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Transdifferentiation, the process of converting from one cell 
type to another without going through a pluripotent state,  
has great promise for regenerative medicine. The identification 
of key transcription factors for reprogramming is currently 
limited by the cost of exhaustive experimental testing of 
plausible sets of factors, an approach that is inefficient and 
unscalable. Here we present a predictive system (Mogrify) 
that combines gene expression data with regulatory network 
information to predict the reprogramming factors necessary 
to induce cell conversion. We have applied Mogrify to �73 
human cell types and �34 tissues, defining an atlas of cellular 
reprogramming. Mogrify correctly predicts the transcription 
factors used in known transdifferentiations. Furthermore,  
we validated two new transdifferentiations predicted by 
Mogrify. We provide a practical and efficient mechanism  
for systematically implementing novel cell conversions, 
facilitating the generalization of reprogramming of human 
cells. Predictions are made available to help rapidly further  
the field of cell conversion. 

We now know that it is possible to switch the phenotype of one 
somatic cell type to another. This epigenetic rewiring process can be 
artificially managed and even reversed with the use of transcription 
factors1. The best known example is the reprogramming of somatic 
cells into induced pluripotent stem (iPS) cells by the introduction 
of four exogenous factors (Oct3/Oct4, Sox2, c-Myc and Klf4)2,3. 
Previous and subsequent reports have demonstrated that other cell 
types can also be obtained by direct transdifferentiation using the 
same strategy4–9. These discoveries came about through a process 
of exhaustive testing of large sets of plausible transcription factors. 
With roughly 2,000 different transcription factors10–12 and approxi-
mately 400 unique cell types in humans13, the space of possible sets 

is very large (>1011 combinations of three factors across 400 cell 
types), and discovery will advance slowly using an educated trial-and- 
error approach. There are a number of existing algorithms that 
identify transcription factors that might assist in cell-to-cell conver-
sions, considering both epigenetic factors and transcription factor  
activation14–17. More recently, approaches such as CellNet18,19 and a 
new entropy-based method20 have provided larger-scale predictions 
of transcription factors for conversion into many cell types, as well as 
showing experimentally that these predictions are able to control cell 
identity. Herein we present a comprehensive atlas of predictions for a 
large number of human cell conversions, which we have implemented 
using a network-based computational framework (Mogrify) applied 
to the FANTOM5 data sets21, which include ~300 different cell and 
tissue types. We have shown that we are able to independently recover 
(via prediction) human conversion factors that were previously  
discovered experimentally, and, more notably, we have predicted  
and validated two new conversions.

To predict the sets of transcription factors required for each cell con-
version, we identify the transcription factors that are not only differen-
tially expressed between cell types but also exert a regulatory influence 
on other differentially expressed genes in the local network (Fig. 1a). A 
single score that captures the differential expression for every gene in 
every cell type is defined by combining the log-transformed fold change 
in expression and adjusted P value relative to a background (Fig. 1b).  
The regulatory influence of each transcription factor in each cell type 
is calculated by performing a weighted sum of the differential expres-
sion scores over the known interactome (as defined by the STRING 
database22  and Motif Activity Response Analysis (MARA)23; Fig. 1c). 
This sum is weighted by two factors: (i) the directness of the regulation, 
that is, the number of intermediates between the transcription factor 
and a downstream gene, and (ii) the specificity, that is, the number 
of other genes also regulated by the upstream transcription factor.  
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For example, it is known that human fibroblasts can be converted into 
iPS cells by introducing OCT4 (also known as POU5F1), SOX2, KLF4 
and MYC3 or OCT4, SOX2, NANOG and LIN28 (ref. 24). Mogrify pre-
dicted NANOG, OCT4 and SOX2 as the top three transcription factors 
for this conversion, a combination that has also been experimentally 
validated25. Seminal work by the Graf laboratory demonstrated that 
the conversion of B cells and fibroblasts into macrophage-like cells 
is possible through expression of CEBPα and PU.1 (also known as 
SPI1)26,27, which Mogrify perfectly predicted. For the conversion of 
human dermal fibroblasts into cardiomyocytes, the closest reliable  
sample was cellularly heterogeneous heart tissue; nevertheless, 
Mogrify’s predicted list included four of the five transcription fac-
tors (or similar factors) used in the human conversion of these cells28. 
There are reports in the literature of transdifferentiations of various 
cell types into neurons in both mouse and human (Supplementary 
Table 1). The sets of transcription factors used vary, probably owing to 
the heterogeneity and complexity of neurons; however, factors com-
mon to all experiments29 were predicted by Mogrify (Supplementary 
Table 2). Finally, between human fibroblasts and hepatocytes, Mogrify 
predicted a combination of transcription factors highly similar to 
that required for conversion and maturation (Fig. 2)6,30,31. Using the  

