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Real-Time Editing of Procedural Terrains
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Abstract. Procedural content generation is the act of creating video
game content automatically, through algorithmic means. In online pro-
cedural generation, content is generated as the game is running on the
consumers computer. Our Noise Modeler framework, is an approach to
designing and modeling terrain for endless world creation. Noise and
other functions are composited through a flow-graph editor similar to
the ones used by procedural shader editors, and offline terrain generators.
The framework enables non-programmers to edit models for procedural
terrain while observing the effect of changes immediately in a real-time
preview.

Keywords: Online terrain generation, noise synthesis, real-time proce-
dural content generation, stochastic implicit surface modeling

1 Introduction

Realistic, detailed and interesting terrains can be very time-consuming to model
manually. Procedural terrain generation tools generate terrains algorithmically,
and may thus remove all limits of terrain size and detail (great for mobile devices
and web applications). They also make it possible to feature a unique terrain
each time an application is started (great for replayability).

Current tools for procedural terrain generation can be divided into two cat-
egories: Stand-alone terrain editors and terrain generation libraries.
Stand-alone terrain editors save the terrains as non-procedural models that
can be used by game engines. The tool itself, however, may not be included in
the game. Hence, these terrains are essentially non-procedural when viewed by
the end-user. Terrain generation libraries make it easier to write code that
will generate terrains during run-time. However, they are very hard, to use for
non-programmers, because they are aimed at game engine developers.

Since the majority of these libraries are written using single-threaded CPU
code, using them may significantly increase the loading time of a game. Current
procedural terrain editors only support offline generation of static geometry, typ-
ically a heightmap. This makes them unusable by games that require procedural
content to be generated during run time. Little middleware for terrain genera-
tion exist, so many implement custom-made terrain solutions. Noise synthesis
libraries such as libnoise may be used, but usually require a programmer to
endure a cumbersome refine- recompile-rerun loop as part of the terrain design
process. Additionally, few noise libraries support computation on the GPU [22].
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2 Background and current approaches

Some recent games and their terrain models are shown in Table 1.

Table 1: Terrain models in some recent game engines.
Static/dynamic indicates whether terrains are editable during run-time.
Engine Released Heightmaps Displacement Smooth voxel Languages
Upvoid Engine 2014 No No Yes, dynamic C#
Unity 4.3 2014 Dynamic No With plug-ins JavaScript, C#, Boo
Unreal Engine 4 2014 Static No No C++, UnrealScript
CryENGINE 3 2009 Dynamic No Prior to 3.5.3 C++
Torque Game Engine 2007 Static No No C++, TorqueScript
Source Engine 2004 Static Static No C++, Lua, Python, . . .
Panda 3D 2002 Dynamic No No C++, Python

Heightmaps , the most popular terrain representation, uses two-dimensional
grids of elevation data. Each value in the grid may be thought of as the height
above sea-level for that particular grid location. Note that overhangs and caves
are not supported, since each coordinate on the map may only have one single
height value. Also, grids are evenly spaced, making it hard to support a varying
level of detail in the model.

Vector displacement fields include the width and length directions in addition
to the existing height offset. wheareas Layered heightmaps consists of multiple
heightmaps where different materials of the terrain, such as sand, snow, gravel,
and stone, each have a separate heightmap layer. The final height is a sum of all
these layers. Terrains may also be represented by 3D meshes and edited using
polygonal modeling software (e.g. Blender, 3D Studio Max, or Autodesk Maya).
They are typically used in game scenes where terrains are not an important part
of the virtual world.

Voxel grids are three-dimensional grids of voxels. At each voxel coordinate,
there may typically be air (nothing) or ground. A terrain surface can be approx-
imated using a variant of the marching cubes algorithm [12, 7]; and does not have
the topology constraints that heightmaps and vector displacement fields have.
Caves with multiple exits, as well as floating islands, are perfectly possible. Ex-
amples of games and engines that use voxel terrains are: Minecraft, Infiniminer,
Upvoid Engine, Cube World, and Worms 4: Mayhem.

