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It is more than a decade since Genichi Taguchi's ideas on quality improvement were intro- 
duced in the United States. His parameter-design approach for reducing variation in products 
and processes has generated a great deal of interest among both quality practitioners and 
statisticians. The statistical techniques used by Taguchi to implement parameter design have 
been the subject of much debate, however, and there has been considerable research aimed 
at integrating the parameter-design principles with well-established statistical techniques. On 
the other hand, Taguchi and his colleagues feel that these research efforts by statisticians 
are misguided and reflect a lack of understanding of the engineering principles underlying 
Taguchi's methodology. This panel discussion provides a forum for a technical discussion of 
these diverse views. A group of practitioners and researchers discuss the role of parameter 
design and Taguchi's methodology for implementing it. The topics covered include the im- 
portance of variation reduction, the use of noise factors, the role of interactions, selection 
of quality characteristics, signal-to-noise ratios, experimental strategy, dynamic systems, and 
applications. The discussion also provides an up-to-date overview of recent research on 
alternative methods of design and analysis. 
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Editor's Introduction 

Parameter design (also known as robust design) is 
a quality-improvement technique proposed by the 
Japanese quality consultant Genichi Taguchi. It is 
intended as a cost-effective approach for reducing 
variation in products and processes. Although it was 
not introduced in the United States until 1980, Ta- 
guchi has been working on this and other quality- 
improvement ideas for many years dating back to the 
1950s. Some Japanese companies and quality-control 
associations have been using his techniques exten- 
sively, although even within Japan his ideas are not 
universally known or accepted. And before 1980, they 
were virtually unknown outside of Japan. In 1980, 
Taguchi received a grant from Aoyama-gakuin Uni- 
versity to visit the United States and give lectures on 
his quality-improvement ideas. He visited several com- 
panies and institutions, including AT&T and Xerox. 
Initial reactions during these and other early visits 
were generally skeptical, but he managed to capture 
the interest of a few people. The interest grew, due 
perhaps to the widespread enthusiasm for Japanese 
quality practices in the early 1980s. A few individuals 
at AT&T, Ford, ITT, Xerox, and other places and 
organizations such as the American Supplier Insti- 
tute were instrumental in promoting the application 
of Taguchi's ideas in industry. The first two Mohonk 
Conferences in 1984 and 1985, organized by the 
Quality Assurance Center of AT&T Bell Labs, played 
a big role in exposing his ideas to the statistical com- 
munity and in stimulating some of the subsequent 
research. The last 10 years have witnessed much dis- 
cussion of Taguchi's parameter-design ideas and many 
applications in industry. 

Now that we have accumulated a considerable 
amount of experience, it seems appropriate to pro- 

vide readers with a balanced review of parameter 
design and of techniques for implementing it. There 
have been many papers and several books explain- 
ing, reviewing, or criticizing Taguchi's ideas. Most 
of these, however, have not adequately captured the 
diverse views on the topic and their underlying ra- 
tionale. In particular, the view of the so-called Ta- 
guchi school have not been well represented in sta- 
tistical journals. These considerations led me to 
organize a "panel discussion" by a group of leading 
practitioners and researchers. The goal is to provide 
readers with a balanced and up-to-date overview of 
(a) the importance and usefulness of the principles 
underlying parameter design, (b) Taguchi's meth- 
odology for implementing them, and (c) the various 
research efforts aimed at developing alternative 
methods. 

This is different from the usual sort of panel dis- 
cussion. First, it was not feasible to assemble all par- 
ticipants in a common location. Second, the pro- 
ceedings of a "free-for-all" oral discussion may have 
added to existing confusion rather than shed new 
light on the issues. For these reasons, I solicited com- 
ments from participants on a number of topics and 
created a panel discussion from their comments. 
Panelists provided comments on topics on which 
they have worked or with which they have had prac- 
tical experience. Their comments were organized into 
sections to give readers a balanced picture of the 
different views on each topic. Panelists had some 
opportunity to read and respond to the comments 
of others. All comments were edited extensively to 
make the overall discussion and the individual sec- 
tions flow smoothly and to remove tangential ma- 
terial and excessive overlap. Despite these efforts, 
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there are still places where the discussion could be 
smoother or where there is some overlap, but this 
was unavoidable. 

It is not my goal in organizing this discussion to 
try to resolve any of the differences that currently 
exist on the issues. The panel discussion is merely 
intended as a forum for a technical discussion of the 
diverse views so that readers have a better basis for 
reaching their own conclusions. Readers should also 
find the up-to-date overview of recent research ef- 
forts and the extensive bibliography useful in ob- 
taining a further understanding of the issues. The 
discussion has been deliberately kept at a conceptual 
level and, for the most part, readers have been re- 
ferred to other sources for relevant technical details. 
In particular, material already available in Techno- 
metrics is discussed here only briefly. 

To facilitate reading, I have provided in this sec- 
tion a brief summary of Taguchi's parameter-design 
approach. Readers completely unfamiliar with Ta- 
guchi's parameter-design approach should, however, 
browse through one of the books (for example, Ta- 
guchi 1986 or Phadke 1989) or one of the review 
papers (for example, Kacker 1985 or Nair and Shoe- 
maker 1990) before reading the panel discussion. 

Taguchi's philosophy on quality improvement places 
a great detail of emphasis on variation reduction. 
Parameter design is intended as a cost-effective ap- 
proach for reducing variation in products and pro- 
cesses. It can be used either to build quality into new 
products/processes or to improve the quality of ex- 
isting ones. Let the product or process under study 
be referred to as a system. Taguchi classifies the 
inputs to the system into (a) "control parameters" 
or "control factors" x-parameters/factors that can 
be easily controlled and manipulated-and (b) "noise 
variables" or "noise factors" z-variables/factors that 
are difficult or expensive to control. Variation in z 
during manufacturing or operation causes variation 
in the system's performance measured by some qual- 
ity characteristic y. There could be many settings of 
x at which the system can perform, on the average, 
at desired (target) levels. Among these, there will 
be some settings at which the system is insensitive 
to variation in the noise variables z. The basic idea 
in parameter design is to identify, through exploiting 
interactions between control parameters and noise 
variables, appropriate settings of control parameters 

at which the system's performance is robust to un- 
controllable variation in z. For this reason, the ap- 
proach is called parameter design. The term design 
here refers to the design of a system rather than 
statistical experimental design. Since the goal is to 
make the system robust to variation in noise varia- 
bles, the approach has also been called robust design. 

Taguchi has also proposed a collection of tech- 
niques to identify the settings of x that would achieve 
robust performance. These include statistical exper- 
imental design and analysis techniques. The control 
parameters x are varied according to an orthogonal 
array ("control" or "inner" array). At each setting 
of the control parameters, the effects of the noise 
variables are evaluated by varying them systemati- 
cally using a "noise" or "outer" array. Taguchi also 
classifies parameter-design problems into different 
categories and defines a performance measure, which 
he calls "signal-to-noise" (SN) ratio, for each cate- 
gory. For example, when the system has a fixed value 
as the ideal target, Taguchi uses the SN ratio 10 log10 
E y2/var y as the appropriate measure of variability 
(see Taguchi and Phadke 1984). At each design 
setting, data from "replications" across the noise ar- 
ray are used to estimate this measure. The estimated 
SN ratios are analyzed using standard analysis of 
variance (ANOVA) techniques to identify the set- 
tings of the control parameters that will yield robust 
performance. Control parameters that do not affect 
the SN ratio are then used to adjust the average 
performance on target. Such parameters are called 
adjustmentfactors, and they may be known a priori 
or identified through data analysis. The SN ratios 
and details of the design and analysis vary for other 
parameter-design problems, but the rationale is 
similar. 

As a check for the assumptions that are implicit 
in his approach, Taguchi recommends conducting one 
or more runs at the predicted setting ("confirmation 
experiments") to verify that the predicted perform- 
ance is in fact realized. 

In addition to the preceding, Taguchi has also pro- 
posed a number of techniques for planning experi- 
ments (e.g., "linear graphs") and analyzing data (e.g., 
"accumulation analysis" for ordered categorical data 
and "minute analysis" for censored data). The panel 
discussion includes comments on these techniques as 
well. 

1. General Comments 

This section contains introductory comments, in- 
cluding the panelists' views on the goals of parameter 
design and its novelty and importance, and also sum- 
maries of their contributions in later sections. 

Madhav Phadke 
Taguchi's parameter-design method, also known 

as robust design, is an engineering methodology for 
improving productivity during research and devel- 
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opment (R&D) so that high-quality products can be 
produced quickly and at low cost. 

When purchasing a product, a customer considers 
the features or functions promised by the manufac- 
turer as well as the price. The customer then expects 
the product to deliver the target performance under 
all operating conditions, throughout its intended life, 
without causing harmful side effects. The deviation 
of the product's performance from the target leads 
to quality loss and customer dissatisfaction. Robust 
design is concerned with how to reduce the variation 
of a product's performance. In particular, it is con- 
cerned with selecting the values of control factors 
(design/process parameters) that minimize the ef- 
fects of noise factors (uncontrollable parameters). It 
uses many ideas from statistical experimental design 
and ANOVA to obtain dependable information about 
variables in making engineering decisions. 

Robust design adds a new dimension to statistical 
experimental data by explicitly addressing the fol- 
lowing concerns faced by all product and process 
designers: 

* How to economically reduce the variation of a 
product's function in the customer's environ- 
ment. 

* How to ensure that decisions found to be op- 
timum during laboratory experiments will prove 
to be so in manufacturing and in customer 
environments. 

In addressing these concerns, robust design uses the 
mathematical formalism of statistical experimental 
design, but the thought process behind the mathe- 
matics is different in many ways. In subsequent sec- 
tions, I will comment on these differences as they 
relate to the following issues: (1) Role of interac- 
tions, (2) selection of quality characteristics, and (3) 
use of SN ratios for measuring sensitivity to noise 
factors. 

Shin Taguchi 

The objective of parameter design is to achieve 
robust function of the engineering system, either a 
product or a process, at the lowest costs. Here ro- 
bustness means that the system performs its function 
as it is supposed to regardless of various causes of 
variation. These causes are called noise. For exam- 
ple, noises for a paper feeder include paper type, 
paper size, paper warp, paper surface, paper align- 
ment, stack height, roller wear, and humidity. Ro- 
bustness to variations in noise is achieved by suitably 
choosing the settings of the control factors-those 
factors that the engineer can specify and control with 
a minimal impact on cost. Fortunately, there are many 
controllable factors in practice. In the case of a paper 
feeder, for example, they include roller material, roller 

diameter, type of spring, roller contact point, and 
roller tread design. The objective of parameter de- 
sign in this case is to find the best combination of 
controllable factors such that the paper feeder feeds 
paper properly at a consistent rate under various 
noise conditions. 

Notice that the objective of parameter design is 
very different from a pure scientific study. The goal 
in parameter design is not to characterize the system 
but to achieve robust function. Pure science strives 
to discover the causal relationships and to understand 
the mechanics of how things happen. Engineering, 
however, strives to achieve the result needed to sat- 
isfy the customer. Moreover, cost and time are very 
important issues for engineers. Science is to explain 
nature while engineering is to utilize nature. 

Anne Shoemaker and Kwok Tsui 

It should be emphasized that robust design is a 
problem in product design and manufacturing-process 
design and that it does not imply any specific solution 
methods. The goal is to design a system to accom- 
modate a wide range of variation in its inputs. Ta- 
guchi deserves credit for pointing out the importance 
of this problem for producing competitive products. 

The solution method appropriate for doing robust 
design depends on the application area. For example, 
in mechanical design at General Motors, Hsieh, Oh, 
and Oh (1990) derived models from laws of physics 
or geometry. They then developed variance models 
by Taylor series approximations and used standard 
optimization methods to find design-parameter lev- 
els that minimize variance. See also Box and Fung 
(1986). In integrated circuit (IC) fabrication at AT&T, 
underlying physical models are unknown and ex- 
tremely complicated. Here, fractional factorial ex- 
periments are conducted in the laboratory to make 
processes more robust to factory floor conditions (see 
Kacker and Shoemaker 1986; Phadke, Kacker, Spee- 
ney, and Grieco 1983). In analog-circuit design, on 
the other hand, circuit simulators are available, so 
computer experimentation is used (see Buck, Liu, 
Nazaret, Sacks, and Welch 1989; Nazaret and Liu 
1990). Although most of our discussion in later sec- 
tions will deal with applications in which statistical 
experiments are used, it is important to keep these 
distinctions in mind. 

George Box 

Like most good ideas, designing for robustness has 
a considerable history. Thus in the early part of this 
century Gosset, whose product was the barley to be 
used by the Guinness brewery, emphasized that ex- 
periments had to be run in different areas of Ireland 
so as to find varieties and conditions that were in- 
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sensitive to particular local environments (Gosset 
1986). Later Fisher spoke of the "wider inductive 
basis" for conclusions obtained by comparing treat- 
ments within blocks of land that were as different as 
possible rather than similar. Moreover, the food in- 
dustry over many years has conducted "inner and 
outer array" experiments to obtain products such as 
boxed cake mixes that are insensitive to deviations 
by the user from the instructions on the box. Youden 
(1961 a,b) and Wernimont (1977) described methods 
using fractional factorials for designing analytical 
procedures that have the property of "ruggedness" 
so that they would give similar results when con- 
ducted in different places and by different people. 
Even more relevant are papers by Michaels (1964) 
and Morrison (1957) (see my comments in Secs. 7.1 
and 7.2). Although we can still learn from these pi- 
oneers, reference to them in no way detracts from 
the importance of the work of Taguchi in showing 
the vitally important role that robustness studies 
can play in the design of industrial products and 
processes. 

The concept that Taguchi calls parameter design 
has many aspects. In subsequent sections, I will ad- 
dress the following: (1) Robustness to environmental 
variables (Secs. 6 and 7.1), (2) robustness of an as- 
sembly to transmitted variation (Sec. 7.2), (3) data 
analysis for achieving smallest dispersion about a de- 
sired target level (Sec. 4), and (4) experimental strat- 
egy (Secs. 5.1 and 5.2). 

It seems that Taguchi's experimental strategy is 
intended only to pick the "optimum" factor combi- 
nation from a one-shot experiment. Although the 
immediate objective may be this, the ultimate goal 
must surely be to better understand the engineering 
system. For example, appropriate designs can pro- 
vide estimates of those specific interactions between 
environmental and design factors that cause lack of 
robustness. Once the engineer knows which these 
are and what they can do, he can employ his engi- 
neering know-how to suggest ways of compensating 
for them, eliminating them, or reducing them. Thus 
I profoundly disagree with the implications of Shin 
Taguchi's claim that the engineer does not need to 
"discover the causal relationships and to understand 
the mechanics of how things happen." To believe 
this is to discount the way the engineer thinks and 
the whole basis of his education and experience. It 
would be a serious mistake to take for granted that 
such ideas represent the wider Japanese view (for 
example, see Kusaba 1988). 

Thomas Lorenzen 

It has been claimed by some that Taguchi invented 
robust design. At a recent conference in Waterloo 

M. F. Franklin told me (parenthetical remarks added 
by me) that, since the 1940s, work has been ongoing 
to develop agricultural products that grow uniformly 
to assure maximum yield (robustness) despite dif- 
ferent weather and soil conditions (across noise vari- 
ables). Franklin said that they like to focus on and 
use plots of product by weather and soil conditions 
(control x noise interactions). Sounds like robust 
design to me! Although the claim of invention is in 
doubt, there is certainly no doubt that Taguchi has 
popularized the idea of robustness within the engi- 
neering community, and this is a big contribution. 

Raghu Kacker 

Taguchi's contributions on parameter design can 
be divided into four categories ranked in order of 
their merit-quality philosophy, engineering meth- 
odology, experimental design, and data analysis. My 
discussion in later sections will deal with the last three 
topics. Although the parameter-design approach to 
variation reduction is clearly very important, it should 
be kept in mind that it is not a universal approach. 
In Section 2, I will discuss alternative approaches 
based on compensation, elimination, and control of 
the sources of variation. 

One of the most significant outgrowths of Tagu- 
chi's work is a generalized framework for experi- 
ments. He has expanded the traditional scope of de- 
signed experiments to cover a wide spectrum of 
engineering problems. The concepts of both the re- 
sponse variable and the explanatory factors have also 
been expanded. 

The concept of a response variable has been ex- 
panded to include various measures of variability (such 
as SN ratios and other performance criteria), lifetime 
distributions, and the functional relationship be- 
tween certain input and output variables. The object 
of study in parameter design is a measure of varia- 
bility. In reliability-improvement experiments, the 
object is the life distribution under various (perhaps 
stressed) operating conditions. In dynamic problems, 
designed experiments are used to optimize the func- 
tional relationship between an input and an output 
variable (see Yano [1991] for numerous industrial 
applications). 

