xy yy yz

zx zy zz xz yz zz

⎡ ⎤ ⎡σ σ σ σ τ τ
⎢ ⎥ ⎢

σ = σ σ σ = τ σ τ⎢ ⎥ ⎢
⎢ ⎥ ⎢
σ σ σ τ τ σ⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥⎦

 2.5 
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2.3 Equations of Equilibrium 

 

 
 

Figure 2.4 

 
Consider an infinitesimal element of a body under equilibrium with sides dx  as 

shown in figure 2.4.  

  dy  1× ×

Bx, By are the body forces like gravitational, inertia, magnetic, etc., acting on the element 

through its centre of gravity.  

xF 0=∑ , 

( ) ( ) ( ) ( ) ( )yxxx
xx y xx yx yx xdx d 1 dy 1 dy dx 1 dx 1 B dx dy 1 0

x dy
∂τ⎛ ⎞∂σ⎛ ⎞σ + × − σ × + τ + × − τ × + × × =⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠

 

Similarly taking  and simplifying, equilibrium equations of the element in 

differential form are obtained as, 

yF 0=∑

yxxx
x

xy yy
y

B 0
x y

B 0
x y

∂τ∂σ
+ + =

∂ ∂
∂τ ∂σ

+ + =
∂ ∂

 2.6 

 
Extending this derivation to a three dimensional case, the differential equations of 

equilibrium become, 
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yxxx zx
x

xy yy zy
y

yzxz zz
z

B 0
x y z

B 0
x y z

B 0
x y z

∂τ∂σ ∂τ
+ + + =

∂ ∂ ∂
∂τ ∂σ ∂τ

+ + + =
∂ ∂ ∂

∂τ∂τ ∂σ
+ + + =

∂ ∂ ∂

 2.7 

 
When the right hand side of above equations is not equal to zero, then, they become 

equations of motion. 

Equations of equilibrium are valid regardless of the materials nature whether elastic, 

plastic, viscoelastic etc. 

In equation 2.7, since there are three equations and six unknowns (realizing τxy = τyx and 

so on), all problems in stress analysis are statically indeterminate.  

Hence, to solve for the unknown stresses, equilibrium equations are supplemented with 

kinematic requirements and constitutive equations.  

 

 

 

Top 
 

 

 

 

 

 

 

 

 

 

 



 Strength of Materials Prof. M. S. Sivakumar  

 

 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras 

2.4 Different states of stress

Depending upon the state of stress at a point, we can classify it as uniaxial(1D), 

biaxial(2D) and triaxial(3D) stress. 

 

2.4.1 One dimensional stress(Uniaxial)

 
 

Figure 2.5 

Consider a bar under a tensile load P acting along its axis as shown in figure 2.5. 

Take an element A which has its sides parallel to the surfaces of the bar. 

It is clear that the element has only normal stress along only one direction, i.e., x axis and 

all other stresses are zero. Hence it is said to be under uni-axial stress state. 

Now consider another element B in the same bar, which has its slides inclined to the 

surfaces of the bar. 

Though the element has normal and shear stresses on each face, it can be transformed 

into a uni-axial stress state like element A by transformation of stresses (will be discussed 

in section 2.5). 

Hence, if the stress components at a point can be transformed into a single normal stress 

(principal stress as will be discussed later), then, the element is under uni-axial stress 

state. 
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Underline
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Is an element under pure shear uni-axial? 

 
Figure 2.6 

 
The given stress components cannot be transformed into a single normal stress along an 

axis but along two axes. Hence this element is under biaxial / two dimensional stress state.  

 

2.4.2 Two dimensional stress (Plane stress) 
 

 
Figure 2.7  

 
When the cubic element is free from any of the stresses on its two parallel surfaces and 

the stress components in the element can not be reduced to a uni-axial stress by 

transformation, then, the element is said to be in two dimensional stress/plane stress state. 

Thin plates under mid plane loads and the free surface of structural elements may 

experience plane stresses as shown below. 
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Figure 2.8 
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2.5 Transformation of plane stress  

Though the state of stress at a point in a stressed body remains the same, the normal and 

shear stress components vary as the orientation of plane through that point changes. 

Under complex loading, a structural member may experience larger stresses on inclined 

planes then on the cross section. 

The knowledge of maximum normal and shear stresses and their plane's orientation 

assumes significance from failure point of view. 

Hence, it is important to know how to transform the stress components from one set of 

coordinate axes to another set of co-ordinates axes that will contain the stresses of 

interest.  

 
Figure 2.9  

 
Consider a prismatic element with sides dx, dy and ds with their faces perpendicular to y, x 

and x' axes respectively. Thickness of the element is t. 

x 'x ' x'y' and σ τ

=

 are the normal and shear stresses acting on a plane inclined at an angle θ 

measured counter clockwise from x plane. 

