HANDWRITTEN NOTES

OF

(REFRIGERATION AND AIR CONDITION)

BY

Refrigeration And Air Conditioning

1) Basic Concept (gobo)
2) Vapour Compression/ Refrigeration System
3) Refrigerant (Convolobjj)
4) Refrigerant (Theory obj)
(4) Vapour Absorption

Refrigeration System $(0 \mathrm{bj})$
g mb
(5.) Psychometry (obj)
6) Summer \& Winter A/C (Convoy $+0 b_{j} j$)
7) Duct Design (obj)

Basic Concepts

Refrigeration Effect:-
It is Amount of heat, Which is Required to extract in order to provide and maintain Lower temperature than that of Surroundings.

Refrigerant:-
It is Working fluid or Working Substance, that is used to extract the heat from the storage space/ system.
C.O.P or E.P.R:-

Coefficient of Performance or Energy Performance Rate:-
It is Ratio of Desired effect to the Work input.
It is defined as Ratio of Refrigeration effect to the Work input.

(Refrigerator)

$$
C \cdot O \cdot P_{R}=\frac{T_{L}}{T_{H}-T_{L}}
$$

Objective
$g m p$

$$
(C . O \cdot P \cdot)_{H P}=(C O \cdot P)_{R}+1=\frac{1}{\eta_{E}}
$$

This Relation or expression is applicable b/w the "Same Temperatures" limits.

Ideal Refrigeration Cycle:-
Or
Reversed Carnot Cycle:-

$$
\begin{aligned}
& d Q=\stackrel{\circ}{\operatorname{Sgen}^{\circ}}+\frac{d Q}{T} \\
& d Q=T d S \\
& \text { Process }(1-2) \rightarrow d Q=T d S=0 \\
& \text { Process }(2-3) \rightarrow d Q=T\left(S_{3}-S_{2}\right)=-v e
\end{aligned}
$$

Process $(1-2) \rightarrow$ Reversible Adiabatic or Isentropic Compression.
Process (2-3) \rightarrow Heat Rejection at Constant Temperatures.
Process (3-4) \rightarrow Isentropic Expansion.
Process $(4-1) \rightarrow$ Heat Supplied at Constant Temperatures

$$
C \cdot O \cdot P=\frac{\text { Desired Effect }}{W_{\text {net }}}
$$

(1-2) Isentropic Compression
(2-3) Isothermal Compression
(3-4) Isentropic Expansion
(4-1) Isothermal expansion

$$
C \cdot O \cdot P=\frac{\text { Desired Effect }}{W_{\text {net }}}
$$

$W_{\text {net }}=Q_{\text {net }} \rightarrow$ from $I^{\text {st }}$ Law of Thermody namics

$$
W_{\text {net }}=Q_{\text {net }} \Rightarrow Q_{1-2} 0^{0}+Q_{2-3}+Q_{3-4}^{0}+Q_{4-1}
$$

$$
\begin{align*}
& W_{\text {net }}=Q_{\text {net }}=Q_{2-3}+Q_{4-1} \tag{1}\\
& d S=\frac{d Q}{T} \Rightarrow d Q=T d S \\
& d Q=T_{H}\left(S_{3}-S_{2}\right)=-T_{H}\left(S_{2}-S_{3}\right) \\
& d Q(2-3)=-T_{H}\left(S_{1}-S_{4}\right)-(2) \tag{2}\\
& d Q_{(U-1)}=T\left(S_{F}-S_{1}\right)=T_{4}\left(S_{1}-S_{4}\right)- \tag{3}
\end{align*}
$$

Musing (2) e (3) in (1)

$$
\begin{aligned}
& W_{\text {net }}=Q_{\text {net }} \Rightarrow \Phi_{2-3}+Q_{4-1} \\
& -T_{H}\left(S_{1}-S_{4}\right)+T_{L}\left(S_{1}-S_{4}\right) \\
& =\left(T_{L}-T_{H}\right)\left(S_{1}-S_{4}\right) \\
& W_{\text {net }}=-V e
\end{aligned}
$$

As the value of Neturck output is having negative expression, therefore our Assume ed System is work Absorbing device.

$$
\text { C.O.P }=\frac{\text { Desired Effect }}{W_{\text {in }}}=\frac{D \cdot E}{\left(T_{1}-T_{2}\right)\left(S_{1}-S_{4}\right)} \xrightarrow{\text { Process }(1-4)}
$$

$$
\text { COOP }=\frac{T_{L}\left(s_{1}-s_{4}\right)}{\left(T_{H}-T_{2}\right)\left(s_{1}-s_{4}\right)}
$$

IRC \rightarrow Ideal Refrigeration cycle.
$\mathrm{RCC} \rightarrow$ Reversed Carnot cycle.

Objective

$$
(C \cdot O \cdot P)_{I \cdot R \cdot C}^{R C C}=\frac{T_{L}}{\left(T_{H}-T_{L}\right)}
$$

If Heat is Rejects by any system, then it must be gain by other Systern and the System Which gains this Rejected Heat, then its entropy must be increase.

NOTE:-

1) Reversed Carnot $C y c l e(C \cdot O \cdot P)$ as a function of temperatures limits only.
2) If there are "n" no. of Reversible Refrigerators, operating b/w Same Temp limits, With different Wlorking fluids or Refrigerant thin the Value of max. Possible ($C O P$) or Reversed Carnot ($C O P$) or Ideal (C.O.P) is having Same value.
3) Reversed Carnot C.O.P is Independent of Working fluid.

Reversed Carnot - function of - temp. limits
\longrightarrow Independent of Working fluid

Unit of Refrigeration :-
1 Tonne of Refrigeration

$$
1 T \cdot R=3.5 \mathrm{KW}=210 \frac{\mathrm{KJ}}{\mathrm{~min}}=50 \frac{\mathrm{Kcal}}{\mathrm{~min}}
$$

It is the amount of Heat, which is Required to extract for 1000 kg of water at $0^{\circ} \mathrm{C}$ in order to convert it into equivalent ice at $0^{\circ} \mathrm{C}$ in 24 hours Iday^{2}.

NOTE:-

Qr) Producing ice at $0^{\circ} \mathrm{C}$

$$
\downarrow C O P=\frac{T_{L}}{\left(\uparrow T_{H}-T_{L}\right) \uparrow}
$$

if cure $\uparrow T_{H}$ then $\left(T_{H}-T_{L}\right)$ will \uparrow
Such that, $T_{L}=$ Constant, $\left.T_{H} \uparrow\right] \operatorname{COP} \downarrow$

Summer	Winter
$T_{L}=0^{\circ} \mathrm{C}$	$T_{L}=0^{\circ} \mathrm{C}$
$T_{H}=30^{\circ} \mathrm{C}$	$T_{H}=10^{\circ} \mathrm{C}$

$T_{L}=$ Constant

$$
\begin{gathered}
\left(T_{H}\right)_{S}>\left(T_{H}\right)_{W} \\
(\mathrm{COP})_{S}<(\mathrm{COP})_{W}
\end{gathered}
$$

a) $(C O P)_{S}>(C O P)_{W}$
b) $(\text { COP })_{s}<(\text { COP })_{w}$
c) $(C O P)_{s}=(C O P)_{W}$
d) Based on given Data Bes.
$T_{H} \neq \operatorname{COP} \uparrow$
$T_{L} \uparrow \quad \operatorname{COP} \uparrow$

Pure Substance:-

1) $h_{B}=h_{F}$
2) $h_{D}=h_{g}$
$(h g-h f)$
3) $h_{c}=h_{f}+x h_{f g}^{7}$
4) $h_{E}=h_{g}+\left(C_{P}\right)_{\text {Nap }}\left[T_{E}-T_{D}\right]$
5) $h_{A}=h_{F}-\left(C_{P}\right)_{\text {li }}\left(T_{B}-T_{A}\right)$
6) $S_{A}=S_{f}-\left(C_{P}\right) \ell_{i V} \ln \left(\frac{T_{B}}{T_{A}}\right)$
7) $S_{B}=S_{F}$
8) $S_{D}=S_{g}$
9) $S_{c}=S_{f}+x\left(S_{g}-S_{f}\right)$
10) $S_{E}=S_{g}+\left(C_{P}\right)_{\text {Mop }} \ln \left(\frac{T_{E}}{T_{D}}\right)$

Vapour Compriessim Refrigeration System:- VCRS

Vapour Compression Refrigeration System
Process (1-2) \rightarrow Isentropic/Reversible Adiabatic Compression
Process (2-3) \rightarrow Constant Pressure heat Rejection
Process $(3-4) \rightarrow$ Constant Enthalpy Expansion
Process $(4-1) \rightarrow$ Constant Pressure heat Addition

Assumption:-

1) Entry to the Compressor and exit. of evaporator (State 1) is Saturated Vapour.
2) Exit of the condenser \& entry of throttling (state 3) is Saturated liquid

$$
\begin{aligned}
& \text { COP }=\frac{\text { Desired Effect }}{\text { Win }} \\
& C \cdot O \cdot P=\frac{h_{1}-h_{4}}{h_{2}-h_{1}}
\end{aligned}
$$

Compressor is Work producing

Qr) Why Isentropic Expansion is not pretreable in VCRS?
The State of Working fluid, at the entry of expandor (evaporator) is Saturated liquid, and then exp cession of Work io given ky,

$$
\begin{aligned}
& W=-\int v_{f} d P \\
& V_{g} \ggg>v_{f}
\end{aligned}
$$

Where V_{f} is Specific volume of Saturated liquid, which is negligible in comparison to the $v g i \cdot e$ spreific volume of Saturated Vapour, handelled by the Compressor.
So, the expansion Work is negligible in Comparison to the Compression Work, therefore the iss of isentropic, expansion weill not justify the cost of expandor.

NOTE:-

1) Refrigeration Effect $\left(R_{0} E\right) \rightarrow\left(h_{1}-h_{4}\right) \frac{K I}{k g}$
2) Work input $($ Win $) \rightarrow\left(h_{2}-h_{1}\right) \frac{\mathrm{kI}}{\mathrm{kg}}$
3) Refrigeration Capacity $(R \cdot C) \rightarrow \dot{m} \times R \cdot E(K W)$
4) Power input $\left(P_{\text {in }}\right) \longrightarrow \dot{m} \times \operatorname{Win}(K W)$

$$
\begin{aligned}
& R \cdot E=h_{1}-h_{4} \mathrm{KJ} / \mathrm{kg} \\
& W_{\text {in }}=h_{2}-h_{1} \mathrm{~kJ} / \mathrm{kg} \\
& \left.R \cdot C=\dot{m} \times\left(h_{1}-h_{4}\right)=\dot{m} \times R_{0} E\right] \mathrm{KW} \\
& P_{\text {in }}=\dot{m} \times\left(h_{2}-h_{1}\right)=\dot{m} \times P_{\text {in }}
\end{aligned}
$$

Volumetric Efficiency of Resiprocating Compressor:
It is defined as the Ratio of "Actual volume at the entry of Compressor to the throritical siret volume".

Specific volume $\rightarrow v=\frac{\text { vol }}{\text { mas }}$
Cleamactolume

$$
\text { vol }=m \times v_{\text {entry }}
$$

$$
\eta_{\nu}=\frac{\dot{m} v_{\text {entry }}}{\frac{\pi}{4} D^{2} L \times \frac{N}{60}} \times K
$$

T.D.C

objective

Where,

Objective
Volumetric Efficiency

$$
n_{v}=\frac{\left(\dot{m} v_{\text {entry }}\right.}{\frac{\pi}{4} D^{2} L \times \frac{N}{60} \times K}
$$

NOTE:-

1) Volumetric Efficiency is also Calculated by the expression,

$$
\eta_{v}=1+c-c\left[\frac{P_{\text {higher }}}{P_{\text {Lower }}}\right]^{\frac{1}{n}}
$$

for $R A C$

$$
\eta_{v}=1+c-c\left[\frac{P_{\text {cold }}}{P_{\text {eva }}}\right]^{\frac{1}{n}}
$$

Where $n \rightarrow$ Polytropeic Index
$C \rightarrow$ Clearmac Ratio
\downarrow
9tis defined as the Ratio of Clearnac volume to the theoritical Surest volume.

$$
C=\frac{V_{c}}{V_{s}}
$$

Objective

$$
n_{v}=\frac{(\dot{m} G)_{\text {entry }}}{\frac{\pi}{4} D^{2} L \times \frac{N}{60} \times K}
$$

$$
\eta_{v}=1+c-c\left[\frac{P_{c}}{P_{E}}\right]^{\frac{1}{n}}
$$

Dry Compression V/s Wet Compression:-
Dry Compression means entering point to the Compressor is from Saturated Vapour.
Wet Compression means entering Point to the Compressor is from Wet region (Livid + vapour).

Disadvantage of Wet Compression over fry Compression:-

1) Refrigeration Effect $\left(R_{0} E_{0}\right) \downarrow$ 。

$$
\begin{aligned}
& \left(R_{0} E\right)_{\text {Dry }}=h_{y^{\prime}}-h_{4_{4}} \\
& \left(R_{0} E\right)_{\text {wet }}=h_{1}-h_{4}
\end{aligned}
$$

2) The Liquid particle, which is present in the mixture of Refrigerant, may Wash away the lubricant and it \uparrow the chances of Wear \& tear \& it also damage the Compressor valve \& its Body.
3) Wet Compression Represents individually, the incomplete evaporation of Refrigerant.