Whereas classical statistical designs treat most ex- 
perimental variables as explanatory factors or block 
factors, Taguchi (1987, p. 147) has recognized the 
diversity of the roles of experimental factors. He has 
classified them, from an engineering viewpoint, into 
control, noise, signal, adjustment, indicative, and 
block factors. Each type of factor has an important 
engineering significance. 

This generalized framework for experiments has 
been instrumental in closing the gap between engi- 
neering and statistics. 
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James Lucas 

Taguchi's work on variation reduction is widely 
acknowledged as his most significant contribution to 
statistics and engineering. The idea is original and 
its impact profound. He also has some novel ideas 
in his approach to handling interactions, selection of 
quality characteristics, and experimental planning 
techniques. I will discuss the strengths and weak- 
nesses of these ideas in later sections. Many of his 
techniques for experimental planning were devel- 
oped in the period 1956-1965, before he invented 
the idea of parameter design. Some of them were 
quite original for the time, especially given that he 
was not in contact with Western statistical literature. 
Two important papers are those by Taguchi (1959, 
1960), which contain several interesting techniques. 
Most of the details can be found in Volume I of 
Taguchi (1987). 

John Nelder 

Taguchi's work on parameter design may be di- 
vided into three components-engineering practice, 
experimental design, and statistical analysis. I leave 
the assessment of the first to the engineers, who will 
surely agree that the effect of Taguchi's ideas has 
been profound. His ideas on experimental design, 
insofar as they often lead to fractional factorials, are 
not new, though what is new is the idea of designing 
for the simultaneous modeling of both mean and 
variability. In this area, statisticians should be asking 
themselves why the idea of fractional factorials, known 
since the mid-1940s, has been so poorly propagated 
by them. It is in the third component, that of analysis, 
that statisticians will see room for real improvement. 
I discuss the statistical defects in Taguchi's analytical 
procedures in Section 4 and outline in Section 7.4 
how generalized linear models (GLM's) provide a 
general framework for the joint modeling of mean 
and dispersion. 

Jerome Sacks and William Welch 

We have few quarrels with Taguchi's parameter- 
design objectives. There are several features of his 
formulation and implementation, however, that we 
do not like. The cross of "inner" and "outer" arrays 
often leads to a prohibitive number of observations. 
Moreover, the data from this considerable experi- 
mental effort are used very inefficiently. For exam- 
ple, the collapsing of the data to SN ratios surely 
throws away useful information. Moreover, few of 
Taguchi's examples consider more than one quality 
characteristic; this is very unrealistic in our experi- 
ence. We will elaborate on these issues (Sec. 3), 
discuss alternative methods (Sec. 6), and illustrate 
their applications to computer experiments (Sec. 7.3). 

The elegance of Taguchi's contributions lies in their 
essential simplicity. Taguchi has provided a philo- 
sophical framework that gets statistically designed 
experiments run. He uses a loss function to motivate 
the ideas: Keep a process on-aim, and reduce process 
variability. This very important contribution is often 
underemphasized in discussions of Taguchi's contri- 
butions (Lucas 1985). 

The designs that Taguchi recommends have the 
two most important characteristics of experimental 
designs: (1) They have factorial structure, and (2) 
they get run. 

Most of the orthogonal arrays that he recommends 
are classical screening designs due to Plackett and 
Burman (1946). Taguchi and his followers have got- 
ten screening designs used much more widely than 
they were previously. Du Pont's statistical consult- 
ants were among the few proponents of screening 
designs before Taguchi. We know their power and 
utility. Before Taguchi, however, these designs were 
seldom used outside the chemical and process in- 
dustries. Publicizing them, demonstrating their prac- 
tical power, and getting them used more widely are 
major contributions of Taguchi. 

There is an old consultant's rule that "getting the 
right design run" gives 90% of the solution. Doing 
the completely proper analysis is much less impor- 
tant. In many instances, Taguchi has not proposed 
quite the proper analysis. This has generated some 
controversy and many papers. By the 90-10 rule, 
this is a minor criticism. 

Raymond Myers and Geoffrey Vining 

The use of statistical methods and designed ex- 
periments in product and process improvement con- 
tinues to gain momentum in the United States. Some 
argue that this is in large part due to, while others 
assert it is in spite of, the contributions of Taguchi. 
No one, however, can deny the importance of Ta- 
guchi's principles of parameter design. One should 
design products that are robust to environmental 
conditions, are robust to component variation, and 
have minimum variation around a target value. Im- 
portant questions center on the adoption of these 
principles by practitioners and the influence that 
professional statisticians are having on this important 
subject. 

It is probably unfortunate that the important con- 
cepts advocated by Taguchi have been overshadowed 
by controversy associated with his approach to mod- 
eling and data analysis. Some of Taguchi's critics 
have also pointed out the positive aspects of param- 
eter design in the field of quality engineering. An 
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enormous number of practitioners, however, are still 
not aware of what Taguchi is all about, though much 
interest and curiosity persist. Even those who take 
the time to learn this methodology view Taguchi only 
through SN ratios, overly simplistic modeling, "pick 
the winner" analysis, linear graphs, and so forth. For 
many, the concept of robust products and processes 
has fallen on deaf ears. 

It is clear that the impact of parameter design will 
be best evaluated after a long period of time. But it 
is our opinion that the result will depend significantly 
on how well statistical researchers are able to develop 
and communicate technology that merges the posi- 
tive aspects of parameter design with conventional 
methodology. Only then will the confusion among 
users slowly cease. 

2. Variation Reduction Through Parameter Design and the 
Role of Noise Factors 

Section 2.1 deals with the importance of variation 
reduction and the role of parameter design, as well 
as other methods for achieving it. Section 2.2 dis- 
cusses Taguchi's treatment of noise factors and some 
of the important considerations underlying their use 
in variation reduction experiments. 

2.1 VARIATION REDUCTION 

Raymond Myers and Geoffrey Vining 

Before Taguchi's introduction of parameter design 
in the United States in the early 1980s, our com- 
munication of statistical methods to the engineer did 
not deal sufficiently with the role of product or pro- 
cess variance. There was (and unfortunately still is) 
a single-minded concentration on the mean of the 
response of interest. Parameter design can be used 
to communicate to users that they must consider all 
sources of process variability. The appropriate set of 
operating conditions must minimize variability while 
bringing the mean to target or provide the proper 
balance between the mean and the variability. The 
classical assumption of homogeneous variability should 
only be made when it is truly convincing. 

Taguchi's use of SN ratios to capture variability 
has been a subject of controversy (see the discussion 
in Secs. 3 and 4). There have been efforts at under- 
standing his ideas and developing more statistically 
efficient alternatives (Box 1988; Leon, Shoemaker, 
and Kacker 1987; Nair and Pregibon 1986). Alter- 
native methods proposed include the use of data 
transformations (Box 1988; Nair and Pregibon 1986; 
see also Sec. 4), and the use of GLM's for the joint 
modeling of mean and dispersion (Nelder and Lee 
1991; see also Sec. 7.4). 

Taguchi's emphasis on variability has also sparked 
research in the area of dispersion effects and variance 
modeling. No one can or should imply that Taguchi 
introduced variance modeling anymore than he in- 
vented the notion of squared error loss. The atten- 

tion drawn to these concepts by the Taguchi ap- 
proach, however, certainly influenced Box and Meyer 
(1986), Nair and Pregibon (1988), Carroll and Rup- 
pert (1988), and many others. It is interesting that 
after the now classical paper by Bartlett and Kendall 
(1946), very little appeared that dealt with modeling 
and controlling process variance until Taguchi. In- 
cidentally, Beckhofer (1960) made an often over- 
looked contribution in this area. It is important that 
this way of thinking continues to be reflected in courses 
taught in the university, as well as in an industrial 
setting. Academicians are revising courses in linear 
models and experimental design to more completely 
accommodate the importance of handling variance 
heterogeneity. 

Raghu Kacker 

There are many approaches to reducing perfor- 
mance variation. Taguchi (1987) argued that param- 
eter design is the preferable approach because it in- 
volves changing the nominal values of product 
parameters, which is often cost neutral. Tolerance 
design is less desirable because it involves using bet- 
ter grade materials and tighter tolerances, which in- 
creases the cost. The effective and efficient ap- 
proach, however, would depend on the nature of the 
sources of variation (noise factors). 

Almost all improvements require two distinct 
steps-diagnosis and remedy. (Juran [1979] calls this 
a universal sequence of improvement.) In case of 
variation reduction, diagnosis means identifying the 
sources of variation and remedy means instituting 
countermeasures. Often the most effective counter- 
measure against variation caused by people, ma- 
chines, and methods is compensation, elimination, 
and control of these sources of variation. 

Compensation for unavoidable noise is a well- 
established engineering approach. For example, in 
automobile manufacturing a chronic problem is the 
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imbalance of the wheel and the tire. So a U.S. au- 
tomobile company identifies the heavy point of the 
wheel and the light point of the tire and then matches 
them before mounting the tire on the wheel. This 
reduces the need for final balancing and hence the 
cost. 

Identifying and eliminating (or controlling) the 
sources of variation is also a basic engineering ap- 
proach. For example, particulate contamination is a 
serious problem in IC fabrication, and the most ef- 
fective and economical approach is elimination and 
control of contaminants. It is not possible to make 
an IC-fabrication process insensitive to particulate 
contamination by parameter design. Bowman, Hopp, 
Kacker, and Lundegard (1991) described another ex- 
ample relating to the assembly of video cassette re- 
corders (VCR's). Matsushita Corporation has re- 
duced the defect rates in VCR assembly to parts per 
billion levels by elimination of virtually all sources 
of variation. 

Parameter design is not a universal approach. It 
relates to those special causes of variation whose 
effects can be mitigated by changes in the control- 
factor settings. The success of parameter design de- 
pends on two conditions. First, certain interactions 
between control and noise factors must exist. Sec- 
ond, the engineer is able to identify those factors 
that are involved in such interactions. Such oppor- 
tunities may not be rare, but certainly they are not 
universal. 

2.2 THE ROLE OF NOISE FACTORS 

Shin Taguchi 

The way noise factors are treated is a key concept 
in parameter design. They are systematically intro- 
duced using designed experiments so that their re- 
lationships with control factors can be studied. The 
interactions between control factors and noise are 
used to reduce variability. Even weak interactions 
contribute greatly to variability reduction. 

When there are many noise factors, it may be dif- 
ficult to study all of the effects. In this case, we can 
use compound noise factors that measure extreme 
conditions of the noise variables. For the paper-feeder 
example I discussed in Section 1, one can define a 
compound noise factor with two settings-N1 = light/ 
rough paper and high stack height with new roller 
and N2 = heavy/smooth paper and low stack height 
with worn roller. In general, the two settings of the 
compound noise factor, N1 and N2, are prepared 
such that they capture variations in other noise fac- 
tors. The most robust design for the compound noise 
factor tends to be also robust to all noises. 

Jeff Wu 

Taguchi's parameter design for variation reduction 
is a very novel approach. He has advocated the use 
of a noise (outer) array to systematically vary the 
noise factors; the noise array is crossed with the con- 
trol (inner) array, and the product array is used for 
experimentation. Let m and n denote the size of the 
control and noise array. Then the product array has 
nm runs, which can be very large. Recognizing this 
problem with the product-array format, Taguchi later 
suggested using a compound noise factor to reduce 
the size and cost of experiment. It chooses 2-3 (rather 
than n) extreme level combinations for the noise fac- 
tors. For this to be effective, however, it requires 
some rather restrictive and often hard-to-verify con- 
ditions, such as (a) the noise effects on the response 
are unidirectional and (b) the unidirectionality is in- 
dependent of the settings of the control factors. For 
details on these conditions, see Phadke (1989). 

As a more economical alternative, several authors, 
including Shoemaker, Tsui, and Wu (1991), have 
suggested the use of a combined array format that 
uses a single array to accommodate both types of 
factors (see the discussion in Sec. 6). The run size 
of the combined array can be much smaller than a 
product array. Since run size is not a good measure 
of experimental cost, I use the cost of runs as a more 
realistic criterion for comparison. Denote the cost of 
a control run and of a noise run by c1 and c2, re- 
spectively. If c1 is much larger than c2, the product 
array format is quite economical. Otherwise, the 
combined array format is preferred. It is not uncom- 
mon that the noise runs are much cheaper. This is 
why many such experiments have been successful. 

Raymond Myers and Geoffrey Vining 

Taguchi's use of noise variables is a vital contri- 
bution. If important noise variables are used in the 
experimental process, the variability reflected is that 
which is most realistic-namely, that which the prod- 
uct experiences as it exits the production line or is 
used in the field. Parameter design is used to exert 
control over this type of variability. A chemical en- 
gineer cannot report an optimal product blend with- 
out accounting for variability produced by different 
solvents used by various customers. A tobacco chem- 
ist must account for variability in quality due to vary- 
ing storage schedules that may be unforeseen. Any 
process must address undesirable variability resulting 
from an inability to control production factors as well 
as environmental factors. It is true that noise vari- 
ables did not begin with Taguchi. They enjoyed lim- 
ited use in this country in foods, gasoline blending, 
the aircraft industry, and others. But Taguchi dem- 
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onstrated the advantage of the formal purposefulness 
of their use as a part of the experimental design. 

We often rely on randomization to capture the 
natural variability of the process. An engineer often 
intuitively knows that variability is not constant across 
the design levels. If noise variables are important but 
not a systematic part of the experimental design, a 
major portion of variability may be captured hap- 
hazardly, indirectly, and thus inefficiently. Taguchi's 
outer array is meant to characterize process varia- 
bility at each point of the inner array. It should be 
pointed out that the use of the inner and outer array 
does not negate the notion of randomization. In fact, 
it renders randomization even more important. There 
is likely to be slippage in complete randomization 
when noise variables are used. As a result, there is 
a danger of treating, for the sake of convenience, 
the conditions in the inner array as blocks or rather 
whole-plot effects in a split-plot type of design. If 
this is necessary, then an alternative analysis should 
be used, as Box and Jones (1992) pointed out, and 
should be communicated properly to practitioners. 
Unfortunately, notions of split-plot designs are not 
a standard part of the engineer's toolbox. 

Anne Shoemaker and Kwok Tsui 

Since reducing variability is the objective of robust- 
design experiments, a high priority needs to be placed 
on careful introduction of noise factors in the ex- 
periment. It is essential to identify major noise fac- 
tors before conducting the experiment, perhaps using 
a process capability study (see AT&T 1956). These 
major noise factors should then be systematically var- 
ied in the experiment. This active introduction of 
noise is more efficient than replication and allows us 
to separately examine variability contributed by each 
noise factor. 

Noise factors that cannot be directly varied in the 
experiment can sometimes be indirectly varied through 
surrogates. For example, temperature and gas com- 
position variations inside a reactor can be studied 
using position in the reactor as a surrogate noise 
factor (see Kacker and Shoemaker 1986). 

Although many remaining small noise effects would 
be reflected in replication error, replicating every run 
is frequently not an efficient use of the experimental 
budget. A more efficient way to gauge repeatability 
of experimental results might be to replicate only 
one or two runs. 

Because noise-factor levels do not represent a ran- 
dom sample from the noise-factor distributions, sam- 
ple variances calculated over a noise array are not 
good estimates of population variances. Instead, they 
should be interpreted as rough measures of sensitiv- 
ity to the noise factors present in the noise array. 

Bovas Abraham and Jock MacKay 

As noted by some of the previous discussants, there 
are important considerations underlying the use of 
noise factors in variation-reduction experiments. These 
will be the subject of our discussion. Our comments 
are set in the context of improving the quality of 
existing products or processes. Although many of 
these comments are also applicable to the design of 
new products and processes, it is important to keep 
in mind that there are several important differences 
between the two contexts. 

Meaning of Variation. There is considerable con- 
fusion over the meaning of variation. This is apparent 
in examples described by Taguchi as "the larger the 
better" and "the smaller the better." 

1. One aspect of variation is deviation from tar- 
get. For example, if a shaft is turned, a measure of 
quality is the run-out (a measure of out-of-round- 
ness). The ideal value is 0. A single measurement on 
one shaft may show a deviation or variation from 
this target value. 

2. Part-to-part consistency is another aspect of 
variation. Large part-to-part variation in run-out may 
cause difficulties in setup of subsequent operations 
or assembly. 

3. A third aspect is within-part variation. For ex- 
ample, it may be important that the run-out mea- 
sured at each end of a shaft is close to the same. 

A single run-out reading may include all three as- 
pects of variation as well as measurement error. 

In simple situations, a statistical model for a re- 
sponse y is 

y = f(process inputs) + e, (2.1) 

where f is deterministic and the random error e has 
mean 0 and standard deviation that may depend on 
the process inputs. Confusion may arise because each 
aspect of variation can contribute to one or both 
components in the model. This seems particularly 
true in situations like the shaft run-out. Is the prob- 
lem of excessive variation captured by the determin- 
istic or random (or both) components of the model? 