Under equilibrium,  x 'F 0=∑

x 'x ' xx y yy x xy y yx x.t.ds .t.d .cos .t.d .sin .t.d .sin .t.d .cos 0σ − σ θ − σ θ − τ θ − τ θ  
 

Dividing above equation by t.ds and using dy dxcos  and sin
ds ds

= θ = θ

θ

0

, 

2 2
x 'x ' xx yy xycos sin 2 sin cosσ = σ θ + σ θ + τ θ  

 
Similarly, from  and simplifying, y'F∑ =

( ) ( )2 2
x 'y' yy xx xysin cos cos sin= σ − σ θ θ + τ θ − θ  



 Strength of Materials Prof. M. S. Sivakumar  

 

 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras 

Using trigonometric relations and simplifying, 

( )

xx yy xx yy
x 'x ' xy

xx yy
x 'y ' xy

cos 2 sin 2
2 2

sin 2 cos 2
2

σ + σ σ − σ
σ = + θ + τ

− σ − σ
τ = θ + τ θ

θ
 2.8 

 
Replacing θ by θ + 900, in  expression of equation 2.8, we get the normal stress along 

y' direction. 

x 'x 'σ

xx yy xx yy
y'y ' xycos 2 sin 2

2 2
σ + σ σ − σ

σ = − θ − τ θ  2.9 

 
Equations 2.8 and 2.9 are the transformation equations for plane stress using which the 

stress components on any plane passing through the point can be determined. 

Notice here that, 

xx yy x 'x ' y'y'σ + σ = σ + σ  2.10 
 

Invariably, the sum of the normal stresses on any two mutually perpendicular planes at a 

point has the same value. This sum is a function of the stress at that point and not on the 

orientation of axes. Hence, this quantity is called stress invariant at that a point 
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2.6 Principal stresses and maximum shear stress

From transformation equations, it is clear that the normal and shear stresses vary 

continuously with the orientation of planes through the point. 

Among those varying stresses, finding the maximum and minimum values and the 

corresponding planes are important from the design considerations. 

By taking the derivative of   in equation 2.8 with respect to x 'x 'σ θ and equating it to zero, 

( )x 'x '
xx yy xy

d sin 2 2 cos 2 0
d

σ
= − σ − σ θ + τ θ =

θ
 

xy
p

xx yy

2
tan 2

τ
θ =

σ − σ
 2.11 

 
Here, θp has two values θp1, and θp2 that differ by 900 with one value between 00 and 900 

and the other between 900 and 1800. 

These two values define the principal planes that contain maximum and minimum 

stresses. 

Substituting these two θp values in equation 2.8, the maximum and minimum stresses, also 

called as principal stresses, are obtained. 

2
xx yy xx yy 2

max,min xy2 2
σ + σ σ − σ⎛ ⎞

σ = ± + τ⎜ ⎟
⎝ ⎠

 2.12 

 
The plus and minus signs in the second term of equation 2.12, indicate the algebraically 

larger and smaller principal stresses, i.e. maximum and minimum principal stresses. 

In the second equation of 2.8, if  is taken as zero, then the resulting equation is same 

as equation 2.11. 

x 'y'τ

Thus, the following important observation pertained to principal planes is made. 

  The shear stresses are zero on the principal planes 

 

To get the maximum value of the shear stress, the derivative of x 'y'τ  in equation 2.8 with 

respect to θ is equated to zero. 

( )x 'y '
xx yy xy

d
cos 2 2 sin 2 0

d
τ

= − σ − σ θ − τ θ =
θ
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( )xx yy
s

xy
tan 2

2

− σ − σ
θ =

τ
 2.13 

 
Hence, θs has two values, θs1 and θs2 that differ by 900 with one value between 00 and 900 

and the other between 900 and 1800.  

Hence, the maximum shear stresses that occur on those two mutually perpendicular 

planes are equal in algebraic value and are different only in sign due to its complementary 

property. 

Comparing equations 2.11 and 2.13, 

p
s

1tan 2
tan 2

θ = −
θ

 2.14 

 
It is understood from equation 2.14 that the tangent of the angles 2θp and 2θs are negative 

reciprocals of each other and hence, they are separated by 900. 

Hence, we can conclude that θp and θs differ by 450, i.e., the maximum shear stress planes 

can be obtained by rotating the principal plane by 450 in either direction. 

A typical example of this concept is given in figure 2.10. 

 
 

Figure 2.10 
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The principal planes do not contain any shear stress on them, but the maximum shear 

stress planes may or may not contain normal stresses as the case may be.  

Maximum shear stress value is found out by substituting θs values in equation 2.8. 

2
xx yy 2

max xy2
σ − σ⎛ ⎞

τ = + τ⎜ ⎟
⎝ ⎠

 2.15 

 
Another expression for  is obtained from the principal stresses,  maxτ

max min
max 2

σ − σ
τ =  2.16 

 
 

 
Example: (Knowledge in torsion and bending is necessary) 
 

 
 

Figure 2.11 
 

A gear with a shaft is used to transmit the power as shown in figure 2.11. The load at the 

gear tooth is 1kN. The diameter of the gear and the shaft are 40 mm and 20 mm 

respectively. Find the principal stresses and the maximum shear stress on an element, 

which you feel important on the shaft. 

