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Abstract: ‘Number sense’ is a short-hand for our ability to quickly understand,
approximate, and manipulate numerical quantities. My hypothesis is that number sense
rests on cerebral circuits that have evolved specifically for the purpose of representing
basic arithmetic knowledge. Four lines of evidence suggesting that number sense consti-
tutes a domain-specific, biologically-determined ability are reviewed: the presence of
evolutionary precursors of arithmetic in animals; the early emergence of arithmetic
competence in infants independently of other abilities, including language; the existence
of a homology between the animal, infant, and human adult abilities for number pro-
cessing; and the existence of a dedicated cerebral substrate. In adults of all cultures,
lesions to the inferior parietal region can specifically impair number sense while leaving
the knowledge of other cognitive domains intact. Furthermore, this region is demon-
strably activated during number processing. I postulate that higher–level cultural devel-
opments in arithmetic emerge through the establishment of linkages between this core
analogical representation (the ‘number line’ ) and other verbal and visual representations
of number notations. The neural and cognitive organization of those representations
can explain why some mathematical concepts are intuitive, while others are so difficult
to grasp. Thus, the ultimate foundations of mathematics rests on core representations
that have been internalized in our brains through evolution.

1. Introduction

Number is a fundamental parameter by which we make sense of the world
surrounding us. Not only can we quickly and accurately perceive the numer-
osity of small collections of things; but all languages have number words ; all
of us have learned, more or less spontaneously, to calculate on our fingers ;
and most of us have strong arithmetic intuitions which allow us to quickly
decide that 9 is larger than 5, that 3 falls in the middle of 2 and 4, or that
12 + 15 cannot equal 96, without much introspection as to how we perform
those feats. I collectively refer to those fundamental elementary abilities or
intuitions about numbers as ‘the number sense’ (Dehaene, 1997, hereafter
TNS).
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My hypothesis is that number sense qualifies as a biologically determined
category of knowledge. I propose that the foundations of arithmetic lie in our
ability to mentally represent and manipulate numerosities on a mental ‘number
line’, an analogical representation of number ; and that this representation has
a long evolutionary history and a specific cerebral substrate. ‘Number appears
as one of the fundamental dimensions according to which our nervous system
parses the external world. Just as we cannot avoid seeing objects in color (an
attribute entirely made up by circuits in our occipital cortex, including area
V4) and at definite locations in space (a representation reconstructed by occip-
ito-parietal neuronal projection pathways), in the same way numerical quan-
tities are imposed on us effortlessly through the specialized circuits of our
inferior parietal lobe. The structure of our brain defines the categories accord-
ing to which we apprehend the world through mathematics.’ (TNS, p. 245).

In this précis, I shall first briefly summarize the multiple sources of evidence
that support this claim. These include the presence of evolutionary precursors
of arithmetic in animals; the early emergence of arithmetic competence in
infants independently of other abilities, including language; the existence of a
homology between the animal, infant, and human adult abilities for number
processing ; and the existence of a dedicated cerebral substrate, as inferred from
studies of brain-lesioned patients with acquired deficits of number sense, as
well as from brain imaging studies of calculation in normal subjects. I shall
then briefly discuss how the biologically determined number representation
interacts with cultural factors such as language acquisition and schooling to
yield the specifically human ability for higher-level arithmetic.

2. Evolutionary Precursors of Arithmetic

If the human ability for arithmetic has a specific cerebral substrate which is
partially under genetic control, then one should find precursors of this ability
in animals. At the scale at which most animals live in, the world is made of
collections of movable physical objects. The evolutionary advantages of being
able to extract the numerosity of such collections are obvious, were it only
to track found sources, predators, or potential mates. It was therefore proposed
that evolutionary pressures must have lead to the internalization of numerical
representations in the brain of various animal species (Gallistel, 1990).

The search for animal arithmetic became an obvious goal of scientific
inquiry soon after Darwin’s publication of The Origin of Species. This quest
initally met with failure and growing skepticism (in TNS, I tell the famous
story of Clever Hans, a horse who was initially thought to be able to count
and read, but was later discredited). In the modern literature, however, con-
siderable evidence indicates that animals possess numerosity discrimination,
cross–modal numerosity perception, and elementary arithmetic abilities (for
review see Boysen & Capaldi, 1993; Davis & Pérusse, 1988; Gallistel, 1989;
Gallistel, 1990; Gallistel & Gelman, 1992). Various animal species including

 Blackwell Publishers Ltd. 2001



18 S. Dehaene

rats, pigeons, raccoons, dolphins, parrots, monkeys and chimpanzees have been
shown to discriminate the numerosity of sets, including simultaneously or
sequentially presented visual objects as well as auditory sequences of sounds.
Cross–modal extraction of numerosity was observed, for instance in rats
(Church & Meck, 1984). Most such experiments included controls for non–
numerical variables such as spacing, size, tempo, and duration of the stimuli
(Church & Meck, 1984; Mechner & Guevrekian, 1962; Meck & Church,
1983).