With appropriate data, measures can be defined 
to estimate the different aspects of variation. These 
measures of variation can be combined into a single 
performance measure or loss function. The causes of 
the different aspects of variation, however, may be 
very different, and it is easiest to search for these 
causes using separate experiments or at least separate 
analyses. This point was well made by Box (1988) 
and several of the discussants to his paper. 

Cause of Variation-Noise Factors. Process fac- 
tors that cause variation in the output/response were 
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called noise factors by Taguchi (1986). The definition 
is clear if a factor varies from time to time and trans- 
mits piece to piece variation or within-piece variation 
(because the factor affects different parts of the piece 
differently). In statistical process control language, 
this factor is a special cause of variation. 

Another type of noise factor corresponds to what 
Shewhart (1931) called a Type II special cause. These 
factors do not vary and yet are responsible for some 
aspect of variation. For example, if shafts are turned 
on two spindles and there is a systematic difference 
in run-out between the spindles, then spindle is a 
noise factor. A fixed factor that causes a systematic 
difference within a piece is also a noise factor. In 
terms of the additive model (2.1), these noise factors 
enter through the deterministic component. 

The key strategy that has been suggested for re- 
ducing variation caused by a noise factor is to exploit 
an interaction between the noise factor and some 
control factor. This interaction must be of the nature 
that flattens the relationship between the response 
and the noise factor; that is, the effect of the noise 
factor within a new setting of the control factors must 
be significantly less (in absolute value) than the effect 
within the current setting. In some situations, there 
is systematic within-piece variation (e.g., differences 
across locations), but the variation cannot be attrib- 
uted to any observable noise variables. In such cases, 
one may be able to identify a dummy or surrogate 
noise variable (location in this example) and study 
the interaction between this noise variable and con- 
trol factors. 

Experiments With Noise Factors. Juran and Gryna 
(1980) suggested that to resolve any problem we should 
follow a diagnostic journey: 

problem -> cause -> remedy. 

In this instance, the problem is one of excessive vari- 
ation and the cause has been identified as one or more 
noise factors. The goal of the variation-reduction ex- 
periment is to find the remedy to the variation as- 
sociated with these important noise factors. To min- 
imize the experimental effort, it is important that 
noise factors that contribute substantially to the vari- 
ation are included in the study. In the production 
setting, available data can often be used to identify 
noise factors using stratification, regression methods, 
and control charts. 

Knowledge of the noise factors and their behavior 
is an important prerequisite to an efficient experi- 
ment. Since it is essential to find control factors that 
interact with the noise factors, the more that is known 
about how the noise factor acts, the more likely that 
the control factors and their levels will be successfully 
chosen. If the noise factor is transmitting variation 
and the experiment is to be run with an outer array, 
then understanding of the range of variation of the 
noise factors is required to select the levels. Some- 
times the noise factor cannot be controlled during 
the experiment, but knowledge of its behavior can 
be used in the design. For example, in a foundry the 
pouring temperature of the iron was identified as a 
noise factor. It was not possible to control the tem- 
perature sufficiently to use it in an outer array. In- 
stead, the factor that the temperature could be meas- 
ured and that it changed rapidly after lunch break 
was exploited to design an experiment in which con- 
trol factor by temperature interactions were exam- 
ined using a linear model for the observed response, 
which included temperature by control-factor inter- 
actions. 

In cases in which the noise factors are not iden- 
tified or measured and controlled during the exper- 
iment, it is common to define a run of the experiment 
so that there is sufficient time for the noise factor to 
"act." Knowledge of past behavior of the process is 
critical in defining an experimental run. The process 
must be stable from run to run so that each run will 
experience the same variation. In addition, the run 
must be long enough so that the variation is practi- 
cally important. Control factors must be selected with 
little understanding of why the variation is occurring. 
Quinlan (1985) gave an example in which shrinkage 
was measured at four different places within a length 
of cable. No noise factors were explicitly identified 
to explain the excessive variation in shrinkage. In 
this situation, there was little choice but to model 
performance measures (SN ratios, variances, etc.) 
calculated for each run. 

It is advisable, however, to try to explicitly identify 
the noise variables and model directly the observed 
response to examine the control by noise-factor in- 
teractions (see Sec. 6). This is preferable to com- 
puting SN ratios or variances and modeling disper- 
sion effects. Given the limited amount of data usually 
available, estimating dispersion effects precisely is 
likely to be difficult. 

TECHNOMETRICS, MAY 1992, VOL. 34, NO. 2 

136 



TAGUCHI'S PARAMETER DESIGN 

3. The Role of Interactions, SN Ratios, and Selection of 
Quality Characteristics 

Taguchi's philosophy on interactions has been the 
subject of considerable debate. In this section, some 
of the discussants explain Taguchi's philosophy on 
interactions and his selection of SN ratios and quality 
characteristics. Others assess the validity of these 
views. 

Madhav Phadke 

The role of interactions has been debated vigor- 
ously since Taguchi's approach to experimental de- 
sign for designing robust products and processes be- 
came known in the United States. A perception persists 
in the statistical literature that Taguchi's approach 
assumes that interactions are absent and hence the 
method is unscientific. The lack of adequate litera- 
ture in the English language, the evolving nature of 
the methodology, and the lack of understanding of 
the engineering issues on the part of statisticians have 
been responsible in part for the misunderstanding 
and debate. An engineering perspective of this de- 
bate is given in the following. 

In designing robust products/processes, one must 
first divide all factors that affect the product's output 
into two categories, control factors (C) and noise 
factors (N). The interactions among these factors can 
be divided into three categories-among control fac- 
tors (C x C), between control and noise factors 
(C x N), and among noise factors (N x N). During 
parameter design, one is interested in choosing the 
levels of control factors so that the product's re- 
sponse is least sensitive to noise factors and can be 
adjusted on target as appropriate. The C x N in- 
teractions are exploited to accomplish this. The N x 
N interactions play little role in making a product's 
performance insensitive to noise factors. 

What is the role of C x C interactions in reducing 
the sensitivity of a product's response to noise fac- 
tors? Do C x C interactions exist? If so, how should 
they be handled? These questions form the source 
of controversy and debate. 

Taguchi's robust-design method addresses the 
problem of interaction among control factors in a 
way that is philosophically different from the classical 
approach to experimental design. Presence of large 
C x C interactions is considered highly undesirable 
for several reasons: 

1. First, presence of interactions implies that a 
much larger number of experiments would be needed 
to study the same number of control factors. 

2. Second, the presence of large C x C inter- 
action makes it difficult to divide the task of design- 
ing a complex product into several smaller tasks (sub- 
systems) that could be investigated simultaneously 
by different teams of engineers. This is highly un- 
desirable for shortening the development interval and 
for improving R&D productivity. Moreover, this 
makes it difficult to reuse the subsystem design for 
other products. Consequently, overall R&D costs 
are higher and the development intervals longer. 

3. Third, and most important, the reason for 
seeking additivity has to do with the ability to transfer 
designs from laboratory to manufacturing and even- 
tually to the field. The conditions under which the 
experiments are conducted can also be considered 
as a control factor with three settings-laboratory, 
manufacturing, and customer usage. If strong C x 
C interactions are observed during laboratory exper- 
iments, these control factors are also likely to interact 
with conditions of experimentation. In this case, op- 
timum settings in the laboratory may not prove to be 
optimum under manufacturing or customer-use con- 
ditions. Thus the manufacturing reject or rework rate 
may turn out to be high, cost design changes may 
become necessary, the product may fail in the field 
sooner than expected, and the product may not func- 
tion on target under different customer environments. 

Thus every attempt is made in robust design to 
eliminate or minimize the C x C interactions through 
judicious choice of the quality characteristics (re- 
sponses used in robust design), the objective func- 
tions to be maximized (the SN ratios), the control 
factors, and their levels (including the use of "sliding 
levels" of factors-see Phadke [1989, p. 145] for an 
example). Orthogonal arrays and confirmation ex- 
periments are used as a method to check for addi- 
tivity (see Sec. 5.1 for more discussion of this topic). 
Choosing these quantities properly often constitutes 
the bulk of the effort in planning robust-design ap- 
plications. These tasks require engineering know-how 
about the specific project and also knowledge of 
robust-design methodology. Care taken in this activity 
can greatly enhance the ability of the robust-design 
experiment to generate dependable and reproducible 
information with a small number of experiments. If 
an engineer is unable to eliminate interactions, he 
must continue to research different problem for- 
mulations or accept the risk of sending defective de- 
signs to the next product realization stage. There are 
no rules that can guarantee absence of interactions. 
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This must be achieved on a case-by-case basis and 
even then sometimes by trial and error. 

Here are some important guidelines for selecting 
the quality characteristics to minimize interactions: 

1. Identify the ideal function or the ideal input- 
output relationship for the product or the process. 
The quality characteristic should be directly related 
to the energy transfer associated with the basic mech- 
anism of the product or the process. Avoid focusing 
on the ways energy is wasted. 

2. As far as possible, choose continuous variables 
as quality characteristics. 

3. The quality characteristic should be mono- 
tonic; that is, the effect of each control factor on 
robustness should be in a consistent direction, even 
when the setting of control factors is changed. In 
several situations, it is difficult to judge the mono- 
tonicity of a quality characteristic before conducting 
experiments. In such situations, one has to conduct 
experiments followed by the confirmation process to 
determine if the quality characteristics have mono- 
tonicity. 

Additional guidelines for selecting the quality char- 
acteristics and the SN ratios and examples were given 
by Phadke (1989) and Phadke and Taguchi (1987). 
These guidelines include both what to do and what 
not to do. Finding quality characteristics that meet 
all of these guidelines is sometimes difficult or simply 
not possible with the technical know-how of the en- 
gineers involved. The robust-design experiment, 
however, will be inefficient to the extent that these 
guidelines are not satisfied. It is a common mistake 
to use percent defective or yield as quality charac- 
teristic. It violates the rules described previously and 
should be avoided. 

Shin Taguchi 

In parameter design, the most important job of 
the engineer is to select an effective characteristic to 
measure as data. For example, a coating process re- 
sults in various problems such as poor appearance, 
low yield, sags, orange peel, and voids. Too often, 
people measure these characteristics as data and try 
to minimize or maximize the response. This is not 
sound engineering, because these are simply the 
symptoms of poor function. It is not the function of 
the coating process to produce an orange peel. The 
real problem is the functional variability of the coat- 
ing process due to noise factors such as variability in 
viscosity, ambient temperature, and coating surface 
variability. We should measure data that relate to 
the function itself and not the symptom of variability. 

To determine an effective characteristic, it helps 
to consider the underlying transformation of energy 

in the engineering system. Quality problems take 
place due to variability in the energy transformation. 
Considering the energy transformation helps to rec- 
ognize the function of the system. One fairly good 
characteristic to measure for the coating process is 
coating thickness. After all, the function of the coat- 
ing process is to create the coating layer. Symptoms 
such as orange peel and poor appearance result from 
variability of coating thickness. It is sound engi- 
neering strategy to measure the coating thickness and 
to find the combination of controllable parameter 
settings such that its variability is minimized. 

The efficiency and effectiveness of engineering ac- 
tivities depend greatly on what is measured as data. 
In general, attribute characteristics and others dealing 
with notions of "smaller-the-better," or "larger-the- 
better" are only symptoms of variability/performance. 
They tend to introduce strong, adverse interactions. 
It is better to use energy-related nominal-the-best 
type characteristics. It is even better to use dynamic 
characteristics (see the discussion in Sec. 7.6). 

Thomas Lorenzen 

The statement that causes me immeasurable grief 
in consulting with engineers is: If the response var- 
iable is chosen to reflect either energy output or fun- 
damental physics, there will be no control-factor in- 
teractions, so none need be considered in the design 
or analysis of the data. This is particularly grating to 
me because it is so easy to remember, and everyone 
wants life to be easy and require less work. 

I have several problems with this statement. First, 
although different response variables will most as- 
suredly influence the complexity of the required model, 
neither measurable energy output nor fundamental 
physics need be additive. Sorry about that, but in- 
teractions may be needed. Second, control x noise 
interactions are necessary to improve robustness. The 
difference between a control and a noise factor is 
definitional, whether the factor can be controlled 
inexpensively in the factory or not. I am left with 
the conclusion that energy output and fundamental 
physics know whether the factor can be controlled 
in the factory or not and form interactions appro- 
priately! Finally, one is interested in robustness to 
the customer, not robustness to energy output or 
fundamental physics. Before I am comfortable, I need 
to know the relation between energy output or fun- 
damental physics and the customer-perceived quality 
characteristic. 

The claim that confirmation experiments will tell 
if the fit is good is also not correct. Recently, an 
engineer modeled expensive computer runs follow- 
ing a course offered by the American Supplier In- 
stitute. The "best point" confirmed. I heard this 
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presentation and talked him into running a higher 
resolution design requiring the same number of runs. 
The "best point" from this model also confirmed, 
with a 30% improvement! End of claim and an en- 
gineer who now believes in interactions. 

Raghu Kacker 

The justification given for Taguchi's philosophy on 
interactions is that the design engineer needs to de- 
termine, through laboratory experiments, settings of 
control factors that are optimal in the manufacturing 
conditions and in the customer's use conditions (Tag- 
uchi 1987, pp. 117-141). It is claimed that when the 
effects of the control factors are additive (i.e., the 
interaction effects among control factors are negli- 
gible in comparison to the main effects), the optimal 
settings for the laboratory environment are likely to 
remain optimal during manufacturing and customer- 
use conditions; otherwise extrapolation to manufac- 
turing and use conditions may not be achieved. 

This argument fails to recognize that a design pro- 
cess is rarely done in a vacuum. A well-managed 
design process should have access to experience with 
related products and processes. Effective use of such 
information in the statistical design and analysis of 
laboratory experiments is the rational approach to 
extrapolation of results. According to Rosenblatt and 
Watson (1991), successful companies design for man- 
ufacturing and customer-use conditions by employ- 
ing a concurrent engineering approach that brings to 
the designers' table accumulated experience from 
manufacturing as well as accumulated data on the 
performance of related products in use conditions. I 
think the use of such prior experience rather than ad 
hoc philosophy concerning the additivity of control- 
factor effects is the key to extrapolation of laboratory 
results. 

Taguchi (1987, pp. 59-61) pointed out that the 
response (or performance) characteristic is not given; 
it is chosen. He emphasized that the response char- 
acteristic should be chosen such that the effects of 
the control factors are additive. In my view, it is 
unrealistic to assume that one can always find rele- 
vant performance characteristics that are additive in 
the effects of control factors. I agree that a study of 
the underlying mechanism may be more effective 
than the direct focus on final characteristics. But in- 
teractions may still be present in the underlying 
mechanism. Even if additive characteristics exist, say 
at molecular levels, it may not be possible to identify 
and measure these characteristics within the scope 
of the experiment. 

It is frequently a matter of scientific research to 
identify relevant performance characteristics. For ex- 
ample, in materials research engineers try to identify 
and select characteristics that are likely to have the 

largest effect on the desired properties of the prod- 
uct. The identification of such characteristics is often 
hampered by measurement error. When the selected 
characteristic cannot be measured with reasonable 
precision, a surrogate characteristic (whose relation 
to the characteristic of interest is fairly understood) 
is used. 

In addition, sometimes there is no accepted stan- 
dard for measuring a response characteristic. For ex- 
ample, to measure the hardness and fracture tough- 
ness of ceramic composites, a diamond wedge is 
indented into the composite (for example, see Fuller 
et al. 1991). The defined characteristics are functions 
of the depth profile of the indentation and multiple 
cracks that develop, and there is no universally ac- 
cepted way of calculating these characteristics from 
the various types of depth and cracks that can form. 
An individual engineer can use an ad hoc character- 
istic. But generally accepted standards for measure- 
ment are needed to compare results from different 
sources. 

Jeff Wu 

Taguchi (1987, p. 61) stated, "The efficiency of 
research will drop if it is not possible to find char- 
acteristics that reflect the effects of the individual 
factors regardless of the influence of other factors." 
In more precise terms, it means that the character- 
istics should depend only on the marginal effects of 
the individual (control) factors. Taguchi called such 
characteristics monotonic. To achieve this, Taguchi 
(1987, p. 171) and Phadke and Taguchi (1987) sug- 
gested the following steps: 

1. Find a characteristic possessing monotonicity. 
2. Use sliding levels when the factors are inter- 

related. 
3. Use an SN ratio as the objective function for 

analysis. 
4. Use a "correct" analysis method-that is, ac- 

cumulation analysis for ordered categorical data and 
minute accumulating analysis for censored data. 

Generally speaking, 1 is very original, 2 is a useful 
reminder of what has been known but not empha- 
sized, and 3 and 4 are faulty. Let me elaborate on 
them. 