Solution: 

The critical element of design interest lies on the top of the shaft, near to the bearing. 
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Transfer the load from the end of the gear to the centre of the shaft as a force-couple 

system with 1kN force and 20 N-m couple clockwise. 

Bending stress, 
( ) ( )

( )

3

max 4

1 10 0.125M y
I 0.02 / 64

        = 159 MPa

× ×
σ = =

Π  

 

Shearing stress, 
( )

( )
xy 4

20 0.01T r 12.7Mpa
J 0.02 / 32

×
τ = = =

Π
 

 

 
 

From equation 2.11, the principal plane, 

( )p

0 0
p1 p2

2 12.7tan 2
159 0

4.5 ; 90 4.5 94.5

×
θ =

−

θ = θ = + = 0
 

 
Using equation 2.8, the principal stresses, 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0
max

0 0
min

159 0 159 0
cos 2 4.5 12.7sin 2 4.5

2 2
        = 160 MPa

159 0 159 0
cos 2 94.5 12.7sin 2 94.5

2 2
        = -1 MPa

+ −
σ = + × + ×

+ −
σ = + × + ×

 

 
Alternatively, using equation 2.12, 

( )2
max

min

159 0 159 0 12.7
2 2

         = 160 MPa
-1 MPa

+ +⎛ ⎞ ⎛ ⎞σ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

σ =
 

 

Maximum Shear Stress, max
160 1 80.5 MPa

2
+

τ = =  

The principal planes and the stresses acting on them are shown below.  
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2.7 Mohr's circle for plane stress

The transformation equations of plane stress 2.8 can be represented in a graphical form 

which is popularly known as Mohr's circle. 

Though the transformation equations are sufficient to get the normal and shear stresses on 

any plane at a point, with Mohr's circle one can easily visualize their variation with respect 

to plane orientation θ. 

Besides stress plots, Mohr's circles are used to plot strains, moment of inertia, etc., which 

follow the same transformation laws as do stresses.  

2.7.1 Equations of Mohr's circle  

Recalling transformation equations 2.8 and rearranging the terms 

xx yy xx yy
x 'x ' xy

xx yy
x 'y ' xy

cos 2 sin 2
2 2

sin 2 cos 2
2

σ + σ σ − σ⎛ ⎞
σ − = θ + τ⎜ ⎟

⎝ ⎠
σ − σ⎛ ⎞

τ = − θ + τ θ⎜ ⎟
⎝ ⎠

θ

 2.17 

 
A little consideration will show that the above two equations are the equations of a circle 

with  and as its coordinates and 2x 'x 'σ x 'y' τ θ as its parameter.  

If the parameter 2θ  is eliminated from the equations, then the significance of them will 

become clear. 

Squaring and adding equations 2.17 results in, 
 

2 2
xx yy xx yy2

x 'x ' x 'y ' xy2 2
⎡ σ + σ ⎤ σ − σ⎛ ⎞ ⎡ ⎤
σ − + τ = + τ⎢ ⎥⎜ ⎟ ⎢ ⎥

⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

2  2.18 

 
For simple representation of above equation, the following notations are used. 
 

1/ 22
xx yy xx yy 2

ave xy;  r =
2 2

⎡ ⎤σ + σ σ − σ⎛ ⎞⎢ ⎥σ = + τ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 2.19 

 
Equation 2.18 can thus be simplified as, 

( )2 2 2
x 'x ' ave x 'y ' rσ − σ + τ =  2.20 
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Equation 2.20 represents the equation of a circle in a standard form. This circle has x 'x 'σ  

as its abscissa and  as its ordinate with radius r. x 'y' τ

The coordinate for the centre of the circle is x 'x ' ave x 'y'and 0σ = σ τ = . 

 
2.7.2 Construction procedure  

 
Figure 2.12 

 
Sign convention: Tension is positive and compression is negative. Shear stresses causing 

clockwise moment about O are positive and counterclockwise negative. 

Hence,  is negative and  is positive. xy τ yx τ

Mohr's circle is drawn with the stress coordinates xxσ as its abscissa and xyτ as its 

ordinate, and this plane is called the stress plane. 

The plane on the element in the material with xy coordinates is called the physical plane. 

Stresses on the physical plane M is represented by the point M on the stress plane 

with and  coordinates.  xx σ xy τ
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Figure 2.13 

 
Stresses on the physical plane N, which is normal to M, is represented by the point N on 

the stress plane with  and . yy σ yx τ

The intersecting point of line MN with abscissa is taken as O, which turns out to be the 

centre of circle with radius OM. 

Now, the stresses on a plane which makes θ0 inclination with x axis in physical plane can 

be determined as follows. Let that plane be M'. 

An important point to be noted here is that a plane which has a θ0 inclination in physical 

plane will make 2θ0 inclination in stress plane. 

Hence, rotate the line OM in stress plane by 2θ0 counterclockwise to obtain the plane M'. 

The coordinates of M' in stress plane define the stresses acting on plane M' in physical 

plane and it can be easily verified. 

