
Survey of Keyword Extraction Techniques

Brian Lott

bnlott@cs.unm.edu

December 4, 2012

Problem Description

Keywords are commonly used for search engines and document databases
to locate information and determine if two pieces of test are related to each
other. Reading and summarizing the contents of large entries of text into a
small set of topics is difficult and time consuming for a human, so much so
that it becomes nearly impossible to accomplish with limited manpower as
the size of the information grows. As a result, automated systems are being
more commonly used to do this task.

This problem is challenging due to the intricate complexities of natural lan-
guage, as well as the inherent difficulty in determining if a word or set of
words accurately represent topics present within the text.

With the advent of the internet, there is now both a massive amount of
information available, as well as a demand to be able to search through all
of this information. Keyword extraction from text data is a common tool
used by search engines and indexes alike to quickly categorize and locate
specific data based on explicitly or implicitly supplied keywords.

Motivation

Many different methods have been used over the years, and new solutions are
constantly being proposed to solve this complex problem. A broad overview
of the common techniques and algorithms has not yet been explored.

Methods

Various methods of locating and defining keywords have been used, both
individually and in concert. Despite their differences, most methods have
the same purpose and attempt to do the same thing: using some heuristic
(such as distance between words, frequency of word use, or predetermined
word relationships), locate and define a set of words that accurately convey
themes or describe information contained in the text.

1

Word Frequency Analysis

Much early work concerned the frequency of term usage in the text, but most
of this work focused on defining keywords in relation to a single document.
In 1972, the idea of statistically analyzing the frequency of keyword usage
within a document in relation to multiple other documents became more
common. [4]

This technique, known as Term Frequency - Inverse Document Frequency
or simply TF-IDF, weights a given term to determine how well the term
describes an individual document within a corpus. It does this by weight-
ing the term positively for the number of times the term occurs within the
specific document, while also weighting the term negatively relative to the
number of documents which contain the term. Consider term t and doc-
ument d ∈ D, where t appears in n of N documents in D. The TF-IDF
function is of the form:

TFIDF (t, d, n,N) = TF (t, d)× IDF (n,N) (1)

There are many possible TF and IDF functions. Practically, nearly any
function could be used for the TF and IDF. Regularly-used functions include
[9]:

TF (t, d) =

{

1 if t ∈ d

0 else
(2)

TF (t, d) =
∑

word∈ d

1 if word = t

0 else
(3)

Additionally, the term frequency may be normalized to some range. This is
then combined with the IDF function. Examples of possible IDF functions
include:

IDF (n,N) = log

(

N

n

)

(4)

IDF (n,N) = log

(

N − n

n

)

(5)

2

Thus, a possible resulting TFIDF function could be:

TFIDF (t, d, n,N) =

(

∑

word∈ d

1 if word = t

0 else

)

× log

(

N − n

n

)

(6)

When the TF-IDF function is run against all terms in all documents in the
document corpus, the words can be ranked by their scores. A higher TF-IDF
score indicates that a word is both important to the document, as well as
relatively uncommon across the document corpus. This is often interpreted
to mean that the word is significant to the document, and could be used to
accurately summarize the document [4].

TF-IDF provides a good heuristic for determining likely candidate keywords,
and it (as well as various modifications of it) have been shown to be effec-
tive after several decades of research. Several different methods of keyword
extraction have been developed since TF-IDF was first published in 1972,
and many of these newer methods still rely on some of the same theoretic
backing as TF-IDF. Due to its effectiveness and simplicity, it remains in
common use today [8].

Word Co-Occurrence Relationships

While many methods of keyword extraction rely on word frequency (either
within the document, within the corpus, or some combination of these),
various possible problems have been pointed out with these metrics [12] [5],
including reliance on a corpus, and the assumption that a good keyword
will appear frequently within the document but not within other documents
within the corpus. These methods also do not attempt to observe any sort
of relationship between words in a document.

Using a Document Corpus

One attempt at using this extra information utilizes a Markov Chain which
is used to evaluate every word in the corpus of all documents [12]. This
technique defines a Markov Chain for document d and term t with two

3

states (C, T) where the probability of transitioning from C to T is the
probability that the given term was observed in documents d out of all
documents (effectively the number of times that t occurs in d divided the
number of times t occurs in all documents), while the probability of moving
from T to C is the probability that the term was observed out of all terms
in d (the number of times t occurs in d divided by the number of term
occurrences in d. Conceptually, if two terms arrive at the same state with
similar regularity, they are related.

The authors of this technique determined that a word is less likely to be
descriptive of the document if it arrives at the same state with a similar
frequency to many other words in the document (called the background dis-
tribution), while it is more likely to be descriptive of the document if it
diverges the most from the background distribution. This technique was
shown to match, and regularly beat, TF-IDF in terms of precision when run
over a corpus of document abstracts from ACM [12].

