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1. Introduction

As the Abstract says, these notes correspond to the Semester Course of Cate-
gory Theory given in 2020 for Honours Students at the University of Cape Town.
Describing this course one cannot avoid mentioning Mac Lane’s “Categories for
Working Mathematician”, which is the book of category theory. Mac Lane’s so ele-
gant style of presenting ideas and results makes his book irreplaceable, not only for
“working mathematicians who use category theory”, but first of all for the experts in
category theory; however, the beginners might need more formal definitions, more
technicalities, and more exercises, covering much smaller basic material, which was
the reason of writing these notes. Nevertheless reading them a good student should
also read, at least partly, the first four chapters of Mac Lane’s book.

Reading this text requires much less of general mathematical knowledge than
Mac Lane’s book does, but it requires at least familiarity with some introductory
course of set theory; the exercises that require a bit of algebra are marked with *.

The ‘collection of all sets’ does not form a set; this problem is what one usually
refers to as the problem of size. We will mostly ignore it here, assuming that in our
entire considerations one can always replace “the collection of all” with “a collection
of sufficiently many”. A proper treatment of the problem of size would involve a
considerable amount of material from mathematical logic, e.g. as much as needed
to speak about models of set theory. We might, however, indicate that certain
‘collections’ we consider are not really sets by calling them (proper) classes, or just
collections.

The notes consist of 20 sections (including this one) with exercises for almost
all of them, the list of categories used with special abbreviated ‘names’, such as
Sets for the category of sets, and selected questions and answers that came up in
discussions with students.
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The students, Hestia Brink, Jean-Luc Ciapparelli, Siphelele Danisa, Andrew Mc
Gregor, Mikaeel Mohamed, Adam Smith, and Matthew Sutton, who attended this
course in 2020, greatly helped me by correcting many misprints and asking good
questions to let me see how they follow the course.

2. Categories

Definition 2.1. A category C is a system C = (C0,C1, dC, cC, eC,mC), in which:

(a) C0 and C1 are classes called the class of objects in C and the class of
morphisms (or arrows) in C, respectively;

(b) dC and cC are maps from C1 to C0 called domain and codomain respectively;
for f ∈ C1, when dC(f) = A and cC(f) = B, we write f : A → B and say
that f is a morphism from A to B, or that the domain of f is A and the
codomain of f is B;

(c) eC is a map from C0 to C1 called identity; for A ∈ C0, we write eC(A) = 1A
and say that 1A is the identity morphism of A;

(d) dCeC = 1C0
= cCeC, that is, for every A ∈ C0, 1A is a morphism from A to

A;
(e) mC is a map from C1×(dC,cC)C1 = {(g, f) ∈ C1×C1 | dC(g) = cC(f)} to C1

called composition; accordingly, the class C1 ×(dC,cC) C1 is called the class
of composable pairs of morphisms in C, and the image mC(g, f) of (g, f)
under mC is written as gf (or g ◦ f) and called the composite of g and f ;

(f) 1Bf = f = f1A, for every morphism f : A→ B in C;
(g) mC is associative, that is h(gf) = (hg)f whenever (h, g) and (g, f) are

composable pairs of morphisms in C.

When two morphisms in the same category have the same domain and the same
codomain, we say that they are parallel.

A morphism f : A→ A is also called an endomorphism of A.
Describing particular categories, one often uses one or more of the following

conventions:

• In a category C, the components C0, C1, dC, cC, eC, mC, are far from
being independent from each other; for example one cannot change eC
with all the other components remain the same, as the standard argu-
ment e(A) = e(A)e′(A) = e′(A) shows. Nevertheless one usually defines eC
independently, unless one uses an abbreviated description of a category, as
in our convention (iii).
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• Defining morphisms f : A → B in a particular category it might turn
out that A and B are not really determined by f alone. This imperfection
makes no harm, since one can always eliminate it replacing f with the triple
(A, f,B). This is a counterpart of the convention in set theory, according
to which a map f : A → B is often defined as a triple (A,Gf , B), where
Gf ⊆ A×B is what is called the graph of f . Note, however, that the term
“graph” has a different meaning in category theory (also different from its
meaning in graph theory), which we will see later.

• Many categories are named after their objects, as it is done in Example
2.2 below. Moreover, having some experience constructing categories, one
often describes them by describing only their objects, or, in less obvious
cases, objects and morphisms; however, we will not do that in this section.

Consider some examples of categories:

Example 2.2. The category Sets of sets is defined as follows:

(a) C0 is the class of all sets, and C1 the class of all maps of sets; domain,
codomain, identity, and composition have, in this case, the same meaning
as set theory, that is:

(b) f : A→ B means that f is a map from A to B;
(c) 1A : A→ A is the map defined by 1A(a) = a;
(d) given f : A → B and g : B → C, the composite gf : A → C is defined by

(gf)(a) = g(f(a)).

Example 2.3. A monoid is a triple (M, e,m), in which M is a set, e an element
in it, and m : M ×M →M a binary operation on M with

m(e, x) = x = m(x, e) and m(x,m(y, z)) = m(m(x, y), z),

for all x, y, z ∈ M . The set M is called the underlying set of (M, e,m), although
one usually simply writes M = (M, e,m), informally identifying this set with the
monoid itself. It is often convenient to use either the additive notation, in which

e = 0 and m(x, y) = x+ y

and the equalities above become

0 + x = x = x+ 0 and x+ (y + z) = (x+ y) + z,

or the multiplicative notation, in which

e = 1 and m(x, y) = xy (or m(x, y) = x · y)

and the equalities above become

1x = x = x1 and x(yz) = (xy)z.

While using this notation one says that the monoid M is additive or multiplicative,
respectively, and e and m are called zero and addition, or one (=identity) and
multiplication, respectively. Any, say, multiplicative, monoid M can be viewed as a
category as follows:

(a) M0 is any one-element set, e.g., one can take M0 = {M} or M0 = {∅},
while M1 = M , that is, the elements of M become morphisms of M viewed
as a category;

(b) since M0 has only one element, the maps dM and cM are uniquely deter-
mined and every pair of morphisms (=elements of M) is composable;

(c) eM = 1, that is, the identity morphism of the unique object of M is 1 of
M .

(d) the composition of M viewed as a category is the same as the multiplication
of M considered as a monoid.



4 GEORGE JANELIDZE

Example 2.4. A preorder is a pair (P,R), in which P is a set and R is a preorder
relation on P , that is R ⊆ P × P is reflexive and transitive. One usually writes
x 6 y to mean (x, y) ∈ R, and then reflexivity and transitivity become

x 6 x and (x 6 y & y 6 z)⇒ x 6 z

(for all x, y, z ∈ P ), respectively. Again, one usually simply writes P = (P,R),
informally identifying the underlying set P with the given preorder. Any preorder
P = (P,R) can be viewed as a category as follows:

(a) P0 = P and P1 = R, and each morphism in this category is of the form
(x, y) : x→ y, for some x 6 y in P ;

(b) as follows from (a), there is no choice but to take 1x = (x, x) and (y, z)(x, y) =
(x, z), for all x, y, z ∈ P with x 6 y 6 z, which fully describes the identity
and composition.

In particular, this applies to ordered sets, which are preorders satisfying the anti-
symmetry condition (x 6 y & y 6 x)⇒ x = y.

Example 2.5. Let C = (C0,C1, dC, cC, eC,mC) be a category and S0 and S1 sub-
classes of C0 and C1, respectively, satisfying the following conditions:

(a) If f : A→ B is a morphism in C with f in S1, then A and B are in S0;
(b) If A is an object in C that is in S0, then 1A is in S1;
(c) If (g, f) is a composable pair of morphisms in C with f and g in S1, then

the composite gf also is in S1.

Then the pair (S0,S1) determines a category S = (S0,S1, dS, cS, eS,mS), in which
S0 and S1 are the same and dS, cS, eS, and mS are induced by dC, cC, eC, and mC,
respectively. We then say that S is a subcategory of C, or, more precisely, that S is
the subcategory of C determined by S0 and S1. Furthermore we say that:

• S is a full subcategory of C, if, for every A and B in S0 and every morphism
f : A→ B in C, f is in S1; in this case one usually describes S as the full
subcategory of C with objects in S0;

• S is a wide subcategory of C, if S0 = C0; in this case one usually describes
S as the wide subcategory of C with morphisms in S1;

Example 2.6. The opposite category Cop of a category C = (C0,C1, dC, cC, eC,mC)
is constructed as Cop = (C0,C1, cC, dC, eC,m

op
C ), where mop

C is defined by mop
C (f, g) =

mC(g, f); note also that (f, g) is a composable pair of morphisms in Cop if and only
if (g, f) is a composable pair of morphisms in C. One sometimes says “dual” instead
of “opposite”, but “dual” also has another meaning.

Exercises

1. Given a set X, all maps from X to X form a monoid, which is a motivat-
ing example of a monoid. Explain that Example 2.2 similarly motivates
Definition 2.1.

2. Let M and N be monoids, for which we will use the multiplicative notation.
A monoid homomorphism f : M → N is a map f from M to N with
f(1) = 1 and f(xy) = f(x)f(y) for all x, y ∈ M . Define the category
Mon of monoids similarly to Example 2.2, but replacing sets with monoids
and replacing maps of sets with monoid homomorphisms. Do the same for
a few, say, ten, examples of familiar types of mathematical structures on
sets that admit a good notion of a structure preserving map. For instance,
define the categories Preord and Ord of preordered sets (=preorders) and
of ordered sets (=orders), where the preservation of (pre)order by a map f
should be defined by x 6 y ⇒ f(x) 6 f(y). Note: these categories will be
used in exercises of other sections.
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3. Show that the class M determines a wide subcategory of Sets with mor-
phisms in M when M is the class of all maps that are:
(a) injective;
(b) surjective;
(c) bijective.

4. Define composable n-tuples (n = 0, 1, 2, 3, 4, ...) of morphisms in a cate-
gory and show that each such n-tuple has a well-defined composite with no
parentheses needed. Hint: define fn...f1 by induction, and then show that
(gn...g1)(fm...f1) = gn...g1fm...f1.

5. Define the notion of opposite preorder and explain how it agrees with the
notion of opposite category.

3. Algebraic categories

Definition 3.1. Let Ω be a set equipped with a map lΩ : Ω → N, where N =
{0, 1, 2, ...} is the set of natural numbers; we will say that Ω is a signature. An
Ω-algebra is a pair (A, v) in which A is a set and

v : Ω→
⋃
n∈N

AA
n

is a map with v(ω) ∈ AAl(ω)

, for all ω ∈ Ω. The set A is called the underlying set
of (A, v).

Together with this definition, let us introduce some terminology, notation, and
conventions:

• Given a set A, a map An → A is called an n-ary operation on A. Ac-
cordingly, when (A, v) is an Ω-algebra as in Definition 3.1, and ω ∈ Ω has
lΩ(ω) = n, one says that ω is an n-ary operation symbol, or a name for
an n-ary operation, or an n-ary operator, and that v(ω) : An → A is an
operation on A determined by (or associated to) ω, or the valuation of ω,
or the interpretation of ω in (A, v). Operations on A of the form v(ω) (for
some ω ∈ Ω) are called the basic operations on A. The signature Ω of (A, v)
can also be called the set of names of basic operations for (A, v), or the set
of operators for (A, v) (having in mind that lΩ is also given). Logicians say
“functional symbol” instead of “operation symbol”.
• In the situation above, for a1, ..., an in A, one usually writes ω(a1, ..., an)

instead of v(ω)(a1, ..., an). When n = 0, 1, and 2, this is usually further
abbreviated as ω, ωa1, and a1ωa2, respectively. When n small:

One says instead of
nullary 0-ary
unary 1-ary
binary 2-ary
ternary 3-ary

• Let ω be a nullary operator. The notation above suggests to write ω ∈ A
to mean v(ω) ∈ A. In fact v(ω) is a map from A0, which is a one-element
set, to A, and so, indeed, it can be identified with an element in A. This
agrees with, say, linear algebra, where we write 0 ∈ V for any vector space
V ; cf. Example 2.3, where we had 0 ∈ M in the additive notation, and
1 ∈ M in the multiplicative notation. The authors who prefer not to use
this convention, call nullary operations constants, and define constants of
A as chosen elements of A.
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• Once the notation and conventions above are freely used, we will also write
informally A = (A, v), ignoring therefore the distinction between the Ω-
algebra (A, v) and its underlying set A. Such identifications will also be
used for other mathematical structures, including (Ω, lΩ) above, for which
we will write Ω = (Ω, lΩ).

• Furthermore, sometimes it is convenient to avoid using the symbol lΩ com-
pletely and use the sets Ωn = {ω ∈ Ω | lΩ(ω) = n} (n = 0, 1, 2, ...) instead.
In other words, one can also think of Ω as a sequence (Ω0,Ω1,Ω2, ...) of
disjoint sets.

Definition 3.2. Let A and B be Ω-algebras. An Ω-algebra homomorphism, or,
simply, a homomorphism, f : A → B is a map f : A → B of the underlying sets
with

f(ω(a1, ...an)) = ω(f(a1), ..., f(an)),

for every n = 0, 1, 2, ..., every ω ∈ Ωn, and every a1, ..., an ∈ A.

It is easy to see that:

• for every Ω-algebra A, the identity map 1A is a homomorphism 1A : A→ A;
• for Ω-algebra homomorphisms f : A → B and g : B → C, the (usual)

composite gf : A→ C is an Ω-algebra homomorphism;
• this defines a category, to be called the category of Ω-algebras; it will be

denoted by Alg(Ω).

Universal algebra studies various full subcategories of Alg(Ω) for various Ω; some
particular ones, including those considered in the rest of this section are studied in
classical algebra.

Example 3.3. Alg(∅) = Sets.

Example 3.4. If Ω consists of one operator, and that operator is nullary, then
Alg(Ω) is called the category of pointed sets; we will simply write

Alg(Ω) = Pointed Sets.

This category can be identified with the category of pairs (X,x), where X is a set
and x ∈ X.

Example 3.5. If Ω consists of one operator, and that operator is binary, then
Alg(Ω) is called the category of magmas; we will write

Alg(Ω) = Magmas.

This category can be identified with the category of pairs (X,m), where X is a set
and m a binary operation on X.

Example 3.6. A magma (X,m) is called a semigroup if m is associative. This
determines a full subcategory Semigroups of the category Magmas.

Example 3.7. Suppose Ω consists of two operators, one nullary and one binary.
Then Alg(Ω) can be identified with the category of triples (X, e,m), where X is a
set, e ∈ X, and m is a binary operation on X. This makes the category Mon of
monoids (cf. Exercise 2 of Section 2) a full subcategory of Alg(Ω).

Example 3.8. A group is a four-tuple (G, e,m, i), in which (G, e,m) is a monoid,
and i a unary operation on G with

m(i(x), x) = e = m(x, i(x)),

for all x ∈ G, although it would be sufficient to require only one of these equalities
(does not matter which one). This makes the category Groups of groups a full sub-
category of Alg(Ω), where Ω consists of three operators, one nullary, one binary,
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and one unary. Note that, as in the case of monoids, one might use the multiplica-
tive or the additive notation; for the first of them one writes i(x) = x−1 while for
the second one it becomes i(x) = −x.

Example 3.9. We obtain full subcategories CommSemigroups, of commutative
semigroups, CommMon, of commutative monoids, and Ab of abelian (= commu-
tative) groups, of the categories Semigroups, Mon, and Groups, respectively, by re-
quiring the commutativity condition m(x, y) = m(y, x). A further possible condition
is idempotency m(x, x) = x, creating the categories idempotent commutative semi-
groups and idempotent commutative monoids; one does not consider “idempotent
commutative groups” since every such group would have only one element.

Example 3.10. Suppose Ω = Ω1, that is, every operator in Ω is unary. Then the
category Alg(Ω) can be identified with the category of pairs (X,h), where X is a set
and h : Ω×X → X is a map; this identification makes h(ω, x) = ωx, for all x ∈ X.
If Ω is equipped with a monoid structure, say, multiplicative, then one might require

1x = x and ω′(ωx) = (ω′ω)x,

for all x ∈ X, and then call X = (X,h) an Ω-set. This defines the category SetsΩ

of Ω-sets as a full subcategory of Alg(Ω).

Exercises

1. Present a few, say, five, examples of familiar types mathematical structures,
not considered above, as full subcategories of Alg(Ω), for suitable Ω’s. Have
you already considered them for Exercise 2 of Section 2?

2. Have your examples for the previous exercise included vector spaces over a
given field, or, more generally, modules over a given ring? If not, can you
still make them Ω-algebras? Hint: use Example 3.10.

3. Let X be a set, P (X) its power set (that is, the set of all subsets of X),
and let ∪ = union, ∩ = intersection, and + = symmetric difference be
considered as binary operations on P (X). Show that:
(a) (P (X), ∅,∪) and (P (X), X,∩) are idempotent commutative monoids;
(b) (P (X), ∅,+, 1P (X)) is an abelian group.
Remark: doing this exercise one is expected to know many more standard
examples of groups and monoids of course.

