
The math of Nxt forging

mthcl∗

April 23, 2014. Version 0.4.2

Abstract

We discuss the forging algorithm of Nxt from the probabilistic
point of view, and obtain explicit formulas and estimates for several
important quantities, such as the probability that an account gener-
ates a block, the length of the longest sequence of consecutive blocks
generated by one account, and the probability that one concurrent
blockchain wins over another one.

1 Forging algorithm

In this article we concentrate on the 1-block-per-minute regime, which is
not implemented yet. Assume that there are N forging accounts at a given
(discrete) time, B1, . . . , BN are the corresponding balances, and we denote
by

bk =
Bk

B1 + · · ·+BN

, k = 1, . . . , N

the proportion of total forging power that the kth account has. Then, to
determine which account will generate the next block, we take i.i.d. random
variables with Uniform distribution on interval (0, 1), and the account which
maximizes bk/Uk generates the block; i.e., the label k0 of the generating
account is determined by

k0 = arg min
j∈{1,...,N}

Uj

bj
. (1)

∗NXT: 5978778981551971141; author’s contact information: e.monetki@gmail.com,
or send a PM at bitcointalk.org or nxtforum.org

1

We refer to the quantity Uk/bk as the weight of the kth account, and to
Uk0/bk0 as the weight of the block. This procedure is called the main al-
gorithm (because it is actually implemented in Nxt at this time), or the
U-algorithm (because the weights have Uniform distribution).

As a general rule, it is assumed that the probability that an account
generates a block is proportional to the effective balance, but, in fact, this is
only approximately true (as we shall see in Section 2). For comparison, we
consider also the following rule of choosing the generating account: instead
of (1), we use

k0 = arg min
j∈{1,...,N}

| lnUj|
bj

. (2)

The corresponding algorithm is referred to as Exp-algorithm (since the weights
now have Exponential probability distribution).

Important note: for all the calculations in this article, we assume that
all accounts are forging and all balances are effective (so that B1 + · · ·+BN

equals the total amount of NXT in existence). In the real situation when
only the proportion α of all money is forging, one can adjust the formulas
in the following way. Making a reasonable assumption that all money of the
bad guy is forging and his (relative) stake is b′, all the calculations in this
article are valid with b = α−1b′.

2 Probability of block generation

Observe that (see e.g. Example 2a of Section 10.2.1 of [5]) the random
variable | lnUj|/bj has Exponential distribution with rate bj. By (2), the
weight of the generated block is also an Exponential random variable with
rate b1 + · · · + bN = 1 (cf. (5.6) of [6]), and the probability that the kth
account generates the block is exactly bk (this follows e.g. from (5.5) of [6]).

However, for U-algorithm the calculation in the general case is not so
easy. We concentrate on the following situation, which seems to be critical
for accessing the security of the system: N is large, the accounts 2, . . . , N
belong to “poor honest guys” (so b2, . . . , bN are small), and the account 1
belongs to a “bad guy”, who is not necessarily poor (i.e., b := b1 need not be
very small).

2

We first calculate the probability distribution of the biggest weight among
the good guys: for x� maxk≥2 bk let us write

P
[

max
k≥2

bk
Uk

< x
]

=
∏
k≥2

P
[
Uk >

bk
x

]
=
∏
k≥2

(
1− bk

x

)
= exp

∑
k≥2

ln
(

1− bk
x

)
≈ e−

1−b
x , (3)

since ln(1−y) ∼ −y as y → 0 and b2+ · · ·+bN = 1−b. We calculate now the
probability f(b) that the bad guy generates the block, in the following way.
Let Y be a random variable with distribution (3) and independent of U1, and
we write (conditioning on U1)

f(b) := P
[b
U1

> Y
]

=

∫ 1

0

P
[
Y <

b

z

]
dz

=

∫ 1

0

e−
1−b
b

z dz

=
b

1− b

(
1− e−

1−b
b

)
. (4)

It is elementary to show that f(b) > b for all b ∈ (0, 1) (see also Figure 1),
and (using the Taylor expansion) f(b) = b+ b2 +O(b3) as b→ 0.

Let us remark also that, since f(b) ∼ b as b→ 0 and using a calculation
similar to (3), if all relative balances are small, the situation very much
resembles that under Exp-algorithm (see also (9) below).