Musgrave et al.[17] provides heightmap generating tools and 3D modeling tools,
such as World Machine and Audodesk Maya that let the user combine noise and
other signals through a visual node editor. However, the heightmaps have to be
generated locally and stored as textures, and then shipped together with the
game. Hence, to the end users, the content is static and many of the desirable
properties of procedural generation are lost.

https://www.researchgate.net/publication/215506074_Generating_Complex_Procedural_Terrains_Using_the_GPU?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
https://www.researchgate.net/publication/300949995_Procedural_Fractal_Terrains?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
https://www.researchgate.net/publication/202232897_Marching_Cubes_A_High_Resolution_3D_Surface_Construction_Algorithm?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
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Procedural content generation (PCG) has been a common feature in
games for a while, but has only the last decade generated academic interest. A
useful introduction and overview of current research can be found in[21].

Terrain generation using stochastic interpolation generates terrains ex-
plicitly by evaluating a large batch of noise values at once. Mandelbrot [13] uses
a two-dimensional fractional Brownian motion (fBm), as an approximation
of terrain altitudes. Fournier et al. [4] rendered terrains using stochastic in-
terpolation, an approximation of fBm by recursively interpolating values with
a pseudo-random offset proportional to the distance between the data points
interpolated. Miller [16] describes the somewhat improved diamond-square algo-
rithm, as well proposes a new — and slightly more complex — version without
artifacts suffered byit, by sacrificing the requirement that the surface should
have to pass through the control points.

However, when using these explicit techniques, one individual point cannot
be generated without generating the rest of the model as well.

2.1 Implicit procedural techniques and noise

Implicit procedural techniques rely on a self-contained mathematical model to
express the geometry of the terrain. Hence, arbitrary data points can be queried
independently of the other points, and are thus often referred to as “point evalu-
ation” [17]. Gamito and Musgrave [6] refers to this as stochastic implicit surface
modeling.

A procedural noise function, may be used to approximate fBm. We used
an unpredictable continuous function with range approximately [−1, 1] and an
approximate frequency of 1 Hz for this work. Ideally, the noise should also be
isotropic, meaning that regardless of how you rotate the noise, it will look similar.
A formal definition of procedural noise can be found in Lagae et al. [11].

On its own, noise is not a very close approximation to fBm, but by combin-
ing the function with itself scaled to different frequencies and amplitudes, it is
possible to get an approximation satisfactory for terrain generation.

This implementation of fBm is a common choice among applications that
need simple procedurally generated terrains. Babington [1] has for example used
this implementation to generate terrains for the NTNU HPC-Lab snow sim-
ulator. Babington used the algorithm with Perlin noise as the noise function.
Nordahl [18] enhanced this implementation by providing a GUI that could be
used to adjust the inputs to the fBm function while the simulator was running.
Musgrave [17] also contains a comprehensive guide on other ways noise can be
used as a building block to create a wide range of natural structures.

Another approach to generating more natural terrains, is to start with a
rough surface, for example the one produced by fBm, and simulate natural ero-
sion processes. Hydraulic and thermal erosion are two such phenomenons. Our
framework does not yet include erosion.

The libnoise noise library is widely used. Recently, it was used by Davis [2] to
create a voxel terrain generator. The library is also used for many GUI applica-

https://www.researchgate.net/publication/220425247_Computer_Rendering_of_Stochastic_Models?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
https://www.researchgate.net/publication/300949995_Procedural_Fractal_Terrains?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
https://www.researchgate.net/publication/300949995_Procedural_Fractal_Terrains?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
https://www.researchgate.net/publication/2948853_Procedural_Landscapes_with_Overhangs?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
https://www.researchgate.net/publication/223130325_The_Fractal_Geometry_of_Nature?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
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tions for offline texture and heightmap generation. TerraNoise and Noise Mizer
are such application However, they lack 3D previews of the terrain, showing only
the heightmap texture.

Accidental Noise Library (ANL) , like libnoise allows the construction of
a noise-based function through “modules” and “sources”. In ANL, however, a
module can answer queries about points in 2, 4 and 6-dimensional space in
addition to 3-dimensional space.

The library also supports expressing functions in the scripting language Lua.
These scripts may be parsed during run-time and used to generate terrain ge-
ometry online. It runs on the CPU only and does not take advantage of the
computing power of GPUs.