Some animals have also been shown to use their internal representations
of number to compute simple operations such as approximate addition, sub-
traction and comparison. At least some of those experiments required little or
no training, suggesting that the numerical representation is present in naive
animals. For instance, the ability to compute 1 + 1 and 2 – 1 was demonstrated
using a violation-of-expectation paradigm in monkeys tested in the wild
(Hauser, MacNeilage, & Ware, 1996). In some experiments that did require
training, there is excellent evidence that animals can generalize beyond the
training range. A case in point is the remarkable recent experiment by Brannon
and Terrace (1998). Monkeys were initially trained to press cards on a tactile
screen in correct numerical order: first the card bearing one object, then the
card bearing two, and so on up to four. Following this training, the monkeys
were transferred to a novel block with numerosities five to nine. Although
no differential reinforcement was provided, the monkeys readily generalized
their smaller-to-larger ordering behavior to this new range of numbers. Such
evidence suggests that a genuine understanding of numerosities and their
relations can be found in monkeys.

What does require years of training, however, and is never found in the
wild is the ability to learn symbols for numbers. Although a variety of species,
including monkeys (Washburn & Rumbaugh, 1991), chimpanzees (Boysen &
Berntson, 1996; Boysen & Capaldi, 1993; Matsuzawa, 1985), and even dol-
phins (Mitchell, Yao, Sherman, & O’Regan, 1985) and a parrot (Pepperberg,
1987) have learned the use of abstract numerical symbols, including Arabic
digits, to refer to numerical quantities, this always required huge amounts of
training. Hence, it cannot be taken to indicate that exact symbolic or ‘linguis-
tic’ number processing is within animals’ normal behavioral repertoire. It does
indicate, however, that abstract, presumably non-symbolic representations of
number are available to animals and can, under exceptional circumstances, be
mapped onto arbitrary behaviors that can then serve as numerical ‘symbols’.

3. Numerical Abilities in Preverbal Infants

It is remarkable that the elementary numerical abilities that can be demon-
strated in animals are almost strictly identical to those that have been found
in preverbal infants in the first year of life. Discrimination of visual numerosity
was first demonstrated in 6-7 month-old infants using the classical method of
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habituation–recovery of looking time (Starkey & Cooper, 1980). Infants
watched as slides with a fixed number of dots, say 2, were repeatedly presented
to them until their looking time decreased, indicating habituation. At that
point, presentation of slides with a novel number of dots, say 3, was shown to
yield significantly longer looking times, indicating dishabituation and therefore
discrimination of 2 versus 3.

In order to demonstrate that numerosity is the crucial parameter that drives
behavior, it is crucial to exclude all other potentially confounding variables in
the stimulus design. In the infant literature, this is still a matter of controversy,
because many experiments were not fully controlled, and in some of them at
least, replications suggest that the original behavior was imputable to con-
founds. Still, in the original study, dot density, spacing, and alignment were
controlled for. In subsequent studies, numerosity discrimination was replicated
with newborns (Antell & Keating, 1983) and with various stimulus sets, includ-
ing slides depicting sets of realistic objects of variable size, shape and spatial
layout (Strauss & Curtis, 1981), and dynamic computer displays of random
geometrical shapes in motion, with partial occlusion (van Loosbroek & Smits-
man, 1990).

Infants’ numerosity discrimination abilities are not limited to visual sets of
objects. Newborns have been shown to discriminate two– and three–syllable
words with controlled phonemic content, duration and speech rate (Bijeljac–
Babic, Bertoncini, & Mehler, 1991). Six-month-olds also discriminate the
numerosity of visual events, such as a puppet making two or three jumps
(Wynn, 1996). There is also evidence for cross–modal numerosity matching in
6–8 month-old infants (Starkey, Spelke, & Gelman, 1983; Starkey, Spelke, &
Gelman, 1990), although its replicability has been disputed (Mix, Levine, &
Huttenlocher, 1997; Moore, Benenson, Reznick, Peterson, & Kagan, 1987).

Like many animal species, human infants have also been shown to perform
elementary computations with small numerosities. Wynn (1992) used a
violation–of–expectation paradigm to show that infants developed numerical
expectations analogous to the arithmetic operations 1 + 1 = 2 and 2 – 1 = 1.
When shown a physical transformation such as two objects being successively
placed behind a screen, 4-month-olds expected the numerically appropriate
number of objects (here two) and were surprised if another number was
observed. Later replications demonstrated that this behavior could not be
explained either by biases in the location of the objects (Koechlin, Dehaene, &
Mehler, 1997), or in their identity (Simon, Hespos, & Rochat, 1995). Infants
still reacted to the numerically impossible events 1 + 1 = 1 and 2 – 1 = 2 when
changes in object location and identity were introduced. Thus, infants seem
to encode the scenes they see using an abstract representation of the number
of objects on the scene, irrespective of their exact identity and location.

There has been some discussion as to whether these experiments reflect a
genuine representation of numerosity in infants. Instead, many of these results
could be thought to indicate merely that infants have a capacity to keep track
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of up to 3 or 4 objects through a representation of ‘object files’—a represen-
tation in which numerosity would only be implicitly encoded, not explicity
represented (Koechlin et al., 1997; Simon, 1997; Simon et al., 1995; Uller,
Huntley-Fenner, Carey, & Klatt, 1999). Space precludes a full discussion of
this issue here. Suffice it to say, however, that several experiments, notably
those demonstrating discrimination of auditory signals, temporal events, or
large numbers such 8 versus 16 visual objects (Xu & Spelke, 2000), are not
directly conducive to such an explanation. Thus, the object file interpretation,
even if it turned out to be correct for many experiments with small numer-
osities, would still have to be supplemented with an additional genuinely
numerical mechanism.