Figure 2 Mogrify predictions for some of the known transdifferentiations 
that are published in the literature. Transcription factors that Mogrify 
correctly identifies from the published lists are highlighted. Samples  
are grouped using the FANTOM cell ontology21. For each publication,  
the transcription factors in the initial maximum-coverage set are shown  
in green and the transcription factors in the overall predicted Mogrify  
set are shown in blue. For instance, the transdifferentiation of a fibroblast 
into a myoblast39 required only MYOD1, which was identified by 
Mogrify. An asterisk indicates that a closely related transcription factor 
is predicted. Numbers in parentheses denote corresponding references. 
ESC, embryonic stem cell. 
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Figure 1 The Mogrify algorithm for predicting transcription factors for cell conversion.  
The following procedure is used. (a) Mogrify aims to find the transcription factors that not 
only are differentially expressed but also appear to be responsible for the regulation of 
many differentially expressed genes in a given cell type. (b) We use the cell type ontology 
tree created as part of the FANTOM5 Consortium21 to select an appropriate background for 
DESeq38 to calculate the adjusted P value and log-transformed fold change in expression 
for genes in the sample. (c) For each transcription factor (TF), we construct a local network 
neighborhood of influence, weighting the downstream effect on a gene by its connected 
distance and the out degree of its parent. (d) We maximize regulatory coverage by removing 
transcription factors that are redundant in their influence over other factors. 

This weighted sum allows transcription factors to be ranked in each 
cell type according to their influence. The final step is to select the 
optimal set of transcription factors with the greatest combined influ-
ence over genes differentially expressed in the target cell type in com-
parison to the donor cell type. This is done by adding transcription 
factors to the set in order of rank by differential influence, omitting 
those that do not increase the influence of the set, until the combined 
influence reaches 98% of expressed target cell genes (Fig. 1d and 
Online Methods). Biologically speaking, Mogrify identifies transcrip-
tion factors that control the parts of the regulatory network most 
responsible for the identity of the target cell type.

To assess the predictive power of Mogrify, we first determined how 
Mogrify performed against well-known, previously published human 
cell conversions. These predictions should not be considered as perfect 
combinations but as positive reference points useful for comparison. 
In almost every case, Mogrify predicted the complete set of transcrip-
tion factors previously demonstrated to work but sometimes used an 
upstream transcription factor in lieu of the published factor (Fig. 2). 
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conversions shown in Figure 2, we assessed the ability of Mogrify, 
CellNet and the entropy-based approach of D’Alessio et al.20 to recover 
these known factors. The average recovery rate of published transcrip-
tion factors was 84% for Mogrify, 31% for CellNet and 51% for the 
method of D’Alessio et al. (see Supplementary Fig. 1 for details). In 
six of the ten conversions shown in Figure 2, Mogrify recovered 100% 
of the required transcription factors; if Mogrify had been used in the 
original studies, the experiments could have been a success the first 
time. CellNet and the method of D’Alessio et al. each only recovered 
all the factors for one of the ten conversions. It is important to note 
that the conversions proposed by CellNet and the method of D’Alessio 
et al. may also work, as the published conversions represent only one 
positive example of success.