In the statistical literature, a characteristic y is usu- 
ally given and unquestioned, and a model is fitted 
to describe y as a function of some covariates x. A 
transformation on y (or on both y and x) may be 
considered to improve the model fit. If the original 
y does not allow a monotonic relation in x, a data 
transformation, even if it gives a better fit, will usu- 
ally not result in a monotonic relationship that holds 
outside the region covered by x. Therefore, a trans- 
formed relationship may not be effective in predic- 
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tion. A more effective approach is to use the subject- 
matter knowledge to find a monotonic characteristic. 
Several interesting examples can be found in chapter 
6 of Phadke (1989). One of them is about heat- 
exchanger design. If r is the target temperature and 
L = ly - ] is the loss function, it is obvious that L 
is not monotonic even for monotonic y, since L is 
not a monotonic function in y. This is why Taguchi 
advocates that analysis be done on the original scale 
y instead of on the transformed scale L. Having said 
this, I have difficulty understanding why he advo- 
cates the use of SN ratios for achieving monotonicity. 
Take the most commonly used SN ratio, 

= log0(y2/s2), (3.1) 

where y and s2 are the mean and variance of yj. It is 
a nonmonotonic and many-to-one transformation of 

yj. (Most of his other SN ratios also possess this 
undesirable property.) There is an apparent contra- 
diction here to what he advocated in Step 1. As ar- 

gued in 1, it is better to analyze the original response 
y instead of the SN ratio 7r (see Sec. 6). Criticisms 
of his SN ratios abound in the literature and will not 
be repeated here. 

Use of sliding levels to account for the interrela- 
tionship between factors and to minimize interac- 
tions is a good but often neglected practice. Strictly 
speaking this is not his original idea. But I think it 
is fair to say that Taguchi has brought it to our at- 
tention and has used it in many of his case studies. 
(Using case studies to make his points is a very im- 
portant practice he introduced to the inward-looking 
statistical community.) 

Both accumulation analysis and minute accumu- 
lating analysis have been studied and criticized as 
being unnecessarily complicated and often invalid 
(Box and Jones 1986, 1990; Hamada, in press; Ha- 
mada and Wu 1990; Nair 1986). These studies also 

show that they can detect spurious interactions and 
thus create nonmonotonicity. 

Jerome Sacks and William Welch 

There seems to be confusion about attitudes to 
interactions in Taguchi's experiments. Taguchi and 
Wu (1985, p. 55) said that the engineer should con- 
vert the quality characteristic into one having addi- 
tivity. Ignoring the obvious practical difficulties, sup- 
pose that the engineer can carefully parameterize the 
problem to minimize interaction effects. As a simple 
illustration, let the quality characteristic, y, depend 
on two control factors, x1 and x2, and a noise factor, 
z, through y = x1 + x2 + z. In Taguchi's imple- 
mentation, however, it is an SN ratio, not y, that is 
analyzed. When the "replicates" yi, . . , y, arising 
from n levels of z, are reduced to, say, the smaller- 
the-better SN ratio S = log (1/n ly2), then S is 
clearly no longer additive in x1 and x2. Despite the 
engineer's efforts, the interaction between x1 and x2 
cannot necessarily be ignored. 

Taguchi's main motivation for ignoring interac- 
tions between control factors appears to be economy 
of experimental effort rather than any assurance that 
it is safe to do so. Economy measures are forced by 
the inefficiency of his crossed-array experimental de- 
signs. For each combination of control factors in the 
control (inner) array, he makes observations at all 
combinations of the noise factors in the noise (outer) 
array. With m rows in the control array and n rows 
in the noise array, there is obvious potential for mn, 
the total number of observations, to become prohib- 
itively large. Therefore, he attempts to keep m (and 
n) as small as possible by ignoring interactions. The 
methods we outline later in this discussion, based on 
a single experimental array for both control and noise 
factors, typically require far fewer observations and 
allow interaction effects to be modeled. 

4. Data Analysis: Use of SN Ratios, Data Transformations, or 
Generalized Linear Models? 

As noted earlier, Taguchi classifies parameter- 
design problems into different categories and defines 
different performance measures called SN ratios for 
each problem. In this section, the panelists consider 
the important special case in which the product or 
process has a fixed target value and discuss the use 
of Taguchi's SN ratio and other, more established 
statistical methods. 

Madhav Phadke 

Unlike what has been proposed in some of the 
statistical literature (see Box 1988; Nair and Pregibon 
1986) selecting the SN ratio is not an exercise in 
determining a data transformation that stabilizes the 
variance. It is the process of identifying the ideal 
relationship between the signal factor and the quality 
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characteristic and evaluating the sensitivity to noise 
factors with respect to the chosen ideal function. As- 
suming an appropriate adjustment (such as ability to 
change the scale or location) is also important be- 
cause it allows evaluation of sensitivity to noise fac- 
tors under a set of standard conditions. 

I will illustrate the rationale behind the SN ratio 
for a common type of robust-design problem called 
the nominal-the-best type of problem. Let r be the 
target (nominal value). Then, the quadratic loss as- 
sociated with the target value r is given by 

Q = (/ - r)2 + .2, (4.1) 

where ,u and o- denote the mean and standard de- 
viation of the response variable. Suppose that we 
know the mean and standard deviation for two dif- 
ferent processing conditions. How can we say which 
processing condition is preferable? How can we eval- 
uate their relative sensitivity to noise factors? For 
proper comparison, we must first evaluate the quad- 
ratic loss after adjusting the means of the two process 
conditions to the target value r. 

In some cases, it is relatively easy to identify a 
scaling type of adjustment factor. For example, in 
the polysilicon deposition process discussed by Phadke 
(1989) deposition time is an adjustment factor; that 
is, if the deposition time is changed by a factor r, the 
mean and standard deviation also change by the same 
factor. In this case, we can calculate what the quad- 
ratic loss would be after adjusting the mean u/ on 
target. When the mean is changed from /u to r-that 
is, r = T/gL-the standard deviation would change 
from - to (/,)(T)o. The corresponding quadratic loss, 
called the quadratic loss after the adjustment, is given 
by Qa = (/IL)2a'2 = 72(o2/L2). Because r is the 
same for the different processing conditions, we can 
compare the sensitivity to noise factors by comparing 
the corresponding values of (o-2/t2) or its reciprocal. 
This is equivalent to the SN ratio: r = 10 logo10(/2/ 
a2) [see also (3.1)]. To achieve robustness, the con- 
trol factors are chosen to minimize this SN ratio. The 
adjustment factor is then tuned to get the mean on 
target as needed. This procedure of process optimi- 
zation is generally called the two-step optimization: 
(1) Maximize SN ratio, and (2) bring the mean on 
target. See Phadke and Dehnad (1988), Phadke (1989), 
Leon et al. (1987), and Leon and Wu (in press) for 
further discussion of two-step optimization. 

When the adjustment factors cannot be identified 
a priori, experimental data can be used to discover 
a suitable adjustment factor by estimating the effects 
of control factors on 7q and ,L. The control factors 
can then be divided into three categories: (1) Factors 
that influence n (these factors are useful for im- 
proving robustness), (2) factors that influence / but 
do not influence rt (one or more of these factors can 

be used for adjusting the mean on target, (3) factors 
that do not influence , or q (these factors can be 
used to satisfy some other purposes, such as con- 
venience or cost). 

It is sometimes tempting to view the problem as 
direct minimization of the quadratic loss function 
given by Equation (4.1). When that is done, there 
is an increased risk of interaction among the con- 
trol factors as illustrated by Phadke (1989) for the 
polysilicon-deposition case study. Furthermore, the 
quadratic loss function Q is dominated by the term 
(tZ - r)2. Hence minimizing Q is not very effective 
in minimizing sensitivity to noise factors. Indeed, the 
interactions caused by the term (,/ - r)2 can lead to 
decisions that do not reduce sensitivity to noise fac- 
tors. When we compute Qa or q7, however, we isolate 
sensitivity to noise factors. Hence their optimization 
leads to reduced sensitivity to noise factors. 

In robust design, engineering problems are cate- 
gorized according to the nature of the signal factor 
and the quality characteristic. Cases in which the 
signal factor is absent are called static problems, 
whereas cases in which the quality characteristic must 
track the signal factor are called dynamic problems 
(see Sec. 7.6). The preceding principles apply for 
deriving the SN ratio in each of these cases. Cata- 
loging SN ratios for new types of engineering prob- 
lems is an important research area. Several com- 
monly encountered SN ratios in both the static and 
dynamic situations were given by Taguchi (1978) and 
Phadke (1989). 

George Box 

Suppose the effect of an adjustment factor on the 
response y is multiplicative. Its effect on log y would 
be additive, however, so one does not have to worry 
about its effect on the variance of log y when tuning 
the factor to get the mean of log y close to its target 
value. Thus, despite Madhav Phadke's discussion, it 
is clear that in this case the log-transformation de- 
couples the dispersion and location effects and so 
simplifies finding those conditions xo that simulta- 
neously locate the process on target and minimize 
dispersion about the target. In fact, it has been shown 
that Taguchi's SN ratio for this problem, which is 
proportional to log(Ey2/var y), is closely approxi- 
mated by -log var(log y). See Box (1988), Box and 
Fung (1986), Leon et al. (1987), and Nair and Pre- 
gibon (1986). 

There is no guarantee, however, that the adjust- 
ment factor would always have a multiplicative effect 
on the response y. A better alternative would, there- 
fore, seem to be to evaluate a range of transforma- 
tions that might include the log as a special case (and 
no transformation as another special case) and carry 
out the analysis in terms of that transformation, which 
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yields maximum simplification. The method was il- 
lustrated for the particular case of the family of power 
transformations yA by Box (1988), who showed how 
a simple graphical method (called a lambda plot) 
could be employed to set out the possibilities for 

simplification. 

John Nelder 

Taguchi's approach to data analysis begins by de- 
fining a summarizing quantity, an SN ratio, and then 
seeks a model for it in terms of the experimental 
factors. As has been discussed in the literature, there 
are often serious objections to the forms of his SN 
ratios. Their use can also lead to great loss of infor- 
mation (in the statistical sense) in an analysis and so 
fail to use all of the information in the data. 

There is a more general objection to this way of 
proceeding-namely, that it inverts the processes of 
model selection and model prediction, where the lat- 
ter term is used to mean the formation of summa- 
rizing quantities, and estimates of their uncertainty, 
from the parameters estimated during the model- 
selection process. A typical example of a summariz- 
ing quantity is the estimated LD50, or median lethal 
dose, from the results of a quantal bioassay. Having 
fitted a linear model on the probit scale with log dose 
as the explanatory variable and yielding parameter 
estimates bo and b1, we estimate the LD50 as -bo/ 
bl. Here it would not be possible to use Taguchi's 
approach by estimating the LD50 from each response 
unless the slope of the line was known a priori, but 
the general principle holds: First fit a model to suit- 
able responses (model selection) and then form the 
quantities of interest (model prediction) from the 
parameter estimates. An empirical reason for not 
forming the summarizing quantity first is that models 

for it are often more complicated than those for the 
basic responses. 

Another objection to the analysis of the SN ratio 
is that it preempts the definition of the summarizing 
quantity, whereas in real life the definition may well 
depend on what the analysis shows. Although ar- 
guments based on loss functions are certainly rele- 
vant here, the experimenters need to consider what 
is appropriate to the special circumstances of their 
production system and form their summarizing quan- 
tities accordingly. Although it is attractive to some 
that the use of a standard SN ratio avoids the ne- 
cessity of thinking about their experiment, avoidance 
of thought, as usual, does not pay in the long run. 

The use of data transformations has been sug- 
gested as a better alternative to Taguchi's SN ratios 
(Box 1988; Nair and Pregibon 1986). This method 
seeks a transformation of the data, f(y) in place of 
y, with the aim of fulfilling two criteria, separation 
and parsimony. Separation means that the transfor- 
mation should eliminate any unnecessary complica- 
tion in the model due to functional dependence be- 
tween variance and mean, and parsimony means that 
the transformation should provide simple additive 
models for the mean and dispersion. It is asking rather 
a lot of a transformation that it should produce si- 
multaneously separation, additivity, and an approx- 
imately normal error structure, and indeed there will 
be many cases in which it cannot, particularly when 
the data have the form of counts or ratios of counts 
(proportions). I will show in Section 7.4 that the use 
of GLM's removes many of these difficulties and in 
particular that it integrates the analysis of counts and 
proportions with that of continuous responses. With 
these models the behavior of the mean and variance 
can be modeled quite separately. Furthermore, when 
we use a GLM, we do not transform the data, so its 
original dimensions are preserved throughout. 

5. Experimental Strategy and Planning Techniques 

5.1 EXPERIMENTAL STRATEGY 

Taguchi's experimental strategy consists of (a) run- 
ning highly fractional experiments using orthogonal 
arrays and analyzing the data to identify appropriate 
control parameter settings and (b) running a confir- 
mation experiment to verify that robust performance 
is achieved at the identified parameter settings. Some 
discussants elaborate on the rationale for this ap- 
proach, and others argue for the use of a sequential 
experimental strategy. 

Madhav Phadke 

In this section, I will discuss the strategy used in 
robust design for selecting the control arrays and how 
it is related to the overall philosophy of interactions 
I discussed in Section 3. 

Although the quality characteristic and the SN ra- 
tio for the experiment should be carefully chosen 
based on engineering knowledge so as to minimize 
control-factor interactions, it is still necessary to es- 
tablish that interactions are small or absent. To do 
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this, the levels of the control factors are varied ac- 
cording to suitable orthogonal arrays. These arrays 
are chosen so that interactions are deliberately con- 
founded with the main effects. Using only main ef- 
fects, the SN ratio is predicted under conditions other 
than those in the orthogonal array and compared to 
the results from confirmation experiments. If strong 
interactions are present, predictions would not match 
confirmation experiments and we would detect the 
lack of additivity. A search is then made for a new 
SN ratio with appropriate new adjustment or a new 
quality characteristic is investigated. This process is 
continued until the additivity of SN ratio is estab- 
lished. Of course, the more experience an engineer 
has with robust design, the fewer iterations he/she 
would need. 

Raghu Kacker 

The orthogonal arrays (of strength 2) popularized 
by Taguchi satisfy a niche in between one-factor-at- 
a-time plans and experiments for scientific feedback. 
Industrial experiments have two important roles- 
geometrically balanced coverage of the experimental 
region and prediction beyond the actual tests con- 
ducted. Statistical modeling is not necessary for ex- 
periments to be useful. Sometimes the following steps 
suffice: (1) Visualize that k control factors form a 
k-dimensional experimental region. (2) Judiciously 
select m test points and conduct the experiment. 
(3) Pick the winner of the m test runs (or foretell 
winning conditions based on the results of m tests in 
light of subject matter knowledge. (4) Confirm that 
the winning conditions are better than the reference 
conditions. 

These steps are fairly close to what many engineers 
do; they use personal judgment in selecting the test 
points and make ad hoc conclusions in view of simple 
plots of the data and their subject-matter knowledge. 
For doing step (2), orthogonal arrays provide a geo- 
metrically balanced coverage of the experimental re- 
gion. This simple approach makes no assumptions 
about the complexity of the response surface, and 
only simple plots of the data are needed. It beats the 
popular one-factor-at-a-time practice and may be 
useful as an initial approach leading to more sophis- 
ticated strategies. 

A National Institute of Standards and Technology 
(NIST) computer scientist found this pick-the-winner- 
of-an-orthogonal-array experiment approach useful 
in a computer experiment. He used an OA25(56) to 
identify test settings that reduce a response (see Lyon, 
Snelick, and Kacker 1991). Subsequent experiments, 
statistical modeling, and prediction have not yet beaten 
the minimum obtained with the initial orthogonal- 

array experiment; the response surface appears very 
nonlinear and complex. 

Jeff Wu 
Taguchi attaches great importance to confirmation 

experiments in his design strategy-that is, a small 
follow-up experiment to confirm the findings from 
analysis of experimental data. Distinction should be 
made between traditional response-surface meth- 
odology, which commits more runs to regression model 
building, and this approach, which commits more 
runs directly to confirmation. The former is preferred 
if it is important and affordable to understand the 
response relation and if the relation is not too com- 
plex. The latter is preferred if it is important to quickly 
identify a setting (rather than a whole surface) with a 
better performance. This latter scenario is commonly 
encountered in solving practical quality problems. 
We should point out, however, that the analysis of 
marginal means, which is Taguchi's main strategy for 
confirmation, has serious problems. It is only justi- 
fied when the characteristics are monotonic. Other- 
wise, it can miss important (synergistic) interactions 
and lead to poor prediction of optimum settings. For 
an investigation of its deficiencies and some remedial 
measures, see Wu, Mao, and Ma (1990). Sound strat- 
egies for confirmation experiments are needed. Pos- 
sible approaches include response-surface method- 
ology (based on model fitting) and search methods 
such as sequential elimination of levels (see Wu et 
al. 1990). 

