Quantum computation: quantum process and characterization

Xiao Xue

Quantum computers look like...

AMO

Solid-state

Quantum bit

Spin

Oscillator

(4) 1 \&

Magnetic field

$$
\frac{10>}{\frac{1}{g<0}}
$$

(a)

(c)

(d)

Pure state and mixed state

QuTech

Pure state and mixed state

QuTech

Relaxation and dephasing

Figure: Nielsen \& Chuang

$$
\rho_{\Psi}=|\Psi\rangle\langle\Psi|=\left(\begin{array}{cc}
a^{2} & a b^{*} \\
a^{*} b & b^{2}
\end{array}\right)
$$

Relaxation:

$$
\rho_{\Psi^{\prime}}=\left(\begin{array}{cc}
1-e^{-\frac{t}{T_{1}}} & \left.1-a^{2}\right) \\
e^{-\frac{t}{2 T_{1}}} a b^{*} \\
e^{-\frac{t}{2 T_{1}}} a^{*} b & e^{-\frac{t}{T_{1}}} b^{2}
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Dephasing:

$$
\rho_{\Psi^{\prime}}=\left(\begin{array}{cc}
a^{2} & e^{-\left(\frac{t}{T_{2}}\right)^{(2)}} a b^{*} \\
e^{-\left(\frac{t}{T_{2}}\right)^{(2)}} a^{*} b & b^{2}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)
$$

Depolarizing process

$$
\rho_{\Psi}=|\Psi\rangle\langle\Psi|=\left(\begin{array}{cc}
a^{2} & a b^{*} \\
a^{*} b & b^{2}
\end{array}\right)
$$

Figure: Nielsen \& Chuang

QuTech

State Fidelity

$$
F=\operatorname{Tr}\left(\rho_{\text {mea }} \rho_{\text {ref }}\right)
$$

Consider $\rho_{\text {ref }}=|\alpha\rangle\langle\alpha|$ as a pure state

$$
F=\operatorname{Tr}\left(\rho_{\text {mea }} \rho_{\text {ref }}\right)=\langle\alpha| \rho_{\text {mea }}|\alpha\rangle
$$

Recap:

For a pure state ρ : $\operatorname{Tr}\left(\rho^{2}\right)=1$

For a mixed state $\rho: \quad \operatorname{Tr}\left(\rho^{2}\right)<1$

Measurement fidelity

Let's think about it a bit further...

$$
F=\operatorname{Tr}\left(\rho_{\text {mea }} \rho_{\text {ref }}\right)=\langle\alpha| \rho_{\text {mea }}|\alpha\rangle
$$

Consider $\rho_{\text {mea }}$ as known, but $\rho_{\text {ref }}=|\alpha\rangle\langle\alpha|$ is unknown... F gives "measurement fidelity".

Faulty measurement: $\rho_{\text {ref }}=p_{\alpha}|\alpha\rangle\langle\alpha|+p_{\beta}|\beta\rangle\langle\beta|$

$$
F=\operatorname{Tr}\left(\rho_{\text {mea }} \rho_{\text {ref }}\right)=p_{\alpha}\langle\alpha| \rho_{\text {mea }}|\alpha\rangle+p_{\beta}\langle\beta| \rho_{\text {mea }}|\beta\rangle
$$

Positive operator-valued measurement

For an ideal POVM, $E_{m}=\left|\psi_{m}\right\rangle\left\langle\psi_{m}\right|$, with $\left|\psi_{m}\right\rangle$ often chosen to be the eigenstates.
Outcome: $\quad P_{m}=\operatorname{Tr}\left(|\psi\rangle\langle\psi| E_{m}\right) \quad$ Single qubit: $\left\{E_{0}=|0\rangle\langle 0|, E_{1}=|1\rangle\langle 1|\right\}$

Measurement error:

$$
\left\{E_{0}^{e}=\left(1-\epsilon_{0}\right)|0\rangle\langle 0|+\epsilon_{1}|1\rangle\langle 1|, E_{1}^{e}=\epsilon_{0}|0\rangle\langle 0|+\left(1-\epsilon_{1}\right)|1\rangle\langle 1|\right\}
$$

ϵ_{0} and ϵ_{1} are the readout errors of $|0\rangle$ and $|1\rangle$ states

Measurement fidelity:

$$
\begin{aligned}
& F_{0}=\operatorname{Tr}\left(E_{0}^{e} E_{0}\right)=\operatorname{Tr}\left(E_{0}^{e}|0\rangle\langle 0|\right)=1-\epsilon_{0} \\
& F_{1}=\operatorname{Tr}\left(E_{1}^{e} E_{1}\right)=\operatorname{Tr}\left(E_{1}^{e}|1\rangle\langle 1|\right)=1-\epsilon_{1}
\end{aligned}
$$

Quantum operation/channel

Consider a state

$$
\rho=|\alpha\rangle\langle\alpha|
$$

$$
\rho=p_{\alpha}|\alpha\rangle\langle\alpha|+p_{\beta}|\beta\rangle\langle\beta|
$$

Define a quantum operation/channel

$$
\Lambda(\rho)=K|\alpha\rangle\langle\alpha| K^{\dagger} \quad \Lambda(\rho)=p_{\alpha} K|\alpha\rangle\langle\alpha| K^{\dagger}+p_{\beta} K|\beta\rangle\langle\beta| K^{\dagger}
$$

Sometimes the channel is a statistical mixture of multiple operators

$$
\Lambda(\rho)=K_{1} \rho K_{1}^{\dagger}+K_{2} \rho K_{2}^{\dagger}+\cdots
$$

$$
K_{1}^{\dagger} K_{1}+K_{2}^{\dagger} K_{2}+\cdots=I
$$

defined as Kraus operators

QuTech

Dephasing channel
If ρ completely loses its phase information:

$$
\rho=\left(\begin{array}{ll}
a & c^{*} \\
c & b
\end{array}\right)
$$

$$
\mathcal{K}_{\text {dephase }_{\text {max }}}(\rho)=\frac{\rho+Z \rho Z}{2}=a|0\rangle\langle 0|+b|1\rangle\langle 1|
$$

The Kraus operators are $I / \sqrt{2}$ and $Z / \sqrt{2}$.

Often ρ loses its phase with probability (error rate) $1-p$

$$
\mathcal{K}_{\text {dephase }}(\rho)=p \rho+\frac{1-p}{2}(\rho+Z \rho Z)=\frac{1+p}{2} \rho+\frac{1-p}{2} Z \rho Z
$$

with the Kraus operators $\sqrt{(1+p) / 2} I$ and $\sqrt{(1-p) / 2} Z$.

QuTech

Depolarizing channel
If ρ completely loses its information in all directions:

$$
\rho=\left(\begin{array}{ll}
a & c^{*} \\
c & b
\end{array}\right)
$$

$$
\mathcal{K}_{d e p_{\max }}(\rho)=\frac{\rho+X \rho X+Y \rho Y+Z \rho Z}{4}=I
$$

The Kraus operators of the maximum-depolarizing channel $\mathcal{K}_{\text {dep }_{\max }}$ are $I / 2, X / 2, Y / 2$, and $Z / 2$.

Often ρ loses its information with probability (error rate) $1-p$:

$$
\begin{aligned}
\mathcal{K}_{\text {dep }}(\rho) & =p \rho+(1-p) I / 2 \\
& =\frac{1+3 p}{4} \rho+\frac{1-p}{4}(X \rho X+Y \rho Y+Z \rho Z)
\end{aligned}
$$

Here, the Kraus operators are $\sqrt{1+3 p} I / 2, \sqrt{1-p} X / 2, \sqrt{1-p} Y / 2$, and $\sqrt{1-p} Z / 2$.