Frequency-Based Single Document Keyword Extraction

Most methods of keyword extraction rely on using some method of compar-
ing a document to a corpus to determine which words are most unique to
an individual document. This measure becomes more difficult to use when
the corpus is small, non-existent, or of a similar subject and composition.

One method developed by Matsuo and Ishizuka [5] to extract keywords from
a single document uses word co-occurrence to build a co-occurrence matrix
such as the one in Table 1. When using this method, two words are said
to co-occur if they are both observed in a section of text delimited by a
punctuation mark (effectively a sentence). In the given example, we can see
that words b and c occur in the same sentence a total of 42 times in the
document.

a b c d

a 5 13 7

b 5 42 3

c 13 42 25

d 7 3 25

Table 1: Example co-occurrence matrix

4

The authors postulate that words are important to the document if they
co-occur with other words more often in the document than they would if
every instance of the word were randomly distributed. For some word wi,
this can be thought of as the ratio of the number of co-occurrences of words
wi, wj to the number of all other co-occurrences involving wi. Under the
given assumptions, a high ratio would mean that the word wi is a likely
keyword for the document.

One clear problem would be if a word only occurs once in the document.
The ratio value would not be based on enough information to be statistically
significant. This ratio could also be unexpectedly high, since its row in the
co-occurrence array would be extremely entirely sparse. To combat this, the
authors use a Pearson’s chi-squared test (also known as an X2 value) for
each word in the document.

letn = number of words (7)

letO = observed frequency (8)

letE = expected frequency (9)

X2 =

n
∑

i=0

(

(Oi − Fi)
2

Ei

)

(10)

This test allows the frequency distribution of each word to be tested and
compared to an expected distribution. The authors expected a random dis-
tribution of words, and compared the observed distribution to the expected.

A word which occurs a small number of times would have an occurrence
distribution close to the expected (random) distribution and would have a
low X2 value, while a word that occurs frequently and regularly co-occurs
with another word would have a high x2 value.

The authors showed that this technique was able to closely match TF-IDF,
but did not rely on the use of a document corpus.

Content-Sensitive Single Document Keyword Extraction

Another method of keyword extraction was developed by Ohsawa, et al. [7],
attacks this problem from a different angle. While many methods of keyword

5

extraction rely on statistical information gathered from term occurrence
frequency in the document, this method, called KeyGraph, relies instead
on clustering of related items into groups to determine which words in a
document are representative of the document’s content.

KeyGraph builds a graph representation of the document, with terms as
nodes, and edges between nodes representing commonly occurring co-occurrences
occurring within the document. Clusters of words are then identified by
locating maximally-connected subgraphs within the document graph. Can-
didate keywords are then identified by locating nodes within the graph that
have edges between two separate clusters. Intuitively, these candidate key-
words are terms that join separate ideas or concepts (clusters), which the
author[s] of the document in question wrote when he had both concepts in
mind. These candidate keywords are then ranked by the probability that
for each of the clusters they join, that word was the word used to join the
two clusters (effectively, the most common word used used to join these
clusters).

Tests of KeyGraph shows that it was able to match, and surpass, TF-IDF
in a series of tests run by its creators [7]. Additionally, a series of tests run
on social media data collected during the 2008 presidential election showed
that KeyGraph was able to locate keywords in a noisy environment with
large amounts of irrelevant information [10].

Keyword Extraction Using Lexical Chains

Lexical chains are simply a list of related words found in a text. The rela-
tionships are usually semantic, such as synonymy, hyponymy, or meronymy.
One example of a lexical chain would be the following [6]:

sugarmaple → maple → tree → plant (11)

This representation of semantic information in natural languages allows for
context to be encoded in the structure of the chain. In the given example,
this can be seen by the word ”plant” following the word ”tree”. The word
”plant” follows ”tree” since ”plant” is related to ”maple”. If not for this
semantic information, the next word in the chain might have been something
concerning graphs or data structures.

6

Lexical chains have regularly found use in automated text summarization
techniques [1] [11] where they can be used to quickly and accurately locate
terms and sequences of terms with similar meanings. Miller [6] gives the
example: ”A sugar maple is a maple that...”. By following the example
lexical chain, we can clearly see that ”sugar maple” and ”maple” have very
similar meanings, and one of them may be a candidate for removal from the
text for the purpose of creating a more concise summary of the phrase.

It was proposed by Ercan and Cicekli that lexical chains could be used to
locate words important to a text [2]. Their technique relies around using
a statistical classifier (C4.5) to build decision trees which can be used to
determine whether a given word is a likely keyword. To do this, they assign
each term in the text to the lexical chains which contain that term. Terms
are then assigned scores based on the first and last locations within the
document where the term is used, the average frequency at which the term
appears, the first and last locations within the document where synonyms,
hypernyms/hyponyms, and meronyms occur.