George Box 

As I stated in Section 1, Taguchi's experimental 
strategy seems intended only to pick the "optimum" 
factor combination from a one-shot experiment with 
the addition of one or more confirmatory experi- 
ments (whose value has been overrated; for example, 
see Bisgaard and Diamond [1991]). The ultimate ob- 
jective of the experimental investigation must surely 
be to better understand the engineering system. To 
do this requires, I believe, efficient statistical tools 
of design and analysis that accommodate the natu- 
rally iterative process of scientific method charac- 
terized for example by the Deming-Shewhart cycle. 

The beginning of an investigation, when the en- 
gineer may be required for example to "list all the 
important variables and their important ranges of 
variation," is the time when he/she knows least about 
the problem. In an iterative procedure, having per- 
formed an initial limited number of runs, simple anal- 
ysis aided by computer graphics can allow him/her 
to mull over the effects induced simultaneously in 
the various measurements in relation to basic engi- 
neering know-how. This in turn can suggest how the 
investigation should proceed and lead to a new ex- 
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perimental design, which, because of what has been 
learned may include quite different questions, dif- 
ferent choices of factors, and even different measure- 
ments from those considered at the first stage. 

We have a large reservoir of engineers with a vast 
background of engineering know-how. They need to 
learn statistical methods that can tap into that knowl- 
edge. Statistics used as a catalyst to engineering crea- 
tivity will, I believe, always result in the fastest and 
most economical progress. 

Raymond Myers and Geoffrey Vining 

Taguchi's analytical methodology leading to op- 
timum conditions leaves practitioners with the 
impression that the sound statistical analysis is a "one- 
shot" operation. We feel that this ignores the im- 
portant lessons from Box and Wilson (1951) and clas- 
sical response-surface methodology about the virtues 
of planning experiments sequentially. In particular, 
we are referring to the stages of variable screening, 
region movement, design augmentation, the fitting 
of a more elaborate model, and finally the explora- 
tion of the experimental region via response-surface 
methods. One phase of a total experimental plan 
dictates the succeeding one. It is our feeling that 
users are learning about methodology with no regard 
to the proper context of usage. The details of a frac- 
tional factorial may be well known by the practi- 
tioner, but he or she may not be aware of where in 
the total study it should be used. For example, if 
dispersion effects are found using a fractional fac- 
torial, what comes next? 

There are certainly a number of success stories in 
industry in which parameter design was used effec- 
tively, both with and without the use of analytical 
methods introduced by Taguchi. This should not be 
surprising. The total approach includes the use of a 
factorial structure of experimentation. As a result, 
even the use of less than the most appropriate meth- 
ods can certainly produce positive results. 

It is our opinion that there should not be a preoc- 
cupation with the singular goal of finding an estimate 
of optimum conditions. Too often, the engineer will 
have sound, pragmatic reasons why a single-point 
estimate of the optimum cannot be adopted. We feel 
that the sequential approach should be resurrected 
with vigor, in harmony with sound modeling and the 
important principles of Taguchi's parameter design. 
The area has yet to reach a stage of maturity, with 
efficient techniques having not filtered down to the 
user. Moreover, these methods will not be practical 
for the user until appropriate software is developed 
and widely distributed. 

5.2 EXPERIMENTAL PLANNING TECHNIQUES 

Jeff Wu 

I will focus here on two of Taguchi's experimental 
planning techniques, which in my opinion are either 
original or have important practical applications. A 
third technique, using idle columns for generating 
nonorthogonal arrays, was studied by Grove and Davis 
(1991). 

Mixed-Level Orthogonal Arrays With Economic 
Run Size. Interest in orthogonal arrays has tradi- 
tionally been focused on the 2"-p and 3n-p fractional 
factorial designs defined by a subgroup of defining 
relations. See, for example, the influential texts by 
Kempthorne (1952) and Box, Hunter, and Hunter 
(1978). There are at least two problems with them. 
First, there are gaps between the run sizes of these 
arrays. Second, these arrays with mixed levels can 
be very large. With this in mind, let me now ask 
why Taguchi favors the use of the following arrays: 
L18(2 ? 37), L18(6 ? 36), and L36(211 312). The main 
reason is run-size economy. For five to seven 3-level 
factors, the best among the 3n-p series has 27 runs. 
Use of L18(37) results in a 50% saving of runs. Jus- 
tifications for the other arrays are quite obvious. Partly 
stimulated by the increasing use of these arrays, Wang 
and Wu (1991) developed a general approach to the 
construction of mixed-level orthogonal arrays with 
economic runs. The article contains a good collection 
of these arrays with less than 100 runs. Several meth- 
ods have been proposed in the combinatorial-design 
literature for constructing mixed-level arrays, but the 
emphasis is not on run-size economy. For any com- 
binatorial work to make impact in industrial appli- 
cations, this and other practical constraints cannot 
be overlooked. 

How should data from such arrays be analyzed? 
Unlike the 2n-p and 3n-p designs, whose effects are 
either orthogonal or fully aliased, these arrays have 
more complex aliasing patterns (the most notorious 
being the 12-run Plackett-Burman design.) The tra- 
ditional approach is to use them for screening only. 
Hamada and Wu (1992) argued that, because in many 
practical situations few main effects and fewer in- 
teractions are important, it is possible to entertain 
and estimate the important interactions. They pro- 
posed an analysis method for doing this and dem- 
onstrated its effectiveness on several real experi- 
ments. Taguchi's view on this issue is different. Taguchi 
and Wu (1985, p. 35) stated, "no interactions are 
calculated even if they exist.. . these interactions 
are treated as errors, so it is advantageous to have 
the effects of these interactions uniformly distributed 
in all (design matrix) columns." From this and other 
statements made elsewhere, Taguchi seems to be- 
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lieve that estimated main effects are not affected by 
interactions because they are smeared or evenly spread 
across all of the design matrix columns. The results 
of Hamada and Wu (in press) show the contrary (see 
also Box 1952). 

Linear Graphs. In planning an experiment, prior 
knowledge may suggest that some interactions are 
potentially important and therefore should be esti- 
mated clear of the main effects. This will not be a 
problem if a resolution V design can be employed. 
Quite often a smaller design (resolution III or IV) 
is chosen for economic and other reasons. For these 
designs some of the interactions are aliased with the 
main effects or other interactions. To find a design 
to facilitate the estimation of the specified interac- 
tions, a traditional approach is to write down the 
strings of aliases (or the interaction table) and use 
trial and error to find a solution in which no two 
aliased effects are assigned to the specified interac- 
tions. Except for the well-trained, this process can 
be quite cumbersome. Taguchi (1959, 1987) pro- 
posed a method called linear graphs to solve this 
problem. (Incidentally the term "linear" is a mis- 
nomer. A literal translation of the original Japanese 
name should be dot-line graphs.) 

Let me use the simplest example to explain his 
idea. For the 24-1 design with I = 1234 as the de- 
fining relation, the six two-factor interactions are 
aliased in three pairs: 12 = 34, 13 = 24, 14 = 23. 
If one interaction in each pair is insignificant, the 
other can be estimated. We can therefore estimate 
{12, 13, 14} or {12, 13, 23}, which can be represented 
by the graphs in Figure 1. It is easy to show that 
these two graphs capture all of the solutions to the 
problem. The job of the experiment planner is sim- 
ple. Draw a graph to depict the specified interac- 
tions, and compare it with a provided list of graphs 
to see if a matched graph can be found. In this case, 
it is easier for nonstatisticians to use the graph-aided 
method to solve the problem than to go through the 
algebra of aliasing relations. 

As shown by Wu and Chen (1992), for larger prob- 
lems Taguchi's method is deficient. For the 16-run 
2n-P designs, one of his graphs corresponds to a res- 
olution V design for which it is not necessary to use 
graphs because all two-factor interactions are estim- 
able. (It puzzles me that he was not aware of the 

13 23 

12 14 12 
Figure 1. Linear Graphs for a Simple Example. 

notion of resolution or its implication to the estim- 
ability of interactions.) The more serious problem is 
the use of resolution III designs. In general, there is 
no guarantee that the design represented by the graph 
has any good overall properties such as maximum 
resolution or minimum aberration. These problems 
are resolved in an improved version proposed by Wu 
and Chen (1992). For larger problems, however, any 
graph-aided method including the one proposed by 
Kacker and Tsui (1990) will become unwieldy. An 
alternative would be to use algorithms such as those 
of Franklin (1985). 

Taguchi's main contribution is in the innovative 
use of graphs to capture solutions obtainable from 
the aliasing relations. For small to medium problems, 
the method of linear graphs and the modification due 
to Wu and Chen (1992) save experimenters from 
doing the tedious work of finding a feasible solution. 
Nonstatisticians are more willing to adopt the tool 
because of its simplicity and graphical appeal. Past 
experience has proved that user-friendly tools are 
more easily acceptable to the majority of our cus- 
tomers. 

Anne Shoemaker and Kwok Tsui 

Fractional factorial plans are commonly used in 
robust-design experiments, either as control or noise 
arrays or as "combined arrays" under the response- 
model approach to robust design (see Sec. 6). Max- 
imum resolution (Box and Hunter 1961) and mini- 
mum aberration (Fries and Hunter 1980) are often 
used as criteria for planning fractional factorial ex- 
periments. These criteria basically assume that in- 
teractions of the same order are equally important 
and lower order interactions are more important than 
higher order interactions. 

If physical knowledge suggests that certain inter- 
actions are likely to be important, however, we want 
a design that does not confound these interactions 
with each other. Maximum resolution and minimum 
aberration are not sufficient criteria to ensure this 
property in a design. Greenfield (1976) and Franklin 
and Bailey (1977) proposed a different criterion, which 
seeks a plan that allows the main effects and a spec- 
ified set of interactions, called a "requirement set," 
to be estimable without being confounded with each 
other. There are situations in which prior knowledge 
about interactions is available and the requirement- 
set criterion conflicts with maximum resolution/ 
minimum aberration criteria. The experimenter then 
has to make a trade-off between these two criteria 
in planning the experiment. 

Since these important design criteria generally may 
conflict with each other, new design optimization 
strategies are needed for planning industrial exper- 
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iments. One possible strategy, adopted by Wu and 
Chen (1992), is to search for designs that optimize 
resolution and aberration subject to the constraint 
that they must satisfy the requirement set. Alter- 
natively, one could prioritize the importance of in- 
teractions in the requirement set, then drop the less 
important interactions to attain maximum resolution 
and minimum aberration. 

George Box 

Because engineers have traditionally relied on one- 
factor-at-a-time experimentation, main effects will 
often have already been put to use, and it will be the 
unexpected interaction that is waiting to be discov- 
ered and sometimes to be exploited with dramatic 
results (for example, see Box 1990; Hellstrand 1989). 

Although occasionally it is possible to predict that 
certain factors are more likely than others to interact, 
predictions of this sort must be viewed with some 
skepticism. For example, it may be argued that fac- 
tors occurring at different stages of a process will not 
interact. This is not always the case, however. For 
example, the best conditions for purifying a chemical 
may depend very much on the conditions used for 
its manufacture. A rather reckless extension of this 
idea is to say that a few expected interactions can be 

picked out from a much larger number of possible 
interactions and the remainder treated as inactive. 
It seems to be logically indefensible to say that we 
need an experiment to find out which factors have 
main effect (first-order effects) and at the same time 
claim that we know which factors have interactions 
(second-order effects). Whenever I work on planning 
an experiment and I draw diagrams to illustrate each 
possible two-factor interaction, I say to the experi- 
menter, "Could something like this happen?" I al- 
most always get the answer, "Yes, I can see how it 
could." 

For me therefore, the most important rationale for 
the use of fractional designs is the separation of the 
"vital few (factors) from the trivial many" using the 
concept of design resolution. In addition, if we do 
want to isolate certain specific interactions, I fail to 
understand the supposed advantages and alleged 
simplicity claimed for Taguchi's linear graphs. The 
case of 8-run two-level designs is trivial and no help 
is needed. For 16-run designs, the graphs are com- 
plicated and even in their author's hands can produce 
designs that are demonstrably inferior (for example, 
see Box, in press) to those obtained by dropping or 
adding factors from designs of highest resolutions 
(resolution V with 5 factors, resolution IV with 8 
factors, and resolution III with 15 factors). 

6. Use of Combined Arrays and Direct Modeling of Response 

There have been efforts at integrating Taguchi's 
parameter-design principles with well-established 
statistical techniques. Several authors have advo- 
cated treating noise factors (which are fixed during 
parameter-design experiments) as design factors, us- 
ing a single design matrix, and modeling the response 
directly as a function of the control and noise factors. 
This section provides an overview of some of this 
work. See Easterling (1985) for an early reference 
to this approach. 

Jerome Sacks and William Welch 

The design and analysis strategy introduced by 
Welch, Yu, Kang, and Sacks (1990) and Yu, Kang, 
Sacks, and Welch (in press) implemented Taguchi's 
parameter-design objectives using more efficient, 
domestically developed techniques. We used response- 
surface methodology (RSM) to directly model the 
response as a function of control and noise factors. 
Our motivation was experiments conducted via com- 
puter simulation (about which we have more to say 

in Sec. 7.3), but many of these ideas carry over to 
physical experiments. 

As we see it, Taguchi's objectives can be simply 
formulated as follows. Let x and z be the vectors of 
control and noise factors, respectively, and let yi(x, 
z) denote the ith quality characteristic of interest (i 
= 1, . .. , q). Given a loss function, I[yl(x, z), . . . 
Yq(X, z)], and, say, expected loss as a criterion, the 
objective is to find the value of x that minimizes 

L(x) = l/[y(x, z), .. , yq(x, z)]f(z)dz, (6.1) 

where f(z) is the probability density of z. 
A succinct description of our implementation of 

this objective is as follows: 

1. Build a model for each yi(x, z) as a function 
of all factors, control, and noise. 

2. Replace yi(x, z) in the expected loss (6.1) by 
the fitted model 9i(x, z), and carry out the optimi- 
zation via this cheap-to-compute surrogate. 
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Modeling the response, as opposed to an SN ratio, 
has several advantages. First, the single experimental 
array for both control and noise factors will usually 
require far fewer observations than Taguchi's crossed 
arrays, even when interactions between the control 
factors are included. Second, the engineer is more 
likely to have background knowledge when modeling 
the quality characteristic of interest than when mod- 
eling an SN ratio. Related to this, the model provides 
insight into how the factors affect the quality char- 
acteristic, a quantity of engineering relevance. Third, 
we have found that the quality characteristic is often 
easier to model than an SN ratio. A more accurate 
model leads to a more reliable optimization and ul- 
timately a better engineering design; see the example 
of Welch et al. (1990). 

Anne Shoemaker and Kwok Tsui 

The response-model approach promises to be an 
effective framework for solving robust-design prob- 
lems. The basic idea was first proposed by Welch et 
al. (1990). Related approaches were discussed by 
Shoemaker et al. (1991), Freeny and Nair (in press), 
and Montgomery (1991), in addition to the other 
discussants in this section. 

The previous discussants have already mentioned 
some of the advantages of the response-model ap- 
proach over Taguchi's approach. Other advantages 
were discussed by Shoemaker et al. (1991). As shown 
there, Taguchi's product-array format dictates esti- 
mation of all two-factor control-by-noise interac- 
tions, and often higher order "generalized" control- 
by-noise interactions as well. A combined array lets 
the experimenter choose the interactions to be es- 
timated. This provides more flexibility so that the 
experimental budget can be used to fit models more 
refined than the main-effects-only models frequently 
used in the loss-model approach. Moreover, control- 
by-noise interactions provide special insights in the 
response-model approach because they are the ef- 
fects that can be exploited to reduce response vari- 
ability. In an IC-manufacturing example, Shoemaker 
et al. (1991) showed how examination of control-by- 
noise interaction plots reveals the mechanism by which 
two control factors dampen the effects of two noise 
factors. Finally, the wealth of techniques for empir- 
ical model building can be more easily applied to 
modeling the response than they can to the more 
specialized problem of modeling a variability measure. 

Although the response-model approach is prom- 
ising, the methodology for carrying it out is not yet 
mature. Since estimates of variance are based on the 
fitted response model, it is especially important that 
this model predict well. In addition, decisions on 
control-parameter settings can be very sensitive to 

how the response model is identified. Shoemaker et 
al. (1991) gave an example in which direct minimi- 
zation of variance obtained from the fitted response 
model misses an important variability effect that was 
revealed by Taguchi-style analysis. 

In this example, augmenting response-model anal- 
ysis with examination of control-by-noise interaction 
plots revealed the missing variability effect. In gen- 
eral, however, analysis of control-by-noise plots may 
not lead to control-factor levels that minimize re- 
sponse variance. In a paper under preparation, we 
will show when these plots can fail and propose gen- 
eralized control-by-noise plots and a data-analysis 
strategy that is more broadly useful. 