To demonstrate empirically the predictive capabilities of Mogrify, 
we conducted two new cell conversions using human cells. The first 
was a conversion of human fibroblast to keratinocyte (iKer) cells: 
for this conversion, cells were transduced with lentiviruses encoding 
FOXQ1, SOX9, MAFB, CDH1, FOS and REL, predicted by Mogrify 
(Fig. 3a,b and Supplementary Table 3). By day 16 after transduc-
tion, the keratinocyte-associated markers keratin 1, keratin 14 and 
involucrin were markedly upregulated in the transdifferentiated cells  
(Fig. 3c). Moreover, within 3 weeks, the majority of transduced cells 
exhibited cobblestone morphology, a classic characteristic displayed 
by keratinocytes. Adjacent untransduced, GFP-negative cells or con-
trol cells transduced with GFP-only viruses maintained their fibroblast 
morphology (Fig. 3d–g). This morphological and molecular character-
ization of the reprogrammed cells indicates that Mogrify successfully 
predicts the transcription factors necessary to induce the conver-
sion of human fibroblasts into keratinocyte-like cells. The second  

conversion was of adult human keratinocyte (HEKa) cells into micro-
vascular endothelial cells (iECs): for this conversion, we selected 
SOX17, TAL1, SMAD1, IRF1 and TCF7L1 from the seven transcription  
factors suggested by Mogrify (Fig. 4a and Supplementary Table 4). 
These five transcription factors are predicted to regulate ~92% of 
the required genes for iECs. Once these transcription factors were 
overexpressed in HEKa cells, we determined that the cells needed to 
be kept in their media until day 4 (Fig. 4b). We used FACS analysis to 
follow the kinetics of cell reprogramming, using the well-established 
endothelial marker CD31 (Fig. 4c). By day 14 after transduction, 
we detected that more than 2% of the infected cells had upregulated 
CD31 levels and, by day 18, almost 10% had upregulated CD31 lev-
els. At this point, we isolated CD31+ cells and evaluated the expres-
sion of endothelial-associated genes (CD31 (PECAM1), CDH5  
(encoding VE-cadherin) and VEGFR2 (KDR)) by quantitative PCR 
(qPCR), which showed a clear reactivation of all the genes assessed 
(Fig. 4d). Finally, we performed immunofluorescence to verify the 
morphology and expression of the transdifferentiated cells. Only 
cells transduced with viruses encoding the predicted transcription 
factors—and not control cells—presented the right morphology and 
expressed CD31 and VE-cadherin on the cell surface (Fig. 4e–j).  
This morphological and molecular characterization of the repro-
grammed cells indicates the successful transition of human kerati-
nocytes into human endothelial-like cells.

There have been several reports suggesting that the Yamanaka  
factors can initiate transdifferentiation without traversing the pluripo-
tent state (reviewed in ref. 1). These findings have recently been  
challenged by Hochedlinger and Hanna32,33. We observe that Mogrify 
did not predict the use of Yamanaka factors for the transdifferentiations  
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Figure 3 Induction of keratinocytes from dermal fibroblasts. (a) The transcription factor network predicted by Mogrify to be involved in the 
transdifferentiation of dermal fibroblasts into keratinocytes. (b) An outline of the method used for the transdifferentiation assay. MEFM, mouse 
embryonic fibroblast medium; KSFM, keratinocyte serum-free medium; RA, retinoic acid. (c) qPCR analysis of the indicated markers in cells collected 
at days 12–16 during transdifferentiation. All values are from experimental replicates and are given relative to gene expression in dermal fibroblasts 
(Fib) (n = 3; error bars, s.e.m.). (d–g) Bright-field and GFP images at day 24 showing the cobblestone morphology of transdifferentiated cells (top) and 
fibroblast morphology of GFP+ control cells (bottom). The box in f refers to an area zoomed in g. The arrow in g indicates an untransduced cell that 
maintained its fibroblastic morphology. Scale bars, 50 µm. 
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mentioned in this report (except in conversion to iPS cells). 
Mogrify prediction, however, is based on the source and target  
regulatory networks and does not have the capacity to detect factors 
only transiently expressed during the reprogramming process.

Since Conrad Waddington depicted the first epigenetic landscape, 
several attempts have been made to produce a more representative 
cellular landscape34–36, but these efforts have focused on one or two 
cell types and are based on path-integral quasipotentials, mechanistic 
modeling or probability landscapes. We hypothesized that the identi-
fication of differences in all-against-all comparisons of transcription 
factor networks as determined by Mogrify in combination with tran-
scriptional profiles would allow the creation of a three-dimensional 
landscape representing human cell types (Supplementary Fig. 2).  
The landscape places cell types that are molecularly similar close 
together in the x-y plane and adjusts the height (z direction) accord-
ing to how likely a cell type is to be a good starting cell source  
(see the Online Methods for details). Interestingly, we observed that  
different stem cells were positioned at the highest locations in the 
landscape. This may suggest that the transcriptional networks of 
cells at the highest points in landscapes are controlled by fewer tran-
scription factors and that the more differentiated a cell becomes  
(in valleys), the more transcription factors are needed to fine-tune 
the transcriptional network.