EFfect of Variation in Parameters on Performance of Vapour Compression Refrigeration System (VCRS):-

1) Case (1) \rightarrow Decrease in evaporator Pressure:-

Proces \rightarrow 1-2-3-4-1

1) $R \cdot E=h_{1}-h_{4}$
2) $W_{\text {in }}=h_{2}-h_{1}$
3) $C \cdot O \cdot P=\frac{R_{0} E}{W_{\text {in }}}$
4) $\frac{P_{C}}{P_{E}}$

$$
\text { Process } \rightarrow 1^{\prime}-2-3-4^{\prime}-1^{\prime}
$$

1) $R \cdot E \downarrow=h_{1}^{\prime}-h_{4}^{\prime}$
2) $\uparrow W_{\text {in }}=h_{2}-h_{1}$
3) $\downarrow C \cdot O \cdot P=\frac{R_{0} E \downarrow}{W_{\text {in }}^{\circ} \uparrow}$
4) $\frac{P_{c}}{P_{\in 屯}} \uparrow, \eta_{v} \downarrow$

$$
\eta_{v}=\left[1+c-c\left(\frac{P_{c}}{P_{\epsilon}}\right)^{1 / n} \downarrow\right]
$$

2) Case 2:- Effect of \uparrow in Conderssur Pressure:-

NOTE:-

1) Effect of \uparrow in Condensor pressure and \downarrow in evaporator Pressure are adjactly Same.
2) Case-(3) \rightarrow Superheating (Within the Evaporator):-

Proces \rightarrow 1-2-3-4-1

1) $R_{0} E=h_{1}-h_{4}$
2) $W_{\text {in }}=h_{2}-h_{1}$
3) $C \cdot O \cdot P=\frac{R \cdot E}{W \text { in }}$
4) $\frac{8}{2}$

Process $\rightarrow 1^{\prime}-2^{\prime}-3-4-1^{\prime}$

1) $\uparrow R_{0} E=h_{1}^{\prime}-h_{4}$
2) $T_{W_{\text {in }}}=h_{2}^{\prime}-h_{1}^{\prime}$
3) $C \cdot O \cdot P=\frac{R \cdot E \uparrow}{W_{\operatorname{in}} \uparrow}$
*)

Prom thot dras sis of

$$
W_{\text {in }}=n W_{\text {closed }}
$$

3 , $\cos ^{2 x}$.

$$
\begin{align*}
W_{\text {in }} & =n\left[\frac{P_{I} V_{I}-P_{F} V_{F}}{n-1}\right] \\
& =\frac{n}{n-1}\left[P_{1} V_{1}-P_{2} V_{2}\right] \\
\frac{P_{V}=m R T}{} & =\frac{n}{n-1}\left(m R T_{1}-m R T_{2}\right) \\
& =\frac{n}{n-1} m R\left(T_{1}-T_{2}\right) \\
& =\frac{n}{n-1} m R T_{1}\left(1-\frac{T_{2}}{T_{1}}\right)-
\end{align*}
$$

Process 1-2 isentropic/Reversible Adiabatic Compression

$$
\begin{gather*}
P_{V}^{n}=C \quad\left(P_{\text {olytropic }}\right) \\
\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}=\left(\frac{P_{C}}{P_{E}}\right)^{\frac{n-1}{n}} \tag{2}\\
P_{3}=P_{2}^{\prime}=P_{2}=P_{C} \tag{3}\\
\left.P_{4}=P_{1}=P_{1}^{\prime}=P_{E}\right] \\
W_{\text {in }}=\frac{n}{n-1} m R T_{1}\left[1-\left(\frac{P_{C}}{P_{E}}\right)^{\left.\frac{n-1}{n}\right]}\right. \\
W_{\text {in }}=f\left(T_{\text {inlet }}\right)
\end{gather*}
$$

Effects of Super heating:-

1) Refrigeration Effect $\left(R_{0} E\right) \uparrow$, if Superheating occurs in Evaporator.
2) Win. in the Compressor \uparrow, because it is in tunctim of inlet temperatures to the Compressor. (function of Tenet)
3) (C.O.P) may be \uparrow or \downarrow, dependending on Refrigerant. for examplio-

R-12 Refrigerant \uparrow (COP)
(Superheating Would Result \& \uparrow in COP)
NH_{3} Ammonia Refrigerant V (COP) (Suse reheating Would Result in \downarrow in $C \cdot O \cdot P$)
4) SubCooling:-

It is the Process of \downarrow the temperature at Constant Pressure. below Saturated Liquid.

Proces \rightarrow 1-2-3-4-1

1) R.E $=h_{1}-h_{4}$
2) $W_{\text {in }}=h_{2}-h_{1}$
3) $C \cdot O \cdot P=\frac{R \cdot E}{W \text { in }}$

Proces $\rightarrow 1-2-3^{\prime}-4^{\prime}-1$

1) $\uparrow R \cdot E=h_{1}-h_{4}{ }^{\prime}$
2) \quad Win $=h_{2}-h_{1}$ (Const)
3) \uparrow C.O.P $=\frac{R \cdot E \uparrow}{\operatorname{Win} \text { (const) }}$

Use of Flash Chamberin VCRS:-
FLash Chamber is a device, Which is used to Seprate limed Refrigerant from the Vapour, at the entry of evaporator and, it allows only the Liquid refrigerant to enter into evaporator Which results in absorption of heat:
By'the use of Flash chamber
Size of evaporator Reduce

Which is good for induetrid
Purpose.

Because density of Water io \uparrow and density of Vapour is $\downarrow \cdot l$ no.

NOTE:-

1) There is no impact on COP With the use of flash Chamber.
(2) Flash chamber helps in reducing the sine of evaporator.

NOTE:-
(1) Simple VCRS

$$
\begin{aligned}
& P_{4}=P_{E}=P_{1} \\
& P_{3}=P_{2}^{\prime}=P_{2}=P_{C}
\end{aligned}
$$

2) Superheating:-

$$
\begin{aligned}
& P_{6}=P_{1}=-P_{2}=P_{E} \\
& P_{5}=P_{4}=P_{3}=P_{C}
\end{aligned}
$$

13) Subcooling:-

An) A Refrigerant opening/operating on Simple VCRS, having enthalpy at the entry of evaporator is $80 \mathrm{~kJ} / \mathrm{kg}$ \& leaving the evaporator with enthalpy of $180 \mathrm{~kJ} / \mathrm{kg}$. Enthalpy at entry of condensor is $210 \mathrm{~kJ} / \mathrm{kg}$. find COP?

Soon)

$$
\begin{aligned}
R_{0} E & =h_{1}-h_{4} \\
& =180-80 \\
& =100 \\
\text { Win } & =h_{2}-h_{1} \\
& =210-180 \\
& =30 \\
C O P & =\frac{R E}{W_{\text {in }}} \\
C O P & =\frac{100}{30} \\
C O P & =3.33 \text { Ans }
\end{aligned}
$$

Methods To find mars flow Rate \dot{m}
(1) $R \cdot C=\dot{m} \times R \cdot E$
(2) $P_{i n}=\dot{m} \times W$ in
(3) $n_{V}=\frac{\dot{m} v_{\text {entry of comp }}}{\frac{\pi}{4} D^{2} L \frac{N}{60} \times K}$
if there is no valuer given in Data of k then it must be understood to taken it as 1

On) In 5 kW cooling Capacity, Refrigeration System, the Refrigerant ester in evaporator with the enthalpy of $75 \mathrm{KOJ} / \mathrm{Kg}$. \& leaves With the enthalpy of $183^{\circ} \mathrm{kJ} / \mathrm{kg}$. Compresim process is isentropic and the enthalpy at the outlet of the Compressor io $210 \mathrm{~kJ} / \mathrm{lg}$ Calculate,

1) $C O P$.
2) Power Consumption in KW.
3) Rate of Heat Rejection across Condensore in kW.

Sown):

$$
\begin{aligned}
& R \cdot E=h_{1}-h_{4} \\
&=183-75 \\
&=108 \\
& \begin{aligned}
& \text { Win }=h_{2}-h_{1} \\
&=210-183 \\
&=27 \\
& C_{\text {OP }}=\frac{R \cdot E}{W_{\text {in }}}=\frac{108}{27}=4 \\
& C O P=4
\end{aligned}
\end{aligned}
$$

2)

$$
\begin{aligned}
& P_{\text {in }}=\dot{m} \times W_{\text {in }} \\
& P_{\text {in }}=\dot{m} \times 27 \\
& P_{\text {in }}=0.04629 \times 27 \\
& P_{\text {in }}=1.251 \mathrm{~kW}
\end{aligned}
$$

3)

$$
\begin{aligned}
Q_{c} & =\left(h_{2}-h_{3}\right) \times m \\
& =135 \times 0.04629 \\
Q_{c} & =6.24915 \mathrm{~kW}
\end{aligned}
$$

$$
\begin{aligned}
R \cdot C & =\dot{m} \times R \cdot E \\
5 & =\dot{m} \times 188 \\
\dot{m} & =0.04629 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

Another Mither to solve above question.

$$
\begin{aligned}
& C \cdot O P= \frac{R E}{W_{\text {in }}}=\frac{R E \times \dot{m}}{W_{\text {in }} \times \dot{m}}=\frac{R C}{P_{\text {in }}} \\
& P=\frac{R C}{C \cdot O P}=\frac{5}{4}=1.25 \mathrm{~kW}
\end{aligned}
$$

Qr) A Refrigeration operating on Simple VCRS has Piston displacement vol (surept vo lo) of 1.5 L , having 80% volumetric efficiency and 1600 R.P.m. The following Data's are Provided,

Compressor Inlet	$\mathrm{h} \mathrm{KJ} / \mathrm{kg}$	$V \mathrm{~m}^{3} / \mathrm{kg}$
	222.6	0.0767
Condensor Exit	84.9	0.00083

$$
1600 \mathrm{YPm} / 80 \% \% / 1.5 \mathrm{~L}
$$

Them find,

1) Refrigeration effect in KW
2) Power impart in KW

Son)

$$
\begin{aligned}
& R \cdot E=h_{1}-h_{4} \\
&=183.2-84.9 \\
& R \cdot E=98.3 \mathrm{~kJ} / \mathrm{kg} \\
& W_{\text {in }}=h_{2}-h_{1} \\
&=222.6-183.2 \\
& \text { Win }=39.4 \\
& P_{\text {our }} \text { input }=P_{\text {in }}=\dot{m} \times \text { Win } \\
& P_{\text {in }}=0.4142 \times 39.4 \\
& P_{\text {in }}=16.319 \mathrm{~kW}
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{V}=\frac{\dot{m} v_{\text {entry }}}{\frac{\pi}{4} D^{2} L \frac{N}{60} \times K} \\
& 0.80=\frac{\dot{m} \times 0.0767}{1.5 \times 10^{-3} \times \frac{1600}{60} \times 1} \\
& \dot{m}=0.4142 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

On) A Refrigerant operating on Simple VARs having $C O P=6.5$. Enthalpy of saturated liquid \& Saturated Vapour Refrigerant at the operating Condensor temperature of $35^{\circ} \mathrm{C}$ are $69.55 \mathrm{~kJ} / \mathrm{kg}$ and $201.50 \mathrm{KJ} / \mathrm{kg}$.
Respectively. The Saturated Refrigerant vapour leaving the evaporator having enthalpy of 187.53. The specific heat of vapour refrigerant is $0.6155 \mathrm{~kJ} / \mathrm{kg}-\mathrm{k}$.
Find the Compressor discharge temp in ${ }^{\circ} \mathrm{C}$.
Soln) GivenData,

$$
\begin{aligned}
& C O P=6.5 \\
& \left(C_{P}\right)_{\text {hap }}=0.6155 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
& R \circ E=h_{1}-h_{4} \\
& =187.53-69.55 \\
& R \cdot E=117.98 \mathrm{~kJ} / \mathrm{kg} \\
& C \cdot O P=\frac{R \cdot E}{W_{\text {in }}} \\
& 6.5=\frac{117.98}{W_{\text {in }}} \\
& \omega_{\text {in }}=\frac{117.98}{6.5} \\
& W_{\text {in }}=18.150 \mathrm{kgr} / \mathrm{kg} \\
& C \cdot O P=\frac{R \cdot E}{\text { Win }} \\
& W_{\text {in }}=h_{2}-h_{1} \\
& 18.150=h_{2}-187.53 \\
& h_{2}=205.680 \mathrm{~kJ} / \mathrm{kg} \text { Any } \\
& h_{E}=h_{g_{2}}+\left(C_{p}\right)_{\text {Vat }}\left(T_{2}-T_{2}^{\prime}\right) \\
& h_{2}=h g_{2}+(C p) \text { op }\left(T_{2}-T_{2}^{\prime}\right) \\
& 205.680=201.50+0.6155\left(T_{2}-35^{\circ}\right) \\
& \begin{array}{l|l}
4.0152=T_{2}-35^{\circ} & \begin{array}{l}
4.18=0.6155\left(T_{2}-35^{\circ}\right) \\
T_{2}
\end{array}=39.01^{\circ} \mathrm{C} \text { or } 41.79 \\
6.7912=T_{2}-35^{\circ} \\
& T_{2}=41.79^{\circ} \mathrm{C} \text { Any }
\end{array}
\end{aligned}
$$

On) A Refrigerant based on ideal VCRS. Operates bl wa tamp limit, of $-20^{\circ} \mathrm{C} \& 40^{\circ} \mathrm{C}$.
The Refrigerant Enters the Condensor as Saturated Vapour and leaves the Condersor as Saturated Liquid. Then find,

1) $C O P$
2) Refrigeration in kW , if $\dot{m}=0.025 \mathrm{~kg} / \mathrm{sec}$.

Soon) Give,

$$
\begin{aligned}
& \text { Temp } \text { limits }=-20^{\circ} \& 40^{\circ} \mathrm{C} \\
& \dot{m}=0.025 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

$t^{\circ} \mathrm{C}$	h_{f}	$h g$	S_{f}	S_{g}
-20°	20	180	0.07	0.7366
40°	80	200	0.03	0.67

Putting value of x in (1)

$$
h 1=164 \mathrm{~kJ} / \mathrm{kg}
$$

(1)

$$
\begin{aligned}
R \cdot E & =h_{1}-h_{4} \\
& =164-80 \\
& =84
\end{aligned}
$$

(2) $W_{\text {in } 2} h_{2}-h_{1}$ $=200-164=36 \quad$ Win $=36$

$$
\text { C.O.P }=\frac{84}{36}=2.33=2.33 \quad C . O P=2.33 \quad \text { Ans }
$$

(3)

$$
\begin{aligned}
& R \cdot C=\dot{m} \times R E \\
&=0.025 \times 84 \\
& R C=2.1 \mathrm{~kW} \text { Any }
\end{aligned}
$$

Q22) A VCRS System using $R-12$ is employed to Produce 8640 Kg of icel day. The Condensing \&evaporator of Refrigerant are $48^{\circ} \mathrm{C}$ \& $-20^{\circ} \mathrm{C}$. Saturated liquid leaves the Condensor and Saturated Vapour leaves the evaporator. The compression is isentr opio and Water at $35^{\circ} \mathrm{C}$ is used to form ice and the temp of the ice should be $8^{\circ} \mathrm{C}$. Heat flow into the brine tank From Surrninding Which is 10% of total heat removed from Water Ito form ice Determine the total power required to drive the CombresorinkW.
Assume specific heat of ice $2.26 \mathrm{~kJ} / \mathrm{kgl}$, Latent heat of ice is $334.72 \mathrm{~kg} / \mathrm{kg}$ \& Specific heat of vapor Refrigerant $\left(c_{p}\right)_{v}=0.82$