Recurring $\mathcal{K}_{\text {dep }}$ will finally fully depolarize the state:

$$
\lim _{N \rightarrow \infty} \mathcal{K}_{\text {dep }}{ }^{N}(\rho)=\mathcal{K}_{\text {dep }_{\text {max }}}(\rho)=I .
$$

Kraus operator in Pauli basis: χ-matrix

$$
\begin{array}{lll}
& P_{0}=I \\
P_{1}=\sum^{2} & P_{j}=X \\
P_{2} & a_{i j} P_{j} & P_{1}=Y \\
P_{3}=Z
\end{array}
$$

- 管, mome
Single qubit case:

$$
K_{i}=a_{i 0} I+a_{i 1} X+a_{i 2} Y+a_{i 3} Z
$$

$$
\chi_{j k}=\sum_{i} a_{i j} a_{i k}^{*}
$$

χ-matrix is a $d^{2} \times d^{2}$ dimensional complex matrix

QuTech

Examples of χ-matrices

$$
\begin{aligned}
& \mathcal{K}_{\text {dephase }}(\rho)=p \rho+\frac{1-p}{2}(\rho+Z \rho Z) \\
& =\frac{1+p}{2} \rho+\frac{1-p}{2} Z \rho Z \\
& \chi_{\text {dephasing }}=\left(\begin{array}{cccc}
I & X & Y & Z \\
\frac{1+p}{2} 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1-p}{2}
\end{array}\right) \quad \begin{array}{c}
\\
X \\
Y \\
Z
\end{array} \\
& \mathcal{K}_{\text {dep }}(\rho)=p \rho+(1-p) I \\
& =\frac{1+3 p}{4} \rho+\frac{1-p}{4}(X \rho X+Y \rho Y+Z \rho Z) \\
& \chi_{\text {dep }}=\left(\begin{array}{cccc}
\frac{1+3 p}{4} & 0 & 0 & 0 \\
0 & \frac{1-p}{4} & 0 & 0 \\
0 & 0 & \frac{1-p}{4} & 0 \\
0 & 0 & 0 & \frac{1-p}{4}
\end{array}\right)
\end{aligned}
$$

- χ-matrix is a matrix of coefficients.
- It's always symmetric.

Examples of χ-matrices

It's difficult to use χ-matrix for multiple operations

$$
\Lambda(\rho)=\sum_{j, k=1}^{d^{2}} \chi_{j k} P_{j} \rho P_{k}
$$

$$
\Lambda_{2}\left(\Lambda_{1}(\rho)\right)=\sum_{p, q=1}^{d^{2}} \chi_{p q}^{2} P_{p}\left(\sum_{j, k=1}^{d^{2}} \chi_{j k}^{1} P_{j} \rho P_{k}\right) P_{q}
$$

QuTech

Superoperators

Revision of state fidelity

Operators can be decomposed into Paulis

Same for density matrices (density operators)

$$
K_{i}=a_{i 0} I+a_{i 1} X+a_{i 2} Y+a_{i 3} Z
$$

$$
\rho=\frac{1}{2}\left(I+r_{x} X+r_{y} Y+r_{z} Z\right)
$$

Now let's imagine performing POVM:

On the x-axis: $\quad F=\operatorname{Tr}(\rho X)=r_{x}$

On the y-axis: $\quad F=\operatorname{Tr}(\rho Y)=r_{y}$

$$
\begin{aligned}
& \operatorname{Tr}(I X)=0 \\
& \operatorname{Tr}(Y X)=0 \\
& \operatorname{Tr}(Z X)=0 \\
& \operatorname{Tr}(X X)=1
\end{aligned}
$$

On the z-axis: $\quad F=\operatorname{Tr}(\rho Z)=r_{z}$

QuTech

Quantum state tomography

How to perform POVM along the x-axis?

$$
F=\operatorname{Tr}\left(\rho \rho_{r e f}\right)
$$

- $\quad \rho_{\text {ref }}$ must be a physical state (not necessarily a

$$
\begin{aligned}
X & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{2}(|0\rangle+|1\rangle)(\langle 0|+\langle 1|)-\frac{1}{2}(|0\rangle-|1\rangle)(\langle 0|-\langle 1|) \\
r_{x} & =\operatorname{Tr}(\rho X)=\operatorname{Tr}\left(\rho \rho_{0+1}\right)-\operatorname{Tr}\left(\rho \rho_{0-1}\right) \\
r_{y} & =\operatorname{Tr}(\rho Y)=\operatorname{Tr}\left(\rho \rho_{0+i 1}\right)-\operatorname{Tr}\left(\rho \rho_{0-i 1}\right) \\
r_{z} & =\operatorname{Tr}(\rho Z)=\operatorname{Tr}\left(\rho \rho_{0}\right)-\operatorname{Tr}\left(\rho \rho_{1}\right)
\end{aligned}
$$

pure state), with $\operatorname{Tr}\left(\rho_{r e f}\right)=1$.

- Pauli matrices cannot be prepared as they are not density matrices of any physical state.

Super-operator and Pauli transfer matrix

$$
\rho=\frac{1}{2}\left(I+r_{x} X+r_{y} Y+r_{z} Z\right) \stackrel{\text { def }}{=}\left(\begin{array}{c}
\operatorname{Tr}(\rho I) \\
\operatorname{Tr}(\rho X) \\
\operatorname{Tr}(\rho Y) \\
\operatorname{Tr}(\rho Z)
\end{array}\right)=\left(\begin{array}{c}
1 \\
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right)
$$

- A $d \times d$ dimensional density matrix can be represented now as a d^{2} dimensional vector.
- The first entry is always 1 : Trace preserving (TP).
- The other entries correspond to the projection onto $x / y / z$ axes in Bloch sphere.

Pauli transfer matrix (quantum channel)

$$
\Lambda_{i j}^{\mathcal{K}}=\frac{1}{d} \operatorname{Tr}\left[P_{i} \mathcal{K}\left(P_{j}\right)\right] \quad \rho=\frac{1}{2}\left(I+r_{x} X+r_{y} Y+r_{z} Z\right) \stackrel{\text { def }}{=}\left(\begin{array}{c}
1 \\
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right)
$$

PTM is expressed in the Pauli operator basis, meaning it can be directly applied to a state vector in the super-operator format

$$
\begin{array}{lc}
|\rho\rangle\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\operatorname{Tr}(\rho I) \\
\operatorname{Tr}(\rho X) \\
\operatorname{Tr}(\rho Y) \\
\operatorname{Tr}(\rho Z)
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right) & \{I / \sqrt{d}, X / \sqrt{d}, Y / \sqrt{d}, Z / \sqrt{d}\} \\
\left\langle\langle E|=\frac{1}{\sqrt{2}}(1, \operatorname{Tr}(E X), \operatorname{Tr}(E Y), \operatorname{Tr}(E Z)) \quad\right. \text { State/measurement fidelity: } \\
\operatorname{Tr}[E \rho]=\langle\langle E \mid \rho\rangle\rangle
\end{array}
$$

Examples of PTMs

$$
\begin{aligned}
\mathcal{K}_{\text {dephase }}(\rho) & =p \rho+\frac{1-p}{2}(\rho+Z \rho Z) \\
& =\frac{1+p}{2} \rho+\frac{1-p}{2} Z \rho Z
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{K}_{d e p}(\rho) & =p \rho+(1-p) I \\
& =\frac{1+3 p}{4} \rho+\frac{1-p}{4}(X \rho X+Y \rho Y+Z \rho Z)
\end{aligned}
$$

Output density operator

$$
\begin{gathered}
\Lambda_{\text {dephasing }}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \begin{array}{l}
I \\
X \\
Y \\
Z
\end{array} \quad \Lambda_{\text {dep }}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right) \\
I \\
X
\end{gathered} \quad Y \quad Z \quad \begin{array}{ll}
\text { Input density operator }
\end{array}
$$

- χ-matrix is a matrix of input-output.
- It's not always symmetric.