4. Homology or Analogy?

To demonstrate that human abilities for arithmetic have a biological basis with
a long evolutionary history, it is not sufficient to demonstrate that animals and
preverbal infants possess rudimentary number processing abilities. One must
also show that there are profound homologies between human and animal
abilities that suggest a phylogenetic continuity. In fact, two striking shared
characteristics of number processing in humans and animals have been ident-
ified: the distance effect and the size effect. The distance effect is a systematic,
monotonous decrease in numerosity discrimination performance as the
numerical distance between the numbers decreases. The size effect indicates
that for equal numerical distance, performance also decreases with increasing
number size. Both effects indicate that the discrimination of numerosity, like
that of many other physical parameters, obeys Fechner’s Law.

Distance and size effects have been reported in various animal species when-
ever the animal must identify the larger of two numerical quantities or tell
whether two numerical quantities are the same or not (review in Gallistel &
Gelman, 1992). It should be stressed here that animals are not limited to pro-
cessing small numbers only. Pigeons, for instance, can reliably discriminate 45
pecks from 50 (Rilling & McDiarmid, 1965). The number size effect merely
indicates that, as the numbers get larger, a greater numerical distance between
them is necessary to achieve the same discrimination level. Number size and
distance effects have not been systematically studied in human infants yet, but
the available evidence already suggests that they readily discriminate 2 versus
3 objects, occasionally 3 versus 4 or 4 versus 5, but not 4 versus 6 (Starkey &
Cooper, 1980). A recent study indicates that infants can discriminate 8 versus
16 visual objects even when all size, density and occupancy cues are controlled
(Xu & Spelke, 2000).

The distance and size effects indicate that animals and infants seem to possess
only a fuzzy representation of numbers, in which imprecision grows pro-
portionally to the number being represented. As a consequence, only very
small numbers (up to about 3) can be represented accurately, while other
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numerical quantities are increasingly imprecise. Superficially, this analogical
mode of representation may seem to differ radically from the kind of represen-
tation that adult humans use in arithmetic. Animals are severely limited to
elementary, approximate, and non-symbolic calculations, while we can make
symbolic calculations with arbitrary accuracy. Why, then, do I claim that the
distance and size effect indicate continuity, rather than discontinuity, between
the human and animal representations of number? This is because, quite coun-
ter-intuitively, those effects do hold with humans, not only when representing
the numerosity of sets of objects (Buckley & Gillman, 1974; van Oeffelen &
Vos, 1982), but even when processing Arabic digits or number words
(Buckley & Gillman, 1974; Dehaene, 1996; Dehaene, Dupoux, & Mehler,
1990; Moyer & Landauer, 1967). For instance, when comparing Arabic digits,
it is faster and easier to decide that 8 is larger than 4 than to decide that 8 is
larger than 7, even after intensive training. The distance effect is found even
with two-digit numerals (Dehaene et al., 1990). Comparison times and error
rates are a continuous, convex upward function of distance, similar to psycho-
physical comparison curves. The number size effect relates to ‘subitizing’, our
ability to rapidly name the numerosity of a set of simultaneously presented
objects when it is below 3 or 4, but not beyond (Dehaene & Cohen, 1994;
Mandler & Shebo, 1982). It is also found when humans calculate. Even in
highly trained adults, adding, multiplying, or comparing two large digits such
as 8 and 9 is significantly slower and error-prone than performing the same
operations with digits 2 and 3. Furthermore, we exploit numerical distance to
approximate additions and to reject grossly false results, such as 4+6=39
(Ashcraft & Stazyk, 1981; Dehaene, Spelke, Stanescu, Pinel, & Tsivkin, 1999).

That human behavior obeys distance and size effects even when the num-
bers are presented in a symbolic notation suggests two conclusions. First, the
adult human brain contains an analogical representation of numerical quantity
very similar to the one observed in animals and in young infants, organized
by numerical proximity and with increasing fuzziness for larger and larger
numbers. Second, when presented with number words and Arabic numerals,
the human brain converts these numbers internally from their symbolic format
to the analogical quantity representation. This internal access to quantity seems
to be a compulsory step in number processing, because a distance effect is
found even when subjects merely have to say whether two digits are same or
different (Dehaene & Akhavein, 1995), or in priming experiments in which
the mere presentation of a digit or of a numeral facilitates the subsequent
processing of a numerically close target number (Brysbaert, 1995; Dehaene et
al., 1998b; den Heyer & Briand, 1986; Koechlin, Naccache, Block, &
Dehaene, 1999).