GeoGen [25], is an open-source procedural heightmap generator that can be
used for real-time generation. It is thus slow and not easily parallelizable. For
example, Zábský [25] shows that generating an eroded 2048 × 2048 heightmap
required over 7 minutes. In comparison, the GPU implementation of Olsen [19]
required only 4 seconds on 7 years older hardware.

The software is licensed under GPLv2 and is therefore not usable for online
generation by closed-source projects.

Procedural shader editors are used to design procedural textures, often called
materials. While not commonly applied for generating terrains, use many of
the same algorithms, and do use GPUs. are used. Noise synthesis is a common
technique for both terrains and textures.

In fact it would be possible to design an online procedural terrain by creating
a vertex shader and applying it to a tessellated plane. Or a fragment shader might
be created that could be drawn on two flat triangles, and transferred back to
the CPU in order to provide a heightmap for the game engine.

Many shader editors feature a flow-graph based editor, similar to World Ma-
chine. They are usually engine-specific. Only a few shader editors create shaders
for multiple game engines, e.g. Allegorithmic Substance Designer Microsoft re-
cently obtained a patent for a “visual shader designer” [14].

GPU implementations include Perlin’s pixel shaders in [20], which used a
hashing technique reliying on textures. He also sacrificed the fifth order
interpolation polynomial in order to take advantage of hardware interpolation.
Green [9] get identical results to the CPU version in [20] by storing the
permutation vector in a 2D texture of height 1. McEwan et al. [15] uses a
permutation polynomial instead of Perlin’s permutation array. They also select
gradients from the surface of a cross polytope surface instead of storing
pre-computed gradients. Their implementation was twice as slow as a version
that used texture lookups, but claim that the GPU’s texture bandwidth tends
to be a scarce resource, hence there is often an excess of unused computation
power. Their implementation include both Perlin noise and simplex noise in 2,
3 and 4D.

https://www.researchgate.net/publication/200018894_Realtime_Procedural_Terrain_Generation?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
https://www.researchgate.net/publication/246429414_Implementing_improved_perlin_noise?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
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Level-of-detail (LOD) algorithms are used to render huge terrains that still
give an acceptable level of detail close to the observer.
Continuous distance-dependent level of detail, or CDLOD [23], a recent
LOD-algorithm, divides terrain geometry into a quadtree of square terrain
patches, similarly to how ROAM divides a terrain into a binary tree of
triangles. A variant of CDLOD has been used by Babington [1] to improve the
terrain rendering in the NTNU HPC-lab snow simulator.

3 Our Approach

We have developed a framework consisting of three parts:

– a serialization format for terrain generators,
– a library for modifying and evaluating the format and
– a graphical user interface for editing height-map terrain while displaying a

real-time preview.

Our approach uses a noise synthesis approach to terrain generation as
described by Ebert et al. [3]. Terrains are designed by combining noise and
other functions through functional graphs that can be serialized as JSON-files
consuming only a few kilobytes of storage. A serialized graph can later be
evaluated by a game engine through the aforementioned library. The library
will parse the JSON-file into an internal graph representation, which is
subsequently used to generate GLSL-code which will execute the terrain
function on the GPU.
Few existing tools are capable of visualizing terrains that can later be
generated online while the game is running. The only tool capable of this
known to the author, is GeoGen, mentioned earlier.
Our approach draws inspiration from existing offline procedural terrain
generators that are successfully used in game development. An interface has
been developed which bears a close resemblance to the flow-graph editor of
World Machine, one of the most successful commercial terrain editing tools
available. While World Machine generates terrains offline, our tool still retains
the ability to generate terrains online.
The tool is also novel because it can help model non-terrain features as well,
such as vegetation density, air humidity, and transitions between biomes.