Having mapped the landscape of human cell types in terms of  
naturally occurring states and the transitions between them, we 
note that core control sets of transcription factors that describe the 
individual cell types are captured, even though the primary aim of 
Mogrify is to predict transcription factors for cellular conversions.  
We believe that these sets could aid researchers in determining the 
role of different transcription factors in their favorite cell type. In 
practice, Mogrify provides a substantial advance over the strategies 
currently being applied in laboratories for cell reprogramming, help-
ing in the prediction of transcription factors whose overexpression 
will induce directed cell conversion. Mogrify has been precalcu-
lated on conversions between all possible combinations of the 307 
FANTOM5 tissue or cell types resulting in 93,942 directed conversions,  

with the results provided online (see URLs) via an interface for 
guiding experimentation and exploring the cellular landscape.  
Although it is likely that some trial and error will still be involved 
for some conversions, Mogrify provides a starting point and  
systematic means to explore new conversions in human cell types.  
Because Mogrify incorporates a transcription factor redundancy 
step, it is able to give a finite set of factors as a prediction for the cell 
conversion, which has greater usefulness than just the ranking of all 
transcription factors. Although Mogrify has taken advantage of the 
rich FANTOM5 data, MARA and STRING, these databases have their 
own limitations, which will impart some restrictions on Mogrify’s 
predictions. For example, the FANTOM5 data are in some instances 
limited to a few replicates and there is possible heterogeneity in some 
samples. MARA relies on known DNA-binding motifs to estimate 
binding to target genes, knowledge that is incomplete. STRING is 
incomplete in other ways, but future increases in the abundance of 
empirical data on transcription factor interactions and binding in 
diverse cell types will help to improve Mogrify. It should be noted 
that Mogrify as well as other methods finds positive regulators of the 
target cell and does not interrogate the extinction of the source cell 
signature. This may result in less faithful conversions, mitigated by 
the downregulation of source genes that has been observed after the 
introduction of core target transcription factors (for example, in Polo 
el al.37). Mogrify predictions will not guarantee conversion but will 
certainly aid in the development of transdifferentiation protocols. 
Other players such as noncoding RNAs, small molecules, epigenetic 
factors and signaling pathways provide a rich source of improvements 
for the future. At present, the major challenge to progress in the field 
of reprogramming is in increasing the number of successful cell  
conversions. That is what this resource makes possible, paving the way 
for the routine manipulation of cells, an understanding of the proc-
esses involved and the immediate translation of any breakthroughs in 
the clinical delivery techniques under heavy development in academia 
and industry.

URLs. Mogrify, http://www.mogrify.net/.
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Figure 4 Induction of microvascular endothelial cells from keratinocytes. (a) A schematic of  
the transcription factor network predicted by Mogrify to be involved in the transdifferentiation  
of keratinocytes into microvascular endothelial cells. (b) An outline of the method used for the  
transdifferentiation assay. KSFM, keratinocyte serum-free medium. (c) Flow cytometry analysis of  
CD31 expression at days 0, 14 and 18 of transdifferentiation. SSC, side scatter. (d) qPCR analysis  
of the indicated expression markers in CD31+ cells collected at day 18 of transdifferentiation. All values are from experimental replicates and are given 
relative to gene expression in keratinocytes (n = 3; error bars, s.e.m.). (e–j) Immunofluorescence analysis of the endothelial markers CD31 and  
VE-cadherin at day 18 for vector-free control cells (e) and transdifferentiating cells (f). The box refers to an area zoomed in g–j. Scale bars, 50 μm. 
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MeTHods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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oNLINe MeTHods
Mogrify consists of a number of steps, which are outlined below and then 
described in more depth in the following sections.