5. A Cerebral Basis for Number Sense

One final piece of evidence is required to demonstrate that the understanding
and manipulation of numerical quantities is part of our biological evolutionary
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heritage. One should show that it has a dedicated neural substrate. A specific
cerebral circuit should be reproducibly associated with the representation and
acquisition of knowledge about numerical quantities and their relations.
Although the demonstration is still far from complete, two arguments support
the hypothesis that the intraparietal cortex of both hemispheres participates in
such a circuit. First, neuropsychological studies of human patients with brain
lesions indicate that the internal representation of quantities can be selectively
impaired by lesions to that area. Second, brain-imaging studies reveal that this
region is specifically activated during various number processing tasks.

It has been known for at least 80 years that lesions of the inferior parietal
region of the dominant hemisphere can cause number processing deficits
(Gerstmann, 1940; Hécaen, Angelergues, & Houillier, 1961; Henschen, 1920).
In some cases, comprehending, producing and calculating with numbers are
globally impaired (Cipolotti, Butterworth, & Denes, 1991). In others, how-
ever, the deficit may be selective for calculation and spare reading, writing,
spoken recognition and production of Arabic digits and numerals (Dehaene &
Cohen, 1997; Hécaen et al., 1961; Takayama, Sugishita, Akiguchi, & Kimura,
1994; Warrington, 1982). My colleague Dr. Laurent Cohen and I have
recently suggested that the core deficit in left parietal acalculia is a disorganiza-
tion of an abstract semantic representation of numerical quantities rather than
of calculation processes per se (Dehaene & Cohen, 1995; Dehaene &
Cohen, 1997).

One of our patients, Mr. Mar (Dehaene & Cohen, 1997), experienced
severe difficulties in calculation, especially with single–digit subtraction (75%
errors). He failed on problems as simple as 3 – 1, with the comment that he
no longer knew what the operation meant. His failure was not tied to a specific
modality of input or output, because the problems were simultaneously
presented visually and read out loud, and because he failed in both overt pro-
duction and covert multiple choice tests. Moreover, he also erred on tasks
outside of calculation per se, such as deciding which of two numbers is the
larger (16% errors) or what number falls in the middle of two others (bisection
task: 77% errors). He easily performed analogous comparison and bisection
tasks in non–numerical domains such as days of the week, months, or the
alphabet (What is between Tuesday and Thursday? February and April? B and
D?), suggesting that his deficit was rather specific for the category of numbers.
There are now several observations of patients with dominant–hemisphere
inferior parietal lesions and Gerstmann’s syndrome (e.g. Delazer & Benke,
1997, Cohen and Dehaene, unpublished observations). All of them showed
severe impairments in number processing, most clearly in subtraction, compat-
ible with a disturbance of the central representation of numerical quantities.

Brain imaging evidence provides independent support for the idea that the
region of the intraparietal sulcus may be a crucial cerebral site for the represen-
tation and manipulation of numerical quantity. Since the inception of brain
imaging techniques, this region has been known to be activated bilaterally
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whenever subjects calculate (Roland & Friberg, 1985). The localization of this
activity has been refined to the banks of the left and right intraparietal sulcus
using the modern techniques of positron emission tomography (Dehaene et
al., 1996) and functional magnetic resonance imaging (Chochon, Cohen, van
de Moortele, & Dehaene, 1999; Dehaene et al., 1999; Pinel et al., 1999;
Rueckert et al., 1996). (See figure 1 on p. 24) There is even a report of single
neurons in this area firing specifically during simple calculations (Abdullaev &
Melnichuk, 1996).

Most importantly, several findings support the idea that this region is not
just related to calculation in general, but more specifically to the quantity rep-
resentation or ‘number line’. First, intraparietal activation is higher during an
approximation task that requires quantity estimation than during an exact cal-
culation task of similar complexity, but which can be performed at least in
part by rote retrieval (Dehaene et al., 1999). Second, the inferior parietal region
has been shown to be unaffected by the notation used for the numbers, sug-
gesting involvement at an abstract notation-independent level of processing
(Dehaene, 1996; Pinel et al., 1999). Third, the duration and intensity of acti-
vation in this region is sensitive to distance and number size effect, as predicted
from its putative role in encoding the mental analogical ‘number line’
(Dehaene, 1996; Kiefer & Dehaene, 1997; Pinel et al., 1999).

Two additional facts are relevant to my hypothesis that inferior parietal
cortices contribute to a biologically-determined numerical representation.
First, the association of arithmetic with the intraparietal sulcus is remarkably
reproducible. If arithmetic was just a cultural activity without a strong foun-
dation in brain architecture, one would expect considerable variation as a func-
tion of learning, education, and culture. Yet reports from research groups in
various countries suggest that, in most if not all cultures throughout the world,
the sites of the lesions causing Gerstmann-type acalculia, as well as the sites of
brain activation during calculation, systematically fall in the inferior parietal
region.