2.1 Splitting of accounts

Here we examine the situation when an owner of an account splits it into
two (or even several) parts, and show that, in general, this strategy is not
favorable to the owner.

3

Figure 1: The plot of f(b) (black curve)

4

First of all, as discussed in the beginning of Section 2, for the Exp-
algorithm, the probability that one of the new (i.e., obtained after the split-
ting) accounts will generate the next block does not change at all. Indeed,
this probability is exactly the proportion of the total balance owned by the
account, and any splitting does not change this proportion (i.e., all the new
accounts forge exactly as the old one).

Now, let us consider the case of U-algorithm. We shall prove that splitting
is always unfavorable for a Nxt holder. Namely, we can prove the following
result1:

Theorem 2.1. Assume that a person or entity controls a certain number of
Nxt accounts, and let p be the probability of generating the next block (i.e.,
the account that forges the block belongs to this person or entity). Suppose
now that one of these accounts is split into two parts (while the balances of
all other accounts stay intact), and let p′ be the probability of block generation
in this new situation. Then p′ < p.

By induction, one easily obtains the following

Corollary 2.2. Under the U-algorithm, in order to maximize the probability
of generating the next block, all NXT that one controls should be concentrated
in only one account.

Proof of Theorem 2.1. Let b1, . . . , b` be the relative balances of accounts con-
trolled by that person or entity, and let b`+1, . . . , bn be the balances of the
other active accounts. Assume without restriction of generality that the first
account is split into two parts with (positive) relative balances b′1, b

′′
1 (so that

b′1 + b′′1 = b1).
Let U1, . . . , Un, U ′1, U

′′
1 be i.i.d. Uniform[0, 1] random variables. Let

Y = min
j=1,...,`

Uj

bj
,

Y ′ = min
(U ′1
b′1
,
U ′′1
b′′1
, min
j=2,...,`

Uj

bj

)
,

Z = min
j=`+1,...,n

Uj

bj
.

1The author is happy that he is able to add at least one theorem to this text. Without
theorems, he had a strong feeling of doing something unusual.

5

Let us denote x+ := max(0, x) for x ∈ R. Analogously e.g. to (3), we have
for t > 0

P[Y > t] =
∏

j=1,...,`

(1− bjt)+,

P[Y ′ > t] = (1− b′1t)+(1− b′′1t)+
∏

j=2,...,`

(1− bjt)+,

and a similar formula holds for Z; we, however, do not need the explicit form
of the distribution function of Z, so we just denote this function by ζ.

Observe that for 0 < t < min
(

1
b′1
, 1
b′′1

)
it holds that

(1− b′1t)(1− b′′1t) = 1− b1t+ b′1b
′′
1t

2

> 1− b1t,
so

(1− b′1t)+(1− b′′1t)+ ≥ (1− b1t)+

for all t ≥ 0 (if the left-hand side is equal to 0, then so is the right-hand
side), and, moreover, the inequality is strict in the interval

(
0,min

(
1
b′1
, 1
b′′1

))
.

Then, conditioning on Z, we obtain

1− p = P[Y > Z]

=

∫ ∞
0

∏
j=1,...,`

(1− bjt)+ dζ(t)

=

∫ ∞
0

(1− b1t)+
∏

j=2,...,`

(1− bjt)+ dζ(t)

<

∫ ∞
0

(1− b′1t)+(1− b′′1t)+
∏

j=2,...,`

(1− bjt)+ dζ(t)

= P[Y ′ > Z]

= 1− p′,
and this concludes the proof of the theorem.

One should observe, however, that the disadvantage of splitting under the
U-algorithm is not very significant. For example, if one person controls 5%
of total active balance and has only one account, then, according to (4), the
forging probability is approximately 0.0526. For any splitting, this probabil-
ity cannot fall below 0.05 (this value corresponds to the the extreme situation
when all this money is distributed between many small accounts).

6

Conclusions:

1. Under Exp-algorithm, the probability that an account with relative
active balance b generates the next block is exactly b; if all relative
balances are small, then the U-algorithm essentially works the same
way as the Exp-algorithm.

2. For the U-algorithm, if an account has proportion b of the total active
balance and the forging powers of other accounts are relatively small,
then the probability that it generates the next block is given by f(b)
of (4).

3. With small b, f(b) ≈ b + b2, i.e., the block generating probability is
roughly proportional to the effective balance with a quadratic correc-
tion.