$t^{\circ} \mathrm{C}$	$P($ bar $)$	$h_{f}(\mathrm{~kJ} \mid \mathrm{kg})$	$h_{g}(\mathrm{~kJ} / \mathrm{kg})$	S_{f}	S_{g}
48°	11.64	82.83	205.83	0.2973	0.6802
-20°	1.51	17.82	178.74	0.0731	0.7087

sol mice $^{n}=8640 \mathrm{~kg} /$ day $=\frac{8640}{24 \times 3600}=0.1 \mathrm{~kJ} / \mathrm{sec}$

$$
\begin{align*}
h_{2}= & h g_{2}^{\prime}+\left(C_{p}\right)_{v}\left(T_{2}-T_{2}^{\prime}\right) \\
= & 205.83+0.82\left(T_{2}-321\right)-1 \tag{1}\\
& S_{1}=S_{2} \\
& S g_{1}=S g_{2}^{\prime}+(C p)_{v} \ln \frac{T_{2}}{T_{1}} \\
& 0.7887=0.6802+0.82 \ln \frac{T_{2}}{321} \\
& T_{2}=332.35 k
\end{align*}
$$

using value of T_{2} in (1)

$$
\begin{aligned}
& \quad h_{2}=215.139 \mathrm{~kJ} / \mathrm{kg} . \\
& P_{\text {in }}=\dot{m} \times W_{\text {in }} \\
& P_{\text {in }}=\dot{m} \times h_{2}-h_{1} \Rightarrow P_{\text {in }}=\dot{m} \times 36.34
\end{aligned}
$$

$$
\begin{aligned}
& R_{c}=\dot{m} C_{Y F g}\left(T_{H}-T_{L}\right)+\dot{m}(L H)+\dot{m} C_{<F g}\left(T_{H}-T_{L}\right) \\
&=0.1 \times 4.187(35-0)+0.1 \times 334.72+0.1 \times 2.26 \times(0-(-8)) \\
& R_{C}=49.90 \mathrm{~kW} \\
& R C=\dot{m} \overrightarrow{R E} \\
& R C=\dot{m}\left(h_{1}-h_{4}\right) \\
& 49.90=\dot{m} 95.91 \\
& \dot{m}=0.520 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
R c & =\dot{m} R E \\
54.90 & =\dot{m} 95.91 \\
\dot{m} & =0.572 \mathrm{~kg} / \mathrm{sec} .
\end{aligned}
$$

$$
\begin{gathered}
10 \% \text { of } 49.90 \\
4.999 \mathrm{~kW}
\end{gathered} \quad \begin{gathered}
35^{\circ} \mathrm{C} \\
-8{ }^{\circ} \mathrm{C}
\end{gathered} \quad \begin{aligned}
& 49.94 \\
& 4.499 \\
& = \\
&
\end{aligned}
$$

Petting m in (1)

$$
\begin{aligned}
& =0.57\left(h_{2}-h_{1}\right) \\
& =0.57(205.34-178.74) \\
\text { Pen }= & 20.85 k w \\
& C . O P=\frac{R E}{\text { Win }_{\text {in }}}=\frac{h_{1}-h_{4}}{h_{2}-h_{1}}=\frac{95.91}{36.39} \\
& C O P=2.63
\end{aligned}
$$

Q. 23 Workbook)
(n) A Ford Storage requires a Referigeration capacity of $15 T R$. It works b/w $-10^{\circ} \& 30^{\circ} \mathrm{C}$. The Temper atures of Refrigerant Superheated as gas in evaporator is $-5^{\circ} \mathrm{C} \cdot$ \& temperatures of Refrigerant subcooled as liquid in the condensor is $25^{\circ} \mathrm{C}$.
No. Of cylinder ares equal to 2 , stroke io 105 times the bore \& speed is 960 RPM. Determine,

1) (a) $R \cdot E / \mathrm{kg}$
(b) mass flo Rate (\dot{m}) of Refrigerant in $\mathrm{kg} / \mathrm{min}$
(c) Theoritical Pistondisplacement
(B) COP
(E) Bore and Stroke of the Compressor.
2) if the dearnac volume is 3% of stroke volume then,
(a) Determine volumetric efficiency η_{v}.
(b) Brei \& stroke of the Compressor.

The specific heat of liquid is taken as $0.963 \mathrm{KJ} / \mathrm{kgk}$ \& Specific heat of vopour is $0.615 \mathrm{KJ} / \mathrm{kg} \mathrm{K}$

Temp. of Refrigerant superheated as livid in condenser is $=25^{\circ} \mathrm{C}=298 \mathrm{~K}$

No. of cylinder $(K)=2$

$$
\begin{aligned}
& \text { No. of Cope }(L)=1.5 \mathrm{D} \\
& \text { Speed }(N)=960 \mathrm{RPM} \\
& \left(C_{P}\right)_{V}=0.615 \mid \mathrm{CJ} / \mathrm{kg} / \mathrm{k} \\
& \left(C_{P}\right)_{L}=0.963 \mathrm{lCJ} / \mathrm{kg}-\mathrm{K}
\end{aligned}
$$

$$
\begin{align*}
& h_{1}=347.96 \\
& h_{2}=h_{1}+\left(C_{p}\right)_{v}\left(T_{2}-T_{1}\right) \\
& h_{2}=347.96+0.615(268-263) \\
& h_{2}=347.96+3.075 \\
& h_{2}=351.01<5 l_{10 g}-12 \\
& h_{4}=364.96 \\
& h_{3}=h_{24}+\left(C_{p}\right) v\left(T_{3}-T_{4}\right) \\
& h_{3}=364.96+0.615\left(T_{3}-303\right)-(1) \tag{1}\\
& S_{2}=S_{3} \\
& S_{g_{1}}+\left(C_{p}\right)_{v} \ln \frac{T_{2}}{T_{1}}=S_{g 4}+\left(C_{p}\right)_{v} \ln \frac{T_{3}}{T_{4}} \\
& 1.96561+0.615=\frac{268}{263}=1 . \\
& 1.5632+0.615 \ln \frac{268}{263}=1.5481+0.615 \ln \frac{T_{3}}{303} \\
& T_{3}=316.12 \mathrm{~K}
\end{align*}
$$

Onbutting valve of T_{3} ine $q^{\prime \prime}(1)$

$$
\begin{aligned}
& \text { butting value } 7 T_{3} \text { en } \\
& h_{3}=364.96+0.615(316.12-303) \\
& h_{3}=364.96+0.615(13.12) \\
& h_{3}=373.02 \mathrm{~kJ} / \mathrm{kg}-\mathrm{k} \\
& h_{5}=229.11 \\
& h_{6}=h_{f 5}-\left(C_{p}\right)_{2}\left[T s-T_{6}\right) \\
& h_{6}=229.11-0.963(303-298) \\
& h_{6}=224.29 \\
& h_{6}=h_{7}=224.29 \quad \text { Bc3 of Throtting }
\end{aligned}
$$

(1)

$$
\begin{aligned}
R \cdot E & =h_{2}-h 7 \\
R E & =(351.01-224.29) \Rightarrow R \cdot E=126.8 \mathrm{ks} / \mathrm{kg}-\mathrm{k} \\
R \cdot C & =\dot{m} R \cdot E \\
52.5 & =\dot{m} / 26.8-155 / \mathrm{kg} \cdot \mathrm{k} \\
\frac{1}{\text { sec }} \quad \dot{m} & =\frac{52.5}{126.8} \quad \dot{m}=0.414 \mathrm{~kg} / \mathrm{sec} \times 60 \\
\dot{m} & =24.60 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

(I) (d)

$$
\begin{aligned}
\text { COP } & =\frac{R \cdot E}{W_{\text {in }}}=\frac{126.8}{21.99}=5.76 \\
W_{\text {in }} & =\left(h_{3}-h_{2}\right) \\
& =(373-351.01) \\
W_{\text {in }} & =21.99 \mathrm{~kJ} / \mathrm{kg}-\mathrm{k}
\end{aligned}
$$

I(c) Theoritical Piston diplacment means 100% volumetric efficincy.

$$
\begin{aligned}
& \eta_{V}=100 \%=1=\frac{\dot{m} v_{2}}{\frac{\pi}{4} D^{2} L \frac{N}{G} K} \left\lvert\, \begin{array}{l}
P=m R T \quad P\left(\frac{V}{m}\right)=R T \quad V \alpha T \\
\quad V_{2}=\frac{T_{2}}{V_{2}}=\frac{V_{2}}{0.07202}=268
\end{array}\right. \\
& T P D=\dot{m} v_{2}=\frac{\pi}{4} D^{2} L \frac{N}{60} K \\
& T_{P D}=0.416 \mathrm{~V} 2 \text {-(1) } \\
& T_{P_{D}}=0.416 \times 0.07702 \\
& T_{r D}=0.326 \mathrm{~m}^{3} / \mathrm{sec} \\
& \frac{V_{2}}{V_{1}}=\frac{T_{2}}{T_{1}}=\frac{V_{2}}{0.07702}=\frac{268}{263} \\
& v_{2}=0.07848 \mathrm{~m}^{3} / \mathrm{kg} \\
& T_{P D}=0.0326=\frac{\pi}{4} \Delta^{2} L \frac{N}{60} \times K \\
& 0.0326=\frac{\pi}{4} D^{2} 1.5 D \times \frac{960}{60} \times 2 \\
& \frac{m^{3}}{\mathrm{sec}}=\frac{D^{2}}{\sec } \\
& D=0.095 \mathrm{~m} \\
& L=0.1429 \mathrm{~m} \\
& V_{c}=30 \% \mathrm{Vs} \\
& c=\frac{v_{c}}{v_{s}}=0.03 \\
& V_{c}=0.03 V_{s} \\
& \begin{array}{ll}
\eta_{v}=1+c-c\left(\frac{P_{3}}{P_{2}}\right)^{\frac{1}{n}} \text { or } \eta_{v}=1+c-c\left(\frac{T_{3}}{T_{2}}\right)^{\frac{1}{n-1}} & \frac{T_{3}}{T_{2}}=\left(\frac{P_{3}}{P_{2}}\right)^{\frac{n-1}{n}} \\
\left(\frac{T_{3}}{T_{2}}\right)^{\frac{1}{n-1}}=\left(\frac{P_{3}}{P_{2}}\right)^{\frac{1}{n}}
\end{array} \\
& \eta_{v}^{\alpha}=1+c-c\left(\frac{v_{2}}{v_{3}}\right) \quad\left(\frac{p_{3}}{p_{2}}\right)^{\frac{n-1}{n}}=\left(\frac{v_{2}}{v_{3}}\right)^{n-1} \Rightarrow\left(\frac{p_{3}}{p_{2}}\right)^{\frac{1}{n}}=\frac{v_{2}}{v_{3}} \\
& \eta_{v}=1+0.03-0.03\left(\frac{0.7848}{v_{3}}\right) \text {-(1) } \\
& V \propto T=\frac{V_{3}}{V_{4}}=\frac{T_{3}}{T_{4}} \\
& \frac{V_{3}}{0.02372}=\frac{-316}{303} \Rightarrow V_{3}=0.0247 \mathrm{~mm}^{3} / \mathrm{kg}
\end{aligned}
$$

Pritting value of v_{3} ins (1)

$$
\eta_{v}=93.5 \% \mathrm{Am}
$$

(2) (b)

$$
\begin{aligned}
\eta_{v} & =\frac{\dot{m} v_{2}}{\frac{\pi}{4} D^{2} \cdot \underline{L} \frac{N}{60}} \times K \\
\eta_{v}=.935 & =\frac{0.416 \times 0.07848}{\frac{\pi}{4} D^{2} \times 1.5 D \frac{960 \times 2}{60} \times 2} \\
D & =0.097 \mathrm{~m} \\
L & =0.1459 \mathrm{~m} .
\end{aligned}
$$

Use of Heat Exchanger Im VCRS:-

Evaporatar $\longrightarrow 7-1-\infty<R_{0} E=h_{1}-$ m $_{7}$
Compressor $\longrightarrow 2-3 \longrightarrow W_{\text {in }}=h_{3}-h_{2}$
Condensor $\longrightarrow 3-4-5-6 \longrightarrow Q_{c}=h_{3}-h_{5}$
Throtling \longrightarrow 6-7 $\longrightarrow h_{6}=h_{7}$ Heat Exchanger $\quad \begin{aligned} & 1-2 \\ & 5-6\end{aligned}$

Qr) A Ford Storage Requires a Mfrigeration Capacity of 50 KW .
It Works b/w a Condenser temperatures of $35^{\circ} \mathrm{C}$ \& evaporator temperature of $-10^{\circ} \mathrm{C}$. It is subcoubd by $5^{\circ} \mathrm{C}$ before entering the expansion value. by the dry saturated Vapour leaving the evaporator.
The Refrigerant Ammonia is Assuming a Single cylinder, Single acting compressor, operating at 1000 RPM with stroke is equal to 1.2 time the Bore. Determine,

1) Power Required
2) Cylinder dimersim

Sol ${ }^{n}$

$$
\begin{aligned}
R \cdot C & =150 \mathrm{~kW}=50 \times 3.5=175 \mathrm{~kW} \\
K & =1 \\
L & =1.2 \mathrm{D} \\
n & =1000
\end{aligned}
$$

NOTE:-
It There is nw information Provided Regarding olearnac Ratio (gimp) therefore i lelill prssumme 100° Volumetric efficiency. $^{\circ}$

CASCADE:-
Prove That, COP of Cascade Refrigeration System is

$$
(C O P)_{C C}=\frac{(C O P)_{1}+(C O P)_{2}}{1+(C O P)_{1}+(C O P)_{2}}
$$

Where (COP) is COP of first Refrigeration system ie RI. (COP) $)_{2}$ is CoP of Send Refrigeration System ie R_{2}.

$$
\begin{gathered}
(C O P)_{1}=\frac{D E}{W_{i n}}=\frac{Q_{1}}{W_{1}} \\
W_{1}=\frac{Q_{1}}{C O P_{1}}
\end{gathered}
$$

$$
\begin{aligned}
& (C O P)_{2}=\frac{D E}{W_{1 n}}=\frac{Q_{2}}{W_{2}} \\
& W_{2}=\frac{Q_{2}}{Q_{2} P_{2}}-2
\end{aligned}
$$

$$
\begin{equation*}
(C O P)_{C C}=\frac{(D E)_{L C}}{\left(W_{n}\right)_{L C}+\left(W_{i n}\right)_{V C}}=\frac{Q_{1}}{W_{1}+W_{2}} \tag{3}
\end{equation*}
$$

using (1) \& (2) in equation (3)

$$
(C O P)=\frac{Q_{1}}{\frac{Q_{1}}{(C O P)_{1}}+\frac{Q_{2}}{(C O P)_{2}}}
$$

$$
(C O P)_{C c}=\frac{Q_{1}}{\frac{Q_{1}}{(C O P)_{1}}+\frac{Q_{1}+\frac{Q_{1}}{\left(C O P_{1}\right)}}{(C O P)_{2}}}=\frac{Q_{1}}{\frac{Q_{1}}{C O P_{1}}+\frac{Q_{1}}{C O P_{2}}+\frac{Q_{1}}{C O P_{1} \times C_{O} P_{2}}}
$$

grep objectuit

$$
(C O P)_{C C}=\frac{(C O P)_{1}(C O P)_{2}}{1+(C O P)_{1}+(C O P)_{2}}
$$

Hence Proved.