Second, although neuroscientists currently place considerable emphasis on
the concept of brain plasticity, the evidence suggests that the contribution of
inferior parietal cortices to number processing is highly specific and cannot be
easily transferred to other brain regions. If an early brain lesion disrupts parietal
circuitry, lifelong difficulties in arithmetic may follow. Indeed, a ‘developmen-
tal Gerstmann syndrome’, also called developmental dyscalculia, has been
reported in children (Benson & Geschwind, 1970; Spellacy & Peter, 1978;
Temple, 1989; Temple, 1991). Some of these children show a highly selective,
category-specific deficit for number processing in the face of normal intelli-
gence, normal language acquisition, and standard or even special education.
Although there is a dearth of accurate brain imaging data on developmental
dyscalculia, in at least one case the deficit has been clearly related to early
damage to inferior parietal cortex (Levy, Reis, & Grafman, 1999). Such evi-
dence bolsters my postulate that this area holds a biologically determined quan-
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Figure 1 Anatomical substrates of the number sense in the parietal lobe. All images are horizontal slices through the brain (i.e.
parallel to the eye-ear plane), with the front of the brain on top and the left side shown to the left. Sites of activation, indicated by
the white spots, are mostly concentrated in the parietal lobes (here shown at the bottom of each image). Bilateral activation of the
intraparietal sulcus is observed when subjects solve simple arithmetic problems such as subtracting a single digit from 11 (left column,
from Chochon et al., 1999) or when they approximate additions (middle column, from Dehaene et al., 1999). In both cases, activation
is found relative to a letter manipulation task which does not involve number processing, but is matched to the main task in input
and output requirements. The active site in the left parietal lobe coincides roughly with the site of lesions causing acalculia of the
Gerstmann type (right, from Dehaene, Dehaene-Lambertz, & Cohen, 1998a).
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Figure 2 Schematic functional and anatomical architecture of the triple–code
model (Dehaene and Cohen, 1995). The localization of the main areas thought
to be involved in the three numerical codes is depicted on a lateral view of the
left and right hemispheres (i.e., as seen from the outside). This schematic diagram
is meant as an aid to memory rather than a detailed anatomical depiction. The
verbal system, depicted here as a single ellipse, actually is known to involve
multiple areas close to the sylvian fissure, including inferior frontal, insular, angu-
lar and superior and middle temporal cortices. The parietal quantity system and
the occipito–temporal visual form system, shown here in projection, actually
involve deeper cortical areas, respectively in the intraparietal sulcus and in the
fusiform gyrus. Finally, the arrows indicate a functional transmission of infor-
mation across numerical codes and are not meant as a realistic depiction of existing
neural fiber pathways, whose organization is not fully understood in humans.

tity representation, and that early lesions to that region cause an inability to
understand the core meaning of numbers.

6. Against phrenology: the triple–code model of number processing

The above discussion should not be construed as a modern defense of phren-
ology, with a single brain area—inferior parietal cortex—encoding all knowl-
edge of arithmetic. The view that I defend in TNS is exactly opposite. Multiple
brain areas contribute to the cerebral processing of numbers; the inferior par-
ietal quantity representation is only one node in a distributed circuit. The
triple-code model of number processing, which was developed by Laurent
Cohen and I (Dehaene, 1992; Dehaene & Cohen, 1995), makes explicit
hypotheses about where these areas lie, what they encode, and how their
activity is coordinated in different tasks (see figure 2).

Functionally, our model rests on three fundamental hypotheses. First,
numerical information can be manipulated mentally in three formats: an ana-
logical representation of quantities, in which numbers are represented as distri-
butions of activation on the mental number line; a verbal format, in which
numbers are represented as strings of words (e.g. thirty-seven); and a visual
Arabic representation, in which numbers are represented as a string of digits
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(e.g. 37). Second, transcoding procedures enable information to be translated
directly from one code to the other. Third, each calculation procedure rests
on a fixed set of input and output codes. For instance, the operation of number
comparison takes as input numbers coded as quantities on the number line.
Likewise, the model postulates that multiplication tables are memorized as ver-
bal associations between numbers represented as string of words, and that
multi-digit operations are performed mentally using the visual Arabic code.

Neuropsychological and brain-imaging observations have permitted us to
associate tentative anatomical circuits to each node of the triple-code model.
We speculate that the ventral occipito-temporal sectors of both hemispheres
are involved in the visual Arabic number form; that the left perisylvian areas
are implicated in the verbal representations of numbers (like any other string
of words); and, most crucially, that the intraparietal areas of both hemispheres
are involved in the analogical quantity representation.

Although this model remains very simple, it can explain a variety of
behavioral and neuropsychological observations, including quite counter-
intuitive ones. For instance, the model predicts that the rote memorization of
arithmetic facts depends on a linguistic code for numbers and on left-hemi-
spheric language areas; conversely, the ability to approximate orders of magni-
tude, to compute novel operations such as subtraction through quantity
manipulation, and more generally to achieve an understanding of conceptual
relations between numbers, relies on the quantity code provided by inferior
parietal areas. Recent experiments have largely confirmed this prediction.
Brain lesions to the predicted areas can dissociate rote calculation from concep-
tual understanding of quantities (Delazer & Benke, 1997), exact calculation
from approximation (Dehaene & Cohen, 1991), and even multiplication from
subtraction (Dehaene & Cohen, 1997). Furthermore, brain imaging patterns
during exact and approximate calculation confirms that distinct circuits are
involved (Dehaene et al., 1999). When subjects approximate an addition, the
bilateral intraparietal quantity circuits shows greater activation that when sub-
jects retrieve the exact result, in which case greater activation is seen in left–
lateralized language-related circuits. Experiments in bilinguals also indicate that
rote calculation is learned in a language-specific fashion and does not easily
generalize to a new language, while the ability to approximate is language-
independent and transfers without cost (Dehaene et al., 1999).