4. It is also straightforward to obtain that the probability that a good
guy k generates a block is bk(1− f(b)), up to terms of smaller order.

5. In general, splitting has no effect on the (total) probability of block
generation under Exp-algorithm, and this probability always decreases
under U-algorithm. However, the difference is usually not very signifi-
cant (even if the account is split to many small parts).

6. Thus, neither algorithm encourages splitting (anyhow, there is some
cost in maintaining many forging accounts, so, in principle, there is no
reason to increase too much the number of them in the case of Exp-
algorithm as well). The reader should be warned, however, that all the
conclusions in this article are valid for mathematical models, and the
real world can introduce some corrections.

7. In particular, it should be observed that, if the attacker could harm
the network by splitting his account into many small ones, then a very
small gain that he achieves by not splitting would not prevent him
from attacking the network. If this attacker’s strategy presents any
real danger, we may consider introducing a lower limit for forging (e.g.,
only accounts with more than, say, 100 NXT are allowed to forge).

7

3 Longest run

We consider a “static” situation here: there are no transactions (so that the
effective balances are equal to full balances and do not change over time).
The goal is to be able to find out, how many blocks in a row can be typically
generated by a given account over a long period n of time.

So, assume that the probability that an account generates the next block
is p (see in Section 2 an explanation about how p can be calculated). It is
enough to consider the following question: let Rn be the maximal number of
consecutive 1’s in the sequence of n Bernoulli trials with success probability p;
what can be said about the properties of the random variable Rn?

The probability distribution of Rn has no tractable closed form, but is
nevertheless quite well studied, see e.g. [7] (this article is freely available in
the internet). The following results are taken from [4]: we have

ERn = log1/p qn+
γ

ln 1/p
− 1

2
+ r1(n) + ε1(n), (5)

VarRn =
π2

6 ln2 1/p
+

1

12
+ r2(n) + ε2(n), (6)

where q = 1− p, γ ≈ 0.577 . . . is the Euler-Mascheroni constant, ε1,2(n)→ 0
as n → ∞, and r1,2(n) are uniformly bounded in n and very small (so, in
practice, r1,2 and ε1,2 can be neglected).

In the same work, one can also find results on the distribution itself.
Let Wp be a random variable with Gumbel-type distribution: for y ∈ R

P[Wp ≤ y] = exp(−py+1).

Then, for x = 0, 1, 2, . . . it holds that

P[Rn = x] ≈ P[x− log1/p qn < Wp ≤ x+ 1− log1/p qn], (7)

with the error decreasing to 0 as n → ∞. So, in particular, one can obtain
that

P[Rn ≥ x] ≈ 1− exp(−px+1qn)

≈ px+1qn (8)

if px+1qn is small (the last approximation follows from the Taylor expansion
for the exponent).

8

For example, consider the situation when one account has 10% of all
forging power, and the others are relatively small. Then, according to (4),
the probability that this account generates a block is p ≈ 0.111125. Take
n = 1000000, then, according to (5)–(7), we have

ERn ≈ 6.00273,

VarRn ≈ 0.424,

P[Rn ≥ 7] ≈ 0.009 .

Conclusions:

1. The distribution of the longest run of blocks generated by one particular
account (or group of accounts) is easily accessible, even though there is
no exact closed form. Its expectation and variance are given by (5)–(6),
and the one-sided estimates are available using (8).

4 Weight of the blockchain and concurrent

blockchains

First, let us look at the distribution of the weight of a block. In the case of
Exp-algorithm, everything is simple: as observed in Section 2, it has the Ex-
ponential distribution with rate 1. This readily implies that the expectation
of the sum of weights of n blocks equals n.

As for the U-algorithm, we begin by considering the situation when all
relative balances are small. Analogously to (3), being W the weight of the
block, for x� (maxk bk)−1 we calculate

P
[1

W
> x

]
= P

[
max

k

bk
Uk

<
1

x

]
=
∏
k

P
[
Uk > xbk

]
=
∏
k

(1− xbk)

= exp
∑
k

ln(1− xbk)

≈ e−x, (9)

9

so also in this case the distribution of the weight is approximately Exponential
with rate 1.