3.1 Concepts

We use Implicit procedural surface modeling for representing the terrain.
A terrain generator is simply a function definition for a function that can
answer queries about a terrain.
Such a function may be described as a directed acyclic graph of other functions.
Each node in the graph has a specific type, which represents a particular
mathematical function or algorithm, specifically how its inputs are transformed
to produce its outputs. Gamito [5] refers to this as a hypertexture hierarchy.

https://www.researchgate.net/publication/38183303_Techniques_for_Stochastic_Implicit_Surface_Modelling_and_Rendering?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
https://www.researchgate.net/publication/27290299_Texturing_and_Modeling_a_Procedural_Approach?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
https://www.researchgate.net/publication/220494186_Continuous_Distance-Dependent_Level_of_Detail_for_Rendering_Heightmaps?el=1_x_8&enrichId=rgreq-867b926c6dc862d16e2d13a73f35948a-XXX&enrichSource=Y292ZXJQYWdlOzMwMDI1MzQwODtBUzozODA5NjcyOTk2MzMxNTJAMTQ2Nzg0MTA5MDc5NQ==
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The focus of the GUI editor is to develop terrains that can be used with
existing game engines with as few modifications or plug-ins to the game engine
as possible. As most game engines support heightmap based terrains, the
design of the GUI is centered around creating a height function f(x, y). Such a
function can easily be used to evaluate a patch of a heightmap terrain at an
arbitrary resolution and scale making the terrain as portable as possible. This
is also why real-time previews are only available for heightmap terrains. The
editor is still perfectly capable of creating models for voxel terrains and vector
field terrains as well, it is just not possible to preview them.

3.2 Comparison to libnoise and ANL concepts

While they may seem similar at first glance, the concepts described here are
quite different from most existing graph-based noise-generating tools, such as
ANL, libnoise, Lithosphere, and World Machine.
While libnoise and ANL also represent a generation function as a graph of
modules, the assumptions these tools make about the resulting function is
quite different. While edges in an ANL or libnoise graph correspond to function
calls, edges in our approach correspond to outputs being assigned to inputs. In
our approach, the nodes, or modules, themselves are the function calls, while
modules in ANL represent callable functions.
While ANL and libnoise modules have hard-coded function signatures, our
approach lets the signature of a module be decided dynamically at runtime.
Depending on its module type, a module may have any number of inputs.
Modules may even have multiple outputs, since the connections between inputs
and outputs refer to the outputs individually, and not to the entire module.
Being able to choose a function signature freely has several benefits. One such
example is the generation of vector displacement terrains, which needs three
separate floating point values for each lattice point. With our approach, a
module could simply return a three-dimensional vector, while with libnoise or
ANL, it is necessary to make three separate queries to three different modules.
Consequently, this may cause expensive recalculation if the three modules have
source modules in common. The issue may be solved by using special cache
modules, which temporarily store the result of the most recent computation,
but these modules must be inserted manually.

3.3 Framework requirements

How fast does our implementation need to be in order be considered fast
enough? Swink [24] argues that < 50 ms response feels instantaneous, a 100 ms
delay is noticeable, but ignorable, whereas > 200 ms response feels sluggish.
Thus, ideally, the delay would be below 50 ms, but a delay of 100-200 ms is
also acceptable.
The efficiency of the terrain generation sets a limit for how detailed and how
large terrains it is possible to render within this time frame. The following
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gives an estimate of how many points that must be generated in order to
render a terrain.

Assuming the terrain is rendered using clipmapped LOD, the number of
needed vertices can be estimated by the following equations:

v = lw2 − (l − 1)(
w − 1

4
+ 1)2 = lw2 − 1

16
(l − 1)(w + 3)2 (1)

where l is the number of LOD-levels, w is the width of one LOD-level in
number of vertices, and v is the number of vertices required. (l − 1)(w−1

4 + 1)2

is subtracted to avoid counting some vertices twice, as (w−1
4 + 1)2 is the

number of vertices that overlap between two adjacent LOD-levels. We can also
correct for frustum culling using the following formula:

vvisible ≈
α

2π
v (2)

where α is the field of view of the projection matrix measured in radians.

In order to get an estimate for the number of vertices needed and the area
covered, the clipmap parameters used in REDengine 3 for The Witcher 3 [8]
has been inserted into Eq. (1) and Eq. (2). Inserting l = 5, w = 1025, and
α = 60 π

180 = π
3 , to the equations gives us v = 4 988 929 and vvisible ≈ 831 488.

Note that depending on the rendering approach, it may still be needed to
generate more than vvisible height values since frustum culling may be
performed at a later stage in the rendering pipeline.

This means that in order to render a real-time preview with a quality and
render distance comparable to modern video games, it must be possible to
generate around 500 000 to 1 000 000 height values in less than 200 ms.