Another prediction of the triple-code model is that the right hemisphere
of a split-brain patient (with a severed corpus callosum) should be able to
compare Arabic numerals that it cannot read (see figure 2). This is indeed the
case (Cohen & Dehaene, 1996; Seymour, Reuter-Lorenz, & Gazzaniga, 1994).
Even more counter-intuitively, the model predicts that following a left inferior
temporal lesion, a patient should lose the ability to read words and Arabic
numerals (a deficit known as pure alexia), and also the ability to multiply, but
not necessarily the ability to compare or to subtract numbers. Again, we have
recently demonstrated that this is the case (Cohen & Dehaene, 1995; Cohen &
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Dehaene, 2000; see also McNeil & Warrington, 1994). Some patients can
subtract numbers that they cannot read! That we can explain, and even predict,
the occurrence of such strange cases attests that one can go a long way with
a simple model that assumes a distribution of processing in multiple parallel
representations and pathways.

7. The construction of higher-level number concepts

How does the coordination of these multiple brain areas emerge during child
development? The hypothesis developed in TNS is that all children are born
with a quantity representation which provides the core meaning of numerical
quantity. Exposure to a given language, culture, and mathematical education
leads to the acquisition of additional domains of competence such as a lexicon
of number words, a set of digits for written notation, procedures for multi-
digit calculation, and so on. Not only must these abilities be internalized and
routinized; but above all, they need to be coordinated with existing conceptual
representations of arithmetic. The constant dialogue, within the child’s own
brain, between linguistic, symbolic, and analogical codes for numbers eventu-
ally leads, in numerate adults, to an integrated set of circuits that function with
an appearance of non-modularity. Before such a flexible integration is achi-
eved, however, the hypothesis of a modularity and lack of coordination of
number representations can explain many of the systematic errors or difficulties
that children encounter in the acquisition of arithmetic.

The reader is referred to TNS for a description of some of the difficulties
that children go through as they successively acquire single number words,
number syntax, the counting sequence, finger-counting algorithms, memor-
ized arithmetic facts, multidigit calculation algorithms, and higher-level num-
ber concepts such as zero, negative numbers, or fractions. Here I shall only
discuss one example, the memorization of the multiplication table. Why is it
so difficult to learn the small number of single-digit multiplication facts? Leav-
ing out multiplications by 0 and by 1, which can be solved by a general rule,
and taking into account the commutativity of multiplication, there are only
36 facts such 3 3 9 5 27 that need to be learned. Yet behavioral evidence
indicates that even adults still make over 10% errors and respond in more that
one second to this highly overtrained task.

What I think is happening is that our intuition of quantity is of very little
use when trying to learn multiplication. Approximate addition can
implemented by juxtaposition of magnitudes on the internal number line, but
no such algorithm seems to be readily available for multiplication. The organi-
zation of our mental number line may therefore make it difficult, if not imposs-
ible, for us to acquire a systematic intuition of quantities that enter in a multi-
plicative relation. (This hypothesis is supported by the fact that patients can
have severe deficits of multiplication while leaving number sense relatively
intact; in particular, patient NAU (Dehaene & Cohen, 1991), who could still
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understand approximate quantities despite aphasia and acalculia, was totally
unable to approximate multiplication problems). In order to memorize multi-
plication facts, we therefore have to resort to other strategies based on non–
quantitative number representations. The strategy that cultures throughout the
world have converged on is to acquire multiplication facts by rote verbal learn-
ing. That is, each multiplication fact is recited and remembered as a rote phrase,
a specific sequence of words in the language of teaching. This is still a difficult
task, however, because the 36 facts to be learned all involve the same number
words in slightly different orders, with misleading rhymes and partial overlap.
Error analyses indeed indicate that interference in memory is the most frequent
cause of multiplication error. When we err, say, on 7 3 8, we do not produce
55 or 57, which would be close matches, but we typically say 63, which is
the correct multiplication result of the wrong operation, 7 3 9 (Ashcraft, 1992;
Campbell & Oliphant, 1992).

It can be argued that our memory never evolved to acquire a lot of tightly
inter-related and overlapping facts, as is typical of the multiplication table. Our
long-term semantic memory is associative and content-addressable: when cued
with a specific episode, we readily retrieve memories of related contents based
on the semantic similarity. In particular, we generalize approximate additions
based on numerical proximity. Hence, we can readily reject 34 1 47 5 268
as false, even though we have never been exposed to this particular fact,
because our representation of quantity immediately allows us to recognize that
the proposed quantity, 268, is too distant from the operands of the addition
(Ashcraft & Battaglia, 1978; Dehaene et al., 1999). In the case of exact multipli-
cation, however, the organization of memory by proximity is detrimental to
performance. It would be desirable to keep each multiplication fact separate
from the others; yet our memory is designed so that, when we think of 6 3 7,
we co–activate 6 3 8 and 5 3 7. In summary, our cerebral organization can
explain both why exact multiplication facts are so confusing and difficult to
learn, and why approximation and understanding of quantities are highly
intuitive operations.