We consider now the situation when all balances except the first one are
small, and b := b1 need not be small. For the case of U-algorithm, similarly
to (9) we obtain for x ∈ (0, 1/b)

P
[1

W
> x

]
=
∏
k

(1− xbk)

= (1− bx) exp
∑
k≥2

ln(1− xbk)

≈ (1− bx)e−(1−b)x, (10)

so

E
1

W
≈
∫ 1/b

0

(1− bx)e−(1−b)x dx

=
be−

1−b
b + 1− 2b

(1− b)2
. (11)

One can observe (see Figure 2) that the right-hand side of (11) is strictly
between 1/2 and 1 for b ∈ (0, 1).

Let us consider now the following attack scenario: account 1 (the “bad
guy”, with balance b) temporarily disconnects from the network and forges
its own blockchain; he then reconnects hoping that his blockchain would be
“better” (i.e., has smaller sum of weights). Then, while the account 1 is
disconnected, the “good” part of the network produces blocks with weights
having Exponential distribution with rate 1 − b, and thus each weight has
expected value 1

1−b .
Let X1, X2, X3, . . . be the weights of the blocks produced by the “good

part” of the network (after the bad guy disconnects), and we denote by
Y1, Y2, Y3, . . . the weights of the blocks produced by the bad guy. We are
interested in controlling the probability of the following event (which means
that the blockchain produced by the bad guy has smaller sum of weights and
therefore wins)

Hm = {X1 + · · ·+Xm − Y1 − · · · − Ym ≥ 0}

for “reasonably large” m (e.g., m = 10 or so). If the probability of Hm

is small, this means that the bad guy just does not have enough power to

10

Figure 2: Expectation of the weight (as a function of b)

11

attack the network; on the other hand, if this probability is not small, then
the system should be able to fence off the attack by other means, which we
shall not discuss in this note.

We obtain an upper bound on the probability of the event Hm using
the so-called Chernoff theorem (see e.g. Proposition 5.2 of Chapter 8 of [5]).
More specifically, using Chebyshev’s inequality and the fact that the random
variables are i.i.d., we write for any fixed t > 0

P[Hm] = P[X1 + · · ·+Xm − Y1 − · · · − Ym ≥ 0]

= P
[

exp
(
t(X1 + · · ·+Xm − Y1 − · · · − Ym)

)
≥ 1
]

≤ E exp
(
t(X1 + · · ·+Xm − Y1 − · · · − Ym)

)
=
(
Eet(X1−Y1)

)m
.

Since the above is valid for all t > 0, we have

P[Hm] ≤ δm, where δ = inf
t>0

Eet(X1−Y1). (12)

It is important to observe that this bound is nontrivial (i.e., δ < 1) only in
the case EX1 < EY1.

For U-algorithm, X1 is Exponentially distributed with rate 1− b, and Y1
has Uniform(0, b−1) distribution. So, the condition EX1 < EY1 is equivalent
to (1 − b)−1 < (2b)−1, that is, b < 1/3. Then, for b < 1/3, the parameter δ
from (12) is determined by

δ = δ(b) = b(1− b) inf
0<t<1−b

1− e−t/b

t(1− b− t)
(13)

(see the plot of δ(b) on Figure 3), so we have

P[Hm] ≤ δ(b)m. (14)

For example, for b = 0.1 we have δ(b) ≈ 0.439. We have, however, δ(b) ≈
0.991 for b = 0.3, which means that one has to take very large m in order to
make the right-hand side of (14) small in this case.

For the Exp-algorithm, the bad guy would produce blocks with weights
having Exponential distribution with rate b, so each weight has expected
value 1

b
. Similarly to the above, one obtains that the condition EX1 < EY1

is equivalent to b < 1/2, and

P[Hm] ≤
(
4b(1− b)

)m
(15)

(that is, δ can be explicitly calculated in this case and equals 4b(1 − b);
observe that 4b(1− b) < 1 for b < 1/2).

12

Figure 3: The plot of δ(b)

13

Conclusions:

1. We analyze an attack strategy when one account (or a group of ac-
counts) temporarily disconnects from the main network and tries to
forge a “better” blockchain than the one forged by other accounts, in
the situation when one bad rich guy has proportion b of total amount
of NXT, and the stakes of the others are relatively small.

2. The probability that the bad guy forges a better chain of length m can
be controlled using (14) (for the U-algorithm) or (15) (for the Exp-
algorithm).