Q13) A Cascade Refiner ation System of $100 T R$ capacity uses ammonia \& CO_{2} Refrigerant. The evaporating \& Condensing temp of CO are $-40^{\circ} \mathrm{C} \& 5^{\circ} \mathrm{C}$. The evaporating temp of NH_{3} 领 $-7^{\circ} \mathrm{C}$. The Power Supplied to the NH_{3} Compressor io 9605 KW . In the CO_{2} circuit the liquid leaving the Condensor as Saturated liquid, the vapour leaving the evaporator is dry \& Saturated \& the Compression is isentropic. Calculate the mars flow rate of $\mathrm{CO}_{2} \&$ COP of the total System. use the following table for CO_{2} having $\left(C_{P}\right)_{v}=0.85 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

$t^{\circ} \mathrm{c}$	$P(b a r)$	h_{f}	$h g$	S_{f}	S_{g}
-40	10.55	332.7	652.8	3.8531	5.2262
5	39.77	431.0	649.8	4.2231	5.0037

SHIn) $\quad R C=100 T R=100 \times 3.5=350 \mathrm{~kW}=\underset{\left(\mathrm{CO}_{2}\right)}{\dot{\rho_{n}}} \times R_{E}=\dot{m}_{\mathrm{CO}_{2}} \times\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)$

$$
\begin{align*}
& \mathrm{CO}_{2} \rightarrow T_{E}=-40^{\circ} \mathrm{C} \\
& T_{C}=5^{\circ} \mathrm{C} \\
& \mathrm{NH}_{3} \rightarrow T_{E}=-7^{\circ} \mathrm{C} \\
& \mathrm{PH}_{3} \rightarrow 96.5 \mathrm{KW} \\
& R C=\dot{m} \times R E \\
& \text { R } 350=\dot{m}_{\mathrm{CO}} \times\left(652.8-43^{\prime}\right) \text {). } \\
& 350=m_{c o 2} 221.8 \\
& \text { micoz }=\frac{350}{221.8} \\
& \dot{m} \mathrm{CO}_{2}=1.577 \mathrm{~kg} / \mathrm{sec} \text {. } \\
& P_{\text {colin }}=\dot{m} \times \text { Win } \\
& =1.577 \times\left(h_{2}-h_{1}\right) \\
& =1.577 \times\left(h_{2}-652.8\right) \tag{1}\\
& (C o P)_{c c}=\frac{350}{1.577\left(h_{2}-652.8\right)+96.5} \\
& h_{2}, h_{2^{\prime}}{ }^{\prime}+\left(C_{p}\right)_{v}\left(T_{2}-T_{2}{ }^{\prime}\right) \\
& h_{2}=649.8+0.85\left(T_{2}-278\right) \tag{2}
\end{align*}
$$

$$
\begin{gathered}
S_{g_{1}}=S_{g_{2}} \neq\left(C_{p}\right) \cup \operatorname{Rin}\left(\frac{T_{2}}{T_{1}}\right) \\
5.2262=5: 0037+0.85 \ln \left(\frac{T_{2}}{278}\right) \\
T_{2}=361.181<
\end{gathered}
$$

lesing value of T_{2} en equ" (2)

$$
h_{2}=672.5 \mathrm{ks} / \mathrm{kg}
$$

lesing valve of h_{2} in (1)

$$
\operatorname{COP}=1.52
$$

Refrigeranto
Type of Refrigerant:-

Primary Refrigerant

1) Primary Refrigerant:-

Primary Refrigerant are the Wo king fluid, that under going the Cydic prows and extract the heat on the system. There is a Latent heat of Transformation for the Refrigeration e.g:- $R-11, R-12, R-22, R-134$.
2) Secondary Refrigerant:-

Secondary Refrigerants ard the working thin, which ore first Cooled by primary Refrigerant \& then used for the Cooling at desired place. e.g.- $\mathrm{H}_{2} \mathrm{O}$, Brine.

Designation of Refrigerant:-

1) CASE I:- When The Refrigerant in Saturated ffydrocartom:

$$
\begin{aligned}
& R-(m-1)(n+1) p \\
& n+p+q=2 m+2 \\
& C_{m} H_{n} F_{p} C l_{q}
\end{aligned}
$$

$m \rightarrow$ Represent no. of Carbon elem int.
$n \rightarrow$ Represent no of Hydrogen element.
$p \rightarrow$ Represent no. of Florine element.
$q \rightarrow$ Represent no. of chlorine element.
1)

$$
\begin{aligned}
& R-11 \\
& R-0 \| \\
& R-(m-1)(n+1) p \\
& m-1=0 \quad m=1 \\
& n+1=1 \quad n=0 \\
& p=1 \quad p=1 \\
& n+p+q=2 m+2 \\
& 0+1+q=2 \times 1+2 \\
& 1+q=4 \\
& q=3 \\
& C_{m} H H_{n} F_{p} C l_{q} \quad m=1, n=0, p=1, q=3
\end{aligned}
$$

$\mathrm{Am}_{\mathrm{m}} \rightarrow \mathrm{CFCl}_{3}$
2) $R-12$

$$
\begin{aligned}
& R-O 12 \\
& R-(m-1)(n+1) P \\
& m-1=0 ; m=1 \\
& n+1=1 ; \quad ; \quad P=2 \\
& P=2 ; \\
& n+P+q=2 m+2 \\
& O+2+q=2 \times 1+2 \\
& 2+q=4 \\
& q=2 \\
& C_{m} H_{n} F_{p} C l_{q} \quad(m=1, n=0, P=2, q=2) \\
& C F_{2} C l_{2}
\end{aligned}
$$

3)

$$
\begin{aligned}
& R-22 \\
& R-O 22 \\
& R-(m-1)(n+1) P \\
& m-1=0 ; m=1 \\
& n+1=2 ; n=1 \\
& P=2 ; p=2 \\
& n+p+q=2 m+2 \\
& 1+2+v=2+2 \\
& 3+q=4 \\
& q=1 \\
& C_{m} H H_{n} F_{p} C l q_{q} \quad(m=1, n=1, p=2, q=1)
\end{aligned}
$$

Ans $\rightarrow \mathrm{CHF} \mathrm{Cl}$
4) $R-134$

$$
\begin{aligned}
& R-(m-1)(n+1) p \\
& m-1=1 ; m=2 \\
& n+1=3 ; m=2 \\
& p=4 ; p=4 \\
& n+p+q=2 m+2 \\
& 2+4+q=4+2 \\
& q=6-6 \\
& q=0 \\
& C_{m} H_{n} F_{p} C l q_{q} \quad m=2, m=2, p=4 \quad q=0 \\
& C_{2} H_{2} F_{4}
\end{aligned}
$$

NOTE:-

$$
\begin{aligned}
& \mathrm{R}-11 \rightarrow \mathrm{CFCl}_{3} \\
& \mathrm{R}-12 \rightarrow \mathrm{CF}_{2} \mathrm{Cl}_{2} \\
& \mathrm{R}-22 \rightarrow \mathrm{CHF}_{2} \mathrm{Cl}_{2} \\
& \mathrm{R}-134 \rightarrow \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}
\end{aligned}
$$

$\mathrm{R}-134 \stackrel{\circ}{\circ} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}$
R-134, which is $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}$, is Known as ecoffiendly. Refrigerant. The chlorine element which are present in Commonly used Refrigerant attracts the ozone layer, which io Situated in Stratosphere, which prevents us to filler the harmful vV radiation which is emitted by Sum. The chlorine (dl) element present in the Commonaly use refrigerant, attacks the Ozone layer \& reduce oboe layer thictoness. Therefore wee are use such refrigerant which have the minimum tendency at reduction in Ozone layer.
2) CASE I:- When the Refrigerant in unsaturated Hydrucarbm.

$$
\begin{gathered}
R-1(m-1)(n+1) P \\
n+P+q=2 m \\
C_{m} H_{n} F_{p} C_{q}
\end{gathered}
$$

3) Case II:- When Refrigerant in inorganic Compound.

$$
\begin{aligned}
& \mathrm{R}-(700+\text { molecular Weight }) \\
& \mathrm{NH}_{3}(717) \\
& \mathrm{CO}_{2}(744) \\
& \mathrm{SO}_{2}(764) \\
& \mathrm{H}_{2} \mathrm{O}(718) \\
& \text { Air }(729)
\end{aligned}
$$

Selection of Refrigurant (Desirable Popperty of Refrigerant):-
A - Thermodynamic Property
B - Chemical Property
C - Physical Property
A) Thermodynamic Property:-
(i) Critical Temperature:- musth T as possible

The Critical Temperature of Refrigerants Should be as high as possible for above the Condenser pressures Temperature.

NOTE:-
The Critical Temperature of CO_{2} ethylene are almost. For the indian Summer ambient Condition.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}-314^{\circ} \mathrm{C} \\
& \mathrm{SO}_{2}-156.5^{\circ} \mathrm{C} \\
& \mathrm{H}_{3}-132.4^{\circ} \mathrm{C} \\
& \mathrm{R}-12-11.5^{\circ} \mathrm{C} \\
& \mathrm{R}-22-96.5^{\circ} \mathrm{C} \\
& \mathrm{R}-134-101.2^{\circ} \mathrm{C}
\end{aligned}
$$

ii) Specific Heat:-

The Specific Heat of vapours should be high, in order to limit the degree of Superheated, Where as the specific heat of liquid should be low in order to limit the degree of irreversible. (Low value of $d s$). $b_{3} C_{p} \alpha d s$
iii) Enthalpy of Vaporization :-

It should be as high as possible because the same Refrigerant Capacity. The mas flow rate (in) Reduce.
$R C=\operatorname{tim} \times R \cdot E T$
NOTE:-
Among The Commonly used Refrigerants NH_{3} have high Value of the enthalpy of vaporization.

$$
\begin{aligned}
& \uparrow \underline{\mathrm{H}_{2} \mathrm{O}}-2261 \\
& \mathrm{NH}_{3}-1369 \\
& \mathrm{R}-11-234.7 \\
& \mathrm{R}-12-165.7 \\
& \mathrm{R}-134-197.3 \\
& R_{c} \rightarrow \downarrow \dot{m} \times \mathrm{R} \cdot \mathrm{E} \cdot \uparrow
\end{aligned}
$$

iv) Thermal Conductivity(K):- must be as high possible. It should be high, Because it help to Reducing the Size of evaporator and Condenser.

$$
\begin{gathered}
Q=K A \frac{\partial T}{\partial x} \\
K \propto \frac{1}{\text { Area }}
\end{gathered}
$$

V) Evaporator and Condensor Pressure:-

Both should be Positive $(+v e)$. If the evaporator pressure is less than atmospheric pressure, then there is probability for the leakage of air, so there, evaporator pressure 3 grb Should be kept almost equal to atmospheric pressure. On the other side, the condenser pressure should be Kept at Some moderate value.
vi) Compression Ratio:-

It is Defined as the Ratio of volume before Compression to the volume after Compression.
Low Compression Ratio in desirable because the high Compression Ratio results in increase in Work input to the Compressor and \downarrow in volumetric efficiency.
vii) Freezing Point:-

Low Freezing Point is desirable.
Freezing Point of $\mathrm{NH}_{3} \rightarrow\left(-77^{\circ} \mathrm{C}\right)$ freezing Point of $\mathrm{H}_{2} \mathrm{O} \rightarrow\left(0^{\circ} \mathrm{C}\right)$

NOTE:-
Freezing Point of Water is $0^{\circ} \mathrm{C}$. below $0^{\circ} \mathrm{C}$ it Covert into solid state and its flow io not possible.

$$
\begin{aligned}
& \mathrm{R}-22 \rightarrow-160^{\circ} \cdot 5^{\circ} \mathrm{C} \\
& \mathrm{R}-12 \rightarrow-157^{\circ} \cdot 4^{\circ} \mathrm{C} \\
& \mathrm{NH} \rightarrow-77^{\circ} \mathrm{C} \\
& \mathrm{R}-134 \rightarrow-101.2^{\circ} \mathrm{C}
\end{aligned}
$$

Viii) Compressor Discharge Temperature:-
NH_{3} Compressor are e Water Cooled Compressor. Because of its high Compressor discharge temperature
Where as
NH_{3} - Water Cooled Comb°

$$
\begin{aligned}
& R-11 \\
& R-12
\end{aligned}
$$

R-11,R-12- Air Could Comp
Compressor ave air cooled. $\downarrow \eta_{V}$
ix) Coefficient of Performance (COP):-

It represent the Running cost of the equipment.
Higher the COP. Lower will be the Running cost.

$$
\uparrow C O P=\downarrow \text { Running cost }
$$

NOTE:-

1) Almost all of the Refrigerant are having Similar Valve af COP, when operating between same temperature limit.
2) Even though, the Latent heat of Vaporization for NH_{3}.

Refrigerant is having high value, but it dost help to
improve in COP because of it, high Work input to the Compressor.

$$
\begin{aligned}
& \mathrm{R}-\mathrm{H} \longrightarrow 4.04 \\
& \mathrm{NH}_{3} \rightarrow 4.06 \\
& \mathrm{R}-12 \longrightarrow 4.12
\end{aligned}
$$

3)

B) Chemical Property:-

1) Toxicity:-

Refrigerant should be non-Toxic.
NOTE:-
NH_{3} is Non Toxic in Nature.
2) Flamability:-

Refrigerant should be noon flamable in nature.
NOTE:-
NH_{3} is both Non-Toric and non flammable in nature.
3) Action With Oil:-
$R+$ Fully miscible With oil. $R-11, R-12$
$R+$ Fully ism miesible with oi. $\mathrm{NH}_{3}, \mathrm{CO}_{2}$
$R+$ Partially miscible lilith oil. $R-22$
There are some Refrigerant, fully miscible lith oil and some C_{C} Refrigerant fully immisible lith oil, dost create any Problem but refrigerant which is partially mixible with oil like R-22, create problem. Choking problem occurs in condenser.
Therefore Synthetic cir is used in Case of
NOTE:-

1) Oil Seprator is install b/w Compressor \& Condensior.
2) Oil seprator, Which no Requirement to install, when Refrigerant \& oil are immisital at Condenser pressures Tempo
3) Sensing bulb is placed at the exit of evaporator.
4) Action With material of Construction :-
NH_{3} attacks copper (cu), so preferable Worough ire
Where as Hydrocarbon Compound attacks aluminium (Al)
Prefreable lilith Copper (cu)
NH_{3} Corrodes Copper, Suitable for Wrough rem Hydrocarbon Corrodes Alurninum Suitable for Copper
C) Physical Property:-
(i) Cost:-

Viscocily - \uparrow
It should be Low.
ii) Leak Detection:-

First of All it should be not be leakage of Regor Refrigerant at any cost but if it leaks ont, then its detection should be as facer as possible by the simplest Methods.
Forescample:

1) Fern leak or Halocarbon leak:-
i) Haliote Torch Method:-

If Ferom leases then Colour of light changes from blue to bluish green: (ii) Soap bubble Method.
2) NH_{3} leaps:- (Burning Sulphur Candle)
i) Suelphurstick Mettroel:-

The Pressence of $\mathrm{N}_{2} \mathrm{H}_{3}$ leaks, Whit a fumes of ammonium Sulphides are formed, When Burning Sulphur Candle.
ii) SO_{2} leaps:-
NH_{3} Swab Test.