QuTech

$$
\begin{aligned}
\mathcal{K}_{\text {dephase }}(\rho) & =p \rho+\frac{1-p}{2}(\rho+Z \rho Z) & & \rho=\frac{1}{2}\left(I+r_{x} X+r_{y} Y+r_{z} Z\right) \\
& =\frac{1+p}{2} \rho+\frac{1-p}{2} Z \rho Z & &
\end{aligned}
$$

Output density operator
$\Lambda_{\text {dephasing }}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \begin{gathered}I \\ X \\ I \\ X\end{gathered}$
Input density operator

QuTech

Pauli transfer matrix

$\Lambda_{2}\left(\Lambda_{1}(\rho)\right)=\sum_{p, q=1}^{d^{2}} \chi_{p q}^{2} P_{p}\left(\sum_{j, k=1}^{d^{2}} \chi_{j k}^{1} P_{j} \rho P_{k}\right) P_{q}$

A complete circuit:
$\left.p_{E}=\left\langle\langle E| \mathcal{G}_{N} \ldots \mathcal{G}_{2} \mathcal{G}_{1} \mid \rho\right\rangle\right\rangle$
$\Lambda_{2}\left(\Lambda_{1}(\rho)\right) \Rightarrow G_{2} G_{1} \mid \rho \gg$
G_{i} is the PTM of Λ_{i}
where \mathcal{G}_{i} is the PTM of the i-th gate.

Average gate fidelity:

QuTech

$$
F_{g}=\frac{\operatorname{Tr}\left[\mathcal{G}^{-1} \mathcal{G}^{i d e a l}\right]+d}{d(d+1)}
$$

Example: controlled-Z gate
Red: +1
Red: +1/4
Blue: -1

Characterize a quantum process

Quantum process tomography

Measure the complete input-output correlation.

Intuition: prepare different states in experiment, and apply the operator on them, followed by measurement of the outcome states.

This can be described in either χ-matrix or PTM, but PTM is easier.

QuTech

Quantum process tomography

Entry of a PTM

$$
\mathcal{G}_{i j}=\left\langle\left\langle P_{i}\right| \mathcal{G} \mid P_{j}\right\rangle
$$

$$
\begin{aligned}
\mathcal{G}_{13} & =\frac{1}{2}\langle\langle X| \mathcal{G} \mid Z\rangle \\
& \left.=\frac{1}{2}\left\langle\left\langle\rho_{\hat{x}}-\rho_{-\hat{x}}\right| \mathcal{G} \mid \rho_{0}-\rho_{1}\right\rangle\right\rangle
\end{aligned}
$$

$$
\rho_{ \pm \hat{x}} \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)
$$

$$
\rho_{0 / 1} \longrightarrow \quad|0\rangle /|1\rangle
$$

Therefore, a PTM \mathcal{G} can be fully reconstructed by preparing and measuring the state in all the basis states $\left\{\rho_{0}, \rho_{1}, \rho_{\hat{x}}, \rho_{-\hat{x}}, \rho_{\hat{y}}, \rho_{-\hat{y}}\right\}$ before and after the process respectively.

QuTech

Quantum process tomography

Entry of a PTM

$$
\mathcal{G}_{i j}=\left\langle\left\langle P_{i}\right| \mathcal{G} \mid P_{j}\right\rangle
$$

$$
\begin{aligned}
\mathcal{G}_{13} & \left.=\frac{1}{2}\langle\langle X| \mathcal{G} \mid Z\rangle\right\rangle \\
& \left.=\frac{1}{2}\left\langle\left\langle\rho_{\hat{x}}-\rho_{-\hat{x}}\right| \mathcal{G} \mid \rho_{0}-\rho_{1}\right\rangle\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{ \pm \hat{x}} \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle) \\
& \rho_{0 / 1} \longrightarrow \quad|0\rangle /|1\rangle
\end{aligned}
$$

Limitation:
State Preparation and Measurement (SPAM) error
Solution:

- Gate set tomography
- Randomized benchmarking
- Others...

Randomized benchmarking

Depolarizing error

$$
F_{g}=\frac{\operatorname{Tr}\left[\mathcal{G}^{-1} \mathcal{G}^{\text {ideal }}\right]+d}{d(d+1)} \quad \mathcal{G}=\Lambda \mathcal{G}^{\text {ideal }} \quad \quad \text { Error: } \Lambda
$$

$$
\operatorname{Tr}\left[\mathcal{G}^{-1} \mathcal{G}^{\text {ideal }}\right]=\operatorname{Tr}\left[\Lambda^{-1} I\right]
$$

Coherent error: rotation angle, rotation axis... Incoherent error: dephasing, depolarizing, relaxation...

Assumptions:

1. The error of a gate does not depend on the previous gates (Markovian).
2. The error of different gates are the same (gate-independent).
(Imagine the error is decoherence and all gates are equally long)

Depolarizing error

"Twirling" a small error with unitary operators.

$$
\Lambda_{d e p} \approx \sum_{i} \mathcal{U}_{i}^{\dagger} \Lambda \mathcal{U}_{i}
$$

In reality, we can use Clifford group to efficiently approximate the twirling process

$$
\Lambda_{\text {dep }}(\rho)=\frac{1}{K} \sum_{k=1}^{K} \mathcal{C}_{k}^{\dagger} \Lambda \mathcal{C}_{k}|\rho\rangle \quad \quad \Lambda_{\text {dep }}(\rho)=p \rho+(1-p) I / d
$$

Fidelity of error Λ :

$$
F_{\Lambda}=F_{\Lambda_{d e p}} \quad F_{\Lambda}=\operatorname{Tr}\left[\Lambda^{-1} I\right]=p+\frac{1-p}{d}
$$

QuTech

Clifford gates
Clifford stabilizes Paulis:

$$
C_{k} P_{i} C_{k}^{\dagger}=P_{j}
$$

Single qubit Cliffords	
Paulis	I
	X
	Y
	Y, X
$2 \pi / 3$ rotations	$\mathrm{X} / 2, \mathrm{Y} / 2$
	$\mathrm{X} / 2,-\mathrm{Y} / 2$
	-X/2, Y/2
	-X/2, -Y/2
	$\mathrm{Y} / 2, \mathrm{X} / 2$
	$\mathrm{Y} / 2,-\mathrm{X} / 2$
	-Y/2, X/2
	-Y/2, -X/2
$\pi / 2$ rotations	X/2
	-X/2
	Y/2
	-Y/2
	-X/2, Y/2, X/2
	-X/2, -Y/2, X/2
Hadamard-like	$\mathrm{X}, \mathrm{Y} / 2$
	$\mathrm{X}, \quad-\mathrm{Y} / 2$
	$\mathrm{Y}, \mathrm{X} / 2$
	$\mathrm{Y}, \quad-\mathrm{X} / 2$
	$\mathrm{X} / 2, \mathrm{Y} / 2, \mathrm{X} / 2$
	-X/2, Y/2, -X/2

R. Barends et al., Nature 2014

Clifford gates

QuTech

Clifford gates

Single qubit Cliffords	
Paulis	X
	Y
	Y, X
$2 \pi / 3$ rotations	$\mathrm{X} / 2, \mathrm{Y} / 2$
	$\mathrm{X} / 2,-\mathrm{Y} / 2$
	-X/2, Y/2
	-X/2, -Y/2
	$\mathrm{Y} / 2, \mathrm{X} / 2$
	$\mathrm{Y} / 2,-\mathrm{X} / 2$
	-Y/2, X/2
	-Y/2, -X/2
	$\mathrm{X} / 2$
$\pi / 2$ rotations	-X/2
	Y/2
	-Y/2
	-X/2, Y/2, X/2
	-X/2, -Y/2, X/2
Hadamard-like	$\mathrm{X}, \mathrm{Y} / 2$
	$\mathrm{X}, \quad-\mathrm{Y} / 2$
	$\mathrm{Y}, \mathrm{X} / 2$
	$\mathrm{Y}, \quad-\mathrm{X} / 2$
	$\mathrm{X} / 2, \mathrm{Y} / 2, \mathrm{X} / 2$
	-X/2, Y/2, -X/2