 
 

2.21 
( )x 'x ' p

x 'x ' p p

PO r cos 2 2

PO r cos 2 cos 2 sin 2 sin 2

σ = + θ − θ

⎡ ⎤σ = + θ θ + θ θ⎣ ⎦
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Where xx yyPO
2

σ + σ
=  

2
xx yy 2

xyr
2

σ − σ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
τ  

xx yy
p

xy
p

cos 2
2r

sin 2
2r

σ − σ
θ =

τ
θ =

 

 
Rewriting equation 2.21, 

xx yy xx yy
x 'x ' xycos 2 sin 2

2 2
σ + σ σ − σ

σ = + θ + τ θ  2.22 

 
Equation 2.22 is same as equation 2.8.  

This way it can be proved for shear stress x 'y'τ  on plane M' (do it yourself). 

Extension of line M'O will get the point N' on the circle which coordinate gives the stresses 

on physical plane N' that is normal to M'. 

This way the normal and shear stresses acting on any plane in the material can be 

obtained using Mohr’s circle. 

Points A and B on Mohr's circle do not have any shear components and hence, they 

represent the principal stresses, 

2
xx yy xx yy 2

max,min xyPO r
2 2

σ + σ σ − σ⎛ ⎞
σ = ± = ± + τ⎜ ⎟

⎝ ⎠
 

 
The principal plane orientations can be obtained in Mohr's circle by rotating the line OM by 

2θp and 2θp+1800 clockwise or counterclockwise as the case may be (here it is counter 

clock wise) in order to make that line be aligned to axis xyτ =0. 

These principal planes on the physical plane are obtained by rotating the plane m, which is 

normal to x axis, by θp and θp+900 in the same direction as was done in stress plane.  

The maximum shear stress is defined by OC in Mohr's circle, 
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( )

2
xx yy 2

max xy

max min
max

r  
2

or

2

σ − σ⎛ ⎞
τ = ± = ± + τ⎜ ⎟

⎝ ⎠

σ − σ⎛ ⎞τ = ± ⎜ ⎟
⎝ ⎠

 

It is important to note the difference in the sign convention of shear stress between 

analytical and graphical methods, i.e., physical plane and stress plane. The shear stresses 

that will rotate the element in counterclockwise direction are considered positive in the 

analytical method and negative in the graphical method. It is assumed this way in order to 

make the rotation of the elements consistent in both the methods.  

 

Example: 

For the state of plane stress given, determine the principal planes, the principal stresses 

and the maximum shear stress. Also find the stress components on the element after it is 

rotated by 200 counterclockwise.  

 
 

Solution:  

Analytical solution: 

( ) ( ) ( )
2

2

max,min
100 60 100 60

50
2 2

+ − − −⎡ ⎤
σ = ± + −⎢ ⎥

⎣ ⎦
 

20 94.34 MPa= ±  
 

Maximum principal stress = 114.34 MPa 

Minimum principal stress = -74.4 MPa 

Principal planes, ( )
( )p

2 50
tan 2

100 60
× −

θ =
− −
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θP1 = -160

θP2 = -160+900=740 

( )114.34 - -74.34
Maximum shear stress = 

2

                                   = 94.34 MPa

⎡ ⎤
± ⎢ ⎥

⎣ ⎦
±

 

 
Normal stresses on the element after rotation by 200 counterclockwise 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0
x'x'

0 0
y'y'

0 0
x 'y '

100 60 100 60
cos 2 20 50 sin 2 20

2 2
        = 49.14 MPa

100 60 100 60
cos 2 110 50 sin 2 110

2 2
         = -9.14 MPa

100 60
 = - sin 40 50cos 40

2

         = -89.72 MPa

+ − − −
σ = + × + − ×

+ − − −
σ = + × + − ×

− −⎡ ⎤
τ −⎢ ⎥

⎣ ⎦
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II. Graphical Method: 

Using the procedure discussed in the previous section, Mohr's circle is constructed as 

below. 

 
 
 

max

min

max

PB 114.34 MPa
PA 74.34 MPa
OC or OD = 94.34 MPa

σ = =

σ = = −
τ = ±

 

 

Stresses on the element after rotating by 200 counterclockwise,  

x'x'

y'y'

x 'y '

abscissa of PM' 49.14 MPa
abscissa of PN' 9.14 MPa

ordinate PM' = 89.72 MPa

σ = =
σ = = −

τ =

 

 
 
 
 
 

Top 
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Introduction: 

Detailed methods of analysis for determining stresses and deformations in axially loaded 

bars were presented in the first two chapters. Analogous relations for members subjected 

to torque about their longitudinal axes are developed in this chapter. The constitutive 

relations for shear discussed in the preceding chapter will be employed for this purpose. 

The investigations are confined to the effect of a single type of action, i.e., of a torque 

causing a twist or torsion in a member.  