The response-model approach requires a parsi- 
monious model with good prediction capability. To 
attain this, it is important to use available physical 
knowledge. There are several ways that this might 
be done in the modeling process. 

Choice of Response and Factors. As noted by 
some of the discussants in Section 3, physical knowl- 
edge should be used whenever possible to choose 
responses that are "fundamental." Failure to choose 
proper responses can induce nonlinearity, making it 
very difficult to find a well-fitting parsimonious model. 
Likewise, factors should be chosen in a way that 
simplifies their relationship with the response. The 
use of sliding factor levels has been noted by previous 
discussants. Phadke (1989, p. 145) gave an example 
of this for a photolithography process. The factors 
available to the engineer are aperture and exposure 
time, but the fundamental factors are depth of field 
and total energy. Phadke used sliding levels for ex- 
posure as a function of aperture to indirectly vary 
the fundamental factors and thus obtain a simple 
model. A further technique for simplifying models 
is transformation of response and factor variables. 

Choice of Initial Model and Experiment Used to 
Estimate It. Sometimes enough physical knowledge 
may exist to suggest a specific response model, or 
a functional form for the response model. For ex- 
ample, in another IC-manufacturing application, Lin 
and Spanos (1990) had a theoretical model for 
polysilicon-deposition rate. To improve agreement 
between model-based predictions and empirical mea- 
surements, they used the functional form of the 
theoretical model but estimated the model's physical 
constants using a D-optimal experiment. This way, 
the theoretical model was "tuned" to a particular 
polysilicon-deposition machine and had very good 
prediction capability for that machine. 

Identification of Fitted Model. Physical knowl- 
edge may resolve ambiguities induced by confounded 
effects and help identify a good model. 
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Raymond Myers and Geoffrey Vining 

Several authors, including Vining and Myers (1990), 
have sought to combine Taguchi's parameter-design 
principles with conventional RMS. As the previous 
discussants have already noted, this approach incor- 
porates the useful ideas in parameter design without 

suffering from the difficulties associated with Tagu- 
chi's methodology. 

The approach postulates a single, formal model of 
the type 

9 = f(x, z), (6.2) 

where x and z represent the setting in the control 
and noise variables, respectively. It contains terms 
for both control and noise variables and all appro- 
priate interactions. The noise variables are treated 
as fixed effects even though they are random effects 
in the process. 

In addition to the advantages already pointed out 

by previous discussants, this approach allows one to 

provide separate estimates for the mean response 
and for variability rather than a single performance 
criterion; thus a variance response surface can be 
developed. Vining and Myers (1990) pointed out the 
natural link to the dual-response approach in RSM 
that many engineers find intuitively appealing. Com- 
promise conditions between process mean and varia- 
bility are easily visualized graphically. One can cap- 
ture a sense of the process-that is, where in the 
space of the control factors the process is inconsistent 
and where the mean is desirable or unacceptable. 
Methodology developed by Myers and Carter (1973) 
can be used to generate graphics. In addition, exist- 
ing software for doing graphical response-surface ex- 
ploration with these two very natural responses can 
be useful. 

We have received very favorable reaction from 
engineers and scientists to the notion of creating and 
exploring response-surface models for the response 
and variance. We will use an example to illustrate 
the ideas for variance modeling. Suppose we have 
control variables x1 and x2 and noise variables z1 and 
Z2, with the specific fitted model in (6.2) given by 

Y = bo bx b2+ b12x2 + b 12xx2 b1l 

+ b22x2 + c1z1 C2Z2 -+ 11z1x1 + 812z1x2. (6.3) 

The significance of the two control-by-noise inter- 
actions carries important diagnostic information. Both 
control factors can be used to exert control on pro- 
cess variability produced by z1. Note that z2 does not 
interact with the control variables. 

If the covariances among the noise variables are 
either known or well estimated, one can estimate the 
process variance by taking the appropriate variance 
operator in (6.3). At times, the noise variables may 

be independent. If this is the case, the variance op- 
erator on Equation (6.3) gives (assuming z1 and z2 
are scaled to +a and xl and x2 to +1) o-(y) = 

c2 + (c1 + 611x1+ 622X2)2 = C2 + (ay./az1)2. The 
choice of robust conditions implies choice of x1 and 
x2 that forces a "flat" a9/az1. Suppose that c1 = l, 
812 = 2, and 612 = -? . Movement away from the 

design center with x1 in a negative direction and x2 
in a positive direction will result in a robust product. 
Consider Figure 2. We include the mean model ob- 
tained by an expectation operation on Equation (6.3) 
and the "line of minimum ^ (y)." For a target of 
y = 50, the optimum conditions are obvious. For 
the larger-the-better case, trade-offs and conditions 
for future experiments are evident. 

In this illustration, we are, of course, assuming 
that the noise variables are independent in process 
conditions. When additional noise variables interact 
with control variables, the concept of a robust prod- 
uct resulting from 0 (or near 0) values of the slopes 
in the direction of z1, z2 . . , and so forth becomes 

apparent. In fact, the portion of the process variance 
that is influenced by the control variables becomes 
the squared length of the vector of these slopes. 
Similar interpretations surface when the z's are 
correlated. 

x2 

-1 0 1 

X1 

Figure 2. Dual Response-Surface Analysis. 
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George Box 

The problem of robustness to environmental var- 
iables can be described as follows. We have a vector 
of design variables x that determines the design con- 
figuration for the product and a vector z that deter- 
mines the environment conditions to which the prod- 
uct may be subjected within some practical region 
of variation Rz. Let y be some output characteristic 
such that 

y = f(x, z) + e, (6.4) 

where e is an experimental error and that ideally E(y) 
should be equal to some value r. Then, the environ- 
mental robustness problem is that of choosing a de- 
sign configuration x0 so that in some sense E(y) re- 
mains close to T within the region R,. 

To solve such problems, Taguchi suggested the use 
of a cross-product experimental arrangement con- 
sisting of an "inner" or design array containing n 
design configurations and an "outer" or environ- 
mental array containing m environmental conditions. 
The environmental conditions could represent vari- 
ation accidentally induced by the system, as in the 
well-known tile experiment of Taguchi and in the 
experiment described by Shoemaker et al. (1991). 
Alternatively, designated changes might be delib- 
erately induced and suitably arranged in some spe- 
cific experimental design. 

Even when the design and environmental arrays 
are highly fractionated, the cross-product designs can 
result in rather large experimental runs so that the 
total amount of work required may be excessive. An 
important problem therefore is that of reducing the 
amount of effort needed in such a study. One ap- 
proach, which was discussed in Section 2.2, is to 
select extreme conditions of the environmental noise 
variables (called compound variables in Sec. 2.2), 
and run only these. This method is always risky, 
however. When there are many environmental fac- 
tors, guessing "extreme conditions" may be difficult 
or impossible. I will discuss another alternative of 
using split-plots in Section 7.1. 

A third alternative, already noted by the previous 
discussants of this section, is to abandon the idea of 
the cross-product design and simply consider the de- 
sign variables and the environmental variables x and 
z together as factors in a single design. Questions then 
arise as to what the structure of this experimental 
design should be. In particular, what "effects" of the 
design and environmental factors (linear, quadratic, 
interaction, etc.) it is important to estimate and how 
to choose experimental designs to achieve this. 

One way to proceed (Box and Jones, in press) is 
(a) to represent f(x,z), within specific ranges of the 
x's and the z's, by some suitable model (and in the 

absence of more precise knowledge this might be a 
polynomial of degree d); (b) to formulate some 
measure of robustness such as L(x) = fRZ p(z)(y - 
r)2 dz, the integrated square deviation from an ideal 
value -, where in the absence of other knowledge 
p(z) would be assumed to be uniform, and (c) to 
then consider what coefficients need to be estimated 
in f(x, z) to find the vector x0 that minimizes L(x). 

This approach leads to a number of interesting 
conclusions. For example, suppose thatf(x, z) is rep- 
resented by a second-degree polynomial, which, in 
an obvious matrix notation, may be written f(x, z) = 
3B0 + x'/3 + x'Bx + z'y + z'Cz + Z'Dx. Then it 
can be shown under certain assumptions that to min- 
imize L(x) we do not need the individual elements 
of C but only tr C. In other words, for the environ- 
mental factors we do not need to know their two 
factor interactions one with another; nor do we need 
to know the individual quadratic effects; but only 
their sum. Following this approach, the preceding 
authors obtained a number of designs for the quad- 
ratic model and for other models. These designs were 
considerably more economical than the cross-product 
designs. 

James Lucas 

For people who approach Taguchi with some back- 
ground in RSM, the situation is especially simple. 
All of Taguchi's designs can be considered response- 
surface designs, and all response-surface tools are 
applicable. Taguchi's contributions, beyond the phil- 
osophical framework already mentioned, can be suc- 
cinctly summarized as 

1. Including environmental (noise variables) in 
your candidate list of design variables. 

2. Using more screening designs. (For estimating 
first-order models, screening designs are two-level 
fractional factorials of resolution III.) 

All the information about variability reduction and 
robustness can be extracted from the design using a 
response-surface analysis. Stationary points in the 
response surface, whether they be optima or saddle- 
points, will be conditions giving robustness. The 
propagation of error can be used to tie together 
the analysis proposed by Taguchi and traditional 
response-surface analysis (see Lucas 1991). 

Thomas Lorenzen 

In the following discussion, I will provide some 
comparisons of the different approaches to the design 
and analysis of robust-design experiments. This ma- 
terial is taken from a technical report by Lorenzen 
and Villalobos (1990) and represents joint work. A 
few new ideas are interspersed in the presentation. 
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As noted by the previous discussants, there are 
two basic approaches to designing a robust-design 
experiment, the product array and the combined ar- 

ray. The product array separately fractionates the 
control factors and the noise factors and forms the 

cross-product by running the noise array with every 
control factor combination in the control array. The 
combined array fractionates all of the factors. 

General comparisons between the two designs are 

easy to make. The combined array usually has a bet- 
ter confounding pattern than the product array. On 
the other hand, more control-factor combinations 
are required in the combined-array design. If each 
control-factor combination requires building an ex- 

pensive piece of hardware, the combined array can 
be more expensive. The analysis of the data for the 

product array is more intuitive because all noise com- 
binations are comparable. The analysis for the com- 
bined array is not intuitive and requires estimating 
the missing noise combinations. 

It is possible to compare the two approaches more 

formally in terms of detectability, the size of an effect 
that has, say, a 90% chance of significance. For the 
measured response, we want a design that has good 
detectability for control factors and "necessary" 
control-by-control interactions (for estimating the 

mean) and control-by-noise interactions (for esti- 

mating variability caused by the noise). Note that I 
said detectability, not just estimability, because the 

detectability of an eight-run experiment on six factors 
is over five (r, a worthless experiment because the 
effects have to be so large to be found. 

Robustness measures such as the mean, variance, 
SN ratio, loss = squared deviation from target, loss 
after adjustment to target, and so on, however, are 
summaries across the noise combinations. The ob- 
vious and generally overlooked question is: How good 
is a design for robustness? 

I will illustrate with a quick example, four control 
and two noise factors. The product array for esti- 
mating main effects only is a 24v 1 design on the con- 
trol factors crossed with a 22 design on the noise 
factors requiring 32 runs. The combined array for 
estimating all main effects and control-by-noise in- 
teractions is a 26-1 design, also requiring 32 runs. 
Assuming all interactions except the eight control- 
by-noise interactions are negligible and can be pooled 
for error, both designs have identical detectability 
for main effects and interactions of the measured 
response variable. 

For any robustness measure (summaries across noise 
combinations), the product array has eight obser- 
vations (the eight control-factor combinations), but 
the combined array has 16 observations (all control- 
factor combinations are run). But, for the product 
array, four noise combinations are run with each 

control combination, whereas only two, and not al- 
ways the same two, noise combinations are run for 
each control combination in the combined array. In 
some sense, each robustness measure is only half as 
good in the combined array. How then does one 
compare the product and combined array for 
robustness? 

Our solution is to formalize the "half as good" 
statement. For example, the number of data points 
used to estimate the mean of a main effect for a 
robust measure in the combined array is taken as 
four, not eight, since each observation is only half 
as good for the purpose of computing detectability. 

Using this ad hoc procedure and still assuming that 

control-by-control interactions are negligible, the 
combined array has superior detectability for main 
effects-1.8 a versus 2.5 oa. In addition, the as- 

sumptions can be checked in the combined array. 
Thus the combined array is superior for robustness. 

We have software that computes detectability for 
the measured response and ad hoc detectability for 
robustness measures in a matter of seconds. This 
eliminates the need for general statements. But, for 
the dozen or so examples we have run, the combined 

array always had superior robustness properties. 
There are three possible approaches for analyzing 

data from robust-design experiments. One is to com- 
pute and model directly the loss function or some 
other combined measure of the mean and standard 
deviation such as SN ratio or performance measure 
of independent adjustment (PerMIA) (see Leon et 
al. 1987). A second method is to separately model 
the mean and log-standard deviation and combine 
them to minimize loss. The third method is to model 
the raw data itself and predict all noise combinations 
for each control-factor combination. From this pre- 
dicted data, the loss can be directly computed and 
the minimum selected. 

Of the three methods, no guidelines currently exist 
for determining which procedure, if any, is preferred 
under general circumstances. Based on my limited 
experience, I would guess that modeling the raw data 
will turn out to be the best approach, followed by 
separately modeling the mean and log-standard de- 
viation, and modeling the loss function directly will 
be the worst procedure, even though the loss func- 
tion method is the easiest to teach and motivate. 

The justification for guess 1 (modeling the raw 
data is superior to separately modeling the mean and 
log-standard deviation) is as follows. If the interac- 
tion between a control and noise variable is as in 
Figure 3a, then that control factor will not have an 
effect on either the mean or standard deviation cal- 
culated across the noise factor. The opportunity to 
improve the process by considering the midpoint of 
the two control levels is missed. 
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Figure 3. Simple Justification for Guesses 1 and 2. 

The justification for guess 2 (modeling the mean 
and log-standard deviation is superior to modeling 
the loss function) is similar. If the effect of a control 
factor on the means is as in Figure 3b and that factor 
has no effect on the standard deviations, then that 
factor will have no apparent effect on the loss func- 
tion. By modeling only the loss function, the oppor- 
tunity to improve the process by considering the mid- 
point of the two levels is missed. 

Within General Motors, engineers can design and 
analyze robust-design experiments through the use 
of an expert system called DEXPERT-Lorenzen 
and Truss (1990)-that essentially "black boxes" all 
difficult computations. 

Raghu Kacker 

The combined-array approach suggested by the 
previous discussants is just classical regression in which 
the explanatory variables are decomposed into con- 
trol and noise factors. The constant-variance as- 
sumption that underlies this combined regression ap- 
proach is unrealistic in many cases because not all 
sources of variation (noise factors) are likely to be 
included in the explanatory variables. The number 

of significant sources of variation may be large and 
they may interact in complex ways to render the usual 
assumptions relating to the error distribution invalid. 
For a more general approach that allows for variance 
heterogeneity, see Freeny and Nair (in press). 

Another assumption that underlies the combined 
regression approach is that the engineer can provide 
a prioritized list of the important control and noise- 
factor interactions. This is unlikely to be the case in 
most situations. In my collaborations with NIST sci- 
entists and engineers, I have not been able to get 
such a prioritized list in advance of the experiment. 
Even with experimental data in hand, engineers do 
not always agree on the priority list. 

In experimentation, missing data and other disturb- 
ing outcomes often arise. The combined-regression 
approach is sensitive to missing data. Despite missing 
data, however, a product-array plan can usually pro- 
vide information for further study. For example, two 
control-factor runs can be compared regardless of 
what befalls the measurements at the other runs. 
Similarly, control-factor effects can be determined 
with only one measurement for each run of the con- 
trol array (see Liggett 1991). 

7. Miscellaneous Topics 

This section deals with a number of isolated topics- 
use of split-plot experiments, robustness to error 
transmission, computer experiments, use of GLM's 
for the joint modeling of mean and dispersion, Tag- 
uchi's and other techniques for analyzing nonstan- 
dard data, and dynamic parameter design problems. 

7.1 THE USE OF SPLIT-PLOT EXPERIMENTS 

George Box 

When robustness experiments are carried out us- 
ing cross-product designs, it is frequently most con- 
venient to conduct them in a split-plot mode. In par- 
ticular, examples described by Phadke et al. (1983), 

Quinlan (1985), and Shoemaker et al. (1991) are 
clearly of this type. As is well known, misleading 
results may be produced by failing to take account 
of split-plot structure. For example, Quinlan (1985) 
used a saturated 16-run design containing 15 factors 
and tested four sample pieces of the cable from each 
run. In an analysis by Box (1988), the estimated var- 
iances for the between-run error were 13 times the 
size of the within-run error. Failure to properly ac- 
count for these error sources may account for the 
plethora of significant effects found by Nelder and 
Lee (1991) in their reanalysis of the Quinlan data 
(see Sec. 7.4). 