4 Architecture

Our framework has been divided into three parts, as shown in Fig. 1.

Since the generation code used by game engines is now independent from the
GUI code, it does not matter if the GUI uses dependencies that are
unacceptable for game engines. This means we are free to use GUI toolkits,
OpenGL and other heavy libraries in the GUI application. A more detailed
overview of the architecture and all dependencies can be seen in Fig. 2.

The rationale for also factoring out the serialization format, is that for some
game engines, it might be impractical or impossible to use the library. I.e. it
may not be possible for some scripting languages to call C++ functions, or
wrap them in a language usable by the scripting language. By keeping the
definition of the serialization format open and explicit, it is possible for
developers to create their own code for parsing terrains that works on their
deployment platform, while still having the benefit to be able to use our GUI
application for modeling the terrains.
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Serialization format

Function graph library

Real-time GUI editor Third-party game

Third-party evaluation library

Third-party mobile game

Fig. 1: Architecture overview. The arrows show dependencies. Blue boxes are
part of the framework, while yellow boxes show potential third-party software.

4.1 Library architecture

The responsibility of the library is to provide an API for parsing, serializing,
evaluating and modifying function graphs.
The library needs to interface with two stakeholders, the GUI application, and
the game engines that use the framework.
For game engines, it is important that it is easy to interface with the library,
and that the library is small, self-contained and runs on many platforms. As
game engines are commonly implemented in C++, it will be easiest if our
library is implemented in C or C++ as well. Also, it is usually fairly simple to
create wrappers for C and C++ libraries in order to interface with them in
engines that use other languages for extensions.
The terrain editor application on the other hand, has a different set of
requirements. Most importantly, the requirements for interactive performance
are much stronger. While game engines can often afford to wait a couple of
seconds during a loading phase, the terrain editor needs to generate enough of
a terrain for a high quality preview in under 200 ms. In order to achieve this
kind of performance, it is crucial that the algorithm is implemented on the
GPU. This is explained in Section 4.3.
The library has been carefully implemented without dependencies on the GUI
application. This means that the library can be used by game engines to parse
and evaluate functions described by our format without pulling in
dependencies that are large, do not run on particular platforms, or have
restrictive licenses (such as Qt). This also allows the source code of the library
to stay relatively small and concise (approximately 3000 lines of code, avoiding
the extra 4000 lines of code needed for the GUI application).

model is the most important part of the library. All other parts of the library
depend on it. The model provides an object-oriented representation of
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Fig. 2: Detailed framework architecture including dependencies and package
modules. The arrows indicate dependencies.

function graphs and their relationships. The interface provides ways to
modify and create new graphs.

serialization is responsible for serializing and parsing graphs (in the model)
to and from JSON.

code generation is responsible for generating GLSL functions equivalent to
the function graphs.

4.2 The Noise Modeler application

The GUI application will be referred to as the “Noise Modeler”. We want the
editor to run on numerous hardware and software configurations. To make this
easy, the cross-platform GUI framework Qt and QtQuick were chosen. The core
of Qt is also written in C++, and this makes it easy to interface with nmlib.
QtQuick, however, can only use C++ classes that derive QObjects. To use
QtQuick, we needed to wrap all classes in the model and serialization modules
of nmlib. Although this involved an amount of tedious manual work, it meant
that it was possible to take advantage of QML, which is a powerful declarative
language for creating user interfaces.
The user interface of the application is described in Helsing [10].

4.3 Parallel computation of implicit terrains

All the CPU-based implementations of implicit stochastic terrain generation
are too inefficient for our requirements.
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Fig. 3: Encapsulate complicated sub-graphs as new module types

Fig. 4: Different biomes can be combined using a high-level mask, such as
fractional-brownian motion with a low frequency and few octaves.
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Batch computation of points on a stochastic implicit surface is clearly a
problem that scales well on massively parallel architectures, such as GPUs.
Furthermore, there are generally few branch instructions within the
computation of a point, making the problem a perfect fit for the SIMD
architecture of GPUs.
For these reasons, the GPU was an obvious choice of evaluation platform for
our library. By choosing to evaluate terrains on the GPU, it becomes necessary
to select a GPGPU API. Of numerous alternatives, OpenGL 3.0 was chosen.
Other APIs were considered as well, including CUDA, Direct3D, OpenCL, and
Mantle. The reason for choosing OpenGL, is that our library is primarily meant
as middleware for the video game industry. Video game developers usually
prefer to reach the widest audience possible. This has several implications for
our requirements when choosing a GPGPU platform. It is desirable to:

– Support as many hardware configurations as possible: This rules out
CUDA, as it is only available for NVIDIA GPUs, and Mantle, because it is
only available for AMD GPUs.