4. Isomorphisms

In this and in fact also in the three following sections we ‘are inside’ an arbitrary
but fixed category C, which means that all objects and morphisms we will consider
are in C.

Definition 4.1. A morphism f : A → B is said to be an isomorphism if it is
invertible, that is, if there exists a morphism g : B → A with gf = 1A and fg = 1B.
If this is the case, then g above is called the inverse of f and we write g = f−1.

An endomorphism that is an isomorphism is also called an automorphism.
Of course the second sentence in Definition 4.1 assumes obvious that there is at

most one g with gf = 1A and fg = 1B . Indeed, if also g′f = 1A and fg′ = 1B ,
then g′ = g′1B = g′(fg) = (g′f)g = 1Ag = g. Other first obvious observations on
isomorphisms are formulated in the following theorem, where actually a part of (b)
repeats a part of (a), and both (a) and (b) only need straightforward calculations,
essentially the same as what is needed to prove (c):

Theorem 4.2. The class Iso(C) of all isomorphisms in C has the following prop-
erties:
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(a) it contains all identity morphisms and is closed under composition and tak-
ing inverses of invertible morphisms;

(b) if h = gf and two of the morphisms f , g, and h are isomorphisms, then so
is the third one;

(c) 1−1
A = 1A, (gf)−1 = f−1g−1, and (f−1)−1 = f , for every object A and

every composable pair (g, f) of isomorphisms. �

Definition 4.3. We say that objects A and B are isomorphic and write A ≈ B if
there exists an isomorphism from A to B (or, equivalently, from B to A).

From Theorem 3.2(a), we immediately obtain:

Corollary 4.4. The isomorphism relation ≈ is an equivalence relation on the class
C0 of objects in C. �

The notion of isomorphism suggests introducing two ’extreme’ types of cate-
gories:

Definition 4.5. A given category is said to be:

(a) a groupoid, if every morphism in it is an isomorphism;
(b) a skeleton, if its objects satisfy the implication A ≈ B ⇒ A = B.

Exercises

1. It is easy to characterize isomorphisms in many categories. For example,
a morphism in Sets is an isomorphism if and only if it is a bijective map.
Prove this, and characterize isomorphisms in all other categories considered
so far.

2. Describe all monoids of 6 3 elements up to isomorphism.
3. Which monoids, viewed as categories, are groupoids?
4. Describe all preorders of 6 3 elements up to isomorphism.
5. Which preorders viewed as categories are groupoids?
6. Which preorders viewed as categories are skeletons?
7. Describe all finite-dimensional vector spaces (over a given field) up to iso-

morphism.*
8. Describe all finite Boolean algebras up to isomorphism.*
9. Define the category of fields, describe all prime fields up to isomorphism,

and prove that the full subcategory of fields with objects all prime fields is
a groupoid.*

5. Initial and terminal objects

Definition 5.1. An object Z in a category C is said to be:

(a) initial, if, for every object A in C, there exists a unique morphism from Z
to A;

(b) terminal, if, for every object A in C, there exists a unique morphism from
A to Z;

(c) zero, if it initial and terminal at the same time.

Some authors use different terminology, or symbols 0 and 1, as shown in the table

Initial Terminal
Universal Couniversal

Left universal Right universal
Left zero Right zero

0 1
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although the symbol “0” is sometimes used only for a zero object.
It is obvious that an object Z is:

• initial in C if and only if it is terminal in Cop;
• terminal in C if and only if it is initial in Cop.

One says that the notions of initial and terminal are dual to each other. Simi-
larly, whatever is done, being it a definition, a construction, or an argument, in an
abstract category, has its dual version. We will often simply say “dually”, either
shortening or even omitting the details. Furthermore, some categorical notions, e.g.
the notion of isomorphism, are self-dual.

Theorem 5.2. Let Z and A be objects in a category C. Then:

(a) if Z is initial, then A is initial if and only if A is isomorphic to Z in C;
(b) if Z is terminal, then A is terminal if and only if A is isomorphic to Z in

C;

Proof. (a): The “if” part is obvious. For the “only part” we observe:

• since both Z and A are initial, there are morphisms f : Z → A and g :
A→ Z;
• since Z is initial, gf = 1Z : Z → Z;
• since A is initial, fg = 1A : A→ A;
• that is, f and g are isomorphisms, inverse to each other.

(b) is dual to (a). �

When a mathematical construction is either defined as an initial object or defined
as a terminal object in a certain category, one says that it is defined via a universal
property, or defined as a universal construction. As follows from Theorem 5.2, the
universal constructions are determined uniquely up to isomorphism. Defining by a
universal property is a widely generalized idea of defining as “the smallest ... such
that ...” or as the “the largest ... such that ...”, as the following example shows:

Example 5.3. Recall that an ordered set (or a poset, where “po” is an abbreviation
of “partial order”) P = (P,6) is the same as a preorder P = (P,6) in which 6 is
antisymmetric in the sense that (x 6 y & y 6 x) ⇒ x = y in it. An element z in
P is:

(a) initial in P viewed as a category, if and only if it is the smallest element of
the poset P , that is, if and only if z 6 x for each x ∈ P ;

(b) terminal in P viewed as a category, if and only if it is the largest element
of the poset P , that is, if and only if x 6 z for each x ∈ P .

Example 5.4. The category of sets has both initial and terminal objects. They are
the empty set and any one-element set, respectively.

Exercises

1. Give examples of categories, say, ten, where you can describe initial and
terminal objects. Do such objects always exist?

2. Explain that the system of natural numbers can be defined as an initial
object in the category of triples (X, e, f), where X is a set, e an element in
X and f is a map from X to X.

3. Define other number systems by means of universal properties (in some
cases there is more than one natural way to do that).*

4. When X is a basis of a vector space V , one also says that V is a free vector
space on X. Define “free” by means of a universal property, and apply
similar definitions to other algebraic structures; are there types of algebras
for which you can construct free ones? Give examples showing that not
every algebra is free.*
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5. Given objects A and B in a category C, let D be the category of triples
(C,α, β), in which α : C → A and β : C → B are morphisms in C; a
morphism γ : (C,α, β) → (C ′, α′, β′) in D is a morphism γ : C → C ′

with α′γ = α and β′γ = β. A terminal object in D, usually written as
(A×B, π1, π2) is called the product of A and B. Dually, the product of A
and B in Cop is called the coproduct of A and B (in C). Describe:
(a) products and coproducts in Sets; hint: use cartesian products and

disjoint unions respectively;
(b) products and coproducts in Preord and in Ord; hint: use the previous

exercise;
(c) products and coproducts in a preorder viewed as a category, and, in

particular, in (P (X),⊆) (where P (X) is as in Exercise 3 of Section 3);
(d) products in Alg(Ω); hint: to describe A × B in Alg(Ω) use A × B in

Sets with the Ω-algebra structure defined by

ω((a1, b1), ..., (an, bn)) = (ω(a1, ..., an), ω(b1, ..., bn));

(e) products and coproducts in categories described in Examples 3.4 and
3.6-3.9.

6. Monomorphisms and epimorphisms

One can think of the notion of isomorphism as a generalization of the notion
of invertible element in a monoid. Now we are going to generalize, similarly, the
notions of left/right invertible and left/right cancellable element.

Again, we ‘are inside’ an arbitrary but fixed category C.

Definition 6.1. A morphism f : A→ B is said to be:

(a) a monomorphism, if fa = fa′ ⇒ a = a′ whenever a and a′ are parallel
morphisms with codomain A;

(b) an epimorphism, if bf = b′f ⇒ b = b′ whenever b and b′ are parallel
morphisms with domain B;

(c) a bimorphism if it is a monomorphism and epimorphism at the same time;
(d) a split monomorphism if there exist a morphism g : B → A with gf = 1A;
(e) a split epimorphism if there exist a morphism g : B → A with fg = 1B.

Theorem 6.2. For the five classes of morphisms in a given category introduced in
Definition 6.1, we have:

(a) all these classes are closed under composition and contain all isomorphisms;
(b) if gf is a monomorphism, then so is f ;
(c) if gf is an epimorphism, then so is g;
(d) if gf is a split monomorphism, then so is f ;
(e) if gf is a split epimorphism, then so is g;
(f) if a morphism is monomorphism and a split epimorphism at the same time,

then it is an isomorphism;
(g) if a morphism is epimorphism and a split monomorphism at the same time,

then it is an isomorphism. �

Proof. Let us prove only (f). If f : A→ B is a split epimorphism, then there exists
a morphism g : B → A with fg = 1B . We also have f(gf) = (fg)f = 1Bf = f =
f1A, and, if f is a monomorphism, this gives gf = 1A. �

Theorem 6.3. A morphism f : A→ B is an isomorphism in each of the following
cases:

(a) B is an initial object and f is a monomorphism;
(b) A is a terminal object and f is an epimorphism.
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Proof. (a): Since B initial, there exist a morphism g from B to A. Applying
initiality again, we also see that fg = 1B , making f a split epimorphism. Therefore
f is an isomorphism by Theorem 6.2(f).

(b) is dual to (a). �

Exercises

1. Prove all assertions of Theorem 6.2.
2. Explain that Theorem 6.3 improves the “only if” parts of Theorem 5.2.
3. Explain the first two sentences of this section.
4. Describe each of the five classes of morphisms from Definition 6.1 in Sets

and in a preorder viewed as a category. In particular show that a morphism
in Sets is:
(a) a monomorphism if and only if it is an injective map;
(b) an epimorphism if and only if it is a surjective map.

Furthermore, almost every monomorphism in Sets is split (that is, is a split
monomorphism). Why “almost”?

5. Explain that Axiom of Choice can be formulated as: every epimorphism in
Sets is split (that is, is a split epimorphism).

6. Let C be a subcategory of either Alg(Ω) (for some signature Ω), or of Preord
(although preorder axioms will be irrelevant in this exercise). For a mor-
phism f : A→ B in C, explain that (a) and (b) of Exercise 4 immediately
imply:
(a) if f is an injective map, then it is a monomorphism;
(b) if f is a surjective map, then it is an epimorphism;

7. Describe each of the five classes of morphisms from Definition 6.1 in the
following categories:
(a) the category of pointed sets;
(b) the category of vector spaces over a fixed field;*
(c) the category of abelian groups.*

8. Describe monomorphisms, epimorphisms, and bimorphisms in Preord and
in Ord. Would you say that these descriptions trivially agree?

9. Prove that the inclusion map from the additive monoid of natural numbers
to the additive group of integers (considered as a monoid) is a bimorphism
in Mon.

10. Modify the previous exercise to involve the ring of integers and the field of
rational numbers.*

11. Explain that Theorem 6.3(a) applied in the situation of Exercise 2 of Section
5 gives the Induction Principle.

7. hom sets

We write homC(A,B), or simply hom(A,B), for the set of all morphisms from
A to B in a category C. Other authors might write “Hom” with capital “H”, or
any of the following:

mor(A,B), morC(A,B), Mor(A,B), MorC(A,B), C(A,B), [A,B], C[A,B],

to denote the same set.

Remark 7.1. One can define a category in terms of these hom sets, as a sys-
tem C = (C0, (homC(A,B))(A,B)∈C0×C0

, (eA)A∈C0 , (mA,B,C)(A,B,C)∈C0×C0×C0
), in

which eA is an element of homC(A,A) (A ∈ C0) written as 1A, and mA,B,C is
a map homC(B,C) × homC(A,B) → homC(A,C) written as mA,B,C(g, f) = gf ,
and such that 1Bf = f = f1A and h(gf) = (hg)f , for all A, B, C, D ∈ C0 and
f ∈ homC(A,B), g ∈ homC(B,C), and h ∈ homC(C,D). It seems that in order
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to make this definition equivalent to Definition 2.1, one has to require the hom-
disjointness condition

homC(A,B) ∩ homC(A′, B′) 6= ∅ ⇒ (A = A′ & B = B′),

which was required in old text books (otherwise the domain and the codomain maps
are not well-defined), but, as we will see later (Exercise 3 of Section 13), this
condition can be avoided. Right now we can only say that once it is not satisfied we
can make it satisfied by replacing each f ∈ homC(A,B) with (A, f,B). This was
already mentioned in convention (ii) in Section 2. Partly rephrasing it, let us point
out that this is important, since, defining a particuler category C, one often begins
with C0 and then says “a morphism f : A → B in C is ...”, not paying attention
on the hom-disjointness condition, which we will also do. In fact this was relevant
already in Exercise 2 of Section 2.

Definition 7.2. Given a morphism f : A → B and an object X in the same
category C, we introduce induced maps

(a) hom(X, f) : hom(X,A)→ hom(X,B) defined by hom(X, f)(a) = fa;
(b) hom(f,X) : hom(B,X)→ hom(A,X) defined by hom(f,X)(b) = bf .

Exercises

1. Explain that homC(A,B) = homCop(B,A) makes the constructions 7.2(a)
and 7.2(b) dual to each other, and observe dualities in other exercises of
this section.

2. In the notation of Definition 7.2, show that:
(a) hom(X, 1A) is the identity map of hom(X,A);
(b) given also a morphism g : B → C, we have

hom(X, g)hom(X, f) = hom(X, gf), hom(f,X)hom(g,X) = hom(gf,X).

3. Given morphisms f : A → B and g : C → D define the induced map
hom(g, f) : hom(D,A)→ hom(C,B) and explain how it is related to Defi-
nition 7.2.

4. Prove that the following conditions of a morphism f : A→ B in a category
C are equivalent:
(a) f is an isomorphism;
(b) the map hom(X, f) is bijective for every object X in C;
(c) the map hom(f,X) is bijective for every object X in C.

5. Reformulate Definition 6.1 in terms of hom sets. For, show that a morphism
f in Sets is:
(a) a monomorphism if and only if the map hom(X, f) is injective for every

object X in C;
(b) an epimorphism if and only if the map hom(f,X) is injective for every

object X in C;
(c) a bimorphism if and only if the maps hom(X, f) and hom(f,X) are

injective for every object X in C;
(d) a split monomorphism if and only if the map hom(f,X) is surjective

for every object X in C;
(e) a split epimorphism if and only if the map hom(X, f) is surjective for

every object X in C.
6. Explain how the previous exercise can be used to prove Theorem 6.2 ‘set-

theoretically’ (see also Exercise 3 of Section 2).

8. Functors

Categories themselves form a category Cat (in fact ‘smaller’ categories form a
‘larger’ category), whose morphisms are called functors; they are defined as follows:
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Definition 8.1. Let A and B be categories. A functor F : A → B is a pair
F = (F0, F1), in which F0 : A0 → B0 and F1 : A1 → B1 are maps, satisfying the
following conditions:

(a) if a is a morphism in A from A to A′, then F1(a) is a morphism (in B)
from F0(A) to F0(A′); it is written simply as F (a) : F (A)→ F (A′);

(b) F (1A) = 1F (A), for every object A in A;
(c) F (a′a) = F (a′)F (a), for every composable pair (a′, a) of morphisms in A.

What remains to describe Cat is to say what is the identity functor of any
category A, and to say how to compose functors. Rather obviously, this is done as
follows:

1A = (1A0
, 1A1

) and GF = (G0F0, G1F1).

Convention (iii) in Section 2 on categories, obviously suggests a similar conven-
tion of functors, namely to describe only their ‘object part’; at the beginning we
will not use this convention but only omit checking conditions 8.1(b) and 8.1(c).

Consider some examples of functors:

Example 8.2. If S is a subcategory of a category C, there is the inclusion functor
S→ C, which carries objects and morphisms of S to the same objects and morphisms
in C.

Example 8.3. For an arbitrary category C and an object X in C, we have:

(a) the functor hom(X,−) = homC(X,−) : C → Sets, which carries any f :
A→ B from C to

hom(X, f) : hom(X,A)→ hom(X,B)

as defined in 7.2(a);
(b) the functor hom(−, X) = homC(−, X) : Cop → Sets, which carries any

f : B → A from Cop to

hom(f,X) : hom(B,X)→ hom(A,X)

as defined in 7.2(b).

Example 8.4. Let M be a multiplicative monoid and X an M -set (see Example
3.10). Considering M as category, as in Example 2.3, X determines a functor
M → Sets, constructed as follows:

(a) it carries the unique object of M to X;
(b) it carries any morphism u of M (that is, any element u of M) to the map

X → X, defined by x 7→ ux.

Moreover, every functor F : M → Sets can be obtained this way by taking X to
be the F -image of the unique object of M and putting ux = F (u)(x).

Definition 8.5. For a functor F : A→ B, we say that:

(a) F preserves monomorphisms, if, for every monomorphism m in A, F (m)
is a monomorphism in B;

(b) F reflects monomorphisms, if a morphism m in A is a monomorphism
whenever so is F (m).