8. Individual Differences in Mathematical Achievement

Can empirical studies of the number sense also shed some light on individual
differences in mathematics? In TNS, a whole chapter is dedicated to the pecul-
iar case of talented mathematicians and calculating prodigies. The study of such
cases is crucial because at first sight it seems to run against my main argument.
If the basic architecture of our brain imposes such strong limits on our under-
standing of arithmetic, why do a few children seem to thrive in mathematics?
How did outstanding mathematicians such as Gauss, Einstein, or Ramanujan
attain such an extraordinary familiarity with mathematical objects? And how
do some retarded or autistic children with an IQ of 50 manage to become
experts in mental calculation? Do we have to suppose that some people started
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in life with a distinct brain architecture, a biological predisposition for calcu-
lation and mathematics?

In all fairness, it should be said that, at present, very little is known about
this issue. However, having reviewed the available evidence, I do not believe
that much of our individual differences in mathematics are the result of differ-
ences in an initial ‘talent’. At present, at any rate, there is very little evidence
that great mathematicians and calculating prodigies have been endowed with
a distinct neurobiological structure for numbers. On the contrary, there is
strong empirical evidence that like all of us, experts in arithmetic have to
struggle with long calculations and abstruse mathematical concepts. A beautiful
illustration is provided by a recent single case study which probed the major
domains of numerical competence, from single- and multi-digit calculation
(including acquisition of new algorithms) to working memory and long-term
memory, in a calculating prodigy (Pesenti, Seron, Samson, & Duroux, 1999).
In all these domains, the subject exhibited the response time and error charac-
teristics of any normal subject, such as size and distance effects. Training
seemed to have reduced the size of these effects, but their basic characteristics
remained unaltered. For instance, the subject’s short-term memory span for
digits was 11, but it did not exceed the normal value of 7 for letters, a domain
for which the subject had no particular training. This suggests that his excellent
memory for numbers was most likely due to extensive training rather than to
an innate distinct biological organization.

My hypothesis, then, is that talented people succeed largely because they
devote a considerable time, attention and effort to their topic of predilection.
Through training, they develop well-tuned algorithms and clever short-cuts that
any of us could learn if we tried, and that are carefully devised to take advantage
of our brain’s assets and get around its limits. What is special about them is their
disproportionate and relentless passion for numbers and mathematics—a passion
which is occasionally of pathological origin, as clearly seen in retarded autistic
children with calculation skills. Training experiments indicate that, with a similar
amount of training, normal subjects can also enhance their memory and calcu-
lation speed (Chase & Ericsson, 1981; Staszewski, 1988).

Chapter 6 in TNS contains many examples of the algorithms and short–
cuts that underlie ‘prodigious’ calculation. Rather than reiterating them here,
let me propose here a novel reinterpretation of the famous dialogue between
Ramanujan and Hardy. The prodigious Indian mathematician Ramanujan was
slowly dying of tuberculosis when his colleague Hardy came to visit him at
the sanatorium. Not knowing what to say, Hardy made the following reflec-
tion: ‘The taxi that I hired to come here bore the number 1729. It seemed a
rather dull number’. ‘Oh no, Hardy’, Ramanujan immediately replied, ‘it is a
captivating one. It is the smallest number that can be expressed in two different
ways as a sum of two cubes’!

1729 is indeed equal to 103 + 93 and to 123 + 13. But how did Ramanujan
compute this complicated mathematical fact in a matter of seconds, from his

 Blackwell Publishers Ltd. 2001



30 S. Dehaene

hospital bed? Such anecdotes tend to support the belief that geniuses are of a
different breed. Yet there is a more plausible explanation. Having worked for
decades with numbers, Ramanujan evidently had memorized scores of facts,
including the cubes of small integers. He therefore knew that 729, 1000, and
1728 are cubes (103 5 1000 is obvious; likewise 123 5 1728 is familiar because,
since there are 12 inches in a foot, 1728 is the number of cubic inches in a
cubic foot; 93 5 729 is less obvious, but clearly easy to compute). Hence,
Ramanujan could readily see that 1729 is one unit off a cube, and that its last
three digits also form a cube. From this, it should be absolutely obvious to
someone with Ramanujan’s training that 1729 is the sum of two cubes in two
different ways, namely 1728 1 1 and 1000 1 729. Proving that it is the small-
est such number is more difficult, but can be verified by trial and error.
Eventually, the magic of this anecdote dissolves when one learns that Ramanu-
jan had written this fact in his adolescence notebooks (Kanigel, 1991). Hence,
contrary to the legend, Ramanujan did not discover it on the spur of the
moment: he already knew it! I expect that in-depth studies of normal mental
algorithms will lead to the debunking of many similar cases, which can and
should be brought back within the range of the normal human competence.