Azeotropes:-
It io misitive of Refrigerants, Which behaves like a Pere System. Then designation are started with R-500.

$$
\text { Azeotropes } \longrightarrow R-500
$$

Mix of Refrigerant behave lib pure system

Refrigerant And there Application:-
$R-11 \rightarrow$ Central Air Conditioning
$R-12 \longrightarrow$ Domestic Refrigerator. Water Cooler
$R-22 \longrightarrow$ Window A/C
$\mathrm{NH}_{3} \longrightarrow$ Cooling Storage Plant
$\mathrm{CO}_{2} \longrightarrow$ Direct Contact freezing of food.
Brine \longrightarrow Milk Chilling Plants
Air \longrightarrow Gas liquidification, Air craft
Refrigeration system
Refrigerant in V order of N oral Boiling Point:-

$$
\begin{aligned}
& \text { frigerant in border of } \mathrm{N} \text { mol Boiling Point:- } \\
& \left.R-11\left(-23.7^{\circ} \mathrm{C}\right)>R-1.2\left(-29^{\circ}\right)>\mathrm{NH}_{3}\left(-33^{\circ} 3^{\circ}\right)>R-22(-4)^{\circ}\right)>\mathrm{CO}_{2}\left(-73^{\circ}-6^{\circ}\right)^{\circ} \text { S }
\end{aligned}
$$

Refrigerant in \uparrow order of freezing Print:-

$$
\mathrm{CO}_{2}<\mathrm{NH}_{3}<R-11<R-12<R-22
$$

Refrigerant in v order of Critical temp.

$$
\mathrm{R}-11>\mathrm{NH}_{3}>\mathrm{R}-12>\mathrm{R}-22>\mathrm{CO}_{2}
$$

Refrigerant in \downarrow order of Critical Pressure.

$$
\text { igirant in } \downarrow \text { order }(113-86)>\mathrm{CO}_{2}(73.8)>R-22>R-11>R-12(41.2)
$$

Refrigerant in \downarrow of $\mathrm{COP}:-$

$$
\mathrm{R}-11>\mathrm{NH}_{3}>\mathrm{R}-12>R-22>\mathrm{CO}_{2}
$$

Vapour Absorption Refrigeration System:-(VARS)

1) The Compressor Which is used in (VCRS) is Replaced with Absorber, Pump \& Generators.
2) Solar Absorption Refrigeration System is Working on the Principal of (VARS).
3) VARS system is generally Preferred in Remote locations \& where the Cost of electricity is high.
4) Waste heat Cam be effectively ectilizel in (VARS) System.
5) The COP of VARS system is Low ψ and it generally lies b/w 0.3 to 0.5 .
6) Heat Rejection Occurs in Condenser and Absorber.
7) The Commonly used Absorber Refrigerant pair is,
(A) Arnonomia 8 Water $\left(\mathrm{NH}_{3}-\mathrm{H}_{20} 0\right):-$

In this Ammonia $\left(\mathrm{NH}_{3}\right)$ is used as the Refrigerant \& Water is used as a Absorber. Invader to Remove Water Particles from the ammonia vapour Analyser \& Rectifier Assembly is used.
Her, Water is Removed in two stages. The Complete elinounation of Hater Parties Occurs in Rectifier' \& it Will Produce dry Ammonia Vapour.
(B) Lithium Bromide \& Water (LiBr-HzD):-

In this elater is used as the Refrigerant and Lithium Bromide (L iBr) is used as the Absorber.
The Above Combination is not prefreable below $0^{\circ} \mathrm{C}$ (The fruzing $\mathrm{P}+$ of $\mathrm{H}_{2} 0^{\circ} \mathrm{C}$)

Working Sub:- Air, Water or Refrigerant

COP of VARS:-

$$
\begin{align*}
& Q_{E}+Q_{G}=Q_{C}+Q_{A}-\text { (1) (from } I^{S+} \text { Law of Thermodynamics) } \\
& \frac{Q_{E}}{T_{E}}+\frac{Q_{G}}{T_{G}}=\frac{Q_{C}}{T_{0}}+\frac{Q_{A}}{T_{0}}-\text { (2) } \tag{2}
\end{align*}
$$

$$
\frac{Q_{E}}{T_{E}}+\frac{Q_{G}}{T_{G}}=\frac{Q_{C}+Q_{A}}{T_{0}}=\frac{Q_{E}+Q_{G}}{T_{0}}=\frac{Q_{E}}{T_{0}}+\frac{Q_{G}}{T_{0}}
$$

$$
\begin{aligned}
& \frac{Q_{E}}{T_{E}}-\frac{Q_{E}}{T_{0}}=\frac{Q_{G}}{T_{0}}-\frac{Q_{G}}{T_{E_{1}}} \\
& Q_{E}\left(\frac{1}{T_{E}}-\frac{1}{T_{0}}\right)=Q_{G}\left(\frac{1}{T_{0}}-\frac{1}{T_{G}}\right)
\end{aligned}
$$

$$
Q_{E}\left(\frac{T_{0}-T_{E}}{T_{0} T_{E}}\right)=Q_{G}\left(\frac{T_{G}-T_{0}}{T_{0} T_{a}}\right)
$$

Grup objectur (Objective)

$$
C O P=\frac{Q_{E}}{Q_{G}}=\frac{T_{G}-T_{0}}{T_{G}} \times \frac{T_{E}}{T_{0}-T_{E}} \rightarrow\binom{(O P)=}{\text { VARS }} \frac{T_{E}}{T_{G}}=\frac{T_{G}-T_{0}}{T_{0}-T_{E}}
$$

NOTE:-

1) $\left.T_{G}\right]_{E}$

$$
\begin{aligned}
(C O P)_{\text {VARS }} & =\eta_{E} \times(C O P)_{R} \\
& =\left(1-\frac{T_{0}}{T_{G}}\right) \cdot\left(\frac{T E}{T_{0}-T_{E}}\right) \\
& =\left(\frac{T_{G}-T_{0}}{T_{G}}\right)\left(\frac{T_{E}}{T_{0}-T_{E}}\right)=\frac{T_{E}}{T_{G}}\left(\frac{T_{G}-T_{0}}{\left.T_{0}-T_{E}\right)}\right)
\end{aligned}
$$

2) $(C O P)_{\text {Actual }}$ Actual COP of (VARS) System iss,

$$
\begin{aligned}
& (C O P)_{\text {Acted }}=\frac{Q_{E}}{W_{P}+Q_{G}} \quad\left[\begin{array}{l}
\text { [if Question Said to Consider } \\
\text { Pump Work:] }
\end{array}\right. \\
& W_{P}=-V_{F} \int d P \quad\left(V_{F}\right. \text { is very Small) } \\
& (C O P)_{\text {VARS }}=\frac{Q_{E}}{Q_{G} \quad \text { (Assumption neglect Pump Work) }} \text { (it Question Said to neglect Pump Work) }
\end{aligned}
$$

VARS

1) Compress is used.
2) It is a Work operated unit. or Runs on high grade energy.
3) Heat Rejection Clcaurs in Condemr only.
4) Moisture Related Problem is having more Serins impact or dangerous in VCRS.
5) Chances for the leakage of Refrigerant are high.
6) It has higher COP generally Varies from 3-5.
7) Creates More noise Pollution.

Spend Mmes bey \uparrow Cop

1) Compressor is Replaced With Absorber, Pump e generator
2) It is a Heat operated unit. or
Runs on Low Grade energy.
3) Heat Rejection Qcccurs in Condenser as led absorber.
4) Relatively Lesser Problem.
5) Relatively lesser chances
6) It has Relatively Lower (COP)

Generally varies from 0.3-0.5.
7) Relatively Less noisy.
less money so $\&$ cop can be Considered

Electrolux Refrigerator:- [No use of Pump]

1) The main Aim, of using this Refrigerator System, is to Create noiseless operation (ie) no use of Pump. it
ii) It is a three fluid System ie Ammonia, Water \& Hydrogen.
NH_{3} Refrigerant
$\mathrm{H}_{2} \mathrm{O}$ Absorber
H2 (Low Partial Pressure of Ammonia vapour) used to
NH_{3} is used as the Refrigerant.
H_{20} is used as the Absorber.
H_{2} is used to create Low partial Pressure of $\mathrm{NH}_{3} \mathrm{~V}$ apours

Reversed Brayten Cyde / Bell-Coteman Gyde:- Toule Cogels

Reversed Brayton Cycle Bell Colman Cycle
Rroees $(1-2) \rightarrow$ Isentrobic / Revrrsible Adiabatic Comprenion. 7
Procenes
Procen $(-2-3) \rightarrow$ Heat Rejection at Constant Prenure.
Procen $(3-4) \rightarrow$ Isentropic/Reversible Adiabtic espansion.
Prouss $(4-1) \rightarrow$ Heat addition at Constant Pressure

Letrp be Pressur Ratio: $-\frac{P_{H}}{P_{L}}$

($p-v$ curvi)
(T-S) Curver

COP of Reveresed Brayton Cycle:-
$(2-1)$

$$
C O P=\frac{R, \epsilon}{W_{\text {net }}}
$$

for T-S

$$
\begin{align*}
& \operatorname{COP}=\frac{R \cdot \epsilon}{W_{\text {in }}} \\
& C O P=\frac{R \cdot E}{W_{C}-W_{T}}-{\text { Reason } b_{3}}^{\text {R.E is taken as }\left(-v_{e}\right)} \\
& \text { COP }=\frac{\left(h_{1}-h_{4}\right)}{\left(h_{2}-h_{1}\right)-\left(h_{3}-h_{4}\right)} \\
& \text { COP }=\frac{h_{1}-h_{4}}{\left(h_{2}-h_{1}\right)-h_{3}+h_{4}} \\
& \text { COP }=\frac{h_{1}-h_{4}}{h_{2}-h_{3}-h_{1}+h_{4}} \\
& \text { COP }=\frac{\left(h_{1}-h_{4}\right)}{\left(h_{2}-h_{3}\right)-\left(h_{1}-h_{4}\right)} \\
& \text { cop }=\frac{1}{\left(\frac{h_{2}-h_{3}}{h_{1}-h_{4}}\right)-1} \\
& \text { Air } \rightarrow \frac{P_{V}=m R T}{h=C_{P} T} \quad \text { enthalpy is fum of temp for ideal } \\
& \text { Gas } \\
& \operatorname{COP}=\frac{1}{\frac{\operatorname{CP}\left(T_{2}-T_{3}\right)}{\operatorname{CP}\left(T_{1}-T_{4}\right)}-1} \\
& \text { COP }=\frac{1}{\left(\frac{T_{2}-T_{3}}{T_{1}-T_{4}}\right)-1} \\
& \operatorname{COP}=\frac{1}{\frac{T_{2}\left(1-\frac{T_{3}}{T_{2}}\right)}{T_{1}\left(1-\frac{T_{4}}{T_{1}}\right)}-1} \tag{1}
\end{align*}
$$

Process 1-2 $P_{v}^{\gamma}=c$

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{x} \tag{2}
\end{equation*}
$$

Assuming $\frac{y-1}{y}=x_{4}$ \& Pressurue Ratio $\gamma P=\frac{P_{n}}{P_{L}}$
Procen-3-4 - $P_{V}^{\gamma}=c \quad b_{33}$. (Adiabatic)

$$
\begin{equation*}
\frac{T_{3}}{T_{4}}=\left(\frac{P_{3}}{P_{4}}\right)^{x} \tag{3}
\end{equation*}
$$

Procen (2-3): $\left.-P_{2}=P_{3}\right]$ - (4) using equ"(4) in (3)
Procen (4-1):- $\left.\quad P_{1}=P_{4}\right]$
$]$ - (4) $\rightarrow \quad \frac{T_{3}}{T_{4}}=\left(\frac{P_{2}}{P_{1}}\right)^{x}$
using equ" (2) \& (5)

$$
\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{4}}
$$

Objecture

$$
\begin{aligned}
& \begin{array}{|c|}
\hline T_{2} T_{4}=T_{3} T_{1} \\
\text { ceven odd } \\
\text { evom odd }
\end{array} \\
& \hline
\end{aligned}
$$

-(6) grup objective for oto and morecyes.

$$
\left[\begin{array}{l}
\frac{I c}{T 0} \\
T p \\
P D
\end{array}\right]
$$

using (6) in equ" (1)

$$
\operatorname{cop}=\frac{\frac{T_{3}}{T_{2}}=\frac{T_{4}}{T_{1}}}{\frac{1}{T_{2}\left(1-\frac{T_{3}}{T_{1}}\right)}-1}=\frac{1}{\left(\frac{T_{2}}{T_{1}\left(1-\frac{T_{4}}{T_{1}}\right)}-1\right.}
$$

use equ" No (2):- $\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\gamma_{p}\right)^{\frac{\gamma-1}{\gamma}}$

$$
\begin{aligned}
& \text { Let } r p=\frac{P_{n}}{R_{L}}=\frac{P_{2}}{P_{1}} \\
& \frac{\text { grap }}{\text { objetait }}\left(\begin{array}{c}
(\text { cop })=\frac{1}{R B C}
\end{array}\right.
\end{aligned}
$$

The COP of Reversed Brayto cycle is a function of Pressures Ratio.

Assumptims:-

1) There is only one Assumption taken in deriving the expresim for cop of Reversed Drayton Cycle is Bott Compression \& expansion are isentropic.

NOTE:-

1) Air \rightarrow is the Working fluid used because of LowWt/ToN of Refrigeration.
2) The Expansion Work is not Negligible in Comparison to the Compression Work. Because Both equipment (Compressor \& turberie) ar handiling same stat of the Working fluid that is gaseous Phase.

$$
\begin{gathered}
\text { COP }=\frac{R \cdot E}{W_{C}-W_{E}} \\
\downarrow \\
\int v_{g} d P \cdot \int v g d P
\end{gathered}
$$

V_{f} cam be neglected but b_{g} is not

$$
V_{g} \ggg>V_{f}
$$

Qu) Why isenthalpic expansim is not prepreable in Reversed Drayton Cycle?
(An) Air is Treated As idol gas, \& for an ideal gas enthalpy of is funct of temp So en th case of isenthalpicerpansim, there iv no drop in temp taken Place. $\frac{1}{}$ instead of heat absorbing it will Retting Heat. therefore isentropic expansion is frap fable.