QuTech

Clifford gates

Single qubit Cliffords		
Paulis	I	
	X	
	Y	
	Y,	X
$2 \pi / 3$ rotations	X/2,	Y/2
	X/2,	-Y/2
	-X/2,	Y/2
	-X/2,	-Y/2
	Y/2,	$\mathrm{X} / 2$
	Y/2,	-X/2
	-Y/2,	$\mathrm{X} / 2$
	-Y/2,	-X/2
$\pi / 2$ rotations	X/2	
	-X/2	
	Y/2	
	-Y/2	
	-X/2,	$\mathrm{Y} / 2, \mathrm{X} / 2$
	-X/2,	-Y/2, X/2
Hadamard-like	X,	
	X,	-Y/2
	Y,	X/2
		-X/2
	X/2,	Y/2, X/2
	-X/2,	$\mathrm{Y} / 2,-\mathrm{X} / 2$

QuTech

Clifford gates

Single qubit Cliffords		
Paulis	X	
	Y	
	Y,	X
$2 \pi / 3$ rotations	$\mathrm{X} / 2$,	
		-Y/2
	-X/2,	Y/2
	-X/2,	-Y/2
	Y/2,	$\mathrm{X} / 2$
	Y/2,	-X/2
	-Y/2,	$\mathrm{X} / 2$
	-Y/2,	-X/2
$\pi / 2$ rotations	X/2	
	-X/2	
	Y/2	
	-Y/2	
	-X/2,	$\mathrm{Y} / 2, \mathrm{X} / 2$
	-X/2,	-Y/2, X/2
Hadamard-like	X,	
		-Y/2
		$\mathrm{X} / 2$
	Y,	-X/2
	$\mathrm{X} / 2$,	Y/2, X/2
	-X/2,	Y/2, -X/2

QuTech

Concatenated depolarizing channel

1-step depolarizing channel:

$$
\left.\Lambda_{\text {dep }}(\rho)=\frac{1}{K} \sum_{k=1}^{K} \mathcal{C}_{k}^{\dagger} \Lambda \mathcal{C}_{k}|\rho\rangle\right\rangle
$$

Outcome state:

$$
\Lambda_{d e p}(\rho)=p \rho+(1-p) I / d
$$

m-step depolarizing channel :
$\Lambda_{d e p}^{m}(\rho)=\int_{k_{m}, \ldots, k_{2}, k_{1}} \frac{1}{K^{m}} \mathcal{C}_{k_{m}}^{\dagger} \Lambda \mathcal{C}_{k_{m}} \ldots \mathcal{C}_{k_{2}}^{\dagger} \Lambda \mathcal{C}_{k_{2}} \mathcal{C}_{k_{1}}^{\dagger} \Lambda \mathcal{C}_{k_{1}}|\rho\rangle$

Outcome state:

$$
\begin{aligned}
\Lambda_{d e p}^{m}(\rho) & \left.=\Lambda_{\operatorname{dep}_{m}} \ldots \Lambda_{\operatorname{dep}_{2}} \Lambda_{\operatorname{dep}_{1}}|\rho\rangle\right\rangle \\
& =p^{m} \rho+\frac{1-p^{m}}{d} I
\end{aligned}
$$

Sequence fidelity:

$$
\begin{aligned}
F_{\text {seq }}\left(\rho_{\psi}\right) & =\operatorname{Tr}\left[E_{\psi} \Lambda^{m}\left(\rho_{\psi}\right)\right] \\
& =\operatorname{Tr}\left[E_{\psi}\left(\rho_{\psi}-\frac{I}{d}\right)\right] p^{m}+\operatorname{Tr}\left[E_{\psi} \frac{I}{d}\right] \\
& =A p^{m}+B .
\end{aligned}
$$

Fidelity of error Λ :

$$
F_{\Lambda}=\operatorname{Tr}\left[\Lambda^{-1} I\right]=p+\frac{1-p}{d}
$$

Randomized benchmarking

$$
\Lambda_{d e p}^{m}(\rho)=\int_{k_{m}, \ldots, k_{2}, k_{1}} \frac{1}{K^{m}} \mathcal{C}_{k_{m}}^{\dagger} \Lambda \mathcal{C}_{\left.k_{m} \ldots \mathcal{C}_{k_{2}}^{\dagger} \Lambda \mathcal{C}_{k_{2}} \mathcal{C}_{k_{1}}^{\dagger} \Lambda \mathcal{C}_{k_{1}}|\rho\rangle\right\rangle \quad \begin{aligned}
m & \Lambda_{d e p}^{m}(\rho)
\end{aligned}=\Lambda_{\left.d e p_{m} \ldots \Lambda_{d e p_{2}} \Lambda_{d e p_{1}}|\rho\rangle\right\rangle}=p^{m} \rho+\frac{1-p^{m}}{d} I}
$$

Now let $\mathcal{C}_{l_{1}}=\mathcal{C}_{k_{1}}, \mathcal{C}_{l_{2}}=\mathcal{C}_{k_{2}} \mathcal{C}_{k_{1}}^{\dagger}, \ldots$, and $\mathcal{C}_{l_{m}}=\mathcal{C}_{k_{m}} \mathcal{C}_{k_{m-1}}^{\dagger}$, and let $\mathcal{C}_{l_{m+1}}=\mathcal{C}_{k_{m}}^{\dagger}=\left(\mathcal{C}_{l_{m}} \ldots \mathcal{C}_{l_{2}}\right.$ $\left.\mathcal{C}_{l_{1}}\right)^{\dagger}$, the sequence can be written as:

$$
\left.\Lambda_{d e p}^{m}(\rho)=\int_{l_{m}, \ldots, l_{2}, l_{1}} \frac{1}{K^{m}} \mathcal{C}_{l_{m+1}} \Lambda \mathcal{C}_{l_{m}} \ldots \Lambda \mathcal{C}_{l_{2}} \Lambda \mathcal{C}_{l_{1}}|\rho\rangle\right\rangle .
$$

Recall: $\mathcal{G}=\Lambda \mathcal{G}^{\text {ideal }}$
RB measures Clifford gate fidelity.