3. It should be observed that this probability does not tend to 0 (as
m → ∞) if the bad guy has at least 1/3 of all active balances in
the network in the case of U-algorithm (correspondingly, at least 1/2
in the case of Exp-algorithm). There should exist some specific meth-
ods for protecting the network against such an attack in the case when
there is risk that (active) relative balance of the bad guy could become
larger than the above threshold.

4. For the current realization of the U-algorithm, the author expects that
this analysis can be performed in a quite similar way (because the
weight is then proportional to the time to the next block, and the
longest blockchain wins), with an additional difficulty due to the oscil-
lating BaseTarget.

5. It may be a good idea to limit the forging power of accounts by some
fixed threshold, e.g., if an account has more than, say, 1M NXT, then
it forges as if it had exactly 1M NXT. Of course, a rich guy can
split his fortune between smaller accounts, but then all those accounts
would forge roughly as one big account (without threshold) under Exp-
algorithm. So, one can use the computationally easier U-algorithm
without having its drawbacks (the 1/3 vs. 1/2 issue) discussed in this
section.

5 More on account splitting

In this section we analyze the following attack strategy: if the bad guy wins
the forging lottery at the current step but owns several accounts with weights

14

less than all the accounts of good guys (i.e., these accounts of the bad guy
are first in the queue), then he chooses which of his accounts will forge.
Effectively, that means that he has several independent tries for choosing the
hash of the block, and so he may be able to manipulate the lottery in his
favor.

Of course, following this strategy requires that the balance of the winning
accounts should be small (because of the ban for non-forging), but, as we
shall see below, splitting into small parts is exactly the right strategy for
maximizing the number of the best accounts in the queue.

First of all, let us estimate the probability that in the sequence of ac-
counts ordered by the weights, the first k0 ones belong to the same person
or entity, who controls the proportion b of all active balance. We will do the
calculations for the case of Exp-algorithm, since the attacker would have to
split his money between many (or at least several) accounts anyway, and, as
observed in Section 2, in this situation both algorithms work essentially in
the same way.

One obvious difficulty is that we do not know, how exactly the money of
the attacker are distributed between his accounts. It is reasonable, however,
to assume that the balances of the other accounts (those not belonging to
the attacker) are relatively small. Let us show the following remarkable fact:

Proposition 5.1. The best strategy for the attacker to maximize the prob-
ability that the best k0 accounts belong to him (under the Exp-algorithm), is
to split his money uniformly between many accounts.

Proof. We assume that r is the minimal relative balance per account that
is possible, and let us assume that the attackers money are held in ac-
counts with relative balances n1r, . . . , n`r, where ` ≥ k0. Denote also m =
n1 + · · · + n`, so that b = mr. Now, we make use of the elementary prop-
erties of the Exponential probability distribution discussed in the beginning
of Section 2. Consider i.i.d. Exponential(r) random variables Y1, . . . , Ym,
and let Y(1), . . . , Y(k0) be the first k0 order statistics of this sample. Then,
abbreviating sj = n1 + · · ·+ nj, s0 := 0, we have that

Zj = min
i=sj−1,...,sj

Yi, j = 1, . . . , `

are independent Exponential random variables with rates n1r, . . . , n`r. So,
the orders statistics of Z-variables form a subset of the order statistics of
Y -variables; since the weights of the attacker’s accounts are the first k0 order
statistics of Z1, . . . , Z`, the claim follows.

15

The above proposition leads to a surprisingly simple (approximate) upper
bound for the probability that the best k0 accounts belong to the attacker.
Assume that all the accounts in the network have the minimum relative
balance r; then each account in the (ordered with respect to the weights)
sequence has probability b to belong to the attacker. Since k0 should be
typically small compared to the total number of accounts, we may assume
that the ownerships of the first k0 accounts are roughly independent, and
this means that the probability that all the best k0 accounts belong to the
attacker should not exceed bk0 .

Now, let us estimate the conditional probability p∗(b) that the attacker
wins the forging lottery on the next step, given he was chosen to forge at
the current step. The above analysis suggests that the number of the best
accounts in the queue that belong to the attacker can be approximated by
a Geometric distribution with parameter b. Now, given that the attacker
owns k best accounts in the queue, the probability that he wins the next
forging lottery is 1 − (1 − b)k (since there are k independent trials at his
disposal, and the probability that all will fail is (1− b)k).