 

The major part of this chapter is devoted to the consideration of members having circular 

cross sections, either solid or tubular. Solution of such elastic and inelastic problems can 

be obtained using the procedures of engineering mechanics of solids. For the solution of 

torsion problems having noncircular cross sections, methods of the mathematical theory of 

elasticity (or finite elements) must be employed. This topic is briefly discussed in order to 

make the reader aware of the differences in such solutions from that for circular members. 

Further, to lend emphasis to the difference in the solutions discussed, this chapter is 

subdivided into four distinct parts. It should be noted, however, that in practice, members 

for transmitting torque, such as shafts for motors, torque tubes for power equipment, etc., 

are predominantly circular or tubular in cross section. Therefore, numerous applications fall 

within the scope of the formulas derived in this chapter. 

In this section, discussion is limited to torsion of circular bars only. 
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Basic Assumptions 

a. Plane sections perpendicular to the axis of a circular member before application 

of torque remains plane even after application of torque. 

b. Shear strains vary linearly from the central axis reaching a maximum value at the outer 

surface. 

c. For linearly elastic material, Hooke's law is valid. Hence shear stress is proportional to 

shear strain. 
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Torsion Formula 

Since shear strains varies linearly across the section, 

max R
C

γ
γ =

 

where γ is the shear strains at a point of raidus R, C is the radius of the member. 

A
Torque,  T = R dA∴ τ∫  

 

A
= G R dAγ∫  

where τ = G γ, the shear stress at any point at a distance R (Refer Figure 6.1)  

 

 

Figure 6.1 
 
Hence writing in terms of shear stresses. 
 

max
A

2max

RT = RdA
C

  = R dA
C

τ

τ

∫

∫
 

 
2

pR dA I=∫  
 

 the Polar moment of Inertia of the circular section. 
  

max pI
 T = 

C
τ

∴  
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max
p

TC
I

τ =  

and  

p

TR
I

τ =  
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Stresses on Inclined Planes
 

 
Figure 6.2 

 

The shear stress at a point, on the surface acting on a plane perpendicular to the axis of 

the rod can be found out from the preceding analysis. 

Using transformation law for, stresses the state of stress at a point on a plane at 450 to the 

axis can be found out. These stresses are found out to be 

1 max

2 max

σ = τ

σ = −τ
 

 
Ductile materials have lesser shear strength than tensile strength and hence fail through 

planes perpendicular to the axis. 

Brittle materials have lesser tensile strength than shear strength. Hence they fail through 

planes inclined at 450 to the axis. 
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Angle of Twist in Torsion 

Consider a circular shaft subjected to torque. It is assumed that plane sections 

perpendicular to the axis remain plane even after loading. Isolating an element form such a 

member, (Refer Figure 6.3). 

 

 

 
Figure 6.3 

 

A line segment in the surface of the shaft, AB is initially parallel to the axis of the shaft. 

Upon application of torque, it occupies a new position AB'. The segment OB now occupy 

the position OB'. 

From figure 16, 

BB' = C dφ 

Also 

maxBB'  = dx γ  

maxd
dx C

γφ
=  



 Strength of Materials Prof. M. S. Sivakumar  

 

 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras 

Since τ = G γ 

max max

max
p

G 
TC = 
GI

τ = γ

τ  

 

max
p

TC
GI

∴ γ =  

 

p

d T
dx GI

φ
∴ =  

 
This equation gives the relative angle of twist between any two sections of a shaft distance 

dx apart. 

To find the total angle of twist φ between any two sections 1 and 2, all rotations of all 

elements between 1 and 2 should be summed up 

2 1
p

Tdx
I G

∴φ = φ − φ = ∫  

Where 
 

( )
( )

( )
p p

T T x

I I x

G G x

=

=

=

 

 
When τ, Ip and G vary along the length of the shaft. 
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Torsion of Circular Elastic Bars: 

Formulae: 

 
1. For solid circular member  

Polar Moment of Inertia, 

 

 

4 4

p
C DI
2 32

π π
= =  

where, C is radius of the circular member. D is Diameter of the circular member. 

 

2. For a circular tube: 

 
 

Figure 6.4 

 

Polar moment of Inertia,  

 

 

4 4

p
c bI

2
π − π

=  

where, c = outer radius of the tube.  

            b = Inner radius of the tube.  

 

3. For very thin tubes:  

where thickness t = c-b is very less. Then IP can be approximated to,  

 
p aI 2 R vg t= π  

 

 
where  
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avg
b cR

2
+

= , 

 
 

max
P

TC
I

τ =
4. (i)  

 

where τ max = Maximum shear stress in a circular cross section. 

         T = Torque in that section. 

         C = Radius of the section. 

         IP = Polar Moment of Inertia.  

Note: Shear stress linearly with radius. 

 

Figure 6.5  

(ii) Shear Stress (τ) at a distance R from the centre. 