9. Concluding thoughts on the nature of the mathematical
enterprise

In conclusion, I would like to briefly discuss how cognitive neuroscience stud-
ies of number processing can be relevant to wider issues in the philosophy
of mathematics. The nature of mathematical objects has been the subject of
considerable controversy amongst philosophers and the mathematicians them-
selves. Traditional approaches to the nature of mathematics have disregarded
the psychological or neurological constraints on the brain of the practicing
mathematician. My strong belief, though still clearly speculative at this point,
is that our improved understanding of the neuropsychological bases of number
sense can provide a new ‘naturalistic’ approach to the problem of the foun-
dations of mathematics.

Many mathematicians still adhere to the philosophical tradition of platonism.
They believe that mathematical objects have an independent reality outside of
the human mind: they are abstract, transcend our human descriptions, and pre-
date the evolution of the human brain. Mathematicians do not invent them,
but merely discover them through progressive explorations of the mathematical
realm. Several features of this point of view are open to criticism, however.
Most crucially, Platonism encounters considerable difficulty explaining exactly
what this abstract realm of mathematical objects consists of, and, worse yet, how
a physical device such as the human brain could ever interact with this non-
physical space of pure ideas and know some mathematical truths.

Another approach called formalism considers mathematics as a symbolic
game with little or no meaning. By modifying symbol strings according to the
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adequate rules, mathematicians can derive new theorems from a given set of
axioms, but it would be misleading to search for transcendental truth in this
play with symbols. This point of view may perhaps account for the develop-
ment of some recent areas of pure mathematics. It cannot however explain
why mathematical objects are so often exquisitely adapted to our understanding
of the physical world. ‘How is it possible that mathematics, a product of human
thought that is independent of experience, fits so excellently the objects of
physical reality?’ Einstein asked in 1921. The physicist Eugene Wigner likewise
marveled about the ‘unreasonable effectiveness of mathematics in the natural
sciences.’ Examples of this effectiveness abound. My personal favourite is
Kepler’s approximation of the trajectories of planets. Kepler discovered empiri-
cally—and Newton soon proved from first principles—that ellipses provide an
excellent model of the trajectories of the planets around the sun. Yet the
properties of ellipses were first described, for an entirely different purpose, by
the Greek mathematician Appolonius about 20 centuries before Kepler’s time!
Why did these mathematical objects, which originally described the sections
of a cone by a plane, succeed so well in mimicking astronomical reality?

My point of view is that the mystery of the efficiency of mathematics partly
dissipates if one adheres to a naturalistic philosophy of mathematics, firmly
grounded in cognitive neuroscience. According to this view, our ability to
make sense of the world through mathematics is due to the internalization of
representations in the human mind and brain in the course of evolution. These
representations are ‘unreasonably effective’ in understanding our environment
because they have been selected precisely for their representational adequacy.
Indeed, two consecutive levels of evolution and selection explain the amazing
adequacy of our present mathematics: first, the biological evolution of elemen-
tary representational abilities, and second, the cultural evolution of higher-
level mathematics (see also Changeux & Connes, 1995).

In the course of biological evolution, selection has shaped our brain rep-
resentations to ensure that they are adapted to the external world. I have argued
that arithmetic is such an adaptation. At our scale, the world is mostly made up
of separable objects that combine into sets according to the laws of arithmetic.
Representing these combinatorial operations is useful to many organisms.
Pressures of selection therefore lead to the emergence of an internal system for
elementary arithmetic in the brain of many animal species, including humans.
Representational systems have also evolved for the mental manipulation of
space, time, motor actions, and many other domains yet. I believe that the
ultimate foundations of mathematics are to be found in these largely innate
core representational systems.

Specific to the human species, however, is a second level of evolution at
the cultural level. As humans, we are born with multiple intuitions concerning
numbers, sets, continuous quantities, iteration, logic, or the geometry of space.
Through language and the development of new symbols systems, we have the
ability to build extensions of these foundational systems and to draw various
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links between them. In the course of centuries, mathematicians have generated
a great variety of such cultural constructions. Those were then selected accord-
ing to various criteria including their non-contradiction, simplicity, elegance,
but also their productivity in capturing physical phenomena. This Darwinian
view of the history of mathematics, with an initial, largely unconstrained gen-
eration of pure mathematics followed by the selective propagation of its most
adequate products, may partially account for the efficiency of our present-
day mathematics. ‘Year after year, mathematical constructions that are self-
contradictory, inelegant, or useless are ruthlessly tracked down and eliminated.
Only the strongest stand the proof of time. (...) If today’s mathematics is
efficient, it is perhaps because yesterday’s inefficient mathematics has been
ruthlessly eliminated and replaced’ (TNS, pp. 246 & 251).

Obviously, we are still very far from understanding how the biological
organization of the human brain allows us to make sense of the world through
mathematics. At present, only the most elementary of all mathematical con-
cepts, the small integers, have been submitted to a cognitive neuroscience
analysis. Yet a similar analysis could be attempted for other domains of math-
ematics. Topology and geometry, for instance, might be plausibly related to
the representations of space computed by our parietal and peri–hippocampal
cerebral regions. As our understanding of the neuropsychological foundations
of mathematics deepens, not only may we reach a better comprehension of
the nature of the mathematical enterprise; but I also hope that, once the assets
and limits of our cognitive apparatus are better known, our ability to teach
this notoriously difficult domain will improve.

Service Hospitalier Frédéric Joliot Orsay, France
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