Using the memoryless property of the Geometric distribution (i.e., as one
can easily verify, P[X = k] = P[X = k + n | X ≥ n] if X has the Geometric
law) we have that, given that the winning account belongs to the attacker,
he also owns the next k − 1 ones with probability (1− b)bk−1. So,

p∗(b) =
∞∑
k=1

(1− b)bk−1(1− (1− b)k)

= (1− b)
∞∑
j=0

bj + (1− b)2
∞∑
j=0

(b(1− b))j

= 1− (1− b)2

1− b(1− b)
, (16)

see the plot of the above function on Figure 4. The quantity p∗(b) is almost b
for small stakes (e.g., 0.1099 for b = 0.1), but dramatically increases for
large b. For b = 0.9, for instance, this probability becomes 0.989, i.e., the
attacker will be able to forge typically around 90 blocks in a row, instead of
just 10.

Observe also, that this calculation applies to the following strategy of the
attacker: take the first of his accounts that assures that he forges on the
next step (so that the attacker minimizes the number of his accounts that

16

Figure 4: The plot of p∗(b) = 1− (1−b)2
1−b(1−b) .

17

will get banned). For this strategy, the attacker looks only one step to the
future. One can consider also a more advanced strategy: since the future
is (for now) deterministic, the attacker can try to calculate deeper into the
future. We shall prove now that, under current implementation of the forging
algorithm, an attacker who owns more than 50% of all NXT can eventually
forge all the blocks (i.e., at some moment he starts forging and never stops).
To prove this, we construct a Galton-Watson branching process (cf. e.g. [2]
for the general theory) in the following way. Assume that the block `0 + 1
is about to be forged. Let Z0 := 1, and let Z1 be the number of attacker’s
accounts that are first in the queue (i.e., win over any account not belonging
to the attacker). Now, the attacker can choose which of these Z1 accounts

will forge. Let Z
(j)
2 , j = 1, . . . , Z1 be the number of attacker’s accounts that

are first in the queue for the block `0 + 2, provided he has chosen the jth
account to forge at the previous step. Let Z2 = Z

(1)
2 + · · · + Z

(Z1)
2 . Then,

we define Z3, Z4, Z5, . . . in an analogous way; it is then elementary to see
that (Zn, n ≥ 0) is a Galton-Watson branching process with the offspring
law given by pk = (1− b)bk, k ≥ 0. The mean number of offspring

µ =
∞∑
k=1

k(1− b)bk =
b

1− b

is strictly greater than 1 when b > 1
2
. Since a supercritical branching process

survives with positive probability (in fact, one can calculate that in this case
the probability of survival equals 1−b

b
), the attacker can choose an infinite

branch in the genealogical tree of the branching process, and follow it.
The attacker can also use the same strategy with b ≤ 1

2
; this, of course,

will not permit him to forge all the blocks, but there is still a possibility to
increase the number of generated blocks. Let us do the calculations. The
probability generating function of the number of offspring (corresponding to
the Geometric distribution) is

g(s) =
∞∑
j=0

sj(1− b)bj =
1− b
1− sb

,

so an(b) := P[Zn = 0] satisfies the recursion

a1(b) = 1− b, an+1(b) =
1− b

1− ban(b)
,

18

Figure 5: The plot of h(b)
1+h(b)

(it is not very evident from this picture, but
h(b)

1+h(b)
→ 1 as b→ 1

2
).

and the mean lifetime h(b) of the branching process is

h(b) =
∞∑
n=1

(1− an(b)).

Unfortunately, usually there is no closed form expression for the expected
lifetime of a subcritical branching process, but, as a general fact, it holds
that h(b) ∼ b as b → 0 and h(b) → ∞ as b → 1

2
. Since each streak of

attacker’s blocks has the expected length b−1h(b) and the expected length
of each streak of good guy’s blocks is b−1, the attacker is able to forge the
proportion h(b)

1+h(b)
of all blocks, see Figure 5 (the author thanks Mathematica

for doing the computations).

Conclusions:

1. The probability that the attacker controls the best k0 accounts can be
bounded from above by bk0 , where b is the attacker’s stake.

19

2. Under current implementation of the forging algorithm, an attacker
who owns more than 50% of all NXT can eventually forge all the blocks
(i.e., at some moment he starts forging and never stops).