 

Figure 6.6 
 

max

P

R
C

TR
I

τ = τ

τ =
 

Note: J is also used to denote the polar moment of Inertia. 
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Click here to check the Animation 
 
Assumptions 

Stress Formula 

Angle of twist 

Maximum Stress 
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Table of Formulae 
 
 

S.No Quantity Formula Diagram 

1.  
(Shear 
stress)  

 

2. (Max. 
shear 
stress) 

 

 

3. 
(Max. 
normal 
stress) 

 

 
 4.  (angle of 

twist) 

 
5. (angle of 

twist) 
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Misconceptions 

 

Misconception 1

Torsional shear produces shear stresses on the cross section as shown, thus, 

the shear stresses should distort the cross section. 

Fact: 

No. The cross section is not distorted. 

Click here to check the Animation 
 

 

Misconception 2

If the bar is twisted, its length also changes. 

Fact: 

No. The length of the bar is unaffected. 

Click here to check the Animation 
 

 

Misconception 3

If there is a small slit made along the bar shown. Since all the properties remain 

almost the same, the bar will twist to the same extent. 

Fact: 

No.  

Click here to check the Animation 
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Misconception 4

If a composite rod is subjected to torque T, each of the composite is inturn 

subjected to torsional load T. 

Fact: 

No.  

Click here to check the Animation 
 

 

 

Misconception 5

The total angle of the twist of the bar is same as the shear strain. 

Fact: 

No.  

Click here to check the Animation 
 

 

Misconception 6

 For a bar of varying cross section, the same formula can be used! 

Fact: 

Yes, but for a bar with small variation and not for a bar with a steep variation. 

 

Dhandapani
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Underline

Dhandapani
Underline
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Underline



 Strength of Materials Prof. M. S. Sivakumar  

 

 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras 

 

 

 

 

Misconception 7

 The bar becomes thinner as you twist it! 

Fact: 

No. From  assumption2, we see that the cross section remains the same after 

twisting. 

 

Misconception 8

The shear stress is maximum at the skin but it is a free surface. Therefore, 

should'nt the shear stress be zero? 

Fact: 

No. 
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Real Life Application

 

Shafts 

Torsion in a Nut 

Torsion in a Helical spring 

Torsion in a Two- way slab

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dhandapani
Underline

Dhandapani
Underline



 Strength of Materials Prof. M. S. Sivakumar  

 

 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras 

 
Application1 

 
Shafts 

 
 

Click here to check the Animation 
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Application 2 
 
Torsion in a Nut 
 

 
 

 
Click here to check the Animation 
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Application 3 
 

Torsion in a Helical spring 
 
 

 
 
 
 

Click here to check the Animation 
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Application 4 
 
Torsion in a Two- way slab 
 

 
 
 
 

Click here to check the Animation 
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5. Beams 

 

Introduction 

Bending of Beams 

Theory of Bending 
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Introduction: 

Apart from axial and torsional forces there are other types of forces to which members may 

be subjected. In many instances in structural and machine design, members must resist 

forces applied laterally or transversely to their axes. Such members are called beams. The 

main members supporting floors of buildings are beams, just as an axle of a car is a beam. 

Many shafts of machinery act simultaneously as torsion members and as beams. With 

modern materials, the beam is a dominant member of construction. The determination of 

the system of internal forces necessary for equilibrium of any beam segment will be the 

main objective of this chapter. For the axially or torsionally loaded members previously 

considered, only one internal force was required at an arbitrary section to satisfy the 

conditions of equilibrium. However, even for a beam with all forces in the same plane, i.e., 

a planar beam problem, a system of three internal force components can develop at a 

section. These are the axial force, the shear, and the bending moment. Determining these 

quantities is the focus of this chapter. The chapter largely deals with single beams. Some 

discussion of related problems of planar frames resisting axial forces, shears, and bending 

moments is also given. Only statically determinate systems will be fully analyzed for these 

quantities. Special procedures to be developed in subsequent chapters are required for 

determining reactions in statically indeterminate problems for complete solutions. 

Extensions to members in three-dimensional systems, where there are six possible 

internal force components, will be introduced in later chapters as ceded and will rely on the 

reader's knowledge of statics. In such problems at a section of a member there can be: an 

axial force, two shear components, two bending moment components, and a torque. 
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5.1 Bending of Beams 

5.1.1 Introduction: 

Beams: 

Bars Subjected to transverse loads. 

Planar and slender members. 

Supports:  

Identified by the resistance offered to forces.  

(a) Rollers/Links:  

     Resists forces in a direction along the line of action (Figure 5.1(a)). 

(b) Pins: 

     Resists forces in any direction of the plane (Figure 5.1(b)). 

(c) Fixed Support:

     Resists forces in any direction (Figure 5.1(c)). 

     Resists moments. 
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5.1.2 Classification of Beams 

(a) Statically determinate or indeterminate. 

     Statically determinate - Equilibrium conditions sufficient to compute reactions. 

     Statically indeterminate - Deflections (Compatibility conditions) along with equilibrium 

equations should be used to find out reactions. 

(b) Cross sectional Shapes - I,T,C or other cross sections. 

(c) Depending on the supports used 

1) Simply supported - pinned at one end and roller at the other (Figure  5.1.2(a)) 

2) Cantilever - fixed at one end and the other end free (Figure 5.1.2(b)). 