On) A bell-Columan Refrigeration Plant operating Leith Air as a Working fluid, having 1 bar pressure and $10^{\circ} \mathrm{C}$ temperature is Compressed to a Pressure of 5 bar. Air is then cooled in the cooler to a temper oture of $25^{\circ} \mathrm{C}$. Before expanding in the expansion cylinder. Where the Cold Pressure of 1 bar is maintain. Determine

1) Theoretical $C O P$
2) Referigeration Effect Per Kg , Assumming bott Compression \& expansion to be isentropic, having value of $Y=1.4$, \& specific heat $C_{p}=1.0041<3 / 1 g \mathrm{~K}$
3) If Compression follows $P^{V}=1.35=c$ (comprenor) and expansion $P^{1.3}=C$ Them Calculate
(a) COP
(b) Refrigeration Effect Per Kg.

Soln)

$$
\begin{aligned}
& \text { rigeration Effect Per } \mathrm{Kg} \text {. } \\
& \gamma p=\frac{P_{n}}{P_{L}}=\frac{P_{2}}{P_{1}}=\frac{5}{1}=5 \quad P_{\text {pressure Ratios }}
\end{aligned}
$$

(1) Theoritical COP

$$
\frac{1}{(5)^{\frac{0.4}{1.4}-1}}=1.71
$$

(ii) $\underline{R \cdot E / K_{j}}=h_{1}-h_{4}$ enthalpyis fin n of temp.

$$
\begin{align*}
& =C_{p}\left(T_{1}-T_{4}\right) \\
& =1.005\left(283-T_{4}\right)-1 \tag{1}\\
& =1.005(283-188.15) \\
& =95 \mathrm{~kg} / \mathrm{kg} .
\end{align*}
$$

iii) $P_{v}{ }^{1.35}=C \rightarrow \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{y}} \Rightarrow \frac{T_{2}}{283}=\left(\frac{5}{1}\right)^{\frac{1.35}{1.35-1}}=T_{2}=429.3 k$

$$
\left.P V^{1 \cdot 3}=c \rightarrow \frac{298}{T_{4}}=\left(\frac{5}{1}\right)^{\frac{1.35-1}{1 \cdot 35}} \Rightarrow T_{4}=205\right) \mathrm{K}
$$

(b)

$$
\begin{aligned}
\text { REl Kg }=\text { hi -ky } & =C_{p}\left(T_{1}-T_{4}\right) \\
& =1.005(283-205) \\
& =77.8 \frac{\mathrm{KJ}}{\mathrm{~kg} .}
\end{aligned}
$$

$$
\begin{aligned}
W_{1-2} & =n \text { Wclood } \\
P V^{1 \cdot 35}=c & =m\left(\frac{P_{1} v_{1}-P_{2} v_{2}}{n-1}\right) \\
& =\frac{n}{(n-1)}\left(P_{1} v_{1}-P_{2} v_{2}\right)
\end{aligned}
$$

As it is case of ideal gas

$$
\begin{aligned}
& P_{V}=m R_{T} \\
& \frac{n}{n-1}\left(m R T_{1}-m R T_{2}\right) \\
& =\frac{n}{n-1} m R\left(T_{1}-T_{2}\right) \\
& W_{1-2}=\text { (Compressor) must be-ve. } \\
& W_{1-2}=\left(\frac{1.35}{1.35-1}\right) \times 1 \times 0.287(283-429) \\
& =-162 \frac{1 \mathrm{~kJ}}{\mathrm{~kg}} \\
& W_{3-4}=\left(\frac{n}{n-1}\right) m R\left(T_{3}-T_{4}\right) \\
& P V^{1 \cdot 3}=c \\
& =\left(\frac{1.3}{1.3-1}\right) \times 1 \times 0.287(298-205) \\
& =+114.98 \frac{\mathrm{KJ}}{\mathrm{Kg}}, \\
& W_{\text {net }}=-162+114.98=-47 \mathrm{~kJ} / \mathrm{kg} \\
& W_{\text {in }}=47 \mathrm{~kJ} / \mathrm{kg} \\
& C_{0} P=\frac{R \cdot E}{\text { Win }} \\
& (\text { Cop })=\frac{77 \cdot 8}{47}=1 \cdot 64
\end{aligned}
$$

\square 童
Qi) Air is used as a Refrigerant in Reversed Brayten Cycle. Draw P-V \& T-S diagram for the cycle \& derive the expression for COP in terms of Pressure Ratio.
If the temperature at the end of Heat absorption \& Heat Rejection are $0^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ Respectively. and pressure ratio $(r)=4 \mathrm{O}$
Then Determine the temperature of all otter Point. and volume flow rate of the inlet of Compressor \& exit of expandor for ITN Cooling Capacity. Assumming inlet pressure (P_{1}) to th Compressor is 1 bar.

Soon

$$
\begin{align*}
& \gamma_{p}=4 \\
& \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}} \\
& \frac{T_{2}}{273}=(4)^{\frac{0.4}{1.4}} \rightarrow T_{2}=405 \mathrm{~K} . \\
& \frac{303}{T_{4}}=\left(4 \frac{0.4}{1.4} \rightarrow T_{4}=203.9 \mathrm{k} .\right. \\
& P_{1} \dot{V}_{1}=\dot{m} R T_{1} \\
& \dot{V}_{1}=\frac{\dot{m} R T_{1}}{P_{1}} \\
& \Rightarrow \dot{V}_{1}=\frac{\dot{m} \times 0.287 \times 273}{1 \times 10^{5}}=0 \tag{1}\\
& R_{C}=\dot{m} \times R_{0} E \Rightarrow 3.5=\dot{m}\left(h_{1}-h_{4}\right) \\
& R_{c}=\dot{m} c_{p}\left(\pi_{1}-T_{4}\right) \\
& 3.5=\dot{m} \times 1.005(273-203.9) \\
& \dot{m}=0.05 \mathrm{~kg} / \mathrm{se} \\
& \dot{V} \propto T \\
& \frac{\dot{U}_{4}}{\dot{V}_{1}}=\frac{T_{4}}{T_{1}} \\
& \frac{\ddot{v}_{4}}{0.039}=\frac{203.9}{273} \quad \dot{v}_{4}=0.29 \mathrm{~m}^{3} / \mathrm{sAm}
\end{align*}
$$

Un) It is desire to make the coP of a Carnot Refrigerator System Operating b/w $-40^{\circ} \mathrm{C} \&+40^{\circ} \mathrm{C}$ is equal to 3.5 , by changing the Temperatures. The decrease in higher temperature is equal to \uparrow in Lower temperature. Them Determine the new temperatures in Kelving.
Sol

$$
\begin{aligned}
& T_{L_{1}}=\left(40^{\circ} \mathrm{C}\right)-233 \mathrm{~K} \\
& T_{L_{2}}+40^{\circ} \mathrm{C}=313 \mathrm{~K} . \\
& T_{L_{2}}=T_{L_{1}}+x=233+x=238.875 \mathrm{~K} \\
& T_{H_{2}}=T_{H_{1}} x=313 x=307.125 \mathrm{~K} . \\
& 3.5=C_{0}=\frac{T_{L_{2}}}{T_{H_{2}-T_{L 2}}}=\frac{T_{L_{1}}+x}{\left(T_{H_{1}}+x\right)-\left(T_{L_{1}}+x\right)}=\frac{233+x}{80-2 x} \\
& x=0.5875
\end{aligned}
$$

Isentropic Efficiency of Compressor and Turbine:-
Isentropic Efficiency of Compressor is defined as the Ratio of Ideal enthalpy rise to the actual enthalpy Rise.
Whereas, isentropic efficiency of ter bine is defined as the Ratios of Actual enthalpy drop to that of ideal erithalpy drop.

$$
\begin{aligned}
& \left(\eta_{i s}\right)_{c}=\frac{\text { Ideal }}{\text { Actual }} \\
& \left(\eta_{i s}\right)_{\pi}=\frac{\text { Actual }}{\text { Ideal. }}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\eta_{1}\right)=\text { usionly then Ideatgas } b_{C} C_{3} h=f(T) \\
& \left(\eta_{i s}\right)_{C}=\frac{h_{2}-h_{1}}{h_{2}^{\prime}-h_{1}}=\frac{C_{p}\left(T_{2}-T_{1}\right)}{C_{p}\left(T_{2}^{\prime}-T_{1}\right)}=\frac{T_{2}-T_{1}}{T_{2}^{\prime}-T_{1}} \\
& \left(\eta_{i s}\right)_{T}=\frac{h_{3}-h_{4}^{\prime}}{h_{3}-h_{4}} \left\lvert\,=\frac{6_{6}\left(T_{3}-T_{4}^{\prime}\right)}{S_{9}\left(T_{3}-T_{4}\right)}=\frac{T_{3}^{\prime}-T_{4}^{\prime}}{T_{3}-T_{4}}\right.
\end{aligned}
$$

Nisentropeic
\longrightarrow Rev. Adiabatic
irro Adiabatic $\rightarrow d s=\dot{S}_{g e n}+\frac{d \Phi^{0}}{T}$

$$
\eta \rightarrow \text { Loss }
$$

Important Point:-

$$
\text { Acteral } W_{c}=\frac{\text { Ideal } \operatorname{ld} d_{c}}{\eta_{c}}
$$

Compressor is used to Compress the gas, So we need that more 2 more Compression takes place or \uparrow in W_{c}. So We divide by η_{c} and η_{c} is lars than 1.

Acteral $W_{T}=$ Ideal $W_{T} \times \eta_{T}$

(BP)

Here multiply With η indicates Loss.

On) In bell-Coleman Refrigeration plant, air enters the Compressor at a pressure of $(1 \mathrm{MPa})$ and temperature of $4^{\circ} \mathrm{C}$. It is then Compressed to pressure of 3 MPa , with an isentropic efficiency of 72%. It is then Cooled in the Cooler to a temperature of $55^{\circ} \mathrm{C}$ and then expanded to a pressures of 0.1 MPa , With an isentropic efficiency of 78%.
Assuming Air to be an Ideal Gas and the Lower temp air. Absorbs Cooling load of (3TR).
Determine;

1) mass flow Rate in $\mathrm{Kg} / \mathrm{sec}$.
2) Power Consumption in KW.

Asitis isentropic frown
3) COP

Coin Ideal $\rightarrow 1-2-3-4-1$
Actual $\rightarrow 1-2^{\prime}-3-4^{\prime}-1$

$$
\begin{aligned}
& R C=\dot{m} \times R E \\
& R C=\dot{m} \times\left(h_{1}-h_{4}^{\prime}\right) \\
& R C=\dot{m} \times C_{P}\left(T_{1}-T_{4}^{\prime}\right) \\
& \dot{m}=0.58 \mathrm{~kg} / \mathrm{se} .
\end{aligned}
$$

$$
\begin{aligned}
& N_{c}=\frac{T_{2}-T_{1}}{T_{2}^{\prime}-T_{1}} \\
& 0.72=\frac{379-277}{T_{2}^{\prime}-277} \\
& T_{2}^{\prime}=418.86 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{T_{3}}{T_{4}}=\left(\frac{P_{3}}{P_{4}}\right)^{\frac{y-1}{y}} \\
& \frac{328}{T_{4}}=\left(\frac{0.3}{0.1}\right)^{\frac{0.4}{1.4}} \\
& T_{4}=239 \mathrm{~K} \\
& \eta_{t}=\frac{T_{3}-T_{4}}{T_{3}-T_{4}} \\
& 0.78=\frac{328-T_{4}{ }^{\prime}}{328-239} \\
& T_{4}^{\prime}=259 \mathrm{k} \\
& P=\dot{m}\left(w_{c}-w_{T}\right) \\
& P=\dot{m}\left(h_{2}^{\prime}-h_{1}\right)-\left(h_{3}-h_{4}^{\prime}\right) \\
& P=\dot{m} C_{p}\left(T_{2}^{\prime}-T_{1}\right)-\left(T_{3}-T_{4}^{\prime}\right) \\
& P=0.58 \times 1.005(418.85-277)-(328-259) \\
& =42.5 \mathrm{kw} \\
& C O P=\frac{R . C}{P_{\text {im }}}=\frac{10.5}{42.5}=0.247
\end{aligned}
$$

Heat Rejection Ratio:-
It is defined as the Ratio of Heat Rejected across condenser c to the Refrigeration Effect.
If the value of Heat Rejection Ratio $=1$
then it violets clausis statimenent of Thermodynamic.
There fore the Valve of Heat Rejection Ratio is allays greater than one.

$$
H R R=\frac{Q_{c}}{R \cdot E}
$$ absorbed across evaporator is $2000 \mathrm{~kJ} / \mathrm{mim}$, then Calculate the Heat Rejected across Condenser in $\mathrm{kJ} / \mathrm{min} \& ~ c O P$.

$$
\begin{aligned}
& H \cdot R R=1.2 \\
& R . E=2000 \mathrm{~kJ} / \mathrm{min} \\
& Q_{c}=\text { ? } \\
& 102=\frac{Q_{c}}{2100} \\
& 1.2=Q_{c} \\
& \uparrow H \cdot R R=\frac{Q_{c}}{R \cdot E \downarrow} \\
& \text { Sofrist two are negetect } \\
& \text { A) } 2100,4 \\
& \text { B) } 2100,5 \\
& \text { C) } 2520,4 \\
& Q_{c}=2520 \mathrm{KJ} / \mathrm{mm} \\
& H \cdot R R=\frac{Q_{C}}{R \cdot E} \\
& \begin{array}{l}
1 Q_{H} \\
R Q_{L}
\end{array} \\
& \operatorname{COP}=\frac{210 p}{42 \phi} \\
& \text { COP= } 5
\end{aligned}
$$

Qr) Prove that Heat Rejection Ratio,

$$
H R R=1+\frac{1}{C O P}
$$

$$
\begin{aligned}
& \begin{aligned}
C O P & =\frac{D_{0} E}{W_{\text {in }}}=\frac{Q_{L}}{Q_{L}-Q_{L}} \\
& =\frac{1}{\left(\frac{Q_{H}}{Q_{L}}-1\right)} \\
& =\frac{1}{H R R-1} \\
H R R-1 & =\frac{1}{C O P}
\end{aligned}
\end{aligned}
$$

Objector

$$
H \cdot R \cdot R=\frac{1}{C O P}+1
$$

Objective

Refrigeration Equipment
Function of Compressor:-
i) Take Suction of Refrigerant generally in Saturated Vapour State, from the evaporator.
ii) Discharge the Refrigerant generally in Superheated State. to the Condenser.
iii) It increases the presume \& temperature of the Refrigerant.