The concept of designing products that were robust 
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to environmental factors and the value of split-plot 
experiments in achieving this was well understood 
almost three decades ago by Michaels (1964). He 
described these ideas in the example from detergent 
testing at Proctor and Gamble Ltd. in the United 
Kingdom. In particular, he said: 

Environmental factors, such as water hardness and washing tech- 
niques, are included in the experiment because we want to know 
if our products perform equally well vis-a-vis competition in all 
environments. In other words, we want to know if there are any 
Product x Environment interactions. Main effects of environ- 
mental factors, on the other hand, are not particularly important 
to us. These treatments are therefore applied to the Main Plots, 
and are hence not estimated as precisely as the Sub-plot treatments 
and their interactions. The test products are of course applied to 
the Sub-plots. (p. 223) 

Conducting designs in split-plot mode does not, of 
course, change the number m x n of cells in the 
design, but it does change the structure of the error 
term e in Equation (6.4) and can greatly change the 
amount of experimental effort required. Box and 
Jones (1992) discussed a cake-mix example with a 
design (inner) array with n = 9 runs and an envi- 
ronmental (outer) array with m = 5 runs. Hence the 
cross-product design will have m x n = 45 runs. As 
an illustration, Table 1 gives a list of alternative de- 
signs for this example. A fuller discussion of such 
arrangements and their usefulness and analysis in the 
context of robust design will be found in the work 
of Box and Jones (1992). In a valuable discussion of 
split-plot designs, Cox (1958) characterized whole- 
plot factors as "classification" factors. Although, as 
Michaels says, the preferred split-plot design would 
normally have the environmental variables as clas- 
sification factors (design 3), sometimes experimental 
conditions and the relative cost of the various op- 
erations may point to a different arrangement. 

In experimental solutions similar to the cake-mix 
example, a very attractive alternative, both to a full 
randomized design and to a split-plot design, is the 
strip-block experimental design (design 4). In the 
cake-mix example, a single replicate would merely 

Table 1. Comparison of Designs 

Number 
of design Number of Number of 

configurations environmental experimental 
Type prepared conditions operations 

1. Fully 
randomized n x m n x m 
design (45 mixes) (45 bakings) 2nm (90) 

2. Design 
variables = n x m 
whole plots n (9 mixes) (45 bakings) n(m + 1) (54) 

3. Environmental 
variables = 
whole plots nm (45 mixes) m (5 bakings) m(n + 1) (50) 

4. Strip block n (9 mixes) m (5 bakings) n + m (14) 

involve the preparation of nine cake mixes, each of 
which could be divided into five parts and tested only 
in five bakings; thus a number of replicates of the 
design might be run with no more effort than would 
be required for a single replicate of an alternative 
design. 

7.2 ROBUSTNESS TO ERROR 
TRANSMISSION 

George Box 

Taguchi discussed the problem of robustness to 
error transmission in which the exact mathematical 
relation y = f(x) between the quality characteristic 
y and its components x is known. For example, in 
the design of an assembly, such as an electrical cir- 
cuit, the relationship between the output voltage y 
of the circuit and the components (resistors, capac- 
itors, etc.) may be known from physics. Variation in 
component characteristics around their nominal val- 
ues is transmitted as variation in the response. There 
may be an infinite variety of configurations of x that 
can give a working assembly that can produce a de- 
sired mean value E(y). An opportunity therefore 
exists to choose a configuration that is least affected 
by variation in the components. 

Suppose the characteristics x of the components 
vary about "nominal values" e with known covari- 
ance matrix V. Thus, for example, a particular resist- 
ance xi might vary about its nominal value Si with 
known variance ro-. (Moreover, variation in one 
component would usually be independent of that of 
another so that V would be diagonal.) Now variation 
in the input characteristics x will transmit variation 
to the quality characteristic y. Let us denote by v(y) 
some measure of this transmitted variation. This could, 
for example, be the transmitted variance r2(y) itself 
or some other measure such as log c2(log y) or, 
almost equivalently, Taguchi's signal-to-noise ratio 
SN. 

Using a Wheatstone-bridge circuit for illustration, 
Taguchi and Wu (1985) posed the problem of choos- 
ing s so that v(y) is minimized. To solve it, they again 
employed an experimental design strategy using in- 
ner and outer arrays. Box and Fung (1986) pointed 
out, however, that sincef(x) is assumed known, v(y) 
is a function of 6 that can be computed by well-known 
error transmission formulas and minimized using a 
standard optimization program or equivalently by 
response-surface methods. For an early example of 
using error-transmission formulas for the study of 
variability in engineering designs, see Morrison (1957), 
who gave a fully worked out example of this ap- 
proach and who remarked: 
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Most engineering design is based to a large extent on relations 
between mean values or target values of the design parameters. 
For a statistical formulation, each equation of mean values should 
be supplemented by an equation in terms of the variance of the 
design parameters. This will require a knowledge of the compo- 
nent variances, which should be based on actual measurements 
rather on guesswork. (p. 133) 

The warning in the last sentence is particularly apt 
because procedures for choosing a robust product 
can be very unrobust from a statistical point of view 
if, as is usually the case, a particular error structure 
must be assumed to apply over wide ranges of the 

i's. In the Wheatstone-bridge experiment, for ex- 
ample, Taguchi and Wu (1985) tacitly assumed that 
cri is proportional to (i for each of the component 
characteristics and that this proportionality applies 
over a 25-to-i range of variation of ei. If we suppose 
more generally that ai = g(Si), the solution can be 
extremely sensitive to the choice of g(o). 

As a simple illustration (for example, see Fung 
1986), consider the problem of choosing a pendulum 
whose length x may be in error and that we wish to 
choose the minimal value of s of the length so that 
the percentage error in the period y of the pendulum 
is minimized. Suppose, as would be approximately 
true, that y = cx112, where c is a constant; then it is 
easy to show that (a) if o-(x) is independent of x, the 
longest pendulum possible should be used; (b) if o-(x) 
is proportional to s, it makes no difference what the 
length of the pendulum is; and (c) if a is proportional 
to sc, with a greater than 1, then we should use the 
shortest possible pendulum. Furthermore, although 
for an electrical circuit it is reasonable to assume that 
the relation y = f(x) is known, when, as is more 
usually the case, it must be estimated experimentally 
the problems are much more complicated and re- 
quire further study. 

7.3 COMPUTER EXPERIMENTS 

Jerome Sacks and William Welch 

Many parameter-design experiments are now run 
via computer models (CAD/CAM tools). This is par- 
ticularly true in the design of integrated circuits, the 
area in which we have the most firsthand experience 
and in which we shall have most to say. Finite-element 
applications in mechanical engineering are also com- 
mon, however. For instance, we were peripherally 
involved with a project to design a truck's brake 
caliper via computer simulation. There were about 
40 parameters-dimensions, angles, and so forth- 
and several quality characteristics, the most impor- 
tant of which was the caliper's deflection. 

In IC applications, the use of computer experi- 
ments to reduce the impact of noise variables has 
long been recognized. When Brayton, Hachtel, 
and Sangiovanni-Vincentelli (1981) surveyed circuit- 

optimization techniques, Taguchi's parameter design 
was still largely unknown in North America. The 
techniques suggested for robust design are quite dif- 
ferent from those of Taguchi; most notably, there is 
much emphasis in the electrical-engineering litera- 
ture on the trade-off between multiple objectives and 
constraints. 

The formulation we described in Section 6 leading 
to the minimization of the expected loss in (6.1) or 
some similar criterion is particularly suited to com- 
puter experiments. All noise factors are identified 
and easily manipulated. The computer codes are typ- 
ically deterministic, in which case there is no random- 
error term representing unmodeled factors. In a 
physical experiment, if random error of important 
size is present, then any functional dependence of 
the error variance on the control factors would have 
to be modeled in our formulation. There are other 
distinctions between data from deterministic com- 
puter models and those from physical experiments. 
For example, complex relationships can be uncov- 
ered with far fewer observations when random error 
is absent. 

Taguchi used a deterministic mathematical model 
to generate data in his Wheatstone-bridge example 
(Taguchi 1986, chap. 6). There, the mathematical 
equation is trivial, so it is not clear why one would 
not simply plug the objective function into a nu- 
merical optimizer. Admittedly, this might produce a 
local optimum, but Taguchi's solution is also subop- 
timal (Box and Fung 1986). Real computer models 
can be computationally very expensive, and direct 
numerical optimization [or the variants surveyed by 
Brayton et al. (1981)] can require too many function 
evaluations. Similarly, Taguchi's experimental plan 
with 1,296 observations is too expensive for real ap- 
plications. Thus Taguchi's approach appears (to us 
anyway) to be overcomplicated for simple determin- 
istic models and too expensive for realistic problems. 
The strategy we outline has successfully tackled prob- 
lems much more complex than the Wheatstone-bridge 
example with far fewer observations. 

To illustrate the magnitude and complexity of the 
real problems that engineers are trying to tackle via 
computer experiments, we will give a brief overview 
of an ongoing project to design an IC. There are 
more than 10 quality responses of interest, including 
two primary and two secondary time delays, four 
power supply "peaks," two output impedances, and 
two output currents. These responses depend on 20 
controllable device (transistor) sizes and 16 noise fac- 
tors representing variations in the manufacturing- 
process conditions. The noise factors have known 
normal distributions, based on empirical measure- 
ments of the manufacturing process. Eight of them 
are correlated. This computer model is moderately 

TECHNOMETRICS, MAY 1992, VOL. 34, NO. 2 

153 



VIJAYAN N. NAIR, EDITOR 

expensive to compute-100 runs of the model take 

approximately 24 hours on a workstation. 
Loosely stated, the engineering objectives were 

given in terms of designing for the worst case: Find 
the device sizes that minimize the maximum of the 
four power supply peaks, subject to constraints on 
the remaining responses (e.g., an upper bound on 
each primary delay). In the presence of the noise 
variations, an upper bound on, say, a delay time 
translates into an upper bound on the mean plus 
three standard deviations. Like the smaller-the-better 
SN ratio, this penalizes both the mean and the stan- 
dard deviation, but it relates directly to the engi- 
neering criteria. Similarly, a power-supply peak is 
the mean plus three standard deviations. These worst- 
case criteria cannot be written down as an expected 
loss (6.1), but this demonstrates the flexibility of our 

implementation. We always model and predict the 
basic quality characteristics. During optimization via 
these predictors, the engineer can specify an objec- 
tive function for the particular problem. In our ex- 

perience, multiple conflicting quality characteristics 
necessitate some customization of the objective. 
Portmanteau criteria are too inflexible. 

A major complication in this problem is that the 
various end uses for the circuit call for different val- 
ues of the time delay upper bound. By building cheap- 
to-compute approximations for all response func- 
tions, an engineer can substitute the particular delay 
time in the objective function. For reliable optimi- 
zation, high accuracy of prediction is necessary, and 

specifications for some responses were provided. 
This problem is clearly of considerable magnitude 

and complexity. There are toy problems and real 

problems: We find the latter more helpful for di- 

recting research. Because physical experiments of 
this size are infeasible and computer experiments are 

relatively new (to the statistical community anyway), 
little attention has been paid to complex problems 
in the literature. The details of our analysis of this 

example will appear elsewhere as a case study. 
As described in Section 6, our approach builds 

approximating functions relating each response to all 
input parameters-control and noise-and then op- 
timizes via these approximations rather than directly 
through the computationally expensive computer 
model. The reliability of the optimization clearly de- 
pends on the accuracies of the approximating models. 
Sometimes, when factor ranges are sufficiently nar- 
row, we have found second-order polynomial models 
to give enough accuracy. When the factors have wide 
ranges, however, leading to complex input-output 
relationships, or when data are scarce, the interpo- 
lators described by Currin, Mitchell, Morris, and 
Ylvisaker (1991), Sacks, Schiller, and Welch (1989), 
Sacks, Welch, Mitchell, and Wynn (1989), and Welch 

et al. (1992) are more flexible and data-adaptive and 
tend to be more accurate and successful for predic- 
tion and optimization. 

Computational cost in running the simulator often 
dictates comparatively small experimental designs to 
fit the approximating functions. We have found Latin 

hypercube designs (McKay, Conover, and Beckman 

1979) useful and easy to construct. Moreover, they 
can incorporate correlations between the noise fac- 
tors when they exist (Iman and Conover 1982). With 

many factors over wide ranges and optimization as 
an objective, it is too much to expect that a single- 
stage experiment will be economic or effective. The 

sequential strategy of Bernardo et al. (in press) took 
two stages in one example with 14 factors and four 

quality characteristics. The information from the first 

stage was used to zero in on a subregion for which 
accurate prediction and reliable optimization was pos- 
sible. The two Latin hypercubes required a total of 

just 125 observations. We do not see how a Taguchi- 
style experimental plan crossing two orthogonal ar- 

rays could achieve the same goals without far more 

experimental effort. 
A fuller summary of this work on quality improve- 

ment via computer experiments can be found in the 
work of Welch and Sacks (1991). 

For the strategy we outlined for parameter design 
via computer experiments, sophisticated software tools 
are essential. Computer-intensive methods like the 
stochastic-process interpolators of Sacks, Welch, 
Mitchell, and Wynn (1989) extract maximum accu- 
racy of prediction from costly data. Other computer- 
intensive function-fitting algorithms such as multi- 
variate adaptive regressive splines (Friedman 1991) 
also may have utility. We are currently developing 
the software we have written for our research pur- 
poses into a system suitable for wider dissemination. 
It will enable engineers to initially identify the im- 
portant factors, build approximating models, visu- 
alize the input-output relationships, and proceed se- 
quentially to a good engineering design. 

7.4 GENERALIZED LINEAR MODELS FOR THE 
JOINT MODELING OF MEAN AND DISPERSION 

J. A. Nelder 

I will begin with a brief introduction to GLM's. 

An Outline of GLM's. GLM's extend the class 
of classical linear models in two ways. First, they 
allow the errors to come from a class of distributions 
instead of just the normal distribution. This class 
(known to statisticians as one-parameter exponen- 
tial) includes, as well as the normal, the Poisson, 
binomial, multinomial, gamma, negative-binomial, 
and inverse Gaussian distributions. 

TECHNOMETRICS, MAY 1992, VOL. 34, NO. 2 

154 



TAGUCHI'S PARAMETER DESIGN 

Second, a GLM splits the finding of an additive 
scale for the effects of the explanatory variables from 
the specification of the error structure. The scale on 
which the effects are assumed additive is related to 
the mean of the error distribution by the link func- 
tion. Thus we write r1 = E 3jxj for the linear part of 
the model, where q is called the linear predictor, and 
connect this with the mean , by the link function 
r7 = g(Ji). We do not transform the data to produce 
additivity; rather we transform the hypothetical mean 
values. For example, the log-linear model, which is 
used for the analysis of counts, is a GLM in which 
the error distribution is Poisson and the link function 
is the log. 

Many characteristics of classical linear models gen- 
eralize immediately to GLM's. These include the 
structure of the linear predictor, the ANOVA table 
of a nested set of models, and model-checking ideas 
like residuals, leverage, influence, and so forth. Fur- 
thermore, a single algorithm, a version of iterative 
weighted least squares, fits all GLM's. See Mc- 
Cullagh and Nelder (1989) for a full treatment of 
these models. 

A very important property of all GLM's is the form 
of the variance var(y) = cV(,u). This shows that the 
variance splits into two parts-4, called the disper- 
sion parameters, which is independent of the mean, 
and V(,x), called the variance function, which de- 
scribes how the variance changes with the mean. In 
the terminology of Leon et al. (1987), k is a PerMIA. 
Box's (1988) criterion of separation can be stated for 
GLM's as finding the appropriate variance function 
for the data. Similarly, modeling the variance is gen- 
eralized to modeling the dispersion; the two are the 
same only for normal errors. Box's (1988) second 
criterion, parsimony, is interpreted as finding an ap- 
propriate link function to produce additivity of ef- 
fects, together with a parsimonious set of explanatory 
variables that accounts well for the variability in the 
response. 

GLM's for Parameter-Design Experiments. The 
aim in most parameter-design experiments is to re- 
duce the variation in the products/processes while 
holding the mean at the target value. Thus we require 
designs supporting the joint modeling of both mean 
and dispersion. To do this, we use a pair of inter- 
linked GLM's, one for the mean and the other for 
the dispersion. Each has a response variable, a var- 
iance function describing how the variance depends 
on the mean, a link function defining a scale on which 
the effects of the explanatory variables are assumed 
additive, and a set of explanatory variables contrib- 
uting to the linear predictor. 