1. Collect expression data for each gene (x) in each sample (s).
2.  Calculate differential expression against a tree-based background for each 

gene in each sample and then combine the log-transformed fold change  
(Lx

s ) and adjusted P value (Px
s) to generate a gene score (Gx

s ).
3.  For each transcription factor (x) in each sample, calculate the network 

score (NS) by performing a weighted sum of the gene scores over two 
different subnetworks (Nx

s  MARA and Nx
s  STRING) centered on each tran-

scription factor.
4.  Rank transcription factors on the basis of a combination of the Gx

s   
and Nx

s  scores.
5.  Calculate the set of transcription factors for a conversion between any 

two cell types on the basis of comparisons of the ranked lists from the 
cell types.

6.  Remove transcriptionally redundant transcription factors from the lists.
7.  Create a cell conversion landscape by arranging the cell types on a two-

dimensional plane according to their required transcription factors and 
add height on the basis of the average coverage of the required genes that 
are directly regulated by the transcription factors selected.

Step 1: expression data taken from the FANTOM5 data set. Mogrify uses 
700 libraries of clustered CAGE (cap analysis of gene expression) tags, which 
provide transcription start site (TSS) locations. These are mapped to their 
corresponding genes (provided by the FANTOM5 Consortium21). These data 
are used to create tag counts for each gene in each library. In total, there are 
15,878 distinct genes (of which 1,408 are transcription factors) expressed with 
at least 20 TPM (tags per million) in at least one sample. (See the website for 
more details on the libraries analyzed.)

Step 2: tree-based differential expression. Calculating differential expres-
sion is a common problem when analyzing biological data, and a number 
of techniques exist to do this. We elected to use DESeq38 for this work, as it 
performs well in benchmark evaluations, allows analysis of some non-repli-
cated data sets and has a short runtime. To calculate differential expression, 
it is necessary to identify two groups: the set of samples in which you wish 
to identify differential expression and the background for comparison. The 
problem of selecting the correct background is important. The inclusion of 
too many irrelevant samples can reduce the statistical power of the test. The 
inclusion of too narrow a range or too few samples in the background makes it 
impossible to tell which genes are truly differentially expressed. One solution 
is to perform an exhaustive calculation of pairwise tests between each of the 
cell types. This approach has two problems: first, it is very computationally 
expensive and, second, it does not identify the genes that are differentially 
expressed between a sample and an average background but rather identifies 
ones that are differentially expressed specifically between two samples. For 
Mogrify, we are interested in the genes that are important for a given cell 
type in all situations and hence compare against a collection of samples. To  
do this, we implemented a tree-based background selection method based 
on the FANTOM5 cell ontology21 (Fig. 1b). The principle of this approach 
is to exclude cell types whose ontologies are very close to that of the cell type 
of interest while including others that are near in the tree to the background. 
This was achieved by selecting a point near the top of the tree that would act 
as the breaking point. Samples in the same clade as the cell type being analyzed 
were removed, and those not in the same clade but still below the breaking 
point were included. The result of this process is a set of samples that is broad 
enough to give reliable results but narrow enough that the statistical power 
is kept at a manageable level. It is possible that, if a transcription factor exists 
whose expression correlates highly with the choice of background, this factor 
will go undetected for the cell in question, but this tradeoff is justified by the 
advantages outlined above.

This tree-based background selection approach for DESeq is run on all 
FANTOM5 libraries (grouped by replicates), generating a log-transformed 
fold change in expression and a false discovery rate (FDR)-adjusted P value for 
each gene in each sample. Because the background is non-uniform, the results 

of each differential expression calculation are not directly comparable; hence, 
for the remaining steps, these figures are used to rank transcription factors in 
each sample and it is the rankings that are compared.

Because we are only interested in identifying transcription factors with a 
high level of influence, we convert the log-transformed fold changes in expres-
sion and FDR-adjusted P values into a single positive score (Gx

s ) using the 
following equation 

G L Px
s

x
s

x
s= −( )log10

where Lx
s  is the log-transformed fold change in the expression of gene x in 

sample s and Px
s is the adjusted P value for gene x in sample s. The formula 

ensures that genes with a high log-transformed fold change in expression 
and a low adjusted P value score very highly and vice versa. This is applied to 
every gene in each sample, creating a matrix of 700 samples × 15,878 genes 
for differential expression.