QuTech

Randomized benchmarking

$$
\Lambda_{d e p}^{m}(\rho)=\int_{l_{m}, \ldots, l_{2}, l_{1}} \frac{1}{K^{m}} \mathcal{C}_{l_{m+1}} \Lambda \mathcal{C}_{l_{m}} \ldots \Lambda \mathcal{C}_{l_{2}} \Lambda \mathcal{C}_{l_{1}}|\rho\rangle .
$$

A real Clifford gate with error

$$
\begin{aligned}
\Lambda_{d e p}^{m}(\rho) & =\Lambda_{\text {dep } \left._{m} \ldots \Lambda_{d e p_{2}} \Lambda_{d e p_{1}}|\rho\rangle\right\rangle} \\
& =p^{m} \rho+\frac{1-p^{m}}{d} I
\end{aligned}
$$

$$
F_{\Lambda}=\operatorname{Tr}\left[\Lambda^{-1} I\right]=p+\frac{1-p}{d}
$$

QuTech

Randomized benchmarking

$$
\Lambda_{d e p}^{m}(\rho)=\int_{k_{m}, \ldots, k_{2}, k_{1}} \frac{1}{K^{m}} \mathcal{C}_{k_{m}}^{\dagger} \Lambda \mathcal{C}_{\left.k_{m} \ldots \mathcal{C}_{k_{2}}^{\dagger} \Lambda \mathcal{C}_{k_{2}} \mathcal{C}_{k_{1}}^{\dagger} \Lambda \mathcal{C}_{k_{1}}|\rho\rangle\right\rangle \longrightarrow \begin{array}{l}
\Lambda_{d e p}^{m}(\rho)
\end{array}=\Lambda_{\left.\operatorname{dep}_{m} \ldots \Lambda_{d e p_{2}} \Lambda_{d e p_{1}}|\rho\rangle\right\rangle}=p^{m} \rho+\frac{1-p^{m}}{d} I}
$$

Single-qubit RB

Single exponential decay:

$$
F_{\sigma_{z}}=A p^{m}+B
$$

Two-qubit RB

Single exponential decay:

$$
F_{\sigma_{z} \otimes \sigma_{z}}=A p^{m}+B
$$

In total
11520 elements

QuTech

Simultaneous RB
Three-fold exponential decay:

$$
F_{\sigma_{z} \otimes \sigma_{z}}=\mathrm{A}_{1} p_{1}^{m}+\mathrm{A}_{2} p_{2}^{m}+\mathrm{A}_{12} p_{12}^{m}+B
$$

Simultaneous RB Three-fold exponential decay:

$$
\begin{array}{ll}
& \\
\text { With correlated errors: } & p_{12} \neq p_{1} \cdot p_{2} \quad \square \\
\text { No correlated errors: } & p_{12}=p_{1} \cdot p_{2} \otimes \sigma_{z}=\mathrm{A}_{1} p_{1}^{m}+\mathrm{A}_{2} p_{2}^{m}+\mathrm{A}_{12} p_{12}^{m}+B \\
p_{e f f}=\frac{3}{15}\left(p_{1}+p_{2}\right)+\frac{9}{15} p_{12} \\
\text { General case } & \square \quad \Lambda_{d e p}^{s i m}(\rho)=\left(p_{1} \rho^{1}+\frac{1-p_{1}}{2} I\right) \otimes\left(p_{2} \rho^{2}+\frac{1-p_{2}}{2} I\right)
\end{array}
$$

Sequence randomly sampled for each qubit

Separating the three channels

Two-qubit space
\mathbf{I}_{1} subspace $\left(\begin{array}{ccccc}1 & -\underline{0} & 0 & 0 \\ 0 & p_{1} \mathbf{I}_{1} & 0 & 0 \\ 0 & \neg & 0 & p_{2} \mathbf{I}_{2} & 0 \\ 0 & 1 & 0 & 0 & p_{12} \mathbf{I}_{12}\end{array}\right) \begin{gathered}\sigma_{0} \otimes \sigma_{0} \\ \sigma_{i} \otimes \sigma_{0} \\ \sigma_{0} \otimes \sigma_{j} \\ \sigma_{i} \otimes \sigma_{j} \\ \\ \\ 1\end{gathered}$
Isolate the $\sigma_{z} \otimes \sigma_{0}$ term (SPAM bases)

Use additional two-qubit Pauli operators to flip the initial state $\rho \quad \Lambda\left(\sigma_{i} \otimes \sigma_{j} \rho \sigma_{i} \otimes \sigma_{j}\right)$

$$
\sum_{i, j} \chi_{\sigma_{z} \otimes \sigma_{0}}\left(\sigma_{i} \otimes \sigma_{j}\right) \cdot \Lambda\left(\sigma_{i} \otimes \sigma_{j} \rho \sigma_{i} \otimes \sigma_{j}\right)
$$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & p_{1}
\end{array}\right) \quad(\rho)
$$

$p_{2} \mathbf{I}_{2}$ and $p_{12} \mathbf{I}_{12}$ become all 0

Character function: $\chi_{\sigma_{z} \otimes \sigma_{0}}\left(\sigma_{i} \otimes \sigma_{j}\right)$
TABLE I. Values for the character function $\chi_{P}(\sigma)$ for $P \in\left\{\left(\sigma_{z} \otimes I\right),\left(I \otimes \sigma_{z}\right),\left(\sigma_{z} \otimes \sigma_{z}\right)\right\}$.
X.Xue., et al. PRX 2019

QuTech

$P \backslash \sigma$	$I I$	$\sigma_{z} I$	$I \sigma_{z}$	$\sigma_{z} \sigma_{z}$	$\sigma_{x} I$	$I \sigma_{x}$	$\sigma_{x} \sigma_{x}$	$\sigma_{y} I$	$I \sigma_{y}$	$\sigma_{y} \sigma_{y}$	$\sigma_{z} \sigma_{x}$	$\sigma_{x} \sigma_{z}$	$\sigma_{z} \sigma_{y}$	$\sigma_{y} \sigma_{z}$	$\sigma_{x} \sigma_{y}$
$\sigma_{z} I$	1	1	1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	-1
$I \sigma_{z} \sigma_{x}$	1	1	1	1	1	-1	-1	1	-1	-1	-1	1	-1	1	-1
$\sigma_{z} \sigma_{z}$	1	1	1	1	-1	-1	1	-1	-1	1	-1	-1	-1	-1	1

Add Pauli operators at the beginning

Character randomized benchmarking

QuTech

Quantum computation with spin qubits in semiconductor

Xiao Xue

QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands

"Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory."
-- Asher Peres

Future quantum computer

Linke, et al, PNAS 2017

Semiconducter (quantum dot, donor...)

* Scaling, high density;
* Coherence;
* "Hot" (cryo-electronics, easy wiring).

Loss, DiVincenzo, PRA 1998

Kane, Nature 1998

1 billion qubits

Trapped ions
$100 \times 100 \mathrm{~m}^{2}$

Much smaller for surface trap

Spin qubits
$5 \times 5 \mathrm{~mm}^{2}$

QuTech

Transistor v.s. quantum dot

Transistor: 1 gate / 1 device

Loss and DiVincenzo, PRA 1998

All-electrical operation

- Tunable energy of electrons
- Tunable tunnel barriers
- Electrical contacts

QDots: $2 N+3$ gates / N devices

A good starting point for scalability
QuTechlaurand et al, Nature Nano 2016

Intel-QuTech collaboration

10 years, 50 M \$
Silicon spin qubits Transmon qubits

Architecture, Cryo-CMOS, interconnects

Leo DiCarlo
PI of SC qubit group

Lieven Vandersypen
Director of QuTech PI of spin qubit group

Jim Clark
PI Intel Quantum group

Mike Mayberry
Vice president Intel

Qubits made at Intel

L. M. K. Vandersypen, M. A. Eriksson. Physics Today, 2019

Spin qubits made in Intel Fin-FET

For comparison:

a A A A A B E

R. Pillarisetty, et al., IEDM 2019

Semiconductor heterostructure

GaAs
AlGaAs with Si dopant (p-type)
AlGaAs

GaAs

SiO2

Si

Argument: bury the electrons deeply
For Ge , the carriers are holes instead.

Semiconductor heterostructure

Argument: bury the electrons deeply
For Ge , the carriers are holes instead.

Semiconductor heterostructure

QuTech

Artificial atom

Single electron energy diagram
-> orbital energy

Multiple electron energy diagram -> orbital energy + charging energy

- Ideally, the dot is a quantum harmonic oscillator.
- In reality, there's always some deviation.
- For simplicity, we often plot it as a finite square potential well.