– Support as many software configurations as possible: This rules out
Direct3D, as it is only available for Microsoft’s operating systems
(Windows and Xbox).

Direct3D is partially supported by other operating systems through the Wine
compatibility layer. Although this could potentially increase the number of
supported platforms, using Wine may cause a significant performance impact.
It is also a rather large software package, and may be seen as an unreasonable
requirement to play a video game.
If elevation data is cached, it may also seem advantageous that computation of
terrain data happen in the same framework that will use it for rendering, to
avoid unnecessary data transfers and duplication. However, it is perfectly
possible to share buffers between OpenCL and OpenGL, so this is not an
important advantage.
While a definition of a stochastic implicit surface may be written by hand
using GLSL, this is the very same approach often taken by game developers
that we are trying to avoid. In our framework, the terrain model is built using
a run-time editable model of functional composition. This model resides in
CPU memory and is editable through a C++API. In order to bring
computation to the GPU, the CPU library generates GLSL shader code for
computing the terrain by traversing the graph model of the function.
The generated code is stand-alone, meaning it does not rely on any textures or
other buffers to compute the function values. This makes it callable from a
wide range of shader stages, including fragment, vertex, tessellation and
compute shaders. It also has the added benefit that the portability requirement
is easier to satisfy, since this limited set of GLSL functionality is easily
portable to most platforms.
By generating GLSL code during run-time, a strictly serial part is added to the
algorithm. Not only does the code have to be generated from the model, but
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the GLSL shader also has to be compiled. This overhead only has to be
executed once each time the terrain function changes. For example, if two
patches of terrain are computed, this setup only needs to be performed once for
the first patch. When a terrain is edited interactively, however, it means that it
changes continuously and this overhead has to be executed after each change.
The performance impact of this step is therefore significantly large, since the
steps also require compilation of a GLSL shader, which could be expensive
depending on the OpenGL implementation. This step has been benchmarked
in Helsing [10] ?? for several OpenGL implementations.

4.4 Testing and verification

Because there was only one developer working on the project, sub-tasks and
planning were managed by a simple project backlog on Trello.com.
Tests were written prior to implementing functionality, using the unit testing
framework Google Test. Having these tests proved very useful during the
iterative development of the framework. Some unit tests were also written for
the rendering parts of the GUI application.
The main pilot tester was a friend of the developer working on an open-source
game. His feedback helped shape the user interface of the application and fix
oversights by the developer. Aside from this, the design of the interface also
relies heavily on familiar user interface elements from similar applications, and
this also lowers the need for user testing.
Our library demonstrates our approach makes it possible to generate changing
terrains at interactive rates. This has been demonstrated in two ways: Firstly,
by running the editor itself, it could be observed that terrains can be edited
interactively. Secondly, a more thorough benchmark were performed as
described in the following section.

5 Conclusion

Most terrain editors focus on offline procedural terrains, ignoring the powerful
capabilities of procedural generation, the most important being replayability
and vastness. Our GPU-based Noise Modeler framework shows it is possible to
model procedural terrains in real-time in a user-friendly application, while at
the same time retaining the ability to integrate with a game engine and
generate terrains during run-time. The efficient computation of height values
allowed a real time high-quality terrain preview to be updated with a vertex
count comparable to state-of-the-art video games.
Our framework may be used to model heightmap terrains, and supports several
popular algorithms for stochastic implicit terrains. Our framework may also
model and generate — although not preview — other types of terrains,
including voxel terrains and vector displacement terrains. It may thus integrate
well with a variety of game engines with different approaches to terrain
modeling.
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Future work include adding support for previewing additional types of terrain
representations such as voxel terrain and vector displacement terrain. In
addition an effort to port the library to javascript has been started with the
intention of making the format usable by web applications using WebGL.
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