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1 Introduction
My interest lies at the intersection of life, inference and engines. At the heart of all things is
entropy — in particular The Maximum Entropy Principle (MaxEnt), which is a statistical
method of producing minimum bias priors in accordance with Bayesian probability.

The basic idea is to recognise that the most fruitful thing an agent can do with a probability
distribution is to use it to make a bet. I want to ask, if a bet is repeatedly playing out successfully
and reliably, how is the information associated with it encoded into the agent? If living organisms
were able to evolve to states of maximum entropy with respect to relevant knowledge on dependable
conditions, would this provide an advantage over competing organisms that may exhibit differing
biases with respect to the same observations?

These are the general questions I’m interested in, but my focus at the moment is on a non-
equilibrium model for the behaviour of the molecular motor protein Kinesin. Over the course of
a single stepping-cycle, 1 ATP molecule is hydrolysed and the motor undergoes a diffusive search
for the subsequent binding site. This serves to extract work from a thermal reservoir in a cyclical
sequence of states that breaks detailed balance.

I am investigating MaxEnt to see if it can be used to quantify the cost of an inference (that
is, that a diffusive process succeeds within some time-limit) in terms of solely the properties that
define it in the first place (viscosity of the fluid, mass of the constituents, load force etc). If this cost
can be compared with the budget liberated during ATP hydrolysis (and all the other biochemical
processes along the cycle), it may be possible to find regions of parameter space where the cost
exceeds the budget, implying that the protein should stall.

If these regimes of failure overlap with experimental data, this provides a case for the application
of MaxEnt to living methods of energy extraction and dissipation more widely.

2 Entropy and Maximum Entropy
Entropy S has deep-set interpretations in a variety of fields but two important ways of describing
the quantity are in:

1. molecular thermodynamics where it is used to characterise energy dispersal at a certain
temperature; to quantify the flow of thermal energy between two states of a system [1].

2. probability theory where it serves as a measure of the information required to achieve full cer-
tainty; it represents a state of knowledge of a system [2], expressed as a somewhat aggregated
function of the probability density p:

S(p) = −kB
∑
i

pi ln pi = −kB〈ln p〉 (1)

where kB is Boltzmann’s constant, {i} is an exhaustive set of N mutually exclusive alternatives
and pi satisfy

∑N
i pi = 1.

In the 1950’s Edwin T. Jaynes realised that entropy could be used as a basic element of prob-
ability theory, allowing one to construct prior probabilities that minimise bias with respect to
available information [3]. MaxEnt is essentially an algorithm that provides a way of building a
model that optimally represents a state of knowledge. Given information ϑ in the form of a set
of M independent vectors {ϑj} with j = 1, · · · ,M < N , each with a value for its associated ex-
pectation 〈ϑj〉 =

∑N
i piϑij , the information entropy (1) is maximised to SMax and the Lagrange

multiplier method yields a corresponding distribution pϑ ≡ {pi}:
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pi =
e−λ·ϑi

Z
(2)

where Z =
∑N
i e
−λ·ϑi is the normalising partition function and Lagrange multipliers λ = {λj}

follow scalar-product notation:

λ · ϑi ≡ λ1ϑ1i + · · ·+ λMϑMi (3)

The λj are found by solving the set of M coupled differential equations:

〈ϑj〉 = −
∂

∂λj
lnZ (4)

Qualitatively, this method serves to ‘flatten out’ the distribution as much as possible whilst still
maintaining the constraints that have been applied during the maximisation procedure. It ensures
that the resultant probabilistic description obtained includes: a) the information contained in the
measurements themselves; b) the assumption of an exhaustive set of mutually exclusive outcomes;
and c) absolutely nothing else.

This maximised entropy can also be used as a basis to define entropy, which makes it useful
because, unlike classical definitions from thermodynamics, it is not limited to equilibrium frame-
works and concepts, but can be provided arbitrarily given ϑ: a so-called ‘hypothesis space’ that
ideally encapsulates all the essential information of the system in question [4].

3 Research Methods
My interest revolves around the search for hypothesis spaces that can apply to physically relevant
processes enacted by living organisms — for instance by modelling the expected rate of a well-
defined event, the mean first passage time of arrival or the correlation between dwell times of a
system. Then, in conjunction with thermodynamic considerations, I aim to use MaxEnt to make
predictions about the behaviour of a biological system in a variety of parameter regimes.

3.1 Kinesin and Rectified Brownian Motion
Kinesin is a molecular motor protein that can be found in all living organisms. It consists of
two motor heads which bind sequentially to sections of a long molecular track called a microtubule
highway. The protein is responsible for the directed transport of larger molecules within a cell. Due
to the extremely low Renoylds number of sub-cellular biology, inertial effects play no significant
role in stepping, so instead Kinesin procession harnesses Brownian motion, often acting against an
external load force backwards.

The process is works in a cycle [5], with most stages (Figure1) involving biochemical reactions.
It is initiated by the supply of the adenosine triphosphate (ATP) arriving at a nucleotide-binding
pocket on the anchored motor-head. The protein then undergoes a variety of conformational
changes that culminate in the docking of an attached neck-linker to the head, forming a complex
known as the ’cover-neck bundle’. This newly-formed complex has the tendency to bend towards
the anchored head, and it is considered a critical component for stepping. Full docking is completed
in eventual direct contact with the motor core, but the mechanism by which this final process occurs
is energetically unfavourable, completed only with the release of free energy from the hydrolysis of
ATP, which powers the cycle [6].