3) Fixed beam - fixed at both ends (Figure 5.1.2(c)).  

 

Where W – loading acting, L – span. 
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5.1.3 Calculation of beam reactions 

When all the forces are applied in a single plane, the three equations of static equilibrium 

are available for analysis. 

x y 3F 0,  F 0 and M∑ = ∑ = ∑ = 0  
Employing these, the reactions at supports could be found out. 

 

5.1.4 Procedures for Computing forces and moments 

For a beam with all forces in one plane, three force components are internally developed. 

• Axial force  

• Shear  

• Bending Moment  

Procedures are to be established for finding these quantities. 

Direct Method/Method of sections: 

This method is illustrated by the following example 

Find reactions at supports for the cantilever shown in figure 5.1.3(a) subjected to uniformly 

distributed load. 

 

Cut the cantilever along section A-A and obtain free body diagram as given in figure 

5.1.3(b). 
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The segment of the beam shown in figure 5.1.3(b) is in equilibrium under the action of 

external forces and internal forces and moments.  

y

2

2

F

gives
V wx

M 0

wx
gives,  M- 0

2

wx
M

2

0∑

= −

∑ =

=

=

=
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Sign convention: Shear force  

 

Sign convention: Moments  

 

As Shown in Figure 5.1.5(a), sagging (beam retains water) moment is positive, other wise 

bending moment is negative (Figure 5.1.5(b)). 

Download from enggbuzz.com

www.enggbuzz.com/mechanical
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5.1.5 Shear force and Bending Moment Diagrams (SFD & BMD) 

Plot of shear and bending moment values on separate diagrams could be obtained. 

Magnitude and location of different quantities can be easily visualized. 

SFD & BMD are essential for designers to make decisions on the shape and size of a 

beam.  

The worked out examples illustrate the procedure for plotting SFD and BMD by direct 

approach. 

 

5.1.6 Shear force and BM Diagrams / (Alternate approach)

Beams Element: Differential equations of Equilibrium

 

Free body diagram of element of length dx is shown Figure 5.17, which is cut from a 

loaded beam (Figure 5.1.6). 

( )
yF 0 gives

V wdx V dv 0

∑ =

+ − + =
 

dvie w
dx

=  5.1.1 

( ) ( )
pM 0 gives

M dM Vdx M wdx . dx / 2 0

∑ =

+ − − − =
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dMie V
dx

=  5.1.2 

  
Substituting equations 5.1.2 in 5.1.1  

2

2
d M V
dx

=  5.1.3 

 

Integrating 5.1.2 

x

1
0

V wdx c= +∫  

Integrating 2 

x

2 e
0

M Vdx C M= + +∫  

Me - External moment acting.  
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5.2 Theory of Bending 

5.2.1 General theory  

Plane sections normal to the axis before bending remain plane and normal after bending 

also, as shown in Figure 5.2.1.  

 

From Figure 5.2.1, ab, cd efs are sections which remain plane and normal. Beam is 

subjected to pure bending (no shear). Longitudinal top fibers are in compression and 

bottom fibres in tension. 

Layer of fibres in between which is neither in tension or compression, is called the neutral 

surface. Neutral axis is the intersection of such a surface with the right section through the 

beam.  

Assumptions of the theory of bending

Deflection of the beam axis is small compared to span of the beam. 

Shear strains, along the plane xy are negligible. 

Effect of shear stress in the plane xy ( )xyτ  on normal stress ( )xσ  is neglected. 

 
Note: Even through pure bending is assumed, distribution of normal stresses at any given 

cross section does not get significantly changed due to non uniform bending. 
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For pure bending of a beam, beam axis deforms into part of a circle of radiusρ ; for an 

element defined by an infinitesimal angle d�, the fiber length is given by (refer figure 

5.2.2)). 

 

ds = R dθ 

d 1 k
ds R
θ
= = , where 

R - Radius of Curvature 

k - Axis Curvature 

For a fiber located at radius R' = R – y 

( )ds ' R y d= − θ  

Strain, x
ds ds '

ds
−

ε =  

x kyε = −  

5.2.2 Elastic Flexure Formula  

By Hooke's Law, 

x xE Eσ = ε = − ky

0

 

xF =∑  gives 
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Ek ydA 0− =∫  

i.e. neutral axis possess through the centroid of the cross section (Ref  Figure 5.2.3.)  