Step 3: calculate a transcription factor’s network-based sphere of influence. 
To assess the importance of each transcription factor, its effect on its local 
neighborhood is calculated using two sources of network information: the 
STRING database22 and MARA23. These two databases contain different types 
of interactions. MARA provides protein-DNA interactions for transcription 
factors with known binding sites in the promoter regions of a gene. This rep-
resents a low-level, directed regulatory network of interactions. STRING is 
a meta-database of interactions that contains various types of interactions, 
including protein-protein, protein-DNA and protein-RNA interactions, as well 
as biological pathways. This provides a view of the interactions taking place 
that both directly and indirectly affect gene expression.

To calculate influence, a weighted sum of gene influences (from step 2) is 
performed over a transcription factor’s local network neighborhood. This local 
network is constrained to a maximum of three edges, and the effect of each 
node diminishes the further from the seed transcription factor it is located and 
depending on the out degree of its parent (Fig. 1c). Distance weighting is used 
so that genes that are increasingly distant from direct regulation have less of 
an impact on the score. Edge weighting is used to compensate for highly ubiq-
uitous transcription factors and prevent them from receiving artificially high 
scores by regulating a large number of barely differentially expressed genes. 
We consider that a transcription factor that is regulating ten genes that have  
Gx
s  = 100 to be more important than a transcription factor that is regulating 

1,000 genes that have Gx
s  = 1.

The equation to perform this weighted sum is 

N G
L Ox n

s

r V

s

r
s

r n r nx
,

, ,
. .=

∈
∑ 1 1

where r ∈ Vx is each gene (r) in the set of nodes (Vx) that make up the local 
subnetwork of transcription factor x, Lr,n is the level (or number of steps) r is 
away from x in network n and Or,n is the out degree of the parent of r in net-
work n. This is performed over both the MARA and STRING networks, result-
ing in two transcription factor influence lists (Nx

s
,MARA and Nx

s
,STRING).

Step 4: rank the transcription factors on the basis of the results of steps  
2 and 3. The results of steps 2 and 3 are three ranked transcription factor lists 
for each sample based on Gx

s , Nx
s
,MARA and Nx

s
,STRING . To obtain the final 

ranking of each transcription factor in each sample, its rank in each of the three 
lists is added together. Ranks are limited to a maximum of 100, as we observed 
that beyond the top 100 transcription factors the remaining regulatory influ-
ence was very small. If a transcription factor does not appear in a particular 
list, then it is given a score of 100. The result of this is a single ranked list of 
transcription factors for each cell type; those with the lowest score or rank are 
predicted to facilitate a cell conversion.

Step 5: compute all pairwise experimental comparisons to create predic-
tions. To predict the set of transcription factors for a given conversion, the 
ranked lists from the source and target cell types are compared. If a transcrip-
tion factor from the target cell type list is already expressed in the source target 
(at greater than 20 TPM), then it is removed from the list.

(1)(1)

(2)(2)
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Step 6: remove transcriptionally redundant transcription factors. Once the 
final ranking is complete, regulatory redundancy is removed. This is achieved 
by comparing the lists of genes that the transcription factors directly regu-
late. For a given transcription factor, if there is a higher-ranking transcription 
factor that regulates over 98% of the genes that it would regulate, then this  
transcription factor is removed. This means that the resulting predictions 
include transcription factors that are diverse in their regulatory spheres of 
influence. This cutoff was chosen empirically to minimize the number of 
factors predicted while maximizing network coverage (see Supplementary  
Fig. 3 for details).

Step 7: create a cell reprogramming landscape based on steps 1–6. To create 
the reprogramming landscape, we calculate the x and y coordinates independ-
ently of the z coordinate. To reduce the complexity of the landscape, we average 
the gene expression profiles of individual samples grouped by the cell ontology 
provided by FANTOM5. The result of this is a set of 314 ontologies that contain 
at least three samples each from which we have the average gene expression. 
The x and y coordinates are calculated by multidimensional scaling (MDS) of 
these profiles. The result of MDS is a projection of the data where the distance 
between points is maintained from the multidimensional reality to two-dimen-
sional reduction. As a result, two points that are close together in the x-y plane 
of the landscape have similar expression profiles and, as such, represent similar 
cell types. The z axis of the landscape is calculated by considering the regula-
tory coverage of the top eight Mogrify-predicted transcription factors. For 
every conversion, we look at the set of genes that are expressed in the ontology 
and the number of these that are directly regulated by each transcription factor. 
We calculate the area under the curve (AUC) of the cumulative coverage for 
the top eight transcription factors normalized by the maximum possible AUC 
to retrieve a value between 0 and 1 for each ontology as the height. As such, a 
height of 1 represents an ontology where all of the required genes are directly 
regulated by the top ranked transcription factor and a height of 0 represents 
an ontology where none of the top eight transcription factors directly regulate 
any of the required genes. The x, y and z values are then used in the R package 
plot3D to generate the landscape using the image2D and persp3D packages. 
The different stem cells at the highest locations were found with a gene set 
enrichment score of 0.41 and a P value of 0.011.