Preservation and reflection of epimorphisms, bimorphisms, split monomorphisms,
split epimorphisms, and isomorphisms is defined similarly.

Definition 8.6. Given a functor F : A→ B and objects A and A′ in A, the map

homA(A,A′)→ homB(F (A), F (A′))

induced by F will be denoted by FA,A′ . A functor F : A→ B is said to be

(a) faithful, if each FA,A′ is an injection;
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(b) full, if each FA,A′ is a surjection;
(c) f.f. (=fully faithful), if each FA,A′ is a bijection;
(d) e.i.o. (=essentially injective on objects), if F (A) ≈ F (A′)⇒ A ≈ A′;
(e) e.s.o. (=essentially surjective on objects), if, for every object B in B, there

exists an object A in A with F (A) ≈ B;
(f) e.b.o. (=essentially bijective on objects), if it is e.i.o. and e.s.o. at the

same time.

Exercises

1. Let A and B be categories, and B a fixed object in B. Define the constant
functor ConstB : A→ B associated to B.

2. If X is a fixed set and F : Sets → Sets a functor claimed to be defined by
F (A) = X ×A, how would you define it on morphisms?

3. Let X be a fixed set. Show that, for the conditions (a)-(c) below, we have:
(b) and (c) are equivalent to each other and imply (a), while (a) implies
(b) and (c) whenever X is finite.
(a) there exists a functor F : Sets → Sets with F (A) = X ∪ A for every

set A;
(b) there exists a functor F : Sets → Sets with F (A) = X ∩ A for every

set A;
(c) X = ∅.

4. Let Mon and Preord be as an Exercise 2 of Section 2. Explain that:
(a) for monoids M and M ′, to give a functor M →M ′ is to give a monoid

homomorphism M → M ′, and this determines an f.f. functor Mon→
Cat;

(b) for preorders P and P ′, to give a functor P → P ′ is to give a preorder
preserving map P → P ′, and this determines an f.f. functor Preord→
Cat.

5. Show that each of the six collections of functors, introduced in Definition
8.6, contains all isomorphisms (of categories) and is closed under the com-
position.

6. Prove the following preservation and reflection properties of functors:
(a) Every functor preserves split monomorphisms, split epimorphisms, and

isomorphisms;
(b) Every faithful functor reflects monomorphisms, epimorphisms, and bi-

morphisms;
(c) Every f.f. functor reflects split monomorphisms, split epimorphisms,

and isomorphisms;
(d) Every f.f. functor is e.i.o;
(e) If a functor is f.f. and e.s.o., then it preserves monomorphisms, epi-

morphisms, and bimorphisms.
7. Show that:

(a) there exist a full functor F and a morphism f in its domain category,
such that F (f) is an isomorphism while f is neither a monomorphism
nor an epimorphism;

(b) there exist an f.f. functor F that does not carry bimorphisms to
monomorphisms.

8. Prove that the following conditions on a functor F = (F0, F1) are equivalent:
(a) F is an isomorphism (that is, an isomorphism in Cat);
(b) F0 and F1 are bijections;
(c) F1 is a bijection;
(d) F0 is a bijection and F is fully faithful.



CATEGORY THEORY: A FIRST COURSE 15

9. Define the underlying set functors Mon → Sets and Preord → Sets (also
called forgetful functors), and show that:
(a) both of them are faithful and preserve monomorphisms;
(b) none of them is neither full nor e.i.o;
(c) none of them reflects split monomorphisms and none of them reflects

split epimorphisms;
(d) the first of them reflects isomorphisms while the second one does not;
(e) the first of them does not preserve bimorphisms and is not e.s.o.;
(f) the second one preserves epimorphisms and is e.s.o.

Note: in items (a) and (d), monoid axioms 1x = x = x1 and x(yz) = (xy)z
play no role.

10. Any familiar category of mathematical structures on sets (as in Exercise 2
of Section 2) admits a suitable underlying set functor from it to Sets; try
to analyze such underlying set functors by trying to establish properties
similar to those of the previous exercise. More generally, do the same for
various forgetful functors between categories of mathematical structures
that associate weaker structures to given structures (e.g. the functor that
associates to rings their additive groups).*

11. Try similar analysis for functors of Example 8.3 taking C to be one of
familiar categories of mathematical structures.*

12. Make similar analysis for the functor F of Exercise 2. Some of it will
require considering the following three cases separately: (a) X = ∅; (b) X
is a one-element set; (c) X has more than one element.

9. Old terminology: covariant and contravariant functors

Functors, as we have defined them in Section 8, were originally called covariant
functors, in contrast to contravariant functors, whose definition is obtained from
Definition 8.1 by replacing:

• F (a) : F (A)→ F (A′) with F (a) : F (A′)→ F (A) in 8.1(a);
• F (gf) = F (g)F (f) with F (gf) = F (f)F (g) in 8.1(c).

The reason why it is better to avoid this terminology is that a contravariant functor
A → B can either be seen as a functor Aop → B, or as a functor A → Bop, while
one cannot identify these two functors with each other.

However, after abandoning this terminology, it is convenient to call the functors
homC(X,−) : C → Sets and homC(−, X) : Cop → Sets, of Example 8.3, covariant
hom functors and contravariant hom functors, respectively.

Exercises

1. Example 8.4 in fact says that, for a monoid M , to give a functor M →
Sets is to give an M -set. Rephrase it, explaining that covariant functors
M → Sets can be identified with left M -sets while contravariant functors
M → Sets can be identified with right M -sets. Hint: in Example 3.10
we wrote h(ω, x) = ωx, and “left” refers to ω written on the left in ωx –
which is convenient in the covariant case, while writing xω would be more
convenient in the contravariant case (explain why).

2. For monoids M and M ′, explain that:
(a) to give a covariant functor M → M ′ is, according to Exercise 4(a) of

Section 8, to give a monoid homomorphism M →M ′;
(b) to give a contravariant functor M → M ′ is to give a monoid antiho-

momorphism M → M ′; by a monoid antihomomorphism we mean a
map f satisfying f(1) = 1 and f(xy) = f(y)f(x) (for all x, y ∈M) in
the multiplicative notation.
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3. For preorders P and P ′, explain that:
(a) to give a covariant functor P → P ′ is, according to Exercise 4(b) of

Section 8, to give a preorder preserving map P → P ′;
(b) to give a contravariant functor P → P ′ is to give a preorder reversing

map P → P ′; by a preorder reversing map we mean a map f satisfying
x 6 y ⇒ f(y) 6 f(x) (for all x, y ∈ P ).

4. Explain that with an appropriate notion of composite of functors, covariant
or contravariant, we have:
(a) the composite of a covariant functor with a contravariant functor (in

any order) is contravariant;
(b) the composite of contravariant functors is covariant.

5. Explain that the identity functor of a category C can be considered either
as a contravariant functor Cop → C or as a contravariant functor C→ Cop,
and composinig with these functors (as in the previous exercise) defines
certain obvious bijections between collections of covariant and contravariant
functors.

10. Remarks on commutative squares

Postponing the formal definition of a diagram, let us agree that what we mean
by a diagram is just a display of objects and morphisms in a given category, such
as

X1
f1 // ...

fm−1 // Xm

fm

!!
A

f0
>>

g0   

B

Y1 g1
// ...

gn−1

// Yn

gn

==

calling it commutative (or saying that it commutes) if fm...f0 = gn...g0. In partic-
ular, a commutative square is a diagram

A

a

��

f // B

b
��

A′
f ′
// B′

with f ′a = bf . The following theorem describes very basic simple properties of
commutative squares; it is trivial, but worth mentioning.

Theorem 10.1. In a given category:

(a) for every morphism a : A→ A′, the diagram

A

a

��

1A // A

a

��
A′

1A′
// A′

commutes;
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(b) if the first two of the following three squares commute, then the third one
also commutes:

A

a

��

f // B

b
��

B

b
��

g // C

c

��

A

a

��

gf // C

c

��
A′

f ′
// B′ B′

g′
// C ′ A′

g′f ′ // C ′

(c) if f and f ′ are isomorphisms and the first of the following two squares
commutes, then the second one also commutes:

A

a

��

f // B

b
��

B

b
��

f−1

// A

a

��
A′

f ′
// B′ B′

(f ′)−1

// A′

�

Remark 10.2. It would be convenient to formulate 10.1(b) rather informally, say-
ing that if the two inner squares in the diagram

A

a

��

f // B

b
��

g // C

c

��
A′

f ′
// B′

g′
// C ′

commute, then the outer square also commutes.

Remark 10.3. Given a category C, Theorem 10.1 in fact consructs the so-called
arrow category Ar(C), whose objects are morphisms in C and whose morphisms
are commutative squares; and 10.1(b) shows how to compose such morphisms. In
the situation 10.1, informally identifying commutative squares with their pairs of
horizontal arrows, we might write 1a = (1A, 1A), (g, g′)(f, f ′) = (gf, g′f ′), and
(f, f ′)−1 = (f−1, f ′−1) – when f and f ′ are isomorphisms, which makes (f, f ′) to
be an isomorphism.

11. Natural transformations

Given categories A and B, all functors from A to B form a category BA, whose
morphisms are called natural transformations; they are defined as follows:

Definition 11.1. Let F,G : A→ B be functors. A natural transformation τ : F →
G is a family τ = (τA : F (A)→ G(A))A∈A0

of morphisms in B such that, for every
morphism a : A→ A′ in A, the diagram

F (A)

F (a)

��

τA // G(A)

G(a)

��
F (A′)

τA′
// G(A′),

called a naturality square, commutes.

As suggested by 10.1(a) and 10.1(b) (see also Remark 10.3), we also define 1F =
(1F (A))A∈A0

and υτ = (υAτA)A∈A0
, which completes our description of the functor

category BA. Also, from 10.1(c), we easily obtain:
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Theorem 11.2. Let F,G : A→ B be functors. A natural transformation τ : F →
G is an isomorphism in BA if and only if τA : F (A)→ G(A) is an isomorphism in
B for each object A in A. If τ is an isomorphism, then τ−1 = (τ−1

A )A∈A0
. �

Consider some examples of natural transformations:

Example 11.3. Let C be category, S : C→ Sets a functor, C an object in C, and
c an element of S(C). Then σ : hom(C,−) → S defined by σA(f) = S(f)(c) is a
natural transformation. This construction will be used in Theorem 14.1.

Example 11.4. SetsM is a functor category. In detail: Let M be a multiplicative
monoid and X and Y be M -sets viewed as functors M → Sets (see Example 8.4).
Then a natural transformation X → Y is nothing but an M -set homomorphism
from X to Y , that is, a map f : X → Y with f(ux) = uf(x) for all u ∈ M and
x ∈ X. So, Definitions 3.2 and 11.1 agree here.

Example 11.5. Let Ω be a signature, ω ∈ Ωn, C any subcategory of Alg(Ω), and
U : C→ Sets the (obviously defined) underlying set functor (cf. Exercises 9 and 10
of Section 8, although their results are not needed here). Let Un : C→ Sets be the
functor defined by Un(A) = U(A)n, with Un(f) : Un(A)→ Un(B) defined, for any
f : A → B, by Un(f)(a1, ..., an) = (f(a1), ..., f(an)). Then τ : Un → U defined by
τA(a1, ..., an) = ω(a1, ..., an) is a natural transformation.

Thinking of categories as sets equipped with morphisms between their elements,
we can make now a “functorial versions” of maps hom(X, f) and hom(f,X) in
Example 8.3:

Example 11.6. (of functors) For categories A, B, and X, a functor F : A → B
determines:

(a) a functor FX : AX → BX, which carries τ : Φ → Φ′ to Fτ : FΦ → FΦ′,
where Fτ is defined by (Fτ)X = F (τX).

(b) a functor XF : XB → XA, which carries υ : Ψ → Ψ′ to υF : ΨF → Ψ′F ,
where υF is defined by (υF )A = υF (A).

Exercises

1. Let A and B be categories, and b : B → B′ a morphism in B. Explain that
b can be considered as a natural transformation ConstB → ConstB′ (see
Exercise 1 of Section 8).

2. Let x : X → X ′ be a map of sets and F, F ′ : Sets → Sets functors defined
by F (A) = X × A and F ′(A) = X ′ × A, respectively (see Exercise 2 of
Section 8). Explain that x determines a natural transformation F → F ′.

3. Let F,G : A → B be functors. Assuming that B is a preorder viewed as a
category, prove that there exist at most one natural transformation F → G
and find a necessary and sufficient condition for its existence.

4. Let K be a field, U(K) its multiplicative group (of non-zero elements),
and GLn(K) the group of invertible n× n matrices with coefficients in K.
Explain that U and GLn can be viewed as functors from the category of
fields to the category of groups, and that taking the determinants can be
viewed as a natural transformation GLn → U .*

5. Explain that the natural transformation considered in the previous exercise
can be obtained as a special case of the natural transformation constructed
in Example 11.5.

12. Three remarks on isomorphic functors

The first remark is that the properties introduced in Definition 8.6 are invariant
under the isomorphism in the following sense:
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Theorem 12.1. Let F and G be isomorphic functors, and K be any of the six
collections of functors introduced in Definition 8.6. Then F ∈ K⇔ G ∈ K.

Proof. Let τ : F → G be an isomorphism of functors A→ B. Then the diagram

hom(F (A), F (A′))

f 7→τA′fτ
−1
A

��

hom(A,A′)

FA,A′
66

GA,A′ ((
hom(G(A), G(A′))

whose vertical arrow is a bijection (with the inverse map defined by g 7→ τ−1
A′ gτA)

commutes for all objects A and A′ in A. Therefore each FA,A′ is injective if and
only if each GA,A′ is injective, and the same is true for surjectivity and bijectivity.
This proves our theorem in the first three cases for K. In the other three cases just
use the fact that F (A) ≈ G(A) for every object A in A. �

The second remark, also formulated as a theorem, shows how to transport the
functor structure from a functor F : A→ B to a map G : A→ B along isomorphisms
F (A) ≈ G(A) given for all object A in A:

Theorem 12.2. Let A and B be categories, F : A → B a functor, G : A0 → B0

a map, and τ = (τA : F (A) → G(A))A∈A0 a family of isomorphisms in B. Then
there exist a unique way to make G a functor from A to B that makes τ a natural
transformation from F to G.

Proof. To make G a functor that makes τ a natural transformation from F to G is
to define G(a) : G(A)→ G(A′), for each a : A→ A′ in A, in such a way that:

(a) τA′F (a) = G(a)τA,
(b) G(1A) = 1G(A),
(c) G(a′a) = G(a′)G(a),

where a′ is any morphisms whose domain is A′. However, (a) is equivalent to

G(a) = τA′F (a)τ−1
A ,

which defines G(a) and (used for each a), makes (b) and (c) hold. �

The third remark is in fact about the relationship between two notions of isomor-
phism, the abstract one (Definition 4.1) and the notion of isomorphism of categories.
One can also say that it justifies the abstract notion of isomorphism:

Remark 12.3. In Theorem 12.2, let us take A = B, F = 1A, and G to be bijective.
Then:

(a) As follows from Theorem 12.1 and the assertion of Exercise 8 of Section 8,
the functor G is an automorphism of A.

(b) Roughly, the existence of the automorphism G should be understood as:
whatever we do in a category A, the same can be repeated after replacing
all (or some) objects of A with isomorphic objects provided this replacement
is a bijective map A0 → A0.

13. Equivalence and skeletons of categories

Definition 13.1. Given categories A and B, an equivalence (of categories) A ∼ B
is a system (F,G, α, β) in which F : A → B and G : B → A are functors, and
α : 1A → GF and β : 1B → FG are isomorphisms. When such an equivalence
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exists, one says that the categories A and B are equivalent (to each other), and the
functors F and G are said to be quasi-inverses of each other.

Remark 13.2. This definition has several standard variations, including the fol-
lowing ones, in which we use A, B, and (F,G, α, β) above. One might:

• write (F,G, α, β) : A ∼ B, or (F,G) : A ∼ B;
• replace α, or β, or both α and β by their inverses in the system (F,G, α, β);
• say that (F,G) is a category equivalence when 1A ≈ GF and 1B ≈ FG;
• say that F is a category equivalence when there exists G with 1A ≈ GF and

1B ≈ FG.

In this section we characterize category equivalences, which turns out to be far
more sophisticated than the characterization of category isomorphisms given by
Exercise 8 of Section 8.

Theorem 13.3. The category equivalence is an equivalence relation on the collec-
tion of all categories. Moreover:

(a) Let F : A → B be an isomorphism of categories. Then (F, F−1, 11A , 11B) :
A ∼ B is an equivalence of categories.

(b) If (F,G, α, β) : A ∼ B is an equivalence of categories, then so is (G,F, β, α) :
B ∼ A.