QuTech

Transport

"Single electron transistor"

The energy levels are controlled
$+$ via a metal gate on top

Coulomb peaks:

Single electron spin state

Apply a magnetic field
Last electron

Orbital N

QuTech

Spin-to-charge conversion

- Spin-up ---> 0 electron
- Spin-down ---> 1 electron

Two electrons in one dot

Orbital $\mathrm{N}=0$

$$
(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) / \sqrt{2}
$$

$|\uparrow \uparrow\rangle$

$|\downarrow \downarrow\rangle$

Spin-singlet, with total spin 0 . They are not distinguishable.

Spin-triplet Total spin1

Charge sensor (SET)

A QD with one electron
Spin qubit

A QD with many electrons
Degenerate states-> spin doesn't matter

Charge sensor (SET)
Monitor the current through the sensor

Initialization-readout cycle

Double quantum dot (DQD)
Fermi-Hubbard model

"Charge stability diagram"

Pauli spin blockade

"Detuning"

Open barrier

QuTech

Two-spin energy diagram

Zeeman energy difference:

- Non-uniform g-factor
- Different local B field

$|\uparrow \uparrow\rangle$

$|\uparrow \uparrow\rangle$
${ }^{|L \uparrow\rangle}$ Adiabatic transfer $(|\downarrow \uparrow\rangle+|\uparrow \nu\rangle) / \sqrt{2}$
|ヶЬ) $(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) / \sqrt{2}$
$|\downarrow \downarrow\rangle$

Single-shot readout - spin-charge conversion

Spin-selective tunneling:

Pauli spin blockade:

Recap of readout

Elzerman readout:

Fermi energy can be thermal-broadened
Must be operated at high field
Need an electron reservoir

Pauli spin blockade:

No thermal-broadening
Can be operated at low field
No need for electron reservoir

Charge stability diagram

QuTech

Common methods are not scalable

Charge stability diagram quadruple dot

Charge stability diagram hextuple dot

Controlled filling becomes challenging due to cross-capacitances and latching effects. QuTech

Cross capacitance

Qubit control

LP	B	RP
+	${ }^{\mathrm{R}}$	${ }^{-}$

Vector source generator (IQ modulation, 10-20 GHz)

Arbitrary waveform generator
(M)

Readout signal

Current-meter

Barrier control
(exchange interaction, two-qubit gate)

QuTech

Entering therotating frame

Larmor precession: electron "spins" aroud the B_{z}.

Q1: how to make the spin rotate around the x -axis?

A: Apply a field B_{x}.

A: Simply applying a B_{χ} field does not work.

QuTech

Enter the rotating frame

Step 1: ignore global phase

$$
\begin{aligned}
&|0(t)\rangle=e^{-i E_{0} t}|0(t=0)\rangle \\
&|1(t)\rangle=e^{-i E_{1} t}|1(t=0)\rangle \\
&=e^{-i E_{0} t} e^{-i\left(E_{1}-E_{0}\right) t}|1(t=0)\rangle \\
&=e^{-i E_{0} t} e^{-i g \mu_{B} B_{z} t}|1(t=0)\rangle \\
& E_{1}=g \mu_{B} B_{Z} \\
& E_{0}
\end{aligned}
$$

$$
|0(t)\rangle \stackrel{\text { def }}{=}|0(t=0)\rangle
$$

$$
|1(t)\rangle \stackrel{\text { def }}{=} e^{-i E_{z} t}|1(t=0)\rangle
$$

$$
|0(t)\rangle+|1(t)\rangle \stackrel{\text { def }}{=}|0(t=0)\rangle+e^{-i E_{z} t}|1(t=0)\rangle
$$

Q3: why is the qubit vector static in Bloch sphere?

QuTech

Enter the rotating frame

Simply applying a B_{χ} field does not work.
For the electron, B_{x} is osillating.

Q2: Why do we use microwave to rotate the spin?

Hint: It's an oscillating electro-magnetic field.

Enter the rotating frame

Step 2: Decompose oscillating field into two rotating fields.

One will rotate in same direction as spins.

QuTech

Static field in the rotating frame

Oscillating twice as fast -> ignored

Enter the rotating frame

Q3: Why is the qubit vector static in Bloch sphere?
A: Bloch sphere is plotted in the rotating frame.

Precession

Rotating frame

Nutation

Laboratory frame

Z gate and dephasing

$$
\begin{aligned}
& |0(t)\rangle=|0(t=0)\rangle \xrightarrow{\text { rotating frame }}|0\rangle \\
& |1(t)\rangle=e^{-i E_{z} t}|1(t=0)\rangle \xrightarrow{\text { rotating frame }}|1\rangle
\end{aligned}
$$

A rotating frame is determined by the energy splitting (frequency) of the qubit.
$|0(t)\rangle+|1(t)\rangle=|0(t=0)\rangle+e^{-i E_{z} t}|1(t=0)\rangle \xrightarrow{\text { rotating frame }}|0\rangle+|1\rangle$

Q4: What if we change the qubit energy intentionally?
A: Z gate.

$$
|0(t)\rangle+|1(t)\rangle=|0(t=0)\rangle+e^{-i\left(E_{z}+\Delta E\right) t}|1(t=0)\rangle \xrightarrow{\text { rotating frame }}|0\rangle+e^{-i \Delta E t}|1\rangle
$$

Q5: What if the qubit energy fluctuates under environmental noise?
A: Dephasing.

$$
|0(t)\rangle+|1(t)\rangle=|0(t=0)\rangle+e^{-i\left(E_{z}+\delta E(t)\right) t}|1(t=0)\rangle \xrightarrow{\text { rotating frame }}|0\rangle+e^{-i \delta E(t) t}|1\rangle
$$

QuTech

Single-qubit gate: ESR and EDSR

Electron spin resonance

Oscillating B field

Electric dipole spin resonance

Cobalt micromagnet enabling single-qubit gates

QuTech

Frequency selectivity and Crosstalk

QuTech

Two-qubit gate: exchange interaction

Eigenstates (uncoupled)
$|\uparrow \uparrow\rangle$
$|\downarrow \downarrow\rangle$

Eigenstates (coupled)
$|\uparrow \uparrow\rangle$
$(|\downarrow \uparrow\rangle+|\uparrow \downarrow\rangle) / \sqrt{2}$
$(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) / \sqrt{2}$
$|\downarrow \downarrow\rangle$

$$
H_{e x c}=J \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}=J\left(\mathcal{S}_{1 x} \mathcal{S}_{z x}+\mathcal{S}_{1 y} \mathcal{S}_{z y}+S_{1 z} \cdot S_{2 z}\right)
$$

Two-qubit gates

Conditional rotation:

C-Phase: $\quad U_{J}(t)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & e^{i J(\epsilon) t / 2 \hbar} & 0 & 0 \\ 0 & 0 & e^{i J(\epsilon) t / 2 \hbar} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
CZ: $Z_{1}\left(-\frac{\pi}{2}\right) Z_{2}\left(-\frac{\pi}{2}\right) U_{J}\left(\frac{\pi \hbar}{J(\epsilon)}\right)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

Pulse sequence

QuTech

Error mechanism: Nuclear spins

$$
\mathcal{H}=g \mu_{B} \vec{S} \vec{B}+\underbrace{\vec{S} A_{i} A_{i} \vec{I}_{i}}_{\text {Overhauser field } B_{N}}
$$

Full polarization $\dagger \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	$A=\sum_{i} A_{i}$	GaAs: A~ Paget, 1977

	Statistical polarization $\downarrow \neg \downarrow \downarrow \downarrow 1 / \backslash \downarrow \nearrow 1$	$\begin{array}{rc} A / \sqrt{N} & \text { GaAs dot: } N \sim 10^{6} \\ & B_{N}=A / N^{1 / 2} \sim 5 \mathrm{mT} \\ \text { Merkulov, Efros, Rosen, PRB } 2002 \\ \text { Khaetskii, Loss, Glazman, PRL } 2002 \end{array}$
QuTech		