Benchmarking. To compare the performance of Mogrify with that of other 
methods, a benchmarking experiment was carried out. First, we assessed the 
effect on performance of using the complete Mogrify algorithm in comparison 
to the MARA, STRING and differential expression components alone. Second, 
a comparison with CellNet and the method of D’Alessio et al. was carried 
out. These are the only other techniques that currently provide a means to 
calculate transcription factor sets for a wide variety of cell types. To carry out 
comparisons, the sets of transcription factors from the published conversions 
shown in Figure 2 were used as true positives. The benchmarking consisted of 
assessing the performance of each technique in recovering these transcription 
factors using the following steps.

 Step 1. For each conversion, identify the number of transcription factors to 
consider. Mogrify is the only method to provide a set of transcription factors 
rather than a ranked list of all transcription factors; because the object is to 
compare other methods to Mogrify, the information generated by Mogrify 
on the number of factors to use is applied to the other methods, that is, no 
method is allowed to use more factors than the other methods. For example, 
for the conversion between B cells and macrophage, Mogrify predicted that 
eight transcription factors should be adequate, so for all methods the top 
eight transcription factors were used for comparison.
 Step 2. For each method, determine whether the correct transcription fac-
tors have been predicted. For each published set of transcription factors, the 
predictions from each method are compared and two statistics are extracted: 
first, the recovery rate for the published transcription factors (which is 100% 
if all of the published factors are contained in the predicted set) and, second, 
the average rank of the published factors (for each correctly identified tran-
scription factor, the ranks are summed and divided by the total number of 
correctly identified transcription factors).

The results from these two steps can be found in Supplementary Tables 5 and 
6, and a summary of the comparison of Mogrify to CellNet and the method of 
D’Alessio et al. can be found in Supplementary Figure 1.

To extract the results for CellNet, we used publicly available data sets 
for fibroblasts (Gene Expression Omnibus (GEO), GSE14897) and B cells 
(GSE65136) as the starting point and used the web interface for CellNet (http://
cellnet.hms.harvard.edu/) to provide predictions for each of the conversions in 
Figure 2. D’Alessio et al. provide ranked sets of transcription factors for many 
cell types, and these ranked lists were used for the comparison.

Lentivirus generation. For lentivirus generation, human embryonic kidney 
(HEK) 293T cells (Sigma) were cultured in T-75 flasks. Once they reached 90–
95% confluence, they were transfected with a -lv165 vector expressing CDH1, 
FOS, FOXQ1, IRF1, MAFB, REL, SMAD1, SOX9, SOX17, TAL1 or TCF7L1 
from the EEF1A1 promoter and IRES2-eGFP (GeneCopoeia), together with 
the second-generation packaging plasmids psPAX2 and pMD2.G from the 
Trono laboratory (Addgene), using LTX Lipofectamine (Invitrogen) transfec-
tion reagent. Virus-containing supernatants were collected at 24 and 36 h after 
transfection and concentrated with ultracentrifugation filters (Millipore). Viral 
concentrates were then stored at –80 °C. Titrations were based on eGFP expres-
sion, as determined by flow cytometry. The cell line used in these experiments 
tested negative for mycoplasma contamination.