Meanwhile, the tethered second head, initially situated 16nm behind the target, dependably
makes its way to the next microtubule binding site ahead. Studies on Kinesin have identified two
possible mechanisms to convert the chemical energy from hydrolysis into mechanical work. The first
is the ‘power stroke’ model, whereby docking of the linker mechanically forces the tethered head
forward some distance. The second is the ‘Brownian ratchet’ model, involving a biased diffusive
search of the tethered head to find the target binding site. These two methods of movement are not
mutually exclusive [7] and it is the subject of my work to investigate the contributions of each by
modelling the tethered head as a particle that periodically resets [8] to the position of the anchored
head, 8nm away from the initial and final binding sites.
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Figure 1: The Kinesin Stepping Cycle. The diagram on the left is adapted from [9]. Loads
attach to the tall thin section of the protein in grey.

3.2 Irreversible Thermodynamics
Experiments have identified some ‘missing’ internal dissipation in the motor. Energy is released
initially in the form of chemical free-energy (-20kT), some of which is transformed into work to
carry the load (3.74kT at 2pN), and the remainder is dissipated into some form of heat. Heat
has been known to come from a couple of sources: a simple viscous drag component (0.06kT),
and a more complicated non-equilibrium contribution due to the stochastic nature of the diffusing
head (0.1kT). However, when experimental researchers went looking for these various forms of
dissipation [10], they discovered that 80% of the energy remains unaccounted for, implying an
unknown internal source of dissipation that seems to be responsible for the vast majority of the
energy budget available.

In terms of thermodynamics, the process is intriguing because it harnesses thermal energy
to extract work by enforcing boundary conditions and driving resetting through the expense of
metabolic energy. In conjunction with the other processes in the cycle, let’s ask: can this be
understood as the working stroke of a heat engine which spends time far away from equilibrium?

Crucially, this engine would operate in a fundamentally different way than its Carnot relative.
Far from maintaining a constant entropy throughout the cycle, it would be acting to maximise
entropy during a critical step. This incorporation of information via MaxEnt is equivalent to
maximising irreversibly with respect to the hypothesis space ϑ — a prediction measure which is
used to inform a later forecasted outcome. In addition, this engine is being actively driven by an
external agent; it does not operate in isolation or apply to closed systems.

A simple non-equilibrium argument in thermodynamics [11] can be re-purposed to provide a
starting point for the research outlined here (Figure2). Consider a system in contact with a thermal
reservoir, initially in an equilibrium state p0 = e−βH0/Z0 with Hamiltonian H0. It undergoes 3
general processes in a cycle. These steps are as follows:
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Figure 2: The Biological Inference Engine This cycle has been adapted from a simple non-
equilibrium free energy argument [11] and is a sketch intended for further investigation.

1. Spontaneous, irreversible excitation — A heat Q1 = 〈H0〉pϑ − 〈H0〉p0 is transferred from the
environment to the system, kicking the state-particle out of equilibrium. Biochemical reac-
tions involving ATP stimulate conformational changes in the protein, expending metabolic
energy in preparation for the thermal driving process.

2. Instantaneous priming — The system Hamiltonian is transformed H0 → Hϑ ≡ −kBT ln pϑ,
requiring dissipated work W2 = 〈Hϑ〉pϑ − 〈Hϑ〉p0 . In Kinesin, before the diffusive search of
the trailing head, the anchored leading head binds with ATP and causes a mechanical element
called the neck-linker to dock onto the catalytic core. This mechanism is widely believed to
play a key role in directional stepping by providing a forward bias for the diffusive search,
harnessing RBM principles by imposing effective boundary conditions that exponentially
alter the probabilities of visiting forward vs backward binding sites [12].

3. Isothermal driving — The quench triggers the final part of the process. The system is now
exposed to thermal fluctuations and driven into the original desired equilibrium state, over
which work W3 = F (p0)− F (pϑ) = 〈H0〉p0 − TS0 − 〈Hϑ〉pϑ + TSMax is performed. This is
the RBM working stroke in action. The system is ready to repeat the cycle all over again.

Clearly the cycle breaks down ifW3 > Q1+W2. Or, in other words, the work performed should
not exceed the heat paid for the wager plus the work spent to frame the guess.

With Kinesin in mind, Q1 should correspond directly to hydrolysis and other metabolic reac-
tions which can be modelled using Arrhenius rate reaction methods [13]. W2 can be considered by
looking at both experimental observations [14] and structural modelling of the protein [15]. Neither
of these are expected to be particularly load-dependent [16]. W3 however, is. So the investigation
here is concerned with the search for an appropriate hypothesis space: one that wholly encapsulates
all the relevant information associated with that diffusive search - consisting of: the first-passage
time distributions; the dwell times; the ‘pulling-back’ load force; the constant temperature of the
cell and other fundamental quantities of the system. From there,W3 is thought be calculable using
MaxEnt.

Experimental measurements have found that Kinesin operates up to 5-7pN load force [17]
and 5mPa s effective viscosity [18]. The ultimate goal then is to theoretically reproduce these
experimentally observed stall values by finding parameters that satisfy W3 > Q1 +W2.
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