(c) If (F,G, α, β1) : A ∼ B and (K,L, β2, γ) : B ∼ C are equivalences of
categories, then so is (KF,GL, (Gβ2F )α, (Kβ1L)γ) : A ∼ C, where Gβ2F
is defined as G(β2F ) = (Gβ2)F (see Example 11.6), and Kβ1L is defined
similarly. �

Lemma 13.4. If a functor is an equivalence of categories, then it is fully faithful
and essentially surjective on objects.

Proof. The second assertion is obvious. To prove the first one, consider the com-
mutative diagram

homB(F (A), F (A′))
GF (A),F (A′)

**
homA(A,A′)

FA,A′
55

(GF )A,A′

// homA(GF (A), GF (A′)),

for arbitrary two objects A and A′ in A, and observe:

• Since GF is isomorphic to 1A, it is f.f. by Theorem 12.1.
• Since GF is f.f., (GF )A,A′ is bijective.
• Since (GF )A,A′ is bijective, FA,A′ is injective.
• Since this is true for any two objects A and A′ in A, F is faithful.
• As follows from Theorem 13.3(b), since F is faithful (in each such situation),

so is G.
• Since G is faithful, GF (A),F (A′) is injective.
• Since FA,A′ and GF (A),F (A′) are injective while (GF )A,A′ is bijective, FA,A′

is bijective.

That is, F is f.f. �

Definition 13.5. Let C be a category. A skeleton of C is a ‘maximal’ full subcat-
egory of C that is a skeleton, that is, a full subcategory of C such that, for every
object C in C, it has a unique object isomorphic to C.

Theorem 13.6. Let C be a category and C′ a skeleton of C. The inclusion functor
C′ → C is an equivalence of categories.
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Proof. We choose, for each object C in C:

• an object Φ(C) in C′ isomorphic to C (in C), which, in particular, gives
C ∈ C′0 ⇒ Φ(C) = C, and
• an isomorphism τC : C → Φ(C), assuming, in particular, that τC = 1C

when C ∈ C′0.
Then we observe:

(a) Applying Theorem 12.2 to the identity functor 1C : C → C, the map
Φ : C0 → C0, and the family τ = (τC)C∈C0

, we make Φ a functor from C
to C and τ : 1C → Φ an isomorphism.

(b) Denoting the inclusion functor C′ → C by F , we see that the functor Φ
determines a functor G : C → C′ with FG = Φ (since the Φ-images of all
objects of C are in C′ and C′ is a full subcategory of C).

(c) For any morphism c : C1 → C2 in C′, we have GF (Ci) = Ci (i = 1, 2) and
GF (c) = τC2

cτ−1
C1

= 1C2
c1−1
C1

= c. Therefore GF = 1C′ .

That is, FG = Φ ≈ 1C and GF = 1C′ . �

Given an equivalence (F,G, α, β) : A ∼ B of categories, consider the diagram

A

P

��

F // B

Q

��

G
oo

Sk(A)
QFS //

S

OO

Sk(B),
PGT
oo

T

OO

in which Sk(A) is any skeleton of A and Sk(B) is any skeleton of B, while (P, S) :
A ∼ Sk(A) and (Q,T ) : B ∼ Sk(B) are equivalences of categories. We observe:

• As follows from Theorem 13.3, (QFS,PGT ) : Sk(A) ∼ Sk(B) is an equiva-
lence of categories.
• After that, applying Lemma 13.4 (with Theorem 13.3(b)) and the result of

Exercise 6(d) of Section 8, we conclude that the functors QFS and PGT
are fully faithful and essentially bijective on objects.
• Being essentially bijective on objects functors between skeletons, QFS and
PGT are bijective on objects.
• Being fully faithful and bijective on objects functors, QFS and PGT are

isomorphisms of categories by the equivalence (a)⇔(b) in Exercise 8 of
Section 8.
• On the other hand, just having two categories with equivalent skeletons, we

could use Theorem 13.3 to conclude that they are equivalent to each other.

This proves:

Theorem 13.7. For two categories A and B, the following conditions are equiva-
lent:

(a) A and B are equivalent categories;
(b) A has a skeleton A′ and B has a skeleton B′ such that A′ and B′ are equiv-

alent categories;
(c) every skeleton of A is isomorphic to every skeleton of B.

In particular, a skeleton of a category is unique up to isomorphism. �

And the last assertion of Theorem 13.7 explains why it is reasonable to write
Sk(A) for a skeleton of A.
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Now consider the diagram

A

P

��

F // B

Q

��
Sk(A)

QFS
//

S

OO

Sk(B),

T

OO

where F is only required to be fully faithful and essentially surjective on objects,
while the vertical arrows are as before. Let us argue as follows:

• S and Q are also f.f. and e.s.o., by Lemma 13.4.
• Therefore so is QFS (see Exercise 5 of Section 8).
• Then, arguing as before, we conclude that QFS is an isomorphism.
• After that we put S(QFS)−1Q = G and calculate:

1A ≈ SP ≈ S(QFS)−1QFSP ≈ S(QFS)−1QF ≈ GF,

1B ≈ TQ ≈ TQFS(QFS)−1Q ≈ FS(QFS)−1Q ≈ FG,
which, together with Lemma 13.4 (see also Exercise 6(d) of Section 8 again), proves:

Theorem 13.8. The following conditions on a functor are equivalent:

(a) it is an equivalence of categories;
(b) it is fully faithful and essentially bijective on objects;
(c) it is fully faithful and essentially surjective on objects. �

Remark 13.9. The crucial part of Theorem 13.8, which is the implication (c)⇒(a),
can actually be proved directly, not using skeletons. For, given a fully faithful es-
sentially surjective on object functor F : A→ B, we construct a functor G : B→ A
as follows:

• Define G(B), for each object B of B, as any object in A whose F -image is
isomorphic to B.

• Fix an isomorphism βB : B → FG(B).
• For each morphism b : B → B′ in B, define G(b) : G(B) → G(B′) as the

unique morphism in A with FG(b) = βB′bβ
−1
B . This makes G a functor

from B to A, and makes β : 1B → FG an isomorphism.

After that, for each object A in A, we define αA as the unique morphism from A
to GF (A) in A with F (αA) = βF (A), which makes α : 1A → GF an isomorphism.
Indeed, given a morphism a : A→ A′ in A, we have

F (GF (a)αA) = F (G(F (a)))F (αA) = βF (A′)F (a)β−1
F (A)βF (A)

= βF (A′)F (a) = F (αA′)F (a) = F (αA′a),

and so GF (a)αA = αA′a, which gives the naturality of α. Then the fact α is an
isomorphism follows from the fact that F reflects isomorphisms (see Exercise 6(c)
of Section 8) and Theorem 11.2.

Definition 13.10. A full subcategory B′ of a category B is said to be replete if it
contains all objects B with B ≈ B′ in B for some object B′ in B′. Accordingly, the
replete image of a fully faithful functor F : A → B, which we will briefly denote
by F (A), is the full subcategory of B whose objects are all objects B in B with
B ≈ F (A) for some object A in A.

In the notation above, we can say that F (A) is the smallest full replete subcat-
egory of B containing F -images of all objects of A. From Theorem 13.8(c)⇒(a) we
obtain:
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Corollary 13.11. If F : A→ B is a fully faithful functor, then the induced functor
F : A→ F (A) is a category equivalence. More generally, the same will remain true
if we will replace F (A) with any full subcategory of it containing F -images of all
objects of A.

Exercises.

1. Use Corollary 13.11 to establish an equivalence A ∼ B in the following
cases:
(a) A = Mon, and B is the full subcategory of Cat with objects all one-

object categories.
(b) A = Preord, and B is the full subcategory of Cat with objects all

categories with no distinct parallel morphisms (such categories are
sometimes called coherent categories).

(c) For a fixed field K: A is the category whose objects are natural num-
bers 0, 1, 2, ..., and a morphism n → m is an m × n matrix with

entries in K – and matrices are composed as usually; B = VectfinK
is the category of finite-dimensional K-vector spaces. Hint: define a
functor F : A→ B by F (n) = Kn.*

(d) A is the category of finite sets, and B is the opposite category of finite
Boolean algebras. Hint: define F : A → B by F (A) = P (A), where
P (A) is the Boolean algebra of all subsets of A.*

2. Given a set S, establish an equivalence (F,G) : A ∼ B, in which:
– the objects of A are S-indexed families of sets, and a morphism u :

(Xs)s∈S → (Ys)s∈S is a family u = (us : Xs → Ys)s∈S of maps;
– the objects of B are pairs (X, p) in which X is a set and p : X → S is

a map, and a morphism v : (X, p) → (Y, q) is a map v : X → Y with
qv = p;

– F : A→ B is defined by

F ((Xs)s∈S) = (
⋃
s∈S
{s} ×Xs, p),

where p is defined by p(s, x) = s;
– G : B→ A is defined by G(X, p) = (p−1(s))s∈S .

3. Use the previous exercise to establish an equivalence between Cat and its
modified version in which categories are defined as in Remark 7.1 (not
requiring the hom-disjointness condition).

4. Prove that the category VectfinK is self-dual, that is, it is equivalent to its
opposite category. Hint:

(a) Considering K as an object in VectfinK , use the functor hom(−,K)

to make functors F : (VectfinK )op → VectfinK and G : VectfinK →
(VectfinK )op. In fact both F and G carry any finite-dimensional K-
vector space V to its dual (in the sense of linear algebra) vector space
V ∗.

(b) Given a K-vector space V , each v ∈ V determines a K-linear map
ṽ : V ∗ → K defined by ṽ(f) = f(v). Show that this gives an injective
linear map V → V ∗∗. Then conclude that, for a finite dimensional V ,
this map is an isomorphism.

(c) Use (b) to show that (F,G) is a category equivalence.*
5. Prove that the category fAb of finite abelian groups is self-dual. Hint:

instead of V ∗ used in the previous exercise, use, for any finite abelian group
A, the abelian group of homomorphisms from A to Q/Z, where Q and Z
are the additive groups of rational numbers and of integers, respectively.*
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6. Use the way of establishing a category equivalence in Exercise 1(d) to estab-
lish the equivalences of Exercises 4 and 5. Does the converse make sense?
Hint: for the converse, use a two-element set 2 as merely a set, which makes
P (A) ≈ hom(A, 2) (for any set A), and as a two-element Boolean algebra.*

7. Use the equivalence of Exercise 1(c) to establish the equivalence of Exercise
4.*

8. Prove that if F : A → B is a fully faithful functor, then an object A in A
is:
(a) initial in A if F (A) is initial in B;
(b) terminal in A if F (A) is terminal in B.

9. Prove that if F : A → B is a category equivalence, then an object A in A
is:
(a) initial in A if and only if F (A) is initial in B;
(b) terminal in A if and only if F (A) is terminal in B.

14. Yoneda Lemma and Yoneda Embedding

Theorem 14.1. (“Yoneda Lemma: covariant form”) Let C be a category, C
an object in C, and S : C→ Sets a functor. There are bijections

Nat(hom(C,−), S)
α //

S(C)
β
oo

inverse to each other, which are defined by α(σ) = σC(1C) and β(c)A(f) = S(f)(c),
between the set Nat(hom(C,−), S) of all natural transformations hom(C,−) → S
and the set S(C).

Proof. For c ∈ S(C), we have αβ(c) = β(c)C(1C) = S(1C)(c) = c.
For σ : hom(C,−)→ S, in order to prove that βα(σ) = σ, we need to prove that

(βα(σ))A(f) = σA(f), for every object A in C and every morphism f : C → A.
We have (βα(σ))A(f) = S(f)(α(σ)) = S(f)σC(1C) = σAhom(C, f)(1C) = σA(f),
where the equality S(f)σC(1C) = σAhom(C, f)(1C) follows from the commutativity
of the naturality square

hom(C,C)

hom(C,f)

��

σC // S(C)

S(f)

��
hom(C,A)

σA

// S(A)

used to calculate the image of 1C under S(f)σC = σAhom(C, f). �

Remark 14.2. Considering the commutative square above should actually be the
first step towards the ‘discovery’ of Yoneda Lemma. Indeed, it immediately shows
that a natural transformation σ : hom(C,−) → S is completely determined by
σC(1C), after which the whole proof of Yoneda Lemma becomes straightforward.

Dually, that is, replacing C with Cop, we obtain:

Theorem 14.3. (“Yoneda Lemma: contravariant form”) Let C be a cate-
gory, C an object in C, and S : Cop → Sets a functor. There are bijections

Nat(hom(−, C), S)
α //

S(C)
β
oo

inverse to each other, which are defined by α(σ) = σC(1C) and β(c)A(f) = S(f)(c),
between the set Nat(hom(−, C), S) of all natural transformations hom(−, C) → S
and the set S(C). �
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Example 14.4. Given a functor U : C→ X and an object X in X, composing the
hom functors hom(X,−) and hom(−, X) with U , we obtain functors

hom(X,U(−)) : C→ Sets and hom(U(−), X) : Cop → Sets,

and Theorems 14.1 and 14.3 give:

(a) For S = hom(X,U(−)), the bijections α and β of Theorem 14.1 become

Nat(hom(C,−),hom(X,U(−)))
α //

hom(X,U(C))
β
oo

with α(σ) = σC(1C) and β(c)A(f) = U(f)c for every morphism c : X →
U(C) in X, every object A in C, and every morphism f : C → A in C.

(b) For S = hom(U(−), X), the bijections α and β of Theorem 14.3 become

Nat(hom(−, C),hom(U(−), X)
α //

hom(U(C), X)
β
oo

with α(σ) = σC(1C) and β(c)A(f) = cU(f) for every morphism c : U(C)→
X in X, every object A in C, and every morphism f : A→ C in C.

Furthermore, taking X = C and U = 1C, we obtain:

(c) For S = hom(X,−), the bijections α and β of Theorem 14.1 become

Nat(hom(C,−),hom(X,−))
α //

hom(X,C)
β
oo

with α(σ) = σC(1C) and β(c)A(f) = fc for all c : X → C and f : C → A
in C.

(d) For S = hom(−, X), the bijections α and β of Theorem 14.3 become

Nat(hom(−, C),hom(−, X)
α //

hom(C,X)
β
oo

with α(σ) = σC(1C) and β(c)A(f) = cf for all c : C → X and f : A → C
in C. �

Remark 14.5. We presented bijections described in Example 14.4(a) as a special
case of bijections described in Theorem 14.1. However, one could also present bi-
jections in Theorem 14.1 as a special case of bijections in Example 14.4(a). Indeed,
in Exanple 14.4(a), take X = Sets, S = U , and X to be a one-element set; then
hom(X,U(−)) = hom(X,S(−)) ≈ S and it is easy to check that the bijections
described in Example 14.4(a) give the bijections described in Theorem 14.1.

Theorem 14.6. (“Yoneda embedding”) Given a category C, the functor Y =

YC : C→ SetsC
op

defined by

Y (C
c // C ′) = (hom(−, C)

hom(−,c) // hom(−, C ′)),

where hom(−, c) is the natural transformation defined by hom(−, c)A = hom(A, c),
is fully faithful.

Proof. For any two objects C and C ′ in C, consider the map β of Example 14.4(d)
for X = C ′. We have

β(c)A(f) = cf = hom(A, c)(f) = hom(−, c)A(f) = Y (c)A(f) = (YC,C′(c))A(f),

for all c : C → C ′ and f : A → C in C. Therefore β = YC,C′ , which implies that
YC,C′ is a bijection. �

Exercises
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1. Let M a monoid. We could also consider M as an M -set, and, given any
M -set S, form hom(M,S) in the category SetsM of M -sets. Use Yoneda
Lemma to establish a bijection hom(M,S) ≈ S.

2. What would you call the counterpart of the bijection above in linear alge-
bra?*

3. Let M be a monoid and M̂ the monoid of all maps (not just monoid ho-
momorphisms) M → M . Use Yoneda embedding to prove that the map

f : M → M̂ , defined by f(x)(y) = xy, is an injective homomorphism of
monoids. How does the Yoneda embedding describe the image of f?

15. Representable functors and universal arrows

Definition 15.1. Let C be category and S : C → Sets a functor. The category
ElC(S) of elements of S over C is the category of pairs (C, c), where C is an object
in C and c ∈ S(C); a morphism f : (C, c) → (C ′, c′) in ElC(S) is a morphism
f : C → C ′ in C with S(f)(c) = c′.

Theorem 15.2. In the notation of Theorem 14.1, let σ : hom(C,−) → S and
c ∈ S(C) correspond to each other via the bijection Nat(hom(C,−), S) ≈ S(C).
Then the following conditions are equivalent:

(a) σ is an isomorphism;
(b) (C, c) is a initial object in ElC(S).