Cell culture. Before their use in experiments, human adult epidermal 
keratinocytes (HEKa cells; Gibco) and human dermal fibroblasts (HDFs; 
Gibco) were plated at 2.5 × 103 cells/cm2 and passaged at least three times.  
HEKa cells were cultured in KSFM (Gibco) that contained 10% HKGS 
(Gibco) and 1% penicillin-streptomycin (Gibco). In contrast, HDFs were 
cultured in medium 106 (Gibco) that contained 10% LSGS (Gibco) and 
1% penicillin-streptomycin. Cells were then frozen in liquid nitrogen for 
later use. For the transdifferentiation of keratinocytes into endothelial cells, 
cells were thawed and seeded at 2.5 × 103 cells/cm2 and grown until they 
reached 90% confluence. They were then reseeded at 5.0 × 103 cells/cm2 
and grown for 2 d in KSFM before being infected with concentrated lenti-
viral particles encoding IRF1, SMAD1, SOX17, TAL1 and TCF7L1 in the 
presence of polybrene (Millipore) in KSFM. After the addition of viruses 
(12–24 h), the medium was replaced with fresh KSFM. At day 4, the 
medium was replaced with human endothelial serum-free medium (Gibco) 
with 1% penicillin-streptomycin containing human VEGF (50 ng/µl;  
PeproTech), human BMP4 (20 ng/µl; PeproTech) and human FGF2 (20 ng/µl; 
PeproTech). For the transdifferentiation of fibroblasts into keratinocytes, 
cells were seeded at 2.5 × 103 cells/cm2 and grown until they reached 90% 
confluence. They were then reseeded at 2.5 × 103 cells/cm2 and grown for 
24 h in MEFM before being transduced with lentiviral particles encoding 
CDH1, FOS, FOXQ1, MAFB, REL and SOX9 in the presence of polybrene 
in MEFM for 24 h. At day 4, the medium was replaced with KSFM contain-
ing 1% penicillin-streptomycin, 1 µM retinoic acid and 25 ng/ml human 
BMP4 (R&D). Fresh medium was added at least once every 2 d through-
out all of the experiments. Each of the experiments was repeated three  
or four times.

Flow cytometry. At various time points, transdifferentiating cells were  
dissociated with 0.25% trypsin-EDTA (Gibco) for 3 min at 37 °C. Cells were 
then prepared for flow cytometry analysis or sorting. They were incubated 
with APC-conjugated antibody to human CD31 (17-0319-41, eBioscience; 
1:200 dilution) at 4 °C for 15 min, washed with DPBS (Gibco), centrifuged at 
300g for 7 min and then resuspended in medium containing propidium iodide 
(Sigma-Aldrich). An LSR-II analyzer (BD Bioscience) and the Influx cell sorter 
(BD Biosciences) were used for data analysis and cell sorting, respectively.

Quantitative PCR. Total RNA was extracted using the RNeasy Micro kit 
(Qiagen) following the manufacturer’s instructions. Extracted RNA was reverse 
transcribed into cDNA using the Superscript III kit (Invitrogen). Real-time 
qPCR reactions were set up in triplicate using Brilliant II SYBR Green QPCR 
Mastermix (Stratagene) and then run on the 7500 Real-Time PCR System 
(Supplementary Table 7).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14897
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65136
http://cellnet.hms.harvard.edu/
http://cellnet.hms.harvard.edu/
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Immunofluorescence. Cells were fixed with 4% paraformaldehyde in DPBS at 
room temperature for 10 min. There was no need to permeabilize cells as the 
markers of interest are expressed on the cell surface. Cells were blocked with 
5% donkey serum in DPBS for 30 min and then incubated with primary anti-
bodies (goat polyclonal antibody to CD31, sc-1506, Santa Cruz Biotechnology 
(1:100 dilution) and rabbit polyclonal antibody to VE-cadherin, ab33168, 
Abcam (1:1,000 dilution)) overnight at 4 °C. The next day, cells were incubated 

with secondary antibodies (donkey anti-goat conjugated to Alexa Fluor 555, 
Invitrogen (1:2,000 dilution) and donkey anti-rabbit conjugated to Alexa Fluor 
647, Invitrogen (1:2,000 dilution)) for 2 h at room temperature. Finally, cells 
were overlaid with 4′,6-diamidino-2-phenylindole (DAPI; Life Technologies; 
1:1,000 dilution) for 1 min. All images were acquired using the inverted Nikon 
Eclipse Ti epifluorescence microscope with the Nikon Digital Sight DS-U2 
camera and were processed and analyzed using Fiji software.
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