3. For additional network protection, we can recommend to have also a
lower limit for forging, i.e., an account that has less than (say) 1000
NXT does not forge at all.

4. In fact, it may be a good idea to change this lower limit dynamically:
In normal situation (there are not many non-forging events) it can be
relatively low. However, if someone is starting playing games (and so
there are many non-forging events), then the lower limit increases in
order to protect the network. Incidentally, this increase of the lower
limit will greatly decrease the attacking strength of the bad guy, since
most of his accounts suddenly are unable to forge at all.

5. The community should be warned that if someone is advertising a forg-
ing pool but makes the forgers link to many different accounts, then it
is a very suspicious behavior.

6 How to produce a random number?

All the previous discussion in this paper was restricted to the mathemati-
cal model of Section 1, defined in terms of i.i.d. Uniform random variables
U1, . . . , Un. This, however, is only an approximation of reality (similarly
to all other mathematical models in this world); in fact, the U -variables are
pseudorandom, i.e., they are deterministically computed from the information
contained in the previous block together with the account hashes. That is, in
the static situation (no transactions and the nodes do not connect/disconnect
to/from the network) one can precisely determine who will generate the sub-
sequent blocks. Some people have expressed concern whether this situation is
potentially dangerous, i.e., an attacker could somehow exploit this in order
to forge “too many” (= more than the probability theory permits) blocks
in a row. To fence off this kind of treat, we may want to introduce some
“true randomness” to the system; i.e., we want the network to produce a
“truly unpredictable” random number U (say, with Uniform distribution on
[0, 1]) in a decentralized way, with no central authority. Of course, one is
not obliged to use this random number for forging (see the first remark in

20

“conclusions” below), but nevertheless the ability to produce random num-
bers may be useful for other applications, e.g., lotteries on top of the Nxt
blockchain.

In principle, this is not an easy task, since the nodes controlled by the
attacker can cheat by producing some carefully chosen nonrandom numbers,
and it is not clear, how does the network recognize who cheats, and who does
not. To deal with this problem, we first consider the following algorithm2:

• each account obtains a random number (say, in the interval [0, 1]) using
some local randomizing device (e.g., rand() or whatever), and pub-
lishes the hash of this number;

• we calculate the weights of all accounts (using U-algorithm or Exp-
algorithm);

• then, first k0 accounts (with respect to the weights, in the increasing
order) publish the numbers themselves;

• if at least one the published number does not correspond to its hash
or at least one chosen account does not publish its number at all, the
corresponding account is penalized (i.e., not allowed to forge during
some time), and the whole procedure must be repeated (immediately,
or somewhat later);

• we then “mix” these numbers (e.g., by summing them modulo 13), to
obtain the random number we are looking for.

The parameter k0 is supposed to be large enough so that the attacker would
never control exactly all of k0 best (with respect to the weights) accounts.
Below we will discuss the question how k0 should be chosen, depending on the
maximal amount of active balance that the attacker can obtain. At this point
it is important to observe that even one “honest” account in k0 is enough;
indeed, for the above mixing method, this follows from the fact that if U is
a Uniform[0, 1] random variable and X is any random variable independent
of U , then (X + U mod 1) is also a Uniform[0, 1] random variable.

Note that this two-step procedure (first publish the hash, and only then
the number itself) is necessary. If we do not obscure the numbers, then the

2a similar procedure was proposed in [3].
3By definition, (x mod 1) is the fractional part of x, i.e., set the integer part to 0 and

keep the digits after the decimal point.

21

attacker can see the k0 − 1 numbers that are already published, and then
publish something nonrandom that suits him. If we obscure them first, then
the attacker cannot manipulate the procedure.

Let us explain also why the procedure should be restarted when at least
one account attempts to cheat. It seems to be more “economical” to just
pick the next account in the queue if some previous account excludes itself
for whatever reason. However, this opens the door for the following attacking
strategy. Assume, for example, that first k0−1 accounts have already revealed
their numbers, and the k0th and (k0 + 1)th accounts belong to the attacker.
Then, he can actually choose, which of the two numbers will be published;
this, obviously, creates a bias in his favor. In fact, we will see below that the
best strategy for the attacker is to have many small accounts, so, invalidating
one round of this procedure would not cost much to him. However, still each
attempt costs one banned account, and, more importantly, if many rounds
of the procedure are invalidated, it is likely that the identity of the attacker
could be revealed (one can analyze the blockchain to investigate the origin
of the money in offending accounts).