Error mechanism: Nuclear spins

$\mathcal{H}=g \mu_{B} \vec{S} \vec{B}+\underbrace{\vec{S} \sum_{i} A_{i} \vec{I}_{i}}$

Overhauser field B_{N}

Materials impact on coherence time

GaAs

$\mathrm{T}_{2}{ }^{*} \sim 10 \mathrm{~ns}$
$\mathrm{T}_{2} \mathrm{DD}<0.2 \mathrm{~ms}$
Petta et al, Science 2005

Si

$$
\begin{aligned}
& \mathrm{T}_{2}^{*} \sim 1 \mu \mathrm{~s} \\
& \mathrm{~T}_{2}^{\mathrm{DD}}>0.5 \mathrm{~ms}
\end{aligned}
$$

Kawakami, Scarlino, et al, Nature Nano 2014
${ }^{28} \mathrm{Si}$

$$
\begin{aligned}
& \mathrm{T}_{2}{ }^{*} \sim 100 \mu \mathrm{~s} \\
& \mathrm{~T}_{2}{ }^{\mathrm{DD}} \sim 28 \mathrm{~ms}
\end{aligned}
$$

Veldhorst, et al, Nature Nano 2014

Error mechanism: Charge noise

Arash Sheikholeslam et al., Journal of Material Chemistry C 2016

Charge trap

$|0\rangle+e^{-i \delta E(x(t)) t}|1\rangle$
$\delta E(x(t))=g \mu_{B} B_{z}(x(t))$

Valleys in silicon

Orbital splitting: >1 meV
Valley splitting: $0-300 \mu \mathrm{eV}$
Zeeman splitting: 30-80 $\mu \mathrm{eV}$
$1 \mathrm{GHz}=4 \mu \mathrm{eV}$

Strained Si QW

Quantum Dot Spin Qubits

- Two dots
- Control with one gate voltage
- One electric axis
- One magnetic axis
- J. Levy (2002)
- Two dots
- Control with one gate voltage
- Two electric axes
- Z. Shi, et al., (20I2)

Alternative: Singlet-Triplet qubit

Eigenstates (coupled)
$|\uparrow \uparrow\rangle$

Cphase gate through capacitive coupling
$|\downarrow \downarrow\rangle$

$|\downarrow \downarrow\rangle$

M. Shulman et al, Science 2012

Alternative: Exchange-only qubit

D. DiVincenzo et al, Nature 2000

$$
\left|0_{L}\right\rangle=|S\rangle|\uparrow\rangle \quad\left|1_{L}\right\rangle=(2 / 3)^{1 / 2}\left|T_{+}\right\rangle|\downarrow\rangle-(1 / 3)^{1 / 2}\left|T_{0}\right\rangle|\uparrow\rangle
$$

J. Medford et al., Nature Nano 2013

QuTech
detuning ε

Alternative: donors

Kane, Nature 1998

QuTech

Alternative: donors

Flip-flop qubit

Electron spin: $\sim 1 \mathrm{~ms}$ Nucler spin: ~1s

QuTech

Quantum computation with spin qubits in semiconductor

Xiao Xue

QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands

Modular design

- Local operations in each module
- Remote couplers between modules
- Integrated electronics for control \& readout

QuTech

Modular design

- Local operations in each module
- Remote couplers between modules
- Integrated electronics for control \& readout

High-fidelity operations
L. M. K. Vandersypen et al., npj Quantum Info (2017)

QuTech

Materials impact on coherence time

GaAs

$\mathrm{T}_{2}{ }^{*} \sim 10 \mathrm{~ns}$
$\mathrm{T}_{2} \mathrm{DD}<0.2 \mathrm{~ms}$
Petta et al, Science 2005

Si

$$
\begin{aligned}
& \mathrm{T}_{2}^{*} \sim 1 \mu \mathrm{~s} \\
& \mathrm{~T}_{2}^{\mathrm{DD}}>0.5 \mathrm{~ms}
\end{aligned}
$$

Kawakami, Scarlino, et al, Nature Nano 2014
${ }^{28} \mathrm{Si}$

$$
\begin{aligned}
& \mathrm{T}_{2}{ }^{*} \sim 100 \mu \mathrm{~s} \\
& \mathrm{~T}_{2}{ }^{\mathrm{DD}} \sim 28 \mathrm{~ms}
\end{aligned}
$$

Veldhorst, et al, Nature Nano 2014

Materials impact on fidelities

GaAs

2-spin exchange: Q > 50

Martins et al, PRL 2016

Si

1-Q gate: >99\%
2-Q gate: 92.0%
Reed, et al, PRL 2016
Watson, et al, Nature 2018 X.X., et al, PRX 2019
${ }^{28} \mathrm{Si}$

1-Q gate: >99.9\%
2-Q gate: 98.0\%
Yoneda, et al, Nat Nano 2018 Huang, et al, Nature 2019

Device

purified ${ }^{28} \mathrm{Si}$

Dephasing times
$T_{2}{ }^{*}: 20 \mu \mathrm{~s}, 10 \mu \mathrm{~s}(8 \mathrm{~min} \mathrm{avg})$ Valley splitting: >140 ueV

Charge stability diagram

Detuning:
Couples strongly to charge noise

Barrier control at symmetry point:

Improvement of coherence by a factor of 5~6

Symmetry operation against charge noise

Fix the barrier pulse amplitude
Sweep the detuning

Decoupled CPhase Watson et al, Nature 2018

Symmetry point: Reed et al, PRL 2016, Martins et al, PRL 2016

QuTech

Adiabatic CZ gate

Optimize pulse shape using Gate Set Tomography

Analysis using PyGSTi (Sandia) - http://www.pigsty.info

QuTech

$\left\{\begin{array}{l}\text { Qubit frequency }(2 x) \\ 1 Q \text { gate duration }(2 x) \\ 1 Q \text { phase shifts }(1 Q)(4 x) \\ C Z \text { amplitude } \\ 1 Q \text { phase shifts }(C Z)(2 x)\end{array}\right.$

$\sim 98 \%$ CZ gate before optimization

Optimize pulse shape using GST

Analysis using PyGSTi (Sandia) - http://www.pigsty.info

QuTech

$>99.5 \% \mathrm{CZ}$ gate after optimization

Two-qubit CZ fidelity of $99.65 \% \pm 0.15 \%$

Measured CZ

See also: ${ }^{31} \mathrm{P}$ donors: Madzik Nature 2022 and silicon (J always-on): Noiri et al., Nature 2022 and silicon (CZ): Mills et al., arxiv preprint

Two-qubit gate set tomography

1685 such sequences in total
R. Blume-Kohout et al., PRX Quantum 2022

QuTech

Modular design

L. M. K. Vandersypen et al., npj Quantum Info (2017)

QuTech

Building lattices from the bottom-up

Local electrodes allow individual tunability

Towards larger 2D array

Qubit arrays

Hendrix, et al, Nature 2021

Gen 3

Si/SiGe

QuTech

3-qubit GHZ states

Single-qubit control (EDSR)

Exchange control and Bell states

(MHz)	J_{12}	$\mathrm{~J}_{23}$	$\mathrm{~J}_{34}$	$\mathrm{~J}_{45}$	$\mathrm{~J}_{56}$
$\mathrm{~J}_{12}$ on	12.1	0.023	0.018	<0.03	0.040
$\mathrm{~J}_{23}$ on	<0.05	11.1	<0.30	<0.03	0.040
$\mathrm{~J}_{34}$ on	0.050	<0.03	6.6	<0.07	0.042
J_{45} on	0.038	<0.03	0.031	9.8	0.250
J_{56} on	0.033	<0.03	<0.02	<0.03	5.3