By using C4.5 with these scores, the authors were able to locate keywords
within the text that matched author-supplied keywords with up to 64%
accuracy.

Keyphrase Extraction Using Bayes Classifier

An adaptation of TF-IDF was used in conjunction with a naive bayes classi-
fier by Frank et al. [3] to locate keyphrases in a document within a corpus.
This method works by running the TF-IDF variation in equation 12 over
every phrase in the document.

TFIDF (p, d) = Pr [phrase in d is p]×− log Pr [p appears in any document]
(12)

where p is the phrase in question, and d is the current document. The prob-
ability that each phrase in the document is a keyphrase is then determined
using Bayes’ theorem:

7

Pr [key |T,D] =
Pr [T | key] × Pr [D | key] × Pr [key]

Pr [T,D]
(13)

where T is the TF-IDF value computed earlier, and D is the distance into
the document of the first occurrence of the given phrase (the number of
phrases that appear before it). Thus, Pr [T | key] is the probability that the
phrase in question has the TF-IDF value T , Pr [D | key] is the probability
that the phrase occurs at distance D into the document in question, and
Pr [key] is the probability the phrase is a keyphrase, out of all phrases in
the document. Pr [T,D] is used to normalize the resulting value to fall in
the range [0, 1].

The phrases are then ranked by the probabilities that they are keyphrases
given T,D, and the k desired keyphrases are extracted from the top k phases
in the ranking.

The authors showed that this method performed either comparably or slightly
better than contemporary methods in a series of tests against a collection
of websites and a set of medical journal articles [3].

Conclusion

TF-IDF is one of the best-known and most commonly used keyword extrac-
tion algorithms currently in use [8] when a document corpus is available.
Several newer methods adapt TF-IDF for use as part of their process, and
many others rely on the same fundamental concept as TF-IDF. Nearly all
keyword extraction algorithms which make use of a document corpus depend
on a weighted function which balances some measure of term or phrase
appearance within a document (frequency, location within document, co-
occurrence with other words) with some similar measure from the corpus.

When a corpus is unavailable, keyword extraction techniques must usually
make use of additional measurements in addition to those used by TF-IDF
and related methods. Additional information sources include some form of
lexical or semantic analysis, or some co-occurrence measure.

8

Bibliography

[1] R. Barzilay, M. Elhadad, et al. Using lexical chains for text summariza-
tion. In Proceedings of the ACL workshop on intelligent scalable text
summarization, volume 17, pages 10–17, 1997.

[2] G. Ercan and I. Cicekli. Using lexical chains for keyword extraction.
Information Processing & Management, 43(6):1705–1714, 2007.

[3] Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin, and et al.
Domain-specific keyphrase extraction. In PROC. SIXTEENTH IN-
TERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTEL-
LIGENCE, pages 668–673. Morgan Kaufmann Publishers, 1999.

[4] K.S. Jones. A statistical interpretation of term specificity and its ap-
plication in retrieval. Journal of documentation, 28(1):11–21, 1972.

[5] Y. Matsuo and M. Ishizuka. Keyword extraction from a single document
using word co-occurrence statistical information. International Journal
on Artificial Intelligence Tools, 13:2004, 2004.

[6] G.A. Miller et al. Wordnet: a lexical database for english. Communi-
cations of the ACM, 38(11):39–41, 1995.

[7] Yukio Ohsawa, Nels E. Benson, and Masahiko Yachida. Keygraph: Au-
tomatic indexing by co-occurrence graph based on building construc-
tion metaphor. In Proceedings of the Advances in Digital Libraries
Conference, ADL ’98, pages 12–, Washington, DC, USA, 1998. IEEE
Computer Society.

[8] S. Robertson. Understanding inverse document frequency: on theo-
retical arguments for idf. Journal of Documentation, 60(5):503–520,
2004.

9

[9] G. Salton and C. Buckley. Term-weighting approaches in automatic
text retrieval. Information processing & management, 24(5):513–523,
1988.

[10] H. Sayyadi, M. Hurst, and A. Maykov. Event detection and tracking in
social streams. In Proceedings of International Conference on Weblogs
and Social Media (ICWSM), 2009.

[11] H.G. Silber and K.F. McCoy. Efficiently computed lexical chains as an
intermediate representation for automatic text summarization. Com-
putational Linguistics, 28(4):487–496, 2002.

[12] Christian Wartena, Rogier Brussee, and Wout Slakhorst. Keyword ex-
traction using word co-occurrence. In Proceedings of the 2010 Work-
shops on Database and Expert Systems Applications, DEXA ’10, pages
54–58, Washington, DC, USA, 2010. IEEE Computer Society.

10