Proof. Just note that the following conditions are (subsequently) equivalent:

• condition (a);
• σA : hom(C,A)→ S(A) is bijective for every object A in C;
• for every object A in C and every a ∈ S(A), there exists a unique morphism
f : C → A with S(f)(c) = a;

• for every object (A, a) in ElC(S), there exists a unique morphism from (C, c)
to (A, a),

and that the last of them is condition (b). �

The dual definition and dual theorem are:

Definition 15.3. Let C be category and S : Cop → Sets a functor. The category
ElC(S) of elements of S over C is defined as ElCop(S)op. That is, a morphism
f : (C, c)→ (C ′, c′) in ElC(S) is a morphism f : C → C ′ in C with S(f)(c′) = c.

Theorem 15.4. In the notation of Theorem 14.3, let σ : hom(−, C) → S and
c ∈ S(C) correspond to each other via the bijection Nat(hom(−, S), S) ≈ S(C).
Then the following conditions are equivalent:

(a) σ is an isomorphism;
(b) (C, c) is a terminal object in ElC(S).

Example 15.5. Let us go back to situations (a) and (b) of Example 14.4. We
have:

(a) For S = hom(X,U(−)), the category ElC(S), denoted by (X ↓ U), is the
category of pairs (A, a), where A is an object in A and a : X → U(A) is
a morphism in X; a morphism f : (A, a) → (B, b) in this category is a
morphism f : A→ B in A with U(f)a = b, hence making the diagram

U(A)
U(f) // U(B)

X

a

bb

b

<<
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commute. In this case the initial object of ElC(S) is called the universal
arrow X → U , and Theorem 15.2 says:

Let σ : homC(C,−)→ homX(X,U(−)) and c : X → U(C) correspond to
each other via the bijection

Nat(homC(C,−),homX(X,U(−)) ≈ homX(X,U(C)).

Then the following conditions are equivalent:
(a1) σ is an isomorphism;
(a2) (C, c) is a universal arrow X → U .

(b) For S = hom(U(−), X), the category ElC(S), denoted by (U ↓ X), is the
category of pairs (A, a), where A is an object in A and a : U(A) → X is
a morphism in X; a morphism f : (A, a) → (B, b) in this category is a
morphism f : A→ B in A with bU(f) = a, hence making the diagram

U(A)
U(f) //

a
""

U(B)

b||
X

commute. In this case the terminal object of ElC(S) is called the universal
arrow U → X, and Theorem 15.4 says:

Let σ : homC(−, C)→ homX(U(−), X) and c : U(C)→ X correspond to
each other via the bijection

Nat(homC(−, C),homX(U(−), X) ≈ homX(U(C), X).

Then the following conditions are equivalent:
(a1) σ is an isomorphism;
(a2) (C, c) is a universal arrow U → X.

Definition 15.6. A functor S : C→ Sets is said to be representable if there exists
an object C in C with S ≈ hom(C,−); the object C is then called a representing
object for S.

This definition is self-dual in the sense that it automatically implies that a functor
S : Cop → Sets should be said to be representable if there exists an object C in C
with S ≈ hom(−, C).

From the results above, we obtain:

Corollary 15.7. We have:

(a) A functor S : C → Sets is representable if and only if the category ElC(S)
has an initial object;

(b) A functor S : Cop → Sets is representable if and only if the category ElC(S)
has a terminal object.

(c) A functor of the form homX(X,U(−)) : C → Sets is representable if and
only if there exists a universal arrow X → U ;

(d) A functor of the form homX(U(−), X) : Cop → Sets is representable if and
only if there exists a universal arrow U → X.

Remark 15.8. Similarly to how it is described in Remark 14.5, it is easy to see
that:

(a) Definition 15.1 can be presented as a special case of what is introduced in
Example 15.5(a); briefly ElC(S) ≈ (1 ↓ U);

(b) Theorem 15.2 can be deduced from the equivalence (a1)⇔ (a2) in Example
15.5(a);

(c) 15.7(a) can be deduced from 15.7(c).
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Exercises.

1. Explain that one has to be careful in dualizing Remarks 14.5 and 15.8.
Specifically, explain that, for a functor S : Cop → Sets, the existence of an
isomorphism ElC(S) ≈ (U ↓ 1) almost implies S = 1. Explain “almost”
and how the symbol 1 is used here in two different ways.

2. For an object Z in a category C, show that:
(a) Z is initial in C if and only if it is a representing object for any functor

C→ Sets sending all objects of C to one-element sets;
(b) Z is terminal in C if and only if it is a representing object for any

functor Cop → Sets sending all objects of C to one-element sets;
3. Show that the functor 1Sets : Sets → Sets is representable, and use this to

show that there are no non-identity natural transformations 1Sets → 1Sets.
4. Let X be a set, C a category of (familiar) mathematical structures, and

U : C→ Sets the underlying set functor (=the forgetful functor). Describe
a universal arrow X → U for C being:
(a) Sets, which makes U = 1Sets;
(b) Pointed Sets;

(c) SetsM , where M is a monoid;
(d) CommSemigroups;
(e) Semigroups;
(f) Mon;
(g) CommMon;
(h) Groups;
(i) Ab;
(j) the category of semimodules over a fixed semiring S (note that this

includes the cases (g) and (i), and the case of modules and vector
spaces);*

(k) Preord, and the same construction works for Ord
5. Describe a universal arrow X → U for (X being an object in X and)

U : C→ X being the forgetful functor:
(a) Mon→ Pointed Sets;
(b) Mon→ Semigroups;
(c) Ab→ CommMon;

6. Describe a universal arrow U → X for (X being an object in X and)
U : C→ X being:
(a) as in (k) of Exercise 4;
(b) as in (c) of Exercise 5;
(c) the functor Sets→ Sets defined, for a given fixed set S, by C 7→ C×S

(cf. Exercise 2 of Section 8).
7. Extend the results of Exercises 4(k) and 6(a) from Preord to Cat.
8. Extend the result of Exercise 6(c) from Sets to (Ord and) Preord, and then

further to Cat.
9. Given functors U : A → X and V : X → S, and universal arrows (X,x) :

S → V and (A, a) : X → U , prove that (A, V (a)x) : S → V U is a universal
arrow.

16. Comma categories: general definition and special cases

Definition 16.1. Given categories A, B, and C, and functors

A F // C B,Goo

the comma category (F ↓ G) is the category of triples (A,B, c), in which A is an
object in A, B is an object in B, and c : F (A) → G(B) is a morphism in C; a
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morphism (A,B, c) → (A′, B′, c′) in (F ↓ G) is a pair (a, b), in which a : A → A′

is a morphism in A and b : B → B′ is a morphism in B making the diagram

F (A)

F (a)

��

c // G(B)

G(b)

��
F (A′)

c′
// G(B′)

commute. The morphisms compose obviously (cf. Remark 10.3).

The term “comma category” comes from the old symbol (F,G) used in earlier
literature for (F ↓ G).

The following example in fact lists important special cases:

Example 16.2. In the notation of Definition 16.1 we can take:

(a) A = B = C and F = G = 1C. Then (F ↓ G) = Ar(C), the arrow category
introduced in Remark 10.3.

(b) C to be indiscrete, that is, all hom sets in C are one-element sets. Then
(F ↓ G) can be identified with A× B, the product (defined in Exercise 5 of
Section 5) of A and B in Cat. Of course the standard description of A× B
should present it as the category of pairs (A,B), in which A is an object in
A and B is an object in B; a morphism (A,B) → (A′, B′) in A × B is a
pair (a, b), in which a : A → A′ is a morphism in A and b : B → B′ is a
morphism in B.

(c) A = 1, the terminal category (in which A0 and A1 are one-element sets),
and let C be the F -image of the unique object of A. Then (F ↓ G) can be
identified with (C ↓ G), which is the same as the category of elements of
hom(C,G(−)) over B (see Example 15.5(a)).

(d) B = 1, and let C be the G-image of the unique object of B. Then (F ↓ G)
can be identified with (F ↓ C), which is the same as the category of elements
of hom(F (−), C) over A (see Example 15.5(b)).

The following further special cases are also important:

(e) if B = C and G = 1C in (c), then (C ↓ G) is also denoted by (C ↓ C) and
called the coslice of C over C. Some authors also denote it by C \ C.

(f) if A = C and F = 1C in (d), then (F ↓ C) is also denoted by (C ↓ C) and
called the slice of C over C. Some authors also denote it by C/C.

17. Products of categories and bifunctors

Given categories A and B, we can form their product A × B constructed as, in
Example 16.2, as the category of pairs (A,B), in which A is an object in A and B
is an object in B. As also briefly mentioned in Example 16.2, A×B is the product
of A and B in Cat. More precisely, there are projection functors

A A× BP1oo P2 // B

which carry (a, b) : (A,B)→ (A′, B′) to a : A→ A′ and to b : B → B′, respectively,
and the triple (A× B, P1, P2) satisfies the universal property described in Exercise
5 of Section 5. This universal property in fact says, that given functors F : X→ A
and G : X→ B, there exists a unique functor H : X→ A×B making (both triangles
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of) the diagram

X
F

||
H

��

G

""
A A× B

P1

oo
P2

// B

commute. Clearly, H is defined by

H(x : X → X ′) = ((F (x), G(x)) : (F (X), G(X))→ (F (X ′), G(X ′))).

That is, to give a functor X→ A×B is just to give a functor X→ A and a functor
X→ B. What about the functors from A× B to another category?

Definition 17.1. A bifunctor (=functor of two variables) is a functor of the form
A× B→ C, where A, B, and C are arbitrary categories. Given such a bifunctor Φ
we introduce the following two functors associated to it:

(a) the functor Φl : A→ CB defined by

Φl(a : A→ A′) = Φ(a,−) : Φ(A,−)→ Φ(A′,−),

where Φ(A,−) : B→ C is the functor defined by

Φ(A,−)(b : B → B′) = (Φ(1A, b) : Φ(A,B)→ Φ(A,B′)),

Φ(A′,−) is defined similarly, and the natural transformation Φ(a,−) is
defined by Φ(a,−)B = Φ(a, 1B).

(b) the functor Φr : B→ CA defined by

Φr(b : B → B′) = Φ(−, b) : Φ(−, B)→ Φ(−, B′),

where Φ(−, B) : A→ C is the functor defined by

Φ(−, B)(a : A→ A′) = (Φ(a, 1B) : Φ(A,B)→ Φ(A′, B)),

Φ(−, B′) is defined similarly, and the natural transformation Φ(−, b) is
defined by Φ(−, b)A = Φ(1A, b).

(The indices l and r stand for “left” and “right” respectively.)

Remark 17.2. Note that, in the situation of Definition 17.1, we have:

(a) Φ(1A, b) = Φ(A, b) = Φ(A,−)(b) = Φl(A)(b) = Φr(b)A, for every object A
in A and every morphism b in B;

(b) Φ(a, 1B) = Φ(a,B) = Φ(−, B)(a) = Φr(B)(a) = Φl(a)B, for every mor-
phism a in A and every object B in B.

Lemma 17.3. A functor Φ : A × B → C is determined by any of the following
data:

(a) the functor Φl : A→ CB defined as in 17.1(a);
(b) the functor Φr : B→ CA defined as in 17.1(b);
(c) the pair ((Φl)0 : A0 → (CB)0, (Φr)0 : B0 → (CA)0) (in the notation of Def-

inition 8.1), or, equivalently, the pair ((Φl(A))A∈A0 , (Φr(B))B∈B0) (which
is the same as ((Φ(A,−))A∈A0 , (Φ(−, B))B∈B0)).

Specifically, for a morphism (a, b) : (A,B)→ (A′, B′) in A×B, we can reconstruct
Φ(a, b) as follows:

(a′) Φ(a, b) = (Φl(A
′)(b))Φl(a)B or Φ(a, b) = Φl(a)B′(Φl(A)(b)), using Φl;

(b′) Φ(a, b) = Φr(b)A′(Φr(B)(a)) or Φ(a, b) = (Φr(B
′)(a))Φr(b)A, using Φr;

(c′) Φ(a, b) = (Φl(A
′)(b))(Φr(B)(a)) or Φ(a, b) = (Φr(B

′)(a))(Φl(A)(b)), using
the data (c).
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Proof. Just use the equalities

(1A′ , b)(a, 1B) = (a, b) = (a, 1B′)(1A, b),

and relevant equalities from Remark 17.2. �

Theorem 17.4. Given categories A, B, and C. we have:

(a) For every functor F : A→ CB, there exist a unique functor Φ : A× B→ C
with Φl = F .

(b) For every functor G : B→ CA, there exist a unique functor Φ : A× B→ C
with Φr = F .

(c) Let ((FA : B → C)A∈A0
, (GB : A → C)B∈B0

) be a pair of families of
functors, in which FA(B) = GB(A) for all A ∈ A0 and B ∈ B0, and all
diagrams of the form

GB(A)
GB(a) // GB(A′)

FA(B)

FA(b)

��

FA′(B)

FA′ (b)

��
FA(B′) FA′(B

′)

GB′(A)
GB′ (a)

// GB′(A)

commute. Then there exists a unique functor Φ : A×B→ C with Φ(A,−) =
FA and Φ(−, B) = GB for all A ∈ A0 and B ∈ B0.

Proof. In each of these assertions, the uniqueness follows from Lemma 17.3, and so
we need to prpve only the existence.

(a): For objects A in A and B in B, we put Φ(A,B) = F (A)(B), and, for
morphisms a : A→ A′ in A and b : B → B′ in B, consider the natuality square

F (A)(B)

F (A)(b)

��

F (a)B // F (A′)(B)

F (A′)(b)

��
F (A)(B′)

F (a)B′
// F (A′)(B′);

we define Φ(a, b) as any of the two composites in it. That is, Φ(a, b) is defined as

Φ(A,B) = F (A)(B)
F (a)B′ (F (A)(b))=(F (A′)(b))F (a)B // F (A′)(B′) = Φ(A′, B′).

The rest of the proof of (a) is a routine calculation, and we will only show that,
given morphisms

(A,B)
(a,b) // (A′, B′)

(a′,b′)// (A′′, B′′)



32 GEORGE JANELIDZE

in A× B, we have Φ((a′, b′)(a, b)) = Φ(a′, b′)Φ(a, b). For, consider the diagram

F (A)(B)

F (A)(b)

��

F (a)B //

Φ(a,b)

''

F (A′)(B)

F (A′)(b)

��

F (a′)B // F (A′′)(B)

F (A′′)(b)

��
F (A)(B′)

F (a)B′
//

F (A)(b′)

��

F (A′)(B′)
F (a′)B′ //

F (A′)(b′)

��

Φ(a′,b′)

''

F (A′′)(B′)

F (A′′)(b′)

��
F (A)(B′′)

F (a)B′′
// F (A′)(B′′)

F (a′)B′′

// F (A′′)(B′′),

in which:

• the four small squares being naturality squares commutes;
• the four triangles commute by our definition of Φ(a, b) (and Φ(a′, b′));
• therefore, for example, the diagram

F (A)(B)

F (A)(b)

��

Φ(a,b)

''
F (A)(B′)

F (A)(b′)

��

F (A′)(B′)

Φ(a′,b′)

''
F (A)(B′′)

F (a)B′′
// F (A′)(B′′)

F (a′)B′′

// F (A′′)(B′′)

commutes;
• since F and F (A) are functors, we have F (a′)B′′F (a)B′′ = F (a′a)B′′ and

(F (A)(b′))(F (A)(b)) = F (A)(b′b);

This gives Φ(a′, b′)Φ(a, b) = F (a′a)B′′(F (A)(b′b)) = Φ(a′a, b′b) = Φ((a′, b′)(a, b)),
as desired.

(b) and (c) can be proved similarly. Just note that, for (c), the naturality square
used at the beginning of our proof of (a) should be replaced with the diagram
displayed in in (c), and Φ(a, b) should be defined as

Φ(A,B)
GB′ (a)FA(b)=FA′ (b)GB(a) // Φ(A′, B′),

where Φ(A,B) = FA(B) = GB(A) and Φ(A′, B′) = FA′(B
′) = GB′(A

′). �

Example 17.5. Let us return again to Exercise 5 of Section 5, where the product
(A × B, π1, π2) of objects A and B in a category C was defined via a universal
property in fact saying that, for every object C and morphisms α : C → A and
β : C → B, there exists a unique morphism γ : C → A×B making the diagram

C

α

||
γ

��

β

##
A A×B

π1

oo
π2

// B

commute. We will write γ = 〈α, β〉. Now, given morphisms a : A → A′ and
b : B → B′, we can form the morphism 〈aπ1, bπ2〉 : A × B → A′ × B′. The
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commutative diagram it is determined by can be displayed as

A

a

��

A×B

〈aπ1,bπ2〉
��

π1oo π2 // B

b

��
A′ A′ ×B′

π′1

oo
π′2

// B′,

where both rows are product diagrams (that is, the represent the product of A and
B and of A′ and B′, respectively). This suggests to write 〈aπ1, bπ2〉 = a× b. Next,
we easily conclude that if all such products exist in C and if choose such a product
for each pair (A,B) of objects in C, then, associating a × b : A × B → A′ × B′
to (a, b) : (A,B) → (A′, B′), we obtain a functor × : C × C → C. In this case,
according to notation introduced in this section we can write:

(a) A× (−) : C→ C, for the functor defined by

(A× (−))(b : B → B′) = (A× b : A×B → A×B′),

where A× b = 1A × b;
(b) (−)×B : C→ C, for the functor defined by

((−)×B)(a : A→ A′) = (a×B : A×B → A′ ×B),

where a×B = a× 1B;
(c) ×l : C→ CC, for the functor defined by

×l(a : A→ A′) = (a× (−) : A× (−)→ A′ × (−)),

where a× (−) is a natural transformation defined by (a× (−))B = a× 1B;
(d) ×r : C→ CC, for the functor defined by

×r(b : B → B′) = ((−)× b : (−)×B → (−)×B′),

where (−)× b is a natural transformation defined by ((−)× b)A = 1A × b.