On) Prove That Volumetric Efficiency is,

$$
\eta_{N}=1+c-c\left(\frac{P_{H}}{P_{L}}\right)^{\frac{1}{n}}
$$

$$
\begin{align*}
& \eta_{V}=\frac{(\text { Actual volume) entering }}{\text { Suept volume. }} \\
& \eta_{v}=\frac{v_{1}-v_{4}}{v_{1}-v_{3}} \\
& \eta_{V}=\frac{v_{1}-v_{4}-v_{3}+v_{3}}{v_{1}-v_{3}} \text { multipply f by }-v_{3}+v_{3} \\
& \eta_{v}=\frac{v_{1}-v_{3}+v_{3}-v_{4}}{v_{1}-v_{3}} \\
& \eta_{v}=\frac{v_{1}-v_{3}}{v_{1}-v_{3}}+\frac{v_{3}}{v_{1}-v_{3}}-\frac{v_{4}}{v_{1}-v_{3}} \\
& \eta_{v}=1+\frac{v_{3}}{v_{s}}-\frac{v_{4}}{v_{5}} \\
& V_{3}=V_{c} \\
& V_{S}=V_{1}-V_{3} \\
& \eta_{v}=1+c-\frac{V_{4}}{\sqrt{V_{S}}} \times \frac{V_{c}}{V_{c}} \\
& \eta_{V}=1+c-c \frac{V_{4}}{V_{c}} \tag{1}
\end{align*}
$$

Procen (3-4) Polytropac

$$
\begin{aligned}
& P_{3}=P_{2}=P_{4} \\
& P_{4}=P_{1}=P_{2}
\end{aligned}
$$

$$
\begin{gather*}
P V^{n}=c \\
P_{3} V_{3}^{n}=P_{4} V_{4}^{n} \\
\left(\frac{V_{4}}{V_{3}}\right)^{n}=\left(\frac{P_{3}}{P_{4}}\right) \\
\frac{V_{4}}{V_{3}}=\left(\frac{P_{3}}{P_{4}}\right)^{1 / n} \Rightarrow\left(\frac{P_{4}}{P}\right)^{\frac{1}{n}}- \tag{2}
\end{gather*}
$$

Pritting (2) 8(1)
Objetur

$$
\eta_{V}=1+c-c\left(\frac{P_{H}}{P_{L}}\right)^{\frac{1}{n}}
$$

Performance Parameters:-

1) Effect of evaporator Presures:-

$$
\begin{aligned}
\downarrow P_{E}-\downarrow R \cdot E-\uparrow W_{\text {in }}- & \downarrow \text { COP }-\uparrow P_{r} \cdot R \text { Ratio }
\end{aligned},
$$

$$
\dot{i}-\downarrow \eta_{V}-\|_{j} \dot{m}
$$

Reasonforman Henw Rate

Volumteric Efficiency V/s evaporator Pressure
Her graph is Plot trom $p=1$
BC3 Pevaporator must by Sameor equal to evaponder Presurs. bc3, Below Peva. it becones Vaccume
2) Mass flow Rate V/S evaporator pressure:-

$$
\downarrow \eta_{V}=\frac{\sqrt{m} v_{\text {en }} t_{y}}{\frac{\pi}{4} D^{2} L \frac{N}{60} \times K}
$$

3) Workin to Compressor V/s Pevap:-

4) Power Input to the Compressor V/s Pevap:-
lith the ψ Pea., the man flow Rate $\psi(\dot{m})$ \& (Win) to the Compressor increases.
Therefore initially with the ψ in Pears, the
Power input to the Comprenor io initially
increases, then reaches to its peak value \&
) finally decreases. This Period is/ Knownas Pul Down Period

$$
P_{i n}=\downarrow \dot{m} \times W_{i n} \uparrow
$$

NOTE:-

1) The Compress should be design for Peak loads/Peak hours.
2) Refrigeration Effect v/s evaporation (Evaporator) Pressure :

3) Refrigeration Capacity V/S evaporator Prensurio-

$$
R c=\lim \times \downarrow R \cdot E
$$

7) $\operatorname{COPV} / \mathrm{s}$ Peron

$$
\hbar_{C O P}=\frac{Q E}{R \cdot \in \uparrow}
$$

U * Effect of Evaporator Pressure:-

Note:

1) Effect of \uparrow in Pond and + in Reap are adjactly Same: but We are more Sensitive towards evaporator pressure because of Desired Condition which is Refrigeration.

NOTE:-
PURGING:
It is the Removal of Air, from the Condensoi.
Air is non Condensible Grass. And it has poor heat Transfer. Coefficient. Therefore it offers more thermal Resistance and hence Reduces the Performance of VCRS.

$$
\begin{aligned}
& \downarrow Q=\downarrow K A \frac{d T}{d x} \\
& \uparrow R_{n h}=\frac{1}{\sqrt{K A}}
\end{aligned}
$$

Types of Resiprocating Compresor:-

1) OPen Type:-

In the Type both Compressor and motor are the Seprate snits and are Connected by the main Sourer means of open belt drive. The chances for the leakage of Refriger ant are high beet its maintenance is very easy. Because the Compressor and Motor the Seprate units.
2) Semi hermittically Sealed:-

Inthio, the Compressor and motor ar placed in a cylinder shell With a flexible or removable cover.
3) Hermittically Sealed ${ }^{\text {O- }}$

In this, the compressor and motor arplaced in the welded Steel Shell.
The chances for the leakage of Refrigerant are negligible brat its maintenanal is Complexes.
Disaderantage of Hermittically Sealed Compressor:-
Its heat Rejection Ratio is high $H R R=1+\frac{1}{C_{00}}$ because of its Lower COP.

$$
H R R \uparrow=1+\uparrow\left(\frac{1}{\operatorname{Cop}}\right)
$$

Condensor And Evaporator:-
\rightarrow Both are the Heat exchanger, with the Same Refrigerant as a Common medium.
\rightarrow In Condensor, Refrigerants Rejects it heat. lelhereas, In evaporator Refrigerants absorbs the heat.

Types of Condenser:-

1) Air Cooled Condenser. $3 T R \quad C=1.005 \mathrm{ks} / \mathrm{kg} / \mathrm{K}$
(2) Hzo/water Corbel Condenser: $\quad C P=4.187 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
 $10 T R$

(B) Evaporative Type Conden for:-

These ar i generally Preferred when water is not available in Large Quantity or when there is Scarily of Water.
In this type, First Absorbs Heat from Refrigerant \& then water in turn Rejects its heat to Air.
For ercample \rightarrow Cooling Tower.

Expansion Device:-
\rightarrow The Function of the Expansion Device, is to Reduce the Pressure from Condenser to evaporator.
\rightarrow Ithlill supplies the flow of Refrigerant to the evaporators as per desired Papacity.

Types of Expansion Device:-

1) Constant Area Type:-

Example; Capillary Tube.
It is a narrow tube of Constant Crossection Area.
It is used for Low Capacity Application.
e.g; Domestic Refrigerator, Water Cooler \& Window $A C$.

The Pressure drop in the Capillary tube is directly Propotional to the Length of Capillary tuber and inversely Propotimal to the diameter of Capillary tube. The pressure drop in the Capillary ter bs is achieve through frictional Resistance and accelaration of the fluid in the tube.
2) Constant volume Type:-
(1) Automatic Expansion Device:-

It is used to maintain Constant pressure in the cevaporater irrespective of Load.
(9) Thermos static.
\rightarrow It is used to main, Constant degree of Superheat in the evaporator irreespletive of Load.

Air Conditioning:-
New Topee
It is the Simultaneous Control of the temperature of Air, Purity of, cir, velocity of air and humidity of air.

Psychometry:-
Its the Branch of the science, which deals with the study, Properties of Moist air.
Moist Air is the Composition of Dry Air and Water Vapour.
Dry Air is the Pure Substances. But Moist air is impure Substance.
Because the \% of Water vapour Content Varies from place to place.
As we have seen that at some places, there is high humidity and at Some places there is Low humidity.

NOTE:-
Generally moist air is in superheated State.
Various Psychrometric Terms:-

1) Specific humidity:- Humidity Ratio: $-(\omega)$

2) Relative humidity $\phi:-(\phi)$

If is defined as the Ratio of Mass of Water Vapour to the mass of Water vapour under Saturated Condition in a given volume and at a same temperature.
gre

NOTE:-
The Specific humidity indicates the actual am count of water Vapour present in the air.
Lehereas
Relative humidity indicates indirectly the moisture absorption
Capacity of the Present ait.
3) Dry Bulb Temperature:

It is the temperature of moist air, measured by ordinary Thermometer.
4) Wet Bulb Temperature:-

It is the temperatevel shown by Thermometer whose bulb is Covered with let cloth.
5) Wet Bulb Dippreession:-

It is the difference b/w DBT \& WBT.
6) Dew Point Temper aturp:-

It is the Saturation temperature, corresponding to the initiation of Condensation or Water Particles Just Start to Condense.
or

It is the Saturation Temperature cor rosponding to the Partial Pressure of Water Vapour.

NOTE:-
i) In Case of unsaturated air.

$$
D B T>W B T>D P T
$$

ii) In case of Saturated air, all the temperature are equal.

$$
D B T=W B T=D P T
$$

$$
\phi=1 \text { or } 100 \%
$$

\checkmark iii) When the air is fully Saturated, the Value of Relative humidity is 1 or 100%.
iv) In Case of Saturated air, valuer of Wet Bulb depression is zero.
= V) Sling Pyschrometer measures Both DBT as well as WBT.
-7) Degree of Saturation/Percent humidity: (M)

$$
\mu=\frac{W}{W_{s}}=\frac{P_{v}}{P_{v s}}\left(\frac{P-P_{v s}}{P-P_{v}}\right)
$$

$$
H=\frac{W}{W_{s}}=\frac{\frac{0.622 P_{v}}{P-P_{v}}}{\frac{0.622 P_{v S}}{P-P_{v S}}}=\frac{P_{v}}{P_{v s}}\left(\frac{P-P_{v s}}{P-P_{v}}\right)
$$

8) Enthalpy of Moist Air:-

$$
\begin{aligned}
h_{\text {mA }}= & 1.005 t+\omega(2500+1.88 \mathrm{~T}) \mathrm{KJ} / \mathrm{kg} \text { of dea. } \\
& t \rightarrow B B J\left({ }^{\circ} \mathrm{C}\right) \\
\omega & \rightarrow \mathrm{Kg} / \mathrm{kg} \text { of dA }
\end{aligned}
$$

9) APJON Formula:-

It is used to Calculate the Partial pressure of water Vapour.
objective

$$
P_{v}=P^{\prime} v-\frac{1.8 P\left(t-t^{\prime}\right)}{2700}
$$

NOTE:-

1) $t \rightarrow$ Dry Bulb temperature taken in ${ }^{\circ} \mathrm{C}$.
2) $t \rightarrow$ Wet Bulb Temperature taken in ${ }^{\circ} \mathrm{C}$
3) $P_{V} \rightarrow$ Partial Pressure of water vapour corresponding to P_{v}, the Saturation temperatures Provide the values of Dew Point temperature.
4) $P_{v} \rightarrow I+i$, the Saturation Pressure corrosponding to wet Bulb temperature.
5) PVS \rightarrow Partial Presume r of Water vapour under Saturated condition, Corrooponding to Prs, the Saturation Temperatures Provides the value of dry Bulb temperature.
6) $P \rightarrow 9 t$ is the total Pressure or if total Pressure not provided then taken is atmospheric Pressure.

$$
\begin{aligned}
P= & \text { Total Pressure } \\
P_{\text {a tim }}= & 1.01325 \text { bar } \\
& 101.325 \mathrm{kPa} \\
& 1.01325 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \text { or Pascal }
\end{aligned}
$$

Qr) The Dry Bulb Temperature and wet Bulb temperature of air are $30^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ Respectively. The atmospheric Pressure is 740 mm of Mercury (Hg). Determine,
(2mark-fisud on Gate)
i) Partial Pressure of Water Vapour
ii) Specific humidity (ω)
viii) Relative humidity (\$)
iv) Degree of Saturation (H)
v) Enthalpy of Moist Air (ha)

vI) Vapour density.

$$
\begin{array}{ll}
\omega=\frac{m_{v}}{m_{a}}=\frac{0.622 P_{v}}{P-P_{v}} & \phi=\frac{m_{v}}{m_{v s}}=\frac{P_{v}}{P_{v s}} \\
H=\frac{W}{W_{s}}=\frac{P_{v}}{P_{v s}}\left(\frac{P-P_{v s}}{P-P_{v}}\right) & P_{v}=P_{v}^{\prime}+\frac{1.81}{2} \\
h_{m A}=1.005 t+\omega(2500+1.88 \mathrm{~T})
\end{array}
$$

$$
P_{v}=P_{v}^{\prime}+\frac{1.8 P\left(t-t^{\prime}\right)}{2700}
$$

$t \rightarrow$ Dry Bulb temp
$t^{\prime} \rightarrow$ Wet Bub Fem
Sol ${ }^{n}$

$$
\begin{aligned}
& D B T=30^{\circ} \mathrm{C} \\
& W B T=20^{\circ} \mathrm{C} \\
& P_{\text {atm }}=740 \mathrm{~mm}
\end{aligned}
$$

$\mathrm{P}_{\mathrm{V}} \rightarrow$ Partial Pressure \rightarrow DPT
$\mathrm{P}^{\prime} \rightarrow$ Saturation Pressual \rightarrow WET
$P_{U S} \rightarrow$

$$
\begin{aligned}
P_{v} & =0.02337-\frac{1.8 \times P\left(30^{\circ}-20^{\circ}\right)}{2700} \\
P_{v} & =0.02337-\frac{1.8 \times 0.9875\left(10^{\circ}\right)}{2700} \\
& =0.02337-0.006583 \\
P_{v} & =0.0167 \text { bar. }
\end{aligned}
$$

$$
\begin{aligned}
P & =e g h \\
& =13.6 \times 1000 \times 9.81 \\
& \times 740 \times 10^{-3} \\
& =0.9875 \times 10^{5} \mathrm{~N}^{2} / \mathrm{m}^{2} \\
& =0.9875 \mathrm{bar}
\end{aligned}
$$

iii. Relative humidity

$$
\begin{aligned}
& \text { midity } \phi=\frac{P_{v}}{P_{v s}} \\
& \phi=\frac{0.0167}{0.04242} \\
& \phi=0.3936
\end{aligned}
$$

iv) Degree of Saturation $\rightarrow H$

$$
\begin{aligned}
& H=\phi\left(\frac{P-P_{v s}}{P-P_{v}}\right) \\
& H=0.3936\left(\frac{0.9875-0.04242}{0.9875-0.0167}\right) \\
& H=0.385
\end{aligned}
$$

v) Enthalpy of Moist air, ($k 51 . \mathrm{kg}$)

$$
\begin{aligned}
h & =1.005 t+\omega(2500+1.88 t) \\
& =1.005 \times 30+0.01075(2500+1.88 \times 30) \\
& =54.14 \mathrm{~kJ} 1 \mathrm{~kg}
\end{aligned}
$$

vi) Vapour Density:-

$$
\omega=\frac{m_{v} / \mathrm{v}}{\mathrm{malv}}
$$

$$
\begin{aligned}
& P=m R T \\
& P=\left(\frac{m}{v}\right) T \\
& P=P R T \\
& P=\frac{P}{R T} \\
& \rho v=\omega\left(\frac{P_{a}}{R_{a} T a}\right)
\end{aligned}
$$

$$
w=\frac{P_{v}}{P_{q}}
$$

$$
R_{v}=\omega P_{9}
$$

$$
T \rightarrow \text { in Kelvin }
$$

$\mathrm{N} / \mathrm{m}^{2}$
Dalton's law

$$
\begin{aligned}
& P=P_{a}+P_{v} \\
& R=\omega \frac{\left(P-P_{v}\right)}{R_{a} T_{a}}=0.0107 \frac{(0.9875-0.0167)}{0.287 \times 10^{3} \times(273+30)}=0.0119 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Psychometry Chart:-
We know that, as a ternperaterd (saturation) \uparrow, the Saturation Rescuer also \uparrow. so the Plot blu saturation temperature \& Pressure is,

$$
w=\frac{0.622 P_{v}}{P-P_{v}}
$$

For superheated

$$
P V=m R T
$$

$$
w=F\left(\boldsymbol{P}_{v}\right)
$$

$$
P \propto T
$$

Later on, We found that the Specific humidity is the function of Partial pressure of Watervapour, therefore in the original Psychometry Chart (P) is Replaced with (w) Specific humidity.