Qubits	Fidelity (\%)	Concurence (\%)
$1-2$	89.2 ± 2.2	86.7 ± 3.2
$2-3$	90.1 ± 2.2	83.9 ± 3.8
$3-4$	88.3 ± 3.6	87.9 ± 5.0
$4-5$	95.6 ± 2.0	94.9 ± 3.2
$5-6$	94.1 ± 1.4	90.6 ± 3.6

Modular design

L. M. K. Vandersypen et al., npj Quantum Info (2017)

QuTech

Virtual gates application: Shuttling

Material: $\mathrm{Si} / \mathrm{SiGe}$

2 Electron shuttling

QuTech

Charge shuttling

3 Electron shuttling

Conveyor mode shuttling

Seidler, et al., arxiv 2021
$10 \mu \mathrm{~m}$ long $\mathrm{Si} / \mathrm{SiGe}, 35 \mathrm{~nm}$ gate pitch, 280 gates connected to 4 sets

Modular design

- Local operations in each module
- Remote couplers between modules
- Integrated electronics for control \& readout
L. M. K. Vandersypen et al., npj Quantum Info (2017)

QuTech

Connecting a double-dot to a resonator

QuTech

Charge-photon admixing

Samkharadze, Zheng, et al., Science 2018

Theory: Benito et al., PRB 96 (2017) High-Z resonator: Samkharadze et al., PRApplied 5 (2016)

Spin-charge admixing

Samkharadze, Zheng, et al., Science 2018

Theory: Benito et al., PRB 96 (2017) High-Z resonator: Samkharadze et al., PRApplied 5 (2016)

Spin-charge admixing

Samkharadze, Zheng, et al., Science 2018

Si/SiGe growth by A. Sammak and G. Scappucci
$\begin{aligned} & \text { Condition for } \\ & \text { strong coupling }\end{aligned} g_{s} \propto g_{c} \frac{\Delta B_{x}}{2 t_{c} / h-f_{r}}>\kappa, \gamma_{s}$,
Theory: Benito et al., PRB 96 (2017)
High-Z resonator: Samkharadze et al., PRApplied 5 (2016)

Vacuum Rabi splitting

QuTech

Remote spin-spin coupling

Spin-spin dispersive coupling

QuTech

Modular design

L. M. K. Vandersypen et al., npj Quantum Info (2017)

QuTech

1 billion qubits

Trapped ions
$100 \times 100 \mathrm{~m}^{2}$

Much smaller for surface trap

Spin qubits
$5 \times 5 \mathrm{~mm}^{2}$

QuTech

Superconducting qubits

Chip-to-chip GHZ state transfer (fidelity: 65.6\%)

Chip-to-chip entanglement (fidelity: 73\%)
DiCarlo group (Delft)
C. Dickel, et al, PRB 2018

Fridge-to-fridge entanglement (fidelity: 79.5\%) Wallraff group (ETH)
P. Magnard, et al, PRL 2020

A ‘supreme’ quantum computer

Google Sycamore quantum processor

Delft lab

QuTech

IQ modulation right now

Arbitrary waveform generator (AWG, Keysight)

Vector microwave source (Keysight)

QuTech

Way forward: cryo-electronics

Integrated electronics

1% accuracy in all parameters

QuTech

E.Charbon, et al., "Cryo-CMOS for Quantum Computing", IEDM 2016.

Cryo-CMOS approach

Use 3 K stage for qubit control using cryo-CMOS integrated circuits.

Horse Ridge

Horse Ridge, Oregon

News Byte
December 9, 2019

INTEL NTROOUCES HORSE RIDEE TOEMABLE COMMERCCALIVVVABLEDUANTUMCOMPUUERS

Stefano Pellerano, principal engineer at Intel Labs, holds Horse Ridge. The new cryogenic control chip will speed development of full-stack quantum computing systems, marking a milestone in the development of a commercially viable quantum computer. (Credit: Walden Kirsch/Intel Corporation)
» Click for full image
with Charbon \& Sebastiano groups at QuTech and with Pellerano et al from Intel ISSCC 2020

Cuicul

Horse Ridge micrograph

Intel 22 nm FFL Technology

- 4 Transmitters (Each with 32 Channels Multiplexed) $=128$ qubits.
- Supports 2-20 GHz Microwave Output (transmons and spin qubits)
- Power Consumption = 330 mW (digital, clock, 1GHz, 5 times lower at 200 MHz), 54 mW (analog)
- \quad SNR > 44 dB (25 MHz bandwidth)
with Charbon \& Sebastiano groups at QuTech and with Pellerano et al from Intel

Fidelity benchmark

State tomography

RT setup: Tektronix AWG 5014C
+
+

Cryo-CMOS: "Horse Ridge"

X. Xue, B. Patra, et al., Nature (2021) with Charbon \& Sebastiano et al @QuTech and Intel Quantum

"Hot" qubits

Urdampilleta, et al., Nat Nano 2019 (Grenoble) Petit, et al., Nature 2020
Yang, et al., Nature 2020
Geyer, et al., Nat Electronics 2022
(Delft)
(UNSW)
(Basel)

High-fidelity readout up to 1 K Universal two-qubit operations above 1 K Single-qubit gates above 1 K 98% single-qubit gate at 4.2 K

QuTech

Modular design

L. M. K. Vandersypen et al., npj Quantum Info (2017)

QuTech

T1 and charge noise vs temperature

M. Veldhorst group @ Delft

Coherence times vs temperature

A. Dzurak group @ UNSW

Qubits at 1.1 K

M. Veldhosrt group @ QuTech Delft

L. Petit, et al., Nature 2020

Coherence times vs temperature

Coherence

c

- $J=0.5 \mathrm{MHz}$
$\diamond J=2.5 \mathrm{MHz}$

Two-qubit fidelity

Maurand, et al., Nature Electronics 2022

Qubits at > 4K

Coherence

Single-qubit fidelity

Quantum simulation

A 2X2 array

Mukhopadhyay, Dehollain et. al. APL 2018

See also
Thalineau et al, APL 2013

Controllable Tunnel Coupling

Controllable Tunnel Coupling

Quantum simulation: Nagaoka Ferromagnetism

```
PHYSICAL REVIEW
VOLUME 147. NUMBER1
8 JULY 1966
```


Ferromagnetism in a Narrow, Almost Half-Filled s Band*

```
Yosuke Nagaoka \(\dagger\)
Department of Physics, University of California, San Diego, La Jolla, California
(Received 17 January 1966)
```

EIGENVALUES AND MAGNETISM OF ELECTRONS ON AN ARTIFICIAL MOLECULE

International Journal of Nanoscience Vol. 2, No. 3 (2003) 165-170
D. C. MATTIS

Department of Physics, University of Utah

Quantum dots
plaquette:
B. Wunsch,
M. Rudner,

LMKV,
E. Demler

Nagaoka Ferromagnetism

Experimental procedure

Dehollain, Mukhopadhyay, et. al., Nature 2020

QuTech

Protocol and main observation

Dehollain, Mukhopadhyay, et. al., Nature 2020

Adiabatic to diabatic transition, and equilibration

Dehollain, Mukhopadhyay, et. al., Nature 2020

QuTech

Test 1: Change topology

Dehollain, Mukhopadhyay, et. al., Nature 2020

$[19,15,17,19] \mu \mathrm{V}$

$[16,8,20,19] \mu \mathrm{V}$

$[18,0,21,21] \mu \mathrm{eV}$

lest 2: Introduce Aharonov-Bohm phase (B-field)

Weak B-field destroys magnetization

QuTech

Test 3: Offset local potentials

Dehollain, Mukhopadhyay, et. al., Nature 2020

QuTech
Magnetic ground state survives potential offsets exceeding hopping