M 0=∑  gives 

2
z kM E y .d= ∫ A     

zEk I=  

 

This gives 

z

Mk
E I

=  

z
x

z

M y
I

−
σ =  

z
max

z

M C
I

σ =  
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5.2.3 Beams of Composite Cross section 

 

For beams of composite cross section  x iE kyσ = −  for the ith material in the composite.  

y = yi - y0

y0 is the location of neutral axis from the bottom of the beam. 

yi is the location of neutral axis of the ith material. In the figure yi = yA, from this, we get 

i i
A

0
i

E  y  dA

y
E  dA

=
∫

∫
 

Where A the area of cross section of the corresponding material. The procedure for 

analyzing beams of composite cross section is illustrated in worked out examples. 
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Deflection of beams 

 

Introduction 

Deflection of Beams (Solution Method by Direct Integration) 

Moment - Area Method for finding Beam Deflections 
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Introduction 

The axis of a beam deflects from its initial position under action of applied forces. Accurate 

values for these beam deflections are sought in many practical cases: elements of 

machines must be sufficiently rigid to prevent misalignment and to maintain dimensional 

accuracy under load; in buildings, floor beams cannot deflect excessively to avoid the 

undesirable psychological effect of flexible floors on occupants and to minimize or prevent 

distress in brittle-finish materials; likewise, information on deformation characteristics of 

members is essential in the study of vibrations of machines as well as of stationary and 

flight structures. 
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Deflection of Beams  

(Solution Method by Direct Integration)  

From Analytic geometry, Curvature of a line, 

= =
⎧ ⎫⎛ ⎞⎪ ⎪+ ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

2

2

3 / 22

2

d y
1 dxk
R

d y1
dx

 

where x and y are co-ordinates of a point on the curve. 

For small deflections, 

2

2
d yk
dx

=   

Since, x My / EIσ = −  

and xk / y,  and  = / E= −ε ε σ  

k M / EI=   

2

2
d yM EI
dx

∴ =  

where  M = My  

Hence, 

( )
2

2
d yEI M x
dx

=  

Since, dMV
dx

=  

( )
3

3
d yEI V x
dx

=  

Since, dvw
dx

=  
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( )
4

4
d yEI w x
dx

=  

Boundary Conditions 

Refer figure 5.2.7(a) – (d) 

(a) Clamped Support: 

     y(x1) = 0; y'(x1)=0;  

(b) Roller or Pinned Support: 

     y(x1) = 0; M (x1)=0; 

(c) Free end:  

     M (x1) = 0; V(x1) = 0; 

(d) Guided Support: 

     y'(x1) = 0; V (x1)=0; 
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Example: 

Question: A Cantilever beam is subjected to a bending moment M at the force end. Take 

flexural rigidity to be constant and equal to EI. Find the equation of the elastic curve. 

 

2

a2
d yEI M
dx

=  

Integrating 

EI dy/dx = Max + C1 

at x = 0; dy/dx = 0 

which gives C1 = 0 

Integrating again, 

2
a

2
M x

EIy C
2

= +  

 
y = 0; at x = 0 gives 

C2 = 0  

2
aM x

 y=
2EI

∴  

which is the equation to the elastic curve. 
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Moment - Area Method for finding Beam Deflections  

This method is used generally to obtain displacement and rotation at a single point on a 

beam. 

This method makes use of the Moment - Area theorems given below. 

Moment - Area Theorems  

 

Refer above Figure 
 

2

2
M d y
EI dx

=  

 
M d dy
EI dx dx

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
Let dy/dx = θ  
 
M d
EI dx

θ
=  

 
Md  dx
EI

θ =∫ ∫  

 
Referring to figure down 

Q

Q/P Q P
P

M  dx
EI

∴ θ = θ − θ = ∫  

This is the first moment area theorem, Where P and Q are any two sections on the beam. 

ie change in angle measured in radians between any two point P and Q on the elastic 

curve is equal to the M/EI area bounded by the ordinates through P and Q. 
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Referring to Figure, considering an element of the Elastic Curve, 

dh = x . dθ  

Q

Q/P
P

Q

P
Q

P

 h dh

            = xd

M            =  x dx
EI

∴ =

θ

∫

∫

∫

 

 
This is the second moment Area theorem. 

If Px  is the distance of centroid of the bending moment diagram between P and Q from P, 

(Refer Figure) 

then  

P / Q P

Q/P Q

h Ax

h Ax

=

=
 

Here P / Qh  is called the tangent deviation of the point P from a tangent at Q. 
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where A is the area of the BM diagram between P and Q. px  and Qx  are as shown in 
figure. 
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Shear Stresses in Beams 

Shear force is related to change in bending moment between adjacent sections. 

 

dM v
dx

=  

As shown in figure, consider a cut-out section from a beam. 

At section 1 { }Area PADS  

1 1

1
I

1 1
1

A A

M  y M M Q
F  dA y dA

I I
− −

= = =∫ ∫  

where y is the distance of any fiber from the neutral axis. 

= ∫
1A

Q y.dA  - First moment of area about the neutral axis 2
2

M Q
F

I
=  

2 1 2 1if  M M dM and F F dF= + = +  

then dMdF Q
I

=  

Force per unit length, dF dM Q
dx dx I

=  

This force per unit length is termed as the shear flow, q 

Substituting for dM V
dx

= ; 
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VQq
I

=  

Here I is the moment of Inertia of the entire cross-sectional area around the neutral axis.  

Shear Stress Formula for Beams 

The shear stress formula is obtained by modifying the shear flow formula. 

dF dM Q
dx dx I

=  

Shear Stress, 

 

1 dF
t dx
VQ   = 
It

q   = 
t

τ =

                (Refer figure) 
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