Representation of Different Constant Parameters on
Bychrometric Chart:-

1) Constant Dry Bulb Temperature Line DBT:-

\rightarrow These are the vertical lines.
\rightarrow Increasing order io $(+x)$ direction.
\rightarrow Theseare uniformly spaced.
2) Constant Specific humidity lines:- (ω)
\rightarrow These are Horizontal lines moving. towards Saturation curve.
\rightarrow Torderin $(+y)$ direction.
\rightarrow These are cenitomely spaced.

3) Constant Dew Point Temper ature Lines DPT:-
\rightarrow These are the Horizontal lines moving away from saturation Curve.
\rightarrow These are non eeniformely Spaced.
\rightarrow Increasing order

4) Constant Relative humidity Curve:-
5) These are Parallel to Saturation Curve.
6) increasing order in North-West direction.

7) Constant Enthalpy lines, Constant leet Bulb temperature line, Constant Specific volume lines:-
8)

$$
\begin{array}{ccc}
h & \text { WAT } / v \\
\downarrow & \downarrow & \downarrow \\
\frac{k J}{k g} & \Theta^{\circ} \mathrm{C} & \mathrm{~m}^{3} / \mathrm{kg}
\end{array}
$$

(2)

(3)
W.BT

(4) $\quad h] \rightarrow$ Same degree of Inclination
$v=$ highat degree of Indination
(5) $h \rightarrow$ uniformely spaced.

WBT \rightarrow Non unitormely spaced.

Basic Prychrometry frocess:-

1) Sensible Heationg:-

Itis the Proces of \uparrow the dry bulb temperature at Constant Sprific humidity:

(1) $t \uparrow$
(2) W const
(3) DPT Const
(4) $\phi \downarrow$
(5) $h \uparrow$
(6) $W B T \uparrow$
(7) $v T$
2) Sensible Cooting $=$:-
(DBT)
Itio the Proen of the temperature at Constant specifichumidity.

(1) $t \downarrow$ (DBT)
(2) W const
(3) DPT Const
(4) $\phi \$ \uparrow$
(5) $h \not \psi$
(6) $\omega B T \downarrow$
(7) $v \downarrow$
(3) Humidification:-

It is the Proes of \uparrow the specific humidity at Constant dry Bulb temperature.

(1) t Const
(2) $w \uparrow$
(3) DPT \uparrow Dew Poink Temp
(4) $\phi \uparrow$
(S) $h \uparrow$
(6) $W B T \uparrow$
(7) $v \uparrow$
(4) Dehumidification:-

It is the Prours of decreasing the specific humidity at Constant dry Bulb temperature.

(1) t Constant
(2) $\omega \quad \downarrow$
(3) DPT \downarrow
(4) $\phi \downarrow$
(5) $n \downarrow$
(6) WBT \downarrow
(7) $v \downarrow$

NOTE:-
Pure humidification \& Dehumidification are immposible to achieve Practically.
Therefore thess are Combined either with Sensible heating or Sensible cooling.
Representation of all the above Process on same
Psychromtric chart:-

Sc
Desert Cools
$(H \cdot \sigma)$
$=$ to $\quad\left(s c^{c} c^{n(m)}\right)$

In Case of Summer air Conditioning the process of Cooing \& Dehumidification.
Whereas in case of Winter air Conditioning, the Preen of heating \& hamdification occurs.
\rightarrow In Case of desert Cooler the process of Cooling \& humidification or Adiabatic Saturation proven occurs
\otimes
\rightarrow Desert Coolers are most effective When the Valve of Wet bulb diffression io, high. (important in terms of oustion / Interview)
\rightarrow 4. Point
(1) $t \uparrow$

(2) ω^{ψ}
(3) $D P T \psi$
(4) $\phi \downarrow$
(S) $h \quad$ we cant say
(6) $W B T$
(7) v
$S \cdot H+$ Dehumidification
1.-

Adiabatic or chemical humidification:-

Aliabatic hermidification $\rightarrow h \rightarrow$ constant
$\mathrm{hu} / \mathrm{DH} \rightarrow$ Decides direction
(1) $t \downarrow$
(2) $\omega \uparrow$
(3) $\triangle P T \uparrow$
(4) $\$ \uparrow$
(5) 1 const
(6) WBT Const
(7) $v+$

Adiabatic Chemical Dehumidification:-

$$
\text { Ad/DH } \rightarrow h \rightarrow \text { Constant }
$$

$D H \rightarrow$ deides Direction
(I) $t \uparrow$
(2) $w+$
(3) $D P T \psi$
(4) $\phi \downarrow$
(5) h const
(6) WBT Const
(7) $v \uparrow$

Adiabatic Saturation:-

(1) $t \downarrow$
(2) $\omega \uparrow$

(3) $D P T \uparrow$
(4) $\phi \uparrow$
(5) h cons
(6) WBT const
(7) $v t$

APPrates Dew Point:- (ADP)
It is the Point obtained by the intersection of cooling and dehumidification With the Saturation Curve.

Three cases are formed

(1) Cooling \& Dehumidification
(2) Saturation curer torch and at Saturation Curve
(3)

$$
\phi_{A D P}=1
$$

By-Pass Factor:- (x)
It simply Represent the loss.
It Represent the uncontandid air / it respresento the fractional Part of inlet air which is not comping in contact with the coil.

$$
\eta=1
$$

$$
\uparrow n=1-B P F \downarrow
$$

By-Pas factor of Heating Coil:-
Let, t_{1}, be the inlet temp. of air, t_{2} be the oultet temp. of air and t_{3} be the surface tempo of heating coil.

$$
(B P F)_{H C}=\frac{t_{3}-t_{2}}{t_{3}-t_{1}}-\text { dint } \quad(\eta)_{M C}=1-(B P F)_{n c}
$$

By Pass factor of Cooling Coil:-
Let t_{3} be surface temp. of Cooling coil.

Important
$(B P F)_{C C}=\frac{t_{2}-t_{3}}{t_{1}-t_{3}}$

$$
\eta_{c c}=1-(B P F)_{c c}
$$

NOTE
\rightarrow By Pas factor in case of Combined Coil (When there is more than one Rows of Coil)
$\left[\begin{array}{c}\text { No such } \\ \text { cane }\end{array}\right]$

bean I Heat (2) Cove (3) Heat

$D P T=20^{\circ} \mathrm{C}$

$$
\left.\begin{array}{l}
S H \\
S C
\end{array}\right] \rightarrow D B T
$$

Humidification $\rightarrow \mathrm{H}_{2} \mathrm{O}$ dehumidification \rightarrow DPT

(1) $\quad 50^{\circ} \mathrm{C}$
(2) $50^{\circ} \mathrm{CH}_{2} \mathrm{O}$
(3) Steam $\left(100^{\circ} \mathrm{C}\right)$
(4) $30^{\circ} \mathrm{C}$
(5) $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { or } \\ & 19^{\circ} \mathrm{C}\end{aligned}$
oultet temp
SH

$$
\mathrm{SH}+\mathrm{Hu}
$$

$$
\mathrm{SH}+\mathrm{Hu}
$$

SC

$$
S C+D H
$$

Sensible Heat Factor:-
It is defined as the Ratios of Sensible heat to the total heat.

Total Heat is the Summission of $(S H) \&(L H)$.

$$
\begin{aligned}
S H F & =\frac{S H}{L H}=\frac{S H}{S H+L H} \\
& =\frac{H_{3}-h_{2}}{\left(h_{3}-h_{2}\right)+\left(h_{1}-h_{3}\right)} \\
S H F & =\frac{h_{3}-h_{2}}{h_{1}-h_{2}} \text { gib }
\end{aligned}
$$

Valve of Sensible Heat Factor for different Places:-

Residence \& PVT. Office	0.9
Restaurant \& Busy office	0.8
Auditorium \& Cinema hall	0.7
Dance hall room	0.6

Effective Temperature:-
It is the temperature of saturated Air at which human being Can/luold fol Same level of Comfort as in Actual enirrmment. It incudes comfort temperature, humidity, Acclaration of air $\&$ velocity.

Factors Affecting effective Temperature :-
(1) Climatic and Seasonal Differences:-

Peoples living in colder climate feeling Comfortable at lower effective temperature than the people living in Warmer Region. In summer optimum effective temperature io $21.6^{\circ} \mathrm{C}$ Where as in winter effective temp is $20^{\circ} \mathrm{C}$
(2) Age and Gender:-

Childrens and old aged Persons needs $2-3^{\circ} \mathrm{C}$ higher effective temperature than Adults.
Similarly in the case with wlomens. Which need $2-3^{\circ} \mathrm{C} \uparrow$.
3) Kind of Activity:-

If a Person is involved in Activities like dancing, foundary shop - near Boiler furnace etc means/needs lower effective temp: then the personlelho ar in rest Condition.
4) Density of occupants:-

Highly Density occupied areas needs louver effective tempo than the less density occupied area.
5) ComFort Chart:-

This chart is Developed by ASHRAE (American Society of Heating, Refrigeration and Air Conditioning Engineers).
By Conducting a survey on different kinds of People Subjected to wide range of environmental temperature Condition, humidity and air velocity.
This chart is developed b/w DBT \& WBT Which are taken on Xs asir Respectively.
\rightarrow If the value of Relative humidity is above 50%, then there is tendency of Sticky Sensation develops.
Where as if the valuer of Relative humidity is below 50% then the skin is too dry.

VEntilation Air:-
It is the amount of fresh air eethich is supplied to the A/C Coil, invorder to maintain it purity.

Note:-
In Case of Operation theater| IICU, 100% outside air is Supplied.
Summer Air Conditioning:
Air is Passing through cooling \& dehumidification coil with (OBPF) Zero By-Pass factor.

GSHF:
It is the line or curve obtain by the joining of inlet e outlet of the coil.

SHF:-
It is defined as the Ratio of room Sensible heat to the room total heat.

It is the line or curve which is obtained by joining the Supply Condition to the room with the inside Condition.

$$
\begin{aligned}
R_{S H F} & =\frac{R_{S H}}{R_{T H}}=\frac{R_{S H}}{R_{S H}+R_{2 H}}=\frac{h_{3}-h_{2}}{\left(h_{3}-h_{2}\right)+\left(h_{i}-h_{3}\right)} \\
R_{S H F} & =\frac{h_{3}-h_{2}}{h_{i}-h_{2}}
\end{aligned}
$$

NOTE:
(1) $R S H=0.0204 \mathrm{cmm} \Delta t(K \omega)$ (Room sinsible Heat)
(2) $R_{L H}=50 \mathrm{cmm} \Delta \omega(K \omega)$
gry

$$
C_{\mathrm{mm}}=
$$ $\mathrm{m}^{3} / \mathrm{min}$ imb it must be in this

(3) No. of Air flow changer/hr

$$
\begin{aligned}
= & \frac{C \mathrm{cmm}}{\text { volume of }} \operatorname{Room}\left(\mathrm{m}^{3}\right) \\
\mathrm{cmm}= & =\quad \mathrm{m}^{3} / \mathrm{hr}
\end{aligned}
$$

Case 2:-
Summer Air Conditioning:-
Air is Passing Through a cooling and dehumidification coil with non zero By Pas factor.

$$
x=\frac{t_{2}-t_{s}}{t_{1}-t_{s}}=\frac{h_{2}-h_{s}}{h_{1}-h_{s}}=\frac{\omega_{2}-w_{s}}{\omega_{1}-\omega_{s}}
$$

www.enggbuzz.com

Case-3
Air Is Passing Through a Coil having Some Given value of ADP
(Appratuo dew Point) With zero By Pas factor:-

Summer
(1) $\mathrm{C} \& D \mathrm{DH}$
(2) Saturation Curve $(A D P)$
Appratus Dew Pt.
(3) $\Phi_{A D P}=1$
(4) $t_{2}=t_{A D P}$

Cave 4

Air is Passing through a coil having some giro valve of ADP which nonzero by Pan factor:-

NOTE:-

\rightarrow Human beings are feeling Comfort b/w $24-26^{\circ} \mathrm{C}$ DB and 50-60\% Relative humidity.
\rightarrow The Degree of Freedom of moist air is,

$$
\begin{gathered}
P+F=C+2 \\
1+F=2+2 \\
F=3
\end{gathered}
$$

The degrees of freedom of moist air is 3 , but we can locate or fire the state of moist air on the chart by using two variables, Because the chart is developed for the Particular pressure, that is atmospheric pressure.
\rightarrow During the Compression of moist air or when moist air is heated in a air tight vessel, then the Specific humidity Remains Constant.
\longrightarrow Air Washer Can be used as humidifier, Dehumidifier and filter. filter