Example 17.6. Given again a category C, consider the functor

hom : Cop × C→ Sets

defined by

hom((a, b) : (A,B)→ (A′, B′)) = (hom(a, b) : hom(A,B)→ hom(A′, B′)),

where hom(A,B) and hom(A′, B′) are as defined in Section 7, and hom(a, b) is
defined by (hom(a, b))(f) = bfa. In this case:

(a) hom(A,−) and hom(−, B) are the same as in Section 7;

(b) the functor homr : C → SetsC
op

is the same as the Yoneda embedding

YC : C→ SetsC
op

introduced in Theorem 14.6.

Exercises.

1. Given categories A, B, and C define the composition functor

◦ : CB × BA → CA

with ◦(G,F ) = G ◦ F = GF , and explain that this functor was in fact
inexplicitly used in Theorem 13.3(c) and at the end of the proof of Theorem
13.7.

2. Given categories A and B, define the evaluation functor

Ev = EvA,B : BA × A→ B

with Ev(F,A) = F (A).
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3. Given a category C, explain that the collection bijections

(Nat(hom(C,−), S)
//
S(C))C∈C0,S∈(SetsC)0

oo

from Theorem 14.1 make inverse to each other isomorphisms of functors
SetsC × C→ Sets, one of which is the evaluation functor EvC,Sets.

4. For every two objects A and B in C, chose their product diagram, and, using
these chosen diagrams, examine the constructions introduced in Example
17.5 in the following cases:
(a) C = Sets;
(b) C is one of the other categories considered in Exercise 5 of Section 5;
(c) C = Cat.

5. Explain how Theorem 17.4 is related to Exercise 8 of Section 15.

18. Adjoint functors

We will define an adjunction in nine seemingly different ways, and then prove
several simple theorems showing that these definitions are equivalent via certain
straightforward bijections between the sets of structures involved.

Definition 18.1. An adjunction X→ A is any of the following kinds of structure
on categories X and A:

(a) A functor U : A → X and a family ((F (X), ηX))X∈X0
, in which each

(F (X), ηX) is a universal arrow X → U .
(b) A triple (F,U, η), in which F : X → A and U : A → X are functors, and

η : 1X → UF a natural transformation such that each (F (X), ηX) is a
universal arrow X → U .

(c) A functor U : A → X and a family ((F (X), ϕX))X∈X0
, in which each

F (X) is an object in A and each ϕX is an isomorphism homA(F (X),−)→
homX(X,U(−)).

(d) A triple (F,U, ϕ), in which F : X→ A and U : A→ X are functors, and ϕ :
homA(F (∗),−) → homX(∗, U(−)) an isomorphism. Here homA(F (∗),−)
and homX(∗, U(−)) are the composites

Xop × A F op×X// Aop × A hom // Sets

(where F op is the functor dual to F , induced by F in the obvious way) and

Xop × A X×U // Xop × X hom // Sets,

respectively.
(e) A fourtuple (F,U, η, ε), in which F : X → A and U : A → X are functors,

and η : 1X → UF and ε : FU → 1A are natural transformation making the
diagrams

F
Fη //

1F ""

FUF

εF
��

UFU

Uε
��

U
ηUoo

1U||
F U

commute.
(f) A triple (F,U, ψ), in which F : X → A and U : A → X are functors, and

ψ : homX(∗, U(−))→ homA(F (∗),−) an isomorphism.
(g) A functor F : X → A and a family ((U(A), ψA))A∈A0

, in which each
U(A) is an object in X and each ψA is an isomorphism homX(−, U(A))→
homA(F (−), A).
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(h) A triple (F,U, ε), in which F : X → A and U : A → X are functors,
and ε : FU → 1A a natural transformation such that each (U(A), εA) is a
universal arrow F → A.

(i) A functor F : X → A and a family ((U(A), εA))A∈A0 , in which each
(U(A), εA) is a universal arrow F → A.

Theorem 18.2. (‘18.1(a)⇔18.1(b)’) Given a functor U : A → X and a family
((F (X), ηX))X∈X0

, in which each (F (X), ηX) is a universal arrow X → U , there
exists a unique way to define F also on morphisms such that it becomes a functor,
and the family (ηX)X∈X0 becomes a natural transformation η : 1X → UF .

Proof. If we could define F on morphisms as required, then, for every morphism
x : X → Y , the diagram

X
ηX //

x

��

UF (X)

UF (x)

��
Y

ηY
// UF (Y )

would commute. On the other hand, the universal property of (F (X), ηX) shows
that requiring this diagram to commute defines F (x) as the unique morphism
F (X)→ F (Y ), whose U -image composed with ηX gives ηY x. After defining F (x)
this way for each morphism x in X, we only need to show that F (1X) = 1F (X) for
each object X in X, and that F (yx) = F (y)F (x) for each composable pair (y, x)
of morphisms in X. Thanks to the universal property of (F (X), ηX), is suffices to
prove that U(F (1X))ηX = U(1F (X))ηX and U(F (yx))ηX = U(F (y)F (x))ηX . We
have:

U(F (1X))ηX = ηX1X = U(1F (X))ηX

and, for x : X → Y and y : Y → Z:

U(F (yx))ηX = ηZyx = UF (y)ηY x = UF (y)UF (x)ηX = U(F (y)F (x))ηX ,

as desired. �

From the equivalence (a1)⇔(a2) in Example 15.1(a) (see also Example 14.1(a)),
we obtain:

Theorem 18.3. (‘18.1(a)⇔18.1(c)’) Given a functor U : A → X, let H be
the set of families ((F (X), ηX))X∈X0

satisfying 18.1(a) and Φ the set of families
((F (X), ϕX))X∈X0

satisfying 18.1(c). There is a bijection H ≈ Φ, under which
((F (X), ηX))X∈X0 corresponds to ((F (X), ϕX))X∈X0 if and only if, for each X, they
have the same F (X), and ηX and ϕX determine each other by (ϕX)A(f) = U(f)ηX
and ηX = (ϕX)F (X)(1F (X)). �

Theorem 18.4. (‘18.1(c)⇔18.1(d)’) Given a functor U : A → X and a fam-
ily ((F (X), ϕX))X∈X0 , in which each ϕX is an isomorphism homA(F (X),−) →
homX(X,U(−)), there exists a unique way to define F also on morphisms such that
it becomes a functor, and the family (ϕX)X∈X0

becomes an isomorphism

homA(F (∗),−)→ homX(∗, U(−)).

Proof. If we could define F on morphisms as required, then, for every morphism
x : X → Y , the diagram

homA(F (Y ),−)
ϕY //

homA(F (x),−)

��

homX(Y,U(−))

homX(x,U(−))

��
homA(F (X),−)

ϕX

// homX(X,U(−))
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would commute. On the other hand, since the Yoneda Embedding Aop → SetsA is
fully faithful, requiring this diagram to commute defines F (x). After defining F (x)
this way for each morphism x in X, we only need to show that F (1X) = 1F (X) for
each object X in X, and that F (yx) = F (y)F (x) for each composable pair (y, x)
of morphisms in X. However, that is easy to check, and in we could simply apply
Theorem 12.2 and the fact that the Yoneda Embedding Aop → SetsA is faithful. �

Let ((F (X), ηX))X∈X0
and ((F (X), ϕX))X∈X0

correspond to each other as in
Theorem 18.3. According to Theorems 18.2 and 18.4, respectively, both of these
families make F a functor X → A, but do they make the same F (x) for every
x : X → Y ? To show that it is the case, consider the commutative diagram

homA(F (Y ), F (Y ))
(ϕY )F (Y ) //

homA(F (x),F (Y ))

��

homX(Y, UF (Y ))

homX(x,UF (Y ))

��
homA(F (X), F (Y ))

(ϕX)F (Y )

// homX(X,F (Y )),

which is the ‘F (Y )-component’ of the commutative diagram used in the proof of
Theorem 18.4. For F (x), obtained as in that proof, we have

UF (x)ηX = (ϕX)F (Y )(F (x)) = (ϕX)F (Y )(homA(F (x), F (Y ))(1F (Y ))) =

= homX(x, UF (Y ))(ϕY )F (Y )(1F (Y )) = ηY x,

and so it is indeed the same as F (x) obtained as in the proof of Theorem 18.2.
This shows that 18.1(a)-18.1(d) all give the same notion of an adjunction. Dually,

the same is true for 18.1(f)-18.1(i). Moreover, there is an obvious equivalence
between 18.1(d) and 18.1(f): just take ϕ and ψ inverse of each other. We shall then
write (ϕX)A = ϕX,A and (ψA)X = ψX,A, and, from Theorem 18.3 and the dual
result for ε and ψ, we obtain:

Corollary 18.5. Let η be as in 18.1(b), ϕ as in 18.1(d) and related to η as in the
theorems above, ψ the inverse of ϕ, and ε related to ψ dually to how η is related to
ϕ. Then:

ηX = ϕX,F (X)(1F (X)), ϕX,A(f) = U(f)ηX ,

εA = ψU(A),A(1U(A)), ψX,A(u) = εAF (u),

for all f : F (X)→ A in A and u : X → U(A) in X. �

Theorem 18.6. (18.1(b) is ‘equivalent’ to other items of 18.1) Under the
assumptions of Corollary 18.5, the pair (η, ε) satisfies 18.1(e). Conversely, any
pair (η : 1X → UF, ε : FU → 1A) of natural transformations satisfying 18.1(e) is
obtained this way.

Proof. Under the assumptions of Corollary 18.5, we calculate:

((εF )(Fη))X = εF (X)F (ηX) = ψX,F (X)(ηX) = ψX,F (X)ϕX,F (X)(1F (X)) = 1F (X),

and, dually, ((Uε)(ηU))A = 1U(A). That is, the pair (η, ε) satisfies 18.1(e).
Conversely, given natural transformations η : 1X → UF and ε : FU → 1A, we

can create ϕ out of η and ψ our of ε with all formulas of Corollary 18.5 satisfied.
After that we will only need to prove that, if (η, ε) satisfies 18.1(e), then ϕ and
ψ are inverse to each other. Moreover, as follows from Theorems 14.1 and 14.3
(or, just see Example 14.4), it suffices to prove that (ψX,F (X)ϕX,F (X))(1F (X)) =
1F (X) and (ϕU(A),AψU(A),A)(1U(A)) = 1U(A). But this follows from 18.1(e), since,
as we have already seen, (ψX,F (X)ϕX,F (X))(1F (X)) = ((εF )(Fη))X , and, dually,
(ϕU(A),AψU(A),A)(1U(A)) = ((Uε)(ηU))A. �
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Terminology and notation: When η, ε, ϕ, and ψ are as Corollary 18.5, one
might say that (F,U, η, ε, ϕ, ψ) : X → A, or just (F,U, η, ε, ϕ, ψ), is an adjunction.
More often, however, one replaces the sixtuple above either with (F,U, η, ε) or with
(F,U, ϕ, ψ), or even uses a triple involving F , G, and one of the letters η, ε, ϕ, or
ψ. The shortest expression for the adjunction above is F a U . The functors F and
U are called the left and right adjoint (of U and of F ), respectively. The natural
transformations η and ε are called the unit and counit, respectively (of the given
adjunction). One also says that (F,U) is an adjoint pair of functors. For some
authors “right adjoint”=“adjoint” and “left adjoint”=“coadjoint”; for some others
“left adjoint”=“adjoint” and “right adjoint”=“coadjoint”.

Exercises.

1. Make precise and explain the following:
(a) Initial and terminal objects in a category C can be described using left

and right adjoints of the unique functor from C to a terminal category.
(b) F a U is an adjunction if and only if so is Uop a F op.
(c) If F a U is an adjunction, then F a U ′ is an adjunction if and only if

U ≈ U ′.
(d) If F a U and G a V are adjunctions and (G,F ) is a composable pair

of functors, then GF a UV is an adjunction. How is this related to
Exercise 9 of Section 15?

(e) If (F,G, α, β) is an equivalence of categories, then (F,G, α), (F,G, β−1),
(G,F, β), and (G,F, α−1) are adjunctions, but (F,G, α, β) does not
have to be (if it is the case, then it is called an adjoint equivalence).

(f) Suppose (F,U, η, ε) : X→ A is an adjunction, X′ the full subcategory
of X with objects all X in X, for which ηX is an isomorphism, and A′
the full subcategory of A with objects all A in A, for which εA is an
isomorphism. Then (F,U, η, ε) induces an adjoint equivalence X′ ∼ A′,
and it is the largest induced equivalence between full subcategories of
X and of A.

(g) An adjunction Suppose (F,U, η, ε) : X → A can be described as an
isomorphism (F ↓ 1A)→ (1X ↓ U), making the diagram

(F ↓ 1A)

(X,A,f) 7→(X,A) %%

// (1X ↓ U)

(X,A,u)7→(X,A)yy
X× A

commute.
2. Given an adjunction (F,U, η, ε) : X→ A, prove that:

(a) F is faithful if and only if ηX is a monomorphism for each object X
in X;

(b) F is full if and only if ηX is a split epimorphism for each object X in
X;

(c) F is fully faithful if and only if ηX is an isomorphism for each object
X in X;

(d) U is faithful if and only if εA is an epimorphism for each object A in
A;

(e) U is full if and only if εA is a split monomorphism for each object A
in A;

(f) U is fully faithful if and only if εA is an isomorphism for each object
A in A.
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Hint: to prove (a) and (b) first prove that the diagram

hom(F (X ′), F (X))

ϕX′,F (X)

��

hom(X ′, X)

FX′,X
66

hom(X′,ηX) ((
hom(X ′, UF (X))

commutes for allX,X ′ ∈ X0, and then use Exercises 5(a) and 5(e) of Section
7; use Theorem 6.2(f) to deduce (c) from (a) and (b); to deduce (d)-(f) from
(a)-(c) use Exercise 1(b) of this section.

3. Replace general categories with ordered sets considered as categories and
describe the resulting counterpart of Definition 18.1.

4. Describe adjoint functors obtained, via Theorem 18.2 (or its dual), from the
universal arrows found in Exercises 4-8 of Section 15 (possibly excluding
4(j)).

5. For an adjunction F a U : X→ A, prove that:
(a) if X is an initial object in X, then F (X) is an initial object in A;
(b) if A is a terminal object in A, then U(A) is a terminal object in X.
(c) F preserves epimorphisms; then use Exercise 6(b) of Section 8 to con-

clude that, if F is faithful, then a morphism x in X is an epimorphism
if and only if so is F (x).

(d) U preserves monomorphisms; then use Exercise 6(b) of Section 8 to
conclude that, if U is faithful, then a morphism a in A is a monomor-
phism if and only if so is U(a).

6. Explain that, as follows from Exercise 1(b), in Exercise 5 we have (a)⇔(b)
and (c)⇔(d).

7. In the situation of Exercise 5, does U preserve initial objects and/or epi-
morphisms? Find examples and counter-examples.

8. Let f : A → B be a map of sets. In set theory one considers two induced
maps between the power sets, which are

– the map P (A)→ P (B) carrying subsets of A to their images under f ;
in category this map is often denoted by ∃f , since it can be presented
as X 7→ {b ∈ B | ∃x (f(x) = b ∧ x ∈ X)};

– the map P (B) → P (A) carrying subsets of B to their inverse images
under f ; in category this map is often denoted by f∗.

Considering P (A) and P (B) as categories (using their inclusion orders),
show that:
(a) ∃f a f∗;
(b) there is also an adjunction f∗ a ∀f . Hint: define ∀f by

∀f (X) = {b ∈ B | f(x) = b ⇒ x ∈ X}.

Explain that (a) and (b) are dual to each other.

19. Graphs and diagrams

Informally, graphs, in the sense of category theory, are simply ‘categories without
identity morphisms and composition’. The formal definition is:

Definition 19.1. A graph (also called a diagram scheme) G is a system G =
(G0,G1, dG, cG), in which:
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(a) G0 and G1 are classes (usually actually sets) called the class of objects in
G and the class of morphisms (or arrows) in G, respectively;

(b) dG and cG are maps from G1 to G0 called domain and codomain respectively;
for f ∈ G1, when dG(f) = A and cG(f) = B, we write f : A→ B and say
that f is a morphism from A to B, or that the domain of f is A and the
codomain of f is B.