As discussed in Section 5, the probability that all the best k0 accounts
belong to the attacker can be bounded from above by bk0 . For example, if
b = 0.9 (i.e., the attacker has 90% of all NXT) and k0 = 150, then bk0 ≈
0.00000013689.

There are, however, questions about the practical implementation of this
algorithm: the difficulty about obtaining consensus on who are the top ac-
counts in the lottery, if such a procedure can slow down the network, etc.
Therefore, we propose

Another randomization algorithm. It is described in the following way:

(a) each forging account must maintain a hashchain of some (large) length
(actually, the nodes must maintain them for their accounts), and pub-
lish the last hash;

(b) at blocks N`, ` = 1, 2, 3, . . ., the list of K richest accounts with respect
to the effective balance is formed, and this list becomes valid for blocks
N`+ L, . . . , N(`+ 1) + L− 1

(c) special “randomizing” blocks are forged just in between of every two
normal blocks (this can be adjusted, maybe does not need to be so
frequent);

22

(d) randomizing blocks are forged by the accounts from the valid list, e.g.,
in the cyclic order; they contain the hash from the hashchain preceding
to the one already published (so the forger cannot cheat);

(e) to determine the forger of the next block (number n), the random
number we use is sha256(what was there before, sum of hashes

in L′ last randomizing blocks published before the block n−
L).

One may take e.g. N = 1440, K = 100, L = 10, L′ = 50, but, of course,
these constants may be adjusted. In particular, the value of K must be
neither too small, nor too large. If it is small, the danger is that the bad guy
controls all K top accounts. On the other hand, if it is too large, then some
accounts among the top K would be (relatively) small (for a rich guy), so he
can start thinking about playing non-forging games.

With this approach, by the way, we can predict the next L forgers (but
not more!), which was also a desirable feature of TF, a far as the author
remembers.

The point of having the richest accounts do the randomization job is the
following: it is probably impossible for the attacker to control e.g. top 100
accounts, that is just too expensive. And another point: since the accounts
must be big, cheating by not publishing the random number now becomes
very expensive as well (an account that does not forge the randomizing block
when it must to, is banned and so unable to forge normal blocks for some
period).

The contents of this section is based on private discussions with ChuckOne

and mczarnek at nxtforum.org; see also [1].

Conclusions:

1. The current forging algorithm is only pseudorandom (deterministic but
unpredictable), and there is concern whether this situation could be
potentially dangerous. The author does think that this danger is not
very serious, since the real world will not hesitate in introducing some
“real randomness” to the system (because nodes go online and offline,
money are transferred, etc.).

2. Nevertheless, it is possible to propose an extra randomization algo-
rithm, i.e., the network can achieve a consensus on a Uniform[0,1] ran-
dom number independent of the previously published data.

23

3. In this section we discuss two variants of such an algorithm.

Acknowledgments

Participating in this amazing Nxt community is a very rewarding and unique
experience, and the author thanks all people who contributed to this article
with suggestions and comments. In particular, thanks to CfB and CIYAM for
having enough patience in answering the author’s mostly naive questions and
so helping him to understand how the forging algorithm works. Many thanks
also to ChuckOne for very useful discussions and careful reading of this paper
and to BloodyRookie for helping with some technical issues. And, last but
not least, the author is very grateful for the generous donations he received
from the community in support of his work.

References

[1] JFTR: randomness without cheating.
https://nxtforum.org/transparent-forging/jftr-randomness-without-cheating

[2] K.B. Athreya, P.E. Ney (1972) Branching Processes. Springer-Verlag
Berlin–Heidelberg–New York.

[3] Matthew Czarnek. Transparent forging algorithm.
nxtforum.org/transparent-forging-*/transparent-forging-algorithm-245/

[4] L. Gordon, M.F. Schilling, M.S. Waterman (1986) An extreme
value theory for long head runs. Probab. Theory Relat. Fields 72, 279–
287.

[5] Sheldon M. Ross (2009) A First Course in Probability. 8th ed.

[6] Sheldon M. Ross (2012) Introduction to Probability Models. 10th ed.

[7] Mark Schilling (1990) The Longest Run of Heads. The College Math
J., 21 (3), 196–206.

24