In Table 2, the response variable for dispersion, 
d, is the deviance component [a generalization of the 

Table 2. GLM's for Joint Modeling of Mean and Dispersion 

Components Mean Dispersion 

Response variable y d 
Mean ,u 
Variance function V(L) gamma 
Link function 17 = g(A,) = h(4) 
Linear predictor 77 = I f,/x / = E yu, 

squared residual (y - /i)2 for normal errors] asso- 
ciated with the GLM for the mean. The justification 
for fixing the variance function for the dispersion as 
gamma-that is, 42-is that the deviance has a dis- 
tribution close to the gamma even when the error of 
y is not normal. For parameter-design experiments, 
the explanatory variables used in the linear predictor 
for the mean and dispersion are both given by the 
configurations of the control factors in the design 
matrix. We use separate notations (xj and Uk) to 
emphasize that the factors that are important for 
dispersion may or may not occur in the model for 
the mean. A term occurring in the mean linear pre- 
dictor only can thus be used to get the mean close 
to target, while a term in the dispersion linear pre- 
dictor, whether or not it occurs also in the mean, can 
be used to reduce dispersion. It is common to find 
that the link function h(o) for the dispersion can be 
taken as the log. 

The fitting of this model uses as an optimizing 
criterion the idea of extended quasi-likelihood first 
defined by Nelder and Pregibon (1987), further de- 
veloped by McCullagh and Nelder (1989), and ex- 
emplified by Nelder and Lee (1991). The algorithm 
is an extension of the standard GLM algorithm, in 
which the GLM for the mean is fitted, assuming that 
the fitted values for the dispersion are known, and 
that for the dispersion is fitted using the fitted values 
for the mean to form the response variable d. The 
fitting alternates between the mean and dispersion 
models until convergence is achieved. GLIM macros 
for fitting these models are available from the author. 

A Strategy for Fitting. We first seek separation, 
which is here interpreted as finding a suitable vari- 
ance function for the mean. We fit saturated models 
for both the mean and dispersion, using variance 
functions from a family (say, the Box-Cox power 
family), and search for a minimum of the extended 
quasi-likelihood. We now seek parsimony, looking 
for link functions and a parsimonious set of terms in 
the explanatory variables for both mean and disper- 
sion. We begin with a saturated model for the mean 
and analyze the dispersion. Then, using the weights 
derived from the reciprocals of the fitted dispersions, 
we model the mean. 

The next step is to check the two models for in- 
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ternal consistency (see McCullagh and Nelder 1989, 
chap. 12), going back over the previous steps if nec- 
essary. When the checks are satisfactory, we can pro- 
ceed to prediction from the models by finding opti- 
mum settings of the explanatory variables for the 
purpose in hand. 

An Example. Nelder and Lee (1991) applied this 
technique to the data set on the shrinkage of speed- 
ometer cables (see Box 1988). The design was a sat- 
urated fractional factorial with 15 factors labeled 
A-O, each at two levels, with four samples per run. 
The response variable is a ratio of continuous vari- 
ables so that the data require a variance function that 
tends to 0 with the mean. We used the family /u`(1 - 

/L)? and found 0 = 1 to be satisfactory. The effects 
of the two most important factors, E and G, on the 
mean were multiplicative, showing that a log link 
function was needed for the mean. The analysis of 
the dispersion, using a log link and gamma errors, 
gave a model with five factors, D F G H N. This 
predicted well two within-run extreme variances, one 
high and one low. 

This data set was also analyzed by Box (1988) using 
data transformations. For the mean, Box's analysis 
identified only factors E and G, where Quinlan's 
original analysis used eight factors, A C D E F G H 
K. Our analysis indicated a case for two additional 
factors L and N, giving 10 in all. For this experiment, 
there were two independent confirmatory runs (called 
Before and After) against which model predictions 
can be checked. For the run Before, the mean model 
with 10 factors was particularly successful in pre- 
dicting the mean, though less so for the run After, 
although here the predictions of the models with 8 
or 10 factors were considerably better than the model 
with only two. 

Conclusion. The model class described previ- 
ously is general enough to cover the analysis of 
parameter-design experiments in which the response 
is continuous, or is a count of proportions, and to do 
so in a unified way; it allows the description of sep- 
aration and parsimony quite independently and can 
be fitted by a small extension of a standard algorithm. 

7.5 ANALYSIS OF NONSTANDARD DATA 

Jeff Wu 

Nonstandard responses such as binary (good or 
defective), ordered categorical (window not open, 
small, medium, large), Poisson (number of defective 
chips on a wafer), or censored (typical in life testing) 
are quite common in experimental situations. Stan- 
dard textbooks on experimental design do not give 
special attention to these problems. A common ap- 
proach is to transform the data to near normality and 

then use the wealth of tools for analyzing normal 
data. Near normality cannot be achieved, for ex- 
ample, when the data are sparse and the response is 
binomial or censored. A direct approach would be 
to model the response by an appropriate likelihood 
and use standard methods for estimation. It has at 
least two problems. First, the maximum likelihood 
estimates (or estimates based on other likelihood re- 
lated methods) do not often exist when there are 
strong factorial effects. See Hamada and Tse (in press) 
and references therein for precise conditions. Sec- 
ond, there are too many models to be entertained 
because of effects aliasing. Both points were dis- 
cussed by Hamada and Wu (1991) in the context of 
censored data. 

Perhaps recognizing the limitations of the methods 
available to him, Taguchi proposed the accumulation 
analysis for analyzing ordered categorical data and 
the minute acumulating analysis for analyzing cen- 
sored data. A general conclusion based on the work 
of Nair (1986), Box and Jones (1986), and Hamada 
and Wu (1990) on the former and the work of Ha- 
mada (in press) on the latter is that they are unneces- 
sarily complicated, inefficient, or even invalid. Al- 
though the method of scorings is simple and can be 
effective for a certain type of ordered categorical 
data, it is still a challenging problem to find a sound 
method of analysis when the replicates are few per 
run, the design matrix is sparse, and the number of 
categories is only two or three. For censored data, 
more sound methods have been proposed, but they 
still experience some problems when the maximum 
likelihood estimator does not exist (see Hamada and 
Wu [1991] and references therein). Hamada and I 
are working on a Bayesian modification of our method. 

Although Taguchi's analysis methods are faulty, 
he deserves credit for bringing to our attention this 
class of problems and for encouraging the collection 
and analysis of such data in industry as evidenced by 
the many case studies he and his colleagues have 
presented. In particular, his emphasis on using highly 
fractionated experiments to increase lifetime or im- 
prove reliability is a valuable addition to the relia- 
bility literature, which tends to be more interested 
in estimating than improving reliability. Because of 
the technical difficulties associated with fractionated 
experiments, there is a great opportunity for research 
in this area. One possibility is to modify GLM for 
these and other types of nonstandard data. 

7.6 DYNAMIC PARAMETER-DESIGN 
PROBLEMS 

Shin Taguchi 
As I stated in Section 3, whenever possible dy- 

namic characteristics should be used in parameter- 
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design applications. This is a much more powerful 
approach than treating the problems as static 
problems. 

In the coating-process application I discussed in 
Section 3, we can treat the response (thickness) as a 
static problem and use the corresponding SN ratio 
to achieve robust performance. It is more powerful, 
however, to treat this as a dynamic problem. The 
response y = thickness is related to M = spray time; 
ideally, y should be proportional to M. Variability 
around this proportional relation due to noise factors 
creates problems such as voids, orange peel, poor 
appearance, and low yield. Therefore, we want to 
minimize this variability. 

Here y is the output response, and M is called a 
signal factor. A signal factor is an input to an engi- 
neering system. This is an example of a dynamic 
problem in which the ideal response should track the 
signal. The SN ratio for this problem is 

SN = 10 log10,/2/cr2, (7.1) 

where j measures the slope of the linear relationship 
forced to go through 0-that is, y = B/M-and 0T2 
is the mean squared deviation due to all other sources 
such as noise effects and nonlinearity. The optimi- 
zation problem follows a two-step process just as in 
a nominal-the-best case: 

1. Find control factors to maximize SN. 
2. Adjust 3 to the desired sensitivity level. 

The second step is called a leveling or sensitivity 
adjustment, which is essentially the same as a tuning 
activity. 

Dynamic characteristics are being used increas- 
ingly in parameter-design applications. In fact, more 
than half of the case studies presented in the latest 
Taguchi symposia in the United States and Japan 
involved dynamic characteristics. The training by the 
American Supplier Institute has been changed greatly 
to reflect this emphasis. 

Raghu Kacker 

Dynamic systems are characterized by the pres- 
ence of a signal factor. Taguchi's most well-known 
SN ratio for dynamic problems, given by (7.1), arises 
naturally in metrology, where the property of interest 
is the signal factor and the property actually mea- 
sured is the response. Indeed, except for the log 
transformation, this criterion was introduced under 
the name "sensitivity" by Mandel and Stiehler (1954). 
In this, the criterion is not new. 

Taguchi estimates (7.1) from the mean squares of 
the ANOVA table for a simple linear regression. 
This is a monotonic function of both the F ratio and 
the coefficient of determination R2. Thus these are 

all equivalent performance statistics. Of course, from 
a data-analytic point of view, one of them (or its 
transformed version) may be preferable. 

When many seemingly equivalent performance 
statistics are available, a choice must be made. The 
distributional properties of the chosen statistic is an 
important consideration for the following reason. 
When a performance statistic is to be used to com- 
pare two or more systems, two questions naturally 
arise: Is the difference between the systems signifi- 
cant and is the performance statistic sufficiently large? 
These questions can be addressed when the distri- 
bution of the performance statistic is known under 
various hypotheses. I am addressing these issues in 
a forthcoming paper. 

Jeff Wu 

It is only recently that Taguchi and his colleagues 
at the American Supplier Institute have started pro- 
moting the importance of problems related to "dy- 
namic characteristics." As far as I know, little work 
has appeared in the statistical literature on the kind 
of problems that Taguchi and his colleagues at the 
National Research Laboratory of Metrology (Tsu- 
kuba, Japan) have worked on. Since no clear defi- 
nition has been given by Taguchi, I will give our 
(Miller and Wu 1991) definition as follows. A dy- 
namic system can be described by the schematic dia- 
gram in Figure 4. 

If the input signal has only one level, it is called 
a static system. When the input signal is used to 
control the response signal, it is called a dynamic 
system. Since several levels of the input signal are 
to be entertained, one should make the system ef- 
ficient over a range of the input signal. Examples 
include calibration of a measurement system, injec- 
tion molding process, and steering mechanism of a 
car. The term "dynamic" may be misleading because 
it does not properly describe the measurement-system 
problem. A better description is through a common 
feature of the three problems; that is, the response 
is a functional relation between two quantities, and 
statistical modeling is to be done on this relationship. 
In the case of the steering mechanism, feedback con- 
trol is not incorporated in either Taguchi's or our 
formulation. 

Let me now turn my attention to the problem of 
improving a calibration system through a parameter- 

response signal 

input signal - system 

noise 

Figure 4. Schematic Diagram for a Dynamic System. 
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design experiment. In addition to its practical im- 

portance, it is interesting to note that in this case, 
Taguchi's SN ratio (7.1) is a sound choice. Formally, 
the system can be described by y = a + /3U + r, 
var(E) = o2, where y is a measurement of W and W 
is related to U, the unknown quantity of interest, 
through W = a + /3U. The slope / and the error 
variance o'2 depend on some control factors. The 

purpose of parameter design is to choose the control- 
factor settings so that the quantity of interest u0 = 

(Yo - a)/13, where yo is the measured value of W, 
can be estimated accurately. Taguchi (1987, chap. 
22) showed that, when a and / are assumed known, 
the mean squared error of u0 is minimized by max- 

imizing the SN ratio P32/02 or equivalently log(/32/c2) 
[see (7.1)]. A more sound and rigorous approach is 
to express the purpose as minimizing the length of 
the Fieller (1954) interval, which is known to be exact 
for estimating u0 in inverse regression. Miller and 
Wu (1991) showed that the length of the Fieller in- 
terval is a decreasing function in the SN ratio P2/a2, 

thereby justifying the choice. Taguchi's analysis 
strategy is to model log(/32/s2) as a function of the 
control factors, where 8/ and s2 are, respectively, the 

least squares estimate of the slope and the variance 
estimate of c2 for each control run. This modeling 
technique shares the same problem as the SN ratios 
for static problems. Although the SN ratio is a per- 
formance measure to be maximized in this case, it is 
not always easy to model it directly in terms of the 
control factors. It is better to separate performance 
measure maximization from statistical modeling. Miller 
and Wu (1991) proposed a response-function model 
consisting of yij = ia + /3iu + o,iEij, ti = XiOf + 
73ri, and log 02 = XiO, + qoi, where i denotes the 
ith control run, Xi the ith control-factor setting, {u;} 
is a collection of known quantities of U for the pur- 
pose of calibration, and var(,ij) = var(ri) = 

var(6i) = 1. It enables the investigator to study which 
factors affect / and which factors affect or2. By com- 
bining the three equations, it allows direct modeling 
of the response yij as a function of Xi. The functional 
relationship between y and u can also be studied. In 
contrast, Taguchi's performance-measure modeling 
compresses the data y,i into a single measure and 
may result in loss of information. Details including 
reanalysis of Taguchi's drive-shaft data can be found 
in the work of Miller and Wu (1991). 

8. Some Concluding Remarks 

Bovas Abraham and Jock MacKay 

It is our experience that the key to success in using 
variation-reduction experiments is the use of a sys- 
tematic approach. This means that great care must 
be given to defining the problem, assuring good 
measurement systems, identifying the noise factors 
causing the problem, learning the behavior of the 
noise factors, choosing the control factors and their 
levels, selecting the design given the production con- 
straints, analyzing and presenting the results, drawing 
and confirming the conclusions, and standardizing 
the recommendations. There are many opportunities 
for the statistician to exhibit technical skills, but a 
much more important role is to ensure that the sys- 
tematic approach is followed. This point should be 
remembered both when teaching and consulting. 

In many instances, the design and ensuing analysis 
are very simple due to understanding of the problem 
and production constraints. The availability of elab- 
orate software is not often necessary. Success de- 
pends instead on rigorously following a systematic 
approach with a team of highly knowledgeable pro- 
duction people. The goal of the statistician should 
be to bring together the process knowledge, the dis- 
ciplined approach, and the appropriate statistical tools. 

Anne Shoemaker and Kwok Tsui 

Although robust-design experimentation methods 
are now covered in some university quality-control 
and design-of-experiments courses, the primary ve- 
hicle for teaching robust-design methods to engineers 
is industrial short courses. Since different solution 
methods are appropriate for different application 
areas, it is crucial that these short courses focus on 
one homogeneous audience and present methods that 
are appropriate to their application and are easily 
integrated with their work processes. 

The training should start with the problem of ro- 
bust design and then present a step-by-step solution 
procedure, illustrated with examples from the stu- 
dent's work area. Methods should be taught only at 
the points in the procedure where they are used. 
Intuitive justification of methods is preferable to 
theory. 

Software can increase the effectiveness of training 
by allowing students in-class hands-on experience and 
giving them something to take away that mirrors the 
step-by-step solution they learned in class. At AT&T, 
we have used Robust Design Experimenter, a per- 
sonal computer software system that has an interface 
so simple it has virtually no learning curve. This sys- 
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tem also removes major bottlenecks to technology 
transfer by providing an "automatic experiment 
planner" (Tsui 1989) that can construct mixed-level 
fractional factorial experiments from a list of re- 
quired main effects and interactions, using very sim- 
ple analysis methods such as main-effect and inter- 
action plots and a "trade-off table" for evaluating 
several responses simultaneously. Additional graph- 
ical tools such as half-normal probability plots (Dan- 
iel 1976) are included in other software systems. 

When software is not available, simple graphical 
and tabular tools should be taught to help engineers 
plan robust-design experiments by themselves. In- 
teraction graphs (Kacker and Tsui 1990), improved 
linear graphs (Wu and Chen 1992), and confounding 
tables (Tsui 1988) are effective for this purpose. 

Raymond Myers and Geoffrey Vining 

Taguchi has helped draw considerable attention to 
benefits of statistical methods in industry. Many of 
his ideas in parameter design will continue to moti- 
vate activity by the user and statistical researcher. 
The influence has been more widespread than many 
think. A nice foundation is in place for mean and 
variance modeling. It is not our intention to imply 
that this is the only form of analysis of the data. 
Indeed, much work lies ahead in the development 
of analytical techniques and experimental designs. 
We must remember, however, that it will take time 
before parameter design is adopted at the level that 
professional statisticians would like. Many potential 
practitioners have not begun. 

We tend to generalize about parameter-design usage 
because of information that reflects our own expe- 
rience. We tend to forget that only a small percent 
of American companies use statistical methods at all. 
One thing is certain-we hope that a survey 10 years 
hence will reveal a profound increase in usage, with 
the usage involving efficient methodology. There is 
much more communication to be done at a lower 
level. In a recent quality symposium, George Box 
indicated that he would be happy if all engineers 
would merely design a 23 factorial experiment. Sadly, 
only a small portion have. 
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