Graphs form a category Graphs, in which a morphism F : G → H is a pair F =
(F0, F1), in which F0 : G0 → H0 and F1 : G1 → H1 are maps making the diagrams

G1

dG

��

F1 // H1

dH

��

G1

cG

��

F1 // H1

cH

��
G0

F0

// H0 G0
F0

// H0

commute (equivalently, for every morphism g : G→ G′ in G, F1(g) is a morphism
(in H) from F0(G) to F0(G′); it is written simply as F (g) : F (G)→ F (G′)).

Once graphs are defined, we can also introduce the formal definition of a diagram:

Definition 19.2. Let C = (C0,C1, dC, cC, eC,mC) be a category; the underlying
graph of C is the graph (C0,C1, dC, cC). Given a graph G and a category C, a
diagram D : G → C, also called a diagram in C over G, is a morphism in Graphs
from G to the underlying graph of C.

When a graph G has only a few objects and morphisms, it is convenient to
display it as dots and arrows between them, dots for the objects and arrows for
the morphisms. Given such a display, we can display a diagram D : G → C by
replacing dots with (the names of) the images of the corresponding objects under
D, and labeling arrows accordingly.

Remark 19.3. Involving a graph in Definition 19.1 shows that we should not
identify diagrams in C with sets of objects and morphisms in C. For example

C
c // C and C

c // C
c // C

display two different diagrams, and

C
c // C C

c // C
c // C

displays yet another diagram. The graphs used in these three diagrams have two,
three, and five objects, and one, two, and three morphisms, respectively.

Theorem 19.4. There is an adjunction (F,U, η) : Graphs→ Cat, in which:

(a) U : Cat→ Graphs is the (obviously defined) underlying graph functor.
(b) For a graph G, F (G) is the category of paths of G, in which the objects are

the same as in G, and a morphism G→ G′ is a sequence of the form

G = G0
g1 // ...

gn // Gn = G′,

written as (gn, ..., g1) : G → G′, for each n = 0, 1, 2, ...; when n = 0,
the sequence becomes empty and its existence forces G = G′, in which
case it is written simply as 1G, being the identity morphism of F (G). The
morphisms compose as (gn, ..., g1)(fm, ..., f1) = (gn, ..., g1, fm, ..., f1). The
category F (G) is also called the free category on G.

(c) Each ηG : G→ UF (G) is the (obviously defined) inclusion map.
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Proof. Let us only check the universal property of ηG (for an arbitrary graph G),
which is to check that, for every category C and every diagram D : G → C, there
exists a unique functor D̄ : F (G)→ C with D̄ηG = D. If such a functor does exist,
we must have

D̄(gn, ..., g1) = D̄(gn)...D̄(g1) = D̄ηG(gn)...D̄ηG(g1) = D(gn)...D(g1),

which proves the uniqueness of D̄ (under its existence). On the other hand, it is
easy to check that we can define D̄ by D̄(gn, ..., g1) = D(gn)...D(g1), which will
give D̄ηG = D. �

This theorem allows us to define the commutativity of a diagram formally:

Definition 19.5. In the notation of Theorem 19.4 and its proof, a diagram D is
said to be commutative if every two parallel morphisms in F (G) have the same
images under D̄.

Exercises.

1. Explain that the commutativity of a diagram in the sense of Section 10 is
a special case of the commutativity of a diagram in the sense of Definition
19.5.

2. Prove that the diagram

A
a // B

b
��

D

d

OO

C
c

oo

commutes if and only if all its arrows are isomorphisms and dcba = 1A.
3. Let D : G → A be a diagram, E : A → B a functor, and U as in Theorem

19.4. Show that:
(a) if D is commutative, then so is U(E)D;
(b) if U(E)D is commutative and E is faithful, then D is commutative.

4. Explain that Theorem 19.4 can be used in Exercise 4(f) of Section 15.
5. For a graph G and a category C, define the category Diag(G,C) of dia-

grams G→ C and show that the bijection hom(F (G),C) ≈ hom(G, U(C)),
determined by the adjunction established in Theorem 19.4, extends to a
category isomorphism CF (G) ≈ Diag(G,C).

6. Find a graph G such that the category of graphs can be identified with the
category Diag(G,Sets).

20. Limits and colimits

When we think of diagrams over a ‘very small’ a graph, it is better denote our
graph by G (rather than G) and use small letters to denote its objects.

Definition 20.1. Let G be a graph and C a category. Then:

(a) Given an object C in C, the constant diagram ∆(C) = ConstC : G → C
(cf. Execrise 1 of Section 8) is defined by

∆(C)(f : x→ y) = (1C : C → C).

(b) Given a morphism c : C → C ′ in C, the corresponding morphism ∆(c) :
∆(C) → ∆(C ′) in Diag(G,C) (see Exercise 1 of Section 11 and Exercise
5 of Section 19), which is in fact the same a natural transformation of the
corresponding functors F (G)→ C, is defined by ∆(c)x = c.

(c) The diagonal functor ∆ : C → Diag(G,C) is determined by the data (a)
and (b) above.
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Next, for a diagram D : G→ C:

(d) A cone (=limiting cone) over D is a natural transformation ∆(C) → D,
for some object C in C; explicitly, it is a system (C, (γx : C → D(x))x∈G0

)
in which D(f)γx = γy for each morphism f : x→ y in G.

(e) A limit of D is a universal arrow ∆→ D; it will be denoted by

limD = (limD, (πx : limD → D(x))x∈G0
).

According to the universal property of limD, for every cone (C, (γx : C →
D(x))x∈G0

) over D, there exists a unique morphism γ : C → limD with
πxγ = γx for each object x in G. Here the morphisms πx (x ∈ G0) are
called the limit projections (sometimes just “projections”)

(f) A cocone (=colimiting cone) over D is a natural transformation D → ∆(C),
for some object C in C; explicitly, it is a system (C, (γx : D(x)→ C)x∈G0)
in which γyD(f) = γx for each morphism f : x→ y in G.

(g) A colimit of D is a universal arrow D → ∆; it will be denoted by

colimD = (colimD, (ιx : D(x)→ colimD)x∈G0
).

According to the universal property of colimD, for every cocone (C, (γx :
D(x)→ C)x∈G0

) over D, there exists a unique morphism γ : colimD → C
with γιx = γx for each object x in G. Here the morphisms ιx (x ∈ G0) are
called the colimit injections.

The same notions are used for functors (considered as diagrams).

Note that the colimit injections do not have to be injective in any sense, although
in many ‘classical’ examples where C is a category of mathematical structures on
sets they are.

Let us also mention some old terminology and notation, still kept in some ‘non-
category-theoretic’ literature:

Now established Old
limit inverse limit

lim lim
←−

colimit direct limit

colim lim
−→

and consider several special situations:

• Suppose G1 = ∅, that is, G has no morphisms; let us also write G0 = S.
In this case, to give a diagram D : G → C is to give an S-indexed family
(Ds)s∈S of objects in C (where Ds = D(s)), and we write

limD =
∏
s∈S

Ds;

this limit is called the product (also cartesian product or direct product) of
the family (Ds)s∈S , and its limit projections are called the product projec-
tions. When S is finite, say S = {1, ..., n}, we also write∏

s∈S
Ds = D1 × ...×Dn = D1 u ... uDn.

In particular, the product A × B considered in Example 17.5 (see also
Exercise 5 of Section 5) is nothing but D1 ×D2 for D1 = A and D2 = B.

Dually, for the colimit, called coproduct, or, sometimes, sum, we write

colimD =
∐
s∈S

Ds =
∑
s∈S

Ds
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and∑
s∈S

Ds = D1 + ...+Dn = D1 t ... tDn (whenS = {1, ..., n});

coproducts of two objects are used in Exercise 5 of Section 5.
If G0 = S is also empty, then limD = 1 (a terminal object) and

colimD = 0 (an initial object) in C.
• Suppose G is a graph of the form

• // // • ,

that is, it has two objects and two parallel morphisms between them; let
us write them as

1
s //
t
// 0.

A diagram D : G→ C can be displayed as

A
f //
g
// B,

where A = D(1), B = D(0), f = D(s), and g = D(t). A cone over D can
be presented as a triple (C, γ0, γ1), where γ0 : C → B and γ1 : C → A
are morphisms in C with fγ1 = γ0 = gγ1. However, since this makes
γ0 completely determined by D and γ1, such a cone can be equivalently
presented as a pair (C, h), where h : C → A is a morphism in C with
fh = gh (we can then take γ0 = hf and γ1 = h). Accordingly, the limit
of D, also called the equalizer of f and g, can be described as a pair (C, h)
above whose universal property is: for every morphism h′ : C ′ → A with
fh′ = gh′, there exists a unique morphism k : C ′ → C with hk = h′. The
whole display is

C ′

k

��
h′

��
C

h
// A

f //
g
// B;

one also says that the bottom row here is an equalizer diagram.
Dually, for the colimit of the same D, called the coequalizer of (f, g), the

similar display is

A
f //
g
// B

h′

��

h // C

k~~
C ′

(indicating that (C, h) is the coequalizer of (f, g)), and the top row here is
called a coequalizer diagram.

• Now suppose that G is a graph of the form

•

��
• // •
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(having therefore three objects and two morphisms as displayed). Writing
it as

2

v

��
1

u
// 0

we can display a diagram D : G→ C as

B

b

��
A

a
// X,

where X = D(0), A = D(1), B = D(2), a = D(u), and b = D(v). A cone
over D can be presented as a quadruple (C, γ0, γ1, γ2), where γ0 : C → X,
γ1 : C → A, and γ2 : C → B are morphisms in C with aγ1 = γ0 = bγ2.
However, since this makes γ0 completely determined by D, γ1, and γ2, such
a cone can be equivalently presented as a triple (C, p, q), where p : C → A
and q : C → B are morphisms in C with ap = bq (we can then take γ0 = ap,
γ1 = a, and γ2 = b). Accordingly, the limit of D, also called the pullback of
a and b, can be described as a triple (C, p, q) above whose universal property
is: for every morphism p′ : C ′ → A and every morphism q′ : C ′ → B with
ap′ = bq′, there exists a unique morphism k : C ′ → C with pk = p′ and
qk = q′. The whole display is

C ′

p′

��

k

  

q′

''
C

p

��

q
// B

b
��

A
a
// X.

Here, unlike the previous case, where G was isomorphic to its (obviously
defined) dual graph, the dual display

X

a

��

b // B

j

��
j′

��

A

i′

''

i // C

k

  
C ′

presents ‘new’ (X,A, a,B, b) as a diagram, call it E, over a graph of the
form

•

��

// •

•
with a colimit of E, also called the pushout of a and b, and preserted as the
triple (C, i, j).
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Standard displays for pullbacks and pushouts are

A×X B

π1

��

π2 // B

b

��

X

a

��

b // B

ι2

��
A

a
// X A

ι1
// A+X B,

where (a and b in the first square are different from a and b in the second
one and) the first square presents (A ×X B, π1, π2) as a pullback of a and
b, while the second one presents (A+X B, ι1, ι2) as a pushout of a and b.

More terminology involving the squares above:
– They are also called a pullback square or a cartesian square, and a

pushout square or a cocartesian square, respectively. The terms “pull-
back diagram” and “pushout diagram” are also used.

– In the first of them: one says that π1 is a pullback of b along a, and
that π2 is a pullback of a along b; one also says that A×XB is a fibred
product of A and B over X.

– In the second one: one says that ι1 is a pushout of b along a, and
that ι2 is a pushout of a along b; one also says that A +X B is an
amalgamated product (or amalgamated sum) of A and B over X.

– One also uses the terms “cofibred” and “coamalgamated” accordingly,
and there are some other variations of this terminology in the litera-
ture, which we omit here.

• Old literature, especially the non-category-theoretic one, considers cases
where G is an ordered set, usually infinite, regarded as a category and
D : G → C is a functor, covariant or contravariant, sometimes called a
spectrum or just a system. Certain special terminology and notation are
uses there, often assuming that G is directed, which means that for every
finite subset S of G, there exists g ∈ G with s 6 g for all s ∈ S. There
is a categorical counterpart of “directed”, called “filtered”, but we will not
discuss this here.

Remark 20.2. Introducing a new category C, it is always important to know which
limits and which colimits it admits, that is, for which diagrams D : G→ C the limit
limD and the colimit colimD exist. In particular, one says that:

(a) C is small complete if limD exists whenever G is small. This terminology
usually indicates that we distiguish between sets (possibly calling them small
sets) and proper classes (possibly calling them large sets). The first exercise
below in fact describes small limits in Sets (provided we assume that the
objects of Sets are small sets). We could also assume the objects of Sets
to be ‘larger’, and accordingly get limD for larger G. But what we cannot
do is to make G ‘as large as’ the category Sets itself. More precisely, one
can even show if a category C admits a product of all its objects, then it is
coherent (as defined in Exercise 1(b) of Section 13).

(b) C is finitely complete if limD exists whenever G is finite (that is, G0 and
G1 are finite sets).

Exercise 11 below will show that the existence of small products and equalizers
implies the existence of all small limits, and that the same is true with “finite”
instead of “small”. Exercises 12 and 13 will then show that the existence of finite
products and equalizers can be replaced with the existence of pullbacks and a terminal
object.

Exercises.
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1. Describe limits in Sets. More specifically:
(a) First show that for a family (As)s∈S of sets, the product∏

s∈S
As

can be described as the cartesian product in set theory, with the
product projections πs (s ∈ S) defined (also as in set theory) by
πs((xs′)s′∈S) = xs.

(b) Then (using or not the description above), show that for a graph G
and a diagram D : G→ Sets, the limit of D can be described as

limD = {(dx)x∈G0 ∈
∏
x∈G0

D(x) | ∀f :x→y∈G1 D(f)(dx) = dy},

with the limit projections πx (x ∈ G0) defined by πx((dx′)x′∈G0) = dx.
(c) Use (b) to describe an equalizer of maps f and g from a set A to a set

B. Then show that it can also be described as

{a ∈ A | f(a) = g(a)},
equipped with the inclusion map from it to A.

(d) Use (b) to describe a pullback of maps f : A → X and g : B → X.
Then show that it can also be described as

{(a, b) ∈ A×B | f(a) = g(b)},
equipped with the map from it to A defined by (a, b) 7→ a and the
map from it to B defined by (a, b) 7→ b. In particular, when f = g,
conclude that this pullback is nothing but the equivalence relation on
A determined by f . Remark: in Sets and in general (when f = g) such
a pullback is called a kernel pair of f .

(e) Show that the diagrams

f−1(B)

��

a 7→f(a)// B

��

A ∩B

��

// B

��
A

f
// X A // X,

in Sets where B is a subset of X, A is a subset of X in the second
diagram, and the unlabeled arrows are inclusion maps, are pullback
diagrams.

2. Make descriptions similar to those in (a)-(d) of the previous exercise in all
categories you are familiar with and their opposite categories.

3. Given categories A and B, describe limits and colimits in BA using limits
and colimits in B.

4. Explain that, in the notation of Theorem 19.4 and its proof, we can write
lim D̄ = limD and colim D̄ = colimD.

5. Explain that initial and terminal objects can be defined as ‘empty colimit’
and ‘empty limit’, respectively.

6. Explain that, for a functor F : A→ B, we can write:
(a) limF = F (Z), if Z is an initial object in A;
(b) colimF = F (Z), if Z is a terminal object in A.

7. Define what it means for a functor to preserve (existing) limits and to
preserve colimits, and show that, for an adjunction F a U , F preserves
colimits while U preserves limits.

8. Describe limits and colimits of diagrams in a preorder considered as a cat-
egory. Hint: use Exercises 5(a) and 5(b) of Section 18.
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9. Use the two previous exercises to explain that the functors ∃f , f∗, and
∀f , considered in Exercise 8 of Section 18, have the following preservation
properties:
(a) ∃f preserves unions;
(b) f∗ preserves unions, intersections, and complements;
(c) ∀f preserves intersections.

10. Let C be category and C an object in C. Prove that the functor

hom(C,−) : C→ Sets

preserves limits. Then use this and Exercise 3 to prove that the Yoneda

embedding C→ SetsC
op

preserves limits.
11. Given a diagram D : G→ C, consider the diagram displayed as

D(cG(f))
1D(cG(f)) // D(cG(f))

L
l // ∏

x∈G0
D(x)

πcG(f)

OO

p //
q

//

πdG(f)

��

∏
f∈G1

D(cG(f))

πf

OO

πf

��
D(dG(f))

D(f)
// D(cG(f)),

where the vertical arrows are the suitable product projections, p is defined
by requiring the top square to commute for every f ∈ G1, q is defined by
requiring the bottom square to commute for every f ∈ G1, and the middle
row is an equalizer diagram. Prove that (L, (πxl)x∈G0

) is a limit of D.
12. Explain that a pullback A ×X B becomes a product A × B when X is a

terminal object, and that, in general, A ×X B in C can be described as a
product in (C ↓ X).

13. For morphisms f, g : A→ B in a given category, prove that if

P

p

��

// B

〈1B ,1B〉
��

A
〈f,g〉

// B ×B

is a pullback diagram, then (P, p) is an equalizer of f and g.
14. For a morphism f : A→ B in a given category, prove that:

(a) f is a monomorphism if and only if

A

1A

��

1A // A

f

��
A

f
// B

is a pullback diagram;
(b) f is an epimorphism if and only if

A

f

��

f // B

1B

��
B

1B

// B

is a pushout diagram.
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15. Consider again the commutative squares of Theorem 10.1, and show that:
(a) the square considered in Theorem 10.1(a) is a pullback square, and

so are the squares considered in Theorem 10.1(c) (assuming that they
commute and f and f ′ are isomorphisms);

(b) in Theorem 10.1(b): if the second commutative square in is a pullback
square, then the first commutative square is a pullback square if and
only if so is the third one.

16. Let A and X be categories, U : A→ X be a functor, and X an object in X.
Explain that we can write (X ↓ U)op ≈ (Uop ↓ X) ‘canonically’, and so a
pair (A,α) is a universal arrow X → U if and only if it is a universal arrow
Uop → X. Then explain that we can also write colim(D) = lim(Dop) (and
lim(D) = colim(Dop)).

17. Explain that kernels and cokernels of group homomorphisms are special
cases of equalizers and coequalizers, respectively.*

18. Explain that the additive group of rational numbers can be described as a
colimit of the diagram

Z
2 // Z

3 // Z
4 // Z

5 // ...,

where Z denotes the additive group of integers and each arrow-labeling
number n denotes the homomorphism defined by x 7→ nx. Generalize
this to describe arbitrary fraction monoids and fraction rings as colimits
(equipped with a suitable multiplication in the case of rings).*

List of categories

• Sets = the category of sets (Example 2.2).
• A monoid viewed as a category (Example 2.3).
• A preorder vied as a category (Example 2.4).
• Cop = the opposite category of a category C (Example 2.6).
• Mon = the category of monoids (Exercise 2 of Section 2 and Example 3.7).
• Preord = the category of preordered sets (of preorders) (Exercise 2 of Section

2).
• Ord = the category of ordered sets (of orders) (Exercise 2 of Section 2).
• Alg(Ω) = the category of Ω-algebras (below Definition 3.2).
• Pointed Sets = the category of pointed sets (Example 3.4).
• Magmas = the category of magmas (Example 3.5).
• Semigroups = the category of semigroups (Example 3.6).
• Groups = the category of groups (Example 3.8).
• CommSemigroups = the category of commutative semigroups (Example

3.9).
• CommMon = the category of commutative monoids (Example 3.9).
• Ab = the category of abelian groups (Example 3.9).

• SetsM = the category of M -sets, where M is a monoid (Example 3.10,
although Ω plays the role of M there).

• Cat = the category of categories (the beginning of Section 7).
• Ar(C) = the arrow category of C (Remark 10.3).
• BA = the category of all functors from A to B (the beginning of Section

11).

• VectfinK = the category of finite-dimensional K-vector spaces, where K is a
field (Exercise 1(c) of Section 13).

• fAb = the category of finite abelian groups (Exercise 5 of Section 13).
• ElC(S) = the category of elements of S over C (Definitions 15.1 and 15.3).
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• Comma categories (F ↓ G), (C ↓ G), (F ↓ C), (C ↓ C), and (C ↓ C)
(Section 16, see also Example 15.5).

• Graphs = the category of graphs (Definition 19.1).
• Diag(G,C) = the category of diagrams G→ C (Exercise 5 of Section 19).

Questions and answers

This section is devoted to questions of students (reformulated) and answers.

Question 1. What are morphisms in the category of triples considered in Exer-
cise 2 of Section 5? Is it true that a morphism u : (X, e, f)→ (X ′, e′, f ′) is a map
u : X → X ′ with u(e) = e′ and uf = f ′u?

Answer. Yes. Having in mind convention (iii) above Example 2.2, choosing the
right notion of morphism was a part of the exercise. And in this case the choice
should have been motivated by Definition 3.2, since the triples considered in Exer-
cise 2 clearly are Ω-algebras for a suitable Ω.

Question 2. Exercise 3 of Section 5 asks for universal properties of other number
systems (apart from natural numbers); what can we do with Q (the system of
rational numbers) and R (the system of real numbers, which seems to have much
more structure)? Are there categories in which they are initial objects?

Answer. This is not a question of existence of such categories: for each math-
ematical object X one can obviously form a category X in which X is an initial
object, e.g. by taking Xi = {X} (i = 0, 1). It is the question of finding a nice such
category. Here “nice” means that:

• it has a simple independent definition suggested by most basic properties
of the object X of our interest;
• an object in it is initial if and only if it has all the properties we need X

to have.

For example, constructing Q, we obviously need to show that it is a field of charac-
teristic 0 (since it should contain an isomorphic copy of the ring of integers) – and
it is nice to observe that we can define it simply as an initial object in the category
of fields of characteristic 0.

The story R is more complicated: its structure is not purely algebraic, in fact it
has several natural structures and each of then can be used to find a nice category
in which R is an initial object. For example, one can use the fact that R is a
completion of Q as a metric space, but then meric spaces should be defined using
Q instead of R (doing so, one defines d(x, y) 6 q for each q ∈ Q instead of defining
distances d(x, y)).

Question 3. Perhaps for the sake of clarity; when talking about homC(X,−),
is the “−” symbol just a “place holder” for an arbitrary object in C? Is this done
to avoid quantification over the objects of the category?

Answer. Yes to the first question, and No to the second one. And note that this
kind of “place holder” notation has nothing to do category theory. For example, in
high school mathematics we write, say, y = f(x) and speak of a function f – but
we could write f(−) instead of f . This is convenient when we have to compose f
with another function; for example if g is defined by g(x) = f(x + 1), then it is
convenient to write g = f((−) + 1) (and of course “−” should not be understood
here as “minus”).
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Question 4. Suppose we are in the category of sets and we have an object A
in this category. Is the set-theoretic complement of A a well-defined object in the
same category?

Answer. No, simply because the notion of set-theoretic complement of a set does
not make sense. In set theory, given a set A, if we allow ourselves to form the set
{x |x /∈ A}, then we will also get A ∪ {x |x /∈ A}, which will be nothing but the
forbidden ‘set of all sets’. All we can do, is to define the set-theoretic complement
of a given subset inside a given set; and yes, it can be defined categorically, but
only up to isomorphism.

Question 5. In Theorem 14.1, the maps α and β are defined by α(σ) = σC(1C)
and β(c)A(f) = S(f)(c). What does this mean?

Answer. Well, α should be map from the set Nat(hom(C,−), S) of all natural
transformations hom(C,−)→ S to the set S(C); therefore to define it is to define,
for each natural transformation σ : hom(C,−) → S, the corresponding element
α(σ) of S(C). Here σ, being a natural transformation hom(C,−)→ S, is a family
(σA)A∈C0

of maps σA : hom(C,A) → S(A). In particular, one of the members of
this family is the map σC : hom(C,C)→ S(C). We then define α(σ) as the image
of 1C under this map, which, of course, is written as α(σ) = σC(1C).

This makes Theorem 14.1 amazing in a sense. Indeed, we take a ‘large’ family
σ = (σA)A∈C0 , pick up only one element of it, namely σC , then apply it to just
one element of hom(C,C), namely 1C , and claim that sending σ to σC(1C) is a
bijection (which means that the whole σ can be recovered from just one image of
an element under just one of its members!).

Now about β. To define β is to define β(c), for each c ∈ S(c). But again, β(c)
being a natural transformation hom(C,−) → S must be a family (β(c)A)A∈C0 , in
which each β(c)A is a map from the corresponding hom(C,A) to S(A). And to
define β(c)A is to define β(c)A(f), for each f ∈ hom(C,A). That is, to define β is
define each β(c)A(f), and we define it by β(c)A(f) = S(f)(c).

Question 6. In the notation used in Question 5, how do we know that
αβ(c) = β(c)C(1C)?

Answer. Well, αβ(c) is nothing but α(β(c)), and since α is defined by
α(σ) = σC(1C), taking σ to be β(c) we obtain α(β(c)) = β(c)C(1C).

Question 7. Corollary 15.7 (see (a) and (b) there) characterizes representable
functors in terms of categories of elements. Why are we interested in representable
functors and why is this characterization useful?

Answer. Look at the Yoneda embedding Y = YC : C → SetsC
op

. It makes an

arbitrary category C equivalent to a full subcategory of the category SetsC
op

that
we can deal with almost as we deal with the category of sets. Saying “almost as we
deal with the category of sets” refers to the fact we can generalize many notions

and constructions from Sets to SetsC
op

simply be defining them argumentwise. We

can then use the argumentwise constructions in SetsC
op

to make constructions in C
using representability, which in fact allows us to copy some constructions from Sets
to a general category!

For example, suppose we are interested to use this approach to define the product

A×B of two objects A and B in a category C. First we go from C to SetsC
op

, hence
replacing A and B with YC(A) = hom(−, A) and YC(B) = hom(−, B), respectively.
Then we define YC(A) × YC(B) by (YC(A) × YC(B))(X) = YC(A)(X) × YC(B)(X)
(which is what we mean by an argumentwise construction; we mean “for every
object X”, assuming that the reader will understand what do with morphisms);
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here YC(A)(X)×YC(B)(X) is the ordinary cartesian product of the sets YC(A)(X) =
hom(X,A) and YC(B)(X) = hom(X,B). If the functor YC×YC is not representable,
then we simply say the product A×B does not exist in C. But if it is representable,
which means that YC(A) × YC(B) ≈ YC(C) for some object C in C, then we say
that A×B is that object C. It turns out that this determines A×B uniquely up
to isomorphism.

However, before considering the Yoneda embedding we already had another ex-
cellent approach, namely using universal properties, to create categorical defini-
tions. How to compare these two approaches? Well, this is what Corollary 15.7 does;
more precisely, Corollary 15.7 shows that whatever is defined via representability
can also be defined via a universal property. To illustrate this, let us return to our
example above:

According to Corollary 15.7, the functor YC(A) × YC(B) is representable if and
only if the category ElC(YC(A) × YC(B)) has a terminal object. But the category
ElC(YC(A)×YC(B)) is the same as the category constructed in Exercise 5 of Section
5 to define A×B (see also Example 17.5). It is then easy to see that the two resulting
definitions of A×B fully agree.

Remark: It seems that A×B defined via representability is just an object in C,
while the universal property defines it together with the projections π1 : A×B → A
and π2 : A×B → B. But fixing the projections π1 and π2 (which is important!) cor-
responds, by Yoneda Lemma, to fixing an isomorphism YC(A×B)→ YC(A)×YC(B)
(which is necessary of course in order to use A×B defined via such an isomorphism).

Question 8. What are the nine types of structures introduced in Definition
18.1 good for?

Answer. The purpose of Section 18 is to show that these nine types of structures
are equivalent to each other in a very strong sense: any structure of the type (a) can
be ‘canonically’ transformed into a structure of the type (b), and the same is true for
all other pairs of types, yielding bijections A ≈ B ≈ C ≈ D ≈ E ≈ F ≈ G ≈ H ≈ I,
where A is the collection of all structures of the type (a), B is the collection of
all structures of the type (b), and so on. Therefore what we in fact deal with is
a nine ways to define the same structure, which is called an adjunction. These
adjunctions come up in many places in mathematics and having many equivalent
ways to construct them helps to understand each special case. So, the question is,
what are adjunctions good for and what are the important examples?

To answer this question, let us begin with an arbitrary functor U : A → X
and ask ourselves if at any circumstances there is a way to construct a functor
F : X→ A, associated to it. We know that:

• If U is an isomorphism, then there exists a unique functor F : X→ A with
UF = 1X and FU = 1A.

• More generally, if U is an equivalence, then there exists a unique up an
isomorphism functor F : X→ A with UF ≈ 1X and FU ≈ 1A.

• Exercise 1(e) of Section 18 tells that the case where U has a left adjoint
is still more general, and Exercise 1(c) of Section 18 tells us that even in
that case there is a unique up an isomorphism ‘good’ functor F : X → A
associated to U . Here ‘good’ means left adjoint. Of course, dually we could
speak of “right” instead of “left”.

That is, an equivalence is a generalized isomorphism, and an adjunction is a gen-
eralized equivalence. After that we say that the notion of adjunction is good for
defining ‘generalizing inverses’ of functors, and it remains to show some important
examples. The following ones are determined by universal arrows considered in
some Exercises of Section 15:
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• the universal arrows to be described in Exercise 4 of Section 15 produce a
left adjoint to the functor U : A→ Sets in cases (a)-(k) of that exercise.
• the universal arrows to be described in Exercise 5 of Section 15 produce left

adjoints to the forgetful functors Mon → Pointed Sets, Mon → Semigroups,
and Ab→ CommMon.

• the universal arrows to be described in Exercise 6 of Section 15 produce
right adjoints to the forgetful functors Preord→ Sets and Ab→ CommMon,
and to the functor Sets→ Sets defined as in item (c) there.

Two other interesting examples (dual to each other in a sense), which in fact led to
the development of categorical logic more than fifty years ago, are given in Exercise 8
of Section 18, and another one is described in Theorem 19.4. Furthermore, consider
the diagonal functor ∆ : C → Diag(G,C) from Definition 20.1. As immediately
follows from that definition, it has:

• a right adjoint lim : Diag(G,C)→ C, whenever every diagram G→ C has
a limit;

• a left adjoint colim : Diag(G,C)→ C, whenever every diagram G→ C has
a colimit.

But this list of important examples is very far from being complete...

Question 9. What do we mean by saying Z[x] is a free ring on {x}?
Answer. Given any category A of algebraic structures (by which we mean a full

subcategory of the category Alg(Ω), for some Ω, as defined in Section 3), we have
the underlying set functor (=the forgetful functor) U : A→ Sets (cf. Exercise 9 of
Section 8). And, for a set X, a (“the”) free algebra in A on X is a universal arrow
X → U (see Example 15.5). Explicitly, a free algebra in A on X is a pair (F (X), ηX)
in which F (X) is an object in A and ηX a map from X to (the underlying set of)
F (X) satisfying the following universal property:

For every object A in A and every map f from X to (the underlying set of) A,
there exist a unique homomorphism f̄ : F (X)→ A with f̄ηX = f .

It is often convenient to assume that X is a subset of F (X) and that ηX is the
corresponding inclusion map. If so, then the universal property above becomes:

For every object A in A, every map f from X to (the underlying set of) A
uniquely extends to a unique homomorphism f̄ : F (X)→ A.

In particular, we could take A to be the category of rings (with 1), where Ω
consists of:

• nullary 0 and 1,
• unary −,
• binary + and ·,

and take X to be a one-element set {x}. Then, what is F (X)? Well, it turns out
to be Z[x] = the ring of polynomials of one variable with coefficients in the ring Z
of integers. Indeed, to a give a map from the set {x} to a ring A is to pick up an
element a in A, and what we have to show is:

For every element a in A, there exists a unique ring homomorphism Z[x] → A
sending x to a.

But we know this: the desired homomorphisms is defined by

p0x
n + . . .+ pn 7→ p0a

n + . . .+ pn.

In fact we very often use this, specifically, when we define a ring homomorphism
Z[x]→ A by x 7→ a.

Question 10. In Section 14, why do we have two forms of Yoneda Lemma
(“covariant” and “contravariant”) and only one form of Yoneda embedding?
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Answer. True, we could have either only one or both forms for both Yoneda
Lemma and Yoneda embedding. However:

• Although the two forms of Yoneda Lemma very easily follow from each
other, mentioning both explicitly is useful because each of them is used in
many places in mathematics independently from the other one.

• On the other hand, the purpose of Yoneda embedding C → SetsC
op

(also
used for many things!) is more specific in a sense: when we are interested in
some category C, in order to work in it we embed it in a larger but ‘easier’
category. Of course we could be interested in the opposite category Cop of
a given category C and need to use the Yoneda embedding Cop → SetsC.
This does happen, for example in algebraic geometry and algebraic number
theory, where it is done for C being the category of commutative algebras
(with 1) over a field – but ‘less frequently’ in a sense. And again, we get
this second form from the first one very easily: just substitute Cop for C
and use the fact that (Cop)op = C.

That is, the two forms of Yoneda Lemma are rather equally appealing, while for

the Yoneda embedding the form C→ SetsC
op

is clearly more appealing than Cop →
SetsC.

(George Janelidze) Department of Mathematics and Applied Mathematics, University

of Cape Town, Rondebosch 7700, South Africa
E-mail address: george.janelidze@uct.ac.za


